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RANDOM COVERAGE OF A CIRCLE WITH APPLICATION
TO A SHADOWING PROBLEM

1. INTRODUCTION

|
|
i
]
1
i

The problem under consideration in the present study belongs to the class of
problems of random coverage of a circle by randomly placed arcs having random
length. The specific problem studied here is motivated by a shadowing problem,
according to which the random arcs on the circle are shadows cast by randomly
scattered disks on the plane. The model assumes that the centers of the disks
form a homogeneous Poisson process on the plan, with intensity u per unit area.
Furthermore, given the number of disks centered in a specific Borel set in the
plane, the model assumes that their diameters are identically distributed inde-
pendent (i.i.d) random variables with a known distribution. Assuming that the
circle is not intersected by any disk and 1its center (the source of light) is
uncovered, shadow arcs on the circle are defined as the central projections of
random disks which 1ie entirely within the set inscribed by the circle. Accord-
ingly, the model assumes that the number of shadow arcs covering the circle is a
Poisson random variable. Given this number, the centers of the disks are condi-
tionally independent having a uniform distribution. The length of the shadow
arcs are conditionally i.i.d. random variables, having a common distribution on
[o, ]. The main objective of the present study is to obtain the distribution
of a measure of vacancy of arcs on the circle. The measure of vacancy of an arc
is the total length of the portion of the arc which is in the light. Equations
for the moments and the moment generating function of the measure of vacancy of
arcs of length t, 0 <t < 2n, and given in section 4. Furthermore, for 0 <
t < a formula of the Laplace transform of this moment generating function is
developed. The derivations in Section 4 are based on formulae of vacancy proba- ﬂ
bilities derived in Sections 2 and 3. More specifically, in Section 2 we pro-
vide general formulae for: (1) the probability that an arc of length t on the
circle is not covered; (2) the probability that a finite set of specified points
are simultaneously uncovered. These formulae are further developed in Section 3
in terms of the stochastic specifications of the random arcs. In Section 5 the
results are applied to the particular shadowing problem under consideration.
Analytic formulae for the numerical determination of the moments of any order,
for a particular example, are given in Section 6.

The literature on the coverage problem is very extensive. Robbins [4] de-
rived the moments of the total coverage of an interval on the line by random
segments of fixed size. These results were later extended and generalized by
Robbins [5], Domb [2], and Takacs [9). Other related results are presented by
Solomon [8]. Siegel presented in [6] moments of the measure of vacancy of the
circle when the coverage is by a fixed number of random arcs having random
length. In a following paper [7] Siegel provided formulae for the moments and
the distribution of the measure vacancy on a circle, which is covered by a given
number of random arcs of fixed length. The motivating shadowing problem led us
to further developments over those of the previous papers, although the basic
approach to the evaluation of moments is essentially the same as that of
Robbins.




The shadowing problem did not receive much attention in the literature.
Chernoff and Daly [1] considered @ similar shadowing problem when the shadows of
random disks are cast on a straight line. They provide the methodology for de-
veloping the distributions of the length of intervals which are entirely in the
light or entirely in shadow. It should be remarked that the shadowing process
discussed in the present paper is identical over the interval [o, ] with an

M/G/« queuing process.
2. THE COYERAGE MODEL AND FUNDAMENTAL RESULTS

Consider a circle, C, of radius one centered at the origin. Let Aj, Ap,...,
Ay be N arcs placed at random on C. N is a random variable having a Poisson
distribution with mean 2nA. Given that N = n, the centers of A;,... Ay are con-
ditionally independent and uniformly distributed on C. Let Xj (i = 1,...n) de-
note the arc length of A;. It is assumed that Xj..., X, are i.i.d. random vari-

ables having a c.d.f. F(x) on [o, #].

It is well known that the probability of covering any specific point on C by
a randomly placed arc is y = E{X}/2n. This result will be obtained as a special
case of a more general result derived in the present paper. Let P, designate a
point on C having polar coordinates (1, 1), 0 <1<2n. Let Q(t) denote the number
of arcs which cover P,. Given N = n, the conditional distribution of Q(t) is
the binomial B(n,y). Accordingly the (total) distribution of Q(t) is the Pois-
son with mean o = 2ndy = AE{X}. Notice that due to the symmetry in the model

the distribution of Q(t) does not depend on z.

Consider a specified arc on C of length t, o<t<®x, connecting the points Pg
and P?+t. Let qp(t) denote the conditional probability that such an arc is com-

pletely uncovered by random arcs, given N = n. This conditional probability is
an(t) =P{ VvV Q(r) = O|N=n}, (2.1)
S<T<S+t

where VQ(t) denotes the maximum of Q(t) over the specified interval. Since
T -
the random arcs are conditionally independent, given N=n, qp(t) = (ql (t))n, for

all t, o<t<2x. Accordingly, the probability that a specified arc on C of length
is uncovered is

™ 2% n
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e (2.2)
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Explicit derivation of ql(t) is given in Section 3. In particular, for t=0, we

obtain that ql(0)=1-1 and the probability that any given point on C 1is uncovered
is

€ =q(0) =eP (2.3)

Let Psl,..., Psr be r specified points on C, where r>2 and 0<sl <52<~--<5r<2'-
Let to= 2:-5,.+s1 . ti.si+1-si’ i=l,...,r-1, be the length of the arcs connecting

these points. The conditional probability, given N=n, that all these r points
are uncovered is function of (tl,..., tp.1) defined by

Pn (tl""’ tpa1) =P { V Q(sj) = O|N=n} (2.4)

i=l,.eer

r-1
0<ti (i.l,o.o’ r'l) and z t1<21l.
i=]

Again, due to the conditional independence, Pn(t1-'~-n tp-]) = [pl(tl,..., tp.1))"

r-1
for all (t,,..., tp-1). Notice that to = 2 - ] tj. Finally, the (total) prob-
i=]
ability that the r points are uncovered is
p(tl,...,tr-l) = exp {-Zﬂ(l-pl(tl,...,tr-l))}. (2.5)

Explicit formula for pl(tl,..., tp.1) will be given in Section 3.




3. VACANCY PROBABILITIES

In the present section we develop explicit formulae for q,(t) and p,(t,,...,
tr.1). As defined in the previous section, ql(t) is the probability that a ran-

domly placed arc does not intersect 2 specified arc of length t. This probability
is given by

1 28-t
q,(t) = 5 [ F(x)dx. (3.1)
¥ 0
Introduce the auxiliary function
2%
¢(t) =/ [1 - F(x)]dx, O<t<2n. (3.2)
t

Notice that ¢(0) = E{X} and that, ¢(t)=0 for a1l t>n. Accordingly,
1
q,(t) =1 - = [t + E{X} - ¢(2x-t)], Oct<2s. (3.3)
T
From (3.3) one obtains the previously mentioned result that ql(O) = 1-E{X}/2% = ]l-y

and

q(t) = gexp {-A(t-¢(27-t))}, O<t<2s. (3.8)




Another important result that can be obtained from (3.4) is the distribution of
the length of an uncovered arc starting at an uncovered point Pg.  More specifi-
cally, consider the r.v.

Hg = sup {t; V Q(t) = 0, 0<t<2n} (3.5)
S<T<S+t

where Q(s) = 0. It follows that

P {Hg >t} = q(t)/¢ (3.6)
e-At ,0<t<x
= | e =AttA¢(2v-t)  yctcon

0 ,en<t
Notice that the distribution of Hg has a jump point at t=2» and
P {Hg = 2} = e=2mA/g, (3.7)

For the derivation of an explicit formula for px(tx""' tr-1), let By denote the

event that a single random arc lies entirely within the arc between Psr and Psl

and Bj (i=1,..., r-1) the event that the random arc lies entirely between Pg_ and
i

Psi+1° Thus,

P {Bi} = q(2n - tj) (3.8)

1
--E; [ty + o(tj) - E{(X)}], i=0,00., r-1.




Finally, since Bg,..., Bp.] are muitually exclusive and their union is the event

{ial.Y...rQ(si) = 0},

r-1
pl(tl""'.tr'l) b 12 P{B‘i}
=0

r 1 rel
= - o= -— ’ § /e
1- 5 EX) s = iZo (t5)

Substitution of (3.9) in (2.5) yields

r-1
Pt seees tra1) = E7 exp {1120 o(ti)}-

In particular, for r=2, the joint probability that two specified points, Pg and

Pg+ts are uncovered by random arcs is

g2ere(t) | oct<r
p(t) = { €2 R
g2eré(27-t)  wct<om .

4. THE MEASURE OF VACANCY
Define the stochastic process {I(t), O<t} where

0 ,if Q(t mod 2x)>1
1w - | -
,if Q(t mod 2x)=0.

(3.9)

(3.10)

(3.11)

(4.1)




Notice that the sample functions of this process are step functions, since with
probability one there are only finitely many random arcs. The measure of vacancy
of a specified arc from Pg to Pg4t, t>0, is a r.v. defined as

s+t
Y(s,t) = [ I(t)dt ,o<s,t«<2s. (4.2)
s

This measure of vacancy is the sum of lengths of all the uncovered arcs between
Pg and Pgyt. The distribution of Y(s,t) clearly does not depend on s and is con-
centrated on the interval [0,t). The corresponding c.d.f. is continuous on (0,t)
and has jump points at 0 and t. Furthermore,

P {¥(s,t) = t} = q(t). (4.3)

Let £p(t) denote the r-th moment of Y(s,t). In particular,
t
el(t) = E{Y(s,t))} = [ E{I(t)} dv = gt. (4.4)
0

Indeed, E{I(t)} = P{I(t) = 1} = &.

Furthermore, for every r»2 and 0<sl<sz<...<sr<2n,

r
E {.nl I(Si)} = p(tl,ooo, tr-l)o (4.5)
1=




Accordingly, the r-th moment of Y(s,t), for r>2, is

r
Ep(t) = vt [ o o o JE{ T I(s3)} ds ...dg (4.6)
i=] r

t T 1-t;
= rIEF [ dt (t-1)ede(27-1) [ gt ere(t1) [ dt
0 0 ! (o] 2

T‘§3

T~ L%

T-t)-t2 f=1 re2

ed(ty) [ . o o [ dtep explre{tep) + 2e(t -,thi)}-
° o 1=

Let {¥.(t);r>1} be a sequence of convolutions defined recursively in the follow-
ing manner:

0 »if t<0

hit) = {eh(t) ,if 30 1)

and

t
we(t) = [ v (1)¥p.1(t-1)dr, ro2.
0




Accordingly, formula (4.6) can be expressed in the form

t
Ep(t) = rigr | (t-T)wl(Zn-t)wr_l(t)dt.
0

From formula (4.8) we obtain immediately that

d t
= Ep(t) = rlg™ [ oy (2n-1)pp.p(t)dr (4.9)
dt )
and
d?
azi Ep(t) = r!E"w,(Zw-t)Wr-l(t)- (4.10)

This means that, for every r»2, £(t) is an increasing convex function of t and
for r=1 it is an increasing linear function of t.

Introduce the moment generating function (m.g.f.) of Y(s,t)

« r
E(v,t) = ] = Ep(t), —=ike (4.11)
r=g U
v(v,t) = Elvr vpr(t) , ==Cudm , (4.12)
re
9




.
Notice that ¢(t)< E{X} and therefore 1<y, (t)<1/€. It follows that wr(t)=0(;7).

r>1 and therefore ¥(v,t) is convergent for all real v. Furthermore, from (4.7),
the generating function w(v,t) satisfies the renewal equation.

t
v(vit) = vy, (t) + v [ ¥ (1) ¥(v,t-t)dr. (4.13)
0
Finally, from (4.8), (4.11), and (4.12) we obtain the formula
t
E(vit) =1 ¢+ Etv + Ev [ (t-1) wl(Zi-r) v(Ev,1) d1 . (4.14)

0

Generally, the distribution function of Y(s,t) can be obtained from (4.18). We
provide now further development for the case of t<r. In this case Yy(27-1) = 1
for all Oc<r<t.  Hence, from formulae (4.7) and (4.8) one obtains the recursive
formula

t
Er(t) = re [ ¥ (WEpg(t-u)du , r>2 . (4.15)
o
It follows that the m.g.f of Y(s,t) satisfies the integral equation
t
E(v,t) = y(v,t) + gv [ ¥, (u)€(v,t-u)du, (4.16)
0
where

t
Y(v,t) = 1 + Ev(t - [ wl(u)du) . (8.17)
o

10
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Let h(v,t) be the solution of (4.16) for all real v and non-negative t. Clear-
1y, for O<t<x, h(v,t) = g(v,t). This solution can be interpreted as the m.g.f.
of the measure of vacancy of a specified interval of length t on the real line,
when the coverage process is by random intervals of length X, having a c.d.f.
F(x). Let h*(v,w), w>0, be the Laplace transform of h(v,t). From (4.16) one

obtains

Y*(v,w)

I-:_E;;zTES (4.18)

h*(v,0) =

where Y*(v,w) and ¥*(u) are the Laplace transforms of v(v,t) and wl(t), respec-
tively. Furthermore,

Y*(v,0) = E; + % (1 - gve*(w)) (4.19)

Hence,

Ev 1

@2 Iogvrt(e) (4.20)

h*(v,0) = 1— +
w

S. APPLICATION TO A SHADOWING PROBLEM

Consider a countable number of randomly distributed disks on the plane. For
any Borel set B in the plane, the number of disks, N{B}, centered in B is a ran-
dom variable having a Poisson distribution with mean um{B} where v is the aver-
age number of disks per-unit area and m{B} is the 2-dimensional Lebesgue measure
of B (area). We further assume that, given N{B}=n, the centers of these n disks
are conditionally independent and uniformly distributed over B. The diameters
of the disks are i.i.d. random variables, Y;, VYs,... having a common c.d.f.
G(y), o<y<=. Let C be a circle in the plane which does not intersect any one of
the random disks and whose center, 0, is uncovered. The central projections on
C of disks whose centers 1ie within C will be called shadow-arcs. The results
of the previous sections are applied to determine properties of the distribu-
tions of the measure of vacancy of specified arcs on C.

11
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Let (0,6) denote the polar coordinates of the center of a disk, with respect to
0. Thus, each random disk is specified by a triplet of random variables
(p,8,¥). We consider only disks with random parameter vector (p,8,y) in the P
set

5 = {(p,a,y);-% <p<l=y/2; os8<2n, 0<y<1} (5.1)

N{S} has a Poisson distribution with mean

1 2n 1-y/2

E{N{S}} =u [ J ] odpdedG(y) = 2xa, (5.2)
0 ) y/2
where
p 1
V=3 /] (1-y)d6(y) . (5.3)
0

It is assumed that G(y) is absolutely continuous with p.d.f é(y). The condi-
tional p.d.f. of (p,8,y) within S is

upg(y)
27

’(p’e ,y)eS (5‘4)

fs(p,e,y) =

Let X(p,8,y) denote the length of a shadow-arc projected by a disk with parame-
ters (p,6,y). This length is given by

X(p,8,y) = 2 sin-1 (y/2p) (5.5)

Given N{S} = n, let Xj,...,X, designate i.i.d. random variables representing the
lengths of the n shadow-arcs. The common distribution of these random variables
is the c.d.f., F(x), of the random arcs discussed in the previous sections.
According to (5.4) and (5.5)

12




D(x) l-y/2
r =2 P Y k) st (5.6)
A0 y
2sin(x/2)

D(x) y?
2y Leorzi)) sty)ay,s
22 o 4

where
D(x) = 2sin (x/2)/(1+sin{x/2)) = l-tanz(zif) (5.7)

is the largest diameter of a disk that can yield a shadow-arc of length x. That
is, if y <D(x) then y/{2sin (x/2)) < l-y/2. Consider the distribution func-
tions, related to G(x),

1 D(x)
By(x) = }x y&(1-y)1-2/2g(y)dy, oc<x<x (5.8)
cg © -

where '

1
cg = | yi(l-y)1-%/2g(y)dy
0

is the normalization constant, Notice that cg=2A/u. The distribution function
F(x) can then be expressed as

0 ,x<0
1 c22
F(x) ={ B (x) -~ = — Bz(x)cotz(xlz),o<x<n .
4 ¢
o
,MEX
1
13




It should be remarked that

% cot (x/2) = /1.p(x)/D(x) - (5.10)
Hence, since D(x) + 0 (5.8) yields
%cotz (x/2) Ba(x) = c2(1-D(x))G(D(x)) + o(D(x)). (5.11)

d
and cot?(x/2)B2(x)+0 as x + 0. Furthermore, since cot2(x/2) = = (x+2cot(x/2))

one obtains from (3.2), (5.9), and integration by parts

s

| c
o(t) = | [1-Bo(x)]dx + 4-2. T [1-B2(x)]dx (5.12)
t Co t
‘. G i x) ¢ =z [cot (t/2) Bz(t) + (t/2)]
< 1 34 2,
G
- c-; Bl(t).

6. COMPUTING THE MOMENTS IN A SPECIAL EXAMPLE

In the present section we apply the theory of the previous section to develop
formulae for the determination of the moments of the measure of vacancy in the spe-
cial case that G(y) is the uniform distribution on (0,1). In this case we obtain
according to (5.7) and (5.8) the formulae

14




J [1-Bo(x) Jex
t

. Z tan® ('T.‘) dx = g tan’(?) -4tan (!;—t) + (v-t) ,

B(t) = 1- ; tan’('%t) + ; tan’('%t)
and
Z (18200 ]x = £ tan() - = tan?(57)
+ Z&an(l;) <7(w-t) .
Furthermore,

% cot (t/2) Bp(t) = D2(t)(1-D(t))}/2

w-t

T

= tan (:;—t) -Ran’(‘%t) + tan5(

(6.1)

(6.2)

(6.3)

(6.4)

Finally, since co=1/2, c1-4/15 and cz-1/3 one obtains by substituting the above

results in (5.12) the special formula for ¢(t)

o(t) = -% (v-t) +§tan (‘;—t) +-3 tan3(1:—t) .
15

(6.5)




Accordingly, in the case of uniformly distributed diameters on (0,1), the expec-

4 4
ted length of a shadow arc is E{X} = ¢(0)= - -% + 5+ = 0.7306, and the first
moment of vacancy of an arc of length t is El(t) = teexp{-0.7306)}.

In order to determine higher moments Ep(t), r»2, we have to perform the con-
volutions (4.7) and (4.8) recursively, where

0 ,t<0
v,(t) = exp {-~% A[(zif) -tan (:is) -'é tan? (:is)]}, Oct<zs  (6.6)
1 R 734

We present now a polynomial approximation to the moments g.(t), r>2, for
O<t<x. In this range of t values the moments will be approximated by an analy-
tic solution cf the recursive equation,

E(t) = ‘1(t)

- t o
g(t) =re [ wlu)e (t-u), m2, (6.7)
[+ re-1

where v(u) is a polynomial approximating wl(u), over [0,n]. Notice that wl(u)

is an analytic function and can be approximated by a polynomial of a proper de-
gree. We approximate the function (6.6) by the fourth degree polynomial

~ 2 3 4
v(t) = 2.0486 - 1.69t + 1.124t - .3489t + 0.0411t (6.8)

The coefficients by of ti (i=0,...,4) in (6.8) were determined by the method of
least squares by fitting a fourth degree polynomial to 33 points (ti,wl(ti)),

where tisiu/32, i=0,...,32. The standard deviation of the residuals ;1(ti) -

viti), with228 degrees of freedom is o=.00911, with a squared-multiple correla-
lation of R“=.999. This is a very high degree of accuracy in approximating

wl(t) by v(t). Define recursively the coefficients,

16




1 , i=0
C. = (6.9)
1,1 0 , i>0 ,
and for each r»2
j . .
z bjcr.l,i-j/(!) » 1-ol°"i4(r-1)
j=0 J
cr,i = (6-10)
0 , 1>4(r-1)

in which

coefficients of (6.8) ,j=0,...,4
bj = (6.11)
0 »j>4.

Qne can prove then, by induction on r, that

~ 4(?-1) Cr.i .
Ept) m yrel ] e ¢ ,ral (6.12)
=0 4y
)

For small arcs, i.e., as t+0, formula (6.12) can be simplified, by approximating
wl(t) by ;(t)-wl(0)+tw:(0), where the derivitave of wl(t) is

v{(t) --%-vl(t)<1--1—> , 0 <t <, (6.13)
& ﬁ't
cos T)

17




Thus, as t+0 we obtain the approximation

("3 ey, g
v, ()t , (6.14)

- r-l
£.(t) = trer :
J

where w1=wl(0) and v;-v;(O). In Table 1 we provide numerical values of the nor-

malized moments Er(t)/t', for r=2,...,10 and the limiting value

lim £p(t)/t7 = a(t) (6.15)

for values of ti=ix/M, i=4,8,...,64 (M=64). The values of the normalized mo-
ments for the case of i=4 were computed according to (6.14), with vl(O)-2.076326

and w; (0)--w1(0). The normalized moment of order 1 is £=.48162 for all t. In

Table 2 we present the corresponding standard-deviations o(tj), measures of
skewnesss, Yl(ti) and kyrtosis Yz(ti)- where

v (t5) = ¥3(t1)/03(ty)
(6.16)

Y, (t4) = vg(ty)/o"(ts) ,

and ¥3(tj), ¥4(ti) are the third and fourth central moments. According to Table
2, the distributions of the measure of vacancy are for small arcs (as t+0) nega-
tively skewed and sharply increasing near the right limit of the interval. On
the other hand, as t increases to n the distributions become more symmetric and
can be approximated within (0,t) by Pearson's Type I distributions (see Johnson
and Kotz [3]).

18




Y

Table 1. The Normalized Moments E,.(t)/t" Determined
According to (6.12) and (6.14),
for ti=in/64 (i=4,8,...,64)

i/r 2 3 4 5 6 7 8 9 10 L

4 0.4816 0.4343 0.4267 0.4212 0.4173 0.4145 0.4123 0.4105 0.4091 0.3958

8 0.4301 0.4024 0.3842 0.3707 0.3599 0.3508 0.3428 0.3356 0.3291 0.3252
12 0.4117 0.3755 0.3525 0.3362 0.3236 0.3133 0.3046 0.2970 0.2901 0.2672
16 0.3957 0.3520 0.3250 0.3062 0.2921 0.2809 0.2715 0.2636 0.2565 0.2196
20 0.3817 0.3315 0.3010 0.2801 0.2647 0.2527 0.2429 0.2346 0.2275 0.1804
24 0.3695 0.3136 0.2800 0.2574 0.2409 0.2282 0.2180 0.2096 0.2023 0.1483
28 0.3589 0.2980 0.2617 0.2375 0.2201 0.2069 0.1964 0.1878 0.1805 0.1218
32 0.3497 0.2843 0.2457 0.2201 0.2020 0.1883 0.1775 0.1688 0.1615 0.1001
36 0.3415 0.2723° 0.2315 0.2049 0.1860 0.1720 0.1611 0.1522 0.1449 0.0823
40 0.3343 0.2616 0.2191 0.1914 0.1720 0.1577 0.1466 0.1378 0.1305 0.0676
44 0.3280 0.2522 0.2081 0.1795 0.1597 0.1451 0.1339 0.1251 0.1178 0.0556
48 0.3223 0.2438 0.1983 0.1690 0.1488 0.1341 0.1228 0.1139 0.1068 0.0456
52 0.3172 0.2363 0.1895 0.1596 0.1391 0.1242 0.1129 0.1041 0.0970 0.0375
56 0.3125 0.2295 0.1817 0.1512 0.1304 0.1154 0.1042 0.0954 0.0884 0.0308
60 0.3083 0.2233 0.1746 0.1437 0.1227 0.1077 0.0964 0.0877 0.0808 0.0253
64 0.3045 0.2178 0.1682 0.1369 0.1158 0.1007 0.0895 0.0809 0.0741 0.0208
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Table 2. Standard Deviations and Measures of Skewness and Kurtosis

i % 1, Y2,

4 0.09811  -0.30546  1.58630
8 0.17480  0.05021  1.17473
12 0.24975  0.05300  1.26210
16 0.31780  0.05611  1.34884
20 0.37993  0.05902  1.43394
24 0.43699  0.06130  1.51655
28 0.48976  0.06262  1.59601
32 0.53389  0.06290  1.67165
36 0.58490  0.06221  1.74299
20 0.62823  0.06089  1.80958
a4 0.66921  0.05942  1.87096
a8 0.70808  0.05835  1.92677
52 0.74505  0.05814  1.97704
56 0.78027  0.05897  2.02223
60 0.81398  0.06057  2.06333
64 0.84627  0.06179  2.10328
20
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