

"m |0 &b pz
=0
m" 1 il =

= | 1B
L2s flle giie

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF STANGARDS it &

. 7 .
e

NAVAL POSTGRADUATE SCHOOL

~ M Galiforni
. onterey, Lalitornia
o ’
- oL
(am)
0 &)
&
=T
(e
<C
f
¥
|
|
‘.,3_.:.:;"’
A MICROPROCESSOR DEVELOPMENT SYSTEM
t FOR THE INTEL 8748 MICROCOMPUTER
£ by
Theodore Clark Seward, Jr.
December 1979
i_ {Thesis Advisor: R. _Panholzer |
] Approved for public release; distribution unlimited.

80 S5 6 023

. w T em

e T o iy - TN N e e : R : -
PRI e N W A N : : - -
PRI RS SRR A S e S

\

UNCLASSIFIED

SECUMTY CLASSIFICATION OF THi§ PAGE (Phen Dets Entered)

EAD INSTRUCTIONS

v REPORT DOCUMENTATION PAGE our NSTauCTIONS
ABRLLLAN T | e et BRFORE COMPLETING FORM
[2. GOVY ACCRSSION MO, RECIMIENT'S CATALOG muMBER
ANM-ADDS 95

IYPE OF REBOAT-& SEMOO COVERED

J& TITLE rane Sutatrie). : s ‘
/1) 3 WICROPROCESSOR LOPMENT SYSTEM | 7 aster s Thesisis
4 OR THE INTEL 8748 MICROCOMPUTER ,»
/ = . 6. PERFORMING ORG. AEPONT NUNSER
b~ %ﬁ@., - T TR YRAEY SR GRAR T CRe AT
f}O Theodore Clark/Seward, e~
= r,.a e o [. —_—
TS TR ORuING ORGANITATION WANE AND ADOAEI W RRogANE ELER Y PR T T i |
Naval Postgraduate School ‘
Monterey, California 93940
1. CONTROLLING OF#CE NAME AND ADDARESS 13, REPORY DATE
Naval Postgraduate School @ ‘D.s_c“__; “Mm
Monterey, California 93940 101
[TT WMONITGRING AGENCY WAME & AGDRESHI! diffarant fras Contratiing Office) | 18. SECURITY CLASS. (of thie rowers)
/ﬁ j,/{'» UNCLASSIFIED
) L e R AT BewRan o]

[———— ——
16. DISTRIBUTION STATEMENT (ef thie Repert)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (o! the sbetract entored in Block 20, i differant fvam Repert)

18. SUPPLEMENTARY NOTES

fis

19. KEY WORDS (Continue on o slde It ary and igontify by bleek number)
Microprocessor development system (MDS)
Intel 8748 Microcomputer

';_ TRS-80
20. ‘\A)QyACT (Continue en ¢ o0 olde i1 vy end identify by block mmmber)
A microprocessor development system (MDS) for the Intel

8748 microcomputer was designed and built around the Naval

Postgraduate School's TRS-80 computer system. This MDS pro-
vides the capability to use the TRS-80 as an editor to write
and edit 8748 mnemonic programs and store them on a magnetic
disk. Also developed was an assembler to convert the user P

generated source program into object code. As a final step, —vy ¢
[* e

w 1 ronas 1473 zoimion or 1 nov 6818 omsoLETR UNCLASSIFIED

' b
Page 1) $/N 0102-014- 6601 | 1 SECUMTY CLARMPICATION GF Ywit Past) ‘

e

- h
UNCLASSIFIED
geu-vv Ch ASSIFICATION OF Tl Pl Vg Note Bntesey L
i 20. (continued)
a software driven hardware programmer has been constructed to
enable the object code to be loaded into the Erasable Program-
mable Read Only Memory (EPROM) on the 8748 microcomputer chip.
X
T
!
|
b i —
?Dj Lo
{ .
| g
i I
&
:
[
form, 1473 UNCLASSIFIED '
5/1& 0.1‘85-014-0601 SECUMTY CL AR MICATION @F THIS P AGEWhan Date nrered)
- !‘ O B - .:; .." g - “ .w&r ol a»-» e 2 oo

Approved for public release; distribution unlimited

A Microprocessor Development System
for the Intel 8748 Microcomputer

' by

Theodore Clark Seward, Jr.
- Lieutenant Commander, United States Navy
B.S., United States Naval Academy, June 1966

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1979

S
Author C—/M)
e
Approved by: A . P M&I@
Thesis Advisor
Pelhatt K. Collo,
. Second Reader

Chairman, Department o% Electrical Engineering

-

Dean o ciénce and Engineering

PRI

ABSTRACT

A microprocessor development system (MDS) for the Intel
8748 microcomputer was designed and built around the Naval
Postgraduate School's TRS-80 computer system. This MDS
provides the capability to use the TRS-80 as an editor to
write and edit 8748 mnemonic programs and store them on a
magnetic disk. Also developed was an assembler to convert
the user generated source program into object code. As a
final step, a software driven hardware programmer has been
constructed to enable the object code to be loaded into the

Erasable Programmable Read Only Memory (EPROM) on the 8748

microcomputer chip.

TABLE OF CONTENTS

I. INTRODUCTION=====w=—wwcee== el el et Bttt L 7
I1I. INTEL 8748 MICROCOMPUTER-=~cc-cemcvrerccercccnccaaaa 9
III. TRS-80 MICROCOMPUTER-====- e e e e —— —————————— 15
Iv. MICROPROCESSOR DEVELOPMENT SYSTEM SOFTWARE===w=w=-- 23
A. EDITOR PROGRAM-====wecccescc e r e e e ccncee oo - 25
B. ASSEMBLER PROGRAM=====w—ecscccac—=- - - - 30
C. PROGRAMMER PROGRAM--=c-vececccece—c e cecceceec=- 35
V. PROGRAMMER HARDWARE AND OPERATION--=e=ecree—ecccaa—- 41
VI. PROGRAMMER POWER SUPPLIES-v-=~cme-ceccccmccccccanax 53
VIIiI. CONCLUSIONS====emceccmcce-= —————— el - 57
APPENDIX A: Program Listing for Printer Subroutine------ 60
APPENDIX B: Flowchart for EditOre--—eeeeeemcmcccccacaca- 62
APPENDIX C: Flowchart for Assembler----—-e=cccceemcaccaa 66
APPENDIX D: Flowchart for Programmer--==-===-ecececcccec-- 70
APPENDIX E: 8748 Fditor/Assembler Operating
Instructiong=====-—-ccccmcmmmcca e 74
APPENDIX F: EDTASM Program--—=--—eeeeececsccmee—e—eccaa-- 80
APPENDIX G: Master PrograM-=--=ee=c-scccecemmeeccacoccoo- 81
APPENDIX H: Assemble Program==—=--—-- ————- 84
APPENDIX I: "Program" PrograM-==--=----ececcecccceccccec—e-- 94
APPENDIX J: Sample Assembled Program Printout---=-=ec--- 98
LIST OF REFERENCES~--- ————— c——e=e==100

INITIAL DISTRIBUTION LIST~==-- - - —-— ———— -101

LIST OF FIGURES

Intel 8748 architecture---===--c-cccccccccccccccaa 11
Data transfer instructiong--=-=--=-—e--cccccccana- 14
TRS-80 MEemMOry mMap====-=ees-meececccocmcccmeaaeon— 16
TRS-80 system block diagram=-—--=e~cceccecccacaax - 17
Inter mode Map~-=====mececcmccccccrcccmm e —e—m e 21
Editor program block diagram------=-ceccccc—oc—aa-o 27
Programmer schematic page l-====-=-ee-———ccecca-e—a- 42
Programmer schematic page 2~=-====eceeccccceccaao- 43
Programmer circuit board-=-=======cecoccececcccanao- 44
Pinout of expansion interface---=-=~-==-----c-c-oe- 46
Intel 8212 I/0 port schematic-—=-=weecccceccccaaa- 48
Programmer timing chart--- e ccmrcmccm e ——— 52

25 volt power Supply----—-—==c--emccccccccmccccccaaaa 54

I. INTRODUCTION

The Electrical Engineering (EE) Department at the Naval
Postgraduate School operates a small but growing micro-
pProcessor/microcomputer laboratory. This laboratory supports
several EE courses in microprocessor applications as well as
student thesis efforts. Since the primary thrust of these
efforts is the implementation of microprocessors in operat-
ing circuits, the most useful tool to have available is the
microprocessor development system (MDS). Such a system will
typically allow the user to write microprocessor programs
in assembly level language using a keyboard and cathode ray
tube (CRT) to provide for clarity and ease of editing. The
MDS will then assemble the assembly level language into
machine language and provide the capability to program an
Electrically Programmable Read Only Memory (EPROM) with the
newly generated program. Additional features normally avail-
able on an MDS are a debugging facility which allows for
dynamic operation of the program structure and an In-Circuit-
Emulator (ICE) to enable the MDS to plug into the circuit
under trial and act as the microprocessor with memory. The
system presently available in the EE laboratory for this
purpose is built around the Tektronix 8002 development sys-
tem which has modules for the Intel 8080 and the Motorola
6800 microprocessors. Because of the availability of this

development system, most projects have been designed around

B R

the 8080 and 6800 microprocessor which until recently have
been representative of industry standards in an 8 bit word
size machine.

As an additional applications tool the school has ob-
tained a number of Intel 8748 microcomputers. This single
"chip" computer provides a complete system in one package
and is useful particularly for controller oriented applica-
tions. A more detailed description of this chip is provided
in the next section.

Because of the usefulness of the 8748 and the lack of a
software controlled development system it was decided to
design and build an MDS for the 8748 using the TRS-80 micro-
computer. The TRS-80 had also been recently acquired by
the EE department and expanded to include 64K bytes of

memory, mini disk drive, and a printer interface.

AR

II. INTEL 8748 MICROCOMPUTER

A majority of the Central Processing Units (CPU) on the
market today are microprocessors only, requiring many sup-
port chips such as bus controllers, clocks, RAM, ROM, and
input/output (I/0) ports to allow for a functioning computer
system.

The Intel 8748 is technically more than a microprocessor.
It is in reality a microcomputer and is advertised as such.
The 8748 microcomputer is therefore a significant deviation
from the support chip philosophy, trending instead toward a
complete and self-contained system on one chip of silicon.
While such a trend will provide for an increased miniaturiza-
tion of many components and systems, such closed-end units
have only limited capability to be expanded for larger ap-
plications. For this reason a market will always exist for
the support chip philosophy.

AThe 8748 microcomputer is actually a development tool
intended for use in engineering design for systems which
will eventually be equipped with one of several microcom-
puters in the Intel MCS-48 product line. The other members
of the MCS-48 family contain varying capabilities, all of
which require off-chip memory or factory programmed ROM.

The 8748 contains all of the capabilities of the other chips
but utilizes a 1K on~-chip EPROM. This EPROM allows the

8748 microcomputer to be used to perfect the program for a

given system, or it may be reused for many different applica-

tions by erasing and reprogramming the EPROM. Thus, the
8748 is an excellent tool for use by students in project
work.

The architecture of the 8748 microcomputer can be seen
in Figure 1. This design utilizes NMOS technology to achieve
the following capabilities:

1. CPU with 8 bit word handling capability.

2. 1K x 8 EPROM.

3. 64 x 8 RAM for data registers (in two banks).

4. 27 I/0 lines normally used as 3-8 bit I/O ports.
5. 8 bit event counter.

6. Single +5 volt power supply requirement.

7. 8 level working stack.

8. RC, LC, crystal, or external frequency source
for clock.

9. Single step mode for use in debugging.
10. 40 pin dual inline pin (DIP) package.

By selecting a 6 MHz clock crystal, the 8748 operates
with an instruction cycle of 2.5 microseconds. This speed
is on a par with the fastest of the CPU chips presently on
the market, particularly when it is considered that 70%
of the 8748 instructions are single byte and the remainder
are only 2 byte. This compares with many of the major CPU
chips which have 2 and 3 byte instructions.

The following pin-out from Reference 1 describes pin

utilization:

kusuowuﬂzouc 8v.8 123Ul - T {anbtg

0

11243
1YNT I0uIS Tivuvers 1nOWIS
h2. 1)t} 4113 AWOwIN WY1 wix ANORIN Y IINVEX D
MM OVIN 1IN WYNOONe TSTNOAY WOIVINND 'Ned wone [y
Freal (Y]
x Ly 4
AVENY WV w
ILTLEE) w av s 1.7} Y Dwwix Lvax ws ko TN 5T Y. 7]
1531 1830w h ‘
ONITN L ONY T0ULNOS :ﬂ
29V ———o] P
WOLS vive LY
ANYY) ———d 79
AVaarg
oV 14 Win | ——od woor ARONYLS wiwd M0 At S |00
Pusbe ik sl LoV ————a] HONWVVE
g VYN0t L1000} 4140 AYYIONS B
1M1ON3T 3 YRVINVAL 3 09V A
*Ivig 1Al e m
™
[]
5
0 VIS Lis3 ——= o
[} w10
—_—
" IS0 oisn
ovon | 4 i
[] WIS N
i W10 ‘o
¥300930 ww
[} N1L$10W peyrt u
2% 33484 YY) NOILINYLSN E
wiitiow
953400V WYy > :
+
Al <
anv
wgine [
ne —x
1 3W0e 4 4> b
'
' yaiun0o bl i1 7
el IIAVeImL o &
"whe 0
E

300030)]
: ¥ L
9 O 1404
¥31NN00 > vome wiawvay
s m wevoouewom | 10| |roanzivoe] v vmon
OW/NONIY HIVIZ 1W0d

Vss Ground
VDD Programming power supply
Vcc 5 volt power supply

P10-P17 Port 1

— — P20-p27 Port 2
ror}s « [Vee
xvaL 12 »ON -
o ads a e DB,-DB, Bus
WESEY (] o 1 Pr2e . .
sds Y =ty TO & Tl Testable input pins
Fﬁl‘g) s []r2e —_— .
ead]” e INT Interrupt input
A s goag ¥ gru —
FEN]es goq9 32(IP1s RD Output read strobe
Wh(Jwo 8748 gna
aedn 8035 2[lrn RESET Input to initialize
o8,{J1z 8039 2 gﬂz
©8,(13 npen WR Output write strobe
08,(] 1e 27 Eno
08 AL 26 VDD
o;g“ 2 1emoc ALE Address Latch Enable
\ 23 —— e+ e
2:E|: ;:S", PSEN Program Store Enable.
08,(] 19 2 Used during fetch to
v (J 20 2n[)r2 external memory.
5§ Single step input
EA External Access input.
Forces all program memory
fetches to external memory.
XTAL 1 = One side of crystal input
or input for external
clock.

XTAL 2 Other side of crystal
input.

The instruction set for the Intel-8748 consists of 96
total instructions. These instructions all execute in
either 2.5 or 5 microseconds when using the 6 MHz crystal.
Over half of them execute in a single cycle. Many of the

ingstructions are designed to handle BCD and single bit

operations for controller oriented applications. Figure 2

is a good picture of how the data transfer instructions
interact. Reference 1 contains a complete description of

both the hardware and software for the 8748,

DATA
’ PROGRAM l
MEMORY MoV MEMORY
{xdata) .
l WORKING REG |
! ADD MOV MOV |
‘ MoV ADD ADD ’
’) mMove ANL ANL
MOVP3 ORL ORAL
‘ ANL XAL XRL |
MOVD OAL XCH XCH
ANLD "
| _omLD i xcno MOVX EXTERNAL
. e « «EXPANDER LN~ T . MEMORY
1/0 PORTS @ ACCUMULATOR m_ MEM
. 7 PERIPHERALS
] .
| N l
; MoV ouTL MoV
|
. ‘l ‘
, TIMER PROGRAM
‘ COUNTER STATUS WORO i
| ANL
| ORL
B LA
1 ‘ PORTS 1.2,BUS '
[ml Eu_- -

1

Figure 2 - Data Transfer Instructions

III. TRS-80 MICROCOMPUTER

The TRS-80 microcomputer is a small hobby and business
computer sold nationwide by Radio Shack franchises. At the
time of this writing the company is credited with having
sold over 135,000 units, making it the leader in total
computers sold. The TRS-80 is built around the Zilog 2Z-80
microprocessor which is an evolution from the Intel 8080.
The TRS-80 has several different levels of capability based

on a building block approach. The lowest block available

is the keyboard/computer with only 4K of RAM and a very
simple BASIC language capability. The highest block is
that which is burrently available in éhé EE lab's model.
This includes a total 64K of memory and disk BASIC which is
loaded into the RAM from a mini-disk (5%" diskette) drive.

The TRS-80 is a memory mapped system providing fixed
addresses for various preprogrammed functions such as video
display. Figure 3 shows the 64K system memory map and.re-
veals which portions of memory are available for general
user use, normally the highest 48K of RAM. The preprogram-
med functions are, of course, in ROM. The user accessible
RAM is dynamic, with a 450 millisecond access time and a
refresh period of 2 milliseconds. Figure 4 shows a macro
block diagram of the TRS-80 system.

The TRS-80 in this configuration uses an operating

system (OS) called TRSDOS (TRS Disk Operating System).

13 Wi _ee <1 e e - _——

" x0000 1K ROM 1/0 DRIVERS AND BOOTSTRAP
- X'0400
11 K ROM LEVEL 11 BASIC/DISK BASIC
%3000
"ON-BOARD™ 1o MEMORY MAPPED 1/0
MEMORY
X'4000 BASIC VECTORS
X‘'4200
TRSDOS
X'5200 DISK BASIC
16K RAM -+ TRSDOS UTILITIES Ce e e e
USER MEMORY
X°7000 GENERAL PURPOSE
e ! USER MEMORY
" x'8000
16 K RAM AUXILIARY USER MEMORY
EXPANSION
INTERFACE X'C000
18 K RAM AUXILIARY USER MEMORY
r X'FFFF
‘ , N~

Figure 3 - TRS-80 Memory Map

msmummﬂn ¥oo1d we3ysds 08-Syl -~ § anbyg

%3013 100 _
NIVH) X0
—SSIWOOVOIGIA_ | oo onaiA cw"._—eu<2
SNe $SIHOAVY ~___Sne ss3voav)
— \w.”._wm”“.wm _ :22— :
) A(V ssavoev
. ssIyaav L ss3400V ss3uoav ss3uaav — tno
N 3 ® " — w
il o R e+l € L 0HVO8AIX LU iy L T DR PR
100/N1 vAVD 100 viva AN0/NI Vivo 1n0vive o—{ avi¥
1— ~ _q ~ I | vavo
] a:ﬁ viVE n._- viVE | ,
— 1RO/NI V1VO
. Sovasn wuor M1 xadns vaLdvov
VL 3dV1 | wiMed [oY
2 e : BNOLLII VW 0L o

A

This OS is analagous to the operating systems used on large
computers. It enables the user to communicate with the
computer using only high level languages and relieves him of
the need to manage such computer housekeeping functions as
where to store programs and interfacing the CPU with the
I/0 and storage devices. Thus, the machine level language
operations are normally transparent to the user. Programs
written in 2Z-80 machine language can, however, be loaded
and run in the TRS-B0 using two different methods. One is
to load the machine language from a "system" tape which has
the program already loaded on it. The other method is to
use the BASIC command POKE (address, value) to load one

- . : * word at a time. ' It ‘is interesting to note that the vari-
ables in the POKE command must be in decimal, which means
converting all addresses and program insﬁructions from

| hexadecimal to decimal.

The Postgraduate School's TRS-80 system also includes
an "expansion interface." This unit interfaces directly
with the computer and contains 32K words of the total 64K
possible memory. It also has a number of bus outputs which
provide for parallel printer output, disk drive operations,
RS-232 serial I/0 and a full system bus for user access.

Since the computer lab already had a very good line
printer in the Teletype model 40, it was decided to utilize
this printer for the TRS-80 output. The model 40 is an RS-

232 serial data unit, however, and the original TRS-80

|
-
r : provided no serial output for listing of programs. Instead, :

Radio Shack sells several printers which are driven by

the TRS~80 parallel output. The first attempt at interfac-
ing was conducted as part of a student thesis. This project
involved construction of a parallel to serial conversion
device using standard Universal Asynchronous Receiver Trans-
mitter (UART) techniques. Unfortunately, the TRS-80 does
not output a carriage return on its printer bus. Both the
carriage return and line feed are driven by the line feed
output in the Radio Shack printers. Since both signals

are required individually to drive the TTY printer, it was
necessary to use an Intel 8748 microcomputer chip, in con-
junction with the UART, to provide a carriage return each
time a line feed was recognized on the bus. While this de-~
vice did allow for output to the printer, it had a persist-
ent problem of also inserting random line feeds which re-
sulted in undesirable appearing printouts.

It was decided, shortly after the parallel-serial con-
version device failed completely, to purchase Radio Shack's
RS-232-C interface unit. This saved many manhours of addi-
tional engineering effort and provided for trouble-free
printer output. One drawback to using this serial output
method is that the unit is driven via special software which
must be loaded into user RAM each time the system is powered
up. The small machine language program to accomplish this
is initially stored in the highest portion of memory and

then write protected to prevent the system from putting

other data in those memory locations. This memory

protection feature is part of the operating system and is
implemented on power up by answering the gquestion MEMORY
SIZE? with a decimal address. All RAM above that address
is then locked out of being utilized for BASIC programs.
The assembly level language program required for operation
of the serial printer output is provided in Appendix A.
Several switch selections.on the RS-232-C board allow the
TRS-80 to also be used as a terminal for another computer
at several different baud rates. Reference 2 provides fur-
ther details on operation of the RS-232 unit.

The disk BASIC language used in this machine is a very

capable high level language. The commands are simple and
straightforward while providing 'makimum capabilities., It =~
is especially strong in the number of commands available
for manipulating “strings" of alphanumeric characters. This
ability made BASIC an excellent choice in this MDS applica-
tion References 3, 4 and 5 contain the BASIC commands
available along with descriptions and sample applications.
While the user of the MDS system does not normally re-
quire knowledge of DOS or system commands, there are sev-
eral which might be of use. To give a better picture of
how the different modes interact with one another, the map
in Figure 5 is provided. To get from one operating mode
to another, code words provided in this map are typed and

"ENTER" is depressed. 1In the case of going from the 8748

editor/assembler, the words "press BREAK key" are not typed.

Rather there is a key in the upper right hand corner labeled . i

S B

TRS-80 Disk Operating System (TRSDOS)

- ™)

Disk BASIC

(A

8748 Editor/Assembler/Programmer

8748 EDITOR/
ASSEMBLER ON
LINE
Press

BREAK Key {/\\

\\/, RUN "EDTASM"

READY

READY

cmD Hsn (\
\\/7 BASIC

DOS READY

Poatr.

Figure 5 - Inter Mode Map

"BREAK." Holding this key down for several seconds will
cause program execution to halt. The word READY will then
be printed, indicating the system is in BASIC mode.

The primary commands useful to the MDS user while in

TRSDOS are listed below:

DIR Lists all user files stored on
the disk.

DIR (A) Lists all user files along with
the space taken up by those
files.

LIST (filename) Prints the contents of the
file on the CRT.

KILL (filename) Erases the chosen file (file-
name) .

FREE Lists total disk space remain-

ing. (Each diskette holds.48.
user files and 44 maximum
granules. For a further dis-
cussion of files and granules
see Ref., 4.)

BASIC Transfers to the BASIC mode.

While in the BASIC mode the following commands are

usable:

CMD "S" Transfers to TRSDOS mode.

KILL (filename) Erases file (filename).

LIST Prints present program on the
CRT.

RUN Runs the program currently in
TRS=-80 memory.

RUN "EDTASM" Loads and runs the 8748

editor/assembler.
Commands to be used in the 8748 editor/assembler mode

are covered in the next several chapters. . [

-

Iv. MICROPROCESSOR DEVELOPMENT SYSTEM SOFTWARE

Once the topic for this thesis had been selected, most
of the bounding parameters were automatically defined. The
choice of the Intel 8748 defined the assembly level lang-
uage to be used. Selecting the TRS-80 as the computer sys-
tem in which to implement the microprocessor development
system defined the majority of the hardware as well as the
programming languages to use. The major decisions remaining
to be made involved what capabilities to include in the MDS.
The components normally present in a tfpical MDS are listed
below:

= 1; Editor

2. Assembler

3. Debugger.

4. EPROM Programmer

5. In Circuit Emulator (ICE)

Because of the finite time available to carry out this
project, it was decided to concentrate on the components
which were an absolute requirement to provide an ability
to implement a programmed 8748 microcomputer. For this
reason an editor, assembler, and EPROM programmer were in-
cluded as the most essential tools. Additional hardware
and software room has been left in the project to allow

future student projects to concern the debugger and ICE as

additions to this MDS. As a possible adjunct to the MDS,

groundwork was also laid for a software driven EPROM pro-

grammer for the Intel 2708 and 2716 chips. These EPROMs

would not normally be used with the 8748 microcomputer, but]
their prevalence at the school for other applications, along

with a paucity of easy to use programmers, made such an

addition to the MDS desirable. Unfortunately time did not

allow for completion of that effort.

For the software portion of this project, it was decided
to use the BASIC language capability of the TRS-80 rather
than the Z-80 machine language. While the machine language
would have been more efficient and would have executed faster,
the use of BASIC was selected primarily due to the consider-
able and time consuming effort required to write the soft-
ware programs in assembly level language.

The BASIC software is broken down into four different
programs rather than loaded as one large program for several
reasons. First, it was desired to minimize the amount of
system memory taken up by the operating program to allow
for maximum room for 8748 program lines and comments. Sec-
ondly, calling another program into memory is made especial-
ly simple with the disk system because the storing of data
and loading of programs is so straightforward and rapid.
Third, the function of the editor, assembler, and EPROM
programmer are different and independent of each other.
Fourth, the writing of each program is simpler if it is an

entity independent of the other programs. Thus, the soft-

ware for the MDS is broken up intc the following programs:

o e

EDTASM Loads the printer serial output
machine language program into
memory and loads and runs the
editor program.

MASTER Editor program. Provides for input-
ting and editing of 8748 assembly
language programs. Transfers to
assembler upon command.

ASSEMBLE Assembles 8748 mnemonics to machine
language represented in hexadecimal
format. Provides CRT printout of
errors. Also provides hard copy
printout of assembled program.

PROGRAM Converts assembled hex code to decimal
and outputs to the programmer. Veri-
fies EPROM is correctly programmed.
Reads EPROM upon command.

A. EDITOR PROGRAM

The first portion of this thesis was development of the
editor for use in entering the Intel mnemonic code for the
8748 into the MDS. Use of mnemonics is an integral part of
an MDS because writing the programs for the 8748 or any other
computer would be a difficult and time consuming task if
machine language were used. The major advantage of mne-
monics is that they have an English language meaning while
machine language is simply a string of numbers in one of
several possible bases.

In addition to providing a neat format for entering
mnemonic instructions, the editor provides many operator
aids. Among these useful aids are an "edit" mode to allow
for changes, additions, and deletions to the program text;

a comments column to allow the operator to describe what

various program steps do; and a capability to store the

. program under development on magnetic disk for further

editing at a later time.

The operating format for the editor program is apparent
by examining the flowchart in Appendix B. The program is
written to provide for a number of modules, each of which
operates independently of the other. Figure 6 shows the
relégéqnspip qf these modules.

To begin editing a program, the operator first loads
the system as described in Appendix E. When the statement
"enter mode selection" appears on the CRT the operator first
types in INPUT to enter that mode. INPUT is repeated on
the CRT to confirm to the operator that he is in that mode.
Using the mnemonics listed in either Ref. 1 or Ref. 6, the
desired assembly level program for the 8748 is entered.
Correct format for these line entries is accomplished by
using the right arrow key (+) on the TRS-80 which provides
a tab to columns at 8, 16, 24, 32, 40 and 48 spaces across.
The first column contains only labels consisting of one to
six letters and followed by a colon (:). If no label is
used, this column is left blank. The second column contains
the opcode of the desired instruction. The third column
contains the operand applicable to the opcode selected. The
operand must be in decimal rather than hex code for quanti-
ties. In the case of addresses, the operand must be a one
to six letter label which will be used to point to the cor-

rect address during assembly. The fourth column is available

weadetq ¥o0Td WeJdB0dd J03TPH - 9 aan3T4g

wesxdodagq

J9TqUSSSY g
uny
SDOW ATTJ 31
P
1
1 (ouweus Tt ATIL (uy a11d) ¥
[> s F
Spon SPON 9pONW
39n Jutdd 37Pd
_l;heszm
INTEI) (1103)
(LNTHdAT) “(LNINT) |
(SWBUSTTS LAD)
wUOT102Tag e
3 9pPOW J33ud,, \' 4
AATLNOAXA

for any comments the user may desire to include for the
purpose of describing program operations. These comments
must be preceded by a semicolon (;) to prevent the assembler
from confusing comments with operands. If the operand is
longer than the 8 spaces available in the third column, the

comments are started after several spaces instead of pressing

the tab key to the fifth column.

Because of the large amount of memory required to store
comments it is desirable to limit both the length and num-
ber used to a minimum. Also, the TRS-80 allows for single
strings of a maximum 256 bytes in length. Since each pro-
gram line (including comments) is stored as one string, the
256 byte limit will be exceeded if too long a comment is
included and the error "string too long" will appear. This
will result in the system dropping out of RUN and back to
BASIC mode. If this occurs, all data previously entered in
memory will be lost when the program is reinitiated. 1If
this or any other error results in the program "bombing," a
READY will appear on the CRT indicating the system is in
BASIC mode. To get back into the editor/assembler again
simply type RUN "EDTASM".

Once the complete program has been entered using the
input mode, it is desirable to check for errors in the edit
mode by typing EDIT. If the user were confident of his
input he could simply enter FILE (filename) which transfers

his 8748 program, complete with comments, to disk storage.

The filename used with this command can be any group of

letters from one to eight in length. One space must be
allowed between FILE and the filename when typing it in. -

Another option for leaving the input mode is to enter
QUIT which puts the program back in the command mode after
resetting the pointer to zero. This command causes all
previous lines written to be lost.

Assuming the user went directly from the input to the
PRINT and check the program listing on the CRT for errors.
In the event the program is too long to fit on the screen
the rapid scroll can be halted by pressing shift and @
simultaneously. The scroll is started again by striking
the space bar (or any other key).

When entering the edit mode the editor pointer will be
pointing to the first line in the program and that line will
be displayed on the CRT. The pointer can be moved by using

the following commands:

UP Moves the pointer up one line.

DN Moves the pointer down one line.

EOF Moves the pointer to the end of the file.

TOF Moves the pointer to the top line of the file.

The command "L /substring/" is used to move the pointer
to the location of the first line in the text which contains
the exact substring located between the slash (/) lines.

One space must be provided between the "L" and the first
"/". Note that no quotes (") are actually used in this

command. The length of the substring is not critical but

29

JR .

it should be long enough to ensure the program does not
locate another line with that same short substring.
Once an error is located and the pointer is at that
line the following commands are used to make corrections:
C /substring l/substring 2/ Replaces all of sub-
string 1 with all of
substring 2. Again, one

space must be inserted
between the "C" and the

e first "/".
DEL Deletes the entire line.
INS Provides for insertion

of a new line above the
current pointer position.

When all editing has been completed, the operator would
use the command FILE (filename) again to place the program
on the disk. If assembly of this program is then desired,
the command ASM (filename) is entered. A single space must
be inserted between the "ASM" and the filename. This results
in the program "filename" being stored on the disk under the
name "STORE" to enable the assembler program to know which
file to assemble. The assemble program is then loaded into

memory from disk storage and executed.

B. ASSEMBLER PROGRAM

This program has the responsibility for converting the
assembly level mnemonics into hex code. The TRS-80 auto-
matically converts the hex code to binary for loading into
the EPROM on the computer chip. This is an extremely lengthy
program which, without a great deal of sophistication, exam-

ines each mnemonic in turn and assigns the correct hexadecimal

30

————— a8 . .

code for further action. The basic flowchart for ASSEMBLE

this program:

The first task carried out by this
the desired 8748 mnemonic program into

The next step is to complete the first

-

The program then checks each opcode in

can be seen in Appendix C and the program listing is in

Appendix H. The following variable usage is assigned for

X(L) Full line from editor.

T Full line but with comments deleted.

BK Number of bytes in a given opcode.

D(L) Byté number in decimal.

HXS$ (L) Byte number in hex.

V(1) Label (if any).

Y (L) Hex code for opcode with 2 byte
instructions.

Z(L) Hex code for opcode with single byte
instruction or data for 2 byte instruc-
tions.

U (L) Error for line L.

program is to load
memory from the disk.

pass of the assembler.

Each line of input is looked at in sequence. The first 8
spaces of the line are examined first to determine if that
line has a label. 1If it does, the label is stored in mem-
ory for use by the second pass assembler in determining
intra-program directives. The next step is to examine the
first line for the opcode ORIG. If this code is present,
the operand, which is the user's desired start address, is

stored for use in beginning the byte count at that address.

sequence to see if

P

it is a one or two byte instruction. The appropriate
number is added to the present instruction address to deter-
mine the next instruction address. When the opcode END is
recognized the first pass is completed and no address is
agssigned to that line. If the opcode END is not present,
the program merely exits to the second pass assembler after
the line count number reaches that number which was passed
from the editor.

As each line is looked at and an address is assigned
in the first pass, that line, with numbering, is printed on
the CRT to keep the operator aware of assembly progress.
The format for this printout is as follows:

LINE NUMBER HEX ADDRESS MNEMONIC CODE COMMENTS

Upon completion of this phase, FIRST PASS COMPLETED is
printed on the CRT and the second pass of the assembler
begins automatically. The task of the second pass is two-
fold. First, the mnemonic opcode and operand are converted
to the appropriate machine language in hex code. Second,
each time an operand is located which requires an address,
the label representing that desired address is searched for
in the 1list of labels formerly made up in the first pass.
When the label is located, the corresponding address is
used as the second byte of the calling two byte instruction.
As an example, consider the following lines of program:

Line Address Code Label Opcode Operand

03 03 0407 JMP BACK
04 05 8909 MoV R1,#9
05 07 59 BACK ANL A,Rl

32

In this example the programmer desires to jump to line
5 upon executing line 3. When the second pass reaches line
3 it first recognizes the opcode JMP and assigns the approp-
riate hex code of 04. The assembler then looks for what
address to JMP (jump) to and looks at the operand BACK.
The program then searches through the labels tabulated dur-

ing the first pass and locates BACK. It then brings the

address associated with that label, 07, ‘back to’ add onto tae- - o wee ¢

JMP code to form the two byte instruction 0407 as seen
above. The code column in this example is not added until
the second pass is actually completed.

The actual search process of the second pass is done
in two steps to increase speed of execution. Except for a
few singular instructions, the first look is at 38 groups of
instructions by tyme. Once the opcode group heading is
recognized, the assembler jumps to a subroutine which as-
signs the specific hex code for that opcode and operand.
Upon completion of that step the assembler returns to the
beginning of the opcode list to begin again. An attempt has
been made to arrange tﬁe opcode groups so that the more
frequently used will be at the top of the list to provide
faster average locating speed. During this process the
assembler also identifies errors which are filed for display
when assembly is completed. The recognized errors and

meanings are listed below.

SYNTAX ERROR Opcode or operand are not
recognized. Probably an
incorrect format or mis-
spelled.

e B

— e e

DATA EXCEFNPS BYTE SIZE A number greater than 255
is being used.

REGISTER SIZE EXCEEDS 7 Use of a non-allowed i

register.

R EXCEEDS 1 Register should be 0 or 1
1 only.

INCORRECT PORT # Use of port not allowed

in that instruction.

During execution of the second pass, as the code for
each line is generated, it is presented on the CRT. Again,
this presentation is provided to the operator so that he
can follow the progress of assembly. After assembly is com-
pleted, that fact will be noted on the screen along with
the statement 0 ERRORS, or the number of errors followed by
the line number of each error and the error found in that
line. If the line printer is connected and turned on'prior
to the end of assembly, a printout will be provided which
will list the following data for the entire program:

Line No. Hex Address Hex Code Label Opcode Operand Comments

See Appendix J for a sample assembled program printout.
Errors that were detected will be printed below the line
affected. At the end of this printout a tabulation is pro-
vided for reference listing the labels and the address they
are located at. If no errors were detected, the program
then loads the object code (machine language hex code) onto
the disk and calls the program PROGRAM for the purpose of
programming the assembled code into an 8748 EPROM. This

code is filed under the name assigned by the user but with

P

an "0" appended to the name after the last letter. This 0,
of course, represents object code.

If upon completion of the assembly and printout, errors
had been detected, the editor program is called and run to
enable the operator to correct his mistakes.

Under the circumstances where the operator had either
accidentally or deliberately failed to connect the TRS-80
to the line:printer-and to turn the printer on, the system
will "freeze up" after assembly is completed. The recovery
procedure is to press the "BREAK" key until READY appears
on the screen. The system is now in BASIC mode. If errors
have been detected and the user wants to examine the line
numbers in which errors existed, he can enter the command
RUN and use the shift key and @ key simultaneously to stop
the scroll of assembled lines ‘to check errors. To return
to the edit mode again, simply allow the assemble program
to continue to run until it calls the edi: program, or press
the break key to return to BASIC mode and type RUN "EDTASM".

It should be noted that if ASSEMBLE runs to completion
and does not locate any errors it will automatically load
the object file onto the disk before proceeding. If any
errors are located, however, the object code will not be

saved since it is not correct.

C. PROGRAMMER PROGRAM
The purpose of this program is to enable the system

user to load his assembled program into the EPROM of an 8748

35

s .

microcomputer. This is accomplished through associated

hardware which is discussed in the next chapter. This pro-
gram and hardware also enables the user to read an 8748 ‘
EPROM in order to verify its contents. The flowchart for
the program named "program" is located in Appendix D and
the program listing is Appendix I.

This program is normally executed upon successful com-
pletion of the assembly program, but may also be entered
directly from BASIC mode by typing RUN "PROGRAM". Before
running this program, however, the programmer assembly must
be connected to the TRS-80 I/0 bus. This connection should
§ not be attempted while a program is running because elec-
| | trical transients may be generated which could halt program

execution.
When the program is initiated it will first present the
statement ENTER PROGRAM MODE. The user may then select one

of the following commands:

STOP Ends program execution and
returns to BASIC mode.

EDIT Loads and runs the editor program.

RPROM Used to read an EPROM.

WPROM (filename0) Used to write to an EPROM. The
"0" must be added to the file-
name to designate the object
file.
Any other command will result in the statement ILLEGAL
COMMAND~--TRY AGAIN being presented on the CRT.
Whether the WPROM or RPROM mode is selected, the same

setup routine is used. This routine first asks the question (

t, WAt -

START ADDRESS IN DECIMAL? to which the operator answers with
a decimal number indicating the EPROM address in the 8748

he desires the reading or writing to start at. The next
question will be END ADDRESS IN DECIMAL? which asks for the
last EPROM address to be read or written to. If the end
address entered is greater than the start address, the
statement ILLEGAL ADDRESS will appear on the screen followed
by the start address question again.’’ Likewise, if eéithér’
the start or end address are greater than the 1024 byte
capability of the EPROM, the statement ILLEGAL ADDRESS will
again appear. If ihe first two questions are answered
satisfactorily the next question EPROM SOCKET EMPTY? (YES

OR NO) will appear. This is to ensure that the EPROM is not
inserted in the socket before power is applied and initial
setup is completed. Other actions could result in damage

to the 8748 chip. If the answer to the socket empty ques-
tion is YES, the next question will be IS POWER SWITCH ON?
(YES OR NO). If power is not yet on this is the time to
turn it on. When the answer to this question is YES the
program sets the hardware to the required initial conditions
and prints the hexadecimal code of the object program about
to be loaded on the CRT. The statement INSERT 8748 CHIP

AND TYPE~GO: is then presented. It is especially important
here that the 8748 chip not be inserted incorrectly in the

socket as considerable damage to the chip would result.

Once the command GO is typed and entered, the program will

—

return to either the RPROM or WPROM routine originally
selected.

If RPROM had been selected, the desired address of the

———

EPROM would be queried and the data at those addresses in-

put to program memory. Since this data is input to the

BASIC mode in decimal format, it must be converted to hexa-

decimal before presenting to the operator on the CRT. This
. * - - presentation is made in the following format:

Decimal Address XX XX XX XX XX XX XX XX XX XX XX XX XX

XX XX XX
where the decimal address is the address of the first in-
struction in that row and XX is a hexadecimal representation
of the machine language in that address. When all desired
addresses have been printed, any spaces left in that row
will be filled with 00 and the program will reinitialize
the electronics in the programmer and provide the message
REMOVE EPROM NOW--THEN TURN POWER OFF. This is to ensure
power is not turned off before the EPROM is removed. The
program then returns to start with the statement ENTER
PROGRAM MODE.

If the user had originally selected WPROM and given the
correct name of the object code file on disk, the first
step would have been the loading of the object file into
TRS-80 memory. The initialization routine discussed above
would then have been completed and the programming process
commenced. The program is loaded into the EPROM one byte

at a time. Each address requires approximately 100 milli-

38 '

' o \
. 4 W7 e 1 e o e — - —— - -

seconds to program so the user should expect about one second
of programming time for each 10 instructions. During the
100 msec cycle the program first inserts data into the given
address and then reads that same address. The decimal num-
b. - read is compared by the program with the number which
should have been programmed. If the two numbers are not
identical the EPROM programming ceases and the statement
PRO?RAMM;NG ER?OR-—?RASE EPRQM.AND TRY AGAIN will appear,
followed by REMOVE EPROM NOW--THEN TURN POWER OFF and a
return to program start. If this does occur, the most
likely cause is that the EPROM was not thoroughly erased
before programming. It is also possible, however, that the
EPROM is defective or that the programmer is operating
incorrectly. Check also to see that programming power is
turned on.

If no errors are detected in the verification routine,
the statement PROGRAMMING COMPLETED SATISFACTORILY will appear
followed shortly by REMOVE EPROM NOW--THEN TURN POWER OFF and
a return to program start.

If the user desires to run several RPROMs in succession
or an RPROM followed by a WPROM or vice versa, it is not
necessary to remove and reinsert the 8748 chip each time.
Simply ignore the command to remove the EPROM and proceed
with the steps in order. The questions EPROM SOCKET EMPTY?
and POWER SWITCH OM? may both be answered YES with no ill

effects. The important point to remember is to not remove

the EPROM until the second to last statement on the CRT is

REMOVE EPROM NOW--THEN TURN POWER OFF.

V. PROGRAMMER HARDWARE AND OPERATION

The design for the hardware portion of the 8748 EPROM
programmer was based on the requirements set forth in Ref. 1.
Reference 7 provided additional assistance in switching cir-
cuit techniques and methodology. Figures 7 and 8 show the
schematic for the final programmer design. Figure 9 shows
component arrangement on the circuit board.

In first examining the possibilities for interfacing
the TRS-80 with an EPROM programmer, the question of output
procedure arose. The TRS-80 is able to provide an output
via either memory mapped or port selection modes. Since
the memory mapped system requires memory addresses to be
used for output and input, this method had to be rejected.
With all possible 64K of addresses already in use for either
RAM or ROM, much confusion could result. The port based
system allows only 255 possible ports, but this is more
than sufficient if much of the work is done by the TRS-80
software rather than programmer hardware. 1In fact, for this
8748 programmer only 4 ports are needed. In the port sys-
tem the commands used are OUT (port), (value) and INP (port)
in the BASIC language. The OUT command sets the OUT line
low, simultaneously putting the port number on the lower
eight address lines and the desired value on the eight data

lines (data bus). Likewise, the INP command sets the IN

line low while outputting the port number on the lower eight

1 140d

NO OW 02

$ Nid
B . —
¥3002330 wou4

ot13ewayos asumreiboag - L aanbrg

——

90vL
YO6ENT
not
yesen oo
D

TS oW 10
~uo 100
N 200N
~jeia £0
~jna 0

SNE Vive
~sia s0q
~o1a 900
v 1404

~ua t00
nf.o 22 w0

81s

oN

AS+

13
o1 .238%
908 AS+ o W , —z3z| 20wd
) 906ENZ
rs
AYGZ+
90t YOGENZ
AS+
VESINT 1§ 100 v
90¥, AS+ PHEPPT WY 3
Ne'9
Myhes 906ENZ
s AS+
} AS+
AYSTZ+
1
7] 04831
3] 4383
0% 206€ENZ
ot AS+
L an S.fH. a0
90%. AS+ N ~—5 M
906ENZ SESENT
T
rs AS+ L__swus
¥
AYSZ+

. - e o,

42 .

T T i g ——T — s

+5

8748
22pF
x1 \ P
1)
.u"
X2 <
22pF
4.7K
PSEN v v—s
2.4K
INT A~ +3Y
—| 2.4K
S$S 'YW +8Y
P21
P20
087
086
oBs
DB
D83
082
081
080

| coees
sT8 CLR
§ 8212
. L
PORT 2
- -
J et A
<q DATA_BUS >
002 oI2}-
| D01 onp-
l BSI MO DS2
t 1 Jut
+5V 7404
+5
NC
AQ
do Aje—"—
008] 7415154 Al
8212 [:‘ Bfe——
o7 et s %0 2 cl—A2
A3
DI6 pos|- —q3 0
4
oIS 00S}- ds
Ol4 004} :
013 Do3f-
——aD12 002
PTTI 001
DS1__mMpD DS2 —
N
< | <
REREE 1.7
= +3
sTe L To D31 on
oos pisl- PORT 4 v
8212
007 D17}~
PORT 1
loos D16}~
onL
ouH
. oi2H—
onp-
1Mo o3z 04 gur
i |
FROM DO1 ON
PORY 4

Figure 8 - Programmer Schematic :

paeog 3TNoJ) Jauweda3oad - 6 aanITd

e

O%

LAAO0S
ghlg

LAY
aa

1,30
vd

0¢c

&LHD
odd

€T 1 £1 1
f LHOd € I4od
AR 212y
Wl 9¢ 3§ 9¢
£t T €T T
2 I¥0d 1 INOd
ctcg 2128
R 9¢ B T
1 -
90Nl
8 LM ic{e(ellc
ot L RGTSTHL
92

€1

——

44

n o

address lines. The data present on the data bus is then
read into the TRS-80.

The first major obstacle to overcome in preparing the
design of the programmer was to verify the correct pinout
from the TRS-80 I/0 port.

Since Ref. 8 has no data on the TRS-80 expansion inter-
face it was largely up to the author to verify the pinout.

In connecting up to the I/0 port a flat cable 40 pin connect-
or left over from another TRS-80 application was used. After
some time was spent searching for signals out of this cable
it was discovered that the cable and connectors are wired

to reverse the signal from top to bottom. That is, the top
,row of signals in one end of the flat cable comes out on the
bottom row at the other end and vice versa. The similar
cable coming from the computer/keyboard to the expansion
interface of the TRS-80 also reverses the signals top to
bottom. The interface board is wired to again reverse the
signals so they are upright coming out of the interface I/0
port. Figure 10 shows the pinout of the expansion interface
port.

Once the proper pinout had been verified, the design
and construction of the programmer board could begin. Be-
cause of their ready availability, it was decided to build
the system on a 4 x 6 Vector plugbhoard with a 44 pin connect-

or and which was predrilled for wirewrap sockets. This

board provided for a compact unit easy to interface via 44

SIGNAL
P/N | NAME DESCRIPTION
1 | RAS* Row Address Strobe Output for 16-Pin Dynamic Rams
2 |SYSRES®* Syitom Reset Output Low During Power Up Initialize or
eset
3 |CAS* Column Acrdnu Strobe Output for 16-Pin Dynamic Rams
4 |A19 Address Output
5 |A12 Address Qutput
6 |Al13 Address Output
7 |AlS Address Output
8 |GND Signal Ground
9 | All Address Qutput
10 | Al4 Address Output
11 | A8 Address Qut; V}’
12 [OUT* Peripheral Write Strobe Output
13 | WR* Memory Write Strobe Output
14 |INTAK®* | Interrupt Acknowledge Output
15 * Memory Read Strobe Output
16 [{MUX Multiplexor Control Output for 16-Pin Dynamic Rams
17 (A9 Address Output
18 | D4 Bidirectional Data Bus
19 | IN® Peripheral Read Strobo Output
. 20 {D7 Bidirectional! Data Bus
21 |INT® Interrupt Input (Mnhblo)
22 |D Bidumtio D-u us
23 | TEST* A Logic “9" on TEST® Input Tri-States AO A15, D$D7,
WR* RD*, IN*, OUT*, RAS®*, CAS®* MUX*
24 {D6 Bidirectional Duu Bus
25 | A9 Address Ou
26 | D3 Bidirection D.h Bus
27 Al Address Out;
28 |D6 Bidirectio: Dlt. Bus
| 29 GND Signal Ground
30 | D9 Bidirectional Data Bus
31 | A4 ress Bus
32 |D2 Bidirectional Data B
33 | WAIT* Processor Wait lnput to Allow for Slow Memory
34 | A3 Addnu O\Itput
35 | AS Address Output
36 | A7 Address Output
37 |GND 8i Ground
gg A8 A dnulot\l}tput
a. round
w0 | TP $nal dron
NOTE: *means Negative (Logical *#') True Input or Output

3 8 7 9

113 18 17 19

7 2 N 3B YN

Tl bad ol

2 4

L= S~ aa = |
L)

s 10

Lo L A =4
12 14 6 10 20 22

el

L= 2N - =~ L=
2 W 32 M ¥ B

2

Figure 10 - Pinout of Expansion Interface8

[

pin sockets. The use of wirewrap techniques on the board
enabled the system to be put together rapidly and yet to
provide a high degree of reliability.

Intel 8212 I/0 port chips were selected for the program-
mer unit because of their versatility and compactness. These
8 bit ports can be wired to operate in a number of different
ways since they include both tri-state buffers on the output
lines and latches on the input lines. An Intel schematic
for the 8212 chip is provided in Figure 11l.

The next major design hurdle for the programmer hardware
was the higher voltage switching circuits. This circuitry
can be seen in programmer schematic diagram, Figqure 7. While
several of the drive signals to the 8748 chip such as TESTO
and RESET require 0 and +5 volts for off and on, the program

functions of EA, V and PROG require 23, 25, and 23 volts

DD
respectively as the high input. 1In fact, EA and VD also

D
require a low of +5 volts while PROG must have a low of 0
volts as well as a "float" .condition. The output of the 8212
chip is easily able to provide a direct 0 to 25 volt transi-
tion with the assistance, in some cases, of a pull-up resist-
or. Since no digital chips provide the range of 0 to 25
volts required for the program function, it was necessary
to construct separate circuitry using switching transistors.
The design of all 3 of the 25 volt switching circuits was
basically the same. A pair of transistors, one PNP 2N3906
and one NPN 2N3904, were tied together at their collectors

and driven by a common voltage into their bases. 1In this

47

SERVICE REQUESY FF

N\

DEVICE SELECTION o*o
- J SR
> % iNT @3>
3> os2 (ACTIVE LOW)
— ¢ N
B =
B> s18 ——d T ourer
| | | sureen
| | |
o, 4o of++] O
DATA LATCM | LY |
Bon ' : ?>¢I oo &>
=k
DB'J “ 0 Q m’D
JtL !
| i !
o1, 0 a1+ 0, {2>
; Call|l |
{
°|s 1 o Q T : W@
| " ! ‘
oy : o a : ooy [7™>
i R | |
o > el > o0 >
ca) |, ‘
@Dl. D Q lL% N.@
meseromver | Uc
n)l)]
B> T 1]
(ACTIVE LOW) I
o | Doty [oataouriaums]lan [Ohosy [se | o | my
H H are - i 1
2 _ H OATALATSN _ |] 14 }
{ H DATA LATEM Moo o T G A O N
A e e R
I - e
4] OATA N NTERNAL 3R PLP FLOP
NEGETS OATA LATON
TS I FLIP £LOP
WD EFFECT ON OUTWUY PPt

48

Figure 11 - Intel 8212 I/O Port Schematic

1

POTEPUN S

configuration, when the 2N3906 PNP transistor has a ground
level at its base, current flows to ground and the transist-
or is switched on, allowing +25.4 volts at its collector
output. At the same time a low on the base of the 2N3904
shuts it off, thereby directly all current into the collector
output connection. For the reverse condition, when the 3906
is shut off and the 3904 is turned on, no current is provided
by the transistor circuitry. 1Instead, in the case of VDD and
EA, 5 volts is provided at the appropriate input pin from

the +5 volt supply. The emitter of the 3904 is also tied

to +5 volts to ensure rapid switching from +25.4 to +5 volts.
While the VDD high operating voltage is set at 25.4 volts
(allowable range is 24 to 26 volts) the EA high operating
voltage is 23 volts (allowable range is 21.5 to 24.5 volts).
Rather than providing two different power supplies, the 23
volts is reached, for both EA and PROG, by dropping the

25.4 volts across 3 IN 753A diodes in series. With a Vs of
.8 volts, the resultant 2.4 volt drop enables the desired
voltage to be achieved.

The switching circuitry for the PROG input is necessarily
somewhat different from the other two because of the require-
ment for 3 states, namely +23 volts, ground, and floating.
This is achieved by utilizing two inputs from the TRS-80
rather than one. One input controls the switching of the
2N3904 transistor and another controls the 2N3906. When the
3906 is on and the 3904 is off, 23 volts will be present at

the output. When the 3906 is off and the 3904 is also off,

no current supply or drain will exist and the input may seek
its own level (about 4 volts under operating conditions).
When the 3906 is off and the 3904 is on, the PROG input will
be tied to ground.

The operating sequence of one complete cycle of the
system as a whole is illustrated below for one program pulse.
To assist the reader in following this discussion, the 8 bit
output of port 4 is listed below. Underneath each bit of
port 4 is listed the item controlled by that bit.

bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1

Vo RESET - TESTO EA PROG1 PROG2 N.C. PORT 1 MD
Before the 8748 is allowed in the socket of the program-
mer, the hex code 36, binary 00100100, is output to port 4.
This provides a +5 volts to PROG2 and +5 volts to TESTO with
all other port outputs equal to 0. The result is proper
initial conditions for the 8748 to be inserted in the socket,
i.e. PROG is floating and TESTO is high. The next action is
to output hex 04. This switches TESTO to 0 volts to begin
the programming process. The next step is to output 20 to
port 4 which switches EA to +23 volts. The high 2 bits of
the desired 8748 address are then output to port 2. Port 1
is switched to the latch-on condition next by outputting a
21 to port 4. The lower 8 bits of the desired address are
now passed to port 1. An 81 is next output to port 4 which
turns RESET off with a +5 volts and turns PROG to the 0 volt

(ground) condition. This latches the address onto the 8748

bus. The data is then passed out to port 1 followed by a

209 to port 4 to raise V to 25.4 volts, a 221 to port 4

DD
to raise PROG to +23 volts, and a 50 msec delay to allow
the programming to occur. PROG is then taken low by out-
putting 209 to port 4. VDD is then lowered to +5 volts by

sending an 81 out to port 4. Vop is then lowered to +5
volts by sending an 81 to port 4. An 84 is next put out
to place PROG back in a floating condition and set up for
the verify. The port 1 tristate is also turned off at this
time by the same step. A 116 is then placed on the bus to
port 4 to raise TESTO to +5 volts. This action places the
data at the current 8748 address onto the 8748 output bus
where it is read into the TRS-80 using the BASIC command
INP(3) to bring it in via port 3. The software then checks
for correct programming of that address and outputs a 20 to
port 4 to lower RESET and TESTO to 0 volts. The cycle then
begins again with the output of the high address and con-
tinues until the programmer's last desired address is reached.
The RPROM routine is basically similar to the above ex-

cept that no VDD or PROG pulses are used and no data is out-

put to the 8748, 1Instead, the addresses are put out to the

chip and the verify procedure follows immediately. A pic-
ture of the actual timing diagram for this process is avail-
able as Figure 12. These waveforms correspond favorably

with the required traces as seen on page 6-8 of Ref. 1.

VERIFY

TESTO l | PROGRAM (1

¥
ADDRESS | ADDRESS! DATA
& DATA VALID | VALID
d i

+25.4 - '
VoD]
+5
+23 »
PROG [
0
————t——t————————+——t+—+—+

0 20 4o 60 80 100 120 140 160 180 200
TIME (Milliseconds)

Figure 12 - Programmer Timing Diagram

i
‘ 52 ;

VI. PROGRAMMER POWER SUPPLIES

The power for the 8748 programmer is drawn from two
separate power supplies contained within the programmer
enclosure. These supplies are not shared with the TRS-80
power supplies. The right hand circuit board within the en-
closure was a pre-built supply available from another stu-
dent's project. It is powered by a 26 volt transformer and
produces 3 separate DC voltages using on-board rectifiers
and LM 723 voltage regulators. The DC.levels available from
this supply are +5, +12, and -12 volts. Variable resistors
are available for each.supply to allow adjusting of output
voltages by approximately +1 volt. 1In this application only
the +5 volts is required and it is hard wired to the mother
board. The +12 and -12 supplies are available for future
student projects. 1In fact, if a 2708 programmer is con-
structed, the +12 volt and a -5 volt supply drawn from the
-12 volts will be required.

The other power supply board in the programmer enclosure
provides a regulated 25.4 volts DC for the EPROM programming
pulses. This supply was constructed by the author. Figure
13 is a schematic diagram of the unit which uses an LM-317
for voltage regulation.

Current requirements for the 8748 programmer are fairly
significant for the +5 volt supply. 1In excess of 500 milli-

amps is required to power the board. Much of this current is

£1ddng aamoyg

ITOA (°Ge - €1 2anITg

O A —-
AT-0
DN GE I__\
an OH.nﬁ
OCA 05 | A
N 22 o
-
OQA 05T
d0 00T —
TOOKNT * onz o 1
J03eTNn8ay
o- -— —— 93B3 TOA o—
+ ano A L1€ W1 uf A

OVA LE : o221

I3TJT309Y
sABM TTINnY
T-0.6 vawW

EN

taken up by the 8212 I/0 port chips which operate at a higher
than ambient temperature. The 25.4 volt supply current re-
quirement is less than 40 milliamps and then only during
actual programming.

A schematic is not provided of the mother board since it
is simply an extension from the TRS-80 expansion interface
output port. It should be noted, however, that the printed
circuit lines on the top of the mother board and on the right
side of the 44 pin sockets represent the bottom row of output
pins from the expansion interface. Likewise, the top row
outputs from the interface are on the bottom of the printed
circuit board and the left side of the sockets. The 4 out-
side lines on the mother board are not connected to the TRS-80
40 pin connector and are intended for use in supplying power
from the programmer power supplies. Additionally, it should
be noted that all lines from the TRS-80 are connected to only
the first 44 pin socket. The left most 3 sockets have only
the data lines, lower 8 address lines, ground, OUT and IN.
The reason for this is that these signals are the only ones
required to provide port mode input and output. Thus, they
will suffice for most applications.

To provide maximum protection for the programmer cir-
cuitry, 3 fuses have been installed. A 120 volt, 2 amp fuse
is located in the input power line to protect against major
transformer failure. A 750 milliamp fuse is inserted in the

5 volt supply line and a 3/8 amp fuse is in the 25 volt

programming supply line to protect the programmer board

against major damage in the event of overload.
The light on the front panel of the programmer assembly
indicates that 120 volts have been received past the 120

volt fuse. The fuses for the 5 and 25 volt supplies must be

- checked visually if the programmer is not operating correctly.

VII. CONCLUSION

The microprocessor development system discussed in this
thesis is already in use by several groups of students who
are employing the 8748 chip in various applications. These
users have been favorably impressed with the effectiveness
and simplicity of the system, especially when compared with
the Tektronix 8002 MDS. While the 8002 has many more capa-
bilities, its sophistication is at such a high level that
the beginning student in microprocessors must spend many
hours learning how to use it. The typical requirements for
an MDS, to edit, assemble and program EPROMs, are more than
met by the author's system.

Perhaps an even more significant difference between the
TRS-80 based system and the more sophisticated systems is
cost. The TRS-80 in its present configuration is available
for about $2000, while the Tektronix system costs over
$15,000. In fact, the 8748 assembler module alone for the
8002 is worth $850 with the complete emulator card and probe
raising that price to over $4,000,

In constructing the programmer assembly for the 8748,
additional sockets were provided in a 4 socket mother board.
These sockets accept the standard 44 pin Vector plugboard.
It is recommended that future student projects and thesis
work be directed toward the construction of software and
hardware to expand this MDS. Some additions which might

prove useful to 8748 users would be an in-circuit-emulator

57

and a debugger to allow for real time execution of the
user's program in TRS~-80 software. Other possible projects
could be a programmer for the Intel 2708 and 2716 or other
commonly used EPROMs. With little additional effort a
parallel to the already installed capabilities for the 8748
could be included to provide for the 8080, Z-80, 6800, and
other popular microprocessors. Since the editor program would
work for any microprocessor language, the task of program
building would be limited to only the assembler program.
Thus, a new capability for the TRS-80 MDS would consist of
only a $5 magnetic disk to store the programs.

Other capabilities could be added to the digital labora-
tory by interfacing the TRS-80 to the Tektronix 8002 to allow
for exchanging programs and data between the two. Addition-
ally, the TRS-80 might be used as a real time processor for
the IBM-360 or other main frame computer, allowing for the
transfer of programs and data between several computers.

With the advent of smaller, faster, and more capable
microprocessors, the age of truly distributed processing
systems is upon us. Additionally, microprocessor systems of
the future will be the equivalent in capability of main
frame computers of the past. For these reasons the import-
ance of understanding the capabilities and limitations of
microprocessors and microcomputers cannot be over emphasized.

The microprocessor development system is one necessary and

concrete step toward this goal. To be able to rapidly and

i effectively program and utilize the microprocessor is the

raison d'etre of the microprocessor development system and

is, not coincidentally, the path of the future.

59 :

Location

FF0O0
FFOl
FF02
FFO03
FF06
FFO8
FFOA
FFOC
FFOF
FFl1l
FF1l3
FF15
FF17
FFlA
FF1C
FF1lE
FF20
FF23
FF25
FF26
FF27
FF28
FF2A
FF2B
FF2C
FF2D
FF2F
FF31
FF33
FFr34
FF36
FF38
FF3A
FF3D
FF3E
FF3F
FF40
FF41
FF42
FF43
FF44
FF45
FF46
FF47
FF48
FF49

PROGRAM LISTING FOR PRINTER SUBROUTINE

Hex Code

E5

C5

F5
3A48FF
FEOl
2820
3E01
3248FF
D3ES
DBEY
E6F8
F604
3247FF
D3EA
DBE9
E607
213FFF
0600
4F

09

7E
D3E?
Fl

Cl

El
DBEA
CB77
28FA
79
D3EB
FEOD
2004

APPENDIX A

Label
INIT

BAUDST

RESTOR

STATIN

LD

RETRN
BDTABL

SWTIMG
FLAG

60

Opcode Operand
PUSH HL

PUSH BC

PUSH AF

LD A, (FLAG)
CP 01H

JR Z ,RESTOR
LD A,01H

LD (FLAG) ,A
OouT E8,A

IN AE9

AND OF8H

OR 04H

LD (SWTIMG) ,A
ouT EA,A

IN A,E9

AND 07H

LD HL,BDTABL
LD B,00H

LD c,Aa

ADD HL,BC

LD A, (HL)
OUT E9,A

POP AF

POP BC

POP HL

IN A,EA
BIT 6,A

JR Z,STATIN
A’C

our EB,A

CcP ODH

JR NZ,RETRN
JMP FF50

NOP

RET

DEFB 22H

DEFB 44H

DEFB 55H

DEFB 66H

DEFB 77H

DEFB OAAH
DEFB 0CCH
DEFB OEEH
DEFB 00H

DEFB 00H

NOP

—

FF50
FF51
FF52
FF53
FF54
FF55
FF56
FF57
FF58
FF5A
FF5B
FF5C
FF5D
FF60
FF61
FF63

ES
21FF44
2B

7C

BS
C254FF
El
OEOA
C32DFF

NOP
NOP
NOP
NOP
NOP
NOP
NOP
PUSH
LD
DEC

OR
JP
POP
LD
JP

HL

HL, 44
HL

A,H

L
NZ,FF54
HL
C,O0AH
FF2D

APPENDIX B

FLOWCHART FOR EDITOR PROGRAM

LOAD PRINTER PROGRAM FROM DISK AND EXECUTE

PRINT "8748 EDITOR/ASSEMBLER ON LINE"
—

! 1
INPUT "ENTER it
PROGRAM ON
[1]
ODE SELECTION LINE PRINTER

RING PREVIOUSLY |
ILED PROGRAM

PRINT ALL LINES
IN MEMORY ON

FILE

Gtm "Assmmb‘__ NAME ON DISK
IN "STORE"

PRINT "EDIT"

e

=

INPUT COMMAND

YES

63

MOVE POINTER
UP ONE

MOVE POINTER
[DOWN ONE

| DELETE CURRENT]
LINE ’H

INSERT NEW
LINE ABOVE
CURRENT LINE

SAVE ALL LINES
| IN MEMORY ON
DISK

PRINT ALL
LINES IN

MEMORY ON
CRT

LOCATE LINE

SUBSTRING

WITH SPECIFIEDI—

CHANGE OLD

SUBSTRING TO
NEW _SUBSTRING

POINTER TO
IOF OF FILE

—

POINTER TO

END OF FILE

PRINT
"ILLEGAL ENTRY"

1

PRINT "INPUT"

1

LINE INPUT

STORE AND
ADVANCE TO
NEXT LINE NUMBER

[=

65

SAVE ALL
LINES IN
MEMORY ON
DISK

APPENDIX C

FLOW CHART FOR ASSEMBLY PROGRAM

"ASSEMBLE"

r

GET FILE NAME
FROM "STORE"

-

LOAD LINE COUNT
FROM FILE

DIMENSION
VARIABLES

LOAD FIRST
LINE FROM DISK

1S A SET FIRST ADDRESS
LABEL PRESZ TO OPERAND OF
ENT? IIORIGN
NO]
TAST LINE? D—ro [LOAD NEXT
LINE
YES
IRST . YES [SET FIRST ADDRESS
LINE "PROG TO OPERAND OF

?

NO

“ORIG"

1

LOOK AT NEXT
LINE

OPCODE
CONTAIN

J?

OPCODE
CONTAIN

OPCODE
=JMPP?

#2?

OPCOD
CONTAIN

NO

ADD 1 TO
PREVIOUS
ADDRESS

CALL?

ADD 1 to
PREVIOUS ADDRESS

ADD 2 TO
PREVIOUS ADDRESS

IH

+

CONVERT
DECIMAL ADDRESS
TO HEX

RINT LINE NUMBER
EX ADDRESS, LABEL
IOPCODE, OPERAND AND
ICOMMENTS

NO

YES

PRINT "FIRST
PASS COMPLETED"

-t -

GET FIRST
LINE

r—

-

DELETE
ALL COMMENTS

ASSIGN HEX CODE
TO OPCODE AND
OPERAND

ERROR YES

DETECTED?

PRINT HEX
CODE

INCREMENT
ERROR COUNT

STORE ERROR

AT LINE

NUMBER

PRINT HEADING

"LINE ERROR"
YES RETURN TO
PRINT ASSEMBLED LINE 1
PROGRAM AT
LINE PRINTER 7.3
P ERRORS=0?
PRINT LINE
YES NUMBER AND
(rom unsen) =
Y . LAST NO
LINE? GET NEXT LINE

STORE OBJECT
CODE ON DISK
UNDER FILENAME
+ 0

RUN "PROGRAM"

APPENDIX D

FLOWCHART FOR "PROGRAM" PROGRAM

"PROGRAM"
=G
A

PRINT "ENTER
PROGRAM MODE"

EXIT TO BASIC MODE ’

RUN "MASTER'U

PRINT "ILLEGAL
COMMAND~-TRY

f— AGAIN"

PRINT "OBJECT
CODE ONLY!
“lapp 0 TO FILE
pmus"

70 .

{ ‘

LOAD OBJECT
CODE FILE

)

CONVERT HEX
CODE TO DECIMAL

CALL SETUP
SUBROUTINE

<

OUTPUT FIRST
LINE OF CODE
TO DESIRED
ADDRESS

READ CODE AT
SAME ADDRESS

IN
PRINT "PROGRAMMING
CODE OuT ERROR-ERASE
=CODE IN? | EPROM AND TRY

OUTPUT CODE AGAIN

TO CRT

ADVANCE TO

NEXT LINE

PRINT "PROGRAMMING

COMPLETED
SATISFACTORILY"

T)/

"
INITIALIZE PRINT "REMOVE
BROCRALE EPROM NOW-THEN
, TURN POWER OFF

L

CALL SETUP
b SUBROUTINE

READ EPROM
FIRST DESIRED
LINE

| READ NEXT
LINE

RESTORE
PROGRAMMER TO
INITIAL
CONDITIONS

CONVERT DECIMAL
NUMBERS TO

HEX
PRINT HEX CODE
IN BLOCK FORM

PRINT "REMO
EPROM NOW-
THEN TURN
POWER OFF"

| SETUP
SUBROUTINE

<

INPUT "START
ADDRESS IN
] "

L) NI

PRINT
"ILLEGAL
ADDRESS"

4

NPUT "END
ADDRESS IN
DECIMAL?"

ﬁ
INPUT "EPROM ﬂr
SOCKET EMPTY%
(YES OR NO)*® INITIALIZE
PROGRAMMER
_——1\
YES NQ?
INPUT "INSERT
8748 CHIP AND
YES TYPE~GO:"
INPUT "IS
SOCKET POWER
SWITCH ON? NO
(YES OR NO)"
YES
PRINT "TURN YES
rouzn o (s)
NO

73 i

APPENDIX E

8748 EDITOR/ASSEMBLER OPERATING INSTRUCTIONS

This development system operates under its own set of
V-) instructions and commands and no knowledge of the TRS-80
operating system or the BASIC language is presumed or neces-
sary.
To load the 8748 program proceed as follows:
1. Turn on the master power switch on the bus strip.

2. Turn the CRT on by pushing in the button in the upper right
hand corner.

3. Turn the expansion interface on by pressing in on the
button in the center front face of the unit.

4. Turn the disk drive on by placing the toggle switch on
the rear of the drive unit up.

5. Insert the 8748 disk in the drive with the notch up and
the label facing to the right. Close the disk drive
door.

6. Turn the TRS~80 on by pressing in on the button located
on the rear of the keyboard just to the left of the 3
input cables.

7. The system will now load the dick operating system fol-
lowed by the BASIC system. The screen will display the
following:

HOW MANY FILES?
Answer this by typing a 1 and pressing ENTER.
The next question on the screen will read
MEMORY SIZE?
i Answer this with 65000 and ENTER.

The system will then respond with

RADIO SHACK DISK BASIC VERSION 2.2
READY
r >

Now type in RUN "EDTASM" and press ENTER.

This locads the 8748 editor/assembler and the screen will
display

8748 EDITOR ASSEMBLER ON LINE
ENTER MODE SELECTION--

The operator is now ready to begin entering and editing
his 8748 assembly level language program. The following com-
mands and modes provide all the assistance necessary to pro-

vide a fully assembled version of his program.

Modes available:

INPUT To enter program lines into system
buffer.

PRINT Prints contents of buffer on video
display.

LPT1) Prints contents of buffer at the line
printer.

EDIT Provides for editing of lines in buffer.

(See EDIT commands.)

GET (filename) Transfers (filename) program from disk
storage into buffer.

ASM (filename) Assembles program named (filename) and
provides complete printout at the line
printer. (ensure that printer is con-
nected to TRS-80 and turned on.)

Edit Commands:

UpP Moves pointer up one line in the buffer.

DN Moves pointer down one line in the
buffer.

TOF Moves pointer to the top line in the

buffer.

EOF . Moves the pointer to the end of the
file in buffer.

DEL Deletes the current line.

INS Provides for a new line to be inserted

above the current line.

L /xxx/ Locates the first line containing
substring xxx and moves the pointer
to that line.

C /xxx/yyy/ Changes substring xxx to yyy in the
current line.

FILE (filename) Transfers the contents of buffer to
disk storage under name (filename).

PRINT Prints contents of the buffer on the
video display.

INPUT Puts the system in the input mode.

Input operations:

Enter new program lines in the following format:

Label Left justified, 1 to 6 alphanumeric
characters ending with a colon.
(Leave blank if no label is desired.)

Tab to 8 by pressing + key.

Opcode 3 or 4 letter code from MCS-48 user's
manual.
Tab to 16.
Operand Alphanumerics as given in MCS-48
user's manual. Numbers must be in
decimal.
Locations must be a 1 to 6 digit label
only.
Tab to 24.
Comments If desired, type a semicolon followed o

by a short description of instruction
operation.

In general
Press ENTER to move to the next line.
After the last program line type END as an opcode.
The opcode ORIG may be used in the first line with a
decimal number as the operand to direct the

assembler to place the beginning of the program
at that address.

Input Commands:

QUIT Resets the line pointer to zero and
returns to the executive routine.

FILE (filename) Transfers files from the buffer to
disk storage and returns to the execu-
tive routine.

EDIT Transfers to the edit mode to allow
for program changes and corrections.

Errors
There are a number of unlikely but possible errors which
can be made which would result in the system's dropping out

of program RUN and back to the BASIC mode. If this occurs,

in every case the word READY will appear as the last word

on the CRT. To return to that portion of the program which
was in operation, Qimply type RUN and press ENTER. Un-
fortunately all files in the system buffer will be lost and
must be reentered. For this reason it is wise to periodically
save portions of the new program as they are being written.

This is done by the command FILE (filename). To continue

building on this program go to INPUT and continue writing.

77 j

Linking

Programs can be written by different authors or the same
author with the eventual aim of combining into one large
program for later assembly and execution. To combine two
programs they must first be written and FILEd on the disk.
Press the BREAK key and wait for the READY signal. Then
type APPEND (filename 1) TO (filename 2), after which type
KILL "(filename 1)". To return to the executive again for
assembly type RUN. It will now be necessary to edit the
new program by deleting the END and EOF from the end of

the first subprogram.

Programming

Once the assembly of the user's 8748 program is completed
with no errors detected, the programmer program will be auto-

matically loaded. The following program modes are available:

STOP Exits the program to BASIC mode.
EDIT Returns system to editor/assembler.
RPROM Used to read an 8748 EPROM.

WPROM (filenameQ) Writes a program entitled (file-
name +0) to an 8748 EPROM. (O,
for object code, must be appended
to the original filename.)
Full questions and commands are provided by the program
to prompt the user during the RPROM and WPROM modes.
Ensure that the 8748 chip is not inserted or removed

from the socket except when so directed by the program.

78

 —

Great caution must also be exercised to make certain the

chip is not inserted incorrectly as this could result in

—_——

severe damage to the 8748.

Turn off sequence. (Can be followed any time except when
disk drive light is on or programmer has 8748 in the
socket.)

1. Remove diskette from disk drive.

2. Turn off disk drive.

3. Turn off programmer.

4., Turn off keyboard/computer.

5. Turn off CRT and interface.

6. Turn off master power switch on power bus.

NOTE: The power transformers (2) in the interface unit
are not affected by any power switches on the TRS-80 com-
ponents. For this reason the master power to the plugs
must be turned off or the transformers will continue to

operate.

79

T s . R \

APPENDIX F

Printer Program - "EDTASM"

° THIS PROG PUTS THE SERIAL PRINTZR DRIVER
INTO MEM LOCATIONS FFGO - FFSF
DCB: +@ => ICE TYPE PRINTER STARTS @ 4@25
1 => LRIVER ALLR LSB
2 => TRIVER ATIR MSB
3 => LINES/PAGE
4 => LINE COUNTER
POKE 16421,2:POKE 16422,0:POKE 16423,255
FOR I = € TO S5
X=-256 +1
REAT Y
POKE X,T
NEXT I
RUN"MASTER
ENL
IATA 226,157,245,5€,72,255,254,1,48
IATA 32,62,1,59,72,255,211,232,218,233
IATA 230,248,246,4,58,71,255,211,234
DATA 219,233,23¢,7,33,6%,255,6,2,75,9
15 LATA 12€,211,233,241,193,225,219,234
16 DATA 203,119,4¢,25¢,121,211,235,254
17 TATA 13,32,4,195,8¢,255,00,201,34,68
18 DATA 85,122,119,172,204,238,8,0
19 TATA ¢,0,0,¢,¢,0,0,229,33,255,66,43
29 TATA 124,181,194,84,255,225,14,1@,195,45,255

N -

[l LR VN MO NS Y &
-8

el
s

APPENDIX G

Editor Program - "MASTER"

‘4kkE"MASTER ™ *%%*

 —~—EXECUTIVE ROUTINE-~--

CLEAR 1202¢

DEFINT E-Q

LEFSTR ¥W,X,Y,2

LIM X(1202),W(10¢0)

CLS

PRINT TAB(15) "8748 ETITOR/ASSEMBLIR ON LINE"

PRINT’

12 J=0

11 Y="Go"

12 LINE INPUT "ENTER MOIE SELECTION--"3;Y
13 IF Y="LPT1" GOTO 67

14 IF Y=’ "INPUT" GOTO 53

15 IF 7="EDIT GCTO 27

16 IF LEFT$(Y,3)="GET" GOTO &3

17 IF YO PRINTY GOTO 1€

18 GOSUB 119 :GOTQ 11

15 IF LEFTS$(Y,3)<>"ASM" GOTO 24

29 7=MIL$(Y,5,1¢) -

21 OPEN"O ,1, *stomrz”

22 PRINT#1,2: CLOSE

22 RUN’ AS§EMBLE 3

24 PRINT "ILLEGAL ENTRY-TRY AGAIN
5 GOTO 11

26 ° =---EDIT RQUTINE---

27 PRINT "ETIT

28 M=I

2¢ PRINT X(M) |

30 LINE INPUT "2

31 IF ZOUP” GOTO 34

32 IF M=¢ GOTO 29

33 M=M-1: GOTO 2¢

24 IF ZOINT GOTO 3€

35 M=M+1: GOTO 29

36 IF Z="LEL. GOTO 113

37 IF 2="INS" GOTQ 104,

38 IF LEFT$(2,4)=" FILE" 50TO 72

35 IF Z<OTINPUT" GOTO 41

40 J=J+1;G0TO, 53

41 IF 2= EDIT GOTO 30

42 IF ZO"PRINT™ GOTO 44

43 GOSUB 119 :G070,27

44 IF LEFT$(Z,1)= L GOTO o1

45 IF LEFT$(Z*1)= C” GCTO 128

46 IF ZO"TOF™ GOTO 48

WO~ G-

M=¢: GOTO 25

I7 2Z<O"EQF” GOTO 52

M=J: GQTO 29 .
PRINT "ILLEGAL ENTRY-TRY AGAIN
GOTO 29

° ==--INPUT ROUTINEI----

PRINT " INPUT

FOR [=J T0 10¢2

LINE INPUT "";X(I)

IF X(I)="QUIT _GOTO 10

IF X(I)<TELIT™ GOTO 59
X(1)="EOF" : GOTO 27

IF LEFT$(X(I),4)<>"FILE" GOTO €2
Y=MID$(X(1),6,1€): J=I

X(I)="EOF":GOTO 76

J=1

NEXT I .
PRINT "YOU HAVE USEL ALL 8748 MEMORY

ENT

‘—=~==LPT1 ROUTINE-—=--
FOR 0=€¢ TO0 J

LPRINT X(0)

NEXT C

GOTO 11

f==~—-FILE ROUTINE-—-—
IF LEN(Y)<O€ GOTO 7€)
PRINT FILENAME REQUIKREL!
GCTO 27

OPEN O ,1,Y

PRINT#1,J

FOR K=@ T0 J

PRINT#1,X(X)

NEXT K: CLOSE

GOTO 11

S GET ROUTINE-=—=-
2=MID$(Y,5,12)

OPENTI ,1,2

INPUT#1,J

FOR K=0 TO J

LINE INPUT#1,X(K)

NEXT K: CLOSE

GOTO 11

’~==-LOCATE ROUTINE----
FOR K=4 70 16

[F MIDS$(Z,K,1)<> / GOTO 100
N=l~-4

IL=MIL4(Z,4,N)

FOR #=@ TO J
L=INSTR(X(™),XL)

I? LO@ GCTO 29

NEXT M .
PRINT STRING NOT LOCATED : GOTO 25

108 SIXT K

82

1e1
192
1¢3
124
125
1e€
1e7
128
109
110
111
112
113
114
115
116
117
118
119
129
121
122
123
124
125
126
127
128
129
139
121
132
133
134
13

136
137
138
139
14¢
141
142
143
144
145
146
147
148
149
15¢
151
152

PRINT"RIGHT HANI LELINEATCR NOT FOUND"

G0TO 2¢

* =~==INSERT RCUTINE-=-—=
FOR L=M TO J+1

W(M)="¢

W(L+1)=x(L)

X(L)=¥w (L)

NEXT

J=J+1 "

LINE INPUT 3 X(M)

¢OTO 29

Y/ «~~=<~PELETE ROUTINE--=—-—
FOR L=V TO J

X(L)=X(L+1)

NEXT L

J=J=-1

G0TO 2¢

* =-—=PRINT ROUTINE----
FOR K=¢ TC J

PRINT ¥(K)

NEXT K

RETURN

ENL

* ====TOF ROUTINE--~-
M=0

GOTO 29

——~—CHANGE ROUTINE=~——-

FOR K=4 TO 16 o

IF MIDS$(Z,K,1)<>"/ GOTO 148
N=X-4

XO=MIL$(Z,4,N)

P=K+1

FOR O=P T0 35 .

IF MID$(Z,0,1)0"/" GOTO 145
Q=0-P

L=INSTR(X(M),X0)

IF L=@ GOTO 151

H2=L+N

L=L-1

X1=MIT$(Xx(M),1,L)

X2=MID$(Z,P,Q)
X3=MIL$(X(M),H2,5@)
X(M)=X1+X2+X3

GOTO 28

NEXT Q v
PRINT LAST TELINEATOR NOT FOUNL
GOTO 29

NEXT K .
PRINT "SECONT LELINEATOR NOT FOUNL
GOTO 29 .
PRINT OLL STRING NOT FOUNEL

GCTO 29

83

YRRy W cown oo

APPENDIX H

Assembler Program - "ASSEMBLE" !

“adnn” A SSEMBLE "k
‘===<ASSEMBLY ROUTINE----
CLEAR 10029
LEFINT B-P
LEFSTR A,U,V,¥,X,Y,2,T
DIM D(120) ,BX$(120),X(122)
LIM y(1ee),v(1eo), !(12@) z(1ee)
OPEN"I",1,*sTORE’
INPUT#1,Y : CLOSE
CPEN"I ,1,Y
INPUT#1,J
FOR I=0 T0 J-1
LINE INPUT#1 x(x
IF INSTR(X(I). :) ¢ GOTO 17
B=INSTR(X(I), :
v(I)=MIT$(X(1),1, (3-1))
NEXT I:CLOSE . .
IF INSTR(8,X(2),"CRIG")=¢ GOTO 2¢
W(@)=MIL$(X(0),17,4):0(08)=VAL(W(2))-1
FOR k=@ TO J-1 Y
T=X(K):IF ;NSTR(T ;7)=8 50T0 23
A=INSTR(T, ;).1-MI£$(T 1,H)
IF INSTR(8,T, J)0 GOTO 91
IF INSTR(8,T, #)<>0 GOTO S1
IF INSTR(8,T, CALL")<>Z GOTO 91
BK=1
IF INSTR(&,T, "ENL")<>0 GOTO 31
L(K+1)= r(K)*BK : E=L(K) : GOSUB &3
AX$(K)=A(3)+A(2)+A(1)
PRINT X+1;TAB(6) HX$(K);TAB(12) X(K)
NEXT K .
PRINT FIRST PASS COMPLETEL
FOR L=¢ 70 J-1
T=X(L):IF INsmaﬁx(L). ")=0 GOTO 36
H=INSTR(X(L), ;"): T=M1c$(x(L) 1,H)
IF INSTR(8,T, CLK")<>@ GOTO 201
IF INSTR(&,T, MOV, ")<>@ GOTO 316
IF INSTR(S, T, "IN 7)<>8 GOTO 253
IF INSTR(E,T, ORL")<>@ GOTO 378
IF INSTE(8,T,. OUTL)<>@¢ GOCTO 425
IF INSTR(8 T. "ALL ")<>0 GOTO 119
IF INSTR(S,T, .R?T)<>2 GOTO 415
IF INSTR(s8, T. RL")<>8 GOTO 420
IF INSTR(8,T, RR)<>e GOTO 425 i
IF INSTR(S8,T, xca)<C@ GOTO 446
IF INSTR(8,T, DINZ")<D@ GOTO 232

OO~I®OW AN

PO NI s 10 1 b s b s
HQODIOUM OGNS

AV I\ EAVE N
D N

[N I\ AV V)
OmWw~yon

ol LA N X X N NN N]
VLR OOIDHNP GIN-S

ey’
TS
O U b O

47 IF INSTR(E,T, JC ")< @ GCTO 278
48 IF INSTR(8,T, JF)<>e GOTO 2€2
49 IF INSTR(E,T, JMP)<>¢ GOTO 28%
8¢ IF INSTR(8,T, JN)<>E GOTO 2¢6
51 IF INSTK(S, T, "CPL”)<C2 G070 21¢
$2 IF INSTR(E,T, MOVL)<>2 GOTO 357
€3 IF INSTR(S,T, MOVP ")<>¢ GCTO 365
54 IF INSTR(E T. "MOYX")<>8 GOTO 37¢
55 IF INSTR(8,T, JB)¢{>€¢ GOTO 271
56 IF INSTR(8,T, ALLC")<>@ GOTO 118
57 IF INSTR(8,T, JT)<>8 GOTO 3@7
58 IF INSTR(8,T,.JZ _)<>¢ GOTO 314
59 IF INSTR(8,T, NOP)=¢ GOTO 61
€0 Z(L)="¢g’ coro 14¢
€1 IF INSTR(8,T, LA ")=¢ GOTO 63
62 2(L)="57" GOTO 14e
62 IF INSTR(8,T, DEC"){>@ GOTC 215
64 IF INSTR(S, T, 'STOP “)=@ OR INSTR(13,T, "TCNT")=¢ GOTO &€
65 Z(L)="65 'GOTO 140)
66 IF INSTR(8,T, SWAP ")=¢ OR INSTR(13,T,” A")=¢ GOTO €8
67 Z(L)="47" .coro 140
68 IF INSTR(8,T, INC")<>@ GOTO 253
6¢ IF INSTR(8,T, SEL_")<>2 GOTO 432
70 1IF IVSTR(E.‘. "ANLT)<>@ GOTO 145
71 IF INSTR(S,T, CALL)<>8 GCTO 183
72 IF INSTR(8,T, STRT ")<>€ GOTO 441
7?3 IF INSTR(8,T, INS ")=0 GOTO 75
74 Z2(L)="08" GOTO 140
7% IF INSTR(S8,T, EN)<>e GOTO 244
76 IF INSTR(8,T, XRL_ ")<>@ GOTO 458
77 IF INSTR(8 T. TIS")<>8 GOTO 227
78 IF INSTR(8,T, ORIG")<DB GOTO 87
79 GOTO 125
8¢ NIXT L
81 PRINT" ASSE&BLY COMPLETEL"
§2 PRINT ERS; ERRORS’
83 IF ERS=0@ GOTO 473 .
84 PRINT LINE ERROR
85 FOR I=0 TO0 J
86 IF LEN(U(I))=¢ GOTO 88
87 PRINT (I+1);TAB(9) U(I)
88 NEXT I
89 GOTO 473
90 ENL . .
61 IF INSTK(8,T, JMPP)<>@ GOTO 26
€2 BX=2 : GOTO 27
83 11=FIX(E/16)
94 F(1)=E-(16%*I1)
65 I[2=FIX(I1/16)
96 F(2)=I1-(16*12)
€7 13=F1X(12/1€)
98 FP(3)=I2-(16%13)

: €9 FOR N=1 70 3 ..

{ 100 IF F(N)=0 THEN A(N)="0

4
I3
1

161 IF F(N)=1 TEEN A(N)=_1
102 IF F(N)=2 THEN A(N)=_2
183 IF F(N)=3 THEN A(N)= 3
124 IF F(N)=4 THEN A(N)="4
185 IF F(N)=5 THEN A(N)='5]
166 IF F(N)=6 TEEN A(N)=]6
167 IF P(N)=7 THEN A(N)="7]
108 IF F(N)=8 THEN A(N)="8_
109 IF F(N)=¢ THEN A(N)="¢"
110 IF F(N)=1¢ THEN A(N)= &
111 IF F(N)=11 THEN A(N)="B_
112 IF F(N)=12 THEN A(N)= C
113 IF F(N)=13 TEEN A(N)=TT
114 IF F(N)=14 THEN A(N)="E’
115 IF F(N)=15 THEN A(N)="F

116 NEXT N : RETURN, ;
117 “--FOR "ADD" & "ANL"--
118 Q=1 : GOTO 120
119 Q=0 .
129 B=INSTR(S,T,)
121 IF B=0 GOTO 125
122 IF INSTR(E,T, ,R. ")<>@ GOTO 133
123 IF INSTE(B,T,. .G, ")<>e GOTO 143
124 IF INSTR(E,T, ,#)<>@ GOTO 126,
125 ERS=ERS+1 : U(L)="SYNTAX -ERROR" : GOTO 30
126 W=MITS$(T,(E+2),3)
127 E=VAL(W)
128 IF E<256 GOTO 131
129 ERS=ERS+1
132 U(L)="TATA EXCEELS BYTE SIZE":GOTO 89
131 IF Q=@ THEN Y(L)= @3 ELSE Y(L)="19
132 GOTO 128
123 wW=MIL$(T,(B+2),1)
134 IF VAL(W)<8 GOTO 137
135 ERS=ERS+1
136 U(L)="REGISTER SIZE EXCEELS 7 :GOTO €0
137 IF Q=0 THEN E=1€4 +VAL(W) ELSE E=120+VAL(W)
138 GOSTUB 93
139 Z(L)=A(2)+A(1)
140 IF (L)' THEN PRINT Y(L)+2(L) ELSE PRINT Z(L)
141 GOTO 89
142 ENI
143 W=MID$(T,(B+3),1)
144 IF VAL(W)<2 GOTO 147
) 145 ERS=ERS+1
i 146 U(L)="R EXCEEDS 1":50T0 82
147 IF Q=¢ THEN E=96+VAL(U) ELSE E=112+VAL(W)
148 GOTO 138 : END
146 IF INSTR(S, T& A, ")=¢ GOTO 163
150 B=INSTR(8,T, ,)
, 151 IF INSTR(B,T,",R")=¢ GOTO 155
; : 152 W=MIDS(T, (B+2) 1) : E=VAL(W)

! 153 IF E>7 GOTO 135

1584 E=88+F : GOTO 138

[

4
[]
(<))

)

1

L oo PP

155
156
157
158
159
160
161
162
163
164
165
166
167
1€8
1€¢
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
18¢
160
1e1
1¢2
193
124
165
196
197
198
199
200
201
202
203
204
205
206
207
208

IF INSTR(B,T, ,@")=¢ GOTO 156
W=MID$(T. (B*S)cl)

IF VAL(W)>1 GOTO 145
5=80+VAL(W) : GOTO 138

IF INSTR(BR,T,”,#)=0 GOTO 164
W=MID$(T,(B+2),3) : E=VAL(W)

IF E>255 GOTO 129

T(L)="53" : GOTO 138
BE=INSTR(&,T, .) .

IF INSTR(8,T, BUS,)=0 GOTO 168
W=MILS$(T,(B+2),3) : E=VAL(W)

IF E>255 GOTO 126

Y(L)="98" : GOTO 138

IF INSTR(8,T, P)=@ GOTO 125

IF INSTR(8,T, #)=@ GOTO 178
W=MID$(T. (B-l)vl)

IF VAL(W)<3 ANI VAL(W)>2 GOTO 174
ERS=ERS+1 .
U(L)="INCORRECT PORT # :GOTO 8¢
E=152+VAL(W) : GOSUB 393
Y(L)=A(2)+A(1)
W=MID4(T,(B+2),3) : E=VAL(W)

IF E>255 GOTO _12¢ ELSE GOTO 136 -
IF INSTR(8,T, ANLD)=¢ OR INSTR(S8,T, ,&)=0 GOTO 125
w=MIL$(T,(B~1),1) : E=VAL(W)-4
IF E<@ OR ED>3 GOTO 172

E=156+E : GOTO 138

’=="CALL"--

GOSUB 185

C=VAL(A(3))*2+1

Y(L)=STRS$(C)+ 4
Y(L)=RIGHT$(Y(L),2)

GOTO 148

“--ALLRESS SUBROUTINE--

IF INSTR(18,T,";")=0 GOTO 191
B=INSTR(18,T,) :wW=MIL4$(T,17,(R-17)):GOTO 182
w=MIL%(T,17,8)

FOR M=¢ TO J-1

IF w=V(M) GOTO 197

NEXT M

ERS=ERS+1 .
U(L)="LABEL- +W+ -NOT FOUNI" : GOTO 82
E=D(M) : GOSUB 93
Z(L)=A(2)+A(1)

RETURN

‘=="CLR ~-- ..

IF INSTR(13,T, A)=0 GOTO 203
Z(L)="27" : GOTO, 142

IF INSTR(13,T, C)=€ GOTO 205
Z(L)="57" : GOTO }48

IF INSTR(13,T, F1)=@ GOTO 207
Z(L)="A5" : GOTO 14¢

IF INSTR(13,T, F@)=0 GOTO 125
Z(L)="85%" : GOTO 140

2¢9 ‘--"CPL - .
21¢ IF INSTR(13,T, 4)=0 GOTO 212
211 Z(L)="37 : GOTO0 140
212 IF INSTR(13,T, C)=@ GOTO 214
213 Z(L)="A7 : GOTO 140
214 IF INSTR(13,T, F@)=0 GOTO 216
- 215 Z2(L)="95 : GOTO 14@
: 216 IF INSTR(13,T, F1)=0 GOTO 125
217 2(L)="85" : GOTO 140
218 ‘--LEC-- L
219 IF INSTR(13,T, A)=0 GOTO 221
229 Z(L)="07 : GOTO)40
221 IF INSTR(13,T, R)=@ GOTO 125
222 B=INSTR(13,T, R)
223 W=MIL4$(T,(B+1),1) : E=VAL(V)
224 IF E>? GOTO 135
225 E=E+200 : GOTO 138
226 ‘--LIS-- Y
227 IF INSTR(13,T, I)=¢ GOTO 229
228 2(L)="15" : GOTO 148
229 IF INSTR(13,T, TCNTI)=@ GOTO 125
23¢ 2(L)="35" : GOTO 140
231 ‘=-LJINZ-~ o
o 232 3=INSTR(13,T,",")
| 233 W=MIL$(T,(B~1),1) : E=VAL(W)
234 IF E>7 GOTO 135
235 E=E+232 : GOSUB €3
236 Y(L)=A(2)+A(1)
237 W=MIL$(T,(E+1),8)
t 238 FOR M=¢ TO J-1
239 IF W=V(M) GOTO 242
249 NEXT M
241 GOTO 195
242 E=L(M):G0SUB 93:2(L)=A(2)+A(1):GOTO 140
243 ‘--EN-- . .
244 IF INSTR(13,T, TCNTI)=0 GOTO 246
245 2(L)="25" : GOTO 140
246 IF INSTR{13,T, I)=0 GOTO 248
247 Z(L)="05" : GOTO 14@
248 IF INSTR(13,T, CLK)=@ GOTO 250
249 2(L)="75" : GQTO 140
25¢ IF INSTR(8,T, ENI")=0 GOTC 125
251 GOTO 81
252 ‘=-IN-- o
253 IF INSTR(13,T, 4,P)=0 GOTO 125
254 B=INSTR(13,T, P
255 W=MID4(T,(B+1),1) ¢ E=VAL(W)
256 IF E>2 G0TO 172
257 E=E+8 : GOTO 138
258 ‘=--INC-= ..
259 IF INSTR(13,T, A)=8 GOTO 261
e 26¢ Z(L)="17" : GOTO 148
i 261 B=INSTR(13,T, R)
i 262 IF INSTR(13,T, R)=0 GOTO 266

263
264
265
266
267
268
269
279
271
272
273
274
275
276
277
278
_27¢
28¢
281
282
283
284
285
286
287
2es
285
2¢@
291
2¢2
293
294
295
296
2¢?
208
288
300
301
392
303
304
305
3¢6
307
308
369
31¢
o1l
312
313
314
315
316

W=MIL$(T,(B+1),1) : E=VAL(%)
IF E>7 GOTO 135

E=E+24 : GOTO 138

IF INSTR(13,T, GR")=8 GOTO 125
W=MIL$(T, (B+1),1)

E=VAL(W) : IF ED>1 GOTO 145
E=E+16 : GOTO 138

’--JB-_ » v
B=INSTR(8,T, B)
W=MID$(T,(B+1),1) : E=VAL(W)
IF E<8 GOTO 275)
ERS=ERS+1 : U(L)="BIT > 7
E=18+(E¥32) : GOSUB 93
Y(L)=A(2)+A(1)

sosga 189 : GOTO 14¢

’-_ C P

Y(L)="F6"

sosgn 185:G0T0 140
I-_ F--

IF INSTR(8,T,"JFC ")
Y(L)="3B6

GOSUB 189:GOTQ 14¢
IF INSTR(S,T,"JF1 ")=¢ GOTO 125
Y(L)="76

GOSUB 189:G0T0 140

‘~=JMP~- . . -
IF INSTR(8,T, JMPP)= GOCTO 291
Z(L)="B3":GOTQ 140,

IF INSTR(8,T,"JMP ")=2 GOTO 125
GOSUB 18S

E=VAL(A(3))*2:GOSUB 83
T(L)=A(1)+"4":GOTO 140

o |

IF INSTR(8,T,"JNC ")=@ GOTO 298
Y(L)="E6 :GOSUB 189:GOTO 140

IF INSTR(8,T, JNI ")=0 GOTO 300
Y(L)="86" :GOSUB 189:G0TO 148

IF INSTR(8,T, JNT@)= GOTO 302
Y(L)="26" :GOSYB 189:G0TO 140

IF INSTR(8,T, JNT1")=8 GOTO 304
Y(L)="46":GOSUB 189:GOTO 140

IF INSTR(8,T, JNZ ")=0 GOTO 125
Y(L)="96" :GOSUB 189:GOTO 140
et

IF INSTR(8,T, JTF ")=@ GOTO 309
Y(L)="16" :GOSUB 18§:GOTO 140

I INSTR(8,T,"JT@ ")=0 GOTC 311
Y(L)="36" :GOSUB 189:GOT0 140

IF INSTR(8,T, JT1)=0 GOTC 125
;(L); 56" :GOSUB 189:G0OTO 140
r(L)-;cs":cosun 189:C_T0 148
==MOV =

IF INSTR(13,7,"R")=0 GOTO 342

€ GCTO 285

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337 W=

338
339
340
341
342
343
344
345
34€
347
348
349
350
351
352
353
354
355
356
357
358
359
360
3€1
3€2
363
364
365
3668
367
368
369
370

B=INSTR(13,T,"R")
w=MILS(T, (5+1) 1) :E=VAL(Y)
IF INSTR(13 T, A. “)y=@ GOTO 322
IF E>7 GOTO 135
E=E+248:G0TO0 138
IF INSTR(13,T, A,@R")=0 GOTO 325
IF E>1 GOTO 14€
E=E+240:G0TO 138
IF INSTR(13,T,’ .A ")<>@ ANL INSTR(13,T,"@GR")<>@ GOTOC 329
IF INSTR(13,?,",A")=0 GOTO 331
IF EX7 GOTC 135
E=E+166:G0T0 138
IF ED1 GOTO 14€
E=E+160:60TO0 138
IF INSTR(13,T,. ,#.)=0 GOTO 125
IF INSTR(13,T, @R Y=g GOTO 340
IF E>1 GOTO 146
E=E+176
GOSUR 93
Y(L)=A(2)+A(1)
MILS$(T,(B+4),3) :E=VAL(W)
IF E>255 GOTO 128
GOTO 138
IF E>7 GOTO 135
Z=2+184:G0T0 335
IF INSTR(IS T, A,#")=€¢ GCTO 348
3=INSTR(}3,T
Y(L)="23
w=MIDS$(T,(B+2),3) : E=VAL(W)
IF ED255 GOTO 129
GOTO 128
IF INSTR(13,T," A,PSW)=¢ GOTO 350
Z2(L)="¢C"7 'GOTO 14@
IF INSTR(13,T, A, T")=¢g GOTO 352
Z2(L)="42 .GOTO 14@
%f §NSTR(13 ,7,"PSW,A")=¢ GOTO 354
L-
IF INSTR(13,T, T, A")=0 GOTO 125
z(L)= 62 :GOTO 140
‘==MOVI-- .
B=INSTR(13,T,"P")
W=MILS(T,(B+1),1):E=VAL(W)-4
IF E<@ OR ED3 GOTO 172
IF INSTR(13,T, A,P")=0 GOTO 362
E=12+E:GOTO 138
IF INSTR(13,T, ,A")=0 GOTO 125
E=E+60:G0T0 138
’~=MOVP-~
IF INSTR(S,T, "MOVP “)=@ GOTO 367
Z(L)="A3" :GOTQ 148
IF Iuswnge T, MOVP3")=@ GOTO 125
Z(L) :G0T0 148
--Movx-- o
B=INSTR(13,T, R)

3 PP + W v ottt e it ot A

371
372
373
374
375
376
377
378
279
380
281
382
383
384
385
386
387
268
389
360
361
302
393
364
365
396
3e7
398
389
402
401
422
493
4C4
405
406
407
428
403
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

W=MIL4$(T,(E+1),1) :E=VAL(W)

IF E>1 GCTO 143 .

IF INSTR(13,T, A,0R")=8 GOTO 375
E=128+E:GOTO 138

IF INSTR(13,T, ,A)=0 GOTO 125
E=144+E:GOTO 138

’--ORL - " e !
B=INSTR(13,T,

IF INSTR(13,T
w=MII$(T,(B+2),3
IF E>255 GOTO 12
GOSUB S3
Z(L)=A(2)+A(1)
IF INSTR(13,T, A,)=¢ GOTO 386 ¢
T(L)="43 :GOTO 140

IF INSTR(13,T, EUS,)=¢ GOTO 388

T(L)="88":G0TO 148

IF INSTR(13,T,” P")=@ GOTO 125

W=MILS$(T,(B-1),1):E=VAL(W)

IF E<1 OR E>2 GOTO 172

E=E+136:G0SUB 93:Y(L)=A(2)+A(1):GOTO 140

IF INSTR(8,T, CRLLI ")=0 GOTO 396

W=MID$(T,(B-1),1):E=VAL(W)-4

IF E<@ OR ED3 GOTO 172

E=E£+140:G0SUB g3:Y(L)=A(2)+A(1):G0T0 142

I7 INSTR(13,T, A,R)= GCTO 4€0

W=MIL$(T,(E+2),1) :E=VAL(W)

IF E>7 GCTO 135

E=E+72 @ GOTO 138

IF INSTR(13,T, A,QGR)=@ GOTO 125

W=MIL$(T,(B+3),1) :E=VAL(W)

IF ED1 GOTC 145

E=E+64 : GOTO 138

‘==QUTL-- . .

IF INSTR(13,T, BUS,:")=@ GOTO 407

2(L)="¢2":G0TO0 140

IF INSTR(13,T, ,A")=@ GOTO 125

IF INSTR(13,T,"P0,A")<5C GOTO 413

B=INSTR(13,T, ,)

¥=MIT$(T,(B-1),1):E=VAL(W)

IF E>2 OR E<1 GOTO 172

E=E+56:GQT0 138

Z(L)="90 :GOTO 140

‘==RET-- . .

IF IN3TR(8,T, RETR)=2@ GOTO 417

Z(L)="63":GOT0 146

IF INSTR(S,T, RET)=0 GOTO 125

;(L;; 837 :G0TO 140

IF INSTR(13,7," A")=0 GOTO 125

IF INSTR(S8,T, RLC)=0 GOTO 423

Z(L)="F7 :GOTQ 140

IF INSTR(8,T, RL ")=0 GOTO 128 a
Z(L)="E7":G0T0 148 i

—— o IR \ S v —— i D

".)=@

)

#" GOTO 3¢2
) sE=VAL(W)

[#]

91

425 ‘~=RR-- .

426 IF INSTR(12,T," A. "y=g GOTO 125
427 1IF INSTRQE T, *RRC")=¢ GOTO 425
428 7(L)="67 GOTO 14@

429 IF INSTR(S8, T, ")=@ GOTO 128
430 Z(L)= 77 :GOTO 149

431 ‘~--SEL--

432 IF IhSTRSlZ 7, "MBe ")=0 GOTO 434
432 2(L)="E5 GOTO 140,

434 IF INSTR(12 7T, "MB1")=0 GOTO 436
435 2(L)=" "Fs’ '"OTO 142

436 IF IN;TR(IZ T, "RBZ)=0@ GOTO 438
437 Z(L)="C5 GOTO 140

438 IF I~§TR§12 T, "RB1)=0 GOTO 125
439 z(L)= LS GOTO 14¢

449 ‘--STRT--

441 IF INSTR(13,T, “"CNT")=¢ GOTO 443
442 2(L)="45 .GOTO 140

443 IF INSTR(13, T,” T)=¢ GOTO 125
444 z(L)- '85 GOTO 140

445 “--XCH=--

446 B=INSTR(12,T,"R")

447 W=MILS$(T, (B+1) 1) :E=VAL(W)

448 IF INSTB(B T, xcsr ")=¢ OR INSTR(12,T, A,GR")=¢ GOTO 451
44S IF E>1 GOTO 145

450 T=E+48:G0TC 138 .

451 17 INSTR(12,T, A,R")=0 GOTO 454
452 IF ED7 GOTO 135

453 E=E+40:G0TOQ 138 .

454 IF INSTR(12,T, A,GR)=0 GOTO 125
455 IF E>1 GOTO 145

456 E=E+32:G0TO 138

457 ‘-=-XRL--

458 B=INSTR(12,T, R")
459 W=MIDS(T, (B+1) ;1) :E=VAL(W)
460 1¥ INSTR(12,T,"A,R")=0 GCTO 463

461 IF E>7 GOTO 135

462 E=E+216:G0T0 138

463 IF INSTR(12,T, A,GR")=0 GOTO 466
464 IF E>1 GOTO 145
465 E=E+208:00T0 138
466 IF INSTR(12,7,"A
467 B=INSTR(12,T, '#")
468 W=MILS(T,(B+1),3):E=VAL(W)

469 IF E>255.GOT0 129

470 Y(1)="L3":GOTO 128

471 END

472 °--LINE_PRINT LISTING-- .)
473 LPRINT " :LPRINT "ASSEMBLY OF "+"*";Y;"“"+" COMPLETED

#")=e¢ GOTO 125

474 LPRINT . e _
| 475 LPRINT | LIQE"* "+ HER"S "+ "CODE "+ +"LABEL"+
+ OPCOLE" +’ OPERAND + +" COMMENTS "
: 476 FOR N=¢ T0 3-1
! 477 LPRINT N+1;TAB(6) EX$(N);TAB(12) Y(N)+2(N);TAB(19) X(N) .

P g C

478 IF LEN(U(N))<>2 LPRINT U(N)

479 NEXT N |

48¢ LPRINT .

481 LPRINT ~SYMBOL TAELE:

482 LPRINT

483 FOR M=0 TO J . .

484 IF LEN(V(M))<>2 LPRINT V(M): -—— +8XS(M)

485 NEXT M

486 IF ERS<)€¢ GOTO 4°¢

487 LPRINT .

488 LPRINT TAB(3¢) ">>> NO ASSEMBLY ERRORS LETECTED <<
489 GOTO 492

490 LPRINT :LPRINT ERS;
491 RUN"MASTER

462 Y=Y+'0Q

453 CPEN 0 ,1,Y

4¢4 TOR M=¢ TO J

495 IF LEN(Y(M))=@ GOTC 457
466 PRINT #1,Y(M)

497 PRINT#1,Z(M)

4S8 NEXT M

499 CLOSE)

5¢@ RUN ~PROGRAM

ERRORS TETECTEL"

APPENDIX I

Programming Program - "PROGRAM"

%R REPROGRAMSH% %K
~-=-EPROM ROUTINE----
CLEAR 10020
CEFINT 4,1,J,K,M,N,0,Q,P
DEFSTR W,X,Y,2
LIM L(1024),T7(1024),X(1224)
C=0
LINE INPUT "ENTER PROGRAM MOLE--"3Y
IF Y="STOP ENI .
18 IF Y="ELIT" RUN'ELTASM
11 IF Y="RPROM™ GQTO S€
12 IF LEFT$(Y,5)="WPROM GOTC 16
13 PRINT "ILLEGAL COMMANL-TRY AGAIN
14 GOTO 8
15 “==-WPROM ROUTINE---
16 Z=MID$(Y,7,11)
17 IF RIGET$(Z,1)="0" GOTO 2¢)
18 PRINT "OBJECT CODE ONLY! ATD O TC FILZ NAME
19 GOTO §
2¢ GPEN "I ,1,2
21 FOR I=9 TO 1024
22 INPUT #1,X(I)
23 IF EOF(1) THEN 25
24 NEXT 1
25 CLOSE : J=I
26 GOSUB 65
27 GOSUB 148
28 OUT 4,4
29 OUT 4,2¢
3@ FOR M=1 TO Q
31 CUT 2,N1
32 00T 4,21
33 0UT 1,11
34 OUT 4,81
35 0UT 1,D(M)
3€ OUT 4,209
37 OUT 4,221
38 GOSUB 58
35 OUT 4,2€9
49 OUT 4,81
41 0UT 4,84
42 OUT 4,116
43 T(M)=INP(3)
44 OUT 4,2¢
45 I1=11+1
- 46 IF I1<>256 CR 11<>512 OR I1<>768 GOTO 48

OOV AN

94

N1=N1+1

IF L(M)=T(M) GOTO 51 .
PRINT PROGRAMMING ERROR-ERASET ZFPROM ANI TEY AGAIN
GOTO 53

NEXT M '
PRINT"PROGRAMMING COMPLETEL SATISFACTORILY'
0UT 4,36 .
PRINT "REMOVE EPROM NOW-THEN TURN POWER OFF
GOTO 8

ENI

—~-5¢ MSEC LELAY~-—-

A=A+1

‘TELAY

IF A<2 GOTO 58

A=Q

RETURN

END

‘==-HEX TO LEC CONVERSICN---

FOR Kk=¢ 70 J

W(@)=LEFTS(X(X),1) : W(1)=MIT$(X(X),2,1)

FOR N=¢ TO_1

IF W(N)="€, A(N)=@
IF W(N)="1_A(N)=1
IF W(N)=2 A(N)=2
IF W{N)="3,_ A(N)=3
IF W(N)="4" A(N)=4
IF W(N)="5_ A(N)=5
IF W(N)="6_ A(N)=6
IF W(N)= 7 A(N)=7
IF W(N)="8" A(N)=8
IF W(N)="¢, A(N)=9
IF W(N)='A, A(N)=10
IF W(N)="E" A(N)=11
IF W(N)=_C, A(N)=12
IF W(N)="C A(N)=13
IF W(N)="E_A(N)=14
IF W(N)="F A(N)=15
IF LEN(W(N))=0 A(N)=0
NEXT N
L(K)=16*A(@)+A(1)
NEXT K

RETURN

’~~~READ PROM ROUTINE~--
GOSUR 148

0UT 4,4

00T 4,20

FOR M=1 TO (Q+1)
ouT 2,N1

0UT 4,21

ouT 1,I1

0UT 4,85

0UT 4,84

03T 4,116

160 T(M)=INP(3)

AD-AD83 831 NA::I. POSTORADUATE
A MICROPROCESSOR
DEC 79 T C SEWARD

SCHOOL MONTEREY C Pr/6 9/,
DEVELOPMENT SYSTEN Fﬂ THE INTEL 8708 llenm—ﬂcw»

fl2

FREFERER
EEEE

FEEE

CFERER

fle -
22 Bt nis

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

oy

L

101
102
163
104
125
106
187
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
12¢
130
131
132
133
134
135
136
137
138
139
140

+X(0+4)+" +X(0+45)+" "+X(0+€)+ +X(0+7)+

"+X(0+49)+” "+X(0+1€)+" "+X(C+11)+" "+X(0+12)+" "+X(0+13)+"

oUT 4,684

OUT 4,20

I1=I1+1

IF 114256 GOTO 1€7
I1=11-256
Ni=N1+1

NEXT M

OUT 4,36

FOR N=1 TO G+1
E=T(N)
N1=FIX(E/16)
F(1)=E-(16%N1)
N2=FIX(N1/16)
F(2)=N1-(16%N2)
N3=FIX(N2/16)
F(3)=N2-(16*N3)
FOR P=1 TO 2

IF F(P)=0 THEN
IF F(P)=1 THEN
IF F(P)=2 THEN
IF F(P)=3 THEN
IF F(P)=4 THEN
IF F(P)=5 THEN
IF F(P)=6 THEN
IF F(P)=7 THEN
IF F(P)=8 THEN
IFP F(P)=¢ THEN
IF F(P)=1¢ THEN
IF F(P)=11 THEN
IF F(P)=12 THEN
IF F(P)=13 THEN
IF F(P)=14 THEN
IF F(P)=15 THEN
NEXT P
X(N)=Ww(2)+W(1)
NEXT N

GOSUB 139

GOTO 53

0=1 .
PRINT IX;TAB(6) X(Q)+ ~+X(Q+}1)+

: 3 2

2 3 ¢ 3
T 2 3 2

EEE RS EESE
OOTAOOW WS

W, 8 B B B G ™ s o e o,

Ao s~ g vg g O SO PO Y YO D O

N MO O D MO MO e e e S s o s S
Srnrsrassese 0RO HNNN
e na
s td 9 Ot

"+X(0+14)+" "+X(0+15)

141
142
143
144
145
146
147
148
149
150
151

0=0+1€

IT 0>Q+1 GOTO 144

IX=1X+16 : GOTO 140

PRINT

RETURN

ENL

*===SETUP RCUTINE-~-

Nl’c " "
PRINT START ADDRESS IN DECIMAL?
INPUT I1

IF I1<1024 GOTO 153

+X(0+2)+" T+X(0+3)+"7
+X(0+8)+

S
RGN

R

R NP N e U I

153
154
155
156
157
158
159
160
161
162
163
164
165
166
1€7
168
169
17
171
172
173
174
175
176
177

, 145

PRINT "ILLEGAL ALLRESS” : GOTO,
PRINT "ENT ALLRESS IN LECIMAL?"
INPUT I2 : Q=I2-I1

I1X=I1

IF 11>255 GOSUB 172

IF Q<€ GOTO 152

IF 12<}1024 GOTO 160

PRINT ~ILLEGAL ALLRESS" : 30T0 153
LINE INPUT "EPROM SOCKET EMPTY?(YES OR NO): ";X3

IF X3="NC GOTO 16€)
LINE INPUT IS SOCKET POWER SWITCE ON?(YES OR NO): ";X4
IF X4='NO GOTO 164 ELSE GOTO 16%

PRINT "TURN POWER ON" : GOTO 1€2

00T 4,36

IF LEFT$(Y,5)<>"WP30M" GOTO 169

PRINT: PRINT FOLLOWING IS HEX COLE TO BE PRCGRAMMMET:
GOSUB 139

LINE INPUT _"INSERT 8748 CHIP AND TYPE-GO: ";XS

IF X5<>"G0" GOTO 1€S

RETURN

IF I1>511 GOTO 174

Ni=1: I1=I11-256: RITURN

IF 11>757 GOTO 176

N1=2: I1=11-512: RETURN

N1=3: I1=I1-768

RETURN

APPENDIX J

Sample Assembler Printout

ASSEMELY CF "DOUGS " COMPLETEL
CPCOLE COPZZANI

LINE

BEX
00

€ed
ge2
003
€es
eev
2e¢
¢eB
oL
ees
ger
¢1¢
e1z2
013
214
g1e
217
e1s
21¢
C1lA
€1k
21¢C
Q1L
g1E
g1v
020
221
€22
223
825
@26
27
028
Pz
@28
02¢
02r
22z
927
830
€32
833
235
23€
237

COLE

242¢<
ee
p4z8
B244
BS7F
EA2I
BBZA
€e
€o
€0
23¢l
A
00
ar

38

LA3EL

STALT:

LOOP:

INT:

UNTIL:

CRIZ
JMF
NOP
JMP
MoV
MCY
MoV
vov
NOP
NOP
NOP
MOV
0UTL
NOP
MCV
CUTL
MP
MOVX
NGP
ENTZ
EN
NOP
NOP
NOP
NOP
NOP
MOV
OUTL
JMP
NOP
NOP
NOP
MOV
0UTL
INS
ANL
XRL
NOP
NOP
JKZ
NOP
JNI
NCP
NOP
MGV

eec
STAAT

INT

K2 .#6%
R =127
R2 #1323
R3,#1¢€

A.RC
P1 A
LooP

A #1e2
P1.1a
A, BUS
A Bl
A.RZ

STOP
UNTIL

COMMZINTS
iPOVER UP
s INTERRUPT

yIl-2 ON 137

YENABLZS F1
v 3U3 TC ZI-Z

yMAKES T A CLOCK

y ENABLL 821z
+LO0P

+ INTERRUPT
ySTOP TRS-£3
y INPUT

'7 BITS?
yCHECK

' END IF NO Cx
+LOCP TIL EJC-1

. 46 €3¢ 3¢ CUTL Pl -~ +LISABLD 2212
47 034 FE hdeX) 4,k
42 @35 22 CUTL BUS .A 10x Ow ZU3
49 e3C 23ic€ MOV A.reC
50 O3E 3A 0UTL Pz a 122 LCW
51 e3F 2311 ¥NOV A #17
52 041 SA QUTL Pe A yI.L 3720%:
. 53 242 &l STOP: MOVX A Ghi ipJS TO dIl-2

- 54 043 ee BACK: NCP
55 244 8643 JINI BACK +L002 TIL EOC=1
S6 046 ee WAIT: NOP
57 47 S564B JT1 REALY yJUMP TO 244
58 249 2446 JMP WAIT iLoOP
58 ©4B 23 READY: RET +RITUAN
6¢ ENT

. SYMEOL TAELE:

START---2@5
LOOP---020
INT---023
UNTIL---032
STOP---242
BACK---043
WAIT---¢486

READY---243

22> NO ASSEMBLY 2aRORS IETICTED «<<

e st v
=3 Al W ooy

et e 5 &

LIST OF REFERENCES

Intel Corporation, MCS-48 Microcomputer User's Manual,
1978.

Radio Shack, TRS-80 RS-232-C Interface, TRS-80 Micro-
computer System, 197/8.

Radio Shack, Level I1 BASIC Reference Manual, TRS-80
Microcomputer System, 1978.

Radio shack, TRSDOS and Disk BASIC Reference Manual,
TRS-80 Microcomputer System, 1979.

Radio Shack, TRSDOS Version 2.2 and Disk BASIC Version
2.2, May 1979,

Intel Corporation, MCS-48 and UPI-41 Assembly Language
Manual, 1978.

Intel Corporation, Memory Design Handbook, 1977.

Radio Shack, TRS-80 Microcomputer Technical Reference

Handbook, 1978.

100

r

INITIAL DISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, California 93940

Department Chairman, Code 62
Department of Electrical Engineering
Naval Postgraduate School

Monterey, California 93940

Professor R. Panholzer, Code 62Pz
Department of Electrical Engineering
Naval Postgraduate School

Monterey, California 93940

Associate Professor M. L. Cotton, Code 62Co
Department of Electrical Engineering

Naval Postgraduate School

Monterey, California 93940

LCDR Theodore C. Seward, Jr., USN

203 Ridgewood Street
Mankato, Minnesota 56001

101

No. Copies

2

i
|

