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THEORY 0F IRREGULAR WAVEGUIDES WILTU SLOWLY CHANGING PARAMETERS.

B. Z. Katsenelenbaum.

Page 2.

Monograph contains the systematic presentation of the method~ of

calculation ol fields in irri~gular radiouaveguides and acoustic

waveguides. Are examiined the b~ent waveguides, tapered weldis and

waveguides,. filled by the material whose parameters are changed along

the line, which in particular contain the compensating and matching

inserts. Are studied ir ueT.4til the curvatures of a large radius, flat

changes in the section, slow chanye in the parameters of material.

Monograph is designed for scientific wcrkers, graduate students

and students of.-the old courses, which are occupied by electrodynamic

calculations and adjacent questions of mathematical physics, and also

to specialists, workers in waveguile communication/connection.

Responsible editor of the assoc. member of the AS USSR V. 1. Siforov.
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Introduction.

1. Content of monograFh.

1. Theory of regular waveguides, i.e., rectilinear waveguides of

constant section, is developed at present very fully. There are also

many monographs and textbooks, in which in systematic form are set

forth the methods of calculation o the effect of different

irregularities in rectangular waveguide on the propagated in it

fundamental wave. These irregular cell/elements - the coupling

elements and tuning - bear usually the local character: they are

concentrated :in the region of the order of the transverseN
size/dimensions of rectanguiar waveguide. These cell/elements provide

agreement* i.e., the absence of considerable reflection, in the

relatively narrow frequency oand. in this frequency band, as a rule,

wave of the highest tyres be propagated they cannot.

In the last 5-10 years appeared the problem of developing of the I

plumbing, capable of passing the very broadband, order of one octave.

An example of this problem as the problem of long-distance

_It
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communication in circular waveguide on wave H01 [1]. The matching

plumbing in such waveguides no longer can be, as a rule, local tuning

cell/elements - diaphragm, stubs, etc. Typical irregular cell/element

in this waveguide is the steady waveguide transition whose length is

great in comparison with the transverse size/dimensions of waveguide.

The parameters of this waveguide are slowly changing functions of one

of the coordinates. To this class of systems they are related, for

example, the bent waveguide, whose bending radius is great in

comparison with cross section, or long transition between two

waveguides of different sections, long joining, etc. Waveguide
" cell/elements of such type possess large band coverage.

J: 3 In broadband plumbing together with fundamental, useful wave,

can be propagated, as a rule, also the waves cf other types, the

so-called parasitic waves. on the irregular cell/elements of these

circuits, not only must not occur the noticeable reflection of the

incident wave, but must not be also the considerable transformation

of the fundamental wave into parasitic ones. Usually most essential

proves to be the second requirement- smallness of losses to

transformation.

The calculation of irregular waveguides with the slowly changing
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parameters required the development of special mathematical methods.

To what extent is great interest in this problem, it is evident from

the fact that in last/latter 5-6 years in our and foreign press

appeared about 60 theoretical works on this theme, and to 1954-1955 2

to it were devoted a tctal of several various articles.

In the most typical cases electrodynamic problem is placed as

follows: in the irregular section, which connects two generally

speaking different regular ones of waveguide, falls any wave from

single amplitude; it is necessary to calculate the amplitudes of all

waves* which diverge intc both of sides from irregular section. The

totality of these all ccnposite amplitudes occasionally referred to

as the scattering matrix oi irregular section. Great interest is of,

it goes without saying, also inverse problem - identification of the

parameters, which ensure tue smallest ones in the assigned frequency

band of the loss to transformation.

Present monograph is dedicated to systematic presentation of one

of the methods of the solution of the class of the electrodynamic

problems, the so-called metnod of cross sections indicated.

2. Monograph consists of six chapters. Chapter I contains the

presentation of the auxiliazy metuod of small heterogeneities. Any

how conveniently complex irregularity of waveguide (retaining the

I:
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topological structure of its section) can be considered as the

imposition of three fundamental types of irregularities - waveguide

bend, change in the properties of the filling waveguide medium and

change in its cross section. in three paragraphs of chapter 1, areK' investigated the elementary irregularities of each of these three

types, i.e., the fracture or waveguide on small angle, small abrupt

change in the filling, small step. The determination of the wave

amplitudes, scattered on elementary irregularity, makes it possible

to incidentally determine tolerances for the production of waveguide

lines.

Page 5.

The waveguic-, bent to final angle, can be treated as the

__ maximum form of waveguide with maay small fractures. In exactly the

same manner vaveguide with alternating/variable filling is the limit

- of waveguide with laminar filling, and waveguide with

alternating/variable section - a limit of stepped waveguide. The

analysis of an elementary irregularity of any type makes it possible

therefore in a number of cases to calculate the amplitudes of waves,

scattered on a final (not small) irregularity of this type. This

calculation method is rct completely strict, but it possesses the

specific physical clarity, nut in many problems it makes it possible

even to obtain complete solution. it can be considered as the I
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physical interpretation of the mathematical apparatus of the I
fundamental method, named us Dy the method of cross sections.

This method is presented in chapter II. Its fundamental idea

lies in the fact that the field in any section of irregular section

is represented in the form of the infinite sum of the fields of waves

_~ :of both of directions, capable of Deing propagated of the so-called

_ :waveguide of comparison - in the regular waveguide of the same

section and with the same distribution of electrical and magnetic

__ permeability over section. The coefficients of this expansion are the

functions of longitudinal coordinate and satisfy the infinite system

of the ordinary differential equations of the first order. The

investigation of irregular waveguide, i.e., three-dimensional

electrodynamic problem, is reduced, thus, to the two-dimensional

problem of the fields of waves in regular waveguide and to

one-dimensional problem - to the solution of the system of ordinary

_ differential equations.

The greatest difficulties during the application/use of a method

of cross sections appeaz for waveguides with alternating/variable

section. Fields in irregular waveguide satisfy other boundary

conditions, than fields in the regular waveguides of the same

section, and the row/series, comprised on the fields of these waves,

on the duct/contour, which limits section, generally speaking, not
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converge to the functions which they must represent. Therefore

solution is constructed first for the waveguide of the constant

section, filled by medium with the continuous distribution of

dielectric constant E(x. Y, z), then is realized transition to the

discontinuous distribution during which the part of the waveguide

remains empty (see Fig. 10, page 74), and then - to composite Ewhen

,e-.oo. In this way it is possible to avoid prccess/operations with

the unevenly converging series viich cannot be piecemeal

differentiated.

Page 6.

The basic values, whici characterize heterogeneity, are coupling

coefficients - coefficients in tue system of different.al equations

for wave amplitudes. The properties of these coefficients are

investigated in detail. These coefficients can be also found from the

matrix elements of scattering from a small irregularity, calculated

in chapter 1. The method of cross sections gives explicit expressions

for coupling coefficients tor any irregularity, in particular for the

combined irregularity.

In application to the steady irregularities, in which the

parameters, which characterize waleguide, are changed slowly, to easy

solve the system of differe tial equations and to find explicit

Ji
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expression for the wave amplitudes, scattered by the irregular

section: it it is analyzed rnorouguly in detail in chapter II. There

are two special cases, examined in chapter III, when this solution -

even for very steady irzegularities - becomes complicated. In § 11

and 12 this chapter is investigated the case, when in tapered weld is

the so-called critically section, i.e., the section, which

separate/liberates, at this frequency, the region of the propagation

of any wave from the region where it be propagated cannot. Near this

section the coupling cceiticients during how conveniently slow change

- '_ -'.in the parameters of waveguide become high values, and usual methods _
of the type of Wentzel - Aramers - Brillouin (WKB) prove to be

inapplicable. It is esiblish/installed, in particular, the end

condition, equivalent to tne presence of critical section and which

makes it possible to be limited to the solution of differential

equations in the region, distant trom critical section.

In § 14 of Chapter iII is examined the second special case -

incidence in the wave on tne fracture of waveguide when the frequency

is close to the critical frequency of the excitable parasitic wave. ARK

In this case, appear the resonance effects, and the amplitude of this

parasitic wave can become relative to greater. These effects it

depends substantially on the conductivity of the material of wall. -

For their analysis it is necessary to utilize the expression for a

wave number in waveguide wita imperfect walls, used, in particular,

; 'B
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in any nearness to critical frequency; this expression is derived in

§ 15.

In chapters IV and V the developed method is used to

concrete/specific/actual vaveguide systems. In chapter IV, are

presented the problems of irreyu.Lar waveguides with rectilinear axis,

in chapter V, - about the beat waveguides. In jertain cases is given

also solution of the reverse problem of the optimum form of

transition, curvature or compensating insert. The material of these

chapters does not bear reference character, it must only illustrate

_ i the possibilities of method and the contemporary state of a question.

Page 7.

In chapter VI formalism of theory is transferred to the case of

the irregular acoustic waveguides, rectilinear and bent. In some

ratio/relations this transference proved to be not so trivial, as

this it was possible tc assume, on the basis of usual relationships

between problems for vector and scalar fields.

§ 2. Survey of literature.

Is published at the present time about 100 works on the theme,

formulated in the name of tae oook. At the end of the book, is given
:JMH
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the list of these works, led approximately to the middle of 1960; the

articles, published up to 1950, in it barely are reflected.

In this paragraph we will give very short survey/coverage of

different methods, which were being applied during the soluticn of

the problems of this class. Articles are grouped according to the

used in them method, that it is somewhat arbitrarily, but it is the

very convenient method of the classification of material. We isolated

four methods, and the last of them (we call its method of cross

sections) let us dismantle/select in somewhat more detail.

In this survey/coverage are not included the articles of the

author and work, which adjoin them, this material is presented in

book itself.

N

1. Method of join of fields lies in the fact that field in

regular and irregular parts of waveguides is represented in the form

of sum of waves, capable of existing in both waveguides, and from

requirement of continuity of iielas is system of linear algebraic

equations for coefficients of these sums. If irregularity is small,

then problem contains sezies expansion parameter, and system can be

solved in general form. dethod is limited by the condition so that

the field in irregular waveguide would have sufficiently simple

structure.

ii
- -- - ~ - - -
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For rec-ilinear wavegudes the method makes it possible to

calculate transition to cone with small flare angle or (for

rectangular waveguides) to small expansion. By this method were found

the coefficients of reflection or wave from the expansion of

rectangular waveguide - worKs of Levin [2] 1, Piefke [3] and Solymar

FOOTNOTE 1. The part of Levin's results [2] is erroneous; see [31 or

§ 16 this book. ENDFOOTNOTE.

Equivalent method was used by N. P. Mar'in [5] for determining the

conversion factors and rerlection during the expansion of rectangular

_aveguide in E-plane. To circular waveguides, the method is used by

Solymar [6, 7], which found the conversion factor of wave Ho, into

H02 , and Tanaka [8] whose formulas make it possible to find the

conversion factors and reflection during incidence in any wave.

In the waveguide, bent on circular arc, it is possible tc

introduce the so-called their own waves and the complete field to

present in the form of the superposition of such their own waves of

the bent waveguide. Utilizing tis expansion, Jouguet [9] by the

method of join solved the problem of coupling of rectilinear and bent



M Z 7_

DOC 79024301 PAGE 12

(with constant curvature) the waveguides of rectangular cross

section.

2. Conformal transformations were widely used by P. Ye.

Krasnushkin (10] for calculation of flat/plane waveguides. In this

method the complex boundary of irregular waveguide is converted into

two parallel lines. The wave equation, which describes field in

waveguide, in this case becomes complicated and acquires this form,

as if within these parallel lines was arrange/located inhomogeneous

medium. The means of this heterogeneity in a known manner is

connected with the function, which realizes ccnformal transformation.

Rice (11], B. L. Rozhdestveasxiy (12] and N. P. Mar'in [13], applying

different reception/procedures tor the solution of wave equation withI
variable coefficients, they examined by this sequence method of

problems. B. L. Rozhdestveaskiy and D. N. Chetayev [14] used him to

the problem of the creation oi the matching transitions with

dielectric filling. Conformal transformation was used also by L. A.

Weinstein in article [|5); in this work the problem of flat

irregularity in flat/plane waveguide was solved with the enlistment

r of variation principles.

r The method of confoLmal transformations can be, apparently, it

is generalized to rectiliJnear circular waveguides, although this

causes its essential complicazion. For more complex problems, for I

7 --Z-1
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example for rectangular uaveguiae, which is expanded simultaneously

in two planes, it is virtually unsuitable.

3. In many works is utilized coordinate system in which walls of

waveguide coincide with one of coordinate surfaces. During the

construction of this system in the general case (i.e., not for

flat/plane waveguides) it is not possible tc apply conformal

transformation and it is necessary to resort to special

reception/procedures.

Jouguet (16] examined by tnis method the waveguide bend of round

cross-section throughout the circumference of the large radius r. In

the introduced 'o them system of coordinates of the equation of

Maxwell, acquire supplementary in comparison with Cartesian system

term/component/addends, proportional to curvature. These

term/component/addends have a char4cter of outside currents, created

by the transmitted wave, and probiem is reduced to the solution of

the equations of Maxwell with right side. In (16] were found their

own waves of the bent waveguide and it was obtained, in particular,

fundamental in the theory oi the circular waveguide result about

transformation in the curvature of wave Ho1 into wave Ell.

Page 9.

__
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However, the determination of the amplitudes of all other

scattered waves, i.e., the values of order 1/r, was not produced; it

requires still supplementary pirocess/operations on the join of fields

on the boundaries of the Dent section. This same method adjoins

Levin's article [17], in which are found propagation constant of

their own waves of twisted and bent rectangular waveguides. In this

article also is not produced the join of fields on the boundary of

irregular section and are not determined the amplitudes of the

scattered waves.

In works of A. G. Sveshnikov [18-20] and S. L. Viktorova and A.

G. Sveshnikov [21] this metnod is far moved and used to the decision

of the series of problems of more common/general/total type - of

waveguide bends in three-dimensional curve with a simultaneous slow

change in his cross section. The special feature/peculiarity of these

-- works is the use of regular methods of solving the nonhomogeneous

equations of Maxwell, to whom is reduced the problem. Which follow

w3rk of Sveshnikov [22, 23) even more greatly expand the

possibilities of applying this apparatus. In the introduced to them

nonorthogonal curvilinear coordinate system, the surface of the

assigned waveguide is converted into the surface of the cylinder of a

single radius. The solution of the equations cf Maxwell in this

system is conducted as in L1), Dy the method, which adjoins the

method of cross sections; field searches for in the form of

Jam
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row/series on the products ot bs~el fun-ticns to trigonometric

functions, and for the coeficients. of this expansion is

establish/installed the system of ordinary differential equations,

which contains, in particular, th4 metric coefficients of the adopted

system of coordinates.

Another fruitful idea £or the calculation of rectilinear tapered

welds, base of which is also t e introduction of the special

coordinate system, was ioposea in the article of V. L. Pokrovskiy,

F. R. Ulinich, S. K. Savvinyth i.4 about flat/plane waveguide.

According to this method is introduced the coordinate system,

orthogonal with an accuracy to the square of the mean angle of the

slope/inclination of generatrix. This value is series expansion

parameter of problem, and the wave equation, recorded in this

coordinate system, is decompose/expanded in row/series from this

parameter. Are solved the e(uat~.oas of zero and first order. In zero

order is obtained homogeneous equation, in the first - heterogeneous.

The solutions search for accordinq to method WKB. The coefficients of

reflection and traisformaton depend on the character of the

function, which describes tne torm ot generatrix; the order of the

smallness of these values is determined by degree of smoothness of

this function.

Page 10.
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The method of article [24] was recently used to the sufficiently

wide circle of questions [24-31]. were designed infinite horns,

transitions between two waveguides, waveguides with forming,

described both the analytic functions and functions whose one of the

derivatives suffers disruption; were investigated problems with

critical sections. Were examined in essence waveguides flat/plane

[24-29), also, with circular section [30]; in work [31] was made the

attempt to calculate by this method also the waveguides of

rectangular cross section.

4. Is published at present aout 50 articles, in which are

develop/processed and are applied to specific problems diverse

variants of method of cross sections; large part of these works

appeared after 1955. The fundamental idea of this method lies in the

fact that the field in irreguiar waveguide is represented in the form

of the superposition of the fields of waves, which exist in simpler

waveguides. The coefficients or tuese superpositions satisfy the

system of ordinary differential equations. From the solution of this

system, are determined the wave amplitudes, scattered by irregular

section.

The first ideas in this plan/layout belong to G. V. Kisun'ko

- ii
=-I
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[(for example, see his monograph [32), and A. L. Gutman's article

[33-36] and B. F. Yemelin [37] taey develop these ideas. Outside

boundary there was first Stevenson's article [38]; however, the

energetic/energy application/use of this method was begun there only

after the appearance of an article of Schelkuncff (39].

In Stevenson's work [38] were examined rectilinear tapered

welds. Field was expressed as six functions each of which was

decompose/expanded according to the membrane/diaphragm functions of

electrical and magnetic waves in zhe regular waveguide of this

section. For the coefficients of these expansions, was

establish/installed the system of the ordinary differential second

order equations, which then were investigated according to method

:KB. The obtained mathematical apparatus proved to be very complex

and bulky. The only finishea to end/lead attempt to use it to

specific problems for determining the field, scattered by an

irregular section, is made in Leonard's article and yen [40]. In this

work are calculated the coefficients of reflection of several waves

from coupling of rectilinear circular waveguide with cone and from

expansion in rectangular waveguide; formulas for rectangular

waveguide are accurate, but formulas for a circular waveguide proved

to be erroneous.

Page 11.
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In the article of Schelanoff (39] the method of cross sections

is proposed anew and is illustrated based on the examples of that

expanding and bent on the circular arc of flat/plane waveguides. In

Heyn's work [4l] is also produced field expansion of waves in the

bent waveguide of constant section in terms of the fields of waves in

rectilinear waveguides. In both these articles for the coefficients

of expansion, are establish/installed differential first-order

equations; however, the solutions of these differential equations andE :expression for the amplitudes or tne scattered waves do not bring.

In the article of Unger [42] the apparatus, proposed by

- Schelkunoff, is used to the speciic problem of the symmetrical

transition between two circular waveguides, on which fallF, wave Hol.

As variables are accepted the wave amplitudes of both of directions,

but not Fourier coefficients fiela expansion as in (39] and (41], and

are obtained explicit ex[ressions tor the amplitudes of the scattered

forward waves Ho . In the article of liguchi (43) it is made theI attempt to calculate comtined transition from rectangular to the

circular waveguide.

In the articles of Morgan L44), Shimizu [45] and Oguchi and Kato

[46] the same method are found differential equations for wave

- ---- _- t &
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. amplitudes in curvature and are determined - oupling coefficients

-- :of wave Hol with H, .land El,I in the bent circular waveguide. In the

;:.=;,°article of Andreasen [47), thkat develops the work of Morgan [44], are117i calculated the coupling coefficients of wave H11 with waves Eo, and

-- i H21 in the circular waveguide and wave H10 with several waves in the-

waveguide of square section. In the articles of Unger [4] and

Andreasen [49] was solved for tue first time the problem of the

curvature of alternating/variable curvature. However, the method,

used by the authors, fczced tnem to be restricted to the case when

curvature in all points was final, i.e., to exclude the fractures of

the axes whose applicatioa/use, as it seemed, they make it possible

to design shortest curvatures.

Apparently independent of Scelkunoff, but by approximately the

same method examined rectilineaz tapered welds Reiter [50]. His

results were then used to tue calculation of concrete/specific/actual

systems in the article cf Solymar [51], that gave to them most

convenient form, and in the works of Schnetzler [ 52, 53], which

calculated the joining ci tne waveguide of square section and simple

transition from rectangular waveguide to circular.

In the works of Gutman [33-36] also are investigated rectilinear

tapered welds. Their special feature/peculiarity in comparison with

the works of Schelkunoff [39] and Reiter [50] and the subsequent

-Il
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works,* which are based on L39) and [50], is the introduction of the

special coordinate system and another method cf the

conclusion/derivation of differential equations. The article of

Yemelin [37] generalizes method to the case when simultaneously it

changes both the form of section and the direction cf axis.

Page 12.

The article of G. Ya. iyuoarskiy and A. ¥a. Pevzner [54] can be

also considered as the version of the method cf cross sections. In it

the field is record/written in the form of row/series, but not on the

fields of waves in regular waveguiae, but on the fields of waves in

the cone, formed by tangents to tae duct/contour of this section. For

the coefficients of expansion, is establish/installed the system of

differential equations; the low parameter in this system proves to be

not the angle of the slope of generatrix, but derivative this angle.

If in irregular section the angle of the slope of generatrix slowly

is changed with coordinate z, taen it is possible to obtain integral

expression for the wave amplitudes, scattered by this section, and

for the validity of the approach/approximation of the first order the

angle must not be compulsorily small. However, this is reached

because of the very essential complication of expressions for

coupling coefficients. hemnoa is applicable only for flat/plane or

cylindrical waveguides, and in the article indicated it is not yet
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obtained concrete/specific/actual results, although is solved nat the

electrodynamic, but simjler acous-.ic problem.

The first work on waveguides with variable filling was the

article of Schelkunoff L55). In it, strictly speaking, consecutively

were examined only regular waveguides in which E and p the filling

medium they depend on coordinates in cross section x, y and do not

depend on the longitudinal coordinate z. Field in such waveguides wasI decompose/expanded in row/series on fields in empty waveguide, and

for the coefficients of tais expansion was establish/installed the

system of differential first-oArder equations. In this case, each term

of expansion represented fieid in very simple system, on even in

regular waveguide the field was described by infinite system of

equations. The same idea in the work of Morgan [44] was used to the

bent vaveguide, and in V. B. brodsxiy's article [563 - to the

rectilinear vaveguide of constant section, in which e and p they

depend on all three coordinates. I
There are, it goes without saying, works, which according to the

methods used only with large stipulations can be referred to one of

four groups indicated, in them is utilized any method, specially

developed for this problem. Such works include, for example, already

mentioned article of Weinstein [151 or of article of Barlow (57, 58]

and Marie (59]; in (57-59) are investigated the conditions of the



[ DOC = 79024301 PAGE 22

V: AJ
fact that this wave (for example, wave Ho, in the circular waveguide)

is its own wave for a curvature. I:. the formulation of the problem of

Barlow's article, they are close to the article of Rozhdestvenskiy

and Chetayev [14).

Page 13.

As can be seen from thi.s survey/coverage, energetically are

develop/processed at present several directions. Each of them can be

connected with the specific work, in which were laid the bases of the

corresponding method. Such works we consider the book of Kusin'ko __

[32] and article of Schelkunoff [39], Sveshnikov [18], Pokrovskiy, *1
etc. [24] and Reiter (50].

In present monograph we do not give the presentation of these

directions, we do not investigate a question concerning strictness,

validity and completeness of the obtained results, and also we do not

compare these directions between themselves and with the direction,

which were being developed in author's articles, and will be

restricted to given short survey/coverage. This book is written in

essence based on materials of author's articles (60-78], published

during the years 1953-1961; in it used also several works, which

develop the results of these articles, and are given author's some

unpublished results. According to our opinion, as a whole in these

- - - - =-- - - -=--=I-
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works is given the relatively complete theory of a question. However,

wherever this it was necessary for the completeness of presentation,

we included the results also other authors.

In the text of the book, are given the references to all used

works, eliminating articles [60-783. We did not refer to the works,

in which the results, which were Deing contained in [60-78] or other

articles, used in the book, were obtained simultaneously or later

than in these articles. However, in those all cases when any results

were obtained by other authors earlier, in text were given the

corresponding references.

§ 3. Regular waveguide.

I . . In this paragraph are summarized fundamental properties of

waves in regular waveguides and are given designations which we used.

Presentation in it most of all adjoins Weinstein's monograph [791.

By regular ones we call the rectilinear waveguides whose all

properties are not changed along the axis of waveguide. In the theory

__ of irregular waveguides by us will be necessary the examination of

the regular waveguides ot very general view. We let us assume that M C

the cross section is limited by tue arbitrary locked duct/contour and

that the properties of the medium, which fills waveguide, are changed
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in cross section. The waveguides of comparison will be, generally

speaking, precisely such regular waveguides.

Are examined the steady solutions of the equations of Maxwell

rot E =- ikt "; (3. la)
rot H -;ikeL. (3. 1 b)

Page 14.

Dependence on time is accepted in the form et, k - wave number

in void, equal to w/c, where c - speed of light. Is applied the

Gaussian system of unity. Dielectric and magnetic constants £ and p

- dimensionless quantities, equal to one in vcid. Unless otherwise

stated, then and p real scalar quantities.

In (3.1), are not introduced outside currents. It is assumed

that they are located cut of the sections in question and that the

fields are excited by the waves, ialling on these sections.

7Z With exception only § 13 and 14, the metallic walls of

waveguides are considered as ideally carrying out, so that on them

E. 1 o, (3.2)

where t - tangential tc surface vector. Since is allow/assumed

A

NI
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arbitrary dependence E on coordiadtes in cross section, then (3.2)

does not limit the class of the examined waveguides.

Let us introduce the Cartesian -oordinate system, x, y, z, and

the coordinate axis, parallel to the axis of waveguide, let us

call/name Z-axis. In cros section instead of the Cartesian

coordinates x, y, can be introduced the polar coordinates p, ( is

counted off from x axis or is used any other two-dimensional

reference grid.

The field of any wave in regular waveguide depends on z means of

factor e- ,hz, where h - wave nusker in waveguide. At zrequency is

higher than the critical for a wave of this type h2>0, at the

critical frequency h2=O, at the zrequency of lower than critical

h2<0.

We will use also given dimensionless wave number -=h/k. For the

propagated waves 0,<Af,<. At nigh frequencies h it is close to unity, at

critical frequency A=0.

Let us introduce complete wave system, capable of existing in

this irregular waveguid,., inciuu.ig both the those propagating

(h2 >0)and those not running (na2<O). Let us label these waves by index

j, which takes all values *t - to +.

@ IR
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FThe f ields of these waves let us designate kl(x, y, z) andIW(Y. , z). Let

us introduce designaticns E', Ifor that factor in the fields of these

waves, which depends only on x, y, i.e.., let us designate

P X y. Z) -E' (X, y) e-iz . ft (X, Y, Z) - Ifj(X, y) e £h (3.3)1

Page 15.

substitution (3.3) into the equations of Maxwell (3.1):

+ ~ ih111' ik t'; (-i + hE,' - ikitEI;

Oy Ox
(3.4b)

ax Oly

Each wave can be propagated (when 1'> 0) or attenuate (when 14<0)

in two opposite directions, To two waves, which are distinguished

only by direction of propagation, we will appropriate the indices,

equal in magnitude and opposite on sign. if we in this case assume

h-j hi,(3.5)

-Xg
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then relationship/ratios (3.3) will be valid for waves of both of

directions. Let us agree to consider that if h >O, the with j>0 wave

number is positiveh 1 >O, and if h}j<0, then with j>O h=-ijhj. Then

waves with positive indices will be propagated in the positive

direction of Z-axis, of wave with nega*ive indices - in the negative

direction of Z-axis. The first we will call/name direct waves, the

second - reverse/inverse. The components of direct/straight and

backward waves we will connect with the relationship/ratios

(3.6)--i= w Hi If-/ H, z'-1 H'.

In this case, is provided invariance (3.4) relative to the sign

of index - if the fields of direct wave satisfy equations (3.4),

then, according to (3.5) aaa (3.6), them they will satisfy also the

fields of backward wave. Would be possible and another

communication/connecticn, differing from (3.6) exchange E and H.

Page 16.

The fields of different waves are orthogcnal between themselves.

The conditions of orthogonality we will record in such a way that it

would be correct during any comaination oZ the signs of the indices

of different waves, in particular tor two counter waves of one and

the same type. The application/use of a condition of orthogonality in

A.
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this form and invariance (3.4) relative to the sign of index will

make it possible subsequently not to make any special stipulations

relative to the direction at propagation of waves.

According to formula (79.11) from (79], the integral

S(IH ll. + lM1E 71JZ dS (3.7)

integral f.. S is undertai~eU according to the cross section of

from (3.4), (3.2). As is known, it is retained during replacement

(3.2) by Leontovich's condition.

We will take for fields 1, Hi' the following standardization:

S(E , li - EiHi,) dS MIkh. (3.8)

Right side (3.8) is selected by such shape, in order to

standardization condition for the membrane/diaphragm functions (see

below (3.16)] it assumed the simplest and customary form.

The condition of orthogonaity and (3.8) it is possible to

record in the form one ccadition
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f (E l- E, - E+-1 - EH + 1- )ndS 2khj,,, (3.9)

where 6mj=0 when mtj=j, 6/ =I. BY equations (3.4) and (3.9) the fields

of normal waves in regular wavegjuide are determined unambiguously

(with an accuracy to sign).

The energy flow, cransferred through the cross section by the

normal wave of number j (with an accuracy to common/general/total to

all waves of unessential factor) is equal for real ones hl is simple

hi. We will speak, that the wave amplitude is equal to P1, if its field

essence E=P}E^', H=Pjff'; in this case energy flow is equal, again with

an accuracy to this factor,

I Pi 1h- (3.10)

Speaking below about energy losses to transformation into the wave of

any number, we always will imply the ratio/relation of values (3.10),

calculated for this wave and for the incident wave.

Page 17.

2. If E=1, p=1, i.e., for empty waveguides, field E, H' they

can be expressed through two meancane/diaphrage functions vi;(x, y)

and q'(x, y); these functions are proportional to longitudinal

components of magnetic and electri.c vectors of hertz. Functions P

A
ii

4
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and pl satisfy the idertica. equations

V2(PI + C(rP 1  01 (3. 1 Ib)

where v2 the two-dimensional (in the variables x, y) operator of

Laplace. Values ci, essence tne eigenvalues of equation (3.11) under

boundary boundary conditions of the cross section

-0; (3.12a)

Here, as is everywhere lower, a external normal to the duct/contour

of the section of regular waveguide. Between values a!, depending only

on the geometry of cross section, and by wave numbers k and hi there

is relationship

The eigenvalues of systems (3.11a), (3.12a) and (3.11b), (3.12b),

generally speaking, do not coincide.

There is division into magnetic and electrical waves. The fields

of magnetic waves are expressed as function F

a9 ' EiEx '

(3. 14a)ih OV- HI ih j
TX 9
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The fields of electrical waves are expressed as function p

Hl~Ik'~y 1 ; iOpI H1 =0.

Page 18.

We will assume

If T -3.15

Then relationship/ratics (3.14) are also invariant relative to the

sign of index.

Expressions (3.14) satisiy, as it is easy to check, the

condition of orthogonality; equality zerc integrals (3.7) with iij it

follows from the normal conditions of the orthogonality of different

solutions of systems (3.11), (3. 1 ) . The accepted f or f ields E',I

standardization leads for functions q'and q!to the conditions

(V'P1)VS 1, S(Vqp)2dS 1, (3.16)

where V7 the operator oCi- rwo-diaensional gradient; to usually more

simply apply equivalent ones, according to (3.12), the condition

Thus 4'and q1 they are dimeasionless quantities.
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Sometimes it manages also for the filled waveguides -under theI

special laws of filling - to express the fields through two

membrane/diaphragm functions. In tAis case, generally speaking, the

components if their own waves are expressed as both

sembrane/diaphragm functions.

3. Let us extract function ' and (pi for waveguides of rcund and

rectangular cross secticns. For circdilar vaveguides

p 1 NiJa (a ,jp; q'l = 1J pinj3 (3.18)

Here (ni, g) -the number of wave (H.,, or respectively , - Bessel
function. Eigenvalues an are connected with a radius of vaveguide by

the relationship/ratios(31)I

flQ (3.19a)
a

relating, correspondingly, to H-waves and to E-waves.

Page 19.

Here Pn there is the q positive root of equation J' (p)=0 and v,~-

the q positive root of equation J,(v)-.0. We will use obvious
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from (3.16):

N, (3.20)

where E.=I+o., i.e., E0 =2,E,,=1 with n=O.

The system of coordinates x, y for describing the field in

rectangular waveguide we will arrange/locate so that the origin of

coordinates would coincide witn the apex/vertex of rectangle, axis x

- with it is wide and y axis - with narrow by the sides of tectangle

(Fig. 1). Then

a b (3.21)
pl Mi -sin _I_ sin -

a b

where a. b- respectively wide and narrow sides. Eigenvalues fI.of

waves and L.,, waves are expressed by the one and the same formula

2v + (3.22)

Normalizing factors are equal to

-- - t 2 (3.23)
abE°E9 mz

IAI



All

DOC =79024301 PAGE 34

Fig. 1. Section of rectangiular &waveguide.

End Section.
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Chapter 1.

I- IETHOD OF SMALL HETEROGENEITIES.

The simplest heterogeneity is a small heterogeneity,

concentrated in low region and waich leads to a small change in the

properties of waveguide. There are three fundamental types of

heterogeneities - curvature, change in the prcperties of filling and

change in the section. The appropriate small heterogeneities they are

fracture to small ange, small jump e and j of the filling medium

and a small step. In three paragidphs of this chapter, are solved the

electrodynamic problems of WdVe UIssipation, which fall to such small

heterogeneities - for zoupling of two semi-infinite regular

waveguides, which are characterized by either the direction of axis

or by the filling medius, or by tae duct/contcur of cross section. As

it proves to be, in certain cases the analysis of the obtained

solutions makes it possible to find also the field, scattered by the

irregular section of finite length with a sizable change in the
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parameters.

§4. Fracture of waveguide. Bent waveguide as the limit of waveguide

with a large number of fractures.

1. One of the basic types of irregular waveguide is the bent

waveguide of constant section. Simplest case of this curvature -

curvature to small angle. We will

begin from the computation of the fields of waves, scattered at this

elementary curvature. AA and i - two planes, which limit curvature

and perpendicular to both regular waveguides, connected by curvature I
- (Fig. 2). Let us place angle A. Detween these planes by so/such small

that the distance between the corresponding to each other points of

planes AA and BB would Le little in comparison with wavelength.

Page 21.

This curvature of small electrical length we will call fracture. It

suffices to examine the flat/plane curvature, since a small

three-dimensional/space curvature is the imposition of a small

flat/plane curvature and twisting on small angle, but a small

twisting is a special case oi the strain, examine/considered into §6.

Wave amplitudes, scattered at a saall three-dimensional/space

curvature, can be obtained by the addition of amplitudes scattered on

two small strains indicated.

4 --

Let on fracture fall to the left the wave of number m(m>0) from __

_ - -- - -
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single amplitude, i.e., ue wave whose fields are equal to Ln j

Complete field of secticn AA(z=0) consists of the field of the

incident wave and sum of the iields of backward waves. It can be

recorded in the form

Of section BB, the field consists only of direct waves

E ~j, H- P,i. (4.2)

Amplitudes P.,, p, are the unknown values.

= Let us begin from the determination of the amplitudes of direct

waves in the second waveguide. Multiplying E, H in (4.2) vector on

HJ, E1, by store/adding up, integrating by crcss section and

utilizing a condition ot ortiaoyoaality (3.9), we will obtain

P= 2k 1 ([Hl-i Liz+ IIE',) dS. (4.3)

Confronting in (4.3) vectors E, H they are related to section

BB. It is expressed frcm through vectors E, H in section AA. It is

oriented x axis of the Cdrtesidn coordinate system in the cross A

section of waveguide in such a way that it would indicate the center

of curvature. Y axis is airected toward drawing, so that set of three

(x, y, z) -is right. Any two corresponding to each other points in

sections AA and BB, in reference to the coordinate system in one of

the sections, for examrie in section AA, have in it the identical

coordinates y; coordinates x diiner to the members of order, (A3)2,

coordinates z -to value Az, proportional A3.
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Fig. 2. Fracture of waveguide.
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Difference in coordinates x we will be able to disregard, since we

should it will be necessary determine the amplitudes of the scattered

* waves only with an accuracy down tc the terms of the first degree in

Between the transverse components of fields E, H in sections AA

and BB3, there is the relatiousnip'zatio

H,an ,,A IA IB + H A

The same second relationship/ratio, which contains components E, we

do not extract. First two tezRms in (4.3) are the first members of

Taylor series. Third tern/component/addend corresponds to the

rotation of the coordinate system in BB relative to the coordinate

system in AA. Value Az in J4.4) is equal to rA3, where r -a distance

from center of curvature to th~is point in section; it is different
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for the different points of section.It I

I Let us present (4.4) in (4.3). In this case, in (4.4) under

fields E, H it is possible to understand not complete field (4.1) in

section AA, that contains incident and backward waves, but only Em ,

H", i.e. only field of the incident wave. Really/actually, with the

substitution of the fields of backward waves P_E-1, PjH-'(>O) into

first addend (4.4) appropriate terms in (4.3) they will fall but as a

result of the condition of orthogonality, and with the substitution

of the fields of these uaves in the second addend (4.4) corresponding

terms in (4.3) will give different from zerc cnes add/composed;

however, they will be ozder (a)Z, and the members of this order we

disregard. Thus, in (4.3) it is possible to substitute, for H, field

with the components

Hx = m -AO (ihmrIJl- + H-), H1 "1' A - Jih hrH', (4.5)

and the analogous field Z. of this, consists the special

feature/peculiarity of expression (4.3).

Substituting (4.5) in (4.3), we will obtain for the unknown

values P1 the following expressions, valid, according to

preceding/previous, with an accuracy down tc the terms of order AO

inclusively: p1 = ,, + ab Fi, (4.6)

where the coefficients F;m are equal to

Ax-~.=



[ DOC = 79024302 PAGE ?V

.- - 'H E t1') dS}. (4.7)

Page 23.

Thus the amplitude of the scattered waves with indices j*m they are

proportional, as one would expect, the angle cf fracture A3.

The amplitude of the transmitted wave cf number m differs from I
unity, i.e., from the amilitude of the incident wave, by the value of

the order-ho; this is equivalent so that with the passage of fracture

the incident wave acquires the factor

4.8)

where qn, iF., i.e.
q_" m-=~ r (Eu -E. tlu)dS- -2k.-- ~(EmH. - L fI) dS. (4.9)

With real hm value q... is also real. Formula (4.8) gives, thus,

phase change of the wave, which passed through the fracture of

waveguide.

In the bent part cf the wavejuide always it is possible to

_ conduct certain line parallel to yeneratrix, thus, in such a way

that phase change q,,.Ai woula be equal to the propagation constant h,,I of the multiplied by differential arc of this line l, In other

-c= ----- = - - = ~ ~ - - -
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- ,words, in the bent part the wave is propagated with the same phase

rate, as in rectilinear, ii w- count off the distance between planes

AA and RB along the arc of the specific line. Is strict this

correctly only for infinitesimal nodes; in final curvatures, as we

will see further, the phase rate depends also cn transformation into

waves of another type. Generally speaking, for different waves of

line lm they are different, out, for example, for a circular

waveguide they for all waves coincide as is shcwn the calculation

(see §22), with the axis of waveguide.

For determining the amplitudes of backward waves, which are

propagated in left waveguide, let us use the same

reception/procedure, as during the derivation of formula (4.6). Let

us multiply (4.1) on H- 1, E--i and let us perform the same

transformations, as during conclusion/derivation (4.3). So we will

obtain the expression

P-.. =:= (H-El,J + HE-l,) dS. (4.10)

Vectors E, H in (4.10) are related to section AA. We express

them through vectors E, H in section BB; the corresponding formulas,

analogous (4.4), they take the form

H.F Hx-Az--+AOliIfa; H1, =H,-Azaij B(4. 11)

where Az has the same sense, that in (1.4).

Page 24.

a.
-_$-
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With substitution (4.11) in J4.10) 't is possible in (4.11) to

omit first term, since, according to (4.2), it contains only the

fields of waves with t-- positive indices which drop out with

substitution in (4.10). in remaining term/ccmFonent/addends (4.11) iti . is possible with an accuracy down to the terms of order AO to

LK .inclusively omit the fields of all waves, except the wave of numberFa, and its amplituda to take as equal to unity. Producing further the

same transformations, as during conclusion/derivation (4.6), we will

obtain
p- .- A f . (4.12)

Coefficient F is obtained from F,-, (4.7) by the formal replacement

j on -j. Formulas (4.6), (4.12) and (4.7) solve stated in this

point/item problem of scattering on a small fracture. The

investigation of coefficients F.- we will prcduce further during the

development of the general method of cross sections.

2. Obtained above results make it possible in number of cases to

find wave amplitudes, arising wita passage of curvature with final

angle 00. Let us replace for tnis the mentally bent waveguide with

waveguide with numerous smal. fractures, i.e., by the waveguide,

which consists of the rectilinear cuts, connect/joined together at

small angles. The parasitic wave of any fixed/recorded index j at

" I
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output is obtained by the addition of the amplitudes of the

"elementary" waves of this index, generatrices on each fracture.

Results for a curvature are oDtained by passage to the limit from sum

to integral. Analogous reasoning is applied, as is known, in the

theory of long lines during the derivation of formulas for a

reflection coefficient from line with alternating/variable wave

impedance; elementary heterogeneity in this problem is a small jump

of wave impedance.

The amplitude of the elementary parasitic wave of number j~m,

which arose in the section of tne bent waveguide, situated between 0

and O+At, is equal, accoraing to ".6), value Fi,, A, multiplied by

wave amplitude of number m (incident wave) at this point. According

to (4.8), this last/latter amplituae is equal to -'M " if we
e e-hmlm

N. count off arc length Im from tne beginning of curvature. After

reaching the end/lead of the bending, parasitic wave in turn,

acquires supplementary phase -_(o. Thus, amplitude of
l ge =e

elementary parasitic wave at output will be equal to

SFimA 1 e -a hi l i (0.) e-J-h.Im(O-hj i (0)1.

Page 25.

The total amplitude of parasitic wave at output is equal, with an

accuracy to unessential factor e-h (B ') to value

Flm e"L"""'I(0)- " 'i(0)dO- (4.13!
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For the amplitude of backward wave, wiii be obtained the same

expression with replacement Fi and F-,,,, and hi on h-_ =-h.

In row/series the case integral (4.13) can be calculated in an

elementary manner, for example, for a bending with the constant

radius when 1,.(0) and bi(b) they are proportional 4. For a bending with a

variable radius, if we for simplicity assume l(O)=I,(i) and to call

radius r distance from center of curvature to the line, along which

is counted off the length 1, integral (4.13) can be recorded in the

form LFil di 414

where L- length of bending.

The produced higher analysis of the propagation of waves in

bending by the final angle, whica proceeds from the solution of the

problem of a small bending trracture), possesses the specific

physical clarity. With this approach is explained the sense of

coefficient Fil,, it becomes clear me structure of exponential factor

in (4.13). According to tais point of view, the formation of

parasitic waves at the bend consists of two processes: from the

formation of the elementary waves on fracture and from the addition

of these elementary waves wita appropriate phase change. This point

of view is highly useful during zae qualitative analysis of

concrete/specific/actual systems. The method, with the aid of which°
- t --
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was obtained explicit expression (4.7) for iji, it allows, being based

on expansion (4.4), to isolate two factors, calling the regeneration

of waves in fracture and uenaing. The first - dissimilarity of the

distance between the arpropriate points of twc sections, turned

relative to each other ca certAin angle. The second factor bears

vector character - the transverse components of fields in certain

section prove to be connected wita longitudinal components in the

adjacent, turned section.

On the other hand, strict derivation of formulas of type (4.13)

from (4.6) proves to be sufticiently laborious, more complex than

their direct obtaining 1izom thne equations of Maxwell.

Page 26.

The developed in last/latter point/item method is limited by the

condition that energy ot the iuncamental wave is not changed

noticeably with the passage ot entire bending and that it is possible

to disregard secondary interaction of parasitic waves with each other

and with the fundamental wave. This condition in any case requires so

that the radius of curvature wouia be great, kr>>1. Furthermore, the

perturbation method, used during the solution of the problem of

fracture, proves to be insuificient near the critical frequency when

hi-O and Fj,,- o and even in row/spries the case. Therefore the°I
N ol
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total analysis of bending to final angle we will produce below, being

based on the system of differential equations for coefficients Pi_

considered as functions trom 4. Tnis system also can be derived from

(4.6); however, simpler and more common/general/total is the

V application/use of a method of cross sections, developed in chapter

-o •II.

§5. Small jump dielectric ana of magnetic filling. Waveguide with

alternating/variable filling as the limit of waveguide with laminar

Lfilling.

1. Second fundamental type of irregular waveguide is rectilinear

waveguide of constant section, in which F and p its filling medium

they are changed along wavejuide, so that e=E(x, y, z), I=I(x. y, z). To this

type of irregularities they are related, in particular, different

inserts with alternatiny/variaDle section. Usually in them (or p)

- discontinuous function; nowever, commun/general/total results to is

simpler obtain, counting first e and p by continuous functions and

completing then the appropria-e passages to the limit.

The simplest case of this irregularity is a small jump e and

in any section, i.e., articulation of two semi-infinite regular

waveguides with close values e and p. Let us find wave amplitudes, I
scattered on this jump. Let us oegin from the determination of the

--
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amplitudes of direct waves.I

.fwhen z<0 rg=ev(x. y) -Ap-, It~p~x, y) -Aft, when z>0 E=r(x, Y), ~P24(x, y),

where Nex and Ap - low values, which are, generally speaking,

functions from x and y (Fig. 3a).

A
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Fig. 3. Small jump of the properties of medium.
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Falls to the left the wave of number m from single amplitude, it is

necessary to find the anklitudes of direct waves, which exit from the

place of coupling. This froDlem is solved belcw by the method, which

are the version of the Method ot the slight disturbances;

disturbance/perturbaticn is cnange 8and j in left waveguide to low

valies -Ae,-Ap.

VhenAe=O, Aui=O undisturbed field in entire waveguide equal to

the field incident wave Wa im ten A,;E#0- Att#o appear

supplementary fields AE and AH. These fields satisfy the equations,

which are obtained during the varition of the equations of Maxwell

(3.19, written for km1 , lf

Tot AE + ikiAH ikAttil', rot AH -- keAE -ikAct-. (5. 1)

According to (5.1),* fields as and AH are created by the magnetic

Ecurrents whose density is proportional Aitlf'. and by the electric4

currents whose density i.s proportional Ar~-.These exciting currents

zC

~~L4,

- - - - 4 = ~ - - -ax
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are arrange/located with z<O. It is necessary to determine the

fields, excited with z>O.

With z=+O field AE and ad they take the form
co 00

tiE = Y (Pi -- mi) E'. All = YJ (Pi m)l~ (5.2)]

where Pt - the unknown amplitudes of direct waves.

According to (3.7) and (3.6), the condition of orthogonality

(3.9) can be recorded in tae iora

S ([H-i'-E- TIm -',) dS 2.h,6,,,. (5.3)

Applying this formula, ve will obtain that Pi (with j-) the

integral expression, analogous t4..3):

P- t2 Ci --'AEj.-IAH. E'id dS. (5.4)

On the other hand, from (5.1) and the equations of Maxwell (3.1),

recorded for fields F?', 11- in the undisturbed waveguide, follows

div {lf-'AEJ- IA-L -]

ik (AE m  -&p. - f-I). (5.-5)

Let us integrate this equality gita respect to entire space in which
Ae#0, A40.

Page 23.I

Let us consider in this case Laat according tc boundary condition

(3.2), which sati-;fy the fields E-! and AE, the normal to metal

component s of vectors leI and aeare equal to zero. Let us

introduce a small complexity of wave number kc, what will ensure the
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convergence of integral during integration on z of -*to 0 and

disappearance of the result of the substituticn of lower limit. Thus I
for the unknown amplitudes of direct/straight parasitic waves (5.4)

we will obtain

P1~ 4 ( 1 -hm S(A E"F' - A Ill -Hll) dS, (5.6)

where the integral it is undertaken with -,=-O. The comparison of this

expression with the usual formulas of the theory of excitaticn of

waveguides emphasizes the paysical sense of the right sides of -

During the determination of the amplitudes of backward waves, we

Let us assume that the disturbance/perturbation occurs in right

va veguide, i. e. , tha t webea z <0 P, P_(x, y),* 11 C(x, y), whi le when

z>'0P e e(x, y)±+Ae, M1.al(X, Y) +Ajp (Fig. 3.b) . In this case, Ae ant. Aji

they viii have the same values, as is above, but, as for the

definition of the amplitudes oi airect waves, to calculate field will _

have only in the region, wica does not contain sources, which, as is

known, it is simpler. Pepeating the same lining/calculations, as

during the computation of the amplitudes of direct waves, and again

utilizing (5.1), we will obtain

- 1  (A, e E'Em) AJt H)dS 57

Two last/latter formulas solve stated problem of the fields, which

appear duriiug a small abrupt change in the Froperties of medium, that

fills waveguide.

- - ~ --------. ~---'- ~- ICEA-
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2. From formulas (5.6-5.7) it is possible, in particular, to
obtain condition of fact that jump e and p will not cause

appearance of parasitic waves ot another type, than falling. Let us

show first that, besides the condition of orthogonality (3.9), of

field of different waves satisiy still another condition of

orthogonality, which contains all three components of the fields:

S(eE"E + ttHmil) )dS = - 2h15,mj. (5.8)

This condition follows from the identity

._ dlv 1[/vm I1 + [fIJ "l)= 2k (6ek,- + (III), (5.9)

which in turn, it is easy to obtain from the equations of Maxwell

(3.1), of written for fiejas waves of numbers m and j.

IT Page 29.

In order to obtain from (5.9) condition (5.8), it is necessary in

(5.9) to produce differentiation with respect to z, and then to

integrate the obtained relationship/ratio the cross section and to

utilize boundary condition (3.2) for Em and E and the normal

condition of orthogonality (3.9).

From comparison (5.6) and (5.7) with (5.8) it follows that if in

all points of interface (z=U) is satisfied the condition

A. e, A t -A. ,, (5.10)
NT
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where the constant A does not depend on x and y, then the phenomena

of transformation will not be and will arise only reflected and pastI
waves.j

UCondition (5.10) -sufticiaent, but not necessary. Let us note4

that it is more powerful than the requirement of equality the phase

*rate in both waveguides, waich can be recorded in the form

A(S -0. (.1

This condition follows from (5.10). The absence of jump in phase

rate, i.e., condition (5.11), generally speaking, is izisufficient so

that there would not be the transformations.

p essence arbitrary functions z, let us generalize (5.6) and J5.7) to

case when transition betu.een two semi-infinite waveguides with close

values 8and 1p occurs in L~ow section of length Az(k~z<<1).

Analyzing the method which obi.ained these formulas, it is easy to

ascertain that they remaiq valid also in this case. It is necessary

only by Ae, and Ap to unaerstand tnie complete value of difference

Sand p in both waveguides. For Luture reference it is convenient

to replace under integral sign A8 by -z ondA-- Let us

___ introduce another designat~ion

Sm i", ( 1 mS( E' E- 8 mIIdS; (5.12)5i h2 -h
irn
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then for the amplitudes of the direct/straight and reverse/inverse

-.1 parasitic waves, scattered by this heterogeneity, we will obtain
P = SAz (#m); P-, S- m Az, (5.13)

where S-, - is obtained fronxby the formal replacement j on -j. I
Strict derivation of these formulas will be given in the following

chapter.

Now in the irregular secticn of length LE and ju essence

arbitrary functions not only from x and y, but also from z.

Page 30.

This section can be represented in that consisting of the row/series

of short regular waveguioes in waich e and p they differ to low

values A- (x, y). Al, (x, Y). The amplLtudes of the parasitic waves, which

are formed on each jump, are given by formula (5.13). Complete wave

amplitude, scattered in enti.ze irregular section, is obtained by the

addition of all elementary karasitic waves takin9 into account phase

change. This calculation method is valid, it goes without say2ng,

only when the secondary transformations of the parasitic and incident

waves can be disregarded. Tuis, in any case, it can be fulfilled only

for waveguides with the slowiy caanging parameters, i.e., for the

V- -

iI
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waveguides, in which the change 6 and p at a distance of the order

of the wavelength or linear dimensions of cross section is small in

comparison with values t and pa, and far from the points at which

h-=O. Analogous reasoning is applied in the theory of the propagation

of waves in infinite inhomogeneous medium (L. M. Brekhovskikh, £80]).

The propagation of tae fundamental wave from the beginning of

the irregular section z=O to tne layer, which lies between z and

z+Az, and the propagaticn or iormed on this layer parasitic wave from

it to output of the irregular section (i.e. to section z=L for direct

waves and z=O for reverse/inverse ones) occurs somewhat more complexV than in the analogous proule of the bent waveguide, since wave

numbers hi, and h, in the case in question depend on z. From the

representation of irregular waveguide as about the limit of laminar

Lu it follows that phase change witn the passage of any section is equal

to integral jh,dz undertaken on this section, i.e., a difference in

% the values of functions r,(z). which we will determine by the equation

T/ i dz,(5.14).
0

at the end and beginning of section. The module/modulus of the wave

amplitude, which is propagated along waveguide, is changed in such a

way that the constant would remain the flow of its energy; according

to (3.10). in this case P,1I/Vh •. Repeating the same reasoning

which brought us to (4.14), wa will obtain for the amplitudes Pi of

i the direct/straight parasitic waves, which appear during incidence in

Ig
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the wave of number m, when P,=I, expression (jfza)

,7i L)~ S1im 1/'/7. eL(-'j dz, (.5

where is again lowered unesseiitial phase factor.

Page 31.

The amplitude of backward wave is obtained by replacement in (5.15)

7i on 'r-j S/. onl -s-, and h,(L) on h,(O).. In contrast to analogous

coefficient FP1., in the problem of bending, the coefficient S,...

depends on z and therefore it cannot be removed as integral sign.

The analysis of expressions (5.15) and of enterirg in them

coefficients Simn we will produce turther after we will obtain by

their although less demcnstrative, stricter and serial mode. Let us

note here only that by a suiticient condition of the fact that during

propagation in waveguide with alternating/variable filling Vill not

occur the phenomena of transformation, will be the condition

As, Alt (A I3amIICIIT or x, ii), (5.16)

Key: (1) . A does not depend on x, y).

analogous (5.10) . This condition is again more powerful than the

reguiremient of the constancy ot puase rate ((t);O)z.-0. condition

(5.16) in integral form means that there is this function (P(z), that
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(D Z
S(x, y, Z)=- E (X, Y, 2) T(1, to)'

it (x, y, Z) it (x, y, 20) t (Zo) (5.17)-- '1' (2)

§6. Small step. Rectilinear irreguiar waveguide as the limit of

stepped waveguide.

S.1. Third and most complex Dasic type irregular waveguide is

rectilinear tapered wela. Tue simplest, "elementary" irregularity of

this type to calculation by which we pass, is step in waveguide,

i.e., the connection of two waveguides with close cross secticns.

Let with z<0 the section oi waveguide be limited by duct/contour

C., when z>0 - by duct/contour C . Duct/contours C- and C+can be

characterized by in terms ot position (as with shift or joining of

waveguides), value or form. As zae characteristic of step serves the

function 6(s), equal regarding the distance between the appropriate

points of duct/contours C-and C..; it depends on coordinate s,

calculated along the duct/contour of cross section. Since we examine

only small steps, then there is no need strict mathematical

determination what points of two auct/contours we call appropriate.

For a small step6J, it is small in comparison with wavelength and

with the size/dimensicns of c.oss section.

I

- ' ,

-, w
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[ }Page 32.

ve will place 6(s)>0, if at tae particular point transition from

C.to C indicates moticn to tne side of standard into metal, i.e.,

the expansion of wavegui4a, and 6<0, if occurs reverse/inverse

condition (Fig. 4). With 6&0 both of waveguides, they are identical

(it is equally arrange/located); difference 6 from zero it is the

disturbance/perturbation, calling the appearance of waves, scattered

from joint. The special feature/peculiarity of this

disturbance/perturbation ot mathematical sense lies in the fact that

it is related not to equation, aut to the position of the surface on

which are pleced the boundary conditions. Disturbance/perturbation,

i.e., snall strain of the surface of metal, is transition from one

surface, on which is fuifziled buundary condition (3.2), to another,

on which is satisfied the same condition.

For the cal- , ation of field distortion, it is expedient to

replace the strain of surface, on which it is correct (3.2), by a

small change in this condition on the undisturbed surface. Let us

establish/install this new boundary condition, equivalent strain,

which let us call/name equivalent boundary condition.
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Let before strain the surzace occupy position So (Fig. 5a) (n J
standard into metal) , after strain - position S, and let these

surfaces be only close, Dut also triey compose small angle. The

distance between the appropriate points S and So let us designate by

lete 1 sjfl1 is accepted by such, that during the location of

surfaces, shown on Fig. 5a, 1<0. ditch second possible location S and

so, appropriate Fig. 5b,1>0.

MIc;I 2jI
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Fig. 4. step in waveguidra.

Z40-s
C

~1---------------------------------------------- 00

Fig. 5. To conclusion/derivation of equivalent boundary condition

(6.1)

Page 33.

Tangential to So component E~ on So is small, it is determined by

currents and charges in the section, close to the point in question,

in other words, for E there is a local boundary condition. After

using the integral form the first equation of Maxwell (3.1) (withA

r p=1) to duct/contour ABCD and taxing into account that for S

correctly usual boundary concuition (3.2) , we will obtain the unknown

equivalent boundary conditioD

Et & ikt +t grad (&,1), (6. 1)
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where t - is unit vector, tangential to S.. This condition makes

following sense: in the field, limited S., the field, created by any

[ sources, will under equivalent ooundary condition (6.1) on the

undisturbed surface So have the same value, as under usual boundary

condition (3.2) on the disturbed surface of S.

Fig. 5a correspondzLCO. It is easy to show that the form of -

equivalent boundary condition (6.1) will not change during sign

change . In order to ootain (6.1) for the lccation of surfaces, _

F , datum in Fig. 5b, it is necessary to first establish/install boundary j
condition for S in the auxiliary problem, depicted in Fig. 5c, and

then to pass to the conditions, wnich correspcnd to Fig. 5b. In this

way it is possible to show which (6.' is correct with any sign L.

The replacement of strain by boundary condition (6.1) introduces

into calculation soca conditional surface magnetic currents. The

field distortion, connected with strain, from a formal point of view

proves to be that caused Dy these currents.

2. let us use equivalent boundary ccndition (6.1) to it is

calculated wave ame-iludes, scattered on step. During the computation

of the amplitudes of direct waves P4(H=m) we will consider strain the

divergence of the surface oi left waveguide (z<O) from the

continuation of the surface of right waveguide (z>O); then the

I
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magnetic curren s, callingj parasitic field will be arrange/located

the regions where searches for thi~s field. in this case, is obvious

I(z-s)=6(s) when z<1- C with z>O. To the right in (6.1), stand

the undisturbed fields, equal to E' m

Boundary condition (6.1) is correct only, where surfaces S and

So are not only close, b~ut also comprise small angles. Near step this

condition is not fulfilled; therefore in the vicinity of order 6 of

section z=O the tangential component E on S. is different frcm (6.1).

Because of this the obtained below formulas will contain the error

for order 52. We will determine the amplitude of the scattered waves

only in the first order on 6.

Amplitr'4es Pi we will iind by the same fcrmula (4.3), which

they used in the problem of a small bending.

Page 34.

For determining enterirg in (4.3) integral frcm section let us

integrate over entire space o± left waveguide the equality

div (IfIf E- [IE- 11) 0, (6.2)

which it is easy to obtain from tne equations of~ flaxwell (1,~1). in

(6.2) E, H -complete fiela; on surface So whose cross section,

regarding, despite all z limited Dy duct/contour C4-,E satisfies
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condition (6. 1),r into which it is possible to substitute field

kn', 1)"'. During integration and during conclusion/derivation (5..6), let us

introduce the small complexity K. Field iFfr-' satisfies for So

normal condition (3.2);, titereiore

4j If'E. Isz 63
2khz.

It is necessary to calculate this integral, utilizing boundary

condition (6. 1). The direction or unit vector s we will select in

such a way that the vectors a, s and the unit vector in direction z 4

would form the right-handed triad. The entering in (6.3) components

fields E to So viii be, according to (6.1),

It - Os(6 -4)
Let us substitute (6.4) in (6.3); adding and deducting the

appropriate terms, let us isolate under integral

ter mfcomponcnt/a ddends

at as

During integration these ter*/component/addends disappear: the

first due to condition 6=0 with z=0, the second as a result of the

periodicity of all functions from s. since the dependence of

integrand in (6,3) on z is known, then it is possible to produce

integration for z. Utilizing another equation of Maxwell for the

field of wave of number - ,we will obtain the unknown expression

for the amplitudes of direct waves, scattered by the step

0(s) (E.E + lH' 4- + 11'H,-) ds. (6.6)

it iispossible to record, taking -into account odiin (3.6),
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which connect the fields of counter waves, in the more convenient

form: - ~ (E~E~-HI -H"I) ds. (6.7)
2h, (ht1  h ,.)

The amplitudes of backwarda waves are found analogously.]

Page 35.1

As surface So, one shoula despite all z take in this case the surface

of left waveguide and to set/dssune I10=0 with z<0,Iz.)-(s

with z>0, i.e.., to examine as disturbance/perturbation the divergence

of the surface of right uaveguid1e from the ccntinuaticn of the

surface of left,

Repeating the same lining/calculations, we will obtain

h.1 A,,%- (s) (E E~ + H, 'll. + Hlff. I
Vave amplitudes, scattered ol step, are expressed, thus,

integrals, undertaken an the duct/cintour of the section of

vaveguide; they contain the £eight/a~ltitude of step to thie first

degree. on step will arise taose all waves for which with datum 6(s)

integrals (6.6)-(6.8) are diiferent from zero, i.e., all waves which

are excited by magnetic curren'-s (6.1), created by the transmitted

wave of number 2.

3. As example of apF.Iicaricn/use of obtained formulas, let us
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examine simplest problem of incicience in symmetrical magnetic wave on

step in circular waveguicle. la symwetrical magnetic wave H, Op

Ell 1-~ therefore wiill arise only magnetic waves. The character_

of the dependence of the fields oi these waves on azimuthal angle is

determined by the fact, what components strongly are represented in

the expansion of function 6(s) in Fourier series

6(s) Re (6.9)

From (6.7), (6.8) it follows that the wave amplitude 111 will be

prop~i-tional 6,1. For symmetriLcal step 6.=:0 with n40O, will arise only

the waves Hog, awplitude ot whica it is proportional.164. This step is

formed during coupling of the waveguides of different radii with

common axis. in expansion (6.9) the coefficient 60 is different from

zero in those all cases when the sectional areas of the joined

waveguides are different, and in thiis case in stray field are present

waves H~q. If with butting are somewhat displaced the centers of

sections, and radii are equal, then (6.9) it will consist of one

term/component/addiend (n=1),16L41t Will te equal to the shift of

axes, and will ar-'se only waivesHq If the cross section of one

waveguide is a circle, and another - ellipse with semi-axes a4A&,

a-A., t will ar- se waves flI, and H2q, moreover wave amplitudes fth4 are

propor'LiofalJ61=VIA 2
1 2, and Wave amplitudes 11iq are proportional

1621= (,&,+A) /2-

Page 36.
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The common/general/total expressioa for energy losses during

incidence in the wave Ho, is easy to find from the preceding/previous

formulas and formulas §3. Simple lining/calculations give

a#EL + f2t 6.0
4ai I2 n% I h , j

where h, - wave number of incident wave. Addition in (6.10) is

conducted on all propagated waves. In (6.10), are taken into account

waves Lf both of directions. The energy, taken away by each direct

wave, Ihnq+ 4 .j'1ihnq--hjj2 times is more than the energy, taken away by

backward wave of the same number.

We will not here investigate in detail expressions (6.10). Let

us note only that at the ign frequencies when the phase rates of all

MM waves are close to each other, it is possible out of the very narrow

resonance regions in which Jhnql is small, to replace last/latter

factor in (6.10) by number with 2. In this case, the losses will not

virtually depend on frequency.

This result, as it will De shown into §9, has general character,

it is valid for any waveguide. It it is possible to connect with the

fact that at high frequencies tne passage by the waveguide wave of

NUIR

ME~=
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step is analogous with incideace/drop at the angle of Brillouin of

plane wave on step on plane. The amplitude of diffracted on this step

wave, as it is easy to show, is proportio,.dl to the ratio of the

height/altitude of step to the wavelength, multiplied by the sine of

slip angle. At high frequencies the sine of slip angle is of the

order X/a, so that the amplitude of the diffracted wave does not

depend on X.

The numerical values of the internal sum in (6.10) at high

frequencies depend only cn the azimuthal number n; for rough

estimates these sums it is possible to replace by numbers for 4, 7,

19, 122, 12, ... , correspondingly, n=0, 1, 2, 3, 4. These numbers

can be considered as statistical weights, with which into expression

for losses enter the aveLage/mean values of the squares of Fourier

coefficients function 6(s). Tkaese results make it possible to

establish/install tolerances for tne accuracy of the butting of

waveguide sections.

4. There is single bond between P- and Mhm, i.e. between wave

amplitude of number m, reflected trom step, and change Mm in wave

number of this wave upcn transier trom left tc right waveguide. Let

us establish this communication/counection.

A change in the wave number simply can be obtained, applying

NI-

__=
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formula (6.2) to the fields of tue wave of ntimber mn in right

aeguide W', Jfl and the wave of number m i in left waveguide

Page 37.

In the \~eft waveguide of the iield of the seccnd wave, they satisfy

SiMpl*e Doundary conditions j3.2), the fields cf the first - to1

equivalent boundary conditions (b.1), moreover I for all z is equal

-6(s) . Isolating in (6.2) derivative by z and integrating by the

region, limited by duct/conrour C, we will obtain
*-.1h -m . ds 6.1

After substituting then 16.1) and retaining everywhere only first

order on Ahrn and 6, let us zind exjkression for changing the wave

number upon transfer througa thxe small step

Ahi, .k 6 1-(Hj~m)2 + (H2'~-(E' 2 ds. (6.12)

Comparing this with reflectian amplitude Prn (6.8), we will obtain

the unknown cominunicaticn/connection

p - Ar + (H"r s (6.13)

In a number of cases, tue comp~utation of the coefficient of

reflection p..,, in formula (6.13) is simpler than on general formula

(6.8) . For example, in the field of wave f11q in by circle waveguide

there are no longitudinal currents* H, , and P-m Ahm2na with any

form of step, i.e., any lunction 6(s). If wave number in bothA
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waveguides is equal, Ah,=O, for example, during coupling of two

identical displaced relative to each other waveguides, then P-m is

expressed only through the inteyral of the square of longitudinal

current. For example, for the asymmetric wave, which falls to this

joint in the circular waveguide, it is easy to find the dependence of

reflection coefficient from the poiarization of wave, etc.

For magnetic and electrical waves second term in formula (6.13)

is expressed as functions pt and (' According to (3.14), the

corresponding formulas take the form

•.Ah, M I O "'"

P-r ,,m \-C - (6.4

Ah,,, k2  c a m Z
(1)6_ -ds.2hrn 21ilOs

First term also can be, according to (6.12) and (3.14),

expressed by .. or 

]

Page 38.

Let us note that the appropriate formulas can be obtained directly

from two-dimensional equations, aetermining a change in the
/

eigenvalue a. of problems (J.lla, 3.12a) or (3.11b), (3.12b) during

small strain of boundaries. Communication/connection Ah'; with A&" is

obtained by differentiation of relationship/ratio (3.13).

NI

_ _ _ _ _ _ _ _
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5. Let us pass to determination of wave amplitudes, scattered by

finite segment of tapered weld. Let us note, in the first place, that

L formulas (6.7), (6.8) will remain valid and in such a case, when

connection occurs not in one plane, but it occupies certain low

region Az(Az-k<<1). Really/actually, in entire derivation of these

formulas, nothing in this case will change. Repeating the analogous

reasoning of the preceding/previous paragraph, let us replace 6(s)

for product v(s) Az, where as can be seen from simple geometric

considerations, v(s) - a slope tangent toward Z-axis of straight line,

that connects the appropriate points of duct/contours C.-and C+,This

straight line composes uita C-and Crthe angle, close to Y/2. Value

v(s) has the same sign, as 6ts). After carrying Az as integral sign,

we will obtain for P(j+n) aua P- 1 the formula which can be

recorded in the form
P1 SmAz, P-1  S_, mz. (6.15)

Here, according to (6.7) and (6.8), through S, is designated value
S1.~(ftA v (s) (E' E + Hm'~- H-I~d,(.6=~ H11-H1l) ds, (6.16)

% S-jm is obf-c-1i-C Sim h~j -tk - Y -cj Vpk_Cc"Ct.4. ~ -

We used for coefficients (6.16) the same designation, as for

coefficients (5.12) in the pronlem of the jump of dielectric and

magnetic constant; as it will De shown into §9, between them there

are simple correlations. During tais recording (6.15) it is

completely identical (to 5.13).
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Let be now given irregular tapered weld. Let us replace this

waveguide with the steFped waveguide, shown on Fig. 6a or Fig. 6b;

result in both cases will De identical. Value v(s) depends now on z,[ .it, obviously, is equal to tae tangent of the angle, formed with
Z-axis of tangent to metal, perpendicular to the duct/contour of

cross section. The determination or the wave amplitudes, scattered on

a heterogeneity of the type in guestion, is ccnducted by the same in

the accuracy diagram, on which these values were determined in the

preceding./previous paragraph. Foraulas (5.14) and (5.15) for the wave

amplitudes, scattered in finite segment with alternating/variable

filling, were obtained tfom forsula (5.13) for the wave amplitudes,

scattered on a small jump of filling. Formulas (6.15) are identical

with formulas (5.13); therefore formulas (5.14), (5.15) will remain

valid for tapered weld, if we now by oim understand value (6.16).

Page 39.

It remains valid also observation about limitedness of the method of

"small heterogeneities" in application to large heterogeneities and

about the difficulties, which appear during a strict derivation of

formulas (5.14)-(5.15) from 15.14). Therefore the analysis of these

formulas and coefficients Sjm we will transfer into §9, where they

will be obtained b7 stricter pata.

° i!
. . . . . . . . . : I!
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In chapter I, are found the wave amplitudes, scattered on small

irregularities of each of three tundamental typ-s, imposition of

which is any irregularity in waveguide. For irregularities not of

small, final, the formation parasitic waves can be represented as the

result of the imposition (with appropriate phase change and change in

the amplitude, which retains enery) of the parasitic waves, which

are formed on the row/series of the small irregularities to which can

be broken this large irregularity. This method is not completely

strict, in certain cases generally inapplicable, but it possesses the

specific physical clarity and maxes it possible simpler entire to

obtain the most interesting characteristics of irregular section.

Fig. 6a, b- stepped wavegaide.
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Chapter II.

METHOD OF CROSS SECTIONS.

The fundamental idea or the method, named us by the method of

cross sections, lies in the tact that in any section of the irregular

waveguide of field they are represented in the form of superpositions

of the fields of waves of Dotn of directions, which exist in the

auxiliary rectilinear reyular Waveguide of the same section and with

the same distribution e and p over section. The coefficients of

this superposition satisfy the system of the ordinary differential

equations of the first order. Common/general/total of the problems of

the determination of fields ia irregular waveguide is reduced in this

case to the problem of the fielas of waves in regular waveguide and

to the solution of the syst i or ordinary differential equations.

Below we will use method to the fundamental types of irregular

waveguides and to the general case of the combined irregularity.
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§7. Calculation of the bent waveguides by the method of cross

t sections.

1. Let us begin from establisnment of fundamental equations for

fields in waveguide, bent on circular arc. Let to bending the cut of

waveguide in question have for entire extent/elongation constant (and

besides arbitrary) section. Let us bend it on circular arc. In this

case, all generatrices of rectilinear waveguide will become the

circumferences whose centers lie/rest on one straight line. Let us

accept this straight line ior y ais of cylindrical coordinates;

other two coordinates will De r and 0. Planes 8=const intersect

waveguide with respect to tne same duct/contour, identical for all 8,

which limited the cross sections of rectilinear waveguide. In the4
plane O=const of coordinate r and y, is formed the grid of Cartesian

coordinates; x axis it is directed toward center of curvature, so

that x is identical s -r. aiax=--aarI

Page 41. M

Let us examine any section 4=const; let us construct the

rectilinear waveguide, passing thriugh the duct/contour of this

07 section and perpendicular to it. Fields in this waveguide of 2-

comparison and in the bent waveguide satisfy cn the duct/contour of

section the identical boundary conditions E-t=O, since tangents to

2.I"
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both waveguides coincide. If we 1resent field in the bent waveguide

ir the form of the superposition oi the fields, capable of existing

in the rectilinear waveguide ot the same section, with the

coefficients, which depend on 6, then each term of this superposition

will satisfy boundary condition J3.1).

Let us assume

E_ - Q.ZE% E, Q,,E
rn-I mn,

(7.1)

H r- 51R.H. f, Hy Z J"H,

i.e. let us decompose the transverse components of field in the bent

" waveguide on the transverse components of the fields of the waves of

all types (one direction), cdpaule of existing in the waveguide of

comparison. coefficients Qr, Rm aepend on 3. Let us introduce then new

coefficients PM(O) and P-(O) by the equations

PM P-- Q., P,+ P-m-R.- (7.2)

According to accepted by us comaunication/connection (3.6) between

the fields of direct/straight and backward waves, expansion (7.1) can

be recorded in the form
E= - PE, E, = PLE; 11, - PjII, HY j Pvr. (7.3)

Here, as everywhere subsequently, on the repeated index V is

conducted addition fror v=- - to v=+-. In detailed recording, for

example, first formula (7.3) .ndicates

MA
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V--00

Expansion (7.3), in contrast to (7-1), contains waves of both of

_directions; in this case, the coefficients in field expansion E and H AR

prove to be identical.

Wrj

Page 42.

The functions according to waich is produced the expansion in A

(7.3), satisfy the same boundary conditions that and fields E, Hi.I

Row/series (7.3) allow/assume term-by-term differentiation. Let us

substitute them into tuc equiations of M~axwell

ikpJHo; - ieE. (7.5)
ay r dg Or

Prom comparison with last/iatter equations in (3.4) it follows

that for the longitudinal components E and H there is expansion,

analogous (7.3), with the same coefficients Pm:

E6 PjE ; Ho - PvHFI. (7.6)

Let us install now system of equations for P4n(0). The substitution of

expansions (7.4) and (7.6;1 into the remaining four equations of -

M'axwell
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-- ikLrH,; (rE0 ) - - - ikltr,;I
7, y ar O0j

ik~rE,; -(rio) -- ikerEi. (7.7)
o" y oo ad

' gives
gvEe -Ex. - - iP.fi-E.r; P.Ev • -iPhE,,r;

P PvH,.v - iPvhjIr; PWH -PJzEvr. (7.8)

Here prime indicates derivative on 0.

Let us multiply these equations on - 114, Hi, E4 and -E, where j -

any whole iumber, positive or negative, let us add and let us

integrate over section. Utilizing a condition of orthogonality (3.9),

we will obtain for P; expression in the form of linear combination

from P.
S t e ePIt e FIP%- (7.9)

Since this expression is correct for all j, then (7.9) is the unknown

system of differential iirst-order equations for coefficients Pi(o)

For coefficients F,,. during this calculation in (7.9) is

obtained the expression, whicn coincides with the coefficients FI

(4.7), found from the probiem of a small fracture of waveguide.

Page 43.

M

-Z
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According to expansions J7.3), (7.6). value P1 (0 ) can be

considered as the composite wave amplitude cf number m. It replaces

factor e-At'i in rectilinear waveguide; however, it changes along

waveguide with more complex shape. According to (7.9), c.ange P 1 1 I
with change 0 depends cn amplitude of all waves, which exist with

datum 0. The amplitude of each wave P. participates in the

education/formation of value P in by the fact of larger degree, the

greater the coefficient F;,. We will call/name values Fm coupling

coefficients between the waves ot numbers j and m. Multiplying (7.9)

on A*, mu we can give to this equation the following sense: the

amplitude of any wave wita tue passage of small angle A8 changes to

the value, proportional A*, and this value is composed of the

changes, obliged to the effect of all waves. The action of each wave

on Pi all the more, the greater its amplitude and the greater the

coupling coefficient between tuese waves. In th~.s respect (7.9) it is

the generalization of equalities (4.6) and (4.12), which are

obtained, as we will show, rrom (7.9) on the assumption that in this

section it is possible to disregard all waves, except one. According

to (7.9), the propagation of waves on irregular section is the analog

of the propagation of waves along the system ef the connected lines

with space coupli, g.

2. Let us establish/inst'.- end conditions for P(f) on

boundaries of bent section. Let the bending in question according to

N-
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circular arc be joined withi 4=0 and with 8=6 with two rectilinear

waveguides, and from left wavaguide OD bending falls the wave of

number m of single amplitude.

From the orthogonality of the fields of different waves and

continuity of the transverse comp~onents E and H, it follows that the

values of coefficients Pj(1) in tue beginning and end/lead of the

bending are equal to the amplitudes of the corresponding waves in

rectilinear part. En Ather words, Pi(O) they are ;ontinuoUS don

transfer through the boundariss oi the bent section. End conditions

must provide the absence of other incoming to bending waves, except

that falling. These cond~tious take the form

Pm (0)~ 1, F'. O) O lip,, j>0, j +rn; Pj (00) 0 npti j<0.

(7.10)4.N
Key: (1.with. -0

System (7.9) and (7.10) Ls compte, from it it is possible to

find all amplitudes P1 (6). Ttie amplitudes of backward waves, which

exit into left waveguide, are equal to Pj{O) (j(0), while the

~implitudes of direct waves, which exit into right waveguide, are

equal to Pj( 0 )(i>G,; the determination of these amplitudes does not

r, quire supplementary process/ojperati.-ins on the join of fields.

ff
FAN-

~ ~ - ~ - - A?
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Since coefficients Fm in system (7.9) dc not depend on 0, the

solution of this system can be searched for by the methods, borrowed

from the theory of final systems with constant coefficients.

Retaining in (7.9) certain finite number of variables N, we will

Th btain the system of a finite number of equations whose solution is

47 reduced to the solution of tae algebraic characteristic equation of

order N. During satisfaction of some conditions, the solution of

infinite system (7.9)-(7.10) wil be obtained with N4-. We will not

here base and develop this method; when problem does not contain any

series expansion parameter, the actual solution of system

(7.9)-(7.10) is expedient, probably, to produce is direct on with

equations (7.9) whose structure Is adapted to direct/straight

Snumerical calculations, In particular to calculatioi in electronic

computers. Certain difficulty into such calculations introduces the

__ fact that for the part of the variables of condition (7.10) they are

placed at one end/lead of the interval, for a part - on other;

-NN however always, apparently, can be used the known

reception/procedure, which reduces stated problem to several

analogous ones, to which the conditions of type (7.10) are placed for

__ all variables at one and the same end/lead of the interval.

3. let us examine in somewhat more detail coupling coefficients,

L 4

mnN
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explicit expression for waiich is given to §4. When tz~Fl#F,8 it does

not depend on the radius of curvature which enters into first term in

(4.7) . This f"-ollows frca tae comparison of this term/component/addend

with the condition of orthogonaity (3.9). Coupling coefficients

depend, it goes without saying, trom the position of center cf

cuirvature relative to the section of waveguide, since on this depends

the orientation of x and y axes in section.

Coupling coefficients satisfy the condition

F-j.-m Fitnt (7.11)

directly escape/ensuing from (4.7) and (3.6) .i

They are connected also by reciprocal relations. it is simpler

anything to establish/instali these relationship/ratios, utilizing

independence of the integral

S {E'~k~~ -E~I~- ~+2LH(')) dS, (7.12)

undertaken according to section 6=const, of value 4. In (7.12)

E"), 11(1) and P)2 , j()- two araitrary field in bending, created by the

sources, arrange/located out oi oending. Independence (7.12) from 3

---- follows of Lorenz's lemma, u~sed to the region, limited by two "Ay

sections 5=const. Let us record the components of the first and

second field in relaticLnsaip/ratio (7.12) in the form of expansions

(7.3) with different amplitudes P(') and P(2) let us substitute inI, (7.12).
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Page 45.

After the simple transformations, which use again a condition of

orthogonality, we will ortain tor integral (7.12) expression 1tP"P()V

Derivative on 0 of this vdiue is equal, according to (7.9), to the

dual sum

(-~~~ ;Az ~h~)iIP (7.13)

where the addition is conductei on V and on p.This value must be

equal to zero for any fields E"), BI") and E("), H"(), any functions P(') and

p1; consequently, for any V and ju must be equal to zero bracket in

(7.13). Utilizing still (7.11), we will obtain the unknown condition,

which connects Fin, and F-y

hnr i hF1,,.- (7.14)

This relationship/ratio maaxes, it possible to simplify expression

(4.7) for Fim. According to (7.14), between the integrals, which

participate in (4.7) , there is the following

communication/connecticn:

(h, r_ (E 1'-ElH'+E'1_EH)

- (E yIIZ" [z"7l1I~, - mHi 4. 1:'H[?)IS. (7.15)

This formula can be obtained, it goes without saying, it is direct

from equations (3.4) and boundary conditions (3.2) via elementary

ones, although bulky, computations. Eliminatiug with the aid of
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(7.15) the first of two integrals, which participate in (4.7), we

will obtain for coupling coefricients the symmetrical expression

Fim kh(z (L,,L3"'- ,J3IZ)(7. i 6)

where through Bin: is designatea the integral

All these results are used not only for waveguiO s with the

ideal walls for which correctly ooundary condition (3.2), but also

for waveguides with the wellJ carrying out walls, since during the

replacement of condition (3.2) 13y Leontovich boundary conditicn. the

condition of orthogonality (3.9) is retained.

The actual computation of coupling coefficients for the

wave-juides of rectangular and round cross-sections will be produced

in chapter V. Here we willi only gjive expressicns for F,,, through

membrane/diaphragm fuvi, tioas ip and 0. These expressions are used in

_F_ those all cases when it is possible to use formulas (3.14), first of

Vill for waveguides without filling.

Page 46.

Let us introduce tne following designations for the integrals

ac-.ordirig to cross section, which 4ppear with substitution (3.14)

into integral (7.17) :
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~1"'dS -K0m ; Ox()' (S C- I"F S '.(.8

These values do not contain frequency, they depend only on the

transmission mode, form or cross section and direction in center of

curvature in this section. Thiey do not depend on radius uf curvature

and are of the order of the linear dimensions of section. iLt is easy

to show that from boundary condition for membrane/diaphragm function

0 on the duct/contour cf section tollow two relationship/ratios:3
CM1 -c~\ 1 

'dS -- Ai. (19

Substituting in (7.16) field expression through

membrane/diaphragm functions, we will obtain that if m andj

magnetic waves, then

-jm (h~a,:K' h,:xl 1. (7.20)

Fit- If both of electrical type waves, then

Finally, if j-are magnetic, and m - electrical of wave, then

F, L M.(7.22)

Coupling coefficient for the Lourth possibility of the combiLnation of

waves easily is obtained iroa last/latter forzula and condition of

reciprocity (7. 14).

ESE
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[ According to formulas (7.2))j-(7.22), the coupling coefficient

between two waves of one direction is more than between the same

waves, which are Propagatea in opposite directions.

I7T
I. There is two special cases, in which it is easy to obtain

explicit solution of system (7.9)-(7.10); them it is possible to

call/name cases of loose coupiiny. For their examination it is

expedient instead of P'(6) to introduce the ney variables p..(OX~

__after determining by their equality J

Pi () p, () e(7.23)

where coefficient q1=iF,1 it is 9.iven in (4.9). i
Page 47.

Values p'(0), in contrast to P -(o), we will call/name the given I
amplitudes. In these variables the system of equations (7.9) will

take the form

p' F!vp, I e'(v q " (7.24)

The special feature/peculiarity of the given coefficients p~is the

absence of diagjona~l cell,/elements in the matrix/die of system of

equations for them.

[ If to the right in (7.24) it is possible to disregard the

amplitudes of all waves, oesides the incident wave of number m, then

I __ ______77
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the solution of system (7.24) is obtained in an explicit form. The

first case when this is possible, is examined into §4 fracture, i.e.,

the bending for which 0,<<I. Then from (7.24) or (7.9) for

direct/straight and backward waves immediately follow expressions I

(4 .6) and (4.12), in which only one should replace A* by 00. F-r the

wave of number m from (7.24) it iollows that pi=const=1, so that a

change in the phase with passage of fracture is determined by the

exponential factor, isolated in L7.23). Let us examine this factor in

somewhat more detail.

In contrast to F,, witu& m#j, q contains the radius of

.K curvature. Ratio/relation qj/hi can ue call/named radius of curvature

for the wave of number j. This value

-- q, 'h, (7.25)

will be, generally speaking, it is different for different waves.

However, for example, for a circular waveguide with any symmetrical

over section distribution e ana ;, as is shown calculation, rl is

identical for all waves and is equal to distance from center of

curvature to the axis cf waveguide. The same is valid for rectangular

vaveguides (without filling or with uniform filling).

The common/general/total expression for r, is obtained from

(4.9) and (7.25). For magnetic and electrical waves this expression

takes respectively the form

IN
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i r (V4/)2dS + -e4 K"; r, =r (Vqi)dS. (7.26)

If we, as into §4, count off distance 11 between two cross

sections according to the arc of radius r,, d,=rldO, then exponential

curve in (7.23) ;an be recorded in the form e -hil. For a circular

waveguide, as it is shown, arc length is counted off along the axis

of waveguide.

Page 48.

Thus, the exponential factor in J7.2 3 ), which describes a change in

the phase (and in the amplitude, it - it is composite or

imaginary), it corresponds to the propagation of wave with wave

number hi along arc I/.

The second case for which it is easy to give the solution of

system (7.24), is bending with large radius of curvature. It is

simpler anything to obtain the necessary solution, having first

assumed that with large radius ci curvature it is possible in (7.24)

to drop/omit to the right all term/component/addends, except term

with j=m, that corresponds to rue incident wave, and then to check

that obtained in this case solution satisfies this assumption.

Assumption this is based on wadt with large radius of curvature the
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exponential factor in (7.214) is the rapidly changing function of

angle; therefore the average/mean value of derivatives p; little and

valu_ of variables P, they must be close to those values which they

have on boundary of the region. System of equations (7.24) takes in

this case the form

pm =0; p = F,,2p,,7'(Qm-j), j i=t. (7.27)

Its solution under tae conditions (7.10), which are

record/written for variables p/(O accurately in the same manner as for

for variables Pj((),has the form

Pm(0) 1; (7.28a)

P1 (n () = --Fqj) sin (qm - q_) fr

p (0) -- -- F i , j . (7.28C)
-(qm - q1)/2

The first of these equalities means that a change in the

amplitude Pm(0)of the inciuieat wave is described by the same factor

e°h m!,,tas in rectilinear waveguide. Energy of this wave (with real

h) does not change. This is correct only in that

approach/approximation, an waica is obtained system (7.27). As we

will see into §22, in the following order on curvature, the phase and

the amplitude of the incident wave at the output of bending with a

large radius depend, although to small degree, from the phenomenon of

transformation into other waves.

-Ave
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Formulas (7.28b, c) give the amplitudes of straight lines

(pi (00). j>0) and reverse/inverse (pj (0), j<O) the bcattered parasitic

waves. Proposing also that ri fr all j one and the same and that

h),1>0, and hj. really, let us record these formulas in the more

convenient form:

sin (hi,,, +I IlL,!) rOO/2 -i(hm~h Ip.
1)1(0) - e +-,~'i2 '0. (7.29b)[ Page (49.

Applicability condition ior entire solution (7.28-7.29) is the

smallness of amplitudes (7.29). In the denominator of these formulas,

will cost the radius of curvature; therefore for sufficiently large

bending radii, this approachi/approximation will be valid.

Applicability condition for these tormulas can be recorded in the

form

T (I(1 (-30)

For small angles, it is more precise, when(h.Tjh,I)ri),i«,1, formulas

(7.29) pass into formulas (4.6), (4.12), that relate to fracture. For

direct waves the bending with small 80 behaves as fracture, if a{

difference in its electrical lengtus for both of wavr's is small,

while for reverse/inverse ones -iL is small the sum of electrical

_ _ _ _ __N
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lengths; for backward waves tue requirement for smallness a. is

considerably more powerful.

Thus, (7.28), (7.29) wirn with large radii of curvature it is

correct for any angles 4., dad tur small 0 - with any r, and with

small r it passes into formalas for fracture (4.6), (4.12). It is

obvious that (7.28) it can oe also obtained - with an accuracy to the

unessential phase factor, owitte - uring conclusion/derivation into

§4, from formula (4.13), derived via elementary reasonings.

The amplitude of parasitic waves at the output of bending is the

nonmonotonic function of angle of curvature. This is explained by the

interference character the formation of parasitic wave, in detail

examined with this point view into §4. The arguments of sines in

(7.29) make simple physical sense - they are equal to half-difference

(for direct waves) and to nali-sum (for reverse/inverse ones) of

phase change cf the corresponding waves at entire bending. Let us

note that for any fixed/recorded frequency it is possible in limits

of accuracy (7.28) to turn into zero amplitude of any parasitic wave,

after selecting angle 0o Dy suca, so that the formed in different

parts of the bending parasitic waves would completely extinguish each

other.

The amplitudes of direct waves (7.29a) are much more than the

--- -7 2 __i
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amplitudes of reverse/inverse ones (7.29b), since for them, in firs

place are much more coupling coefficients, in the second place,

confronting under integral in (4,.13) exponential factor is

considerably the less rapi"I changing functicn.

Page 50.

Therefore Pi for direct waves contains in denominator a difference

in the absolute values of wave numners h-h,, and for backward waves

- a considerably larger value, their sum hIinl " Usually it is

possible to disregard energy loss to transformation into

reverse/inverse parasitic waves. Tais cannot be made only in

frequency region, in which Ih,I is small; appearing in this case

conditions will be examined into j13.

Coupling coefficient f..r uacKward wave of the same number, i.e.,

for the wave F.,,,,reflected, for electrical waves is equal to zero,

since C"'-=O, and is equal to

F -nin j(mm (7.31)

for magnetic waves. If F...... =0. then is equal to zero also coefficient

of reflection of this Uave from bending, P-m(O)=0.Thus, reflection

coefficient for any electrical wave is equal to zero. For magnetic

waves in the waveguidei cr round and rectangular cross section

K'-'0. and the reflection coerticient is also equal to zero, althogh
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there are forms of the waveguiaes in which K""- O. it goes without

saying, from condition F-m =0 foilows the equality of zero

coefficients of reflection p-m(O) only in the first order in 1/r for

a bending with large radius of curvature) or on O0 (for curvature

small angle). Other parasitic waves, which were being formed at the

bend, prove to be, generally speakinq, connected with the wave of

number -m, and amplitude p-m(0) is uifferent from zero, but it will be

order 1/rzo or 32 ..

Inequality (7.30), whc gives applicability condition for

solution (7.29), will render/show also disrupted for how conveniently

large r, if for any I hi=h. and in this case FjmO 1* -

FOOTNOTE 1. Formula (7.16) for a coupling coefficient takes the

indefinite form when !h--amO--0, in tais ca,- it is necessary to use

formula (14.7), from whica, in particular, it follows that Fi remains

final when ih-hI- 0. EIDECOTNOTE.

This is so-called case cf confluence when two waves, connected with

bending, have identical phase rates. In this case, all elementary

parasitic waves, which are toraeQ in the various sections of bending,

at any point of inflection store/ad up with cne and the same phase,

and, how not was great r, tae result of this a4dition will be for

final 80 finite quantity. In tais case it is not possible to
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disregard the reverse/inverse effect of the wave of number j on the

wave of number m; the given amplitude of this wave is changed, i.e.,

proves to be inaccurate also equality (7.28a). This situation

appears, in particular, with passage by wave Hol of bending in

circular waveguide, and based on this specific example we studied in

§22. The apparatus, which is based on system (7.9) or (7.27), makes

it possible to thoroughly investigate not only the case of precise

expression hj=hm, but also the general case when propagation constant

(generally speaking - composite) are close to each other.

Page 51.

5. Fundamental results of this paragraph easily are generalized

to bending with alternating/variable curvature. In this case, in

equations (7.9), (7.27) as variable it is convenient to take not

angle 0, but arc length 1,. For a reduction in the recording, let us

assume that for all I /I is counted off on by cne and the same friend,

and let us omit index in I,. Equations (7.9) and (7.27) take the form

- - " P,; Pv ( -i6,) e , (7.32)
dl r dl r

the communication/connection between P, and Pi will be

p1 -p~eV'.(7.33)

In this form of equation, they are used also for the case of bending

with alternating/variable curvature, when r depends on I.

_-
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,Really/actually, during coupling of two sections with constant, but

by different values of r of amplitude p1 they remain continuous upon

transfer through the bounary of sections. this follows from the same

reasoning which wa- used for the conclusion/derivation of end

condition, i.e., from the requirement of the continuity of fields and

from the condition of orthogonailty. Continuous will be also the

given amplitudes Pt- In each section of amplitude, they satisfy

equations (7.32); therefore these equations will be valid also for

entire bent waveguide, which consists of two sections, if we in them

count r different in both sections. Generalizing this reasoning to a

larger number of sections and passing to limit, we will obtain that r

• in (7.31) can be any, including disruptive, by function .

It would be possible to give also the direct analytical proof of

the validity of systems (7.32), aiter introducing not cylindrical

coordinate system, but more common/general/total system in which I it

would be one of the coordinates; this system was proposed, for

example, in [19]. The given above reasoning mcre distinctly

emphasizes the physical sense of the fundamental fact, which makes it

possible to generalize (7.32) to the case of a variable radius - a

local character of coupling coefficient, i.e., the independence

transformation from curvature at adjacent points, therefore in (7.32)

does not enter the derivative of curvature.

J1
g N
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Equations (7.32) are valid also for straight portions (r=-) ,

they will bend on space curve, then the orientation of the Cartes;

coordinate system in section is changed along waveguide, and

therefore coupling ccefiicients Firn also prove to be function Al

Page 52.

!A

For large radii of curvature (more precise, when the amplitud

of all parasitic waves are small) also it is possible to give the

ZA general solution of system (7.32). Again as for the bending of a

constant radius, it is possible in right Part Two system (7.32) tc aI

reject/throw all teriu/component,-addends, except member, who

corresponds to the incident wave, and to set/assume Pm (0)=coflstlI. I1

IV

amplitudes of the parasitic waves, scattered by bending, are found

this case from the equatioA

N di

Its solution under boundary conditions (7.10) takes the form

NLF

Pi (15 eO =Ydl 792>0 0, +

0

_Lp (7.35)
-- eA(hnhI)zdl, <0.

This solution is understood identically with the solution, found i

§4.

Kh
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Under confluence (h,=hm) or conditions, close to degeneration

(hi-hI l).in system (7.32), just as in system (7.24), it is

necessary even with large radii oi curvature to retain to the rig.

several term/component/addends and to solve simultaneously several

equations of this system (see §22).

For the constants r aud F,,, solution (7.35) passes in (7.28).

However, computation pi from integral expression (7.35) in an

explicit form is possible also somewhat more general case.

Specifically,, let r(1) slow.Ly to changed with I and has at entirE

bending one and the same order ot magnitude, but at its end/leads

experience/tested disruption and it goes to infinity, so that at t

points, hich occurs coupling the bent and rectilinear waveguic

the curvature of the bent waveguice it has the same order of

smallness, as at entire bending, and by jump is turned into zero.

Integrating in this case (7.J5) in parts

P1 =±hmthiF (L.eQhnhj)l

P" i e-

-T L e-(hrn-h1)t d AFm'
hm ) dl, r / (7.36)

we we can reject/throw second term, which contains the derivative

curvature and product from curvature for twisting.

t1

-~~~~~ ~~ -A- ~ ~- ~
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Reject/thrown term/component/addend has, generally speaking, the same

order of smallness, as add/composed, which appear with

preservation/retention/maintaining in (7.32) all members of sum. The

obtained binomial formula is the generalization of expressions

(7.29).

Thus, in this case in the old order of the amplitude of

parasitic waves they explicitly aepend only on the values of

curvature and coupling coefficients at the points of the

discontinuity of curvature. This does not indicate, it goes without

saying that the formation of parasitic waves occurs only in these

only at these points - it occurs at entire bending, but the points of

the discontinuity of curvature are isolated by the fact that near

them is considerably attenuate/weaxened the mutual compensation the

waves, which were being formed in different sections. We still will

return to the problem ct the computation of integral (7.35) in

chapter V. Analogous expression we will encounter during the

computation of the wave amplitudes, scattered on the waveguide

transitions of alternating/variable section.

--i
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If the mean curvature of tae bending of a variable radius is not

small, then it is necessary to apply numerical methods. System (7.32)

allow/assumes comparatively simple calculation on computers. With

this better to operate not with pi(O), but with the variables Pi(0).

6. Field in waveguide, bent with constant curvature, can be

described also in terms of its own waves, i.e., waves, which are

propagated along bending witnout regeneration. Its own can be

considered as some linear combinations of the waves of rectilinear

waveguide. they they can be oatained from common/general/total system

(7.9) during supplementary requirement, so that all amplitudes P (a)

would depend on 0 according to the one and the same law

N " p, (0) 7 pj (0) e- '  17.3.,7)

Substitution (7.37) in (7.9) reduces to the system of algebraic 745

equations for P1 (o):

(F1 i + iq 6iv) Pv (0) 0. (7.38)

This system has solution, if q equal to one of the roots

characteristic equation:
1(7.39)

Det I FIm+ iq 6jr. I 0- (

Each root of this equation corresponds to one its own wave. The

relationship/ratios between coefficients P,(0) for each their own

wave are determined from system t7.38) after the substitution into it

of the corresponding root.

N1
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Knowing the fields cf the inherent flexural waves, it is

possible then to determine tne amplitude of the scattered waves,

joining fields on the boundaries ot the bent part; this will give the

systea of algebraic eguations for the amplitudes of its own waves inI
bending and the amplitudes of tue outgoing waves in rectilinear

waveguides.
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Page 54.

This procedure, generally speaking, is scmewhat more complex

than described above the direct/straight determination of the

- amplitudes of the scatterea waves; however, in some problems (for

example, see last/latter point/item §22) the apparatus of its own

waves proves to be convenient.

The application/use of a concept of its own waves in the case of

the bending of alternating/variazle curvature is suggested in Juan

Khun-tsz' article [81]. In any section it is possible to introduce

the system of the waves which would be their own waves of the

waveguide, bent with the constant curvature, equal to the curvature

of this section. These waves are not not depended, between in the

curvature. It is easy to find tne regular method of determining this

coefficients in (7.9).

Let us designate the matrix/die, which leads matrix/die Fm to

the diagonal form, which contains only the rocts of equation (7.39),

by letter 0; the amplitudes of the natural waves, which we will
designate W., are obtained in any cross section of P. by the actionJ I
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of the matrix/die of 0-A. in the matrix recording

W 0 -:P, (7.40)

:where by V and P - matrix/dies, which consist of one column, with

cell/elements W1 and P1. Amplitudes WI satisfy the system of

differential equations, which is easy to derive from (7.9) and

(7.40): W'=NW; (7.41a)

N -O'FO O-O'. (7.4 1b)

If bending radius is constant, then the constantS i.e., do
-: O, the second term (-0- 0') in matrix N -

not depend on 0, also all matrix elements F antddiagonal matrix/die,

i.e., their own waves are not connected. In [81] it is shown, that

for the bending of the alternating/variable curvature when second

term in N is excellent from zero, this term/component/addend does not

contain diagonal terms; its cell/elements are proportional to

derivative of curvature, and precisely they describe the

communication/connecticn between normal waves. If curvature is

changed slowly, then the system of differential equations (7.41a)

contains the low parameter and can be solved in an explicit fcrm.

Transition from one variables P to the next Wj is actually

introduction to the method or tue cross secticns of other waveguides

cf comparison. Instead ol rectaiinear the waveguide, tangential to

this bent, the waveguide of comparison undertook the waveguide, bent

on the circular arc of curvature. Therefore series expansion

parameter of problem becomes nor curvature, but it derivative; this

A
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is reached, however, by the essential complication of apparatus,

conduct of matrix/die V instead of F, variables Wj instead of Pj.

and so forth.

IINj Page 55.

The analogous generalization of method in the theory of the

rectilinear waveguides of constant section was suggested by G.

Lyubarskiy and A. Povzner [54], that accepted as the waveguide of

comparison cone. However, the application/use of such waveguides of

comparison is possible only in some particular problems, but the use

of an apparatus, based to (7.40) and (7.41), in principle it is

possible always, wh s known the initial matrix/die F.

Let us make on conclusion of this paragraph one observation,

which relates not to waveguide, but to the toroidal cavity

resonators, which are obtained from the bent in circumference

waveguides of constant section. if a radius of this circumference is

very great in comparison with tae size/dimensions of section, then

the fields of their own waves of such endovibrators coincide with the

fields of the traveling waves in the rectilinear waveguide, and

natural frequencies are found irom obvious asymptotic condition,

according to which the electrical length of cavity resonator rh1 is

equal to 2r/n, where n=O, +-1, +-2, .. , and hi- wave number in
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rectilinear waveguide. with any radius of curvature, natural

frequencies can be found irom (7.39), if we in this

relationship/ratio assume =2rn and to consider it as equation for

frequency. In particulax, with the large radii of curvature in this

way it is possible to find expliciz expression for first-order

correction, proportional to curvature, to the asymptotic value

natural frequency. Asymptotic value is obtained from (7.39)

neglecting of the coupling coefficients between different waves,

i.e., by all nondiagonal elements in (7.39).

§8. Calculation of waveguides witr the alternating/variable filling

with the method of cross sections.

1, Let us examine rectilinear waveguide of constant section, in

which . and p essence of function of all three coordinates. At

first we will assume that e and p by continuous functions. For

describing the field in this waveguide, it is necessary, according to

the method of cross sections, to decompose field in any section

z=const in row/series cf Fourierls type on the fields of waves in the

waveguide of comparison. The waveguide of comfarison in this problem

is the regular waveguide, in whica e and i in all sections they are

the same functions from x and y, as in this section of irregular

waveguide. The waveguides of comparison for different z are

different. Coordinate system in the waveguide of comparison let us

JA
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designate through x, y, .. -tue fields of their own waves in the

waveguide of comparison depend, as usual, from C, entering the

exponential factor e-ih .  and also on z, since on z depends the form

of the function y(t, y) and ft(x' y)

Page 56.

Let us assume, it is analogous how we this made in the problem of the

bent vaveguide,
t o to

E. QrnE', E, -- ~QmE7

't!- R-117, H,= , RAjIT.1.1

where the coefficients Q., R. are functions from z. Let us introduce

then variables P,(z) and P_,(z) by conditions (7.2). Then these

expansions can be recorded in the form

E.= PV, E, = PE; U P,,' , H= P, ( 8.2)

Field- E, H satisfy on the walls of irregular waveguide the same

boundary conditions (3.2)that ana field Em, H on the walls cf the

waveguides of comparison; expansions (8.2) can be piecemeal

differentiated. Substituting (8.2) in two of the equations of Maxwell

and comparing result with two last/latter forsulas in (3.4a) and

(3.4b), we will obtain tcr longitudinal components the same

expansions, as for transverse ones:

E =PE, = (8.3)

Al
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*Thus, P1(z) can be considered as wave amplitudes, which exist in this

irregular waveguide.

Let us pass to the conclusion/derivation of equations by which

*they satisfy function Pi(z). Let us substitute fcr this row/series

(8.2), (8.3) into four those remaining the equation of Maxwell.

*Utilizing several times (.3.4), after simple transformations we will

obtain four equations:

e. (PV + jhvRV) =-PVE.VA . IV (PV + ih,P,) Pv -

(8.4)
Hv,(P, + ihvPv) = Pvll~ llj (Pv +j ihzPv) .- P1 1'.

Here prime indicates deriv--tive on z.

In order to obtain equaation for P;, let us multiply (8.4~)

respectively on - H,(14.E n ~ let us add and let us integrate

over cross section. Taking into account the condition of

orthogonality, we will cttain expression for P; in the form of

linear combination from Pm, wiixch it is possible to record in the

form

P; + h1P1 SA. 8.5

Page 57.

This expression is correct for any j; therefore (8.5) it is the

unknown system of the orainary ditzerential equations of the first
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order for P1(z).

we call values ,... coupliny coefficients, since they describe

interaction of waves, obiiged of the irregularity of waveguide. For

*them is obtained the following exiression:

S,,,, ~k. yi~ +i~ E1-,'-I EIly E Yl) dS. (8.6)

End conditions for P, are located as in the priblem of the bent

waveguide, from considerationz, about the continuity of fields upon

transfer from irregular to regular waveguides. if irregular section

with a length of L is joined with z=0 and z=L with two regular

waveguides and from side of lef~t waveguide on it falls the wave of

number a from single amplitude, thaen these conditions take the form

The physical sense of system (8.5) is such as systems (7.9) and

interpretation, given to system (7.9) at the end of the first

point/itea §7, it can be almost literally (cnly with replacement A8

on Az) it is used to (8. 5).

2. From common expression (8.6) for coupling coefficients it is

possibli to find several siaple correlations. Compare, in the first

place, (8.6; with the faimuld which is obtained during

differerptiation with respect to z of equality (3.8)

S (En'ut7 - Eml"~) dS =khj,. (8.8)

In this case, differentiate one should only integrand, since range of

1'-
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integration for all z one and the same. In this way we find

-i hn/2hil. (8.9)

Differentiating then for z the condition of orthogonality (3.9) and

expressing the obtained integrals through coupling coefficients

according to (8.6), let us find reciprocal relation for coupling

coefficients
/iS, - hjS ,, (ri + ). (8.10)

Two last/latter formulas can be, it goes without saying,

obtained, using only system of equations (8.5), in the same way as

was obtained relationshiE/ratio (7.14).

Page 58.

One should only consider that, according to (8.6), during a change in

direction of both of waves valae SI., in contrast to (7.11), does not

reverse the sign, i.e., S-_,---Siz

Relationship/ratios (8.9) and (8.10) make it possible to check

that system (8.5) satisties the requirements, which escape/ensue from 4

law of conservation of energy. According to the law of conservation

of energy, for any field in irregular waveguide with real-valued e

and p must be constant the sun

where the addition goes over to all propagated (h,- really) waves
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of both of directions. We convert derivative of (8.11) on z, after

replacing 6/ according to equation (8.5). Then this derivativ.1 will

take the form

[h; + h, (Sy + s,)I IPi 12 + Y y [hjS;,.- +-m.S,,, . (8.12) 14

This value aust be equal to zero with any Pi, therefore, must be

equal to zero brackets in both sums. Since S,, with real ones e, gt, hi

and h. is also real, tais the requirement is fulfilled according

to (8.9) and (8.10) .
j

Let us note that in exactly tae same manner it is possible to

show that the system of equations 7.9), that describes field in the

bent waveguide of constant section, also satisfies the law of

conservation of energy. in this case, the equality zero brackets in

(8.12) follows from reciprocal relation (7.14); it is necessary still

N.. to bear in mind, that fcr tnw propagated withcut attenuation waves

the coupling coefficients F,. are pure imaginary and that into this

to problem hi;O.

3. In specific problems of using expression (8.6) it is usually

inconveniently, and below we will find several other formulas for I

Si,,, after obtaining by their transformation of fundamental expression

St r8.1 6. i

- In the regular waveguide in which e and i they do not depend
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on z, i e., when aeloz=O, d 10z=0, all coupling coefficients are equal -A

to zero. Let us find such expression for Sim, khich, in contrast to A

(8.6), will contain derivative.s on z of e and P, but not from A

: I fields.

Let us record the equations of Maxwell in the variables x, y,

for fields io and tn in the waveguide of comparison. In these

equations Em, H', ,m. and also e(x, y), p ( x, y) they depend on z,

i.e., from that, to which regular waveguide these values are related.

Let us differentiate these equations for z:

rot - - iktt'/f;m rot f" = ikEk" + ik8El. (8.13)

This differentiation indicates transition from one waveguide of

comparison to another, close. For example,

(flm)" (fry " - i;h;nIm)i 'n . (8.14)

Let us multiply equations (8.13) on - I-', i-I, and the equation of

Maxwell (3.1), written for a wave numbers (-j), will multiply on (J )'

and (En)' let us add results. ie will obtain the equality

div {1fr- (Em)'J - [(llm)'E-1) = ik (t' m i - eE m E-). (8.15)

Let us isolate to the left darived on and let us integrate (8.15)

with respect to section, after accepting j1-rn. On metal (E,,1)' it

satisfies the same boundary condition (3.2)that and km, therefore

will remain to the left only the integral of derivative on C from

jg 3
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-th the component of the vector, from which is undertaken the

divergence. With substitution(f..)', (k")'second terms in (8. 141 will

fall out due to the condition oi orthogonality, and the remaining to

the left integral will be identical with integral in (8.6). This

transformation is led for a coupling coefficient (8.6) to the

expression
Sji ,- H-H") dS (8. 16a)

Lh1Q(t, 11.) a- *

or, which is the same thing, to the expression

Sim =[O r .- E -E ,E2, -L-

• ' ,,i(m i )

+ -(lII ' -11 H ,.#l, - )1 dS. (8.16b)

The presence in the denominator of the obtained formula of

difference h-h, does not mean that the coupling coefficient of two

waves becomes very large, if propagation constant of these waves

converge. According to (8.6), Si becomes large only with small hi,

but when Ihi -hm-O Sp. it remains final. At close values hl and

h. is low the integral, waicn stands in the numerator of expression

(8.16). This remains valid and ior the row/series of other

expressions for Sirn. obtained is below, also ;cntaining difference

hi-h,. in the denominator (see §9).

Expression (8.16) fcr coupling coefficients is identical with

expression (5.12), found by the examination of small heterogeneities.
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F) On the other hand, applying system (8.5), (8.7) to a small

heterogeneity, it is easy to obtain formula (5.6), (5.7) for the

amplitudes of the parasitic waves, scattered by this heterogeneity.

Analogously can be obtained expression for h,. Let us assume for

this into equations (8.15) j=m. Dependence on 9 on the left side of

the equation is determined only by second term/component/addend in

(8.14). Isolating newly derived according to 9 and taking into

account the condition of orthogonality, let us find

km ~-~(e'E- E- - j' m f m dS. (8.17)N-

4. Expression (8.16) for coupling coefficients we utilize as an

intermediate result in crder to tind anothet expression for Sjm, most

convenient under the normal conditions, when e and p they are the

piecewise constant functions of coordinates and e' and p' they are

different from zero only on the boundary of the reg.lon, occupied with

material.

In order to calculate S,, for this case, let us replace first

interface with the thir layer, in which e and p they pass from the

values which they have in material, to e=lp=1. Integral in (8.16) is

taken only on this layer (shaded in Fig. 7). Of this, consists the

essential difference for expression (8.16) from (8.6), in which and

in this case the integral is taken according to entire section. In

order not to complicate recording, let us suppose that there is only
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one interface. Result naturally can be generalized in the case when

such interfaces several.

Let us introduce local system of coordinites s, n in the thin

layer on which is conducted the integration in (8.16), thus, in such

a way that the unit vector s would be tangent to the duct/contour, on A

which they intersect interface and cross section, and unit vector n

it was normal to s, it lie/rested at the crcss-sectional flow and it

was directed from area in whica e=, i=l, into material. Vector n, s

the unit vector, parallel to axis z, they must form the right-handed

triad. In order to connect de/dz with dl/dn and dp/dx with dp/dn, one

should first express these values through gradients e and .

f- -

i=

NJ
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Fig. 7. Transition layer near interface.

Page 61.

The geometric examination vnich we lower, it gives

where v is equal to the tangent of angle a between Z-axis and

tangent to the interface, perpendicular to the duct/contour of cross

section. Relationship/ratios (8.18) are illustrated in Fig. 8 for the

simplest case when vectors n, grad s and Z-axis lie/rest at one

plane.

- ..' In this case, according to Fig. 8, it will simply be

- grad e I sin - grad sj cos o, (8.19)2dz all

whence it follows (8.18). in the general case the factors with grad e

in (8.19) take the zore compiex form, but their sense is always

equal v.

Strictly speaking, (8. 18) it is correct cnly in the limit, to

which we will pass below, oracing the thin layer wnere occur changes

e and p, into surface (interface); in this case, grad e and grad

%%= 9-
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p become perpendicular to tais suziace. Before passage to the limit

v in (8.18) - certain value, which has in limit the geometric value

indicated.

Substituting (8.18) in expression (8.16) for a coupling

coefficient, we will ottain

- ~2h, (h, I-h

EE) ] L"(1i"+H11 H)dids. (8.20)

Let us recall that those participating in (8.20) fields are

related to the regular waveguides of comparison; the characteristic

of irregular waveguide is now only value v. The cross section of the

waveguides of comparison consists of two regicns with constant values

e and pi and their fine/thin dlividing transition region in which

c and V they depend on x and y.

In transition layer tangential components t", ff1and normal

components gelm, ' are continuous, so that

~(it) -E'e (it); E' () E,, E~'j (n)
(8.21)

and also is related to thae fieids of the wave of number j
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Fig. 8. To the conclusion/derivation of relationship/ratio (8.18).

Page 62.

Here &(n) and so forth - fieid in transition layer; to the right

values £7 confronting and so forth - value of fields on interface

from its that side, wherer=I,==1. Formulas (6.21) that are more

precise the less the transition layer. They are derive/concluded from

the integral form of the equatlons of Maxwell in the same way as

usual boundary conditicns of the section of two dielectrics.

After substituting (8.21) in (8.20), it is possible in (8.20) to

produce actual integration for u. After this S,, will contain only

integral, undertaken on duct/contour S.

In this way is obtained the unknown expression for a coupling

coefficient

2Ihi - hm) v(s-
1) -- I~ s H 'Hi=) -

-NO
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E;II
Here a and p - permeability value in material.iI

For computing the coupling coefficient in formula (8.22) it

suffices, thus, to know the fields of waves on the boundary of

material in regular waveguides and the function v(s), which

characterizes the divergence of the waveguide in question in this

section from regular.

For a regular waveguide ,0, all coupling coefficients are

equal to zero.

Expression (8.22) will be assumed as the basis of analysis in

the following paragraph.

Formula (8.22) especially -s conveniently used, if e and

they are -lose to unity, since substitution in (8.22) fields in the

empty waveguide immediately gives the first terms of expansion Si,

according to degrees (e-)and (p-b.

-2-I
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To the form, analogous L8.2z)perhaps it goes without saying, is

given also formula (8.171) for a derivative of wave number.

Formulated in the beginning of this paragraph continuity

condition of functions e(x.y,z) aui p( x, y, z) ensured convergence of

series (8.1)-(8.2) in all points of cross section. It made

permissible term-by-term diifereatiation of these row/series and led

to system (8.5) and values Si.,. given by formula (8.6). However,

further transformation ot expressions (8.6), that led for disruptive

ones e and p to expression (8.i2), none is connected with this

condition.

Page 63.

Accurately also system (8.5) for coefficients in expansions (8.2),

not depending on the degree of the smoothness of functions E and p,

it remains valid in all stages or passage to the limit from

continuous ones to disccmtinuous functions e and p. It will be

valid also in limit for discontinuous functions, although row/series

(8.2) and (8.3) during this passage to the limit can cease to

converge on discontinuity surfaces z and p they will become

unevenly converging. Situation is nere analogous by that with which

we are encountered during tae usual conclusion of conditions for

electromagnetic fields cn the interface of twc media. These

?'



DOC 79024304 PAGE

conditions are also establish/installed first by applying the

equations of Haxwell, valid for continuous media, to thin transition

ME layer; the subsequent passage to the limit does not disrupt these

conditions, which are satisfied in entire process of passage to the

limit.

This reasoning will allow us in the follcwing paragraph to

continue the transformation oi expression fcr coupling coefficients

and to pass in expression (8.22) to the limiting case of infinite

value i.

Passage to the limit to the case of disruptive ones t and p we

produced above in formula (d.16). This same transition it would be1I
po-sible to produce and ia initial expression (8.6). Obtained in this

case expressions for ccukiing coefficients wculd be, however, it is

considerably more complex than formula (8.22). They would contain, in

the first place, the contour integral, analogous (8.22). Th-s

integral appears from integration on the thin transition layer where

the field gradients are very great and that participating in (8.6)

derivatives have as derivatives in formula (8.16), character of f
6-functions. In the seccnd place, in these expressions would be

preserved integrals of the same type, that (8.6), undertaken

according to entire section, since in (8.6) integrands were different

from zero in entire section. During passage tc the limit Ifr--oo [
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which we will produce in the following paragraph, with this method of

calculation in expressicn for Sin, would be preserved integrals of

both of types, and integral according to section would contain

derivatives on z of membrane/diaphragm functions. Obtained in this

way expressions would be considerably more complexly than obtained

lower formulas (9.2) or (9.5), ana we will not give them. Let us note

only that, utilizing formulas (9.11) of the follcwing paragraph, it

would be possible algebraically to demonstrate the identity of these

formulas for the coupling coefficients and obtained below formulas

(9.5)

5. In this point/item we will give, following K. A. Barsukova's

work [82], generalizaticn ot formalism, develcped above, to case when

waveguide is filled by materiai with tensor parameters.

Page 64.

Let the medium be characterized by the hermitian tensors of the

dielectric and magnetic constants

SE = "es a , N = ilt a 1 0 (8.23)0 -ie 3 0 0it

The condition of orthogonality for fields in waveguide we accept in

the form of equality zerc integrals
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(Ei"t/' --. l4' I- .. A . t ) dS. (8.24)

with Jim. It goes without saying, with scalar ones and

condition (3.9) also could be replaced by condition (8.24), but the

accepted by us condition is sximpler. We standardize fields in such a

way that with j=m integral (8.2J) would he equal to 2k/i,,,.

All reasonings, leading to tae conclusion/derivation of system

of equations (8.5), in this case will be preserved. Instead of

formula (8.6) for a coupling coetticient will be obtained the

expression
St. (E ... *{1E"'1"J, + I E'" '1, dS. (8.25)

2kh i

From this expression it is possinle to pass by the same

transformations as produced in the preceding/previous point/item, to

expression for Sm, that is the generalization of formula (8.16):

Sln E' ' °  El + H 2 If' dS. (8.26)2Itj (hj S (,~ Jz , az J
Derivative of tensor is defined, as usual, as the tensor whose

cell/elements are equal to deravatives of the cell/elements of this

tensor.

If the components cf teasors E and M are the piecewise constant

functions, then expres~ion (8.2o) also can be brought to contour

integral. Field expressions in transition layer will satisfy

relationship/ratios, scoewhat more complex, than (8.21):
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(n) ET (n = --" E,'n)E - 1 " (8.27)

where are preserved the designations of formula (8.21). The same

formula for components H m we do not extract.

-' Page 65,)

I
N Integrating (8.26) on ni on transition layer, let us find the ;

o; . expression for a coupling coefficient, which contains only fields on

: the boundary of the introduced n waveguide body

Sim V S __I E,'EE
2h, (h hi ) f"+

n* IF-)- +y 'Em
-I- EIE- + i -- (EI:E, - Ei.E) + ( - 1) E.E" +

, .. - I) H.,t11" IL H'-- -2.,  " + i 1' (M; m" I PHm') +

+,,,, 1)H iH' jds. (8.28)

The results of this point/item can be used, for example, with

the examination of the phenomenon of the transformation of the

electromagnetic waves during difterent ferrite connection/inclusions.

6. Let us pass to application/use of obtained system of

differential equations (8.5) for amplitudes A In the following

paragraph it will be shcwn, that this same the system describes field

in tapered weld. Therefore all obtained below results will be used

also to such waveguides. Coupling coefficients for them also are
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expressed in the form of the contour integrals, which contain the

angle of the slope of generatrices to Z-axis.

Let us examine the case of loose coupling, i.e., the case when

all coupling coefficients are low. This occurs, if along waveguide

its parameters are changed slowly - is low value v0, equal to the

average/mean value of the tangent of generatrix, or generally e and

y~ little they are changed at the distances of the order of the linear

dimensions of section. The exceptional case when during a slow change

in the parameters coupling coefficients are great due to the

smallness of the confronting in denominator wave number, will be

examined in the following chapter.

As in the preceding/previous paragraph, let us give first system

of equations (8.5) to tnis -torm that its matrix/die would not contain

diagonal terms. Let us introduce the newly given amplitudes pl(z), after

determining by their now equality

10)
" Pl (z) = Ph (z) e-j;r(

Page 66. 5 Ti(-)= h~dz. (8.29)

Substituting (8.29) in systew~ (d5 and taking into account

relationship/ratio (8.9) between Sil and h;. we will obtain for the

given amplitudes system of equations

P; (Z) , i ( 0 810 pCAIV'I) (8.30).



DOC =79024304 PAGE 4

End conditions for pi(z), accordiLng to conditions j8.7) and

Iintroduced in (8.29) to factors, take the form

Pm (0): 1, p (0) 0 MHj>o, jq-m;4Vp 1(L)=O Upt I<0. (8.31)

JM
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-' Repeating the considerations, presented before formula (7.34),

let us preserve in (8.30) to the right only amplitude of the incident

wave. Then Pm=O, i.e.
t " "(8.32)

P. (Z)= I, P. (Z) e-1 h .  (3:. hm (z)

Frcm comparison with expression (3.10) for the energy, transferred by

wave, it follows that in the iirst order energy of the incident wave

does not change along waveguide.

Substituting (8.32) in (8.30), we will obtain for jim the

equation
; -- - s1,. e (8.33)

From it and end conditions to. 3) let us find the amplitudes of the

scattered parasitic waves
L

Pi h±l 0) Si. e dz. (8.34)
V o /h. A

With upper sign formula (8.34) gives P,(L) with j>0, jim, with

lower it gives Pj(0) with j<0. The square modulus of the integral,

which stands in (8.34), gives energy of the scattered parasitic wave,

divided into energy of the incident wave. The physical sense of

different cell/elements cf formula (8.34) was discussed into §5,

where it was obtained by other means.

Formula (8.34) together wita the obtained above different
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expressions for coupling coefficients reduces stated problem of the

calculation of waveguide with the slowly changing parameters to

quadrature.

Page 67.

7. Approximate solutions (8.32), (8.34) it is possible tc derive

oi precise system (8.30) somewhat more formal path. Let us expand for

this pi in row/series according to the degrees of the low parameter

of the problem

Pi P?) + Vop"') +- (8.35)

The character of system 8.30) mas es it possible trivially to produce

the separation of the embers ot different orders of smallness. All

coupling coefficients have order v0, so that Sji=voS., where S/, is

not contained already low factor. with substitution (8.35) into

system (8.30) we will cttain

(0) h-__ / ( IA Z- 1

(8.36)
The first of these equations gives p'(0)=O with m, p' 10) From

the second equation follows tnat ,)-I- and the formula for P?'

identical (8.34).

This reasoning can, however, prove to be erroneous. The problem

in question contains, besides the low parameter vo, also the high

L {
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parameter - length of section L, and in condition total variation in

the properties of waveguide, proportional to product v0L, it is not t 9

considered small. Therefore it can seem that expression (8.34) for

pj')(z), giving low value in the Deginning of section, with large z

- ceases to be small. This really/actually occurs during the

degeneration when the Fropagation constant of any wave is close to A

the propagation constant of the incident wave. In such cases

exponential factor under integral in (8.34) will not be the rapidly

changing function from z, and integral in (8.34) will not be low

value. Used in this case caiculation method we will examine into §15

based on the example of tae twistea waveguide. Analogous conditions

we met in the theory of the waveguides, bent cn curved small

curvature. Applicability condition for entire approach/approximation

of "loose coupling" is therefore not simply smallness vo or

analogous values, but smallness of all amplitudes, given (8.34).1.

FOOTNOTE 1*. It is more precise, small in comparison with unity must

be all expressions of t'-ce (6.34) with substitution instead of the

constant upper limit of i of any value z from the interval in

question. ENDFOOTNOTE.

This is reasoning, in particular, it explains, why to more

conveniently examine the given amplitudes p,(z) it is not possible the

same expansion to produce directly with system (8.5) for Pj(z). The

4;
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right side of the equation for P, contains term/component/addend,

proportional P1.

Page 68.

With the substitution of tue expansion of amplitudes Pi, analogous

(8.35), this term/compcnent/addend (with j4 m) would be the second

order of smallness (on vo). iowever, during integration on long

section, it would give in P(z), as it is easy to check, the

contribution of the first order on vo. Thus, for obtaining the

correct result it would be necessary during integration for long

section to unite the members of the different order of smallness.

Transition from one varianles P to the next p allows, applying

expansion according to oegrees v0, to construct the solution which

considerably more slcwly diverges during advance along waveguide.

Physically this is connectea with the fact that the solution p,,(z)= I

satisfies, as we indicated, to the law of ccnservation of energy.

There is a specific analogy between transition from P(z) to the

given amplitudes p1(z) and Ynown transformations, produced in the

theory of the propagation of waves in the inhcmogeneous media (for

example, see (80], §16) wnen deriving the equations of geometric

optics.
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8. In chapter V, we wiil use results of this paragraph to

calculation of row/series of concrete/specific/actual systems. Let us

here note only three special cases when formulas for the amplitudes

of the scattered waves taxe simpler form. Let, in the first place,

the coupling coefficient Sim in entire irregular section have one and

the same order of magnitude, and at the end/leads of the section with

z=O, z=L jump takes zero values. This can, for example, occur, if the

slope tangent of generatrix v(s, z) in (8.22) little is changed in

interval O<z<L. Then integral in expression (8.34) can be calculated

by integration and to reject/throw in parts integral term. '.

FOOTNOTE * If (8.37) it is equal to zero (at any frequency), then to

calculate P1 according to (8.34) is impossible, as the remaining

integral term there will be the same (the seccnd on vo) order, that

-i also third add/composed in (8.35), not considered in (8.34). This

consideration is related also to the third case, mentioned at the end

of this point/item. ENDECOTNOTE.

In this case, we disregard the values of the order of the square of

average/mean value v(s, z) and order by derivative v on z. For Pi

is obtained in this way explicit expression in the form of the 2

binomial formula, analc9ous (7.35):

L
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im. + h. (O) h(L) S i X

X [I," (L) - I1 (L)J (8.37)

Here upper sign is related to direct waves, lcwer - to

reverse/inverse ones.

Page 69.

As for the bent waveguide, tae amplitude of direct/straight

parasitic waves it is more than the amplitude of reverse/inverse

ones, since for direct waves the oscillatory factor under integral in

(8.34) is the less rapidly changing function, than for

reverse/inverse ones. However, for rectilinear waveguides this

N difference in amplitudes is less, since very coupling coefficients

S m, as we will see belcw, nave, generally speaking, one and the same a

order of magnitude for direct/straight and backward waves, but

~coupling coefficients Fi., in Dending consideratly more for direct

waves, than for reverse/inverse ones.

Integration in parts, producea during conclusion/derivation

(8.37), isolated the values of coupling coefficient at the salient

p oints of generatrix. At taese points occurs less complete, than in

-V other sections, the compeasation the parasitic waves, which are

,I
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formed along irregular section. The second case, for the first time

i examined in Yu. M. Isaenkogs article (83], by whom it is possible to

produce the approximative integration in expression (8.34), is

connected with the character of a change of the rapidly oscillatory

exponential factor in (8.J4). The derivative cf the exponential in

integral (8.34) is equal to i(h-h.). If in any section the propagation

constant of the appearing direct/straight parasitic wave hi(z) is equal

to the propagation constant of the fundamental mave h.,(z)

h, (z) (h (z). (8.38)

the for integral (8.34) corresponding value z gives the point of

steady state. In the vicinity of this point, exponential factor

changes more slowly than in other regions of irregular section,

compensation also is attenuate/weakened; entire integral (8.34)

proves to be the approximately equal to the integral, undertaken on

this vicinity, and the value oz the functions, which stand by factor

with exponent, simply they will ne carried as integral sign.

Integral (8.34) for direct waves can be recorded in the form
L

Pi = lD (z) e-C ¢(a)dz, (8.39)

0

where D egual to all product Freexponential factors in (8.34), and

the function ', which is everywhere of the order of one, is

determined by the equality
.",, (z) - 1 ) (8.40)

IN - T (L) -- 1, (L)

In this case, is isolated the high parameter cf problem a, equal to a

ON~
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difference in phase change of two these waves in entire irregular

I section_

T - (L) - T, (L). (8.41)
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If in region 0(z<L there i.s eqjuation V1(=0. i.e., the root of

equation (8.38), then integral (8.39) can be calculated according to

the method of steady state, atilizing condition IoI I. Leading term in

expansion (8.39) according to reverse/inverse degrees a is of the

order .12.He is equal to

-~~~ J ~~- 1 5Ym(zS )-V1 (')--tVA) 4~(n z) ;( 5 : (8.42)

where z~z,- a root of equation (d.38). The reject/thrown terms will

be of the order *

Expression (8.42) contains low factor 4(zJ), however, in the

denominator of this expression, also will cost low value -root from

derivative on z. Therefore, when in irregular section there is points

of steady state, i.e., the points, at which is satisfied condition

(8.38), then the amplitude of tne corresponding parasitic wave proves

to be comparatively large, propcrtional to square root of the angle

of the slope of generatrix, i.e., irom series expansion parameter of

problem. Wave amplitudes ior waica equation (8.38) does not have

roots, will be less, they contain slope angle tc the first degree. In

-

42j7I

-~ -~
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article [83] formula (8.42) is used to the determination of the

amplitudes of the parasitic waves, which appear in special complex

waveguide transition.

The third case, in some ratio/relations cpposite to the first,

with which also it is possinle to calculate integrals (8.34),

appears, if the functions, which describe the surface of irregular

waveguide, are continucus together with all their derivatives. This

case is examined in the article of Pokrovskiy, etc. (26], in which

are analyzed thoroughly the integrals of the same type as (8.34). As

that is accepted in analogous quantum-mechanical problems, these

integrals are calculated by the steepest descent method in the plane

of a complex variable; they prove to be in this case exponentially

% I low values, order e-C/v, where number C depends on the

concrete/specific/actual form of integral (8.34). The application/use

of this computational proceaure is connected with definite

difficulty, since under actual conditions the surface of metal is not

described analytic function. Tis is procedure, apparently, it can

prove to be essential in the tueory of natural ones, for example

atmospheric, waveguides.

9. In all constructions oi chis paragraph, we assumed that field

Em(x, y), Hm (x, y) and wave numbers h,.. of its own waves in regular

waveguides with heterogeneous filling, i.e., in waveguides in which
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8(x, y), it it (X, Y), to Us were known.

Page 71. .

in a number of cases, however, tue determination of these fields is

independent and complex problem. is presented briefly a method whichii. makes it possible to solve it tc any degree of accuracy. -

AA. In contrast to the expansions which we used above and let us use

-~for the extent/elongaticn of an entire monograph, field in the filled

vaveguide it is possible to decompose on the fields of waves in the

same empty vaveguide. This expansion was fox the first time suggested

by Shchelkunov [55] and it is used by Morgan [L4]; however, the

developed by them apparatus is extremely complex; considerably more

effective the same expansion was used by Brodskiy £56]. Method

presented below makes it possible to obtain results, virtually

U-- equivalent to results articies [56), by more direct/straight and

~* simpler meth~od.

Let us introduce for tielas and wave numbers of its own waves in

the regular empty waveguide of designation E04, HO'n hO. These values

satisfy equations (3.4) with E 1, IA= 1. The transverse components of

fields in the filled waveguide of the same section let us decompose

in the row/series

EPE2?, E, = P-,,'; ff. Pv41?. H1 Pv117 y84a
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where P, P,(z). After substituting these expansions into two of the six '

equations of naxwell, we will ontain for the longitudinal components

of the expansion

E - JPvEzv zI PH± (8.43b)

characterizing by from (8.4i3a) cofactors tIe and i/y. The presence of

these factors shows, by the way that the complete field in the filled

waveguide cannot be, strictly speaking, it is decomposed on the

fields of wves in the empty waveguide. According to formulas

(8.2-8.3), this expansicu in terms of the fields of waves in

waveguide with the same accurately section exists.

After substituting (8.43) into the remaining four equaticns of

Maxwell, we will obtain four equations of type (8.4) . One of them

takes the form

PEO4V =PV ik tt2Y + 2-( o) (8.44)

three others we we do not extract. Using further the condition of

orthogonality for fields in the empty waveguide, we will obtain for

variables Pj(z) the system of ordinary differential equations with the

[ constant coefficientsfr MiP (8.45)k4
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Values Mim characterize th-- communication/connection between waves in

the empty waveguide, obli~ged to difference e and p from unity.

A~fter simple transformations, utilizing, in particular, the i'eorem

F of Stokes and boundary condition for E, we will obtain from (8.414)

2hj1

+ a (E0.iE6. + EO,'E"m) + It (H4I.01.* + fIOIFom)) dS. (8.46)

Formulas (8.45-8.46) make the same sense, as formula (19-20) of

article [56]. The definition of coefficients Mi, in this methcd does

not require as in [55) and [L44), tne solution of infinite system of

equations.

'-SThe fields of their own waves in waveguide with e E(x, y), IL (x, y)

are obtained from requirement so that the solutions of equation

(8.45) would satisfy the condition

P, (Z)..-Pi (0) ea (8.47)

Substitution (8.47) in (8.4i5) reduces as for the bent

waveguides, to the infinite system of homogenecus algebraic equations

for P1 (O)

(h6, iM,) P,(o) =0. (8.48)

The wave numbers of their own waves h are, thus, roots of equation

(sr (7. 39)

Det M1i, A81.~j 0. (8.49)I
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Equations (8.48) and (8.49) zre analogous to equations (7.38)

i and (7.39). After solving (8.49), we for each root of h will find

from (8.48) and the condition tor standardization (3.8) of amplitudes

[ P(0), which correspond to this their own wave.

If 8=1,p.=!, then M,=-hj6j,, the matrix/die of system (8.48)

*will be diagonal, and the roots of equation (8.49) will be all

numbers h0. If e=const+=1, t =const#1, then they are different from zero

only those coefficients Mi., in which J=+-m. That standing in (8.49)

determinant decomposes into the product of the determinants of the

second order, so that wave numners will be located from quadratic

equations; it is easy to confirm taat these wave numbers are equal to

-((h*-?-k'(ep-))1/2, as this follows from elementary considerations.

The effectiveness of tne method of determining the field of its

own waves presented depends on the order of magnitude of nondiagonal

elements MI, and of rate of their cecrease during distance from

diagonal.

Page 73.

If, for example, le(x, y)- 1 1 and Ii±(x, y)-1I they are small, then will

I0'
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be low all nondiagonal coefficients Ali., and matrix/die in (8.48) will

take almost diagonal form. the solution of equation (8.49) can be in I
this case in old order on ke-l andly-1jobtained in explicit form.

Let us note in conclusion still following. Expansion (8.43) and

system of equations (8.45) describe field also in the irregular

waveguide of constant section, i.e., when e(xyz) and y(x, y, z), and

in this sense they have the same value, as system (8.5). During the

use of system (8.45) for irregular waveguides in which now M,, they

depend on z, variables P(z) must satisfy not condition (8.47), but to

other any end conditions. Lf waveguide with irregular filling is

connected from both of sides with the empty waveguides, then end

conditions take form (8.7). In the more general case end conditions

for (8.45), in turn, are determined from the system of the algebraic

equations, which are obtained from the requirement of the continuity

of fields at the end/leads of the irregular secticn.

The question concerning tuat, which of two systems of equations

- (8.5) or (8.45) - expedient to apply in any specific problem, in

the final analysis it is determinea by the structure of field in this

irregular waveguide. In the broadDand well matched equipment/devices

field in any section it is usually close to field in the regular

waveguide of the same section, and therefore during the analysis of

such equipment/devices to more conveniently use system of equations

°I
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(8.5): in it will be small the coupling coefficients and, as a rule,

also all amplitudes Pi, except one or two. Entire examination of §7

would be very hinder/bampered during the use of system (8.45) ; field

would be described by , large number of amplitudes P', strongly

connected. It would be to use this system and to the

common/general/total ccnstructicns of the following paragraph. Most

probable, it, as a rule, it is expedient to utilize only for the

determination of their own waves in waveguides with heterogeneous

filling.

However, ip last/latter point/item §22, we will examine

equipment/device in which the field is close to field in the empty

regular waveguide; during the analysis of this bending, the

application/use of expansions of type (8.43) will lead to

target/purpose somewhat faster than the use of expansions of type
' (8.2-8.3) .

Page 74.

§9. Calculation of tapered welds oy the method of cross sections.

1. Direct application/use of method of cross sections to tapered

welds is connected with definite difficulty, which consists of the

fact that in row/series of type (8.1) of field E, H and of field

-% --- --- - =2 ='-
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E H m they satisfy different ooundary conditions. Therefore on the

duct/contours of cross sections, these row/series not converge to the

functions which they must represent. Differentiation of such

row/series brings, as is known, to the certain complications.

From a physical point of view, the difficulty consists in the

fact that the representation of field in the form of row/series is

not applicable near metal, i.e., precisely, where must be placed

boundary conditions.

In order not to operate with the unevenly converging series, we

will produce computaticns Dy the fol'-wing diagram, which rests on

the results of the preceding/previous paragraph: compare this tapered

weld (Fig. 9) with the auxiliary waveguide of constant section (Fig.

10), by the filled material with constants e and V in such a way

that free from material taere remains only the region, which

corresponds to interior of tais tapered weld. In cther words, let us

enter this waveguide in the waveguide of constant and larger section

and will fill with matetial with econst#l, jv'const*l the region between

the boundaries of both waveguides. For this large waveguide with

irregular filling, we can, using the results of the

preceding/previous paragraph, to write expansions (8.2), (8.3) and

system of equations (8.5) tor the coefficiepts of expansion. For that

discontinuous distribution of material, which we assigned in large

i2
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waveguide, coupling coefficients are expressed by formula (8.22).

These results are valid for any value P and y material. "-
Let us then increase tne dielectric constant a. of material,

making it in this case composite. All above formulas will remain

valid, will be they valid also in passage to the limit ei---*o. Upon

this transfer auxiliary wavejuiae (Fig. 10) becomes identical to this

tapered weld (Fig. 9). 1hus, formulas (8.2), (8.3), (8.5), (8.7),
[ 41

(8.9), (8.10), derived tor i waveguide with alternating/variable

filling, and all formulas and results of three last/latter

point/items §8 prove to be directly used also for a waveguide with AN

alternating/variable section.

A

!.I
o - V-!- ~-
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Fig. 9. Tapered weld.

Fig. 10. Auxiliary waveguide or constant section.

Page 75.

As far as formula is concerned pd.22) for coupling coefficients, in

it appears an indeterainancy/uncertainty of type coO, since when

_I-+oo components E- and E" on duct/contour, i.e., on the boundary

- of material, will vanish. in order to find explicit expression for a

coupling coefficient in tapered weid, let us lrcduce in (8.22)

consecutive passage to the limit. I
when Iei-oo fields F,". E" and H11 will vanish. In this case,

according to Leontovich boundary condition, between tangential

components of electrical and magnetic fields there is the

communication/connecticn:

t M-
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Let us recall that relationshipi/ratios (9.1) are related to fields in

the regular waveguides of tne comparisons for which normal to the

surface coincides with n.

= After substituting (9.1) into formula (8.22), we will obtain

under integral the expression in which it is already easy to pass to

limit ej-co. Iln this way i.s outaianed the follcwing formula for a

coupling coefficient in tapered weld:

Asi ~ hiFj(s)(E' . 4- ill- IHI) ds. (9.2) o

material fell out from the resultant expressicn. Let us note that

this it would be possible to use, in order by the shortest path to

derive formula (9.2), operating wirh scalar, but not vector

expressions. For this, it was necessary to consider that in waveguide

with alternating/var iable filling~ (Fig. 10), introduced in theU beginning of paragraph, )A(x, j, z) is equai. tc I/e(x gz) Then and in

the waveguides of comparison vita aeterogeneous filling product a.p

would be constantly. In suca waveauides, as it is easy to show.

fields are expressed as two scalar functions V~ and 0 on the



I
i i'

DOC =79024305 PAGE 9
formulas, analogous (3.14), and there is as in the empty waveguides,

division into Le and H-waves. Functions a and 0 satisfy the

self-adjoint equations of type (3.11), that also generating the

coimplete system of eigenfunctions and, etc.

Formula (9.2) expresses tne coupling coefficient through

currents and charges, which appear of the passage of the waves of

numbers j and m on the walls of the regular waveguide of comparison.

Page 76.

for in question in this paragraph irregular tapered welds, the

waveguide of comparison is the empty waveguide with the section, that

also the section of irregular waveguide with the given z.

Completing the same dual passage to the limit (to discontinuous

distribution e and tc IeI-.oo) in formula (8.17), is easy to find k

also for a derivative of wave number expressicn in the form of the

contour integral

h z----- v (s) I(E ) + (H')'- (H )'J ds. (9.3)

Formulas (9.2) and (9.3) coincide with formulas (6.16) and

(6.12), obtained in §6 mcre elementary methcds. On the other hand,

applying (8.5) and (8.7) to 4 small irregularity, it is easy to

NN I
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obtain formulas (6.7) and (6.8).

From expressions (9.z) and 49.3) is easy to obtain the

re lat ions hip/rat io between S.n,, and h

being another recording of formaula (6.13).

In the empty waveguide oi lield, they can be expressed through

membrane/diaphragm functions. SuDStituting expressions (3.14) in

(9.2), we will obtain formulas for coupling ccefficients; in chapter

VI, these formulas are appiled for concrete/specific/actual

J ~comput-ations. Formula (9.5a) is related to that case when both of

magnetic type waves, (9.5b) - when they are electrical types both,

and (9.5c) - when the wave a - magnetic type number, but the wave of

number j - electrical. According to reciprocal relation (8.10), the

fourth possible case separately examined not must not be.

S 1 .=2h1 (h,-h,1 ) § v(s)[a as as

(9.5a)
Si.v (s) O' m ds (9.5b)

2h,(h - .) an an

Sirn =- cV(S)' .at-ds. (.c

In these formulas n - thae standard, directed into metal, s is

selected so that n, s and unit vector, directed along the axis z,
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would form the right-handed triad.

[-1 Page 77.

For a derivative of wave nuaoer for magnetic and electrical

waves, it will be, according to (9.3),

Vds (9.6a)
: -- /,., J v (s)( ) -d, (9.66)

'fn the same form, analogous (6.13), can be recorded also formula

2. Coupling coefficients depend an frequency, since in (9.5)

enter k and h, moreover dependence this for direct/straight (j<O) and

reverse/inverse (j<O) waves is ditferent. However, of high

frequencies all coefficients of coupling (9.5) cn frequency do not

virtually depend. High we call the frequencies at which the phase

rates of the waves in question are close to the speed of light, i.e.,

h1.h, l1l. Utilizing the iclentity

hmh - V h.m + hlim
hI- am = az- " (9.7)

escape/ensuing from deteraination of h (3.13), it is easy for Sim

when ft.l,AzI to write the exiressions, corresponding to three

formulas (9.5):

:ij



i - .... . . . . .. . - 0 0, + r-

(9.8a)

S/,. n * § V (s) 2 " T' ds" (9.8b)

(a2 c!) an anSjm±-"4-- (s) a (9.8c)

These expressions do not contain frequency. Two last/latter

formulas (9.8b) and (9.8c), are zecorded both for straight lines and

for backward waves; upper sign in them is related to direct waves,

loweL- to reverse/inverae ones. Formula (9.8a) is written for direct A

waves. For backward waves in it. one should drcp/omit first term and

replace ratio/relation (a-2+a/)/(a -at) with unity.

Page 78.

If one of the magnetic waves is symmetrical, i.e., ftls=O then in

(9.5a) is present only first term/component/addend. For

reverse/inverse magnetic waves ia this case, on (9.8a) will be __

obtained the zeto va:ue ci coupling coefficient. It is necessary,

however, to bear in mind, that (9.8) is cnly the old (not depending

on frequency) term in expansions Sn according to the negative

degrees of frequency. For reverse/inverse symmetrical magnetic waves

old will be the followirg term, and for S,m it is necessary to use

the expression

S,,n ± n ,V (s) lds. (9.9)
410 --,- 9
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If we do not consider tais exceptional case, then with an

increase in the frequency coupling coefficients approach the finite

values, different for direct/strdiyht and backward waves and by order

of value by equal to vo/a, where a - order of the linear dimensions of

the section of waveguide. f~or anetic symmetrical waves and in some

other special cases thes coupling coefficient cf backward waves of

high frequencies vanishes as v0,1kea 3.

From independence Sim, from frequency for high frequencies (and

far from resonance frequencies) i~ollows also the independence of

losses on step from frequency. i~n j6 this independence was shown

based on the example of symmetrical. magnetic wave in the circular

4 waveguide. IReally/actually, zrom tne comparison of exFressions (6.7),

(6.8) for amplitudes P, scatterea by the steF of waves and

expressions (9.2) for a -. oupliay coefficient S,., it follows that P,

J-is obtained frou Sjtn by replacement under integral sign v(s) to the4

height/altitude of step 6(s). Consequently, at the high frequencies

of amplitude P, alsc they do not depend on frequency; they are of

the order 6/a. Do not depena~ ou frequcncy alsc the total relative

energy losses on step, equal, according to (3.10),

__ -4
A_ _ _ _

a kA --- iV ''&~
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where the addition goes over alL those propagating waves. A number of

members of sum (9.10), true, increases with an increase in the

frequency, but usually Sim apidly decreases with an increase in the

number [see, for uxample, (1b.1), (16.2) ]. The large part of the

energy is taken away by waves with the small index (it is more

precise - with number J, Dy close to m), row/series (9.10) converges

well and its sum little changes with a change in the number of

term/component/addends. 1he energy losses of any wave in the

waveguide of arbitrary section have at high frequencies an order of

ratio 62/a2 .
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3. If in any section of irregular waveguide eigenvalues a of two

waves coincide, i.e., m= a,, then in this section coincide wave

numbers, and denominatcrs of expressions (9.5a) and (9.5b) for

coupling coefficients are turnec. into zero. Simultaneously disappear

the numerators of these formulas, and they acguire indefinite form

0/0. This section is, fot example, in the steady converter of wave

RIO in rectangular waveguide into a wave of the type H., in the

circular waveguide. Usually the analytical exFressions, to which in

specific problems are given formulas (9.5), they do not have the

indefinite form or indeterminancy/uncertainty in them is opened by

elementary shape; however, we all the same will give the
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common/general/total transformation of formula for Sim to the form,IL used also in such special sections.

For the derivation of the corresponding formula from (9.5a) we

will use two auxiliary identities, which connect the undertaken

according to section and on the duct/contour of section integrals of

I.the membrane functions at magnetic waves. These identities take the

form d 1c~

VP~d V ~m* idS +L *if'4d (i 0. (9.1 Ia)

It is easy to obtain them, differentiating on z of the condition ofA

the orthogonality

-V Pm IdS -. 0, *-d= 0, (9.12)

conl-3rting result on Green's formula and utilizing the differential

equation and a boundary conditicn for functions ip. Replacing in

(9.5a) contour integrals on (9.11a), we will obtain for the coupling 7

coefficients of two magnetic waves the expreszicn

Sim = ( hiS iImtidS - cihrm .M, 'd} (9. 13a)

not having the already indefinite form when am., l-0-.

Page 80.

The analogous transformation of formulas (9.5b) is based on the
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auxiliary identities

v 0" -! L ds + a '(p-. p~d S + a2 . S=O

an an. qm~d (p q'/dS -0;

obtaining in the same way as (9.11a), from equation (3.11). This

transformation is led for tee coupling coefficient of two electrical

waves to the expression

Sjn= - -(hm- + hctn) q M ('dS. (9.13b)
2hi

Formulas (9.13) confirm that the coupling coefficients can

become infinity only when Ih,I-.O. However, fcr specific calculations

they are considerably less convenient, than formula (9.5), since

contain derivatives on z of memrane/diaphragm functions.

We will use formulas 1.1i) in order to connect between

themselves coefficients Fire and S,,. The strain of waveguide, which we

considered as fracture IFig. 11), it is possible to treat also as the

special case of section change, with which the duct/contour of the

waveguide is displaced an tre direction of x-axis in the distance,

proportional to coordinate z. Tnis waveguide is related to the type

of the waveguides of alternating/variable cross section with the

fracture of generatrix, and the amplitudes of the scattered waves can

be found from formula (8.37), in which, obviously, will have to

preserve only first tern/component/addend. On the other hand, these

Ni

o Al
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amplitudes, according to (4.6), aze proportional Flr.- Thus, coupling

coefficients Fim can be expcessed Dy the coupling coefficients Si,rn

calculated for the special strain of Fig. 11.

Comparing formulas (8.37) and (4.5), we will obtain (with j)Em)

..zL iSjrn

Let us calculate S, according to formulas (9.13). Let us

introduce for this the system of coordinates i .rigidly circuital

of vaveguide. it is obvious that

xx -z.MJ, Yy. (.5

Those leading in (9.13) derivatives on z let us replace with

derivatives on x:

0 a T -A5 a(9.16)
Ox rxazr

AI
- -~ - ~-4- A
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Fig. 11. Break of waveguide as change in its section.
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We will begin with expression (9.13a). It it is possible to record in

the form

Si,=~hc d - ~ (9.17)

Entering this formula integrals according to section are identical

with appropriate by the integrals, determined in (7.18), and coupling

coefficient S,,,, for this special means of strain proves to be equal

(hj;; -h-,K:

Subsituingthis in (9.14), let us find for a coefficient Fmthe

For two electrical waves, accordingly (9.13b) and (9.16), it

will be

S1~ loc h + (9.19)
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Substituting in equation (9.14) and using designation (7.18), we for

: I PF., viii obtain the expression, identical with (7.21).

10

Thus it would be possiole to check expression (7.22) for the

coupling coefficient of magnetic and electrical wave.

The calculation conducted only does not serve as testing

formulas (7.20-7.21), but it makes it possible also to explain, why

for direct waves Fi,,, it is more than for reverse/inverse ones. From

this point of view, the fracture is not the elementary, but extended

heterogeneity, in which are essential the phenomena of the

interference between the elementary parasitic waves, which arcse at

different points. But in suca heterogeneities, as it was noted, the

amplitudes of direct waves are greater than the amplitude of

reverse/inverse ones. Witn tais is connected the appearance in the

denominator of formula (9.11) - and therefore even in the dencminator

of formulas (1.20-7.21) - difference in the wave numbers.

Page 82.

§10. Calculation of the general case of irregular waveguide by the

method of cross sections.

. _ - __-_ _
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F iThe general view of irregularity lies in the fact that the axis

of vaveguide changes its direction and simultaneously they change

both properties of the haich fills waveguide medium and form or

position of cross section. From tue point of view of the theory of

small heterogeneities, developed in the preceding/previous chapter,

the elementary heterogeneity oi general view is composed of they are

elementary heterogeneities of three types to those examined into

§4-6. In a certain sense are summarized, as we will see, and the

coupling coefficients; necessary in this case to bear in mind, that

the coefficients Fin and Sim have different different

dimensionalities: Fyn is designed per angular unit, and Sm - per the

unit of length.

1. Simply is analyzed case of rectilinear tapered weld with

alternating/variable filling (F and p), since coupling coefficients,

obliged to both heterogeneities, only do not have identical geometric

nature, but, according tc two preceding/previcus paragraphs, they

have common/general/total analytical expressicn. In order to find

formula for Si,, in this cdse, let us enter how in §9, this tapered

weld into the larger waveguide of constant section let us fill space

between the surfaces of wavejuides with medium with parameters Io.,-

Coupling coefficient in tais auxiliary waveguide is given by formula
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(8.16). Howeve., in contrast to tile analogous integral, examined into

§9, integrand not is equal to zerc not only within narrow transition

layer near the boundary of mateal~ with parameters Eo-tPo. but also on

entire plape of cross-stction of iaitial waveguide. Completing then

passage to the limit jeol-co, we will obtain for a coupling

coefficient the sum of two expressions - integral (8.16), undertaken

in cross section initial irregular waveguide, and integral of type

(9.2) obtained from integration on transition layer.

This contour integral will differ from formula (9.2), valid,

iwegrwithnd bye d f -1 t-=1 yfactor witthtw others tem moe tdermds

whend ihndwvgie~1 i1 by factor with firsther temcmoetaddr of

This is connected with the fact that in (6.21) into formulas for

mi(n) and HIm(n) will enter the additional factors and 1j, but in

(8.20) e and y on the boundary or the region of integration for n

different from unity. Formula (8.22) of signs therefore the form

Sim= * v (s) (e, e) (E E- E~iE~m)

e)E n o It H'l

where the field they are related to that part of the interface in

which the permeability tiave vAiues e and p

Page 83.
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After passage to the limit jeI-co wili be obtained the formula,

which differs from (9.2) ay the mentioned cofactors under integral.

Thus, coupling coetziciant will prove to be consisting of two

term/component/addends, ooligeds with respect to a change in the

section and to a change in the iiling. Since usually irregular i

filling is realized in the form of certain dielectric body with sharpA

interface, introduced into waveguide, then' for that part of the

coupling coefficient, that depends on irregular filling, it is also

expedient to use formula (8.z2). In order not to complicate

recording, we let us assume that .in dielectric body ~i, but P=1 ,
-tA-

but between the boundarv of~ iielectric and metallic walls of

-:a ieguide e =I 1. 1. Then total coupling coefficient is equal to

2h, (hi n ,) j

H 117')ds&; + v (s) [(~- )e~ E"EE'

- )Ei E±- I)ELds}. (10.2)

The functions v(s), which stand in both integrals, are different;

in the first integral v(.%) is determined the slope/inclination of

generatrix of metal- the secondly -slope/inclination of the forming

dielectric insert. Lields axe undertaken on that side of the

interface on which e=I1, A =1.Itr is easy to write also more general

al
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formula for that case when an the material of insert is different

from zero also magnetic permeability, but in the medium, which fills

space between the walls of waveyuide and insert, I gI.

; a

Formula (10.2) is the mathematical basis of the calculation of

the compensating dielectric lenses in rectilinear waveguides and it

will be used into §18.

2. Coupling coefficient for heterogeneity, examined in

preceding/previous point/item, alternating/variable section and

alternating/variable filling - could be in general form is

immediately recorded in tne form oL one formula (8.6). In this case,

it should be implied that surface integral in (8.6) contains also the

contour integral on the duct/contours of the disruptions on which the

N.."' integrands have special feature/peculiarities. This representation is

inconvenient for concrete/specific/actual calculations, but

subsequently the examination of the bent waveguides, it will

facilitate to us total analysis.

Let us examine the bent waveguide with heterogeneous filling.

Repeating the considerations of last/latter pcint/itea, we will be

restricted first to the waveguide of constant section with

heterogeneous filling. Let us begin from bending according to

cicua arc
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We should it will be repeat formal calculations §7, after considering

that now fields E1, 11 depend on angle 3. since on the position of

section *=const it depends water of functions e(xy), i(x,y) in the

regular waveguides cf ccparison.

Let us introduce expansions (:.3), (7.6) into four equations of

Maxwell (7.70. Together (7.8) we will obtain the more complex

formulas:

PVH? - PVI; -- i fr - P , (10.3)

S-Ev- iPvhvEmvr - P,,E;

P, - iPvhvUvr - Pv'.

Here and everywhere in this paragraph prime, as into §7, it indicates

derivative according tc angle 0. Utilizing further a condition of

orthogonality for isolatioU/lioeration by to the left derived P,. we

will obtain
. P} = (Fir +4 Tiv) P,. 104

Here Fi,, there is the same coefficient (4.7), and through T,,. are

designated values
-= =g,, (I -- 1,11 + E711 U- E'l, d"s. t,0.5)

(10.51

2M
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in contrast to (8.6), in j10.5) under integral will cost the

derivatives on 0.

Equation (10.4) occurs for all values of j. Therefore (10.4) it

is the unknown system oi thie di.rterential equations, which describe

field in the irregular waveguide or general view. End conditions for

system (10.4) coincide with (7.10).

Applying the same metnod, as 4uring conclusion/derivation

(7.14), is easy to show taat ior a matrix/die in (10.4) from

reciprocity theorem escape/ensues the condition

h, (F..1* - + T-.-....) + hi. (F.. 1 + TW.) ==0. (10.6)

This relationship/ratio can oe, it goes without saying, it is

N.t obtained simply from relationship/ratios (7.14) and (8.10), which

remain valid for each ct two added total coupling coefficient ;-a

(10.4).

Page 85.

Coefficient Fl., can be ajai.n recorded in symmetrical form

(7.16), but further transformaticn to form (7.20)-(7.22) is

impossible, since in the zequlaL waveguides of the comparison of our

IA



DOC = 79024305 PAW I&O

problem - waveguides with heterogeneous of section dielectric filling

- fields, as a rule, are not exkrassed as memt,.ane/diaphragm

functions.

We will not transform coefficient Tim (10.5) to the form, -i

analogous (8.16), although this transformatio. allows, as we saw, to

obtain convenient expressions for a coupling coefficient in waveguide

with sharp interfaces and with alternating/vatiable section. In

general form the obtained tormulas are very bulky. We will be

restricted to the transformation which can be produced when the

radius of curvature is great on tne cross section with the linear

* dimensions of cross section. Bearing in mind that a/OO= rOOz. it is

possible in Tm to remove with this certain average/mean value of r

as integral sign. Then

S(10.7)

where S,. given in (8.6) can be Lecorded in the form (8.16). Now we

can remove/take limitation - constancy of section, superimposed in

the beginning of ti-is point/item. Further transition to discontinuous

distribution e and 1, to tapered welds and general case of tapered

weld with altern-ting/variaole filling is conducted in the same way

as it is above, and it le'ds for Sim in (10.7) to formulas (8.22) or

(10.2).

Let us pass further to variables Pi(O), for which the -.trix/die

I
-1
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of equations does not contain diagonal. terms. We will be restricted

again to the conditions, under which it is correct (10.7) . According

to the determinati.n of the radius of curvature of break (7.25) and

relationship/ratios (8.9) and (10.7), the diagonal members of the

matrix/die of system (10.14) take toe form

F1  -iri, Tli= rlz;/2h,. (101.8)

A For simplicity of recording here it is below placed, that the radii

of curvature (7.25) for all waves are equal to each other. Taking

into ar !aunt (10.8) ,we will obtt.a that variables P,(Of) must be

determined analogous (8.29) by the equalities

(00

System of equations for tnese variables will be analogous (8.30)

V (10.10)
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is -

Now it is easy to pass to bending with a variable radius of

curvature of r. For this, as into 97, it is necessary as the

independent variable to accept instead of the angle 3 the arc length

tcalculated along the beat waveguide. In this varianle the system

of equations (10.10) of ziyns tne form

a0 1) h)(-f-v)1,/(1)(lI~



DOC 79024305 PAG

value 7i will become equal to phase change at length i

[5 hidi. (10.12)

To system (10.11) it Ls the unknown generalization of systems

(7.32) for the bent waveguide oz constant section and (8.30) for a

rectilinear irregular waveguide. In the first of them, it passes when

E h, (1) z- hi(O), S,,.() = 0, the secondly - with r E-. End condition fcr system

(10.11), according to (7.10) and accepted in (10.9) standardization,

coincides with (8.31).

.2 System (10.11), (8.31) togetner with the given above different

expressions for coupling coefficients describes field in the most

general case of irregularity in waveguide. Its application/use in the

case of loose coupling leads to tue same in accuracy results, as for

system (8.30), which describes field in rectilinear waveguide. If in

entire irregular secticn the amplitude of the incident wave is much

more than the amplitudes oi other waves, i.e., is applicable

approach/approximation (8.32), then the amplitudes of all .drasitic

waves are given by formula (8.34), in which, however, coupling

coefficient Sim must be replaced by the diagrii

Sj. -Sj . (10.13)

If are realized the conditions by which the amplitudes of

parasitic waves can be expressed by binomial formula (6.37), then the

same formula will be valid, also, in the general case in question, if
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we in (8.37) replace (10.13). In other words, the supplementary field

* distortion, caused by bending, can be examined formally by the same

apparatus, as the effect of tue irregularities, which do not change

the direction of axis, if we consider that the bending introduces the

IF, additional constraint, characterized by coupling coefficient F,/r.

Page 87.

This additivity of the results, wnich relate to the irregularities of

different types, is strictly valid only under the conditions when it

is correct (10.7). For bendiags with small radius of the curvature

} "when (10.7) is not a place, coeiiicient 7/, also can be, as we

already noted, was converted to the form, analogous (10.7), with

specific by value r, but in this case, Timir will be excellent from

(8.6). In other words, bending will not only int-oduce second term in

(10.13), but change the first, so that the coupling coefficient,

obliged, for example, tc section chai~ge, will be in the bent

waveguide somewhat different, than in rectilinear. We will not give

the appropriate formulas, in the first place, because they are

sufficiently bulky, but mainly because the most interesting results

are obtained usually fcr a loose coupling or, in any case, for large

radii of curvature, when it is appLicable (10.7)and, consequently,

also (10.13).

NI
- --. L
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It goes without saying, during the impositions of small

heterogeneities, the coupling coefficients are also additive. There

this is simply the result oi the common/general/total additivity law

of the slight disturbances. The amplitudes of the parasitic waves,

which arose in the irregular section by length Az, cn which

simultaneously occurs the fracture to angle A and change in the

p-.operties, described by matrix/die S,, are equal, according to

: (4.6) , (5.13)Y ~ ~FAO+S0 5  (10.14)

The main result of this point/item is formula (10.13) and

explanation of the conditions for its applicability. This formula

together with (10.2) can be placed as the basis of the mathematical

analysis of the work of equipment/devices, in which is utilized the

effect of the mutual comfensation for the hetercgeneities of

different types.

For the fundamental types or irregular waveguide and for common

type irregular waveguide ate estaolish/installed the systems of

differential equations for wave amplitudes, are found different

expressions of the coupling coefficients, obliged to different

irregularities, is establish/installed their additivity. In the loose

coupling when the properties of waveguide are changed along waveguide

slowly, is found expression for the amplitudes of parasitic waves in

the form of the integral, undertaken along irregular section. In
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into which enter only the values of the parameters, which relate to

the end/leads of the irregular section. 1

IS
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Page 88.

Chapter III.

CRITICAL SECTIONS. Rescnance frequencies.

If the properties of waveguiae are changed slowly, then coupling
M

coefficients are, generally speaaung, low values, systems of

equations (7.9) and (8.5) are reduced for each parasitic wave to one

equation (if there is no degeneration) and the solutions they take

form (7.35), (8.34) cr witii respect (7.37). If, however, propagation

constant h, is low or equal to zero, then even during a slow change

in the parameters for very small va and a/r value Sim and F,,r they

will not be small. For the rectilinear waveguides in which h, is

different in different sections, I could exist the so-called critical

sections in which at this trequency hi=O. Near these sections I hil

it will be little. For the beat waveguides cf constant section jhI

there can be little onl i in narrow frequency range, near that of the

called resonance frequercy at wnicA h1=O. In this chapter will be

examined the special ccnditions which appear in the presence of

critical section or near resonance frequency.

]
: -- -- -
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§11. Reflection and the passage of wave in the presence of critical

section.

1. In any section z=z 'Ly the sign - let us supply values, which

relate to critical secticn) for certain j eigenvalue is equal to wave

number in free space a,=k, so that h1():; then for all or almost

all m coefficients S,m are turned with z=z into infinity, and near

z= Z S,. are taken high values. in equations for Pi and P-1 system

(8.5) entire or almost all coefricients go to infinity, and solution

(8.341 becomes inaccurate.

Page 89.

" The incident wave is refleczed from critical section, which from

a mathematical point of view indicates the clcse coupling betweenLi direct/straight and backwara waves. Near critical section the

separation of field in the field oL direct/straight and backward

waves does not correspond to the physical picture of phenomenon and

becomes inconvenient for calculations.

Amplitudes P, really/actually can become any section into

infinity, since final must be full of field E, H, but not individual

NI



DOC = 79024306 PAGE 4-

terms in expansions (8.2), (8.3) these fields into the fields of

waves of both of directions. 
Let us return to variables Qi. 

? ,.

connected with P1 and P- relationship/ratios (7.2). From the form

of row/series (8.1) it follows that, for example, for the magnetic

waves for which, according to (3.14), in critical section

II=0, 111 ---z0, the coefficient R, into critical section can become

infinity, and coefficient Qj it must everywhere remain final.

Therefore in the critical section of amplitude Pi and P-. for

magnetic waves, they can go to infinity, but in such a way that their

difference Q, would be final. Accurately the same, for electrical

waves P, and P-1 they can go to infinity, but their sum RF must

- ,remain final.

Variables Q(z), R,(z) satisfy the system cf the differential

equations

= - ~ ~~Q +t I,,: Q,. (S5i,.__S~i,:( a

Ri- ih Q i- R .m (Si, - .. (llb)

which it is easy to obtain from quations (8.5) for variables P(z)

and from (7.2). However, for our purposes system (11.1) is not

directly used; in order to utilize it, for example, for the magnetic

wave of number 3, it was necessary to still find the limit of product

hR, near critical section. Let us pass therefore to the systems of
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equations of the second order. Difterentiating equations (11.1) for

z, we will obtain the system

i - ~ hm (Sjm1 - S-jrn) (I - ~ )i- Qrn (Sjm - S--..m)' +}

h- > Qq (Sjm - Sm) (S. - S ( .2a)_ ~Q ( nSjn

m-

+ajRq (S. + -ir) (Sm 4 + -m) (I 1.2a)
M.q=x

+ h.Ij -M)( ,) .(i -")

Page 90.

In contrast to equations (11.1). the equation for Q, system

(11.2) does not contain varianle Ri,. and equation for R does not

contain Q. Their essential deticiency/lack- appearance in them of

derivatives of coupling coefficients. Near the fracture of

generatrices and generally in the regions where v(sz) very is rapid

varies, these products are great, dnd the application/use of systems

(11.2) leads to sericus compkicatlons.

Therefore we below wiii limit the field of waveguide in which ISO
AIJ

iI 2
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for describing the field are utiliz d second crder equations, by

vicinity of critical section.

Coupling coefficients Sj, possess the following properties: if

the wave of number j is a magnetic wave, then for any wave of numberI

2 Of value

S1. S~jm. h, (Si. + S-..m) (11.3)

they are regular when hj, and, turthermore, is not contained the

first degree hi, so that all derivatives these values are alsoB

regular when h1-0; if the wave ct number j is an electrical wave,

then together with all their derivatives they are regular with any a

in the critical section ci value

Si. S11i,. hi (Si. S-m). (11.4)

This property it is easy to demonstrate, after calculating values

(11.3) (11.4) according to iormulas (9.5).

The combinations cf coupling coefficients (11.3) and (11.4) are

coefficients in equations (11.2). Thwc, fa~r minzc~v~~~

(44~4.~Thus, for magnetic waves right side (11.2a) is regular

everywhere, including the vicinity of critical section, and fcr

electrical waves right sides has no special features

(11.2b).-

A
-M-
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Page 91.

Now we can write the equations of the first for vj order, valid

everywhere, including vicinity of the critical section:

Q; +- hQj =G 1, G = - iRm (h, (Sm 4.S._,m) +

+ J+ h (Sin,- S-1} .. ) ( I ) (I! 1.5a)

R + h R, = G,. G, = - iO, (h, (Sim -- S-im)

+ hm (Sim + S-im)) (1 -8m,). (1 1.5b)

Equation (11.5a) descrites magnetic waves, (11.5b) - electrical. In

(11.5), are reject/thrown teria/component/addends of order v3 and of

derivative v'; reject/thrown tecm/component/addends do not have

special feature/peculiarities near critical section.

2. In this paragraph we will examine only field of incident

wave, after supposing that in critical section is turned intc zero

wave number hm of precisely this wave. Us it will first of all

interest the case when critical section is clcse at the beginning of

narrow waveguide.

Parasitic waves, created by tae incident wave, it would be

possible then to determine by the method, developed in the

preceding/previous chapter, substituting in formulas cf type (8.30)
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for (8.32) the solution, found in this paragraph. conditions, that

appear if the critical cross section will be nct for falling, but for

a parasitic wave, require independent examination which will be

produced in the following paragraph.

Let us examine the becoming narrow waveguide; near critical

section the derivative o! wave number in this waveguide is negative,

ji?>VO. Wave falls from the side of wide waveguide. Let for certainty

it belong to magnetic type, so that it is alternating/variable Qm(z)

it is everywhere final. Its field we will find from equation 111.5a)ELh Q=m~n 0 (11.6

and equations (11.1a), in whica to the right it is also necessary to

retain only one term/ccoponent/addend:

Q.a, + ih,.R =m (sQM- s(11.7)

The rejected terms in (11.7), as in (11.6) they are despite all z

smalls of the second order.

Pages 92-93 missing frcm original copy.

Page 94.

Coefficient in (11.18) - a large number, since A-"!--= 1.

--- -
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Solution (11.16) is correct iu the region in which it is

possible to use expansion (1.1,approximately when J<,Ii, when

Le - << A Z3. This region overlapis with the region where is satisfied the

condition (11.10), which Cdli De recorded in the form WtI>1. Therefore

(11.16) must with t>>1 pass into the solutions, obtained in the

approach/approximation ofl geometric optics. Keeping in mind this

fact, we wiil use solution (11.16) in order to establish/install the

communication/connecticn between Pm, and P-.. on the bcundary of

region (11.10). This communication/connection can be considered as

the end condition, equivalent to the presence cf critical section and

arranged/located after it narrow waveguide. The use of this

equivalent end condition will 2ate it possible to be restricted below

to the examination of the region, aistant frcr critical secticn.

Analogous idea was proposed ay L. Mt. Brekhovskiy cind 1. D. Ivanov in

[84] for another problem, reducingi to the same equation (11.6).

If critical section is foaua at the end of the transition of

"that smoothed". i.e., where v~o, then Ii(-=0, and expansion (11.11)

begins from higher degree (z-iZ). The solution is expressed in this

I case not through Ait y's tanctions, but through other special

functions, for example through the cylindrical functions whose order

in a known manner is connected vi:th the order of degree (z-iz); the

too-or



DOC 79024i306 PAG. -4-

general method of calculatiun remains in this case is valid. If

h4(z) although not is equal to zero, it is very small, then in

(11.11) it is necessary to retain two members.

Zelow we will assume that ;,()0and that it is possitl1e to be

restricted to expansion (1.1.Therefore scae of that obtained are

- *, below in this paragraph of results, namely those results, which are

related to the case wheu distance IzL is small or certainly, they are

valid only under the supyJlementary assumption that cnupling ir' ualar

waveguide. with narrow waveguide is not smoothed.

14. Let us begin frcm deteraination of reflection coefficient for

case when wave does not Uenetrdte Udrrow wavecjuide (Fig. 12).

Reflection coefficient in moatu.±e/mot-alus is equal in this case to

one; Ilet us search for its puase. Let us intrcduce variable 6(z),

after determining by its condition

Pa ge 9 5.

The unknown phase of the wave reflected at input is a value 6 of

z=0, 6(0). It is easy to snow thiat, acc,)rding to equations (8.5), in

which it is ne:;essary to preserve only termas, which contain Pm8 and

P.-,c satisfies the nonliznaa equation

6 2h 2S,,,,,(11.160o

I4
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In the region of the appiicability of geometric optics during

satisfaction of condition (11.10) third term/component/addend in

(11.20) is small and it it is possible to reject/throw; integral of

I' tarthis value to interval 4.s also low, since it contains the oscillatcry

factor. In order to determine 6(0) from obtained in this case

equation

one should still find end condation for 6. This can be made, after

:;alculating ratio/relation P-ip~ near boundary of the region (11.10)

according to (11.8) and general solution (11.16). Simple calculation

gives1 +~ (t' " + B) it] + [v+ (012 + B) vI

1u1- 2 (- _ t B) NI +- 0v+ ~12 +I B) vI'V1IV

also, in it to substitute expression (11.11) for ratio N/M.

In order to find equivalent end condition fLor equation (12)

it is necessary in (11.22) to assume t 1l. 'In the which interests us

region z<z, the variable t is negative, and one should utilize

asymptotic formulas for u(t; and V(t) at the high negative values of

t. After producing the appropriate computations, let us find the

-, 41
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asymptotic value of function 6, i.e., leading terms in expansion 6

(11.22) according to the reverse/inverse degiees ofjt

-2- 60

(li.2S;
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ZZZ

Fig. 12. Critical section in tapered weld.

Page 96.

Here 60 - constant, i.e., not uepending on t value, determined by the

- -equation

e Nb, IM (11.24)

and a - value, entering asymptotic formulae for Airy's functions at

the high negative value of argument and equal to

S(- t)' /1 "f- + x/4. (11.25)
3

Function (11.23) satisfies, as it is easy to check, equation

(11.21). The unknown solution tais equEtion, which converts into

complete solution (11.2z), must (uring approach/approximation to

critical section pass into solution (11.23). With the formal

substitution t=D, this solution takes value 6o-w/2. This value is the

equivalent end condition for equation (11.21), which must satisfy the

solution of this equation in oraer in the region, which adjoins the

N I

NI
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critical section, to pass into solution (11.16).

Thus, the solution of equation (11.20) in that interesting us

region exists

2(z) (z) dz - a/2 .- 60 (11.26)

and the unknown phase of reflection coefficient is equal L.

.. .8 (0 ) -2 -- / 2 . ( 1 1 .2 7 )

The physical sense of first term is evident - this is phase

change with the passage of wave trom z=0 to critical section and vice

versa, calculated in the approach/approximaticn of geometric optics.

It it is easy to find for any concrete/specific/actual form of the

dependence of eigenvalue irom tne position of section, i.e., for any

N" function am(z). For examile, for a cone value I/a,, is a linear

function from z

-2 .- .- -z' C=const, C>0, (11.28)
ct. (Z) a. (0) C

and simple lining/calculations give
.- "" ' (11.29)

r =C(g -- are tg g); g = =,--7

Value of 6 in (11.27) depends on the distance between the

critical section and the beginning of narrow %aveguide. According to

(11.24) and (11.17), 6o depends on the difference in the

_-
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frequencies, which is determining the parameter t. (11.18).

Page 97.

It gives the correction to tne phase of the wave reflected, connected

with the presence of narrow waveguide. Although on narrow waveguide

energy not propagated, field exists also in region z>z, exponentially

decreasing during removal from critical secticn, and the structure of

waveguide in this regicn affects the phase of reflected wave. The

effect of narrow waveguide, however, is noticeable only with final

ones tL; when IL> 1, but virtually already when L- 1, 60 is very

small, and the phase of reflected wave differs from the phase,

calculated in the apprcach/approximation of geometric optics, in

terms of constant term - r/2. In tais field seehingly completely it

does not reach the beginning of narrow waveguide. Let us note that in

the problem, of a normal incidence in the electromagnetic wave on the

ionosphere and in the row/series of other problems, which are reduced

tn the same equation (11.6) under condition (11.11), it appears, as

is known, the same in vaiue supplementary phase shift.

fhe precise form of tue function 60(L) depends, according to

(11.24) and (11.17), on the type ot wave and character of waveguide.

Figure 13 value -6o depicts in the form of function from 1 for

waves H.,, in circular waveguide. For these waves, according to (9.4),'-Il
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(9.5), and addend a in (11.17) is absent. However, this

term/component/addend is substantial only fcr very small ones tL, and

the curve of Fig. 13 for tL~j 0.4-0.5 correctly transmits dependence

-of 60 on tL f or all waves.

The determination of the p~hase of reflection coefficient for

electrical waves is -'onducted D~y tne same in accuracy diagram. 16e

will not give these confutations, let us note only, that when tL> I

the reflection coefficient for electrical waves has a phase- 2 r

+w/2. This same result will De obtained in the next paragraph. It

will be there shown, that waen tL~lthe phase of the coefficient of

reflection of magnetic uaves is equal to as this is

obtained from (11.27), even ii thie beginning of narrow waveguide

lie/rests. so/such far frcia critical section, that the application/use

of expansion (11.11) with z=L, produced is above, it is already

illegal.
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,7 -4,

0 0.Ii i~~~~9' 0.!10,4 e, 9-M q7 q8 0 ,0 -

: :Fig. 13. Correction to the phase ot reflection coefficient, caused by

: the effect of narrow wavequide.

'. Page 98.

i 5. Let us now move cn to determination of reflection coefficient

:" for case when wave penetrates narrow waveguide, so that h',

-.-. everywhere is positive (k L)and, strictly speaking, there is no

Scritical section, but value of difference k--a,.(i) and of wave number

- in narrow waveguide is very small (h,, <<1), sc that coupling

:- coefficients near beginning of narrow waveguide are high values. In

~this case, the reflecticn coefficient can accept the values of the

or-'er of one. To this case also it is possible to use developed above

N apparatus; it is necessary to only consider that the critical section

is found on the continuation of iregular waveguide (Fig. 14)v i.e.,

ttt

NV

ca 1
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Let us introduce new varidble p(z)=P,- .e M It satisfies, as

it is easy to check, the equation of Hiccati

p, (I -..nl~( pVe"Ia). (11.30)

if jt.j is great, then, as we mill see below, for all ?pr,<1 in

(11.30) it is possible to reject/throw last/latter

term/component/addend, and tue coefficient of reflection p(O) is

equal to
L

P(0)= dz.131

This solution, it. goes without saying, coincides with soluticn (8.34)

(for j=-m), which it is Fossinle to use, if cE entire transition is

correct the approach/app~roximation of geometric optics.

Formula (11.31) gives for p(0) the low val~e of order

Meanwhile from equation (11.30) in zero-order for series expansion

parameter it follows only p9Jz)=Q. Therefore, in p(z) can participate

also constant add/composed, wkaica nas, generally speaking, zero

order. In (11.31) this term/cowpozaent/addend no, but, as we now will

show, with small or final ones ItL( it proves to be essential. The

value of this constant term/component/addend one should search for in

the same way as in the precetaing/previous pcint/item searched for
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equivalent boundary conditi.on for equation (11.21). it is necessary

to write explicit expression for p(z) through functions u(t) and to

thE -4(t), analogous complete exp~ression for 6(z) (11.22), and in this

expression to pass to large negative t. This there will be value p(z)

in the region, common/general/total for (11.10) and (11.11). Value

this, such as to check, does not depend on z, has zero order on v0

and, according to preceding/previous, it is retained in entire region

(11.10), including z=0. Using ooviously the ccmmunication/connection

between p(z) and 6(z) and formulas (11.23), (11.24), we will obtain

for this constant term/cciaponeut/dddend. which we will designate p0.

the value

N!M-i (11.32)

NIM +1



-~ IT

DOC =79024306 PAGE W

z =z

Fig. 14. "critical secticn" in narrow regular waveguide.

Page 99.

Ratio N/H is found~ in (11.17); in contrast to the preceding/previous

point/item the entering it value tL is negative.

The character of delendenca of pa on 1,. is various, acccrding

to (11.17), for different wavequides. Figure 15 gives curve/graph of

fp~i in f unction - !L for the waves /II,,, in the circular waveguide, for

which (11.17) somewhat is simplified; however ccmmoa/general/total

variation of po on a difierence in the frequencies, entering in

(11.18), it is identical for all waves.

F Than flatter form has transient waveguide near its narrow[ end/lead, the fact for the iixea/recorded difference in the

frequencies wili be less reflection coefficient. With decrease v(L)

the frequency region, in whicialopasses from large ones to icyFvalues, becomes narrow. if, for example, in circular waveguide the
F-Q
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angle between the forming and Z-axis at the end of the transient

waveguide is equal to 5040'(-,(z) =-0- 1), then f ot wave Hoqpsj~o it is

changed from I (for t=O) to 0.5 (with tL=--0,O86) during change

jk.-urn(L)jIl from 0 to 0.006, 3.e., with drift (increase) operating

frequencies from the critical frequency of narrow viveguide tc

* 0.6o/0. At double smaller angle (when vQL)=-0,05) the same value

lpol=0.5 is reached during tae aeviation of the frequency in all of
0.4o/0, and the frequency deviation of 0.6o/o causes in this caseF decrease ini oto value of 0.4.

With growth jiL1 when -tL I1 po it decreases and becomes the low

value:

8 tL)312 S~() 1.3

This value no longer zerc, BUt first order on v. However, this

expression does not pass accurately in (11.31). In order this

transition to ensure, it is aecessary to find also the second term in

the expansion of po acccrdia4 to aegrees v. We will not carry out

these computations, which are reduced to the determination of the

following terms of the expansion ot solution (11.22) and of equation

(11.30), and lat us give only result for a special case of round ccne 5

and wave Hole
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A60
W 01R,
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The refined value of reflectiok 
coefficient in this case exists

P (0 Ppasg% Te 4!L 0 actg~j.(11.34)

This expression already passes 
in (11.31), if this last/latter

expression is recorded in tue tora of binomial formula (8.37). In 'he

sec,nd correction term in 
(11.34) i~t is necessary to retain with

this, only first termCcompoaeflt/aduend.

first term in (11.34), ioe., term po, will be usually

considerably sore than -ter a/c05 ponant/ad defld - jv/(4jtg
3), although both

they with ItLj> 1 'rne ana tue same (the first) order on v. Therefore

agar -
A
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simple formula p(O) =Po practically gives gcod results not only with

final ones, but also with smalljpo# whenip(O)1, according to (11.34),

is proportional v(L).

Let us note on conclusion of -his paragraph, that for a cone,

i.e., with the validity ci condition (11.28), equation (11.6) in an

entire region O<z,<L has, as is easy to show, the exact soluticn:

Z, Zp (Ck/cxa ) (11.35)

where 4 , any cylindrical function and p2=Cz*1/4. however, since

argument and system of function Z, are great in comparison with

unity, then during actual computations will have to apply asymptotic

representations Z,, In the region where value

2 (p -Ckla.,) (Ck~az)-1 (1 1.36)

is final, Z. is expressed, as is known, through Airy's functions

from argument (11.36). It is easy to show that, where value (11.36)

is final, it coincides waih vy the variable t (11.13). Therefore even

for the cone when there is explicit solution cf equation (11.6), in

region final t immediately to expediently represent the solution in

the form of Airy's functions, and Ln region large ti- in the form of

the linear combination ot iunctions h-'e:"m" Ihis same method we will

preserve in the follcwing paragraph.

Lt - ..- - I
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§12. Wave development of parasitic type in the presence of critical

section for this wave.

1. Let is now with zz arranged/located critical section of any

of forming parasitic waves 1z(z)= o, ar.d incident wave can be

propagated in narrow waveguide.

Page 101.

Let us find under these conaitions the amplitude of the parasitic

wave, which exits into wide waveyuide,

By us they will be necessary lor this solution of the eguation

in entire irregular waveguide. Vtz) and 1.(z) -two solutions (12.1),

calibrated, so that their Wronskian determinant would be equal to

unity

UTV-V'U I. (12.2)

Let us determine by their in sucai a way that near the critical

section where is correct expansion (11.11), they would be

proportional to Airy's functions u(t) and V(t). From condition (12.2)

it follows that the propcrtionaiity factor must be equal to A-113, so

RE
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that with small and1 final t

U(i) (A-/u(t); (12.3a)

V (2) A -'I- (12.3b)

where A and t are dete mined in (11.12) and (11.13) with the

replacement of index m cm j.

In region large ltlof function U(z) and V(z) they must be

determined in such a way that with finaljt would be provided

analytical transition in (12.3). substituting in (12.3) the

asymptotic value of Airy's functions and expressing the variable t

through h, and we will obtain that for z<z, i.e., with real

hl, functions U(z) and V(z) must be determined by the conditions:

U(z) = h'y"' cos(- Tj + i ± 3/4); (12.4a)

hV (z) "' sin (- T + j + it/4). (12.4b)

With z>, when h,=-ihij, we assume

U (z) = (ih/)-' e"1' -71); (12.5a)

V (z) = (ihi)-'/ e' 1 1' -'I/). (12.5b)

With distance into supercritical area, i.e.. with an increase in

difference z-z, functicn U(z) rapidly grow/rises, in V(z) it

decreases.

Page 102.

Far from critical section tnese functions are, according to (12.4),

are,
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( (12.5) the linear combinations of solutions hj- e ±," , near critical

section they are transformed into rinal solutions (12.3). The regions

where 11 and V can be representea in the form (12.3) and where they

take form (12.4) and (12.5), they overlap.

In this paragraph we wii immediately assume that the critical

section is located so/suca far from the beginning of narrow

waveguide, that the field of parasitic type wave completely does not

reach the narrow waveguide. in this case, as it will render/show,

function (z) will fall out from final results, field will be

'. ~ completely described by Zunction V(z).

2. Returning to problem of preceding/previous paragraph, we will

find again, utilizing introduced function Viz), phase of wave,

reflected from critical section. F'or a magnetic wave the field is

described by equation (11.6). With z>z the field must not grow/rise;

under the made assumption about the fact that the beginning of narrow

waveguide is arrange/lccated far from critical section, this

requirement replaces bcundary condition with z=L. the solution of

equation (11.6) in this case is function CV, mher the constant C can

be determined from condition P,,(0)-=I. Near the beginning of the wide

waveguide z=0, function V(z) takes form (12.4b), so that

e e- '-  flI+ n11)} -  (12.6)

= ~ 2¢ -- - -"
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This expression must De suDstituted into formulas (11.8). in

which it is possible to drop/omit ter m/component/addend Smmn-S,u,

essential only near critical section, i.e., in smail ones !tirn.Thus#

it is possible to show which first term in (12.6) is equal to Pm(z),

and the second is equal to P-,.,(z), which (12.6)

corresponds to

representation Qm in the torm ci difference Q,tz=pm-p_. It is

hence easy to determine C and unknown coefficient of reflection

This formula coincides with the result of the preceding/previcus

paragraph: 6(0)=-2jm -/2 when 4> ', which thus is generalized also

in the case when the 13 ince between the critical section and the

beginning of narrow w. juide is great.

For electrical waves the iiela is described by equation (11.5b)

R,,-I h2,j.?,. 0, (12.8)

solution of which is again tunction CV, and far from critical section

Rdz) has the same form 112.6).

Pagev103. R. is equal to sum1, but not difference in amplitude (7.2);
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therefore second term in (12.6) corresponds -. m(Z), and

P-_ (0) e (12.9)

The phase of electrical wave differs from the phase of magnetic

wave only in terms of sign of constant term/component/addend w/2,

which is added tc geometric phase change -2j.

Let us compare these results with those, which would be, if

reflection proceeded nct from critical section, but from the metallic

partition/baffle, supplied across waveguide. Cn this partition/baffle
'] ithere would be P-m= P,,. Having this in form, it is possible

conditionally formulas (12.7) and (12.9) to treat thus: the phase of

the wave, reflected frcm critical section, coincides with the phase

of wave, reflected from metallic mirror in waveguide, if this mirrcr

N. . is displaced relative tc critical section to cne eighth of

wavelength; for magnetic waves is displaced it must for critical

section, for electrical ones - towards the incident wave. The

conditionality of this forwulation lies in the fact that the

comparison of supplementary phase shift +-x/4 in (12.7) and (12.9)

and the geometric shift of mirror assumes that the phase rate is

final and little it is changed, tnat near critical section is not a

place.

3. Let us return to fundamental problem cf present paragraph -

a ik
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V :study of field of parasitic wave. For certainty the parasitic wave of

number j - magnetic type in question, so that its field is described

by equation (11.5a). As in the preceding paragraph, we utilize this

equation in order to establish/install end condition for first-order

equations (8.5) or (8.30) - tae condition, equivalent to the presence

of critical section. Applying this end condition, it will be possible

to in the larger part ct the irregular waveguide use first-order

equations (8.5). These equations are considerably simpler than the

equation of second order (11.2), and, which is especially important,

during the isolation/liberatiou in them of the first-crder terms of

smallness on the basis of vo do not appear any difficulties near the

fractures of generatrix cz generally in the regions where v(z)

S rapidly is changed with z.

The solution of nonhomogeneous equation (11.5a) can be,

according to condition (12.2), recorded in the form

Q1 == U VGjdz- UGdz. (12.10)

C

Page 104.

The selection of lower limit in the first integral is defined by

requirement, in order to in supercritical area, i.e., when

z--*L.Qj(z) not increased, as grow/rises U(z). Lower limit in the

second integral we will leave not defined.°° ,+,o<,,0,e ,-,,. +e,,,° ,,o< 0°< ,,e<. i
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Far from critical section in old on v. order Q, and R, they

are connected, accordingly (11.1a), by the equation

Q; ~+ MIIii Qrn (Sjm S-..m). (12.11)

From this equation and fron (7.4) it is possible to exclude R~, and '

thus to express Pil(z) and Pj(z) tharough Q,(z) and Q;(z). Analogous

(with 11.8) we have

P1 (z) L[Q; + ihQ i (Spm - 1 ) Q.1;
2h,

-JP-1 (Z) -h Q hQ (Sjm -J ... mQmI

For obtaining the unknown eqjuivalent end condition, let us

substitute (12.11) in (1;,.12) ana will exclude the second integral in

(12.11), i.e., let us estanlish such algebraic

communication/connection between Pj(z) and P1 j(z), which does not

contain by the arbitrary constant C. The obtained

communication/connecticn between p,(z) and p-...(z) is valid everywhere;

we will use it to points, which are located far from critical

section. For such points function V(z) is given in (12.4b). Appearing

during this calculation expressions ihV±V' are equal to

MYV V' :hj-1e*11 j (12.13)
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Thus is establish/installed the communication/connection, which

exists far from the critical section between P(z) and p /(z)"

hl"P l (z) e h;'P 1 (z) e( 11+x/4)_
V dz (12.14). .~V1d •=va-VQ,,, (Si. -S-t)

entering in (12.141) function Qm(z) and Rm(z), of the describing

the field fundamental wave, are sufficient to determine in old order.

In this order the fundamental wave passes without distortions,

P.lz)=O, and

Run2 r (z) pfmOetn. (12.15) -

N.

IN:

-1 -41~~
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Page 105.

Let us give end condition (12.14) more convenient, more symmetrical

form. We will use the fact taat for any function f(z), not having

special feature::/peculiarities in range from given z to L, is correct --KA

the identity

Wve t1 f(V' -ihlmV) eilmdz+ II.V 4 Dadz. (12.l1
L

in which is still placed V(L)=0; it easy to demonstrate by

integration in parts. Applying (12.16) to second term in (12.14) and Z

reject/throwing last/latter term/component/addend in (12.16), which

~- has higher order of smallness, it is possible to record right side

(12.14) in the form of one inteyrail expression.

in this way is obtained the unknown symmetrical form of

equivalent end condition, most convenient both for the physical

analysis and for the ccncrete/sp.ecific/actual calculations

1/'h,(O)j~ (Si .(ih1V+ V') + S-i.m(jhV -V')) dZ.I Z
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Integrand contains coupling coefficients in such combinations

(11.3), which, as shown in 11, do not have special

feature/peculiarities in an entire range of integration and, in

particular, in critical section. Value z in this formula can be any,

it only must lie/rest at the region, in which it is correct (12.4b).

By the same method it is possible to find end condition for all I
other possible cases. If j - electrical type wave, then near critical

- section it is necessary to u.-' ze equation (11.5b); if the wave of

number m falls from the side o narrow waveguide, then in an obvious

manner it is modified solution (1lz.15)and, etc.

4. Field of parasitic wave can be, thus, it is found of -

first-order equations (8.5) and from end condition in the form

(12.17), of equivalent to presence critical section. 'the second end

condition takes form Pj(O) 0, it provides the absence of the incident

wave of this type.

Page 106.

7T
-~ - i
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- iThe solution of these equations for any z out of rejection

region (and with z<z) under condition P,(0)=0 will be analogous

(with 8.34):

P 1  (Z) e -_- i7 ~ ( *1 ~ d z;
, J), (Z) 0 I

@ " ~ ~ ~ ~ ~P.. ()= -- l JSe i/ i *--itm+Tj) Iz  l(Z -Ir mdz 4. °

+ - e", P_,(0). (12.18)

Substituting this solution unaer end condition (12.17), we find

-P-l(0) - the unknown amplitude of the parasitic wave, which exits in

wide waveguide-

P-. P.,(0) = 0 ~l?{e -. ~ W,~ e1'(lm-1 dz-

-_o V S.jm L h.d

- e ISp (ihIV ± V') + SI,. (iiV - V') ) dzl

Value z in (12.19) also can ue any, provided point z did not

lie/rest near critical section. Really/actually, factors when S. and

S-,m in last/latter integral coincide with the appropriate factors in j
the first two integrals, and during change z the sum of all

1N
- I
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inteqrals, entering in (12.19), it does not change.

In spite of certain conditionality of representation P1 j(O) in

formula (12.19) in the rorm of tne sum of three

term/component/addends, the conditionality, connected with

arbitrariness in the selection of point z- this representation makes

completely specific physical sense, prompted by results of § 5 and 6.

In each cut of irregular waveguide from z=0 to section z, which

participates in (12.19), uader the action of the transmitted wave of

YL number m occurs shaping of direct/straight and backward waves of

number j. All parasitic waves, waich go in opposite direction, are

summarized in section z=O, and tae result of this addition, according

to (5.15) or (8.34), it coincides with second term in (12.19).

Direct/straight parasitic waves reach before critical section and are

" reflected from it, acquiring the same supplementary phase factor

(12.7)as during incidence in tais wave on irregular waveguidp from

without; so it is formed first term in (12.19). Finally, last/latter

term/component/addend (12.19) is tne result of shaping of the Field

of parasitic wave near critical section.

Page 107.

In this region the separation on direct/straight and backward waves

- does not have special sense (see analogous observation in [80],

~- -N



DOC =79024307 PAGE

S17.6), and the education/formation of parasitic wave occurs from more

complex laws, than found in Chapter II.

Under the normal conditions ot the amplitude of direct/straight

parasitic waves it is more than the amplitudes of reverse/inverse

ones, 16 8), and if z in (12.19) is selected not very far from

} • critical section, then greatest is first term; third

term/component/addend one must taKe into account only in the

exceptional cases. The proposed interpretation of formula (12.19)

makes it possible for other possible cases to find two fundamental

term/component/addends in the field of parasitic wave, which exits

into wide waveguide, without solvin equations (11.5) and without

establish/installing equivalent end condition. For example, if the

exciting wave falls from the side of the narrow waveguide,

arrange/located to the lett of critical section, then

direct/straight, but backward waves will acquire supplementary phase

factor (12.7) or (12.9), taat corresponds to the reflection of

parasitic wave from critical section.

5. .et us use obtained results to waveguides in which v (s, z)

has despite all z one and the same order, and with z=-O as jump is

taken zero value, i.e., to waveguides with fracture of generatrix.

For a reduction in the recording, we will assume how in § 8, that i

these fractures are arrange/located only on the end/leads of the
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irregular waveguide.

In § 8 we obtained for the wave amplitudes, scattered on such

irregular waveguides, formula (8.37), which was used, if not critical

section.

From the preceding/previous examination it follows that "or the

field of parasitic wave in this case nost be obtained an expression

3f type (8.37), in which, it goes without saying, there will not be

term/component/addend, pertaining to narrow waveguide, but there will

be the terms, which correspond both to direct waves, which were

reflected from critical section, and to backward waves.
4

For further conversions is convenient to record P_1 (0) in the

form one integral. This expression is obtained, if we in solution

(12.19) or under end condition (12.17) assume z=0:

P,(0) = (0)

. X 1S,,. (ihiV+ V') -+ S--,m (ihV - V')] dz. (12.20)

Page 108.

- According to (12.13), in th~e larger part of the range of I

integration in (12.20) products (ih,V±V')e v' is not contained the

A OI
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rapidly oscillatory factors. Bearing this in mind, let us break

integral in (12.20) intc two parts, which contain respectively S1m

and S-,m.let us isolate in both of these addend products and let us

integrate in parts. First term, for example, will take in this case

this form:

L - S1 (ih1V +V') dz -~(i 1 ~V)S,~_

SL . -- !(ih V + V}
V 'dz, (12.21)

jS hm-(hm- hl)

where it is placed still V(L)=O and V'(L)0. Replacing with z=0

ihV ±V' on formula (12.13), we will obtain frcm (12.21) and the same

second expression, which contains S-sm. formula for the unknown

amplitude of backward wave

N ' .: , P-,(O) - i{ Jm , a e 4'  i {L +h*I.

§ (12.22)

The integral term I, whica is obtained of the second addend formulas

of type (12.21) we will extract Delow.

First two term in (12.22) they make simple physical sense. One
should compare them with formula (8.37), valid in the absence of

critical section. First term corresponds to direct waves, which were

reflected from critical section, the second - to backward waves. The

obtained formula can be consiaerea as illustration of that

______ A
N--
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interpretation forming the parasitic field in the presence of

critical section that was given in the preceding/previous point/item.

This interpretation allows, applying formula (8.34) and expressions

for reflection coefficients from critical section, to obtain formulas

of type (12.22).

From this point of view, integral I describes the effect of the

region, which adjoins the critical section. Bulky, but elementary

conversions, are which we let us lower, lead to the expression

V hm (0) ~(m+~~~

hi (0)

OffilrJ[ hmhi (Sim+S-i jm) +r-" (Si m S
) e a 'hm(hm h! 'V iJ+
0

+ ' + S-m hm l) I V'} ds. (12.23)

Page 109.

In these conversions is used equation V+h}V=O. Furthermore in order

not to complicate a question concerning the convergence of the

integrals, which appear in intermediate conversions, it is convenient

to consider wave number in void k composite; in the resultant

expression, it goes without saying, k - really/actually. During

analysis (12.23) it is substantial to bear in mind, that the c-upling

coefficients enter into integrand only in the form of combinations

(11.3). These combinations are not only final in critical section,

4
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but also is not contained birst degree hi. Therefore integrands in

(12.23) are final everywhere, including critical section. The

coefficients of V and VI in 12.23) will b.e of order vt or V.

Because V and V', as it follows fiom (12.3b) and (11.12), somewhat

grow/rise near critical section, the order of integral I will be,

apparently, somewhat below, Ihowever, since first two term in (12.22)

have order v, then in all cases during not very precise calculations
by third term/component/addend in (12.22) it is possible to

disregard.

Thus we obtained that for waveguides with the fracture of

generatrix the amplitude of parasitic wave depends only on the

values, which relate to salient point; this result, obtained in § 8

for a waveguide without critical section, is valid and in the general

case. As noted above, this does not contradict so that the formation

of parasitic waves bears nonlocal character, i.e., it occurs on

entire irregular waveguide.

The explicit expressions of coupling coefficients for the

waveguides of rectangular and round cross-sections are given in § 16.

§ 13. Fracture of waveguide. Frequency is close to the critical

frequency of generatrix of parasitic wave. -

MI
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1. Second case, whica requires special examination, is

resonance, which attacks in bent waveguide of constant section during

approach/approximation of operacing frequency to critical frequency

of any of parasitic waves, waich are formed at the bend. From a

mathematical point of view, the special feature/peculiarity of this

case lies in the fact that the coupling coefficients F,, go to

infinity when k-,ctj, hy- O, and taerefore solutions (4.6), (4. 14) and

(7.35) become inapplicable. Us will interest first of all the

physical picture of phenomenon, and therefore we will be restricted

below to the examination oz fracture, i.e., curvatare to small angle

8o, 30<0. Resonance phenomena for a fracture are simpler than for a

curvature to final angle, and they are expressed in some

ratio/relations even more powerful.

Page 110.

Furthermore, in this case they can be completely investigated in

qeneral form.

The resonance, which appears during small strain, in particular

with f acture, in certain sense nas the same character, as during the

excitation of waveguide by tne outside current at critical frequency

of forming wave. With given outside current, as is known, the

amplitude of the excitable wave becomes very large, how not was small

i
N 4

-~ - ~' M
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the exciting current, and for the correct formulation of the problem

it is necessary to consider the reverse/inverse action of the

appearing wave on the exciting cell/element. In the case of curvature

or fracture the analog of the exciting cell/element is the incident

wave. For example, the field of the waves, which exit into right

waveguide in Fig. 2, can be considered as the field, created by the

currents of the incident wave, flowing on left waveguide. ThereforeI it is logical that in this case the resonance effects will be

revealed first of all in the fact that the field of the incident wave

will be strongly changed, to oe more precise, that will arise the

wave reflected with large amplitude.

We will begin analysis in the assumption that the walls of

waveguide are ideally carrying out. hs we will see, this will not

N cause the appearance of any infinity - resonance phenomena in

waveguides can be strictly investigated without taking into account

losses. However, although the account to conductivity and does not

lead to qualitatively new phenomena, it all the same is completely

necessary during the quantitdtive estimate/evaluation of the

amplitudes of the appearing waves.

A single work, in which was examined analogous problem, was

Jouguet's article [9]. In it were located the wave amplitudes

scattered during incidence in wave I-o. on coupling of two H,

3
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semi-infinite rectangular waveguides - rectilinear and bent with

small -urvature in H-plane (Fig. 41), and was for the first time

I investigated resonance. Jouguet examined only the case when frequency

strictly coincides with the critical frequency of the formed

parasite, and was not considered the final conductivity of walls.

2. As in first paragraphs of this chapter, let us use variables

and A connected wita ampliLudes and r-3  by

relationship/ratios (7.2). They satisfy system of equations

Q. 003,

arco
. -- '= (Fdo + F -1.) Q,. (3 1as-I-"

N, which it is easy to obtain from system (7.9).

Page 111.

Far from resonance conditions the incident wave, as shown in §

7, barely is distorted, and for each number j in system (13.1) it is

necessary to preserve twc equations - for variables and After

solving these equations, it is possible then to find p,( i) and Pi(0);

the obtained formulas will De, it goes without saying, to coincide

with (7.28). In resonance freuency region, one must take into

4
kid Z&L
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account also a change in the field of the incident wave and to

simultaneously examine four equations:

: __Q, =(F,. - _,.) R,,.; (Fij F_. Aj

= (F,, -- F...) R, - (F,,,, -- F_,,,) Ri;

(13.2)
dR

(Fim + F_,,,) Qr, 41- (Fj + F_1 ,) Q,;

dR,)
- = (F.n,- + F'_,,) Q,,, + (F. + F_.j) Qj;, do

as in (11.5), remaining waves it is possible not to take into

consideration.

lhen k->a,, hi-*O the coupliny coefficients Fim approach

infinity. It is easy to snow, using, for example, formulas (7.16),

what these coefficients possess the following properties, analogous

to the properties of coefficients Sim: torrents j - magnetic wave,

first with any m difference Fm-F'-i, does not go to infinity, but if

J - electrical wave, then does not have special feature/peculiarities

sum Fim+Fi-. Therefore ii: system of equations (13.2) only one

coefficient goes to infinity when hi-.0; in this respect system

(13.1) more convenient than reference system (7.9). All special

feature/peculiarities in the coefficients of these equations, as one

would expect from the considerations, given in the beginning § 11,

will disappear, if we for a mdgnaetic wave introduce instead of R,
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new variable R,111, which, as Q, will not go to infinity when hj- 0;

for electrical waves one should introduce variable Q,1h.
n

F We will be restricted below to the examination of curvature to

small angle, i.e., let us assume 4o<<l. Let us note here only that

for a curvature to final angle are used the usual methods of solving

the system of equations with constant coefficients; the solution for

! ~ each of the variables is sum four exponent of type eo. The analysis

of the characteristic equation of this system shows that all its

roots p remain finite when h,- 0.

Page 112.

Let us begin from the limiting case when frequency is exactly

equal to critical, h,:0. Let us assume for a definition that both j

and m - magnetic waves; qualitatively all results are retained during

other possible combinations. let us accept even for a reduction in

the recording, that K=0, where integrals Ki are determined in

(7.18) ; according to § 7 this equality usually is fulfilled. System

of equations for vriables Q., R., Qj and hR, let us solve resolution

in row/series according to the degrees of low value of 00. For the

leading terms of terms of tnese expansions, calculation gives

11
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OR.o)2 1 - - o ); Q,,,=O(00);

[ !,R = 0~h :O(02); Q2 : ,--% + 0 I1).

In the bent part, according to the latter from these equalities,

the field of parasitic wave takes the very large values, order 1/30 .

According to (13.3), in old on 60 order P,(O)"1. P.(iOo):=0, the

incident wave completely is reflected. How conveniently small

fracture leads to the total reflection of the incident wave at

frequency, in the accuracy of the coinciding with critical frequency

forming parasitic wave. We will see below, that under actual

conditions this effect is considerably attenuate/weakened.

Calculating the following terms in expansions (13.3) according

to degrees 80, it is possinle to find more exact expressions for the

coefficients of reflection and passage

I -I. + (Op.(13.4)

These formulas are valid, while is small product fF,,fO,. i.e., for a

curvature with little electrical length.

Far from critical trequeaci tne reflection coefficient has,
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according to results of § 7, an order ;2o, and transwission

coefficient differs frcm unity by the members of order ,. In order -'

to trace transition from (13.4) to these conditions, it is necessary

to solve the system of four equations (13.2) for Rm, Q,. Ri and Qj,

utilizing simultaneously smallness of two parameters - 80 and h,.

Expanding variables in row/series from the low parameters, it is

necessary to assume the first, tat ' 1j<<, since o/ij_- and finally

that 1j'>>l. In this case, it proves to be that in old order for Q,

and Q, are obtained in all three cases the identical analytical

expressions.

Page 113.

The which interest us amplitudes of the scattered waves it is
Q.

possible, utilizing (7.10), to express only through and Qi. therefore

and for them they are obtained the expressions, valid during any

relationship/ratio between 40 and hi:

_- 10) P ( (13.5a)

Pj (1) = -P-j (0) = -i k i'0o/: ( 13.5b )

Here through r is designated they are essential in entire analysis

the parameter

= 4, .~(13.6)

-- --.!:- . .: , -: : . i-?= _ :::: ::_ __ _ _ _ ._ _ _-_ _- . . ._ ----- '" L I ; - _"
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Tt is proportional to the ratio/relation of two low values :/.

Energy of the reflectedi and rtransmitted fundamental wave,

divided into energy of the incident wave, is equal, correspondingly,

I P...(0) 12  Ir~ , Pm(Jo) 1 (13.7) a

If frequency is lower tzndn tne critical, i.e., Ni4<Q.O then

parasitic waves, it goes witnout saying, is nct taken away energy;

when M,>0 both parasitic waves ta~e away equal energy content:

P, (0 0) I~lj~m jP-1. (0) r " ( +(1.8

It is easy to check that entire/all taken away energy is equal to

incident energy both at the frequency of higher than the critical

(tli>0, Icl c). and at the ireqjuezcy of lower than the critical

Formulas (13.5) make it possible to trace the onset of resonance

phenomena during the approaca/approximation of frequency to critical,

i.e., when value I7Idecreases, and the parameter r thereby

increases. As yet ItI1<1- there is no resonance, strictly speaking,

still; the amplitude of the fundamental wave does not change with the

passage of fracture, but tne amplitudes of parasitic waves (13.5b)

1
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are given as before by formulas (4.6), (4.12), with which, accordingiI
to expression (7.20), formula (13.5b) coincid-s with r<<1.

approach/approximaticn to critical frequency with 7<0 manifests

itself only in the fact that the amplitudes of straight line and by

the reverse/inverse of parasitic waves are compared between

themselves; these amplitudes can Decome final ones, even greater; I
however, the taken away oy parasitic waves energy is small.

Page 114.

s small also, accordingly (13.5a), the effect of these waves on the

incident wave; this, actually, it is explained by the fact that the

f i coupling coefficient F,., is final, and angle 30 is small.

Reso".zoce begins whenlri-1. With this appears the effective

disturbance/perturbation of tue transmitted wave and simultaneously

becomes final the energy, taxen away by parasitic waves. The field of

parasitic wave will be in this case very large, order Y/0o. Greatest

it will be with precise resonance h1=0, when on (13.5b) or

last/latter formula (13.3), waich will agree with (13.5b), this field

inversely proportional to 30; in this case entire/all energy of the

incident wave is reflected. Parasitic waves take awal maximum energy

content with T=1; in this case, 1/4 incident energies it is

reflected, 1/4 pass also on 1/4 it is scattered by direct/straight A

Val~
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and reverse/inverse parasitic waves.

3. in real waveguides condition of powerful resonance

practically never is satisfi.ed. As a result of the fact that the 7

walls of waveguide possess finali conductivity, hi is complex

quantity, not at what freqUexLCY non-vanishing. Complete expression

for a wave number in the waveguide with imperfect walls whose

conclusion/derivation in order not to break presentation, we will

transfer into the following paragraph, it shows that the minimum

value which can accept 111, is reached at frequency somewhat lower

-~ -I than the critical and equally for the magnetic waves

h) k { * 1 )2 dS}"' (13.9a)

where d the thickness of skin-layer. For the electrical waves

In (13.9) for reduction of recording, magnetic permeability of

the material of wall is placed to equal unity. By order of value

iI1,1wo it is equal (d/a)S/a.

Entire mathematical apparatus, developed in the

preceding/previous point/item, remains valid also upon consideration

to conductivity. However, at given one 00 parameter Jrj cannot beR

more than

U
- - - - .- = ----- .- '-~- ~ 9 - --- -99 ~~~-9 A
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This value is proportional O~ad".The numerical coefficient

depends on the section Of Vaveguide and numbers of waves. For
example, if on the fracture of thie waveguide Cf circular section

falls wave Hol (wave of numner mn), and frequency coincides with the

critical frequency of the forming wave H12 (wave of number j), then,
substituting (3.18) and (3./.U) in (7.18) and (13.9a) we will obtain

__________ I S 2a

if we even for simplicity assume 1_- , then

For waves H~q, q>0, the numerical coefficient in (3. 12) will be still
less. Let us accept for ratio a/d value 2.5.104, which corresponds to
the conductivity of copper and X-1 cm, a-1 cm. Then

Since all calculations of the preceding/previcus point/item were
produced on the assumption that 00<<1, then 1.cIis always small in
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comparison with one. Very strongly resonance is expressed be it

cannot, but it all the same is noticeable.

Accordingly (13.5a), the coefficient of reflection IP-m(0)MJxc of

small ones W~A.HC is equal to IT1,1.,L i.e., to the value, given by

formula (13.10), and, for example, even with 8(o=1/5 reaches only 2

value - The amplitude of parasitic waves, accordingly

(13.5b), will be more than reflection amplitude, since it is

proportional to the first degree b., but not 020 as P_,g(O) Its

maximum value is equal

% .. IP-1(0)l -- P, (0)I 2... .. . ,2V a0.((3.1t4)

For value ald I P( o)V400 , accepted - to the value which even for small

angles can become large in comparison with unity. -2

The frequency dependence of the coefficient of reflection and

amplitudes of parasitic waves is determined with small ones ITI by

factor I1hlI.

Page 116.

A

This frequency dependence is sharper, the less is d/a, but, as always

in waveguides, resonance peaks are sufficiently wide. According to

(14.12), value Jil increases in Y2 the time, which corresponds to

o_14
NU N~
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the same decrease of the fie.Ld of parasitic waves and is reflected

wave, with frequency drift to value

k k (d')' s

k 4

(for magnetic waves). For wave H,2, this gives, according to (13.11),

Ak/k--0.5 d/a. With a/d=2.5*104Ak/k=2e10 "o, which for X=8 mm gives

the half-width of the order of megahertz.

Let us note on conclusion of this paragraph, that the always

existing under actual conditions dissimilarity of cross section at

different points of waveguide also attenuate/weakens the resonance,

which attacks during the coincidence of operatinq frequency witb the

critical frequency of the waveguide of constant section. For coarse-p

of the evaluation of this effect, it is possible to count that value

htsI .... which, according to (13.9), is proportional d/a, contains one

additional term/component/addend, equal to the root-mean-square

relative spread of the linear dimensions of cross section. In other

words, the inconstancy ol_ cross section throughout its effect on

resonance phenomena is equivalent to certain increase in the

thickness of skin-layer.

§ 14. Wave number in waveguie witi imperfect walls.

1. In this paragraph we will derive formula for wave number in

ZI
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waveguide whose walls possess large, but final conductivity which we

applied in preceding/previous paragraph. Since in the which interests

us frequency region wave number h, very small, then we will not be

able to use the method, used for an analogous problem in § 6, or the

conventional energy method, used only at not too low and real values

24

For electrical waves the corresponding results were obtained for

the first time - not cca~letely strict method - in the book of

Kisunko [32]. For waves in circuLar waveguide, the

common/general/total expression for a wave number was found by Ya. L.

Alpert [851.

In waveguide with imperfect walls, boundary condition on metal

(3.2) is replaced by the bouodary condition of Leontovich according

to which the tangential to metal components of fields are connected

by the relationship/ratios

! ! : ~ ~~~E . w,, E .= I., . 4

Page 117.

These relationship/ratios are valii with an accuracy down to the

terms first-order in IwI inclusively. Here w - so-called wave

impedance of walls, w=Vis, where ;j and , - the parameters of the

material of walls. In metal dielectric constant e - a large

•J

" ...+++ . ..++++++ +-+o++++,-++ + P4
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I'I
imaginary number, magnetic permeability p can be considered real,

and, introducing the thickness of skin-layer d, we will obtain

2 - tLkd. (14.2)

Module/modulus w - low value. We will search -or wave number h
progressive scanning of fields in row/series in terms of JwI. We will

be restricted to the case when there is no degeneration, i.e., let us

assume that to each eigenvalue a2 in waveguide with ideal walls

corresponds magnetic or electrical type only one wave.

Since in this paragraph is examined the regular waveguide, in

which there is not passage of waves, then we will be able to omit

index in wave number, in membrane/diaphragm functions, etc. The

values, which relate in to waveguide with ideal walls, let us

designate 0.

After recording the participating under boundary condition

(14.1) components of the fields through membrane/diaphragm functions

i and 0 for formulas (3.14), we will obtain the conditiorq, which

connect the values of these functions on the duct/contour of the

section:

_ h + ik wri;tc~ z i -ihi's ). (14.3)Os On On

From this condition, in particular, immediately follows known result

F
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about the fact that the divi.ion of waves into electrical ones

( -O) and magnetic (O0) possinly only in waveguides with ideal

N walls, i.e., with w=0, or in symmetrical fields, with d/ds-0; in the

S general case the soluticn contains both of functions V and 0.

Functions i and o satisfy identical equations (3.11). From

these equations and boundary conditions (14.3) it is necessary to

find these finctions and eiyenvalue a2 . Wave number h is connected

with a condition (3. 13).

For an eigenvalue it is possible to write resolution in

row/series according to degrees of w
a2 , l+.. (14.4) N

In the same row/series is decompose/expanded the square of the wave

number

h2 h2 w. t . k
2  (14.5)

Page 118.

It is necessary to find tne second term of this expansion, i.e.,

coefficient a2 . However, the leading term of this expansion h20 at

critical frequency, i.e., when x=ao, is equal to zero, and near

critical frequency it will De let us compare with the following term.

Therefore obvious expansion of wave number, that follows from

expansion (14.5)
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h- = h - (14.6)
2h,

not by Budde applicably for all frequencies, including the vicinity

of critical frequency. From (14.3) it follows that both of functions

ij, and 0, also are not decompost i simultaneously in row/series

according to degrees of w which would be used everywhere; this does NA

not have place also for the components of fields. Therefore the

entering under condition (14.3) values cannot be directly expanded in

row/series according to degrees of w.

In order to use the method of successive approximations to

system (3.11), (14.3) and to obtain the solutions, valid also in the

vicinity of critical frequency, we utilize an artificial

reception/procedure, introduciag also auxiliary functions, so that

under the boundary conditions would participate only the square of

wave number. For simplification in the recording of the convenient

for waves magnetic and electrical type to introduce different

auxiliary functions.

2. Let us begin from magnetic waves. Let us multiply the second

equality in (14.3) by h and will introduce auxiliary function

0 =h-T. Functions (1) and ' let us expand in row/series, taking

into account that as a result of the nondegeneracy the electrical

"PA
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waves in zero order on w are absent, Oo=o, so that expansion of

begins from the member of order w.
i + 4) , + ... , 0 =wI,+ (. 14.7)

- Let us introduce expansions (14.4), (14.5) and (14.7) under equations

(3.11) and boundary conditious (14.3). Dividing orders, we will

obtain in zero on w order

- 0 ;(14.8a)

f o I0. (14.8b)

and in the first order

an k"k C a. asC"
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eliminating the hence boundary values of function (D,, we will obtain

boundary condition for V1, the only solution of zero-order system

H20 --iv' Ih ( ,1o 14.10)

'an Ic k kct% a C
0

The unknown value az, is determined from requirement so that

equation (14.9a) with bcundary condition (14.10) would have final

solution when system (14.8) nas nontrivial solution. In order to find

value ac,, let us multiply equation (14.8a) on *, equation (14.9a) -

on io, let us deduct, wiiI integrate over cross section and convert

UMI
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integral on Green's formula. Atter substituting then into contour

integral boundary conditions J14.8D) and (14.10), after producing in

it integration in parts and after considering the conditions for

standardization (3.16), we will obtain

a2~~~~ )2-:s 4ds.k2 0~~c 0pd+'~ as(4.)

After calculating a ,, we, according to (14.5), find two members

in expansion h2 according to degrees of w. After substituting value

of w on (14.2), we will obtain

h2- ho-- (1-i)A +o(Iw'). (14.12)

where through M is designated value

small value IhI, considered as the function of frequency, is

reached at h2o=-M and it is equal

S"h I U=ifMt (14.44)

moreover in M it is possible in this case to retain only first

term/component/addend, obligea to longitudinal current, and to

set/assume a=k. So is obtained formula (13.9a).

Page 120.

Far from critical frequency, with h20>0, h20>>M, (14.12) is led

to expression for the attenuation factor

h M2ho, (14.15a)
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coinciding after the substitution of value M (14.13) with the formula

which is obtained by usual enegy method. A

The phase speed v=c/Re h is equal to 4

v = v. (1 - MI2h). (14.15b)

It is somewhat less than for the waveguide of the same section with

ideal walls. Introduction to final conductivity on effect on phase

speed of the equivalently to the expansion linear dimensions of

section to value M/2a 2 o, proportional to the thickness of skin-layer.

At frequency lower than the critical, if 14<0, ]h,!2 >M, equation

(14.12) gives

) l21+ f (14.16)

The second term in this formula proportional to energy flow, which is

propagated in waveguide with imperfect walls with frequency lower

than the critical. l

Transition from (14.15) to (14.16) is described by formula

(14.12), which makes it possible to give explicit expression for Re h

and Im h with any relaticasaip between hao and M; Re h and Im h are

found from the system

(Reh)'- (lIi)'= h4+M; 2(Reh)(Irnh)=M. (14.17)

:1
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For example, with kao, i.e.. at critical frequency, when h0=O, h=

VM-(1.10-iO.46). Generally wave numoer h, which far from critical

freguency, according to (14.12), differs from h. by terms of orderkw,

in immediate proximity to the critical frequency of Budde of order -

AIWI

We will not here determine the disturbance, experience/tested by

membrane/diaphragm functions and fields upon transfer from ideal ones

to imperfect walls. It easily is found from system (14.9). Despite

all frequencies ' there will1 be order w; * Budde order whzo/ kh, so

that, for example, sense 1 11,2 far from the critical frequency there

will be of order w. Near critical frequency, with small 1Irli. that

compose of fields, connected with electrical wave (in particular,

component E,), will be very small.

Calculating thus two meaDers in the resolution of wave number T

for electrical waves, one snould instead of function ' introduce

function 'P=h* and to expand in cow/series according to degrees of w

of function 4 and '1.Function *L satisfies the system

V 2,+ OIallpo; (pPik.& (14.18)

Page 121.

From the condition of the solvability of this system, it is located

ana

MA-
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All formulas (14.12), (14.14)-(14.17), obtained are above for

magnetic waves, they are transferred, thus, to electrical waves

during replacement of M in (14.13) to the value

Al- (14.20)

L Despite all frequencies 01 it will be of order w; p there will be

order whZo/kh, and at the critical frequency of components iz it

disappears.

For two cases for which the approach/approximation of loose

coupling even for very small or flat irregularities proves to be

insufficient (in the presence of critical section and at resonance

frequency), are developed the methods of solving the system of

differential equations for wave aaplitudes. They are calculated the

reflection coefficient during incidence in the wave in critical

section, the amplitude of the parasitic wave, scattered by irregular

waveguide in the presence of critical section for this wave,

amplitudes of the waves, scattered on the fracture of the waveguide

of constant section at frequency, as to close as desired to the

critical frequency of the appearing parasitic wave. In connection

with last/latter problem is found the expression for a composite

tN

AS
ZU
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propagation constant in waveyjuide with imperfect walls, valid despite

all frequencies, including the vicinity of critical frequency.

[I
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Chapter IV.

RECTILINEAR IRREGULAR IAVEGUIDES.

in this chapter the developea above mathematical apparatus is

applied to the solution of several specific problems of the

T)Oolation o-P xwves into the rectiinea-'ieu~ Fectnl E 'es

a re ch~oren iw.hich illustrate the va"- ous T)e c'iI tiesi 1 *~ c-e ~t h

transverse srectjnn..

s 5. Twisted waveguides.

1. As the first let us examine joining. Joining is the special

case of changing the cross section, with which are changed not the

form or value, but only position or cross section. In any section

duct/contour C has one and trie same form; V'ie position of

duct/contour is determined Dy certain angle!,T, composed by

fixed/recorded relative to this duct/cont-. u : direct ion with x-axis of -

motionless system of coordinates x. y, z. Angle $D depends on z,

V
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1D=tD(z). We will begin from the computation of coupling coefficients

in the dense waveguides; will be examined the waveguides of

4 j rectangular cross section and the waveguide s whose section is ellipse

with small eccentricity.

= During the computation of function v(s), which enters into

formulas (9.5), we will not be turned to the bulky methods of

differential geometry, but we utilize an auxiliary

reception/procedure, being based on relationship/ratio v(s)Az=b(s)

between the function v(s) and the height/altitude of step(' (s) in

certain auxiliary stepped waveguide which in limit during the

decrease of the height/altitude of each step will pass into this

irregular waveguide. Lzt us find first distance 6(s) between the

_ appropriate points of two duct/contours, turned relative to each

__ other to angle A'D and then iet us divide 6(s) on Az and let us pass

to limit Az4O. In this case, 6 s) it is necessary to determine, it

goes without saying, only with an accuracy down to the terms

first-order in A4.

Page 123.

The axes of the coordinate system, rigidly connected with cross

section and which rotate together with it during motion along

R ? waveguide, let us designate x, y. For the waveguidc of rectangular
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cross section, it is directed these axes along the sides of

rectangle, as shown in Fig. l6a; in the same figure is represented

the second section, turned to dngie Nd). From obvious geometric

considerations it follows tnat, f~or example, on lower side, with y=OI

6 (x) =AQ)l + 0 o(A). (51

in this case, it is assumed, that the joining leaves motionless the

central point of section. if motionless was, for example apex/vertex

x0O, y=Q (Fig. 16b), then instead of (15.1) it would be

6 (x) =AWD x - 0 1(A(1)) 2I. (15.2)

in this case, would change the computed further coupling

coefficients. For certainty we will produce calculation for a

4 joIining, appropriate FPig. 16a. After writing for other three sides of

7-t expression for 6(s), analogous (15.1), and after passing to v(s), weU1

will obtain

(15.3)

where it is marked 1' =dcDldz.

The computation of coefticients S,... in (9.5) for any waves is

-~ reduced now to elementary quadratures. We will be restricted to the

case when the incident wave (numbers mn) is principle wave of

recta~jular waveguide, i.e., wave Hi10 with memtrane/diaphragn

function (3.21)

ip"'=N ~cos-. (15.4)
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Fig. 16. a, b) the joining of the waveguide of rectangular cross

Zsection.A
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There is greatest interest in the communication/connection of

this wave with wave Ho,, which possesses perpendicular polarization;

its Rembrane/diaphragm function takes the form

b

Elementary calculation according to (9.5a) and (15.3-15.5) gives

8 +h

Let us note that this formula can be also obtaiped, calculating

Si. not according to (9.5), but directly leaving from (8.6), moreover

in (8.6) after the passage to the limit, discussed at the end of the

fourth point/item of § 8, does not appear supplementary contour

integral. This supplementdry contour integral, which contains, as it

is easy to show, charges and longitudinal currents, for two waves H01
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and H., in question it is equal to zero. This is explained by the

fact that both charges and longitudinal currents for these waves they

are formed in different sections of duct/contour, so that the

communication/connecticn of these waves they are formed in differentiI
sections of duct/contour, so that the communication/connection of

these waves with each cther is realized only by transverse currents.

On this same reason in (9.5a) is absent in this case second term. Let

us note that for this very reason in this case, just as for waves

"Hloq in circular waveguiae, coupling coefficient for the waves of

opposite directions is proportional to a difference in the

propagation constants, as that follows from (15.6), and it is

considerably less than for direct waves.

Coupling coefficient with Dackward wave of the same type Ho as

falling, is simplest to calculate, applying formula (9.4). Since for

a joining wave number does not change, the add/composed h in (9.4)

will not be. Integral term is also equal to zero, since on opposite

sides of section y=O and y=bv(s) nas opposite signs; therefore

S_ ,,,=O. Reflection coefficient from the section, twisted to small

angle \D, is proportional, thus, (S&i)2; for a long joining with the

slowly changing angle ( it is proportional 1d')t.. It is easy to

check further that the joining aoes not connect wave H1e with waves

1Hno. Coupling coefficient with otiier waves it is also easy to find

from (9.5) and (15.3).

I
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In the examination of the waveguides of elliptical cross

section, we will be restricted to waveguides with small eccentricity,

, I close to circular waveguides; this will allow us not to introduce

elliptical functions and to obtain all results in elementary form.

Page 125.

With small eccentricity tae duct/contour of the section in polar

coordinates p, can be zecorded in the form (Fig. 17)

p- a + Icos2P, (15.7)

where positive value 1 , <<a, is connected with excentricity e by
4

relationship/ratio e2=4Z/a. Tne equation of the turned duct/contour

is obtained by replacement in (1.57) vectorial angle ft on P-A6I. With

an accuracy down to the terms first-order in A(D inclusively 6(s) is

equal to a difference in the radius-vectors, which relate to one and

the same p for the turned and unturned duct/contours. Passing to v(s),

i.e., after dividing 6(s) on az and set/assuming Az4O, we will obtain

v (s) = 2 sin 213. ( . (15.8)

Let the incident wave be close to wave H11 in circular

waveguide, polarized along transverse. With '
<<a it is possible for  M

computing the coupling coefficients not to consider in expression for

the membrane/diaphragm tunctions ot the disturbance/perturbation, 1
.44- -- - 44&-, ~-------
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connected with the difference lor section from circular, and to

set/assume

.. " = . ) sin(15.9)

where N"' is given in (3.20). This --pproximation for

including the points of duct/contour, because the duct/contours of

ellipse (15.7) and of circle p=a are not only close, but also

comprise everywhere small angles; the difference for the eigenvalue

am, of wave in slightly elliptical waveguide from eigenvalue 1,n/a

(3.19) for a circular waveguide will prove to be essential.

A.
The wave, close to wave all with the lattice-type polarization,

has the membrane/diaphragm iunction

(a5 Cos 1. ( 15.10)

The coupling coefficient between these two waves, computed on

(9.5) and three last/latter formulas, is equal to

I, am I±, L + (P. (15.11)
Si Z: -a M_ Wa~ 27 i IA 1

N7-
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Fig. 17. Section of elliptical waveguide.
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We convert this expression, after substituting the value of a

difference in eigenvalues of two H1, - waves with the lattice-type

polarization in slightly elliptical waveguide. his difference is

proportional to Y, it is easy to find, applying, for example, formula

(6.12). It is necessary only during calculaticn to consider that in

N. (6.12) 6 (s) indicates the distance between the duct/contours of two

ellipses, turned relative to each other on r/2, so that 6=-2Z cos 20.

Elementary calculation, which we lower, gives

an 8  - ~ fl5±(15.12)

Thus, coupling coefficient between two H11 waves, obliged to joining,

is equal to simply

S,m '. (15.13)

It is easy to show, being based to (15.8), that in old order on

the joining does not connect direct/straight and backward waves in

II
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slightly elliptical waveguide. Wave Hs, with membrane/diaphragm

function (15.9) is connected with all Hq -waves of perpendicular

polarization and with those E,q -waves for which yi.sin, but only for

wave H11 with membrane/diaphragm function (15.10) Sim will not be low

value, in spite of the presence of factor L in (15.8).

2. Coupling coefficients (15.b) and (15.13) are proportional to

derivative of angle b along the length. If a change in the angle at

length a or X is small, then communication/connection is small. For a

small, loose coupling of the amplitude of parasitic waves, they are

-j found in (8.34) : this formula is valid, if amplitude . ,-

falling/incident wave is not changed noticeably along transition,

Si.e., if is correct solution (8.32). There are, however, conditions,

under which, how not were smali the coupling coefficients, the

amplitude of the incident wave all the same ncticeably changes and

approach/approximation (8.32), (8.34) proves to be inapplicable. This

can occur near degeneration, to De more precise, when propagation

- constant of two waves, connected with strain, are so/such close, that

a difference in phase change of Doth of waves in entire irregular

section a is small or final. For the joining

(h.-- h() L, 15.14)

where L- length of joining.

Page 127.
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In this case, the amplitude oi parasitic wave takes finite

values. From a physical point of view, this is explained by the fact

that the elementary parasitic waves, which are formed in the

individual sections of ireguiar waveguide (§ 5), store/add up with

each other with a very small phase difference. In turn, the opposite

effect of this parasitic wave on that falling of wave changes the

amplitude of this latter. Ae will study this guestion based on the

example of the twisted waveguide; in the theory of the curvature of

the circular waveguide, we will clash with it once more.

Let us start the examination of the conditions, which occur

during complete (=0) or incomplete degeneration, from the study of

the passage of wave H1o in the joining of rectangular waveguide.

waves Hal and H11 on the joining ot rectangular waveguide. Waves Hal

and H19 will be in it completely confluent, if its section becomes

square (a=b).

The field of these waves is described by system of equations

(8.30) for the given amplitudes. In order to describe conditions near

degeneration, it is necessary in this system to preserve two

equations, the relating to direct waves numbers m and j

p. =--L ! -i(Ii-  ; "  S

iin P1' 1) C S.p- . (15.15)
h.

Nm
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During the writing of thiis system, are taken into account the

conditions of reciprocity (8.10).

Bearing in mind that S,., is Proportional PI', it is convenient asI

the independent variable to accept instead of z pitch angle (D. After

the substitution of exFression (15.6) for S,', equation (15.15) they

take the form3

dpm 1 -Ap)e" 1

dpi

where through A is designated value

A8 hm +h S

End conditions for system (15.16), according to (8.31), take form

PM (0) =lPi(0) O.

Exponential factors in (15.16), are proportional to z, since

h, and hi they do not aepead on z. The solution of sistem (15.16)

depends on the form of joining, i.e., from the form of the function

M (z) Let us examine for certainty the uniform helical joining in

which T is proportional to z:

z)01
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Here 9 - complete angle ci rotation. In this case, in (15.16) it is

possible to substitute

Ti - - ,, -- q', ( 15.191

where parameter q, which plays the significant role in further

analysis, it is equal to the ratio of complete phase change a to

complete angle of rotation 0:

q (15.20)

According to (15.14), parameter q can be also defined as the

ratio/relation to a difterence in the propagaticn constants (hm--hi) to

angle of rotation to the unit of ienqth O/L. The first of these

values characterizes local, i.e., not depending on the length of

joining, nearness to degeneration conditions, the second - local rate

of change in the properties or waveguide.

Low values JqJ mean that tne conditions are close to

degeneration, q=0 corresponds to the complete degeneration which can

be only in square waveguide. If lq>>. then, as we now will see,

degeneration is virtually removed. Thus, the effect of strain is

determined not by angle of rotation per the unit of length O/L - to
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this value are proportional coupl.ing coefficients, but by the

relationship/ratio between it and difference Ah. This

relationship/ratio is ctaracterized by parameter g.

The solution of system (15.16) for the given amplitudes P,,, and

Pi under condition (15.19) is located by elementary shape. The value

of peak-tos--peak amplitude f)m, and 1 at the end of the joining,

i.e., with z=L, 0D=O,is determined then from (8.29). These amplitudes

prove to be equal to

lt,, 4 hi -

Pi~ c~~Lsin xe

x

Here through '~is designated value

x 0 11A:'-+ q2/4. (15.22)

Let us assume first in solution (15.21) q=O. Then

P. Ceos-' 11, -sin -1 D. (15.23)

Page 129.

In proportion to advance along the twisted waveguide, the wave energy

completely is pumped over from wave HID into wave Hol and vice versa,

complete transition occurs through each W3/16 radian, ie., through

FFI
LL-L- AA
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1110. It is easy to show, being oased to (15.16), that this result,

valid for a square vaveguide (i.e. when it is retained with

any dependence (D(z).

With final ones Jqj the amplitude of parasitic wave is always

lower than unity, occurs the periodic pumping over of the part of the

energy. The maximum energy, transferred by wave Hol, is equal to

r( 115.24)

finally, when lq{>> I, when total phase change at entire length of

joining a is great in ccmparison with common pitch angle 0*, the

amplitude of parasitic wave is equal to

JP = j~-sinxJ. (15.25)

FOOTNOTE * This case is exaaned for the fi:st time in the article

of Sveshnikov (20]. ENDFCOTNOTE.

This result is obtained also uurinq c'mutation on formula

(8.34), which relates to tne case of loose coupling. Thus when a

difference in the propagatioa constants is sufficiently great (more

I precise, when IqJ>>I). the amplit:uie of parasitic wave is inversely

proportional to this difference.

%
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The disturbance/perturoation, caused by twisting, can be

characterized not only by the amplitude of parasitic wave with

perpendicular polarization, but also by change of the propagation

constant of the incident wave. The phase of fundamental wave H1o at

output it is easy to find from solution (15.21). After dividing it to

the length of section L, we wall ootain the value which can be

call/named the effective propagation constant of the incident wave in

the twisted section. When lqj 1, I I l >1, far from degeneration

-:onditions, this value is equal to

h,, +r -h2 (15.26)•"L in bi- hi"

Generally speaking, the changes in the propagation constant,

proportional 1/L2, will arise due to communication/connection with

all waves, including even aix te nonrunning waves. However, from

formula (15.26) it is evdent tnat most essential will be the effect

of thse waves whose projagation constant are close to hm and for

which wilt be low the coupling coefficient.

Page 13C.

Virtually almost always, when a change of the effective constant of

the propagation of wave in joining not is very small, for its

computation it suffices to consider only interaction with wave Hot,

-- i °
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Formula (15.26) can be oztained also by other means. For this,

it is necessary to examine the so-called its own waves of the twisted

waveguide, i.e., the waves, which are propagated along this waveguide

without distortion. They are defined as such solutions of systems

(15.16), for which P,,(z) and P,(z) they have identical dependence on z.

Their own waves do not satisfy usual end conditions, and with

incidence/drop from the side of the regular waveguide of wave HIe in

joining will arise all their own waves.

The propagation constant of one of its own waves, as it is easy

to find from (15.16), is equal to
: hr -h/

h., + 'n 17T+ A 2/q2-11. (I5.27

Since this formula is obtained from the system of two equations

(15.16), then it is alsc valid only on the assumption that it

- - suffices to consider only communication/connection of two waves.

When JqI-oc, in the absence of communication/connection, value

(15.27) approaches the propagation constant h,,. of wave H1, and the

corresponding its own wave passes into this wave. When Jqj>' is

rubbed the difference between its own waves and waves, which appear

in irregular section during incidence on it in the wave from regular

waveguide, and propagation constant (15.27) passes in this case into

effective propagation constant (15.26).

1iMb
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If the section of wz.vequi.da is close to square Ia-bk<<a, but

length L is so/such great, which lo 1, IqJ>l is correct (15.26), then

for an effective propagation constant is obtained the simple

expression:

lain i a2 a )(15.28*)
TrOOTNOTE 1~In this expression passes with a-b<<a formula (45) of

Levin's article (17], in waica were determined propagation constant

of their own waves far from degeneration conditions. Formula (15.27)

is the generalization of Levin'm s formula [17(45)], valid with any q,

if only it is possible to De restri.cted to interaction of two waves.

ENDFOOTNOTE.

3. Let us examine now twisted slightly elliptical waveguide and

communication/connection of two waves H11 polarized on larger and to

minor axes of ellipse. Ve will be restricted again to helical joining

for which pitch angle$0 is proportional to z (15.18). Amplitudes of

both of waves in this vaveguide are described by the same formulas

(15.21), in which, acccrdiny to j15.13), it is necessary now to

assume A:1

Page 131.

At the end of the twisted section two waves of the type H1 with

~- - -~-~K = 0
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mutually perpendicular polarization and some difference of phases

form elliptically polarized wave. The total field at output is

convenient to describe in the terms of the so-called ellipse of

polarization. The determination oi its cell/elements from amplitudes

and phases of oscillation/vibrations in two mutually perpendicular

directions which are given in (15.21), is conducted on usual optical

formulas. The axes of this ellipse of polarization are equal to

g: ,IE.,,I= I. I T2

T =/1 - ±sin4 x. (15.29)

The angle Oo of the rotation of the transverse of polarization

relative to the direction of the polarization of the incident wave is

found from the equation

tg 2 (0o -0) =- -- (15.30)
0 cos 2x +4)

Another characteristic of the disturbance/perturbation, caused

%: by joining, is the component of complete field at output in the

direction, which composes a right angle with the direction of the

polarization of the incident wave. With an accuracy to fact. r

e-lh'm4h)L/± this value is equal to

B = --- sin x cos 0 + sin 0cosx + i sin xsin0. (15.31)
2x

Last/latter three formulas give the complete description of

field at the output of irregular section and they make it possible to

analyze thoroughly the disturbance/perturbation, caused by joining.

4- _ _
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In Fig. 18 they are represented IE,I (solid lines) and ]E...,

(broken lines) in the function of complete pitch angle for several

values a, and in Fig. 19, value IBI.

With small 101 (1 <'i) the angle of rotation of the transverse of

polarization 90 is small, order 0dJE.,KcI-1, and IE..] is in effect equal

to IBI. Value B in this case is equal to

B 1 .5 n,- (15.32)
2 0

Page 132.

Under these conditions tae incident field is disturbed very

little, and since waveguide itself is also close to circular, then

the value of the component of perpendicular polarization (15.32) can

be obtained also by the simple methods of perturbation theory. For

this, it is necessary the twisted waveguide to present as the

sequence of the regular sli~jniY elliptical waveguides of the lengths

Az, whose major axes are turned to angle (P(z) relative to the

direction of the polarization of the transmitted wave, and this

direction and amplitude cf tue trdansmitted wave to consider constant.

The value of the component of Lield in perpendicular direction,

forming with the passage of each section of slightly elliptical

=ii

~- ..-
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waveguide, is easy to find irom usual optical formulas,

decompose/expanding the incident wave to two waves, polarized along

, the axes of ellipse, and taking into account a difference in phase

change of these waves (for example, see the article of Sandsmark

[86]). The resulting value B the components of field in perpendicular

direction at output is cbtained Dy the addition of these small

components, moreover due to condition IQI< it is not necessary to

- , consider a supplementary phase difference during propagation from

cell/element z to the end/lead of the section. In this way with any

form of the function 4)(z) it is ontained

' ~ '(h - h.)
-" B - 1 2 sin 20 dz. (15.33)

0

For helical joining (15.33) it passes in (15.21).

-iN_~
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0' E..J ,

0Jg /10 4 3 1

Fig. 18. Axes of the ellipse of polarization.

Key: (1). rad.

Fig. 19. Depolarisation at tne end of joining.

Key: (1). rad.

Page 133.

Formula (15.33) can oe used for statistical approach to the

problem, when the direction of the axes of ellipse in each section is

random function from z. Total depolarized effect of any irregular

section is proportional, according to (15.33), the average on this

section from sin20(z).

5-
L4~
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According to (15.32), ior a helical joining with that

fix/recorded 0, jai<.1, value AB3 increases with growth 0 to value of

0=670, when it takes maximum value 0,42 1I This value only for 15o/o

is less than maximum value IBI with given one a, equal, according to

(15.33) , 0,5 1oI. Maximum value is reached for regular elliptical

waveguide whose axis is turned relative to the direction of

polarization of incident wave on o=w/4.

At the finite (not small) value of total phase change a, the

character of field at the output of irregular section depends on

parameter q. Generally, if 4=0, tuen the isolation/liberation of two

- mutually perpendicularly polarized waves becomes conditional, total

field in any section ccincides with the field of the incident wave.

VA+% IqJ1<I (and finite value 101) the communication/connection between

both waves is great, occurs noticeable energy transfer between them,

almost completely compensating for the rotation of the plane of the

polarization of these waves, so tuat the plane of the polarization of

total field barely changes.

Only at finite (not small) value of both of parameters of

problem a and q the passing field strongly is agitated and formula

(1533) and (15.32), obtained from the theory of the slight

NL

- -@ -= - -- =- =--- -- :
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disturbances, they prove to De inaccurate. At sizable 101 and finite

values JqJ is especially noticeable the elliptical polarization of

field at output. With growth Iqi decreases the

communication/connection between two waves, caused by joining. When

JqIq!I-" the wave remains almost plane-polarized, its depolarisation is

small

.ENdE....A -. 2 sin2 '/Iq I < I. (15.34)

The plane of polarization is turned to angle, only by a little

smaller than the angle of rotation 0 of the axis of the section of

waveguide. Finally, when jql-oo wave strictly follows the

screw/propeller, just as in rectangular waveguide it is far from

degeneration.

Let us note on conclusion of this naragraph, which on formulas

(9.5) and (15.8) is easy to also find coupling coefficients between

any two waves in slightly eliLptical waveguide. For example, for two

waves, analogous Ell to tee waves in the waveguide of round section,

polarized along the axes of tne ellipse of section, coupling

coefficient, as for two waves HII, it is equal to . Therefore

during incidence in wave El on the joining of slightly elliptical

waveguide, will be fulfilled the same relationship/ratios, as in the

examined above, problem cL an incidence in wave H11.

Page 134.
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In these two cases are distinct onlv relationship/ratios between a

difference in the propagation constants hl-hm and the amourt. of

strain Z/a. For two waves all, according to (15.12), it will be

h - . 1,8 (15.35)

while for two waves E,,, numerical coefficient in the same formula is

equal to one. IZ!

6 16. Transitions between circular ones or between rectangular

waveguides of different ones section.

1. Let us examine education/formation of parasitic waves in

irregular section of waveguide wita changing round or rectangular

cross section. N

The amplitudes of parasitic waves are given by formulas (8.34),

if this parasitic wave can De propagated in narrow waveguide, and by

formulas (12.20), if we it are propagated cannot. If generatrix of

waveguide has fractures at tue end/leads of the irregular section,

then for amplitude are obtained explicit expressions - binomial

formulas (8.37) or (12.22). Coupling coeffircients in general form are

given in (9.5).

A
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L, In this point/item are given expressions for the coupii.g

coefficients Sim, calculated according to formulas (9.5) for the

t, waveguides of round and rectangular cross sections. As in (9.5), the

first of the given below formulas (a) is related to the case when[ both of magnetic type waves, the second (b) - to the case when they

electrical types both, and tne thxird (c) - to the case when the wave

m - magnetic type number, and tae wave of number j - electrical.

upper sign is related to direct waves, h:>O. lower - to

reverse/inverse onesh, <O. During the writing of these formulas, it

was assumed that ooth waves in question are propagated without
-S

attenuation, i.e., that h. and hi they are real.

For ci,.:ular waveguides

Sjm"= r (16.1a)

-"(kZ-TIF hi hm) "(16.1b)
::: -- ~~~Sir"=l m (I It IT q hmi 0'; 1.

v'kn
= (16.1. ~ ~ ~ ~ Ii rl ,- -

Page 135.

According to (9.5), during incidence in any wave appear only
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parasitic waves with the same first index n, which are determining

the dependence of fields on azimutnal angle, that also in that

falling they are water. With n=O appear, it goes without saying, only

waves of the same type, as failing. This fact is the illustration of

general consideration, according to which under any law of a change1:3), in the radius of circular waveguide the symmetrical waves of

electrical and magnetic types are propagated independently.

Coupling coefficients of anay z proportional to v- to slope

; tangent of generatrix vita given z. However, expression s for the

amplitudes Pi,. by which we higuer than referred, were valid only with

small v and with an accuracy doawn to the terms first-order in v;

applying in these expressions of the formula of this paragraph, it is

possible therefore in them to consider it as v equal to the angle

between the forming and axis of waveguide.

For rectangular waveguides we will examine in order not to

complicate recording, only suca transitions in which both narrow

walls in any section form to z-axis the identical angles arctgv,.

but both wide-identical angles arctg ". The value of narrow wall is

equal to b, value of wide is equal to a, so thatv,= dl2dz, V.=6db/2dz.

In this transition the coupling coefficient of two waves is

different from zero only when one of the indices of parasitic wave

jI

11
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coincides with corresponding index of the incident wave, and the I
second pair of indices has identical parity. In this case, the

coupling coefficient with the amplitude of parasitic wave they are

proportional V1, if in bota waves coincides index q, which is

determining the dependence of zields on the coordinate, parallel to

narrow wall, i.e., the second index in (3.21); if coincide the first

indices (n), othen coefficient S,, will be proportional v. Therefore 4

in given below formulas (16.2) it is necessary to retain either only R

first term/component/addend, proportional v, (if qj= . and n1J+"-,-

even number), or only second, proportional v2 (if nj n. and q,+q" -

even number). Only coupling coefficients for backward waves contain

both of angles. Thus, for instance, during incidence in wave

H1o(,+ :1 qM=O)are formed waves H3 0oHso,... both of directions with

the amplitudes, proportional vi, wave H 1 2 1 H,,... E. 2,E,,... both of

directions with the amplitudes, proportional ".. and the wave H10

reflected whose amplitude 15. contains and v, and v'.

Page 136.

Coupling coefficients are equal to

- . -
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Sim NINJn V,~ -42m +
hi 1 r --Th'

M'M"'n' (k= T I h, I h,) , :,z 1b)

Sjr'1 - bi

where normalizing factors H6 and N are given in (3.23).

2. let us examine ini soaewnat more detail question concerning

reflection of fundamental wave H&O of rectangular waveguide from

section with alternating/vaziaole section. According to (8.34), the

coefficient of reflecticn R is equaal to

L -2i 3 hmdz

S S-n,me dz. (63
0

coupling coefficient, accordingly (16.2a), can be recorded in

the fors S-i 1Idb n2 do (16.4)
-m - bdz 2alh2 d-z

It is easy to show tadt in this form the e-xpression for S.,,,,

for wave H,, is correct du~ring any change -an the section duriag which

is retained constant/inwar.Laole the direction of sides, in particular

with the asymmetry of the section of relatively constant axis.

_5
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The coefficient of ref.lection of wave 9,11 from coupling of two

rectangular waveguides wita close sections, according to (16.4), are

equal to

..2b Aa n lt/

To formulas (16.3) and (16.5) it is possible to give the sameWi

form which have the formulas .tOL a reflectien coefficient in the A_

heterogeneous l-,nq line, characterized by the wave impedance of W(z).

As is known, in the same ajppruach/approximation in which it is

written (to 16.3), reflection coefficient from the section of long

line with alternating/1arile wave impedance is equal to

dz. (16.6).

~L L
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Page 137.

Reflection coefficient from the connecticn of two lines wave

impedance of which differ on AW, is equal to
_ t- -(16.7)•

2W

Formula (16.6) will pass into formulas (16.3) and (16.4), and

simultaneously formula (lb.7) will pass in (16.5), if we for the wave

impedance of wave H10 in the waveguide of rectangular cross section

accept the expression

b :
W=C (16.8)

where C does not depend on a and b.

This expression is appiicanie, however, cnly during the

computation of the coefticient ot reflection. It, it goes without

saying, cannot be applied, for example, to a questicn concerning the

communication/connecticn between the current, the voltage and the

energy flow, transferred in waveguide'.

_ FOOTNOTE 1 It is inadmissible also, as this sometimes is proposed

(for example, see [87-90]), to use the usual in energy questicns

expression W=Cb/ah for computation R concerning formulas (16.6) or
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(16.7). Let us note that the existing experimental material [87-891

does not make it possible to determine dependence of W in (16.6-16.7)

on a. ENDFOOTNOTE.

Let us note that expression 416.3) for the coefficient of

reflection of any wave in any waveguide can be recorded in the form

(16.6), after determining tue wave impedance cf W(z) by the

relationship/ratio

d~nW Iz -- S- ,,,. (1 .9)

In this case, theSrelectincefcetfc coupling of two

waveguides with close sections can be will be recorded in the form

(16.7).

If generatrix of the irregular section of rectangular waveguide

has a fracture, then integral expression (16.3) is reduced to a

binomial formula of type id.37). Let us extract first term of this

formula
Sm, (16.10)€-_ I 2h.

obliged to fracture in the oeginning of transition. Sometimes in the

literature this value is caliea $#reflection ccefficient from

coupling". According to (16.4), this value is equal tc
@! i i._/_. .I (16.11)'

Oom£ b V' -ma V1 .

Page 138.
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First term ip (16.11) describes the so-called "reflection from

RE_ Iexpansion in E-plane", the secona - "reflection from expansion in the

f-plane". Formula (16.11) was repeatedly obtained by different

methods,.

FOOTNOTE * In Levin's rook [2] is erroneously found the coefficient

when v, in '16.11); Pike 13) inaicated the reason for the error in

[21. ENDFOO2f:'OTE.

For a fundamental cable wave 3n ilat/plane waveguide, the "reflection

coefficient from expansion" (16.10) is equal, as it is easy to check,

to first term in (16.11), in which it is necessary to replace h,,, by

k.

N. 3. Let us give several exampies of application/use of obtained

in first point/item formulas tor coupling coefficients. On this, to

formulas it is possible to calculate the amplitudes of the scattered

waves for any concrete/specifac/actual system: the given below

curve/graphs must only illustrate the general character of

phenomenon.

Let us give first expression Lor phase factors T,(z) in the

transitions, in which generatrices are straight lines, i.e., v does

not depend on z.
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For the round cone in waica a radius of section changes

according to the law u(z)=a(O)+,vz(v<O) simple ccmputations give

~(L) C (gm(0) a rctg ,n9... g.m(L) +1 arctg g.(L));
hm (Z)(6.2

ga1 (z)

Here for magnetic waves coeificient C=---t,,/v, for electrical waves

C=-v,dv, where it. and v,,, - roots of Bessel function and it by the

derivative (see §3). A special case of formula (16.12) it is (11.29);

this formula is obtained irom (11b.12) when hm(L).=O.

For rectangular waveguide with linear generator computation Tm

on (3.13), (3.22) in the general. case (i.e. when

11m+0, qm#O. v1 #0, v-.t0) it leads to elliptical integrals, and we carry

it out will not. For wave 1 ,oH,,, it does not depend on b, and it is

correct (16.12) when C =-nvj; analogous result is valid for H",. If

v1=-0 or v,=0, for expansion only in one plane, is also correct - for

al1 w aves - 16. 12) whe n C - q/2v. (whe n v, -0) or C =-Tn12v, (when

=. 0).

Finally, formula (1b.1.1) is accurate alsc for the transition in

which all sections are similar to each other, i.e., a/b does not

depend on z; in this case C=af7P&2b /2v,.

atgii
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As the first example let us examine the transition from square

vaveguide (b=a) into rectangular with the ratio/relation of sides

b/a1/3.

Page 139.

i :Let us assume that changes only is indicated the side, b(z)==b(O) F2v.z.

and wide side is constant, iee., v, =0 (Fig. 20). From the side of

wide waveguide, falls wave H,0. Frequency lie/rests within the limits

-"-<ka<3w. In this case, will axise waves E12 and H12. Critical

section for them at highest frequency, i.e., with ka=3w, lie/rests

approximately at a distance or j/5 from the beginning of wide

waveguide; at the second eno/lead of the range, with ka=/5, it

lie/rests at the very beginning of transiticn, and these waves are

not formed. wave amplituae H12, waich exits into wide vaveguide, is

calculated from (12.22) witaout integral term/component/addend. It is

equal to

P-(0) 7.i v V2 -2(T 1 -. 1j 1-02  a (h,, - h,) e (h., T hi).- "

(16.13)



- -~~ -~________________

Let us note tnat the coupling coefficient cf wave

HIL2 with HIO when v, =0- does not contain in the denominator of wave i
number hl wave H12 and does not yo to infinity near the critical

section where hi=O. Thezefore (16.13), in ccntrast to given below

expression (16.114) for wave amplitude El,*, applicably with how

conveniently small distance between the ..ritical section and the

AS
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beginning of wide waveguide, i.e., with as small as desired h,(O). It

goes without saying, other coupling coefficients are turned for this

wave into infinity when h,-0; in particular, S-..1 1 -. o, and entire

examination §11 and 12 remains valid.

wave amplitude E12 is equal1 to

Pj (0)

-2iJ/v aj li(L~h)2(m-/~ (h, +hi)

(16.14)

This formula is valid, it hi(0) not is too small, otherwise it is not

possible to disregard integral zerna/compcnent/addend (12.23).

The module/moduli of amplitudes (16.13) and (16.14) when

v2= -0,1 are represented in Fig. il. The upper curve is related to

wave E12 1 its amplitude approximately two times of more than wave

amplitude H12.
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Fig. 20. Transition from wide waveyuide to narrow.

Page 140.

Let us examine further the waveguide of circular section. The

coefficient of reflecticn of wave HII frcm direct/straight round cone

p =-(0)is equal (in the absence of critical section for this wave)

_______ i p -- (k2- ~a
L h 3

~,~*'S (k2 + hn -2a ...(L)

Lh~,a3 ]z-L(1.)

where 1tm=1,84. module/mcdulus p is represented in Fig. 22 when

v=~0,1in function ka 4L) ior two values of the ratic/relaticn of

radii of waveguides. Curves nave the oscillatory character, since,

according to (16.15), p is equal to thle sum of two interfering

term/component/addends, that relate at the beginning and toward the

end of the transition. However, thfz term, which corresponds to

narrower end/lead, predominates, san-e in the denominator of formula

(16.15) will cost the high degree of a radius. of oscillations

sufficiently rapid, since the j~hase of second term, is approximately

equal to 2kL, rapidly it is cuanqed with k.
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.~oj a(L)

al-) - I
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Fig. 21. Rave aplitude H12 and B1,2.

~Fig. 22. Coefficient of raz1ecton of wave H1,.

Page 141.

_g The coefficient of relec~on of wave H, frcm any symmetrical

" transition in the absence of critical section can be calculated

_ . according to the integral formula

|dhm --1 hnd

"- . P = -- TI h. d dze (16.16)

Sof following from {8.34) na ora ula (9.), in which for tis wave is

cabset second term. For a cone, integrating (16.16) in parts and

"-substituting the explicit va;ue of wave number, we obtain after the

-M

V- 
I -2 .
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simple transformations

,= - - I 117)
L )

where ,,=3,83. The sodule/moduius of this value is represented in Fig.

23 as function ka(L) of value sLa(l) =3.83 to ka(L)=5. The

ratio/relation of radii ct waveguides is accepted equal to tuc,

a(0)/a(L)=2, the slope tangent of generatrix v=-O,1.

If product k*a(L), only a little exceeds p, then formula

(16 .17), it goes without saying, not valid. In this case, it is

necessary to use formulas (11.3z and (11.17). These formulas make it

possible to trace change p with frequency from the low values, given

by formula (16.16), or, waich is the same thing, (11.31), to valuelpf

=1. For wave Ho, parameter A in j11.18) is equal tc (-2v/)/,)'/, the

subsf 4tution of the value v accepted gives A=0.23, and

1 L = 3,74 k.a (L)-- ,1. (16.18)

The curves, computed on (11.32) (shaded line in Fig. 23) and on

(16.17) (solid line) pass well into each other. Application/use of

more complex formula (11.44) instead of (11.32) would give even

better agreement.

RR
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Fig. 23. Coefficient of reflection of wave H1 ,.

Page 142.

Fig. 24 is taken from a. B. Vaganova's article [91]. Curves give

wave energy E11 in decibels wita respect to energy of the incident

wave HI, with the incidence in wave HI1 on direct/straight round

cone. Radii of two waveguides, ccnnected by cone, are equal to with

respect 1.5 and 2.5 cm. Upper curve is related to the case when

v=-0,05 (length of cone it is equal to 20 cm), lower - to case

Sv=-0,11 (length of cone it is equal to 9 cm). Curves are calculated

according to formula (12.22) without integral term/component/addend.

Points plotted/applied the experimental results: in the limits of

measuring errors, they zatisiactorily will agree with theoretical

curves.

4. Formula (16.16) is valid diso for determining coefficient of

reflection of wave Ho, fLom symmetrical dielectric transition, uhich

N-
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F connects empty and that filled by uielectric transition connecting
the parts of the circular waveyqaide which are not filled and foiled

with the dielectric. This follows from the comparison of expressions

(8.17) for h' and (8. 1b1, written for S-m. With constant magnetic

permeability ja=1, these expressions are characterized by common

factor - 112h..A and sign, with whici enters term/component/addend (EM) 2.

For symmetrical magnetic waves aitsi symmetrical filling LT o and

theref ore

S-.m h~j2hm. (16.19)

From this formula and common/general/total expression (8.34) follows

expression (16.16) for a reflecticn coefficient from dielectric

device.
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Fig. 24. Vave energy Ell.

Page 143.

lhe vaveguide of ccaparison tor the irregular waveguide cf Fig.

25 is waveguide with the dielectric rod of Fig. 26. In the articlesZ

of Yu. N. Kazantseva [92] and van kuan-Cjo [93) -iere determined the

value Ia~for wave Hal in ta.as i.aveguide at the different values of a

radius of rod b. According to obcained function h.(Qi) were calculated

the coefficients of reflect~ion p tromu the inserts of various torms;

was investigated the dependence p on ferm and material of insert.

Fig. 27 it is borrowed iroa article [92). curve/graph gives the

frequency dependence of t-e coefticieit of reflection of wave H0 l

from the polystyrene cone with a 4.ength of 10C an in waveguide with a

radius of 25 mm. By crosses are noted experimental results.

LWA
A
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It should be noted tnat, although the angle of the slope of

generatrix of cone on entire tran~sitioni is constant, coupling

coefficients for symmetrical magnetic waves vanish during i
approach/approximation to the foundlation of cone. This follows from

- - the fact that formula (8..22) contains for these waves only one to 4
component of e.Lectric fieldi4 which near metal is turned into zero.

Theretore dielectric cone f. : waves ]I,,, is the smoothed trainsitioi

i.e., the transition in which S,,,. takes at end/leads zero value.

Thus, to the problem, examine/,considered in this point/item, formula

(8.37) is not used.

Ftt
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Fig.25.symmetrical dielectric Lransition.

Fig. 26. raveguide of comparison to transition of Fig. 25.

804 Jig. 557094 126019
Fi.27. Reflection coefficient from polystyrene cone.

Key: (1). M1Hz.

Page 144.

For other waves whose field~s contain the normal tc mietal component of

elecric ield Ethis foru-aia gives correct expression for the wave

amplitudes, scattered on dielectric cone or by friend dielectricA

transition, since the val.ues oi coupling coefficients at the end/lead

of the transition are different fzon zero. From (8.22) for these

) ~20
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coupling coefficients fcllows the siaple expression

Sint 2h( - Is) -- vLET E. ds. (16.20)

'In this formula enter the fields on the metal in waveguide, by pillar

filled by dielectric, which easily are determined from the formulas,

analogous (3. 111).

§17. Smoothed transitions. Optimum transitions. !

1. Losses to transformation into waves of parasitic types in

waveguide transitions witi fractures of generatrix, examined in first

0 ' three point/items of preceding/previous paragraph, are frequently

relatively they are great. For tnir decrease it is possible,

generally speaking, to increase che length cf transition. If on

transition there are no points or steady state, then energy losses,

according to (8.37), are proportional vo and decrease with increase

of L approximately inversely proportionally L2 . If te a point of

steady state, then energy or parasitic waves decreases more slowly,

approximately as 1/L. However, in a number of cases when it is

necessary to ensure very low losses, this path, as we will see of the

given below examples, is impossioie: are necessary too great lengths.

The second method consists of an improvement in the agreement of

transient waveguide wit. regular waveguides. Vithout any calculations

from (8.37), (12.22) and from the rormulas cf the preceding paragraph

it is evident that the aecrease of value ' at the end/leads of the
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transition decreases the losses. Tnus we come to the so-calledF smoothed transitions - transitions in which v at the end/leads of

the transition it reaches zero or values, much smaller than value

v at midpoints of transition. Strictly speaking, this property must

possess coefficients of communication/connection, but if we do not

consider a few exception/eliminations, analogcus noted at the end of

+he preceding/previous Earagraph, then the character of change S,,. is

determined in by basic value v.

For such transiticns or formula (8.37) and (12.22) it is already

inapplicable, since during tne derivation of these formulas it was

assumed that the members of order V2 and v' were small in

comparison with v(O) and v(L), wiie for the smcothed transitions this

does not occur. The calculation of the smoothed transitions must be

performed on integral formulas (d.34 ) or (12.20).

Waveguide transitions must, as a rule, give low losses over a

wide range of frequencies.

Page 145.

:f this condition is nct piaceu, tuen for the reduction of the

amplitude of any wave it is pcsbibse to utilize an interference

structure of the amplitude of rne parasitic wave, which appears on

~~Z-A
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transition with the fractures of generatrix. For this, sufficient to

select length L in such a way that both of term/component/addends in

(8.37) would have on the assigned frequency opposite signs, and to

establish between v(O) and v(L) this relationship/ratio, so that at

this frequency these add/composed were equal in absolute value. For

example, the coefficient oi reflection of wave Hn, from symmetrical

transition between two circular waveguides will be, according t.

(16.17), equal to zero, if will De satisfied two conditions:

m(L)=ng, n 1, 2, - - ]_= v
hIa z-L

' -"According to the second condition, the angle of the fracture of

generatrix must be at the wide end/lead of the transition

considerably more than on narrow.

In order to ensure low losses to transformation into parasitic

type direct waves, it is necessary, on the contrary, to make thj

angle of fracture at the wide end/lead of the transition is less than

on narrow. Really/actually, to noth end/leads must be, according to

(8.37), are equal values S1,,/Q(h-h,.), and since coupling coefficients

have the order of ratio/relation v/a, then v(O) and v(L) they must be

related friend and to friend approximately as values

I (aot,) 2 -(am,)'Rik (h, --h,,) = hm +h speaKing in general terms, as 1/&. The

difference in phase change of Doth of waves on entire transition,

deter-.ned by formula J8.41), must be equal tc v or to 2w, 3v and so

A
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forth; if o is small ( <a), then compensation is impossible. as we

will see below, the smccthea transitions, designed in such a way that

the amplitudes of the fcrming direct/straight parasitic waves would

3 be small over a wide range of frequencies, also we must be steadier

L from the side of wide uaveguide, and value]01 for them must be

sufficiently greatly.

Certain expansion of the frequency band can be reached, as

showed Solimar (7, 914], auring series connection of several cones

with different aperture angles. Such systems approach, actually, the

examined below smoothed transitions, in which the aperture angle is

changed continuously.

It goes without saying, mutuai compensation for both of

term/component/addends in (8.37) or (12.22) indicates only that the

amplitude of parasitic waves PI will be equal to zero in the first

order on v0; in follcwing order P,-O. In this case, it is necessary

to keep in mind the consiaeration, noted in ncte on page 68.

[9" 2. During construction oi waveguide transitions fundamental

problem is selection of length and form of transition.

Page 146.

--'- 
if

- -- 
,
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Analogous problem appeaxs during the creation of the broadband

matching sections between two long lines, for example between two

coaxial lines with different wave impedance. This analogy we will use

below during the determination ok the form of vaveguide transitions.r The coefficient of retlection p from ncn-uniform circuit with

the alternating/variable wave impeaance of W and constant phase rate

is ectual, according to (16.6),

P (0) = - " (17.2)

Here W(9) - wave impedance, is alternating/variable of integration

g=z/L, where L - length of transition;, in order to emphasize analogy

with formulas for the ampiitudes ol the parasitic waves which we will

record below in the same form, value 2kL is designated as zero a. As

we already noted into §16, formula (17.2) was valid in the same

approach/approximaticn, in waica were used exFressicns (8.34) and

(12.20).

for equation (17.2) is investigated in detail inverse prcblem -

problem of the determination or the optimum fcrm of dependence W(9).

In this setting functicn W(gJ is aetermined frca requirement so that

beginning with certain value or tae parameter ajp(a)/ there would be

less than certain speciric number p . i.e., sc that there would be

I @) with 5 (17.3).

Calr



i- 4

DOC = 79024309 PAGE 4

A

Functions V() will be optimum, if for it PM..K will be smallest,

attainable with this oa,,., or if am,. will be smallest with that

fix/recorded N. Since a is proportional L, then, selecting function

W(C) optimum, we provide the smallest reflection coefficient of the

smallest length.

Optimum in this sense iunction W.(.) was found in the article of

Klopfenshteyn (95]. Between PMAKC and 0. for Wo,() there is the single

bond

Kmaxf I (17.4)I.I. . ( ) c h --.

2 2

This function W.,() we wil use in the following chapter. In

this paragraph during the determination of the form of generatrix of

the waveguide transitioa, which yves sufficiently low losses to

transformation, we accept other two functions W(), proposed in

article (96]. E

Page 147.

These functions solve citimua problem in the class of the functions,

which have continuous dexivative with 0,<O 1 - in contrast to function

IV0, 1(), which has end/leaas gaps. The waveguide transition, constructed

_ -

J
47
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according to Wonw(;), vould coutain at end/leads the small steps.

The first of these functions corresponds a...=2,7u. It is obtained

from the equation
' ~d In W (Q)= ~ ; (17.5)

the value of the left side of equality (17.4) for it is equal to

0.07, for W.,,, (on 17.4) this value is reached when ,14t, smaller

by 20o/o. Figure 28a depicts the curve/graph cf value

, I+ cos . (17.6)
2 W(O)

i.e. the standardized per unit value of integral (17.2), calculated

according to this function W(Q).

The second functicn W .) corresponds only by a little tc larger

value %,,,, ,111 .- 3, but the value of left side (17.4) for it is

substantially less and it is equal to 0.03. Fcr 1V .( ) this value is

reached when ,, which only to 11o/o is less. This function is found

from the equation

di . W 1 - (1--0,636 cos 2 ). (17.7)

For this function

sin --
-- ) 2 4.-o.364:, 17.8)

-in- 42
12

The curve/graph of this value is represented in Fig. 28b.

I IJ
-
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3. Method of construction of smoothed waveguide transition,

which gives low losses over a wide range of frequencies, we will

dismantle/select based on example of symmetrical transition for wave

ON Hol in circular waveguide. in this transition fundamental losses to

the transformation are due to the tormatioj of direct wave H02 . Let

first the frequency be so aign, zaat this wave can be propagated both

in wide and in narrow waveguide, i.e., there is no critical section.

Page 148.

Its given amplitude p,(L) is given Dy formula (8.34). Substituting

expression for a coupling coefricient (16.Ia), we will obtain

L -i S 5(hm. hi) d,
hi (• +', h ,a' 0

p,( l) 2 f--- dz.

(17.9)

Here a(z) - the unknown function, which gives the form of generatrix.

The square modulus of the value, which stands to the right, gives the

ratio/relation the energy, ta&en away by wave H.2 , to energy of the

incident wave, i.e., loss to transiormation into wave Ho2.

Integral (17.9) it as possinle to lead tc the form, identical

with (17.2), and to utilize for engineering the waveguide transitions

M-
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the mathematical apparatus, described in the preceding/previous

point/item. Let us replace for this factor (hm,+Iij)I2j1/10 it ce;le

us note that this superimposes oni frequency scmevhat weaker

condition, than requirement hm;:1. Ih,~j. Let us introduce the new

variable

S(hm -hj) dz z
(hm h) dz, (17.10)

then, substituting still p,=3,83, ti7,O2, we attain the formula, which

has the sat form, that (17.2):
dina

From comparison (17.11) -with (17.2) it follows that if derivative of

in a(1). as the function in question by variatle ~,will be

proportional to derivative of ini(j), where W(g) is selected in such

a way a~s to ensure the troadnand agreement cf two long lines with

different wave impedance, ttien waveguide transition will give low

losses to transfcrmation into wave H02.

e

For future reference it is convenient to introduce the parameter

ucp by the condition

a p + at 4t d at d". (17.12)

4~.4T
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Page 14~9.

-rhis parameter does not viartuaiiy aepend on frequency, has the

dimensionality of lengta and iie/zests between a(0) and a(L) . From~

(17.10) and (17.12) it ioliows tuat the parameter a, which Plays in

the problem of waveguide trauisition the same role, as value 2kL in

(17.2), it is connected vita a,,, by the equation

~ L (17.13)
2 ka ,p

and differentials of variaoie & una z they are connected by the

relationship/ratio

dz dtf+ (17.14)
L 2 P 02

The determination oi tne un~uiown function a(z) , that gives theI

airfoil/profile of transition, is conducted by the following diagram:

ate assigned values Pua.t the connected with it value amm and is A

selected corresponding to these vaiues function W(9). Then it is

found by a(g) from the coud.-.mion t~nat dlna/dg is proportional

dln14/dt. Appearing in tnis cdse two arbitrary constants - the

proportionality factor oetwean tunctions dlna,/d and dlnW/d and
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[ integration constant ak ai. etermined from requirement so that at the

end/leads of the transition, witu =O and 9=1, a( would take the

assigned values. Then from torulua (17.12) is calculated th,,e 3

parameter 2,,p and on (17.14) is aetermined z/L as function of ~

-~~ Thus, dependence of a on ratio z/L. is obtained in parameter form.
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Fig. 28a, b - loss to conversion.

Key: (1) . min.

Page 150.

The length of transiticn ±.is aetazmined from requirement so that in

entire assigned wavelengta range tue parameter o would be the more

than selected value a, i.e.. from the equation

L = 0.7' (1.3

following from (17. 13). Here XIUK corresponds to the short-wave

Q
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end/lead of the range.

The standardized/normalized daplitude of parasitic wave

IP,(O)/l.561nq , where q is ratio/relation a(L)/a (0), is equal to the

standardized/normalized coefficient of reflection

I (a) _ a) ' (17.16)

2 W (0)

corresponding to the same function W(). Finally, the parameter a as

the function of frequency is aetermined, according to (17.13) and

(17.15), from the formula

(3 G " (17.17)

Let us note the essential dizference between the problems,

connected with integrals (17.2) ana (17.11). In (17.2) the parameter

N a, is inversely proportional X. The action of the matching section of

long line with alternating/vdriable wave impedance is limited from

the side of long waves. Its length is selected from the condition

L . 17.18)
4nt

and despite all frequencies for which X is less than the assigned
Svalue X~.~a will be more rtan selected , a j [- is less

P a Ke.. For waveguide transition, on the contrary, a directly

proportional X (17.15), the area of action of transition is limited

from the side of short waves. In (17.15), enters the small assigned
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value of wavelength; despite all Lae smaller frequencies of condition

0>a or land pj14crthey will be provided.

Difference this from a physical poirt of view is due so that in

(17.2) is determined the amplitude of backward wave, a is the sum of

electrical lengths for direct/szraight and backward wave; for each of

these waves - and for tneir sum - electrical length increases with an

increase in the frequency. In (17.11), is determined the amplitude of

direct wave; a - difference in the electrical lengths of two direct

waves, and although /I,. and 11i with frequency they increase, their

Y 2 difference decreases with frequency.

With an increase in tme frequency, the phase speeds of all waves

in waveguide converge with each other.

Page 151.

The amplitudes of parasitic type airect waves, which are formed on

the irregular waveguide, in this case very high frequencies disappear

the advantages of flat tLxansitions in comparison with abrupt/steep

ones. In mathematical sense Luis is developed in the fact that in the

integrals of type (8.34) or oi first term in (12.19) exponential

factors is not provided sufficiently rapid sign change of integrand.

These integrals will be in this case the order of prodict of v0 by

Ak

N~
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L/a, i.e., will be finite quantities. It goes without saying, in this

jcase, becomes already inappliicab.le all the apprcach/approximation of

loose coupling.

selecting first function wt ) according to sirrple equation (17.5).

L4~ et s ilustatedescioe calulaionmethd; fte

Determining a(s) by diagram indicated above, we will obtain

a I. 1a (0) a (L) (11.19)

Parameter a4 is equal in tis case

a' ~a (0) a(L)10(1n q), (17.20)

where I0 modified Bessel function. Dependence z/L on is given in

the integral form:

- L ~ln~co~%j~(17.21)
L a 1(inq)

The length of transition, according to (17.15) , must be not less

than
~~3~j(,flq'() a(L) . (72)

Calculating according to parametric dependence (17.19), (17.21) the

derivatives da/da and daa/dzz, ara easy to check that the obtained

transition does not have fractures at end/lead and that

a(O) '(L)(17.23)
S() a3 (0)
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i.e., that the slope of yeneratrix at narrow end/lead is considerably

i more than on wide.

Let us examine a numerical example.

Page 152.

Let radii of the coupled waveguides be equal to a(0)=24.4 mn and

a(L)=9 mm and minimum wavelength in which must work the transition,

it is equal to X =6 f am. The length of transition proves to be

equal to L=144.5 to mm. its airfoil/profile is represented on the

appropriate scale in Fig. 29a. Wave amplitude H02 in the function X

is determined on Fig. 28a, or on iormu 17.16) and (17.6). With

X>X k~ the amplitude of parasitic wave p] will be less than 0.11,

which corresponds to losses to conversion less than - 19 dB.

Let as compare this smoothea transition with right cone

(VP=const). For a cone wtan a>>l integral (17.11) is equal to

Pip(a)I- 1,5 6 1 (q) + 4(_ q) sin' (17.24)

Let us replace sin2 d/2 in (17.2i) consecutively per unit and for zero

and will substitute explicit expression • through L (17.13). Bearing

-3



4~ I

DOC =79024310 P AG F.

in nind that for cone a£ =a(0)a(L), we will obtain for fj(a) upper

i limit and frcm below, whicn to more conveniently use than by precise

formula (17.24):

K jp(a)1 (0) a-(L)0,56 [a (0) -La (L)F <__()__.6_ 1.5AL XL (17.26)
For the accepted in the preceauing/previous example values of

a(0), a(L) and X.,mconditxoa p-j ()j<0.11 will be reached at length

L more than half meter; cone must De three times longer than the

simplest smoothed transition.

Applying for the construction of transition function W( ), that

satisfies somewhat more complex equation (17.7), we with the same

values of the iatameters or proolea a (0) , a (L) and XM,10 will obtain
Itransition with a length ot 158 mm; at end/leads it will have small

fractures. The airfoil/profile of this transition is represented in

Fig. 29b. The losses upon Lnis transfer, designed on formula (17.8),

must be equal - 26 dB. the cone, which gives such losses, must have

into length about meter.

The method of determining the optimum form of the smoothed

matching waveguide presented assumes that the produced above

transition from formula (17.9) to formula (17.11) does not lead to

noticeable errors.
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Fig. 29a, b o 100 /7z

Fig. 29a, b- airfoil/profile of transition.

Page 153.

The degree of the legitimaci or tais assumption is illustrated by the

curve/graph of Fig. 30. On it is raepresented the

standardized/normalized amplitude of the parasitic wave, which

N.i appears on the transition waose airfoil/profile is selected according

4 i to equation (17.7) at the value ot the parameters: a(O) =9 mm,

ajL)=30 mm, X=6.6 mm. The length of this transition is equal to 193.7

mm, at end/leads generatrix composes angles by 5.4 and 1.60 with

Z-axis. Plotted function, which gives the airfoil/profile of

generatrix, is represented ia Fig. 31. Solid line in Fig. 30 is

computed on formula (17.6), it repeats the segment of a curve of Fig.

18b. Dash is found by the numerical integration of the system of two

equations which are obtained during isolation/liberation in the

system of equations (8.5) or two ejuations, which relate to

-- - - - -



DOC = 79024310 PAGE 1

direct/straight and backwara waves H.2. In each equation are

preserved only addend, containing amplitudes of these two waves and

wave amplitude H0 1 ; the given wave amplitude Ho, is considered< ! constant/invariable. Thus, in tuis numerical calculation is taken

into account also interaction of straight line and reverse/inverse

will H02, so that it gives results somewhat more precise, than

integration for (17.9). The comparison of curves shows the

effectiveness of the descrioed above method of the selection of

function a(z). Over a wide range, which reaches the wavelength withL which in transition already appedrs critical section, losses will be

only somewhat higher than on formula (17.8). However, detailed

variation p on X by this tormula is not transmitted.

Dot-dash curve gives tne amplitude of backward wave H02. As it

follows from common/generai/total considerations, backward wave is

very small.

___ -
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Fig. 30. Losses to conversion (to Fig. 31).

Key: (1). mm.

Fig. 31. Airfoil/profile of transition.

Page 154.

Let us note one auxiliary computational reception/procedure,

used during numerical intajrar.ioa. It is connected with the fact that

thc end conditions for the amplitudies of direct/straight and backward

waves (8.7) are placed at the difterent end/leads of the interval-

such common/general/total property of system (8.5)-(8.7). End
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conditions take the form (in variable 1

P, (0) - 0; P...(1) -- O. (17.26)

Auxiliary reception/proceiure lies in the fact that instead of1A

the assigned heterogeneous sistem with end conditions (17.26) are

examined other two systems wita ena conditions on one and the same

end/lead of the interval:

Pi(1) = 1; P-(1)=. (17.27)

The first system coincides wizn given one, the second differs from it
.R

in terms of the absence of Lerms with a wave amplitude of Hot, i.e.,

is uniform. Solution of both of systems, i.e., the determination of

functions P, ) and P (), P (/) is two Cauchy

problems, which, as is known, they are convenient for a machine

calculation. The soluticas of Dasic system are the linear

combinations of soluticns of Doh of Cauchy problems:

Pi  P") P41) (0) M12); = - ( ') (0) . (17.28)

This auxiliary reception/procedure has the common/general/total

value for the numerical solution of system (8.5), (8.7) or an

analogous system for bent waveguide (7.32), (7.10).

5. Presented higher based on example of symmetrical magnetic j

wave in circular waveguide metnod of determining form of smoothed

Ld Lim
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transition can be used tor wavegaudes of arbitrary section. According

to results of § 9, on high frequencies, whe- , i--- I all

coupling coefficients Sa for direct waves do not depend on frequency

and take form Cv/a, where a - a cuaracteristic size/dimension of

section and C - constant. Formulas (8.34) for the amplitudes of

direct waves at high freqaency w.i acquire the following form:

pC -LeI11dz. (17.29)
0

Integral (17.29) also it is possible to lead to the form,

identical with (17.2)

Let us introduce for this function f by the equation

dt .3)
dz a

Page 155.

Then integral pj will be

pi C A . (17.31).S T

0

where a and 9 they have tue same value, as in formula (17.10). The

definition of function fi() from the selected function W(Q) is

conducted in the same way as tne determination of function lna in

point/item 3. Knowing form of depeadences f(a) and f( 9), it is

possible to find a(). in order to find ratio z/L as function from g,
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and then length of transition L, it is necessary to use the formulas

•dz I d?,
dz - ," , (17.32)

L t2j L dt

I ML * a m

being the obvious generalization of formulas (17.14). (17.13) and -

(17.12).

In comparison with the dismantle/selected above example of wave

H02 , appears the supplementary aitriculty, which consists of the need

for determining function f. However, in certain cases this function

is located by trivial shape. For example, for the joining, examined

in § 15, f(z) is proportional to tne angle cf rotation of section

F(z), and is easy to find tae fora of function F(z) that ensures

(far from degeneration) low losses to conversion.

6. If in transition taere is a critical section for parasitic 4

wave, then form of generatrix, obtained by investigation of integral

(17.11) or, in the general case, initegral (17.29), can prove to be

completely unsatisfactory. Let us return to the problem of wave H02

in symmetrical waveguide transizion, and as illustration let us point

out to the form of generatr.x, presented in curved III Fig. 32. This

form of airfoil/profile a(z) was found from method described above

with the application/use or function, satisfying equation (17.7).
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4(Z)

Fig. 32. Airfoil/profiles of transition.
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Check computation, produced accozding to formula (12.19) for one

point of range, gave inadanissibly high value (0.26) of the amplitude

of parasitic wave. In othier cases tor the airfoil/profiles, presented

in Fig. 32 by the curves 1, 11, IV, loss they proved to be small

(LPI<0. 02).

gowever it is possible taus to generalize method presented above

of the determination of function atz)so that it would give the

satisfactory results also in tua presence of critical section.

Of three addend formula (UI.19) greatest is usually the first.

With an accuracy to unessential factors, this term/component/addend
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coincides with integral (17.9) - with the only difference that the

the upper limit in it, whica we will designate zL, it is not equal to

entire length of transition L, but somewhat less than the distance
~ from wide end/lead to critical section. The replacement of integral --

(17.9) by integral (17.111 now is already not admitted, because

factor (h,hi)/2|Wi near critical section rapidly is changed.

The generalization of method lies in the fact that to form

(17.2) is led not integral (17.11), but is direct integral (17.9),

i.e., old term/component/addend in exact expression (12.19). For

%4 this, is introduced the new function F(a) by the equation

dahm + h,
dF ~(17.33)X

With the introduction to this function and variable 9 (17.10) instead

N of z integral (17.9) it becomes identical to integral (17.2)., Then it

is assumed that F is proportIonal inW(C), where W(I) satisfies, for

example, eqation (17.7). Proportionality factor is located just as

in point/item 3. After determining the form of the function F(a) and

F(I), it is possible in implicit torm to find a(l). Dependence of z

on is found then from the equation, which generalizes (17.14):

d h()(17.34)
7L 2k h "I

Thus is determined tue lengtn of transition before critical

4k ,-- - -~ -_=, -. , . . .. % = , -==, .... -} ... - ' _ ,
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section and the form of airzoil/profile by forming a(z). Dashed curve

in Fig. 32 is the result oL tais construction. The amplitude of

parasitic wave, calculated for this airfoil/profile by precise

formula (12.19) taking into account all three term/component/addends,

render/showed eight times less tan for airfoil/profile III.

Page 157.

It goes without sayinq, ana in the absence of critical section

- it is possible according to tnis method to investigate directly

integral (17.9), however, apparentiy, sufficiently satisfactory

results gives consider-inly more idle time construction, that begins

from integral (17.11).

§ 18. Compensating inserts.

_ .1. one of possible mathous or 6ecreasing distortion of field,

caused by any irregularity, is introduction into waveguide of second

irregularity, which must compensate for disturbance/perturbations,

caused by first irregularity. 'tilizing that noted in § 10 additivity

of coupling coefficients, it is possible in this way to attain the

considerable decLease or tne total coupling coefficient of the

fundamental wave with most esseutial parasitic wave.

°%oi
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Let us examine this question oased on the example of symmetrical

waveguide transition for wave Hol, in which is introduced symmetrical

dielectric insert, i.e., the dielectric insert/bushing, which

possesses the symmetry of rotation and coaxial with waveguide. The

total coupling coefficient, ooligeu to a change in the radii of both

waveguide and insert, is calculated from formula (10.2). For waves

H02 and He,, it takes the form

Spn aH' (a)fHI (a) db 1) E' 0 b) (b)l
n hj (Iii llm) d z (18.1)

where through a(z) is designated a radius of waveguide and through

b(z) - a radius of insert, 9- dielectric constant of the material of

insert. Formula (18.1) is obtained from (10.2) taking into account

the fact that in the auxiliary waveguide which includes fields

(18.1), for waves Ho- tuey are different from zero only components

z, E,) and HA, and that integration on s in (10.21 is reduced to

multiplication by the length of the duct/contour of cross section.

So that actions of both of heterogeneities average out, it is

necessary that term/component/addends in (18.1) would be equal in

magnitude and opposite on sigh. Qualitative considerations about what

form must for this have insert, can be obtained, examining the

limiting case of very low value - 1. If f- 1 << 1, then in (18.1)

it is possible to substitute fields in the empty waveguide.

RA
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Expressing them on formulas (3.14a) and (3.18) through Bessel

.i functions and them derivatives, we will obtain for a coupling

coefficient

+(e -I)k 2bJ, tl- (18.2)

where p=3.83, u)= 7 .0 2 . Factor wita da/dz in (18.2) is positive. The

sign of factor with db/dz coincides with the sign of value J, (y4/a,

J i.e., it is positive with b<(je/pj a=0.55a and is negative with

b>0.55a. Thus, so that Sjm would De equal to zero, the derivatives

db/dz and da/dz must have near tae wall of waveguide one and the same

-* sign, but near axis their signs must be opposite. This general

character of insert is retainea, probably, and at finite values E-1.

In this case, for determining tue fields, entering formula (18.1), it

is necessary to preliminariiy solve transcendental equation and to

determine wave numbers and tields of waves H., and H02 in the regular

waveguide of comparison (Fig. 2.6).

The analysis, produced in article [93], it showed, that, so that

the coefficients of derivatives in (18.1) would have one and the same

order of magnitude, product xKb j=1 must be not very greatly, must

be fulfilled the condition
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kb T < 2,4. (18.3)

At the high values of b orf the field of wave Hol very strongly is

concentrated near dielectric, currents on walls become very small,

while in this case, it is difficult to attain mutual compensation for

both of term/component/addends in formula (18.1).

Figure 33, borrowed from L[93j, schematically depicts the axial

section of dielectric insert. Tue torm of insert was found from the

equation

-0'O, (18.4)

which under the assignea law a(z) is differential first-order

equation for function in b(z).

Calculation is carried out for waveguide transition in the form

of direct/straight round cone by the length 240 mm, connecting two

waveguides in radii 6 and 30 mm with E=2.55 and X=8 mm. Let us note

that frequency dependence of uota of term/component/addends in (18.1)

is somewhat different; therefore tue insert, which ensures at one any

frequency complete compensation, at other frequencies will not give a

strict fulfillment of equation (18.4), although it will be, generally

speaking, lead to the noticeable decrease of coupling coefficient.

2a

'4
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2 ; Fig. 33. Dielectric insert on [ 931.

Key: mI.rm.
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The compensating dielectrically inserts for wave H02 possess one

very intrinsic property. For symmetrical magnetic waves the coupling

coefficients (10.2) for straigat lines and for backward waves Ho2

become low values or are turned into zero simultaneously, since the

curly brace in (18.1) enters Dy factor both in Sj fand in Sj,. In

the presence of critical section, the amplitude of parasitic wave

contains, according to (12.20)botu Sjrm and S3,s. Therefore the

compensating insert, in whica is provided smallness SqM, will also

under these conditions provide a noticeable decrease in the amplitude
i

of the appearing wave H02. Under practical conditions the conversion

of modes Hol in H02 is especially undesirable precisely in, the

presence of critical section ior H02, when can arise resonance spaces

within the line of transmissions (ior example, see the article of
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F King and Markatili (97]).

2. Application/use of matching transitions, described in

preceding/previous paragraph, and introduction of compensating

inserts is two different mithoas ot decreasing losses to conversion.

Fr-.om a physical point ot view, tne difference lies in the fact that

in the smoothed transitions is provided the mutual extinction of the

parasitic waves, which apnear in different sections, and in the

compensated for transiticns taey extinguish each other of the waves,

which appear on different irregularities in one and the same section.

The best results, wiiicn ensure agreement over a wide range of

frequencies, which includes the trequencies, at which there are

critical sections, they can oe, probably, they are reached with

combination of both of metnods. The first attempt at the calculation

of the corresponding inserz is containpd in the article

2 van-Khuan'chzho (98]. In it are examined metallic inserts, so that

entire system is coaxial waveguide with the alternating/variable

diameters both of internal and external conductor. Coupling

coefficient between waves do, and Hoz in this system, as it is easy

to obtain, for example, trom (30.2) or (16.1), is equal, it is

analogous, (18.1)

[ Sim h, (h, h t,1 {uf(a)FI (a)+ -H'n (b) H' (b)} ,118.5)
Sim = n- III(h h.. d



DOC = 79024310 PAG 

,I
where a(z) and b)z) - radii or external and internal conductors. The

form of external conductor, i.e., zunction a(z), in [981 is

considered given one, the form of internal conductor, i.e., function

b(z), searches for from the condition so that the amplitude of

parasitic wave (8.34) would oe small.

Page 160.

For this, through the metnod of tne preceding/previous paragraph is

first located sufficient flat form of dependence of Sjon on z, and

*then from the corresponding differential equation is determined

function b(z), this ensuring dependence Ss (z). Function Sj,(z) is

selected in such a way that near tue critical section there would be

S The method of the construction of the compensated for

trans,'-.t":-, .zesented can De used to the row/series of other

problems. As the compensating heterogeneous cell/element it is

possible to utilize not only a dielectric or iron core, but also any

rod with impedance, for example oy that corrugated, by surface.

Heterogeneity can consist eitner of a change in the radius of this

rod or of a change in its surtace impedance. In all cases it is

substantial so that the supplementary heterogeneity would cause the

communication/connection of the incident wave with the same parasitic

:4

- -- ---.--- - I
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wave, as the fundamental heterogeneity, and did not cause the

noticeable education/formation ot other parasitic waves.

§ 19. Diffraction of plane wave on periodic surface.

1. There is identity Detween two electrodynamic problems, which

relate - one to reflection and conversion of cable wave, which falls

to the left to symmetrically becoming narrow end/lead of flat/plane

waveguide of width d (Fig. 34), another - to reflection and

scattering of plane wave of specific polarization, which falls

normally to periodic (periodicity in one direction) metallic surface

. . with the same airfoil/profile (Fig. 351. From the considerations of

symmetry, it follows that on tne norizontal planes, which exit to the

left of the sharp apex/vertexes of the surface of Fig. 35, during

diffraction do not appear tne z-aA of the component of electric

field. The metallizaticn of tuese surfaces will not agitate complete

field in diffraction problem, wnicn, thus, coincides with field in

the waveguide of Fig. 34.

NL
The solution of waveguide problem, i.e., the determination of

the reflection amplitude ana waves of the highest types, is in this I
I

case simultaneously the solution oi diffraction problem. The

amplitude of the cable wave reilected in waveguide is equal to

reflection coefficient from periodic surface. The propagated
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parasitic waves in wavegu4.de wiLl arise with d>X; under this same

condition appear the laterai diiaction spectra whose amplitudes are

equal to the amplitudes of: these wdveguide waves. Thus, the

diffraction problem, which corresponds to Fig. 35, also can be solved

by cross sections.

2 3.
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Fig. 34. Flat/plane waveguide.
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We will examine in this pazagzaph the generalization of the C
method of cross sections, which makes it possible to use it for

general problem of a normal incidence in the plane wave on periodic

interface.

2. Let us begin how .n chapter II, from dielectric medium with

continuous distribution or dielectric constant E(x, y, z). For

simplicity let us assume that - scalar value, generally speaking -

composite, and that in entire space magnetic permeability is equal to

unity. Let despite all z E (x, y, z) be periodic function from x and

y. Periods along the axes x and y, equal to a and b, are identical

for all z, but the form of the function depends on z. With z%<O

Ftakes constant value ., with z>.L (L>0) - constant value 4. On

transition layer falls to the lezt normally the wave (Fig. 36), it is

LLLI
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necessary to find field in entire space.

Let us introduce by analogy with the waveguides of comparison

the medium of compariscn, dtezr defining it as the medium, in which

dielectric constant t is the same function frcm x and y, that also -2

the transition layer with given z, and does not depend on the third

coordinate . In this zediuw of comparison, there is a system of its

own waves of both of dixections. The dependence of the fields of ®

these waves on is given by ractor e-hV. e will label their own

waves by index , which taKes for direct waves positive value, and

for reverse/inverse ones- negative. The fields of their own waves in

the medium of compariscn satisfy tne equations of .Maxwell and

boundary boundary conditions of elementary rectangle from the side a

and b.

- f A-
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0-I Y, zZ)
11N -Z

- Fig. 35. Fig. 36.

Fig. 35. Periodic metallic surface.

Fig. 36. Transient periodic layer.
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These boundary conditions aust ensure the periodicity of fields

in the medium of comparison. They consist in the fact that on

opposite sides of rectangle tae tangential components must coincide;

normal components in this case wiii be characterized by sign. Under

such boundary conditions oi tne field of their own waves, they

satisfy the same conditio, ot orthogonality (3.7) as in waveguide. We

{I
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number them on (3.8)

WithZ<O and z>L auxaliary utedium is uniform. The dependence of

different components of tne fields of its own waves on x and y is

given by the functions

sill, x -sin _ y n 119..

Cos a cosn " ii q=O. 1... (

In the transition region O<z<L o1 the field of each wave,

continuously they change wita chaage z.

Let us decompose field at eaca point of transition layer in

row/series on the fields of its own waves of the medium of

comparison, which corresponds to given z. Let us designate the

coefficients of expansion rturougn P (z). They satisfy infinite system

of equations (8.5), and coupLiny coefficients are given by the same

formulas (8-6) or (8.16).

End conditions for systei (8.5) are found from requirement so

that with z=O the field oi the incident wave would coincide with

field of one of the direcL/straigan its own waves, precisely, that

wave whose fields do not depend on x and y. We will appropriate to it

index j=1. End conditions coinciae with (8.7) with m=1, they consist

in the fact that with z=O amplitude of all direct waves, except wave

j=1, they are equal to zero, and P,( z) equal to the amplitude

-
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incident wave. With z=L are equal to zero fields of all backward

waves.

After solving system (8.5)-{(.7), we will find fields on planes

z=0 and z=L. Simultaneously are determined fields in the uniform

half-spaces z<0, z>L, since P..{(0) equal. to reflection coefficient,

P, (L) - coefficient of passage, and Pj( 0) with A<- and Pj (L) with

j>1 they give the amplitudes oi tue diffracted waves in left and

right half-spaces.

Transition to the problem of diffraction on the periodic

interface of two media witn different values of dielectric constant

". and E. (Fig. 37) is conducted in the same manner as for in § 8. In

layer +O<z<L s,, it is piecewise constant function; considering it as

the limit of continuous function, we we will again obtain for

coupling coefficients expression (8.22) .

Thus, three-dimensional diffraction problem is reduced to the

computation of coupling coefficients and to system (8.5)-(q.7). If

interface does not depend on one of the coordinates, then the

determination of the fields ot its own waves and coupling

coefficients considerably is simplified.

Pagw 163.
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As always in the method oi cross sections, the solution of

system (8.5) can be obtained in explicit integral form, if the

parameters of medium are changed siowly. For a problem of diffraction

on interface (Fig. 37) this means that the height of irregularities

must be great in comparisou with periods a and b. In this case,

solution is given by formulas (8.3).

3. Let us examine now briefly problem of diffraction on periodic

surface of metal. As in the .necry of irregular waveguides, system of

S equations (8.5) remains valid uFon transfer from dielectric to metal,

and expressions for the coefficients of connection can be obtained by

passage to the limit IF.--->-; they are given by formulas (9.2) or

(9.5). There is, however, one essential difference between problems,

examined in § 9, and problem of ditfraction. This is connected with

the fact that the topological structure of the medium of comparison

is changed by jump upon transfer through plane z=O. Therefore the

fields of their own waves, generally speaking, are not continuous

upon transfer through this plane, Formally the apparatus of the

method of cross sections can be nevertheless it is used in entire

space, if we consider that the coupling coefficients (8.6) are turned

at point z=O into infinity. It is simpler, however, to apply system

of equations (8.5) only in region z>O where all coupling coefficients

43
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are final and where for taem valia formulas § 9. End conditions

(8.6), which assume the continuity of the fields of their own waves

of z=0 and continuity of coefficients P (z), will be no longer used.

End conditions for (8.5) witu z=+O must be found from the

auxiliary problem of diffraction on the boundary of half-space z>0,

which regarding with all z>O has the same structure, as the section

of the periodic surface in q, stion by plane z=+0. This auxiliary

problem usually can be Drought to the infinite system of algebraic

equations. After finding from it the relationship between the

amplitudes of various waves with z=+O and z=-O, it is possible then

to pass to system (8.5).

Thus, the application/use oL a method of cross sections to the

problem of diffraction on metallic surface is connected, generally

speaking, with supplementary complexity.

MI
IT

g-z
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Fig. 37. Periodic dielectric surface.
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It will not be only in the case, examined in the first point/item,

since for this case corresponding auxiliary problem has the trivial

solution; with that indicated in Fig. 36 polarization the field of

the incident wave is not agitatea uy the system of planes of Fig. 38.

Upon transfer to metallic surface there are changed also end

conditions with z=L. The condition, which ensures the absence of

backward waves with z=L+0, will be replaced by the requirement of the

finitene's of all amplitudes Pj (zj with z=L. However, this end

condition proves to be ac more complicated than (8.7); it one should

apply, it seems, also for closed waveguides of tlse type of Fig. 34.

4F
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In the theory of irregluar waveguides, we also would encounter

insufficiency of end conditions (8.7), torrents would examine the

heterogeneities, changing the connection of sections. For solving

such problems, for example, of tue problem of metal cone in waveguide

(Fig. 39), also one should first examine a question concerning£I
coupling of two semi-inflaite regular waveguides with the sections of

different connectivity (Fig. 40) and only then apply system of

equations (8.5).

2

°ii
N~
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Fig 38. Fig .9. Fig./'/ 40./

Fig. 38. System of parallel naif-planes.

Fig. 39. Metallic cone in wavegaide.

9.Fig. 40. Waveguide of cmpdrison to Fig. 39.
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Chapter V.

BENT WAVEGUIDES.

In this chapter we will use tne method of cross sections to the

calculation of t-he bent waveguides of rectangular and roLnd sections.

§ 20. Bent waveguide of rectangular cross section.

1. During computation of coefficients of connection F1 ,, of two

waves, we will be restricted to curvatures (discontinuities) whose

axis is parallel to one of sides of section. For another location of

axis, the determination Fim from tormulas (7.18) and (7.20-7.22) also

is reduced to simple guadratures.

Fracture mutually coniects ouiy waves between indices of which

are definite relationshij/ratios. These relationships are analogous

to those, with which are different from zero coupling coefficients

3J
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Sim, those calculated in the first point/item § 16 for special type

transitions. As it was noted in 9 9, fracture is a special case of

transition, it differs troa tae transition, examined in § 16, in

terms of the direction of zae angles, formed with Z-axis by the

opposite walls of waveguide. £herefore the relationship/ratios

between the indices of two waves with which F,,,, not is equal to zero,

differ from the apprcpriate relationship/ratios § 16 in terms of

conditions, which relate to tne parity of indices.

According to the condition, accepted in § 4 and 7, the axis is

directed toward center of curvature, so that mutual location of cross

section and axis of fracture (curvature) is given by Fig. 41 and 42.

For Fig. 41 larger side of section is designated by letter a less -

by letter b. In the case, waich corresponds to Fig. 42, we will

designate the length of the smaller side of section by letter a, the

length of larger side - by letter b, so that in both cases will be

preserved all designaticns of § 3. The dependence of fields on

Sifl x sillt,,or Il for the waves
coordinate x is given by factors Co a o cos a

of number m and j respectively; dependence on coordinate y is
cin r sin iy

determined by factors c 5s qm or cos b q "

Page 166.

Calculating integrals (7.18), it is easy to check that the necessary

J 

_
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conditions for difference Fj,, from zero take the form

qns q,, n.,8 + n, -Helle?,toe IiC11o(20 I

Key: (1). odd number.

In other words, fracture causes the appearance of waves, which have

tighter dependence on the cooruinate, parallel to the axis of

fracture, that u'y the incident wave, and another parity of the

index, which gives dependence on the coordinate, perpendicular to

axis.

Computation on formulas (71.8), (7.22) and (3.21-3.23) is

connected not with what complexities, and we will give only final

results. Written below formula JiO.2a) is related to the case when

both of waves - magnetic type, formula (20.2b) - when they are

Nelectrical types both, and tormula (20.2c) -to that case when m-

magnetic wave, and j-electrical wave. Conditions (20.1) in all

cases are considered carriea out. we extract formulas in this form so

as to emphasize that of the high frequencies when all given wave

numbers h are close to unity, the coupling coefficients are

proportional to the frequency
-. . _ ___ __ in t-Al, A / , +hm ka

(20.2a)
41 hntj+A i i+A. n.
___ __ i,' ka; (20.2b)

Fin, 2A (20.2c) 5
/-- An 2 -n ain

Wave numbers Ott,ai are determined by formula (3.22).
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Fig. 41. Fracture in plane H.

Fig. 42. Fracturo in plane .
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2. Lct us use these unertJ. formulas to problem of incidence in

fundamental wave on fracture or curvature.

With fracture in plane d (Yiy. 41) main wave must be designated

as Ha,, so that "n I, qmO 0 Accorilingly (20.2c) , waves of the type E

are not formed, will arise only waves I,, where "-"i - even numbers.

The coupling coefficient, computed in (20.2a), is equal to
h/ "n (,, 4, hy)

, , . ., - ,I - IM, (20.3)

Energy losses with tracture iu plane H are determined virtually

only by wave i,,) (,.-. 2). Wi.ta i z1 it takes away the energy, equal to

approximately 0.032(ka) 2Zo, whwre 8o - angle of fracture in

radians, and energy of tha incident wave, as it is everywhere lower,
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is accepted equal to unity. This comprises more than 99o/o entire

energy, taken away by ail Aso-waves. Waves f4l., H6 and so forth one

must take into account only near critical frequencies.

With curvature wita large radius of curvature in plane H, the

amplitude of appearing direct wave H2o is equal to
-~(h. + ~,) 3 a

iPI-= 1,2- 10-2 (ka)-m SIn . (20.4)

Here a - difference in phase change of waves H10 and H20 at entire

curvature. Counted off phase must be along the axis of waveguide,

since for all waves value r,, introduced by condition (7.25), is

equal, as it is easy tc check, to aistance from the axis of curvature

to the center of section.

If I (not is small in comparison with unity and it is necessary

to ensure low losses over a wide range of frequencies, then radius of

curvature must be selected by such so that would be low value

1.4-10-l(ka)4a2 /r2 . If, for example, at the short-wave edge of range

ka=12, then relative energy losses are equal to 3az/r2 ; in order to

ensure losses are less - 30 4r, it is necessary to make the bending

radius 55 times of more taan the wide side a.

To fracture in plane E it corresponds to Fig. 42, and the

designation of main wave will ne H,,, so that n,,=0, qm=1. According

to (20.2), will arise the waves Lt, and II/,, where nl=n - odd number.

•AL,
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Coupling coefficients with waves Em are Oqual to

'A n, V"+ n b'a's . (05

coupling coefficients with waves H,~ are equal to

F,,5  - ___ ka. (20.6)

Page 168.

Let us recall that in tWO diter their formulas b -the wide side of

section and a -narrow side.

Far from the resonance irequencies of waves H31, H151, . E31 1

E1is sufficient to consiaer the energy, taken away by waves Ell and
Es I
Hli. The ratio/relation tine energy, taken away by wave Ell, to wave

energy HII is equal approximately to the square of the ratio of

larger side to smaller. if tae ratio/relation of the sides of the

section is equal to twc (D/a=2 in the designations of Fig. 42), then

wave Ell takes away the enery, equal to approximately 0.017(k b)

2020, wave HI - is approximately four times less. Total energy

losses will be one and a iali times less than with fracture in plane

H to the same angle.

With curvature in plane B, tue wave amplitude Ell is equal (with

b/a2)i~ 1I0'~ A) (ka)2iji I (20.7)

4I4S

I
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According to (20.7) and (20.4), tae losses to ccnversion and

requirement for the value or Denaiag radius at the fixed value ka for

both of types of curvatures are very close.

Let us note on conclusion 
or this paragraph, that 

if the

waveguide works in single-wave conaitions/mode, i.e., frequency is

not so great so that the pdrasitic waves could be propagated, then

losses were due only tc the reflected 
wave. Its amplitude is

inversely proportional to tne square of radius of curvature or (for a

fracture) to the square of tne angle of fracture. It can be found

from the following diagram: from (7.27) are determined the amplitudes

of the direct/straight and reverse/inverse parasitic waves, generated

the transmitted main wave, and then from (7.24) - amplitude of the

reverse/inverse main wave, generated these parasitic waves. For a

reflection amplitude, is onoainea in this case the expression in the

form of row/series, however, since coupling coefficients rapidly

decrease with an increase in tae number of parasitic wave, then in

computations will Participate only several terms of row/series. This

method, it goes without saying, is not limited only by rectangular

waveguides and main wave.

§ 21. Bent circular waveguide. Wave H11 .

-H

0a
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This paragraph is written in essence according to the results of

N. P. Kerzhentseva's article j9#J.

Page 169.

1. Coupling coefficients of two waves in circular waveguide are

nonzero only during specific ratios between indices of waves and

between direction of their poiarization. We will examine only such

asymmetrical waves whose polarization, i.e., dependence on azimuthal

angle 0, is determined by factor sin no or cos no in expressicn for

membrane/diaphragm function , or 1. Since waves of both of

polarizations differently overcome fracture (or curvature), then

during the propagation of wave in intermediate polarization, i.e.,

with factor cos n(A-ft.) in aemnrane/diaphragm function, it is

necessary the field of this wave to present as the imposition of the

fields of two waves of fundamentai polarization and each

term/component/addend to exdmine separately. Let us recall that the

angle 1 is counted off from axis x, oriented to center of curvature,

i.e., by that lying at the pidne of bending.

The azimuthal indices or two waves, connected with fracture,

must differ per unit, i.e., tae necessary condition for difference

I.
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Fin from zero is the equality

/ I/" - . (21.1)

When both of waves belcag to one and the same type - magnetic or

electrical, then F,,l is excellent from zero, only if

membrane/diaphragm functions contain one and the same trigonometric

function, i.e., both are proportional either to cos no or sin n3.

When one of the waves - magnetic type, and the second - electrical,

tnen Fi,,1 is excellent from zero, iz membrane/diaphragm functions are

proportional to different trigonometric functions. For the

symmetrical waves n=O, and during the application/use of this rule it _

is necessary to consider that ' or 0 they ccntain factor cos no.

During satisfaction of two conditions indicated, superimposed to

polarization and azimuthal depenuence, coefficients F,,, are nonzero

for any two wa.es. Exception/eiimination is the combintion of waves

t, E,,,. for which F,,l. is excellent from zero only when q,, =q,,

% and be.sides only for waves of one anO the same direction.

The special character ot tn±s case is connected with the

structure of given below formula (21.2c) and the fact tiat wave H0.,

and E£ degenerated.

Coupling coefficient for two magnetic waves is equal to
F,,,, ,  .- ,,,,, -',, m7, (,)- ,/,,,) 1!i f ,. , >'

_u_-( u,; --.,.,)I ,, --, 1/ ,.,,-,,;, ~ ~n
F1i (>

'.z - - k a . (2 1 .2 a ).
o 2hI



DOC =79024311 PAGE

Page 170.

For two electrical waves the cougling coefficient is equal to

(vm 1) 212 a. (1.b

If wave m -is magnetic, ana( wave of number j -eetiate

I ir £ 12~ ka. (21.2c)

Last/latter formula is written zor that case when

But if

~ '~ *4'-'sinn,~p, q"-cosz,p3, (21.4)

then in (21.2c) it is necessary to change sign to reverse/inverse.

From (21.2c) it follows, in particular that wave 11o07(n,=0) is

not connected by fracture with E-waves. The special case they are

waves Epp, with the same va.Lue of i for whichv,=Itmind formula (21.2c)

is not used. This case wifl. ne analyzed thorouqhly in the following

pa ragraph.
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membrane/diaphragm function takes the form

1V)'t Ntn-J, np) Cos (1)

or

Wave with membrane/diaphragm function (21.5) let us call/name

the wave of the first polarization; its electric field in section is

represented in Fig. 43. Wave with membrane/diaphragm function (21.6)

let us call/name the wave of the second polarization; its field is

given in Fig. 44.~ With incidence/drop on fracture, wave H11 of the

first polarization causes the appearance of waves H0,1, of waves q

(for which iI'-cos2D) and waves E,, (for which 4'-sin21,); wave H11 of

the second polarization, correspondingly, it generates on the

- fracture of wave E,,q, 1I~ 1 =.Isin2 ) and E2q((P'. cos,2,). However, coupling

M, , coefficients rapidly decrease with number q; therefore the large part

of the energy of parasitic waves is taken away by waves H21 and Ho -

for wave H11 of the first polarization and by waves E01 and B2 1 -for

wave H11 of the second polarization. Table (21.1) gives energy losses

(in 0/0 to that falling) on frdcture in 10.

Page 171.

At the high frr juencias when in formulas (21.2) it is possible

to set/assume 1h=1, the total energy losses of the wave of the first

A Z-
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polarization can be calculated according to the formula

0, 14 (ka)' 02 (21.7)

(00 - in radians). Almost three fourths in this energy takes away

awave H.1, about one fourthi - wave Hol, to wave E21, it is

approximately 0.6o/o, remaining waves it is possible not to take into

consideration.
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I

Fig. 4L4. Wave HI,1 of seccfld polarization.

Table 21.1. Losses of mave Hit on fracture in 10 (in ofo).

'013 12.7 9~2.

I 41 - - 0,0010,00310,004, 00 2 11I0,041 G,06

~Bcero . 035 0,07 0,18 0 O,50 10,59 0.5 2,841 ,

2pf M-aU2 151 OMI 1,6 31,1 6,7 1,
F(II~,1 10,0 418,)1

Fit 10 ,O 0003 0,001 0.01 jO,02 0,0410,06

K~ey:() polarization. (n, -Tc.V

Page 172.
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For the second polarization of energy loss on fracture, they are

equal to
0,235 (ka)2 0 (21.8)

Almost three fifth it falls to wave E01 , two fifth - to wave H2,.

3. With incidence/drop on Deading of sick radius of loss to

conversion for wave of first polarization, they prove to be

approximately by an order lower than for wave of second polarization.

Calculation according to -formala (7.29) shows, for example, that so

that in the broadband of the loss ior the second polarization there

would be less than 0.5 , ending radius must be, independent of

angle of curvature, 50 times it is more than at least a radius of

waveguide. For the second poiarization it is sufficient so that there

would be r/a>10.

If bending radius r is not very great, then amplitude of one of

the parasitic waves can achieve tne values of the order of one, while

the amplitudes of all remaining parasitic waves will be still

negligible. In this case, the given amplitude of the fundamental wave

P.. (0)
A will no longer be constant at entire bending, and formula

(7.28-7.29) they will cease to oe used. However, system (7.24) can be

will be simplified, after preserving in it in the old system of two

equations: for pa(f)) and the ILven amplitude of the greatest

parasitic wave /)(O).In this case, will be obtained the system of two

j-;a
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equations: after solving it, 4t will be possible to then

establish/install the limits oi the applicability of simpler

solutions (7.28-7.29) and, ir this is necessary, to calculate the

amplitudes of remaining Farasitic waves, retaining in the right side

of each of equations (7.24) tor these waves of two

term/component/addends, which contain 1., and /'. Analogous

examination was by us carried out in § 15; there, however, us

interested in essence tne con itions, close to degeneration, which we

in this paragraph be occupied will not be.

Let us illustrate this caiculation, which is the refinement of

the common/general/total calculation of the fourth point/item of § 7,

based on the example of wave all oi the second polarization. Main

parasitic wave - the wave oi number j - according to

preceding/previous will be direct wave E01 . System of equations for

,.(O) and Pi(O) will be, accoraing to (7.24),

P; :-i(hj -- h )/'0

Since in this system are preserved only direct waves, then boundary

conditions will be:

p.(O)= 1; P(0)-=.O. (21.10)

Page 173.
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In order to record tae soiution in convenient for further

analysis form, let us intzoduce critica]. angle , after determining

by its formula

.,,. - -- - I - (24F. I l)
r ("m ' ,) WhM - h) 11

The solution of system (zi.9), (21.10) takes the form (sr of

formula (15.21))

P~M -0 IV . 111 (21.12a) -

Fl) . 8, P

V, 7Sin ' ' e-' ; (21.12b)Pl = r (h,, --I ;2 26"hP

Formulas (21.12) are close, it goes without saying, to formulas
I&

(7.28), (7.29a) they pass in them with increase of r.

During change 3, occurs periodic energy transfer from the

fundamental wave into parasitic and back; the period of this pumping

is equal to o. On 7. 29a) the apiitude 1;' also periodically

changes between the zero ana maximum value. The period of this

pumping differs from 0,,, (21.11) in terms of the absence of factor

1/W. Maximum value 11),I, computed in formulas (7.29a) and (21.12b),

also differs in terms of tiers factor.

The amplitude of tae funaamental wave i,,,,1 accordingly (21.12a) ,

also periodically is changed trom unity when O= 0. 203. and so forth

to 1/W when =O=p, 30,J) and so forth.

i -J
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Thus, quantitative estiadte/evaluation of error which appears

with the disregard of the reverse/inverse action of parasitic wave on

fundamental, serves the difterence for factor W from unity. It is

more precise, with W-1<< tns reverse/inverse action causes a

relative change in the aaximum value of the amplitude of parasitic

wave, it is equal
: 2-(h,, (21.13)

This same to expression an equal relative change in the period of

energy transfer.

Parameter C in the probiem of bending makes approximately the

same physical sense, that value I/j2 for the twisted waveguide (§

15).

Let us return to our an example - to waves H11 and E01 . For

these waves value C is equal (with t.1)

C 0,2 (ka) (21.14)

Page 174.

If, for example, during the aetermination of the maximum power

of wave E01 it is necessary to ensure accuracy into 10o/o, then

formula (7.29a) it is ...ss.b.e to use with r/a=0.8 (kA) but with +
AR
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smaller r it is necessary to apply formula (21.12).

The higher the frequency, tnose more must be bending radius, so

that it would be possible to set/assume C<<1 and to disregard the

reverse/inverse action of parasitic wave on fundamental. This is

explained to an increase in tne coupling coefficients and by the

approach of the propagation constants of different waves during an

* :increase in the frequency.

With incidence/drop on te Dending of wave Hat of the first

polarization fundamental parasitic wave will be wave H21. Parameter C

(21.13) will differ fros expression (21.14) in terms of the

replacement of coefficient by 0.2 by 0.1.

It goes without saying, formuias (21.12) and condition C<<I,

where C is determined by rorwula (21.13), they are used during the

ahalysis of the waveguiae ,end oi arbitrary section. For example,

during incidence in wave H1 on tne bending of rectangular waveguide

in plane H the dominant role, according to (20.3), plays wave H20,

and parameter C for these waves is given by the same formula (21.4)

(a - wide side of secticn), in wanich numerical coefficient is equal

to 3*10 - 4.

4. From formulas (7.26) Pm(*):-I, i.e. phase of wave is
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determined only by factor e-11-nro Accordingly (21.12a),P(O)has

different from zero phases, and the Phase of wave at output will not

be equal to h.,,r0. This can De treated as a change in the wave

propogation constant of numner m, connected with conversion into the

parasitic wave of number j. 4itn C<<1 this equivalent cL.ange in value

ih,. is equal, as it is easy to oatain from (21.12a),

S2h. C (hj, - hi). (21.15)

This formula is analogous to formula (15.26) in the problem of the

twisted waveguide of rectangular czoss section far from degeneration

conditions.

A change in the propagation constant is of the order 1/r2, and

the value of supplementary pnase mere will be order 1/r.

In practical sense it is suzstantial, that the value of

supplementary phase is different for waves H11 of both of

polarizations. For the wave of tne first polarization, supplementary

phase is considerably less tnan for the wave cf the second

polarization. At high frequencies (I'zl) a phase difference of waves

of both of polarizations is equal (in radians)
0,24 -2-_ -o (k0), . (21.16)

r

Page 174.

If wave H11 falls on aenaing in such a way that the plane of the

-n wA4
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symmetry of wave is inclined towaZd the plane of bending at tL.

angle, not equal to zero or r/2, then this difference in

supplementary phases leads to the elliptical polarization of the

transmitted wave Hl,. This efiect occurs also for a single-wave

system, i.e., if ka<2.4 and wave Eo, is not propagated. The analysis

of formula (21.12a), in waich in this case one should assume h, pure

imaginary ones, it shows tndt in single-wave system a phase

difference is small and aoes not exceed several degrees. For example,

with ka=2.2, r=lOa and -0o=/2 this phase difference is equal to 2.20.

§ 22. Wave H., in the bent clrcuiar waveguide.

1. Fracture connects wave H., with waves If,, of both of

directions, polarized so that

- .I -" 'Ji(ap)cos[. (22.1)

Coupling coefficients are equal to

i 4p.Il,, (pi -I- hm a)2

(ii - iP4h~~/2I-It~)ka. (22.2)

Furthermore, it is different irom zero coupling coefficients of wave

Ho with wave Ell of the same direction, polarized so that

A. M J (otip):sin 13. (22.3)

Coupling coefficient is eqaal to I
ka

Coupling coefficient with wave E11 , fnr which qop- cos. is equal to

__ __ __
#N a .

- --N~~
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For a coaxial waveguide auaioyous formulas obtained 0. Sh.I

Shushpanov (1003. The introduction of internal wiring does not

remove/take degeneration Detween waves H01 and Ell,

Difference from zero coupling coefficients of wave Hol with wave

Ell (and generally lie', f1o3 E0', tar. same direction can be explained,

relying on the consideratious, given at the end of § 9, by the fact

that these waves degenerated, I.e., possess identical phase speed.

According to these considerations, the conversion on a small fracture

iG the imposition of two efiects: conversion on a sma~ll step of

special form (for displacement) dfld of additicn of the parasiticAi

waves, which were being torzaed along semi-infinite waveguide on such

steps.

Page 176.

Since coupling coefficient S,,. between the mave it,,, and all E-waves-a

is equal to zero, then the amplitudes of E-waves, ahich arose on such

steps, are very small (they are proportional to the square of the

height/altitude of step) ana their total anplitude also is very

small. However, wave Ell possesses the same phase speed, as H. 1 , and

all parasitic i1 1 -waves, waicn are formed on such steps, store/add i

11
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uinphase. Their total ampritude proves to be proportional to the

upgin ot fracture, and this indicdtos that ... for waves H.1 and Ell

is different from zero.

2. Energy, scattered at tne bend in the form of any H1j,- wave, in

essence departs in forward airection. The ratio/relation to energy of

backward wave to energy by straiyglt line

It /h (22.5)

always less thi.t unity approacnes unity only near the critical

frequency of wave "q-speciaL caise, in detail investigated in §13.

The relative energy, taken awdy by direct/straight and

reverse/inver.-e -'.,.,waves, j. equal to

(h,~_4 h) - -- A)4 (k)2s3!. (22.6)

The energy, taken away ny wave Ell, is equal to

-~-.(ka) i), (22.7)

In order to find entire lost energy, ilt is necessary (to 22.6)

to sum np on all propagdtea waves fHjq and to add (22.7) .Expression

(22.7) is proportional o ae square of parameter ka, and in (22.6),

freqiuency enters, furthermore, inn and h,,, and with an increase in

the frequenc7 increases a number ot members of type (22.6) . During

the approach/approximation ot opezating frequency to critical one of

the waves of the type l,, the energy, taken away by these waves,

increases, and in immediate proximity to the critical frequency of

JL
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wave amplitude H,,' they become comparable with the amplitude of the

incident wave (~13) . Fa.r zrcm critical frequency, with hl, total

loss energies will be equdi to 0.16(ka) 2 2 (8 in radians). Three -1K fifths of this energy takes adl wave H12, approximately on cne fifth
I~~ waves Ell ani H11

Given below Table 22.1 gives the values of relative losses on

fracture in 10, cal, iat% a according to (22.6) and (22.7). In row

Hiq(q~ 1, 2, 3) are given the energ ies, taken away by both waves.

Page 177.

in brackets are shown tne values wxich were qiven in Miller's article

L ~FOOTNOTE 1~This article contains no formulas acc,.ording to the theory

of fracture, in it are given only indicated numerical results.

EN DFOOTNOTE.

Table 21.2 is borrowed trom the work of M. V. Persikov, Yu. N.

Kazantsev and A. 12. Kozelev [102]. In the table are compared the

measured and calculated according to the given formulas values of the

ratio/relation to enprgy ot the parasitic waves H11 and Ell,

scattered forward, to energy oz tue incident wave Hol with a=25 mm,

-A
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X=3.2 cm and by 00=2.30. desults are given in decibels; measurements

completely confirm~ed calculations.

Thus, great energy cunteat i.s lost in the form of wave H12. If,

however, the electrical langti or fracture increases (for example it

increases r with constant 0.), then the amplitudes of all waves

decrease, according to (7.29), and wave amplitude Ell remains

constant/invariable. Therefore with large bending radii with small 00

of loss in essence, they are connected with wave development Ell. An

increase in the bending radijus does not decrease amplitude by that

appearing they are water Ell is especially essential this effect for

the bendings on final angle 6. to examination of which we pass.

tj
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Table 22.1. Losses to conversion on fracture in 10 (in o/o).

rI

i1/4.01 7.07 11.13 1'2'.27 12..77 19.G4 IA26,6 0 3.1m ;..i

E 1  0,025 0,052 (0,133 0,156 01.G9 0,401 0,734 1, 65 2 r,0
lIlt 0,016 0,013 0 126 ( I 0,5t 0,3IS 0,739 1,67 2.55

0,08, 0,316 10,81 0,117 1,075 ' 2,03 4,61 7,V)

(0,3) (o,41) (2,0) (4,8)
- - 0,00210,002 0 ,0310,005 0,015 0,036 0,055

Bero . . . 0,04 0,19 0,58 10,69 0,75 11,88 3,51 8,00 2,2

Key: (1). In all.

Table 22.2. Scattering on fracture.

• f,

-28,2 8-2,6 -28,3 - ,9

Key: (1). Measured. (2). Calculated.

Page 178.

3. Let r>>a, 30 - finite quantity; in practice greatest interest

be of bendings on 900. The copiasality of elementary waves Ell, which

are formed in different sections of bending, leads to the fact that

the wave amplitude Ell teaches tinite values. As in § 15, for the

investigation of the phenomenon ot degeneration it is necessary to

solve the system of two equations trom common/general/total system
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(7.24) - for amplitudes of direct waves )L (P.- ((0)) and El'(pj(0)).

* This system takes the formA

P Fp1; p' Fp,1. (22.8)

Here F coupling coefficient (.22.4) between waves Hal1 and E,,

moreover I, t,,,", since hL, ..

The solution of system j22.8) under obvious boundary conditions

Pore () 1, Pi(O>-0 takes the form1<Pm- COS (22.9a)

Pi Sill (22.9bl

Introduced here value
(22.10)

2F

~call the critical angle of Jouquet. Angle kr, introduced in the

preceding/previous paragraph Dy condition (21.11), can be considered

as generalization (22. 1U); (11)it passes in (22.10) when j-hm

According to (22.4)

77,5aa (22.11)

Key: (1) . rad. (2) . deg.

Energy consistently passes from wave Hal to Ell and vice versa,

complete pumping occurs lonen O-O.This result was for the first time

obtained by Jougue t r 16].-
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Thus, with final ones 4 wave amplitude Ell stops the order of

one, and wave amplitude H., can noticeably differ from one. Therefore

during the determinaticn of tae amplitudes of the parasitic waves,

which appear together wita wav, Ell, at flat bending with final 00,

it is necessary in right siae (7.24) to substitute solution (22.9).

The amplitude of any wave ot inaex s is determined in this case of

the equation--;-i i-" " .a nO -ills1...  hi, )rc' Ell e -ill

c'os e., iF - - hhs. (22.12)n. t .icOS;'"C

Page 179.

Determination P, is reduced to elementary quadratures. Already in

the first order on 1/r wili arise the parasitic waves with n#1,

obliged by communicatioL/connection with wave Ell, for which it is

different from zero coefticients F ,

4. Jouguet's result (22.9) was generalized by Viktorova and

Sveshnikov [21], that examaned incidence in wave Ho l on

three-dimensional/space bent circular waveguide. The axis of

waveguide forms the helix, characterized by radius of curvature r and

by twisting '. In t21 it is snown, that the wave amplitude HoI in

this waveguide changes according to the law

NI
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2.'02

, p, (o) : -cos -r,,, + (2-4.13)

2 1
which is the generalization of foraula (22.9a), valid for a

flat/plane bending.

According to (22.13), tor a aonplanar bending to any angle 30 it

is possible (at one freyuency) to ensure the absence of considerable

conversion of modes Hol into El,, after selecting twisting x axis

in such a way, that would be fulfilled the relationship/ratio

: X'2 + 4 ,- 0 2.n (n =1, 2 ... 1. (22.14)

Formula (22.13) it is easy to obtain by overall diagram 7. Let

us examine for this simuit-taeously three interacting with each other

waves: wave He1 and two perpendicularly polarized waves Ell; the

directions of the polarization o£ these waves let us consider the

constants, for example hcrizontai and vertical. In that intrcduced in

§ 7 coordinate system, x axis is oriented toward center of curvature.

In this coordinate system, the membrane/diaphragm functions of these

two Ell- waves are propcrtional respectively

sin (fi- f%) &n-1i: COS ( 0-), (22.15)

where o - angle in cross-sectional flow, composed by the direction

of x axis with motionless direction, for example with the direction M

i

i -
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of this axis in the beginning of aending. Angle 0. is proportional to

the twisting

- (22.16)

[ Page 180.

Let us designate the givau wave amplitudes H01 and of two waves

El with the angular dependence inuicated respectively I'm. I)q and

The coupling coefficient of tne waves of numbers q and s with wave

Hol they are proportional to integral of the product of trigonometric

factor (22.15) on sinp and tutey are equal to respectively

Fcos,",, u Fsif3, (22.17)

where F -a coupling coefficient (.42.14) of wave H01 with wave El

(22.3), whose membrane/aiaparagm iunction is proportional sin3. Both

of waves Ell are not directly connected; the wave numbers of all

three waves coincide. Systea L7./.4) for three variables P-M(, Pq(OI) and

NO() takes the form

dOM

(22. 18)
di?, i dpS

do 20c o 20,

Analogous system was by anotner metho4 obtained in [21]. Function

P...(0)ifl (22.13) is the solution c,;: system (22.18) under obvious end

conditions Im(0) 1, ~(0) po) 0.

5. If it is necessary in Drodlband to ensure at the bend
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! relatively small conversion oL modes Hoz into Ell, then it is

necessary by any path tc remove/taxe degeneraticn, i.e., to create

system, in which propagation constant of these waves do not coincide.

One of the known methods of relieving the degeneration is transition

from all-metal to spiral waveguiae. The walls of this waveguide are

formed by the wire, wound on tne spiral (it is more precise -

according to helix on cylinder) with very low pitch. After wire, with

p>a, where a - radius of cylinaer, is arrange/located dielectric

layer, further - metallic waveyuide (jacket) . Spiral virtually

completely shields the fieia of waves IIQ, and these waves the- are

propagated the same radius. The field of remaininq waves penetrates

beyond spiral; their propagationi constant is different from value

h, in all-metal waveguide. Thus, in particular, it is possible to

change value of h for wave 4i.

However, with this simuirdneously change also coupling

coefficients between dizierent waves in this system in comparison

with I,, for an all-metal waveyuide. In formulas of § 7 for Fli one

should now consider a change in the structure of all waves (except

waves W,.) in spiral waveguide in comparison with the waves, described

in § 3. This calculation is proauced in the articles of Unger [103]

and Kerzhentseva [104].

Page 181.

~I
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W- will give from these articies the numerical values of the coupling

coefficient of wave Ho, wia E.l; zor the all-metal waveguide F, is

given in (22.4).

Curve/graph by 45 is Borrowed from [103]. The module/modulus of

coupling coefficient IFlis represeanted in the functicn of the

imaginary part e' of dielectric constant E.'--ie" of the

material, arrange/locatea DetweeD spirally and by external jacket.

The curve a is related to case c' =-4, the curve b - to e'%=C; curves

are calculated for ka=29.5. TaDle 22.3 is undertaken from [104]. In

it F is given for several values xd, 8' and P" when there is no

external jacket, i.e., that dielectric fills entire space with p>a.

R 1

=NU



DOC 79024311 PAGE 2'?I

IFI
20-

i Fig. 45. Coupling coefficient in spiral waveguide in [101].

: Table 22.3. Module/modu!Us of coupling cofficient.

•a 6,5 G., 152 1,5 1 6 , 5 ! 12. il1,12952,19 5',51),295 9,

(22. .

--4

:From these data it foiio4s 5.at the coupling coefficient insai

" spiral waveguide can ncticedly dizfer from '12.4), and during strict ]

calculation of losses to conversion according to formulas of § 7 this

ZN~difference one must take into account. The presence of jacket,

ha 6,5
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apparently, little affects value F, in any case at high values .

6. At high frequencies waen parameter ka is great, propagation

constant of all waves clcse to each other. In this case, the

amplitudes of the direct/straignt parasitic waves, which are formed

* in the bending of constant curvature, will be, accordingly (7.28b),

it contains in denominator low value Ali -hi-h,.; in order to ensure

the sufficiently low level of losses to conversion, it Zs necessary

to apply the bendings of very large length. It is possible, however,

to decrease the length of Dending with it was proposed by Unger (48J

and was used in article [49). However, used in these works

mathematical apparatus not end/leads the small fractures; meanwhile

precisely such bendings maae it possible, as it turned out, to obtain

the smallest losses at the smaliesr length. This was shown by

Kerzhentseva in article [105); in this point/item we presented the

fundamental results of this worx.

The amplitude of Farasitic wave at the output of the bending of

alternating/variable cuLvature is given by formula (7.35). We will

record it in the form

-Liz
pi(,Do) =F,, - -' ' d,(22.19)

after transferring the origin of coordinates into the middle of

bending.
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FOr selection r let us examine first value

+_-:-' +Pi (00) - Iz N:P,(o - e-i1hh.dl. (22.20)

Oo "Fin -.,rQ)

" This value has the same analytical form, as the coefficient of

. reflection (17.2) from the section of long line with theL alternating/variable wave impedance of W (C). The problem of finding

of the optimum form of dependence r(I) can be solved, utilizing the

optimum forms of the function W (9). In contrast to the roblems,

examined in § 17, for bendiag it is expedient to utilize

really/actually op' mum (maximuA Chebyshev) function W.nrG,(f).found by

Klopfenshteyn [951. 5

Page 183.

Calculation shows that the carvature of bending must be changed

according to the law

I __ " { 1 .... I ( Vt,, 21 (! l )Z

I (V L \,2 21)
Sr (1) 02 L -ch am~c,

2 -2J

Here I - modified Bessel function, 6- delta function. Value o., is

the parameter of bending; it aetermines the ccmmunication/connection

-- 7
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between the product #=L-Aa dad by value (22.20). For all values a,
I P,/0 o Fj., -

greater than selected ,, value A will be less I/ch -i" If

for example a,,, is selected as Deing equal to 10.6, then value

(22.20) will be less than 0.01.

For the bending, in waica tne curvature is changed according to

(22.21), the amplitude ot pdrasitic wave is equal to

jpilj FjmV - 00 - -_Cos (22.22) J

By the special feature/peculiarity of this bending is equality and

equidistance of all maximuos IIj, considered as function from s.

L I
In Fig. 46 value -p- proportional to curvature (22.21),

:-~ - is represented as function IlL for two values of parameter
duftw - 7,14,

flat curve, and a,,,= 10.6. steep curve). At the

end/leads of the bending. taere are small fractures, equal, according

to (22.21), 0./2ch -*5!!5. The gzeatesz curvature is reached in the middle

of bending and is equal to

S2,

Fig. 47 makes it possiaie to compare the lengths of three

bendings, constructed according to different laws, but which give the

identical maximum values of pardmeter (22.20), i.e., identical losses

to conversion.

- A
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-J

Solid l.ine gives Jp,/10 Fi,.. u.eperding on a for the bending,

constructed according to (i2.il), dash - for the bending, proposed by

Unger (48], in which LrQi) .i.s changed linearly trom zero to the

greatest value in center, dot-dasii for a bending with constant

curvature. Than the less peLMaISSIbie losses to conversion, the moreA

the advantages it has a bendiuq with small fractures, constructed

according to (22.21) .So, for LAIt=2O r, it will be in this bendiiig

$ 400 times less than wita the bending of the same length with linearly

variable chamber Ir)

For the bending, constructed according to (22.21), the maximum

value of amplitudes 1) (00) wiiiL change with frequency only due to a

change in the coupling coefficiont F,,,; change Ah, according to

preceding/previous, it wiii not affect the3 maximum losses. In this

case, the length of benainy wust Loc selec 4 ,d according to the

requirement(2.4

analogous to condition (17.15).

7. Another possible metaod of overcoming of bending is partial

filling of cross section of bent waveguide vith dielectric. This idea

and calculation of the corresponding equipment/device for wave Hl

are contained in the article of idorgan [441.
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function A succeeds in enstiring equality to zero or the

considerable decrease of tae total. coupling ccefficients of wave Ho

A -a~--~
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with several waves, first oz all with wave Ell. In [44] they are

designed single-sector and three-sector compensators. In the first of

,.lb them, is utilized one dielectric sector, situated from that side

section, thatnearerA cotai:'s three symmetrically arranged/located

I sectors, divided by sectoridl interval/gaps; dielectric is also

arrange/located when j,31 (#r/2.

• ,In the designations of last/latter point/item of § 8, coupling

coefficient between waves (E":, H"') and (E"", 10m), obliged to

heterogeneous filling, is determined by general formula (8.46); the

coupling coefficient, caused by uending, is fcund in (22.2) and

(22.4). For wave Ell, for example, the sum of these coefficients will

A be for single-sector comjensator equal to zero, if its parameters

* and 00 - the flare angle or sector - will be connected by the

1 relationship/ratio

1) sil "  153 .(2.25)

In this problem the application/use of expansion in terms of the

fields of waves in empty waveguie, used in last/latter point/item of

§ 8, leads to target/purpose somewnat faster than expansion in terms

of the fields of waves in regular waveguide with the sam: filling.

This is explained by the tact tadt in this case the field in the

filled bent waveguide is close to the field of wave Hol in the empty

rectilinear waveguide, and preciseLy with such waveguides is

connected bending. Wave H., is its own wave of rectilinear part and

1; Li
I -
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it is simultaneously close to Its own flexural wave; therefore it

overcomes bending with a small distortion.

By means of the cojlacation of the fcrm of dielectric it is

* possible to decrease the cominunication/connecticn of wave Hol with

the row/series of other waves, besides E1*; however, with any

selection of function P(xy) it ;s not possible to ensure the absence

* of the communication/connectio or wave H., with all other waves and

passage by it bending entirely without losses to conversion. The

compensated for bendings, designed in (44], possess low losses; this

is explained by the fact that ror them it is accepted b--i< I This

* limitation is superimpesea bota by the calculation method in [44] and

z. ~ by the need for ensuring low value &e', i.e. small dielectric losses.

Page 186.

Calculation this same oi equipment/device according to the

method of § 7 required first or tue determination of its own waves of

the filled rectilinear waveguide; they it would be possible to find,

for example, from the metuoa or idst/latter pcint/item of § 8. When

(e--I)<1 and upon consideration to communication/connection H00 1 only

with E0
11 , their own waves will D% two linear combinations of these

waves, close respectively to H0o, and E0 11 . The passage of these its

own waves according to bending is described by the system of two

_ Kg
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differential equations of type J7.9). End conditions are found from

. requirement, so that the aeginning of bending these their own waves

they would form wave H0O,. When (8- -1) this calculation somewhat

more is bulky, than calculation in [44]; however at finite values

' it, probably, it will ae noticeably more simply.

Let us note finally aat tae impossibility to find this

distribution e(xIi). so taat the wave H., in bhanding would not bei distorted, from a physicii point o! view, it is possible, it is

probable, to connect with the noted at the end of § '4 dependence

between the longitudinal and transverse components of fields in the

adjacent sections of the uent waveguide. With selection e(v,i) it

would be possible to mate even tue phase speeds of all points of wave

frcnt in cross section and to ensure the rotation of front without

distortions; however, will ccmpletely appear the supplementary

components, caused by tais depenaaace, and therefore unavoidably will

arise the waves of other uumners. With an increase in the frequency,

longitudinal components become relatively less essential, and losses

to conversion in bending w,' heterogeneous filling can be made

small ones.

Ju
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Chapter VI.

IRREGULAR ACOUSTIC WAVEGUIDES.

The method of cross sections, developed above for

radiowaveguides, can be used also during the investigation of the

propagation of waves in irregulac acoustic waveguides. In acoustics

this method also reduces to the infinite system of ordinary

differential equations for wave amplitudes.

For the first time for investigation of one type of waveguides-

precisely tapered welds with rigia walls - the version of the method

of cross sections was proposed Dy Stevenson [106]. In [106] for wave

amplitudes was obtained tue system of the differential second order

equations; expressions for coefticients in this system are very

complex, and this apparatus, apparently, was not used for the

calculation of specific cases.

Below problem is reduced as in electrodynamics, to the system of
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differential first-ordex equations. In this chapter are given the

formulas for the coefficients of tuese equaticns, so-called coupling

coefficients F,,, and S,,,,, for different types of irregularities. In it

is not examined the computation Fijm and Sim for specific problems,

the solution of system of equations for waveguides with the slowly

changing parameters, the iavesti~ation of the special caseg, the

physical analysis of results, i.e., all that which composes the large

* part of the material of tae precedinq/previous chapters. For acoustic

waveguides all this is conducted in much the same manner as for

radiowaveguides. This chapter bears somewhat nore formal and more

concise character, than preceding/p~revious.

Page 188.

§23. Regular acoustic maveguides.

Acoustic field is descriDed Dy sound pressure P and with a

vibrational speed of V. Wirtn time/temporary dependence e-t the

fundamental equations ot acoustics take the form

div V .Zp;(23. 1a)

grad P -- itop V. (23. 1Ib)

where p -density of mediua and c - the speed of propagation of sound

in it. In common/general/total case these values depend on

coordinates, pp(x,y,z) and c=c(x,y,z). on the toundary of waveguide,
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is fulfilled one of the two uoundary conditions:

,P - 0 (23.2a)

or

" 0. (23.21)

where N - a direction of standard. Condition (23.2a) corresponds to

soft wall, condition (2j.1b) - riiid.

Regular waveguides are calied the media in which p and c do not

depend on z and boundary coaditions (23.2) are fulfilled on certain

cylindrical surface, parallel to L-axis and by that intersecting

plane z=const according to the closed curve. We will examine the

regular waveguides of general view, in which p and c depend

arbitrarily on x and y.

1. Let us give necessdry tor Lurther relationship/ratio between

different values in accustic wavegaides. Let us begin with the case

when density p is everywhere constant. In this case, it is convenient

to use the potential T',, der-ermiued by the formula

V -. - grad 11'. (23.3)

It satisfies the wave equation

FW. : i - - .. , (23.4)
a ' 0: "
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where x =fo/c- wave number. B~oundary conditicns for qrtake the

form

it ~ 0 (23$.5a)

or

-0. (23.5b)
ON

Let us recall that in thie radiowaveguides of field in a number

of cases also they can be expressed through the scalar functions,

which satisfy wave equation (2.1.4) ; in symmetrical relative to axis

waveguides it is sufficient even one function. However, conditions

(3.2) for electromagnetic field on the boundary of irregular

waveguides lead for these functions to the boundary conditions,

different from (23.5) .1

Page 189.

For example, in the simplest pronlem of symmetrical r-gnetic waves in

symmetrical tapered weld Doundary condition fcr potential function

exists o3IIa , where n (normal to the duct/contour of section) does

not coincide with N in (23.5n). This difference under the boundary
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conditions leads to the fact that for coupling coefficients in

radiowavegu_ des and in acoustic waveguides are obtained different

formulas, even if these coefficients are expressed as the same

potential functions.

In the regular waveguides of comparison, we will replace as into

§8, Z-axis by axis C. Wave number x" does not depend on , and the

solutions of wave equation are the functions

TI" (.,. E ) t "(x. y) e m 1, 2.. (2.3.6)

Here V" they satisfy the equation

2 " - h i4,,) 0;" 0. (:-3.7)

Boundary conditions (23.5) isolate the conplete system of

eigenfunctions and of propajation constants h,,. As is known,

function - those corresponding to different indices, they are

orthogonal between themselves:
~IoI). 012. .8)

\p'i is 0 .p j.) (j 0, In 0).(3

Key: (1). with.

We accept for them the standardization

d f e e (ft"') st  dS- 1, (239a

different from the standaraizarion of membrane/diaphragm functions
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for radiowaveguides. Difference tnis is caused by existence in

acoustic waveguides with tb rzigid walls of the solution 'I'= const.

which corresponds to the fundamental wave, for which standardization

(3.16) is impossible.

Let us introduce, furtner eigenfuiictions and wave numbers with

negative indices, after defining taem as into §3, by the condition

(23. 10)

11M.... . --h (23. 1ot )

For tha indices, which have different signs, condition of

orthogonality in the form (23.8) will not be correct. The

common/general/total recording of the conditicns of orthogonality,

which includes (23.8) ana (23.9), which we will use subsequently, has

the form

~ ~ . 5D*.(23.11 )

Page 190.

2. If density of medium, waich fills waveguides, is not

constant, then potential satisfies more complex equation, than

(23.4). In this case more conveniently to operate directly with

values P and V, similar to taat as in radiowaveguides with

heterogeneous filling is expedient to produce all computations in the

components of fields E and H, but not in membrane/diaphragm



functions. This calculation was produced in V. V. Shevchenko's

article [107]; all results of this chapter, obtained not from wave

equation (23.4), but it is direct of the first-order equation (23.1),

were borrowed from this article.

In the regular waveguides in which pplx,y), c=clzv), the

solution5 of the system (23.1) , .A

"- : 1"1 ',.,I.. . V"(X. Y) I: " l,,,st,
V", ( , j, V 1 .. "(X, ,,).--,,,c C t) .

., tl Ott

.... .. ,:;.,, - - u~pv, ;h.,p" m~." (23. 13b) o

and to boundary conditions which correspond (23.2a) or (23.2b).

I
" System this will be invarldnt relative to the sign of index, if

we assume together with (23. 10.b1

...... t/,,; vy , = -- I,; , (23. 14)

-If p=const, then always it is possible to assume p=1, and then

11"'v' they are connected wita eigenfunctions Qmby the

relationship/rat ios

i* ,; v. -) iv," - a- p /Oy; vT" =uh, ( 23.15)

i Eigenfunctions p.,,vm are orthogonal between themselves. For

obtaining the condition of octhoronaliy, we form value

we asume-tdivg (P V - V ), (23.16)

a-.-Ntl -r n - r

If pcont, hen lwas i ispossbleto ssue p~. ad ten
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where I-m,V.. and VjY'W- fields of two waves (23.12), of numbers m

and -J.

Page 191.

Accordin: to (23-1), value (23.l1b) ti qa ozr.Ltu

interateit wihrespect to Cross Section. Integral of34

(PMV1i - pI V ) + - (Plav'- PIV ) (23.17)Al[can be converted according to the theorem of Gauss into integral on

theduc/cntor f scton;.it is equal to zero as a result of

boundary conditions (23-za) or 423.2b). Th% er/oi-nnVadn

in integral of (23.16), th~it- contains derivative on 9, after

N.reduction on e'("-"j will tasce the formJ

- i(h,,. -h)~("i '~ dS. (23. 18)

Thus, with jfm the inteyral, whica stands in (23.18), is equal to

zero, 1

Let us accept for eigenfunctions (p"I,vm) such standardiattion

which with p=1, when it is correct (23.15), passes in (23.11). Then
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the condition of orthogonality and standardization are recorded in

the form

( pn9 ,vT) dS - -2 (23t 19)

§24. Bent acoustic vaveguides.

1. We will begin from definition of coupling coefficientFm

between two waves in beat waveguide with method of small

heterogeneities, by examining as into §4, fracture of vaveguide of

constant section to small dngie A* on fracture falls to the left the

wave of number m from Single aapiitude, i.e., wave with potential

1P~i~n?;potential in- right wave taxes the fort

nz-o

and it is necessary to tind amplitudes &.- Let us connect between

themselves the values of potential and its derivative in sections AA

and BB (Fig. 2)
%i Ir jr 7 A\0 (24.2)

~Lb z ;AA

B11 'i h f)z Iz a AA

Last/latter term/component/addend t'-s secondly of these formulas

corresponds to the rotation of Z-dxi.s upcn transfer from one section

to adjacent, remaining term/couiponent/addends are the first two

meml-ers of Taylor series.
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I AA of value 'Vand 01'I'/oz contain together with

addend, Lnat corresponds to the inciden'- wave, also

term/component/addends, which correspond to all reverse/inverse

(reflected) waves. in order to exclude the unknown amplitudes of

these backward waves, we qili us3 Doth by expressions (24.2) . Let us

-':innose value

It, obviounly, does not contain the field of tackward wave of iumber

j,. but the field of direct wave of number j eLterE into it with

anxplitude -2i/z;P. Multi~lyingj (24. 1) on T" and integrating by cross

sectinn, we as a result oi che conditi.on of orthogonality will

exclude term/compon'Tht/addends, wajcb relate to -the waves of all

othp'r number... Thus, dc-terminiag P), according to the formula

S il, tit dS, (24.4)

analoqous to (4.3), where ire integral is tAen according to section

-B, and expressing potential and ) ts derivative on (24. 2), we can

into trst terms in (24.2) suustitute not entire potential, but only
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4. potential of the incident wave. Since all the computation is

_ conducted with an accuracy down to the terms first-order in Ab, then

in term/component/addends (24.2), that contajin factor A*, also it is

VTpossible to substitute I~V PflL~n.Thus, !P(j>O) is located through

for *ila (24.4), in which it is necessary to assume (45

ITT (I- iii.. r , 0) " -L\

A 0) Ai

For P, will be obtained the expzession

P, 611 +)m Fi,,1A0. k,24.6) 1

Values F,,,, are, as shown into §14, the unknown coupling

coefficients. They are equal to

F,,,h,, (h,,, hl) j l"'ij1dS +1 (24.7)

In a similar manner it would be possible to find the amplitudes

of backward waves, i.e., value P, with 1<0, and to be convinced Gf

the fact that formula (2-4.7) was valid with any sign of indices j and

me

J ~ Page 193.

L 2. Let us examine now waveguide bend according to circular arc

and will install system cf diftferantial equations for P. those

-Jr
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considered as functions of aaigie 4, and expression for coefficients

in ths sytemusing formais of method of cross sctos. We will

in this case proceed frcm wave equation for .'11 (23.4).

Let us expand for this 'Vand in row/series accordingI
to functions t:

h.r R,>Q,"~ ~ llIf (24.8)

i The isolation/liberation of factor -- izin the coefficients of the

second from -hese expansions, it goes without saying, is arbitrary.

Let us introduce instead Q': (0) and new coefficients, I',~and P---, (ai),

after defining them just as in (7.2) :

K-P , Q,,- Pis P -1, Rri. (24.9)

Taking into account condition (24. 10), it is possi';le now (24.8) to

record in the form

' P,4' (24. 1 Oa), i 4 ~1 (24.10b))

where is implied summation over f from v - ~

Values [if pa)-- amFlitude of direct/straight and backward

waves. on transition between two sections of different curvature, in

particular' at the end of tne oending, during its coupling with
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rectilinear ones: by waveguides, potential :ps and its normal I'

derivative must be continuous. According to the condition ofr ai)

orthogonality for functions V". hence follows also the continuity of

amplitudes P,(). End conditions for P,1 (O) at the end/leads of the

curved section coincide with (7.10).

In order to find system ot equations for P,,(O), let us

substitute (24.10a) in (24.10b), and (24.10) - into wave eguation

(23.4), recorded in cylindrical coordinate system. Utilizing even

more differential equation (23.7) for eigenfunctions ;," we will

obtairn two expansions:

Sv ihP .rx)v; -- L h,,,,. iP, Wh.r' (24.11)

Let us multiply bcth of expansions on ij, and will integrate

over cross section. According to (23.10) and (23.11), the first of

them will give in this case tue expression for-(P,---P,),the second-
d

for -(Pi4 P-).

Page 194.

From these two expressions we dili obtain the unknown system of the

differential equations

dP_

(.
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where the expression for F1,,, coincides with (24.7).

3. Formula (24.7) can te somewhat simplified, after excluding

from it first integral and after ieading it tc symmetrical form,

similar formula (4.7) was converted to form (7.16).

Let us show first that in acoustic waveguides the coupling

coefficients F,-, also satisfy conditionally reciprocity (7.14).

For two any soluticns of wave equation (23.4) yo). Fi it is

obvious, is correct the ideatity
div ('Is'') grad WO) - l(I grad 111(2)) 0. 424.13)

Let us integrate it with zespect to the region, included between the

lateral surface of the curved waveguide and two -ross sections

8=const, and we convert integral on the formula of Gauss. According

- to (23.5), the vector flu,,, waich stands in (24.13) in brackets,

through the lateral surface of waveguide is equal to zero, and

therefore the integral
... 't("---dS,r (24'. 14)

l(2 r)'))Ot) (?

undertaken according to the ectien of waveguide, it does not depend

oi . The substitution of expansions (24.10) gives for this integral

XI
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of expression 2;-1.Dypr. Derivative this sum on 3 is equal,

according to (24.12) ,

2;P1')P- (hF,. +I hF-,.-,) (24.15)

(is implied summation over tt and v). Value (24.15) is equal

identical to 7ero; therefore for any indices is equal to zero sum,

which stands in brackets. Since, according to (24.7), during sign

change of both of indices Fim also reverse the sign, equality zero

(24.15) mean that is correct the condition of reciprocity (7.14).4
Substituting under this condition expression (24.7), we will obtain

_- ' (with jj+-m)
.I S -- .. M.. (24.16)

Page 195.

Let us note that this identity could be obtained directly,

utilizing only equations (23.7) ana boundary conditions (23.5). For

this, one ouqht not to have integrated over cross section functionVr It ".S \-m '.' "I 'v")1.

According to (23.5), the integral of this function is

equal to zero; on the cther nana, it is easy to show, transforming it

and utilizing (23.7), that it is equal to (hM-h')ri'ip+*'a$'/or-

Hence again is obtained identity (24.16).

Replacing the first iitegzai in (24.7), according to (24.16),

i
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obtain the expressio for a coupling coefficient in the symmetricalU form:
-L. h$dS hj, L y2dS1.(4.7

Here derivatives on r are replaced by derivatives on x,d/dr=-d/dx.

as is shown comparison with (2[t.7) , this formula is valid also

with j=-m. It is inapplicanle only with j=m. Coefficient F,1 contains

value r in an explicit form. jiadiub ofE curvature ri for the wave of

number j, introduced into j 7 as radius of a circle along which the

phase rate of this wave coincides with the phase rate in S

direct/straight wavejuide, is equai to iF,,h1 , (and, according to

(24.7), we obtain for this value the expression

r r dSdS. (24.18)

For a vaveguide with soft walls, i.e., under boundary condition

(23.5a), there is the idtentity

S ~ ~p"-WdS =0. (24.19)

analogous (7.19). In thais case second tern in (24.18) is absent, and

formula (24.17) takes the simple form:

F,,, - ' ~ dS. (24.20)

In this case, F,.-,-=0 for any form of section.



DOC = 79024312 PAGE 1-r-

Formulas for I,,, for acoustic waveguides (24.17) and (24.20) are

analogous to formulas (17.20) and J7.21) for radio waveguides but, as

already mentioned, they do not coincide with them. In both problems

,M it contains the same integrals; however, these integrals enter

with different coefficients.

Page 196.

.25. Acoustic waveguides vita alternating/variable filling.

1. Let us begin from case of medium of constant density, when

field is described by equation (2j.4), in which x (X,y,z).

In the waveguides cf comparison, the wave number '- does not

depend on and with all j is tue same function from xy, as in

irregular waveguide with fixed/recorded z. Eigenfunctions 'j" and

wave numbers h,,. the waveguiaes of comparison depend on z.

Let as decompose 'I' and )'' in an irregular vaveguide in

row/series on 11- type (24.8) let us introduce variables P', i-)by

conditions (24.9). Then we onrain the expansicns

,'(25. a)

,t: •(25 1i1)

=RI _ !
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Coefficients P,i.:) are amplitudes ot waves of both of directions and on

the boundary of irregular section satisfy end conditions (8.7).

With support/socket (25.1a) in (25.1b) and (25.1) -into

* equation (23.4) are obtained two expansions:

(PV. iIj~)i -

Equation (23.7) for y. riae hrere used indicates derivative on z.

Multiplying (25.2) on ip;, integrating by cross section and

utilizing a condition ci orthogonality (23.11), we will obtain the

system of differential eations for amplitudesI,()

dP2

coupling coefficients S~zare equal to:

SIM h, Id~(s ij (25. a)J

5 (25.4c)g1, d-
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Key: (1). when.
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Relationship/ratio (25.4b) coincides with (8.9), as we see

below, it is correct in the more general case.

Formula (25.4c) in appendices to problem with a small change in

the rate of medium means tuat the coefficient of reflection of any

wave is proportional tc a change in its propagation ccnstant. As we

will see below, in the general case when changes also density, there

is not no this single bond between S ...... ,and h.

We convert formula (25.4a) in such a way that the coupling

coefficients would contain clear"7 derived on z only that of wave

number ×, and not of eigeafunctions. Let us differentiate for this

equation (23.7) for z:

1- v '" - ;"--- ,,) ,I " l - -- ',i) 0,-" 0. (25.5)

Let us multiply this equation by i-t, and equation (23.7), written for

m=j, will multiply on - 'J', we will add and integrate over cross

section. Utilizing even Doundary conditions (23.5), we will obtain

2A
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When the factor when hi,,, in (25.6) is equal to zero, and that

participating in (25.4a) irtegral is expressed as the integral of

derived wave number "- Substituting in (25.4a), we obtain

S ... .. -- Ijt: Ij"i d.S f i) (25.7)

Comparison with the following iorwula shows that (25.7) it is correct

with j=-m.

Expression for a derLvative of the constant of propagation

through the derivative of wave nuaer h,,, is obtained from (25.6), if

we in this formula issume j=+-lm. So we find

d7 .q -,, (IS. (25.8)

Two last/latter formalas are analogous tc formulas (8.16) and

(8.17), that express coupling coefficients and derivatives of

constants expressing ccupling coefficients ind derivatives of

propagation constants in radiowaveguides with the

alternating/variable filling through derived in z of electrical and

magnetic permeability media.

Page 198.
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Formulas (25.7), (25.8) can De still ccnverted for that case

when medium consists of two mediums with the different values of the

speed of sound, between whica there is a sharp interface, so that

. is the piecewise constant function of coordinates. Repeating the

- !corresponding considerations 8, we will obtain that in this case

derived O 'uv differs from zero only in infinitely thin layer

adjoining the interface, ana in this layer

: o: On

where v- tangent of the angle which forms with Z-axis the tangent

to interface, perpendicular to intersection of interface with plane

z=const, and n - a normal to interface in the waveguide of

comparison, directed tc side i in this waveguide. Substituting

(25.9) in (25.7) and (25.8), it is possible in these formulas to

produce integration along direction n for transition layer; in this

case, of the boundary conditions, follows that in layer necessary to

consider it I" as constant. In tnis wiy for .,, and h are obtained

tl- expressions, which contain the contour integral, undertaken along

the line, on which the interiace oi two media intersects with plane

z=const,

"I (25i. 10a)

dz
I Q.

i S " "") ii£;- 1 ' (' ¢ ..Xl"-) (iI= 0; (2S.i4a
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In these formulas ,(z- - difference in the value of wave I
numbers in both adjacent media. Formula (25.lOa) is analogous to

formuula (8- 22) for radio waveguides.

2. We will generalize tae results of this paragraph for

waveguides, in which both speed oi sound and density of medium are
alternating/variable value. Let us be in this case it proceeds from

first-order equations (L 3 .1) for pressure P and rate V.

Let us decompose P and V,' in row/series on V, and t type

(24.8) let us pass to variables Pt-n)Tne expansions

I P (25.11a)

- ,(25.1 b)

let us substitute into equation (23.1n) for components v., and v.I

Keeping in mind first two of equations (23.1b), we will obtain for

these components the same expansions:

P.' I; - P(. (25 12)

7b

-- ~ -- --- --- - -' -- - - m m |
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In order to install the system of differential equations for

P,(z. we will substitute (25.11) into equation (23.1b) for V: an,'t!

( (25.11), 125.12) - in (23.1a). Utilizing the also last/latter from

relationship/ratios (23.13n) a z!afionship/:atio (23.13a), we will

obtain two expansions:

(P '+ ihj'' I.1 v

(P. -[ ihP,.) t1 '25.13)

Multiplying these sues or, v and p. store/adding up, integrating hy

the transverse cross section and utilizing a condition of

orthvgonality (23.19), we will oDtdin tne unknown system of equations

for P, ):

P, ih1P, - I,'.); (25.14)
Sim , ' . p')dS. (25.15"

* 4

From the comparison of formula (25.15), written for j=-m, with

the formula, which is obtained durinq different-iation with respect to

z of the condition for stanaardization (23.19), it follows that and

in this most general case is fulfilled equality (25.4b). Let us

recall that this equality is tne condition of the fact that upon

transfer from variables Pn1(.l to Dy alternating/variable specified

condition (8.29), in the system of differential equations for these

.... ..... j
- - '' -,P -* l"m r I



-- -1 1-

DOC = 79024312 PAGE tg'

N( I

new variables are absent tne diaqonal terms. It has simple energy

value.

The conversion of expression (25.15) to the form, which contains

arbitrary ones on z only from the parameters of medium, is conducted

by the same diagram which was used in point/item 3 of §8. Let us

differentiate on z of equations (23.1), written for the wave of

number m:

div V",' -- '?,,,,,'-- -- ) P"'; (25.16)Spc
2  \ pc 2- -

grad P' -i - (iop)' V"'. 

Here, for example Pm' is obtained during differentiation with respect

to z of formula (23.12a), in which on z they depend p"' (x,y) and

h,, (sr 8. 14) .

We form, further, value

div ( P"" V-i - - V"'}. (25.17a)

According to (23.1) and (25.16), it is equal to

I- p I n' '°-  1, "i- (i&Up)' V"'V1 . (25. 1 7b)

Page 200.

- -i _-.n-- .. - - -. ... .. : ,. . -__ - - , -= " -
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Let us integrate (.25.17) witiu respect to the transverse cross

section of waveguide. Integral cf term/fcompcnent/addends, whichI

contain two-dimensional (in the variables x, y) divergence, drops out

after conversion on the fe :mula oi Gauss and substitution of boundary

values (23.2). After substitution (23.12) and reduction, for the

exponential factor e'"r"' e will obtain

(I)~~ I 'v~ 'Js. (23.18)

In this way we obtain tne uninown expressions for the coupling

coefficient

S1 P-~ 'Pnp + 'v v -i dS (j~i)(25.19)
- . 2h± (hm ,) hi L P

2 .

and of derivative of the wave number

-~ I, - ~E(i-V (p'-2.- P'vnv -"I11S. (25.20)

With p=1 two last/latter iormulas coincide in accordance with

(25.7) and (25.8). These iormulas, probably, can be placed as the

basis of the theory of long natural waveguides.

Comparing (25.19) with (25.20), we find the common

relationship/ratio between the coupling coefficient of straight line

and of backward wave of one and the same number and a change in the
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propagation constant:

s_,, - , C,, ' (21-)  (25.21)
21

c 11101

Simpler formula (25.4c) is valid only in waveguides with

constant density.

Let us use finally forAulas (25.19) and (25.20) to the problem

of the medium, in which there are two regions with the different

values of the parameters, Detween which there is a sharp interface,[ ..Q" so that pc2 and p they ara the piecewise constant functions of

coordinates. In thin layer about tne interface in which derived on z

in (25.19) and (25.20) they are different from zero, they are

replaced on formulas of type (1.5.9) by derivatives on n. From the

continuity condition of pressure and normal component of rate, it

follows that the change 1'" and v,; in layer can be described, using

the designations of formula (8.21) and assuming that in one of the

media p=1, by the relationship/ratios

' (',) ,,, (,).tin I t) V ,, V ; ( 2,. (.:v / , - ; 1 5 .2 2 )

Page 201.

Integrating along direction n in formulas (25.19) and (25.20),

we will obtain respectively for coupling coefficients (with j=m)
N 1

- B)
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2h (z11

and for a derivative of the wave number

* I pc~ 2-5.24)

§26. Acoustic tapered welds.

-~-~ .~*1. Determination of coupling coefficients for tapered welds we

will begin from auxiliary pronlem of scattering during small stepj

during coupling of two c-emi-infinite waveguides with close sections.

The value of step 6( efined as into §6, is considered small in L
comparison with all linear dimensions of problem. on step falls to

the left the wave of number n(a>O) from single amplitude; let us

search for amplitude 11; of t±ue transmitted into right waveguide wave

of number j(J>0).

Let us continue the suriace of right waveguide into region z(Oj

and will consiler this surface as undisturbed, but true surface of

both of waveguides - as deformed. on the deformed surface are valid

simple boundary conditions (23.5a) or (23.5b). Let us replace strain
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is equivalent to the bcundary condition which must be fulfilled on

the close undeformed surface. After being steady this boundary

condition, it will be possible to search for the solution of wave

equation in the region, limited Dy the simple undeformed surface.

Equivalent boundary condition near the surface on which

correctly boundary condition (23.5a), is given by M. A. Isakcvich A
[108). It is the simple consequence of the resolution of Taylor and

takes the form

OA'

Page 202.

Here I.- distance between the deformed and undeformed surfaces,

standard N is directed to wall, and l>0. if transition from the

deformed surface to that not deformed occurs in direction N (Fig. 5).

If on true (deformed) surface is satisfied boundary condition

(23.5b), then equivalent ooundary condition for the function, which

satisfies wave equation (23.4), has the form I
k2 l 1i T ' .. -( ~ ) (26 .2)

ON s L~/ z

This condition it is easy to obtain, integrating (23.4) by the low

region, situated between to both surfaces, transforming integral of

divergence on the formula of Gauss and utilizing (23.5b) and

I Jd
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smallness I This condition can De recorded in another form, valid

also for the functions, which do not satisfy wave equation, but this

form contains the second derivative along the normal, which proves to

be inconvenient in further calculations.

As (6.1), conditions (26.1) and (26.2) are disrupted in that

part of the undisturbed surface, that composes final angle with the

disturbed surface. In our prorlem this occurs in low field near

joint, which leads to the error for order 62; however for determining

the coupling coefficient, it suffices to find the amplitude of the

scattered wave with an accuracy to 6.

Computation Pi is reduced to the determination of field in

regular waveguide with boundary conditions (26.1) or (26.2), where by

IV it is necessary to understand the potentials of the incident wave: . ,e-,;,. ! = 6(s)

,and " with z<O, 1: 0 with z>0.

2. Let us examine first waveguide with soft walls, i.e., let us

search for solution of equation (23.3), that satisfies on true

boundary conditions (23.5a). Let us introduce auxiliary potential a)-

potential of the wave of number -j(j=m), that satisfies on the entire

undeformed surface condition (23.5a). For two solutions of wave

equation ' and of U}, is correct the identity

-4 1(
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where the integral is undertaken over any lccked surface. We will

propagate it over section z= O and the lateral surface of the

undisturbed waveguide wita z<0 let us assume that , contains low

imaginary component, which makes it possible to eliminate the effect

of region z=--.

Page 203.

With z=+O the potential 'qr contains the sum of the potentials

of all direct waves; however, at the selected value of 1' in integral

according to this section, will fall out (as a result of the

condition of orthogonality) all term/component/addends, except one,

and the integral will be ejual to 2ih,P,. In the integral over

lateral surface, is present only second term/component/addend, in

which -W is calculated from (26.1). The dependence of integrand on z

is given by factor e(h/I and integration on z can be produced in an

explicit form. Substituting in (26.3) and solving relative to the

unknown value P,, we obtain the solution of the auxiliary problem

indicated:

P, e Lp' LY
--hP , -- h 6 . --- ' (I(> 0. ,' O> 0, 01 in). (26.4)

In order from formula for P,(j>0) to obtain expression for a

IF

i-i
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coupling coefficient Si. is must, as shown into §6, to replace under

integral the height/altitude of step 6 by the tangent of tangent

inclination v. Thus,

. s ( + in). (26.5)
S" 2h, (h, -- a3n O,

This expression we would obtain, if they would search for first the

amplitude of backward wave, scattered on step, and then was utilized

was second of relationship/ratios (6.15) and condition (23.10).

Let us find now amplitude P, for a waveguide with rigid walls.

For this, it is necessary in (26.3) to select (I equal to the

potential of the wave of number -j(jim), that satisfies on the entire

undeformed surface condition (23.5D). In integral (26.3) over lateral

surface second term is equal to zero, during the computation of first

term, it is necessary to substitute for d j' /dN expression (26.2).

Utilizing the presence in (26.2) derivatives on the same to the

variables s and z, on which is conducted the integration, it is

possible by integration somewhat to simplify in parts the resultant

expression. After replacing, furtner, in integral for Ph on ', we

will obtain the unknown expression for a coupling coefficient

-- , 'L , is (I #- i). (26.6)
This fas J

~This formula also is valid with any signs j and a.
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Formulas (26.5) and (26.6) it is easy to generalize to the case N

when on the part of the wall of waveguide are satisfied conditions

(23.5a), and on part - condition (23.5b). W

3. Expressions (26.5) and (2b.6) contain the same integrals, as

formula for coupling coefficients in radiowaveguides for two

electrical waves (9.5b) and for two mag ietic waves (9.5a); however,

with other coefficients. As we already noted, this difference is

connected with the fact that for membrane/diaphragm functions in

electrodynamics on the boundary oi an irregular waveguide are

satisfied the conditions, different from (23.5). However, expressions

for a derivative of wave number in acoustic and electrodynamic

problems agree, since these expressions can be obtained from formulas

for a derivative of the eigenvalue of equations for

membrane/diaphragm functions and are determined therefore the

boundary conditions for tnese functions in regular waveguides, but

these boundary conditicns are identical in both problems. Expressions

for Ih.,, in acoustic waveguides are obtained directly from formulas

(9.6), into which it is necessary to introduce obvious changes due to

difference in standardization (3.V1) and (23.9). From formula (9.6b)

-- - , "
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the soft walls

and, according to (9.6a) for a waveguide with rigid walls it will be

-(x2 hl1 ) v v(q,-) d- v (L-ds. (26-8)
J ~ kdsl

With both types of boundary conditions, the universal

communication/connection between Sm:i and 11' (25.4b) is retained;

however, relationship/ratio (25.4c), according to last/latter

formulas, is correct only for waveguides with soft walls. For

waveguides with rigid walls, is tulfilled the equation, analogous

(9.4):

Sm8 -hm in v~ (4 ds. (26.9)2hm 2

ILn 0.
In particular, for the fundamental wave hm icolJe. and

in (26.9) is retained caly second term/component/addend. For this

wave Swhere S(z) - sectional area, and

S.nj~ --- !Vils ---- £, (26.10)
'S 2s

Page 205.

[ Hence is obtained known result, that the reflection coefficient from

a small step is equal with respect to the modulus to the half of the
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ratio/relation to the area of step to sectional area. The coefficient

of reflection, fundamental wave from the section of long irregular

waveguide with slowly changing section is equal, according to (8.34)

and (26.10)
I\ p, I id IS e_:,(Iz. (2.1

LLN

4. Obtained are above by method of small heterogeneities

expressions for S;r, and h' it is possible to find also from results N

of preceding/previous paragraph. Repeating ccnstruction §9, one

should for this compare this wdveguide of the section, filled by

media, interface between which coincides with the boundary of this

irregular waveguide. Then it is necessary to Froduce passage to the

limit to similar by the vaiues of the parameters of external from
these two media with which boundary conditicns on the surface of this

: medium will coincide with Doundary conditions on soft or rigid walls.

Auxiliary waveguide coincides in this case with this tapered weld.

Expansions (25.1) and system of differential equations (25.3) is

retained, but in expressions (.101, (25.23) and (25.24) will have

to carry out a passage to tue liwit indicated.

In this case, will prove to be necessary to open an

Findeterminancy/uncertainty of the type 0-o. which it appears in these
formulas during passage to the limit. In analogous by electrodynamic

examination was conducted the passage to the limit I-c<. and for

-- 7-i -
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the expansion/disclosure of ideterminancy/uncertainty, was used the

Leontovich boundary condition (9.1). The analcg of this ccndition for

a soft wail is the boundary condition

'j~...Z.'~L,(26.12)

which, as it is easy to check, approximately is fulfilled on the

boundary of body with the highi value of wave number I70; wave number

must be considered composite. condition this bears local character,

i.e., it does not depend on the structure of applied field. Vhen
V-.o4

(26.12) passes in (23.5a). Thus, results for a vaveguide of

alternating/variable section with soft wall can be obtained on the

assumption that in envizcaet [fc-o. and the density of both of

media is identical.

Page 206.

In this case it is possible to use to the formulas of the first

point/item of the preceding/previous paragraph. to substitute under

(25.10) boundary condition (26.12) and then to set/assume I'~.It
is easy to check that (z-5.10) in tais case really/actually it will

pass in (26.5) and t26.7).

The local boundary condition, in limit which converts in

(23.5b), cannot be obtain-ad an the assum~ftion that the density is -II
L ii
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everywhere constant. Really/actually, on one hand, so that the

condition would be local wave auaDer in medium must be composite and

approach infinity, i.e., must be IcV-O. On the other hand, so that

in the limit would be obtained boundary condition on rigid wall, must

be Ip.cl.-*oo. Thus, density must approach infinity. Boundary condition

takes the form

On cp(26.13)

where the density of internal medium is placed to equal unity. When

cpI-coo (26.13) passes in (23.5b).

In order to obtain expression for S,,, in tapered weld with rigid

wall, it is necessary to apply the formulas of the second point/item

of the preceding/previous paragraph. The analysis, produced in [ 107],

it showed, that if we in (25.23) and (25.24) substitute (26.13) and

then to place Ic';->., that for the coupling coefficients and

derivative of wave number realiy/actually to be obtained formulas

(26.6) and (26.8), found above by another method.

There is one additional difference in the mathematical apparatus

of the method of cross sections for waveguides with soft and rigid

walls. For wavequides with soft walls, the potentials 'i' and ', in

(25.1a) satisfy one and the same boundary condition, and to

row/series (25.1a) the admissibly term-by-term application/use of an -

} ' [i
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operator V". In this way it is possible to again obtain formulas

(25.3) and (25.4a); however, in (25.4a) integration in this case, it

occurs according to the section of variable area. The conversion of

* i an integral of such type to contour integral was produced into §9;

during the standardization of functions 1P'' by that accepted in

ME_ present chapter, it will be

''''dS (4 (41v~Oii
W vI, ds, (26.14)

whence again follows formula (26.5).

4 'For waveguides with rigid walls, the term-by-term

application/use of an operator V! to row/series (25.1a) is

inadmissible, since boundary conditions for 'if and " in this case

do not agree. Therefore the direct application/use of resolution of

the unknown potential in row/series in terms of potentials in regular

waveguides (106] leads to essential difficulties.

* @Page 207.

This chapter contains the construction of the "ormalism of the

- method of cross sections for irregular acoustic waveguides. In the

_ 
, :bent waveguides the field is described by the system of equations

(24.12), in which F,,,, they are given in (24.17). For waveguides with

L

-- - - -
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alternating/variable medium or alternating/variable section, the

system of equations is given in (25.3), coupling coefficients take

J: form (25.4), (25.7) and (25.19) or with respect (to 26.5) and (26.6).

The theory of the combined irregular acoustic waveguides can be

constructed analogously how this is done into §§10 and 18 for

radiowaveguides.

§27. Conclusion.

The developed above mathematical apparatus makes it possible

with single method to perform the calculation of the broad class of

irregular waveguides, to compare between themselves different

irregularities, to examiue questions concerning their mutual

compensation. Expression for the wave amplitudes, scattered in

irregular sections, takes the simple analytical form; this

facilitates the studies of the effect of different parameters of

section on the value of the scattered energy. The comparison of

elementary (small) and final irregularities makes it possible to give

the simple physical treatment oi the phenomena of scattering, which

facilitates the qualitative analysis of different equipment/devices.

1. Further development of metnod of cross sections must first of

all consist of application/use ot this apparatus to calculation of

row/series of concrete/specitic/actual waveguide systems. In

_ _ _ _ _ _ _ _ _ _ L
______-________________ [4

w-" . j
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oprbes sujce tof wnoeialanalsi, il ncreasey an
proportion to development of wide-Dand waveguide technology, a number

[ ]of problems, subjected to t e r t c l analysis, wi l i c e s ,and

these same problems will cause some expansion of the theoretical

bases of method. In proportion to gaining of experience and, most

importantly, as in calculations in of increasing degree it will be

utilized machine technology, theory of multi-waveguide transitions it

will acquire engineering character, similar this occurred in the

theory of single-wave rectangular vaveguide.

There is great interest also in the problems of relatively less

wide-range waveguide transitions with the rapidly changing parameters

- sharply curved, short matching sections between the waveguides of

different sections, dielectric lenses, etc. Any method of the

analysis of such systems will reluire numerical calculations.

Page 208.

In the method of cross sections, the problem is reduced to the system

first-order of ordinary differential equations, which are in this

case, for our opinion, sufficiently simple and common mathematical

apparatus.

On one hand, by this method it is possible to design the

propagation of waves in the unshielded systems, such, as one-wire

NX 4
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line with the ground wave, radio duct, etc. The disturbance/breakdown

of uniformity in such systems, tor example their bending, causes the

emission/radiation of energy, so that complete field in irregular

system contains not only plane, but also spherical or cylindrical

waves. In the mathematical sense the presence of the continuous

spectrum will lead to the appearance of contour integrals instead of

the sums, which describe field in closed systems. Mlain station it

will be in this case not the system of ordinary differential

equations, but integrodifferential eguations of the type

oP, z) = S ,v, z) P (v, z)dv, (27.1)

where P(j,z) - amplitude in the integral representation of the fields

E (x,y, z) P (i, z) E(x, y, z,j)dj. (27.2)

For systems with the slowly changing parameters at the correct

selection of functions E(x,y,zt) the nucleus of equation (27.1) will

contain by factor the low parameter, and equation (27.1) will be able

to be solved by the method of successive approximations.

On the other ,and, the method of cross sections let us use,

probably, not only to the equations of electrodynamics and acoustics.

Fundamental of this methcd completely elementary they bear, actually,

geometric character. Therefore its mathematical apparatus can be used

for a wide class of the systems of partial differential equations.

A
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This method, for example, can be studied the problems of the

propagation of thermal distuarance/perturbaticns or elastic

vibrations along cylinder or layer with alternating/variable along

the length properties, etc. Fundamental difficulty of each specific

case consists in this case in tue reasonable selection of functions

on which is conducted the resolution, i.e., values of the type "E

I E,(x,y,z) in (8.2-8.3) or E(x,y,z,j) in (27.2). I

Page 209.

J

It follows, it goes without sayinq, to bear in mind, that as any

other version of the method of Fourier, method of cross sections are

limited by the requirement of the linearity of problem.

2. In waveguide problems method of cross sections becomes less

effective, the greater number of equations must be simultaneously

examined, i.e., the more waves with comparable amplitudes

simultaneously it is propagated in waveguide. Tc those pores, while

the plumbing is designed for the transfer of energy or the signal on

one type wave, mathematical of the apparatus of the method of cross

sections corresponds te the structure of electromagnetic field and is

the most convenient means of studying this field, but if frequency is

very great, and in line simultaneously there are many waves of the

comparable between themselves asplitude, then field expansion in
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row/series of type (8.2-8.3) becomes the artificial

reception/procedure, whicn do Lot agree itself with the physical

essence of transmitting of energy on waveguide; the effectiveness of

the method of cross sections it decreases. Under these conditions the

computation of the amplitude oi each of the waveguide waves becomes

very complex and at the same time unnecessary matter.

In this case, we enter into the region, which occupies the

intermediate position between geometric optics and usual waveguide

electrodynamics. Many eguipment/devices, utilized in waveguides at

very high frequencies, imitate appropriate optics - mirror, prism,

lens, etc. A number of such equipment/devices recently rapidly

increases [109-1141. Their theories yet does not exist; it is unclear

even, in what concepts - ray/ueams or waveguide wav-s - one should

describe field in such systems. Tae method of cross sections can

prove to be useful only with the initial approach to these problems;

combining it with the methods of asymptotic addition, perhaps, be

managed to install the physical and mathematical character of that

apparatus which will have to create for the analysis of these

systems. It is possible that more promising turns out the 3

examination, which generalizes radiation treatment. In any case, the

study of this intermediate quasi-optical case, i.e., geometric optics

of wide waveguides, beccmes one or the fundamental problems of

waveguide electrodynamics.

N1
_ .N:~--A.
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