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RIDGE ESTIMATION IN LINEAR REGRESSION

James S. Hawkes
Clemson University

ABSTRACT

Consider the linear regression model Y = X6+ €. Recently, a class of
estimators, variously known as ridge estimators, has been proposed as an
alternative to the least squares estimators in the case of collinearity,
that is, when the design matrix X'X is nearly singular. The ridge estimator
is given by & = (X'X + KI)-1 X'y, where K is a constant to be determined.
An optimal choice of the value of K is not known. This paper examines the
risk (mean squared error) of the ridge estimator under the constraint 8'8<c
and determines optimal values of K for which the risk is smaller than the
risk of the least squares estimators where ¢ is a constant.
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RIDGE ESTIMATION IN LINEAR REGRESSION

James S. Hawkes
Department of Mathematical Sciences
Clemson University

1. Introduction. 1In applications of multiple linear regression, the
explanatory variables under consideration are often interrelated. The relation
is technically called multicollinearity or near multicollinearity. The ordinary
least squares estimate of the regression coefficients tends to become "unstable"
in the presence of multicollinearity. More precisely, the variance of some of
the regression coefficients becomes large. Hoerl (195%9), (1962) and Hoerl and
Kennard (1970,a), (1970,b) have suggested a class of estimators known as ridge
estimators as an alternative to the least squares estimation in the presence of
multicollinearity. The new method of estimation is called ridge analysis.

Ridge analysis has drawn considerable interest in recent years. The technique
has been developed and new results have been obtained by several authors, e.g.,
Hawkins (1975}, Hemmerle (1975), Sidik (1975). Newhouse and Oman (1975) have conducted
a series of Monte Carlo experiments to compare the performance of ridge analysis
with the least squares.

The ridge analysis is an ad hoc¢ procedure which gives a biased estimator.
We compare *he ridge estimator with the least squares estimator with respect to
the mean squared error. Hoerl and Kennard (1970,a) have claimed in their paper
that for a certain choice of a parameter (K) the ridge estimator is uniformly
superior to the least squares estimator. This is not true. It appears that the
limitation of any optimal property of the ridge estimator and its relation to
other known estimators is not often clearly comprehended by many applied statisti-
cians engaged in regression analysis. The object of this paper is to expose the
essential features of ridge analysis.

In the following section we show a basis for the choice of the ridge estimator,
its biased character and compare it with an unbiased estimator. Furthermore, we
obtain conditions under which the ridge estimator has smaller mean squared error
than the least squared estimator.

2. Ridge analysis. Consider the linear regression model

Y = X8 + ¢

where Y is n <1 vector of observations, X is n xp design matrix, 9 is p x1l vector
of unknown parameters € is n <1 vector of the observational errors. It is
assumed that the components of £ are uncorrelated, and have a common variance equal

2 . .
to J , say. Also, E(2} = 0. Let prime denote the transpose of a vector or matrix.
The least squares estimate of ¢ is obtained by minimizing (Y-X€)'(Y-X0) with respect
to 2, and is given by




(2.1) o = (x'x) "t xy.
It is assumed that the columns of X are linearly independent and therefore the
rank of the design matrix X'X is equal to p.

We have E[8] = 8. That is, 6 is an unbiased estimator of 6. Let Al,..., Ap

denote the characteristic roots of X'X. The mean squared error of 6 (MSEO) is
given by

-1
02 trace (X'X)

(2.2) E(6-8)"'(8-8)

[}
Q
N
~

If the explanatory variables are nearly multicollinear then the matrix X'X is
illconditioned, that is, one (or more) of the characteristic roots of X'X is
small. In that case MSE 8 becomes large, as it is seen from (2.2). We can avoid
MSE § becoming large by inflating the characteristic roots. That is, substituting
@ for g, given by

(2.3) 0 = (x'x+k1) "L x'y

where I is pxp identity matrix and K is a positive number. The estimator 8 is
the ridge estimator, proposed by Hoerl and Kennard as an alternative to the least
squares estimator.

We have
(2.4) Eg = (X'X+KI) L(x'x) 8
Therefore, 6 is a biased estimator of 6 unless K = 0, in which case 9 = 8. Let
P be an orthogonal matrix diagonalizing X'X, that is

PX'XP' =D

where D is a diagonal matrix with the ith diagonal element equal to \i. Let

3 o= (al, ey 1p)' = Pf. The mean squared error is given after simplification by
2
o) A, *.
~ ~ 2 i 2 1
(2.5) E(6=6)'(8-8) = ¢~ | ———5 +K | ——b
i=1 (Ai+K) (Xi+K)

From (2.2) and (2.5) we see that for any given K> 0
MSE Q@ > MSE 2
for sufficiently large values of 8'9. Therefore, the ridge estimator can be

compared to the least squares estimator only if 6 is constrained. Suppose it is
known apriori that 3'9 < c where ¢ is a positive number. This condition would be




, Yy

. . . . . 2
realized in many practical situations. Since 6'% = a'a, we have ai< c,

i=1, ..., p. Hence from (2.5) we get

P P
- 2
(2.6) MSE § <o ———+kc] A .
i=1 (O +K) i=l (1 +K)
1

Theorems 2.1, 2.2, and 2.3 below give certain results on the choice of
K in order that the ridge estimator has smaller mean squared error than the
least squares estimator.

2
~ ~ o
Theorem 2.1. If 8'6< c then MSE § < MSE g for O« K< 2c .
sl
2g
Proof: From (2.6) we have for Kfﬁ‘g"
- 2 P A 2K
MSE 8§ <0 3 + 3
i=1 (A +K) (), +K)
i i
+2K
~ 02 p Ai 2
N 2
i=l1 ()  +K)
i
2 k 1 -
<o ) v
i=1l i
= MSE ¢ . /
2 p

L then MSE § < MSE 8§ for K> O.

Theorem 2.2. If g'g <2~ z
P o= Ag

Proof: Let D(K) denote the quantity on the right hand side of (2.6).
Differentiating D(K) with respect to K we have

2
p 2\, {(cK~g )
i

(2.7 3D(K) /3K = ) 3
i=1 (i, *K)
i
2
The rjghE hand side of (2.7) is equal to zero for K = %— and is <{(>) 0 for
K o<(>) lz . Therefore, D(K) is first decreasing then increasing as K varies
from 0 to ». Now p
D =9
i=1 i
= MSE 9
D(®) = pc




D(c) < max(pc,MSE 6)
R 2 p
= MSE 6 for c<Z- J i—- .
: Pofiar Yy
Since D(K) is an upper bound on the value of MSE 6, the theorem follows. o

From a Bayesian point of view suppose that the components ofze are inde-
pendently and identically distributed with means £ and variance 1 .

Theorem 2.3. If the components of 8§ are independently and identically distri-
buted with mean £ and variance t“° then the average mean squared error of the
ridge estimator is minimized for k = g /(£ +17).

Proof: Let E denote expectation with respect to the given prior distribution of
8. We have

N P AL P 2 2
(2.8) EMSE ) = o° ] ———s + K B
i=1 (A +K) i=1 (A,+ k)
i i
As in the proof of 3her3em22.2 we find that the right hand side of (2.8) is
minimized for K = g /(£ 7+t ). {1

We have seen above that the ridge estimator is preferred to the least squares
estimator in certain situations when the parameter 6 is constrained. The following
theorem gives a basis for the choice of the ridge estimator under the given con-
straint.

Theorem 2.4. The value of § minimizing R(8) = (Y-X8)'(Y-X8), given 6'6 <c is equal
to 6 where K is chosen such that 8'§ = c.

Proof: By direct computation we get
~o -2
(2.9) 8'6 = (PX'Y)' (DHKI) (PX'Y)
It is seen from (2.9) that 6'6 is decreasing in K. Therefore, the value of K,

given by 8'8 = ¢ is uniquely determined.

We have

it

(2.10) R(3) = (Y-X8)' (Y-X8)

(Y=X8) ' (Y-X8) + (X'¥)' [ (x'x+KD) Y- qxrx)™h

xR kD - xn

(Y-X6)'(Y-Xs) + (PX'Y)' D* (PX'Y)

e S e




where D* is a p xp diagonal matrix whose ith diagonal element is equal to

k2

A?(k+k.)2
i i
From (2.10) we see that R(8) is increasing in k.

Consider the problem of minimizing R(8) with respect to 6 under the con-
straint 8'6 = ¢. By the Langrangian method the minimizing value of 0 is given
by

A8 - X'(Y-X8) =0

or

6 = (x'x+r1) " Ix'y

where A is determined such that 6'6 = c. That is, the minimizing value of § is

the ridge egtimator 9, where k is determined such that §'8 = c.

We have shown above 8 ,ék is decreasing in k and that R(8) is increasing in
k. It follows that § whick mfnimizes R(8) under the constraint 8's = c,
minimizes R{®) also under the constraint 6'86<c. [

Remark: We havea comparison between the least squares estimation and ridge
estimation. The ridge estimator is given by minimizing R(6) under a certain con-
straint on the value of 8'6, whereas the least squares estimator is given by mini-
mizing R(8) without that constraint.

Throughout the foregoing discussion we have assumed that the quantity k
arising in the definition of the ridge estimator 8, is a scalar constant. By
letting k depend on the observation Y suitably, we might be able to obtain an esti-
mator which has a smaller MSE than the least syuares estimator for all values of 5.
Hoerl and Kennard (1970,a) have suggested an iterative method of choosing such a
value of K. However, they did not show that the final estimator had a smaller MSE
than the least squares estimator. On the other hand, (see Alam (1974)) any esti-
mator of the form

o (' XX'®) Txrv) 02 8

has smaller MSE than 6 where ¢(2) is a function, such that, Z(1-¢(2)} is non-
decreasing in 2 and 0< 2(1-¢(2)) < 2ap - 4 and

A

C'-=(l' § ‘]:)mln(Xl, -r>\).
Pie1 i P

See also, Sclove (1968) and Stein (1960).
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