AD=AD82 461

UNCLASSIFIED

1orl

UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO==ETC F/@ 9/2

MICROCODE VERIFICATION PROJECT. (V)

JAN 80 S D CROCKERs L MARCUS:, D VAN=MIEROP F30602=-78=C~0008
RADC=TR=79=353 NL

RADC-TR-79-353
Interim Report

January 1980

MICROCODE VERIFICATION PROJECT

ADAD82461

University of Southern California

Stephen D. Crocker
Leo Marcus
Dono van-Mierop

[apprOVED FoR PUBLIC RELEASE; DISTRIBUTION UNLMITED | |

-

L

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command t.
Griffiss Air Force Base, New York 13441

heatadie o

¥~

Y
by

oase

This report has been reviewed by the RADC Public Affairs Office (PA) and |
is releasable to the National Technical Information Service (NTIS). At NTIS ,
it will be releasable to the general public, including foreign nations.

RADC-TR-79-353 has been reviewed and is approved for publication.

APPROVED: . {(ﬂ
e le }L’»{'

ONALD F. ROBERTS
Project Engineer

i3

APPROVED: (({/» /}(5){, Lo

ALAN R. BARNUM
Asst. Chief, Information Sciences Division

— g 7. ;}/
FOR THE COMMANDER%-}%,:.' . e
JO

HN P, HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing &
list, or if the addressee is no longer employed by your organization, please

notify RADC (ISIS), Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list. if

Do act return this copy. Retain or destroy.

MISSION
of
Rome Avr Development Center

RADC plans and executes nesearch, development, test and
delected acquisition programs in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas of technical competence (¥
48 provided to ESD Progham Offices (POs) and other ESD %
elements. The principal technical mission areas are %
communications, electromagnetic guidance and control, sur- 0
vedllance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
Lonospheric propagation, sofid state sciences, microuwave
physics and electronic neliability, maintainability and
compatibility.

%
3
3

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entored)

| 9) REPORT DOCUMENTATION PAGE R A D INSTRUCTIONS

BEFORE COMPLETING FORM
1. EP ﬁ 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
RADCHTR-79-353 7/

4. TITLE (and Subtitle) -8. TYPE OF REPORT & PERIOD COVERED

—
MICROCODE VERIFICATION PROJECT # : lnterim ,Rep.t,)
= - _ . =

e =y
-

6. PERFORMING ORG. REPORY NUMBER
N/A
7. AUTHOR(®) - 8. CONTRACY OR GRANT NUMBER(s)

Stephen D.[Crocker ‘ -
LeoMarcus 306p2-78-C-0008"
Dono Jvan-Mierop _ 5

9 - PERFORMING ORGANIZATION N-AME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
University of Southern California &—. _ . AREA & WORK UNIT NUMBERS
4676 Admiralty Way ' y

Y 4 ~~ls2702F T
Marina del Ray CA 90291 ‘ ,JJ 62 |,) 55832007 L/Jjﬁ
1. CONTROLLING OFFICE NAME ANO ADDRESS gl - i

Rome Air Development Center (ISIS)

. a 8
Griffiss AFB NY 13441 ' [NUMBER OF PAGES- ——

12.-REPORT DATE
!

-—
T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

15. SECURITY CL ASS. (of this report)

1]
Same

IUNCLASSIFIED

782 DECLASSIFICATION DOWNGRADING
WEDU
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

7.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
Same

18. SUPPLEMENTARY NOTES

;

*In‘ormation Sciences Institute//

RADC Project Engineer: Donald F. Roberts (ISIS)

19. KEY WORDS /Continue on reverse side if necessary and identily by block number)
ISPS state deltas

microcode symbolic simulation

program verification
proof checker
simplifier

200 A RACT rContinue on revarse side If necessary and identify by block number)
The goal of the microcode verification project at IS

12{1,% the development of
both the theory and tools for verification of microcode.

- strategy has been
to push the development of a working system, letting the theoretical issues and

the human engineering questions emerge during system development.

The ISPS language is used for encoding our machine descriptions. The State
Delta formalism is used for rcasoning about the course of the computation.

(Cont'd on reverse) s

DD |j2:13 1473 £0)TION OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

—EF .,,-'t IR
[PYSRI AN UK VAL A A -,

+ ~

Yo
y e
1)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

N] N it~
Me—are curreatly building a system to check proofs of microcode validity/J CLANEY b gr: .

The system is composed of a data base and simplifier that perform some
automatic deductions to make checking of the proofsteps manageable, as well as
a proof language and a user interface.

A particular computer (the FTSC) is usejzﬁg 5§§%R&é§y a focus for the

project and to provide a source of examples. réport the results of
verifying the microcode of the square root instruction of the FTSC, and the
results of verifying the complete microcode of a much smaller fictitious

example machine.
o

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered:

ISR (7 S I T T TS TR

At . J'

Y

R
I
|-‘ - 4

oy PRy

3)
CONTENTS
‘ L OV IV BW & . o e e e e e e . 1
2. LaNgUAGE BN ThEOTY . . oo vttt e e e e e e . 8
’ ISP S et e 8
State Deltas i e e e e e e 10
SIMUIION. . e e e e e e e 16
i Transiation of ISP S N0 SDS.ttt ittt s ettt e ettt e 18
Nested State Deltas. vttt e et e et 18
J The TR NOAtION it it i e et et et e et et e 17
Marking ISPS Programsov it n ittt it e e 18
The translation proCess oottt it e ettt e e e 18
3. ThE Sy S M & it it e e e e 20 ‘
i
; Proof LanauUage e 20
; The SImMPH IO . . . e e e e e e 20
? The User INterface. . . oottt et e e ettt sttt et e 26
A. Experience and EXamplest e 28
The TOY MacChing i ittt e e e e e e e e e e e e 28
The TARGET MAChiNgottt e e et e e e e 29
The HOST Machine and the MICrocadaottt vt v et et e et e 30
Relating the TARGET and the HOSTottt e e et 39
: Symbolic Simulation. o i e e e e q0
£ THE FTSC . ottt e e e e e a3
’; SQUATB TOOt ProOf . . o v ittt i e e e e a7 .
e | . CONCIUSIONS .« . .ttt e e e 52
‘ Planned ExXtensIons e e e 52
: Proot Language.t e e e e e 52
[EdIINg . . e e e 53
| Lo T T TP 53
‘ ;]
l

Future Considarations

Floating Point Arithmetic Specification . .

Timing.
Concurrency

Reterences

] Mﬁmmrﬁfﬂfﬂw’ :

53

53
54
54

55

MICROCODE VERIFICATION

1. OVERVIEW

The goal of the microcode verification project at ISi Is to develop both the theory and
the tools for verification of microcode. While some prior work has been done in this
area, notably [Patterson 77, Birman & Joyner 76], the fleld was (and is) far from closed.
Problems exist at every level, from fundamental questions of theory through questions of
Strategles of system design to problems of integration with other software engineering
tools and education of users. Our strategy has been to concentrate on developing a
working system, letting the theoretical Issues emerge--sometimes painfully--amid
system development. We have tried to delay overall consideration of the human
engineering questions, but have been forced to consider some of these when it became

too difficult to use our own system without Improving the interface.

To establish a focus for the project and provide a source of examples, we selected a
particular computer, the Fault-Tolerant Spaceborne Computer (FTSC), under development
by Raytheon for the Space and Missile Systems Organization (SAMSO) of the Air Force.
The FTSC has a number of unusual features related to its design goal for a five-year
maintenance-free survival in space. Thesue features appear primarily at the hardware
level and in the operating system, howaver, not in the architecture seen or implemented
by the microcode. At the machine languago level, the programmer sees a 32-bit machine
with 84K of memory, 8 general purpose registers and the usual types of instructions. At
the microcode level, the machine is horizontally microprogrammed with 78-bit instructions
decoded Into 37 different fields. (As of this writing, the machine has been redesigned
to have a shorter microinstruction. Wa have not taken these changes into account In
the present work, but will focus on the new design in the next effort.) Documentation of

the FTSC is glven in [Raytheon Corp 79].

The key criterlon for selecting the FTSC Is that it Is a real machine developed outside
our control. We believe that it is possible to verify code for nearly arbitrary machines,
irrespective of the techniques used to develop the code. This view differs somewhat
from those of other verification researchers, notably [London 77]. To be falr, it Is quite

clear that much of the labor in the verification task can be reduced If verification and

code deveiopment are carried out together and If the strategles, practices, and tools

N

MICROCODE VERIFICATION

used to develop the code are also geared toward verification. But we view this as a
secondary concern and not fundamental to the verification task. In a moment, we will

mention where the savings in labor would occur.

We view a microprogram verification system in the following terms. A user prepares
formal descriptions of the host mach/ne and the target instruction set. He also obtains
@ copy of the microcode that runs on the host machine and allegedly implements the
target Instruction set. He then prepares a proof that the microcode does indeed behave
as desired, and submits all four of these files--host dascription, microcode, target
description, proof--to the verification system, which then examines the target
description to determine all aspects of its behavior needing implementation. For each
sequence of events that must be implemanted, the system symbolically executes the
microcode according to the rules of the host machine and demonstrates that the

required sequence of events does take place.

No system can be quite smart enough to carry out all possible demonstrations completely
automatically, so some help may be needed. Some systems operate on the principle that
the system should try very hard to succeed on its own and than ask for help after It has
tried all possible heuristics. While this approach seems attractive, it has a fundamental
drawback. When the system asks the usar for help, the user is generally unaware of
what the system already has tried to do, what level of detall Is needed, or even what
problem the system Is working on. The underlying difficulty is that the user must have
some idea of how the system Is constructed and understand how to drive the system.
At the same time, we note that the system is really trying to formally document the
rationale for each instruction In the microprogram. However, this Is just what the
programmer had to do himseltf when he wrote the program. Combining these two
observations, we have taken the view that the verification system should be driven by
the user, not the other way around. The user should have a complete understanding of
what the verification system will and will not do, and the user should drive the
verification system toward believing the correctness of the code. In this view,
Interaction between the system and the user takes the form of a prepared proof, and it

becomes meaningful to ask what Is the proper language for writing proofs. Wagbreit's

)

MICROCODI: VERIFICATION

paper [Wegbreit 77] explores this area elegantly for well-structured algorithmic
languages. For microcode generated with minimal assembly language tools, different
engineering is requirad, but the basic idea is the same. At the present time, our "proof
language" is nothing more than a set of commands to the proofchecker. However, as we
gain experience with the system, it hacomes clear how to structure these commands
Into phrases; thus the development of a proof language begins. At the same time, It is
worthwhile to ask wheather the production of both the microcode and the proof of its
correctness can share any tools. The answer must be "yes," but we have not yet

considered any spacific implementation.

Although we wish our system to be as general and as useful as possible, our present

design horizons embody the following fimitations:

~ The purpose of the microcode must be to implement the instruction set of a
computer. This restriction is intended to limit the difficulty of specifying
the intended behavior of the microcode. With this restriction, we rule out
microcode that Is just arbitrary lower level code to Implement, say,
operating systems, signal processing algorithms, device controllers, etc.
This restriction Is not really fundamental to our work and, as we shall see,
does not quite guarantee that we shall always have a straightforward way
to specify the intended behavlor of the machine.

- Since we do not yet have sufficient tools to represent or reason about
concurrency or time-dependent behavior, we demand that our microcode
be written for a sequential machinn and that it implement the instruction
set of a sequential machine.

- We intend that the result of this research be a demonstrable system with
the real possibility that someone other than ourselves should be able to
formulate a task and carry it out. We do not intend, however, that the
system be efficient, completely robust, smoothly human-engineered, or
thoroughly documented. Users of the system should understand the state
of development. Their success rate will be higher if they communicate with
us before and during any experimentation.

In addition to the caveats above, the system we are building is not yet ready for

release.

MICROCOO! VERIFICATION

Carrying out a complete proof may be fairly tedious. Preparation of the formal

' descriptions often appears to be a straighforward task of encoding the information In
the manuals that accompany the machine, but we have noticed that many important
details are often omitted from such documents, and others are misdocumented.
Programmers developing the microcodo come to understand these detalls and use their
knowledge to write or debug their code. If the person writing the formal description is
not similarly steeped In the culture of the machine under consideration, a similar learning

period wiil be required.

Writing the proof may be tedlous, for thren reasons. First, a complet2 understanding of
the code is necessary. The programmer understands the code; the person responsible
for verification may not. A period of study may be necessary before any of the proof
can be written. Of course, if the programmer were aiso responsible for preparation of
the proof, then the veritication would proceed all the faster. Unfortunately, with
verlfication still in the research phase, programmers who bulld "real” programs are far
too busy to spend the extra time required for verification. Also, since verlfication
requiras some special knowledge, production programmers may not be skilled in the art

of preparing formal descriptions and proofs.

The second difficulty Is that the code may be relatively complicated to verify. At the
beginning we insisted that it should be possible to verify code even if it were written
without knowledge that it would be subjected to verification. (We're assuming, of :

course, that the code does Indeed work!) However, it Is equally clear that there are

many strategies for writing code and that some of them may be equally good from the :

programmer's point of view but require very different levels of effort in verification. g

The third difficulty is that proofs may be tediously long. We have said that the user
must drive the verification system with a proof and that the verification system must

o proceed so as to give the user a clear idea of what the system is doing. However, a

trivial way to build such a system Is to make It extremely simple, with the result that
proofs will be extremely long and require the user to spend a long time preparing them.
In the extreme, this Is not permissible: It is necessary to build the system with enough
knowledge so the “straightforward" deductions are carried out automatically. There is

no possibility that any system can know a "maximum" of knowledge, for there will always

Ty

MICROCODI: VERIFICATION

be problems that can be proven with a system, but not proven automatically. At the
same time, there Is no limit to making a system smarter; we can always go beyond the
previous limits and bulld a next system that understands more than the last. Clear
Mmeasuros of the smartness of one system compared to another do not yet exist, but It is
@ question that Is likely to gain attention as various verification systems are used for

larger and larger problems.

As we sald earlier, we have restricted our interest to microcode that implements the
Instruction set of some compute:. The intention of this limitation is to make It easy to
specify the intended behavior. Unfortunately, this restriction does not quite work. In
the description of the host architecture, we have no difficulty in formalizing all aspects
of concern, excepting, of course, timing and concurrency. We view the host machine as
operating on blitstrings of finite length. The operators for bitstrings are concatenation
and selection, logical operations, e.g., AND, OR and NOT, and the simple integer arithmetic
operations. At the target level, however, we have not been so fortunate. Bitstrings
rematin the dominant datatype, and all of the bitstring operators are still required, but
new operations exist that are not simply characterized by short descriptions. Floating
point arithmetic Is the most obvious and extensive area, but some machines have other
Instructions whose behavior Is quite difficult to characterize In tarms of bitstrings. Edit
4nd format Instructions provide many examples, as do instructions that find the

lowest-order or higher-order 1 bit.

The FTSC computer is blessed with the usual complement of floating point Instructions;
indeed, It even has a floating point squate root instruction. On the grounds that avoiding
these Instructions would trivialize the effort and leave us an undetermined distance from
realizing a system capable of verifying real microprograms for real machines, we declded

to tackle the floating polnt arithmetic head on.

We divided the specification of the target machine into two levels. The first Is written
in the same terms as the host machine description. 1t Is restricted to simple bitstring
operators. At this level, the simple target machine instructions, e.g., load, store, integer
add, jump, etc., are stated as succinctly as they will ever be stated and no further work

is required. The tloating point Instructions, however, look like short but complicated

v

VT T

vy e—

MICROCODTE VERIFICATION

algorithms that provide an expliclt view of how the words are divided into a mantissa

and exponent, how normalization takes place, etc.

For these instructions, we provide a higher level ot specification that shows that the
result of that algorithmic specification has certain propertles. This higher level of
specification requires the introduction of the reals, and the properties are stated in
terms of the Interpretation of the floating point bitstrings as real numbers. For example,
the desired property of the square root instruction is that it computes the largest
floating point number whose square is not larger than the original number. (The notion of
"largest floating polnt number" requlres even a little more; the granularity of the floating

point numbers is also an Issue.)

In the work to date, we have written a complete specification of the FTSC at beth the
host and algorithmic target level, but we have not defined the properties required of the
floating point Instructions except for the square root Instruction. We have focused on
the square root Instruction simply because It seemed to expose all of the Issues likely

to come up in any other Instruction.

The basic plan for veritying the correctness of the microcode thus has two parts. One
part is to verify that the microcode running on the host machine implements the
algorithmic target level. The second part Is to verify that tha algorithmic target level

has the additional properities desired.

At the present time, we have completed the proof that the algorithmic target description
of the square root Instruction has the desired property. We have not yut proven similar
properties for other instructions, nor have we proven the correspondence between the
host machine and the target instruction set, for the FTSC. We have, however, created a
simple, fictitious machine and carried out a complete proof of the correctness ot its
microcode. This small machine Is called the TOY machine. Both of thesa proofs are

documented in chapter four.

Completion of proofs is one measure of progress, but there is much that precedes the

abllity to carry out proofs. A sound theoretical basls must exist or be developed and a

Ny

A

MICROCODE VERIFICATION

functioning proof system must be developed. These activities have consumed the

majority of our time and resources.

In chapter two, we discuss the theoretical basis for our proof system and introduce the
language we use for expressing the behavior of machines and the properties of

programs. In chapter three, we outline the structure of the proof system and give

detalls for selected components.

This work Is still in progress. The detalls of language, structure and capabilities are all

avolving.

fap et
FRETETR o~

1 K et

¢
4

e A Y

¢ 1Y

Pty . T T B athd & e -
B LI ATy ‘#‘A“&-b'. G\{;t".:&{‘;":,,p 3 A :". '.IA'J‘\ \&.',-“\ '\s::(s Y - N 2 f." !

CR S

MICROCODFE VERIFICATION

2. LANGUAGE AND THEORY
In this chapter we discuss the formal basis of and the language we have chosen for
both encoding our descriptions of machines and reasoning about the course of
computations. Internally, our notation is chosen for its precision and ease of processing,
qualities that contrast with the desire for compactness and richness in the languages
read and written by humans. Both levels exist, and there must be translation between
them. As often happens, subtle and important issues emerge In the transiation. At IBM,
the difficulties of using two levels of language have been avolded by designing a
speclal-purpose language that is both computationally tractable and not too unwieldy for

humans. That language Is documented in [Joyner et al. 78].
ISPS

To represent the host and target machines, we have chosen to use the ISPS language.
ISPS, a derlvative of Bell and Newell's ISP language [Bell and Newsll 71], is now In
modest use by a number of organizations. Documentation of the current version is given

In [Barbaccli et al. 77]; the examples In chapter four arg written in ISPS.

Descriptions of machines have been written in ISPS for a number of different purposes,
including simulation, architecture evaluation, documentation, computer-alded design, and
{in varlants of ISPS) automatic generation of code generators and assemblers. This
variety of actlvity associated with the language Is useful in two ways. On the one hand,
the use by large numbers of people improves the possibllity that a standard will emarge,
that documentation of computers will be more accurate and more complete, and that the
task of preparing formal descriptions of the host and target levels ot a microprogrammed
machine will be carried out by the machine designers Instead of by the verification

group.

On the other hand, the wide variety of applications using ISPS, each with its own
software to process ISPS descriptions, has tended to expose the lack of a precise
semantics for the language. As an experiment to gain some leverage on the semantics
of ISPS, Pate Altvin developed a denotational semantic definition of AMDL, an abstract

syntax version of ISPS in use at S| [Alfvin 79].

MICROCODI: VERIFICATION

As we mentioned in the overview, while it may look simple to encode the details of a
machine's Instruction set in ISPS, It may be tedious in actuality. In the case of the
FTSC, a machine under development and redesign, a number of small but Important
detalls were either undocumented or misdocumented. We developed simulation tools to
execute the descriptions we wrote and used the simulations to execute the dlagnostics
for the machine at both the host and target levels. In essence, this amounted to a
"verification by testing" approach; since the microcode itself was used in some of these
tests, it is reasonable to ask If we perturbed the description of the machine in order to
make the code work. Stated another way, how do we know that the description of the
host machine is an accurate rapresentation of how the hardware really works, and how
do we know that the description of the target machine is an accurate representation of
how the target machine Is supposed to work? There can be no completely satisfactory
answers to these questions. The descriptions at both levels must be accepted; they
cannot be checked In any rigorous sense within the confines of the microcode
verification paradigm. If there exists another description at a higher or lower level, then
the corresponding descriptions may be checked against it. However, this merely pushes
the problem off one level, and there is no ultimate exemption from a requirement to
accept the bottom level description as the way the machine actually works and the top

level description as the way the system is supposed to work.

Complete assurance having been denled us, we can ask what lesser assurance is
available. By using a language understood by a number of people (in particular by the
designers of the machine, the micropragrammers of the machine, and the programmers at
the assembly language level) we can have some hope that they all share the same
understanding of the machine If they were to depend upon the same descriptions as
their raference. This Is not yet the case for any machine with any description system,

but we see no reason why it could not he.

To complete our discussion of ISPS, we again mention that ISPS does not provide
primitives for representing floating pc * operations; we have had to code them in ISPS
as small algorithms. Since the lack of standerd notions and designs of floating point
arithmetic is a common problam, the cholce of another language would not have Improved

matters.

MICROCOOE VERIFICATION

STATE DELTAS

In order to build a proof system, a formal basis for reasoning about machines is required.
Ordinary first-order predicate calculus is often used as a foundation, but it provides no

machinery for reasoning about time or situations that change with time.

There are many possible solutions. Ours has been the development of an extension to

b the first-order predicate calculus by the addition of sentences called state del/tas.
State deltas were first introduced in [Crocker 77]. For a more formal treatment see
s [Marcus 78]. To motivate the development of state deltas, we glve the observations

3 and decisions that support our formulation.

- It Is simple to think Iin theoretical terms that a computer can be
characterized by a transition function that maps state vectors into state
vectors. Given an Initial state vector and a statement of the transition

' tunction, ordinary mathematical tools wiil provide the machinery for
reasoning about successive states of the machine. However, diract use of
this approach becomes unwieldy for even the simplest example.

[= One of the first difficuities Is the description of the state vector. It is
quite Inconvenient to think of the state vector as a single domain. For all
teal machines, the state vector Is & messy patchwork of various domains.
Each of the storage locations in the machine is a plece of the state vector.
The primary memory is perhaps the most regular component, but there are
many other components. Also, it may be desirable to subdivide the memory
Into smaller pleces. To deal with this, we use the usual programming
practice of assigning names to different p/aces. A place is essentially a
component of the state vector. Given the list of places that comprise the
State vector, we will not actually need to symbolize the state vector as a
single object. We will not even need to know exactly how the components
comprise the state vector, e.g, it is not necessary to know if the state
vector Is reprasented as a tuple or whether the program counter Is, say,
the ftirst or second element of that tuple.

= The precise granularity of time Is not really of Interest. We do not care
whether a particular computation takes one or two time steps. Instead, we
care that certain states follow ona another eventually. Accordingly, we
avold describing Individual transitions and describe the effect of multiple
transitions Instead. The result is quite similar to Manna and Waldinger's
intermittent assertion idea [Manna & Waidinger 78], which is derived from

b = T

Y

MICAOCODE VEINFICATION

Burstall's paper [Burstall 74]. W« make use of a precondition and a
postcondition, and our state delta encodes the idea that

it the precondition holds at some point In time,
then there will be a later time at which the postcondition holds.]

= While it might be possible to state the behavior of a machine in a single
sentence, it would be quite unwieldy. We make use of a collection of
state deitas to specify the behavior of a maching. Each state delta
defines the behavior of the machine in only particular circumstances. Of
course, it Is not necessary to cover all possible circumstances; It is
pertectly reasonable to leave the behavior of the machine undefined in
some cases.

= Most of the components of the state vector are unchanged at each step.
Any straightforward description of the transition function would be
dominated by simple statements of equality between large sactions of the
old and new states. To reduce this burden, our formalism encodes the
assumption that all of the state remains unchanged except for a list of
places In the state vector explicitly named. Accordingly, a state delta has
a modification list. The semantics of a state delta includes

it the precondition holds at some point in time,

then there will come a time at which the new state is the same
as the present state excepl possibly for the values in the
places listed in the modification list, and

at that time the postcondition will also hald.

= Even with the implicit assumption that most of the state remains unchanged
trom one state to another, it may be necesssry to include many details in
the precondition. Quite often the precondition includes the requirement
that much of the present state is Identical to a particular prior state. This
introduces a third time Into the formalism. We have encoded this condition
with another list of places, called the environment list. The semantics of
state delta are now stated as

If the contents of the places listed in the environment list are
the same at some time t, as they were at an earlier time to.

and

It the precondition Is true at time t1.

-

then there will be a later timn (2 in which the new state is the

W TRW TR S LT R e

MICROCODE VERIFICATION

same as the state at time t1 everywhere except possibly at
the places listed in the modification list, and

the postcondition will also hold.

To simplify our bookkeaping about times and states, we organize all of our
thoughts In terms of a current time. In the formulation above, we anchor to

to the current time. We can restate the formulation as

if at some future time t1 all of the values in the places listed in
the environment list are the same as they are now, and

If the precondition holds at that time,

then there will come a time t2 whose values are the same as at
time t1 everywhere except possibly in the places list In the
modification list, and

the postcondition will hold.

While this formulation Is quite close to what we need to support efficient
reasoning about places and states, the requirements imposed by the
modification and environment lists are more difficult than they look. As
stated, it i3 permitted that the values inside the environment list and
outside the modification may change in the interim, as long as they are
restored at the end of the interval. We have found it more useful to
tighten this requirement so that the values that must be the same at the
ends of the time Intervals are In fact never changed during the Intervals.
It turns out that tightening the restriction of the environment and
modification lists does not remove any essential power. On the contrary,
this new version allows the restricted use of the modal operator "during”
to form sentences which are not expressible using only pre- and
postconditions. Our formulation is now

It the values listed In the environment list remaln unchanged
from now until some future time, and

It the precondition also holds at that time,
then at the end of some succeeding time Interval during which
at most only the values listed in the modification list will have

changed, and

the postcondition will hold.

MICROCODE VERIFICATION

Note that there Is no requirement that values that are unchanged from now
until the precondition becomes true remain unchanged when the
postcondition becomes true. In other words, it is possible that the same
place may be listed in both the environment and modification lists. Later,
we will see the use and effect of such an intersection.

The syntactical form of a state delta is

o (SD (pre: P)
3 (mod: M)
F (env: E)
(post: Q))
3 where P and Q are usually first order sentences in some language, but may In fact be
1 state deltas themselves, and M Is a list of places, as is E. See Chapter 4 for additional

?‘ examples of state deltas.

] Note that the logical implication P Implias Q (in a given state) Is equivalent to the state
! delta
(SD (pre: P)
: (mod:)

(env: OMEGA)
(post: Q))

being true In that state, where OMEGA is a list of all places, or equivalently a single

state "containing" all others.

Also note that one state delta may be derived from two others by a kind of case

analysis.

it

(SO (pre: P AND P")

(mod: M)
(env: E)
(post: Q))

(SD {(pret P AND (NOT P'1)
(mod: M)
(env: E)
{(post: Q1)

hold in a certain state, then

MICROCODE VERIFICATION

(SD (pret P)
{mod: M)

; (env: E)

; (post: Q))

holds In that state.

Y An important tool is the "dot" operator .R, which when applied to a place R (for
"Register") represents the value or contents of that place. Thus a state change entails

a redefinition of dot, not a reinterpretation of the place Itself.

When dot is used In a state delta It always refers to the contents at the time of the
precondition. In order to reference the contents of a place at the time of the

postcondition, the symbol # Is used. For example,

(S0 {pre: .R GTR @)
{mod: R)
(env:)
(post: #R=R-1))
means that if the value of R is greater than O, then at some later time the new value will

be one less (and nothing changed along the way except for R).

Here is an example of derlving one state delta from another by a form of induction:

Assume the contents of places are nonnegative Integers. If

(S0 (pre: P(R) AND R GTR @)

(mod: M)

(env: E)
(post: P(#R) AND R GTR #R))

e

holds in a certain state, and In addition if M and E represent disjoint sets of places, then

(SD {pre: P(R) AND R GTR 8)
(mod: M)

(env: E)]
(post: P(B))

> v

~

holds In that state.

It Is obvious how an input-output specification can be stated using state deltas. in the

¢ wnemom, =z g

next sections we shall explain how a simulation relation between two programs can be

proved using state deltas.

o ey ——— — - —

M

MICH(H:0DI VERIFICATION

For now let us point out how a set of state deltas can be viewed as a program. Assume
that we are given a set of state deltas, ordered In some way, and an "initial" state. The
first state delta (according to the ahove ordering) whose precondition is true In the
current state may be "applied", thus transforming the state into that specified by the
postcondition (and the modification list). Actually the term "state" should perhaps be
replaced by “set of states" since we do not demand that the postcondition completely
determine the state: for example, the actual values of some places may not be
determined, but rather some properties of these values are known. The components
(sentences) of the old state which were dependent on, or "supported by", places in the
modification list are removed from the state, and the list of sentences In the

postcondition are added to the remaining sentences.

Now the process Is repeated in the now state. This process Is called symbolic

execution.

It Is also possible to view a somewhat arbitrary program as a set of state deltas, or to

translate a program Into state deltas, as Is discussed in Section 2.4.

SIMULATION

As stated in the overview, the process of microcode verification can be divided into two
parts: the first showing that the Host Machine implements the Target Machine, the
second showing that the Target Machine satlsfies the Top Leve! Specification. We shall

now discuss the first of these parts.

Let us think on the level of abstraction where both the host and microcode and the
target may be considered as programs Al. Az' Intullively, A1 simulates Az 4 A1 can “do"

anything A2 can; that Is, the state changes due to A2 are reflected in the state changes
that A1 causes. The state changes for /\1 and Az separately are computed using the
symbolic execution of the previous section. To prove that Al (symbolically) simulates Az
we need to establish a correspondence butween the states of Ax and those of Az such
that glven two corresponding states, S, (for A,) and S (for A), If 32' Is the next state
after S, arrlved at by executing A, then the (a) state S" corresponding to Sz' can be

arrived at by executing Al from Sx (though S" need not be the very next state after Sx)'

MICROCODE VERIFICATION

In the system Implementation, a state is specified (as In the precondition or
postcondition of a state delta) by a list of first order sentences and SDs, and the
correspondence between states Is specifiad by a function called MAPPING. Again, recall
that "state" as used here Is not necessarlly a complete description. Thus MAPPING is

actually a correspondence between sets of complete states.

TRANSLATION OF ISPS INTO SDS

ISPS Is a relatively well known language suitable for machine descriptions. We will see
that SD notation is suitable for representing intermediate proof steps, performing
symbolic execution, and utilizing the efficlency of the modification list. In order to retain
the advantage of ISPS as an input language and SDs as an internal hotation, we need to

transiate ISPS descriptions into SDs.

It we Invent a place to represent the internal control state of a machine and we assign
a symbolic value to the control place for each statement in an ISPS program, then the
program could be represented with a set of SDs, where each SD represents a possible
state change. References to control states could be made by Including predicates of
the form .PC=label In the precondition and postcondition (PC represents the internal
control state "program counter”; “label” rapresents the control value). Reprasenting all
the state changes with SDs has two drawbacks: the thread of control that Is Implicit In
the ISPS representation is lost and is encoded explicitly into the precondition and
postcondition; the SD notation Is different from the familiar ISPS (and somewhat more

complicated).
Nested State Deltas

The scheme we are using Is motivated by the need to model the control mechanism
Inside a machine. In an earlier formulation, we modelled the control mechanism as a
single varlable that took on explicit values. Each precondition and postcondition ﬁ
mentioned the value, e.g., .MicroPC=A312, and this control place was also mentioned In
the modification lst of every SD. It did not, of course, occur In the environment list.
Since the names of the control state values were completely artificlal and the explicit
appearance in the pre- and postconditions of these equations was very cumbersome, we {
revised the formulation to an entirely equivalent scheme that simply made Implicit use of

e ey e e

. .\ .
f"‘w/‘\ ‘\' w oty

LI3 Mbd Tt s f e

MICROCODI: VERIFICATION

the value of control place. The only property of the control place we cared about Is that
It made some precondition true. By embedding the next SD in the postcondition of the
current SD, the next SD Is automatically made valid when the current SD is applied
("executed"). Of course, Its validity disappears when the control place is changed, so
It Is necessary that the name of the control place appear in the environment list of the
new SD. This is what glves rise to the appearance of the same control place in both the
environment and modification lists. Of course, there are some SDs that will not have the
control place In the environment list. The tops of loops need to be around forever, and i
we must resort to using names for the values of the control place at those points. SDs
that exit from blocks will not generally have SDs in their postconditions; instead they will

set relevant values of the control place.

Instead of describing a program by a set of SDs (one for each possible state change) we
couid describe It with one SD that represents the first state change and has a nested
SD that represents the rest of the program in its postcondition. During symbolic
execution, the process of applying an SD Is repeated. The following happens for each
SD application: the appropriate state change is made; the nested SD that represents

the rest of the program Is added to the current state; and the SD just applied is

for

PALNE

3 removed from the current state If it is supported by the (modified) control place.
The TR Notation

The use of the TR notation Is a further compression of the translation from ISPS to SOs.
We noticed that It was unnecessary to translate an ISPS description entirely into SDs
and then work with the SDs. Instead, we embedded the translation process in the
operation of the proof system and carried out just one step of the translation at a time.
In essence, we now encode the value of the control place as a formula that tells what
to do next. That formula Is basically ISPS code, with embellishments to tell us where we

are in the code and to keep track of the environment established by ISPS scope rules.

To improve the cumbersome notation of nested SDs to represent the tail of a program,
we defined a function called TR that inaps an ISPS description into an SD or a set of
S0s. We distinguish between ISPS descriptions whose tirst statement Is an assignment

statement and those who start with a control change (conditional or unconditional). In

i 19

eE e I S
e It i NN e o - .
ik - !_:{.‘A.‘“..\ .'\ :‘“‘_..(.‘

- i {w}mu‘._l [FRYRPISY R

any

MICROCODT: VERIFICATION

case of an assignment, the TR maps an ISPS program Into an SD whose precondition is
ampty; the modiist includes a control place (MicroPC) and the name of the register that
is being assigned to; the envlist Includes only MizroPC; the postcondition Includes the
effect of the assignment and a TR whose parameter is the tail of the ISPS program. In
case of a control change, the TR maps an ISPS program Into a set of SDs. For each 8D,
the precondition Includes the condition that leads to the control change, the modlist and
enviist Include MicroPC, and the postcondition Includes a TR with the corresponding rest
of the ISPS program. The symbolic execution using TRs Is very similar to nested SDs,
except that the rest of the program is represented as a TR applled to an ISPS

description.
Marking 1SPS Programs

The set of SDs that represents an ISPS program Is not unique. We saw that It ranges
from an SD for each ISPS statement to a single SD for the whole program. It depends on
the "granularity" that the ISPS description Is intended to be broken into. This granularity
is speclified by speclal markings of the I1SPS description: Every SD that Is part of the
description of a marked ISPS program must cover a path of execution between two

markings.

A control state of an ISPS description Is a label or a procedure-entry (that specifies the
"rest of the program"). A marking Is a special kind of control state. The minimum set of
markings needed to specify simulation are the entries and exits of all the procedures.
Markings could be added In order to allow more SDs (l.e., a finer granularity). They should
be added to break all the loops, for simplicity. Marking should also be added In order to

avold covering the same execution path by more than one SD, for efficlency.
The Translation Process

A marking M| Is a "successor" of M] if M| belongs to the set of markings that can be
reached by symbolic execution from Mj without visiting any other marking. The
translation algorithm generates one SD for each path of execution between two

succeeding markings that are reachable from the initial one. The number of SDs

generated Is determined by the granularity (i.e., the number of markings). When showing

e e i

7 ANER R
-y *

MICROCODF VERIFICATION

simulation, we will usually use a very fine granularity tor the lower level machine (the
Host) and a coarser one for the Target. The TR function is used for performing the

symbolic execution.

For simplicity we will refer In this paragraph to the transiation of the target machine. The

control place for the target machine is MacroPC.

The following information is accumulated during the symbolic execution for generating
each SD: all the "path conditions” that have to be true in order to reach a successor;
the list of places that are modifled during execution; the new symbolic state. The new
SD covers the path of execution between a marking and its successor, and includes the
following: In the precondition the accumulated path condition and .MacroPC="Initlal

label"; in the modlist the accumulated modified places and MacroPC; the enviist Is

; empty; In the postcondition the accumulated symbolic state and .MacroPC=label. A

concrete example of translation of an ISPS program Is shown in a subsequent chapter.

MICROCODT. VERIFICATION

3. THE SYSTEM
We are building a system to check proofs of microcode validity at the two levels of host
to target and target to top-level. Thus essentially the theorems to be proven are of the
form: one set of state deltas Implles another. The first component Is a language In which
to write these proofs. Then we need a component to perform some automatic
deductions and simplifications to make the checking of the proofsteps a manageable
process. Finally we have the Interface between the user and the system through which

the proof itself Is input and the proofchecking can be directed.

PROOF LANGUAGE

Recall that the theorems to be proven are of the form: prove that a given state delta is
true In a glven state. Typlcally, for a iheorem of the form one state delta implies
another, the glven state above will be empty except for the assumed state delta. In
the case of intermediate lemmas, the state may contain special Information about the

place values.

The main tools for writing proofs are:

Open(S) S is a state delta to be proven. Open(S) starts a subordinate
proof. The current state is set to the environment and
precondition. The Intention Is that now you wiil try to symbolically
execute with state deltas in the state until the postcondition of S
becomes true.

Close() Finds the previously Opened state delta and checks to see If its
postcondition is now true. If so, then this state delta Is thereby
proved correct and added to the state.

CombineCases(S) Proves a state delta S from two others by case analysis. An
example Is given In the introductory section on state deltas.

Performinduction(S) Proves a state delta from existing state deltas by a form of
induction. We shall not go Into the detalls of the specific induction
principle In use at prasent.

THE SIMPLIFIER

in the following we describe the principles behind some simplifications for exprassions in

. the state deita language. This Is not intended to be a complete survey of all possible

1L St O

,ih."',_‘ ,.:{‘.\“‘\ v e “(:;\,, “-
SR IR PPRRTIRE 5, 71 A VRN § PRT BN B

MICROCODI: VERIFICATION

simplifications, but rather a representative list of those simplifications found useful In
the actual practice of verification, especially the square root algorithm of the FTSC.
Thus there is a close correspondence hetween these simplifications and those actually
implemented in the system. Here, though, we describe only the "interesting" ones, and
some of these may be stated In different form without mentioning all the cases and

specifying the implementation details.
BSC (bitstring constructor) terms

The primitive operations for constructing bitstrings are concatenation a@b, substring
selaector a<i:}>, and shifts. The definitions of concatenation and shifts are standard.
Our conventions for substring selector are that bitstrings are numbered from the
right-most bit a<0> to the left-most a<Ih(a)-1> where lh(a) is the length of a. Note that
we shall allow bltstrings to have varisble length. These are called generalized
bitstrings. For Integer |, j a<i:}> represents the string consisting of bits | down to j of a,
that is, a<i>@a<i-1>...@a¢j>. If] Is greater than |, then this string Is nonexistent, and Is
called EMPTY. If i<O or i2Ih(a) then a<i> is EMPTY. In the following (i) and g(i) will be
functions attaining integer values at integer values of the argument I. We will

occasionally omit mention of | and write just ¢, g.

N

A (generalized) substring is a term of the form alf:g> where a is atomic.

A simplified substring Is the EMPTY string or Is a substring of the form a<f:g> where

Vi £(1) < th(a), ¥i g(i) 2 0, <V (1) < g(i).

Note that when f and g are constants, these conditions become f<lh(a), g20, f2g. Note
also that we cannot demand Yi f(1)2g(i), since for example a<0:-1> Is either EMPTY or
a<0> depending on I. From our definition of the semantics of substring, it follows that
any substring is equivalent to a simplified substring: a<f:g>= ad<min{f, Ih(a)-1},

max{g,0}> or EMPTY. If a canonical siinplified substring is desired, some standard

values of f and g will have to be taken in the casae that f(1)<g(l), for example f(i)=0 and

ag(l)=1.

~§]

MICROCODE VERIFICATION

Length is detined for a (generalized) substring as the folluwing function of i: (Let a, f,

and g be functions of 1)

Ihla<fig>) (i) = if f(i)2 th(ali)) then Ih(a<lih{a)-11g>(i))
elseif g(i) < B then Ihlacf:10>(]))
elseif t(ileg(i) then 8
elee fli)-gli)el,

An equivalent closed form Is
Ih(a<f:g>) = min(lh(a), max{min(t, In(a)-1} - max{g, 0} + 1, 0})

This allows the following rewriting: Let O(f) denote a string of f zeroes.
If ais of the form O(f)<g:h>, then a = O(ih(a)). (1)

A BSC (bitstring constructor) term is any term formed from atomic bitstrings,

concatenation, substring, and shifts.

A simplitied BSC term is of the form bl@bz@"'@bn where n21 and each bI is a simplified

substring.

It can be shown that every BSC term is equivalent to a simplified BSC term. The main

simplification rules used In simplifying a BSC term are

(a@b)(f:g) = a<f-lh(b): g-h(b)> @ b<f:g> (2)
a SLO t = O(min{Ih(a),-f})@acIh(a)-1-1:max{-f,0}>@O(min{Ih(a),t}) (3)
act :g,><f,:g,> a(mln{fl,f2+gl}:max(gl.gl+gz)) (4)

Example Assume Ih(a)=4, h(b)=5, th(c)=6.

(a@(b@c) SLO 5)¢13:3>¢6:1> >
(0(-5)@(a@(b@c))<V:0>@0(5))<8:4)> =
(EMPTY@(a<-2:-11>@(b@c)<0:0>)R0(5))<9:4)> =
(b<3:0>@c(B:0>R0(5))¢D:4> »

(b<3:0>@cR0(5))¢9:4) =

c<4:0>@0(1)

24

g g SRR T T L
7 Tt 4. R TR Ry

MICROCODE: VERIFICATION

BSA (bitstring arithmetic) terms

Al the bitstring addition operators are translated Into BITPLUS; BITPLUS is noncarry
addition between two bitstrings of equal length. When the sign + appears between
bitstrings it will always denote BITPLUS. We also use + for numerical addition, but it is
clear from the context which is intended. USVAL(a) Is the nonnegative Integer

represented in binary by the bitstring a.

If b and c are constant bitstrings and USVAL(b)+USVAL(c) < 2"(®), then
(a@b)+c = a@(b+c)<Ih(b)-1:0) (5)

A similar simplification rule holds for c+(a@b). Of course the two sides of 5 are
equivalent even If b and ¢ are not constants, but then the right side Is not necessarlly

simpler,
BSR (bitstring refational) terms

There are two main classes of bitstring relations: unsigned value and two's complemeant.
Every unsigned bitstring relation Is equivalent to the the corresponding real relation on
the USVAL's of its arguments For example, USEQlL(a,b) is equivalent to
USVAL(a)=USVAL(b). Simllarly for two's complement. The simplification of this type of
relation will be given in this section. The section on real relations will include (among
others) "mixed relations", I.e., those contsining both USVAL and TCVAL. TCVAL(a) is the

(signed) integer which is the two's complement Interpratation of the bitstring a.
Equality

We let a =ys b denote USEQL(a,b)=T and similarly for TCEQL. We write = with no

subscript if identity between bitstrings is Intended.

If vij (fl(l)(]sz(l) v fz(l)(]Sfl(l) -->a¢)>=0), then

. = . (6)
a(fl.g> Us a(fz.g>
It a, =,5 8, and b = b, and Ih(b)=Ih(b,).or If b =,s b (Ih(b)-1:0> and a = ,q

az@bz(lh(bz)-l :Ih(bl)>, then

i

i
"

v o g T

8,@b =5 8,8b,

MICROCODE VERIFICATION

7

Ifa =ys Oandb =us 0, then
a@b =,c 0 (8)
Of course, there are the obvious generallzations when an arbitrary constant is in place

of O.

11 8 *us & and b *us b2 ora =, bz and b1 sus & then

1 1

a,+b, 3,5 8,*b, @)

it usvaL(a)22'M(®)_2f or 0>TCVAL(a)>-2'-1, then

adf> = 1 (10)
"t a(f‘:gl> 2ys 0 for some f‘Zf. 9‘59. then
. 11
acf:g> =)o O (11)
it a *us b and a<ih(a)-1> = b<ih(b)-1> (or th(a)=ih(b)), then
a=;.b (12)
It alt> = alf+1> = ., = allh(a)-1), then
acf:0> =;. a (13)
If aCt+1d>=alfd>zalt-1> and b<{f+1>=b(f>=b<f-1>, then
(a + b)XE> = (a ¢ b)<T+1) (14)
" ' ' 1 ¢ en! g’
It ¢,-0,f,-9,, a<f,":g'> =5 b<t, 9>, 1,21, 9, <9, 1, “t =1, 0,70, % 0,79,
or It a<ih(a)-1 :g‘) s b<ih(b)-1 :gz), a(flﬂ)-...ta(lh(a)d >=0,
b(fzﬂ >=,..2b<lh(b)-1>=0, then
act,:g)> =g b<f,:9,> (15)
Ordering
0S;c @ (18)
if and only If a<ih(a)-1>=0.
Vh .
i
F
: - E e s e RO e e e o T
"'YV“"NJE“ J [' A - o\ ‘..',-‘-‘.l"y'ﬂ:‘_ - ".r:.\ ° '.r» VAR I '@*f

MICROCODI: VERIFICATION

BSV (bitstring value) terms

It a<ih(a)-1>=0, then

TCVAL(a) = USVAL(a) (17
It ac<ih(a)-1>=0, then

USVAL(a) = USVAL(a<Ih(a)-2:0>) (18)

TcvaL(a@b) » 2M(Plarcyat(a) + usvaL(b) (19)

uUsVAL(a@b) = 2'MP)aysvai(a) + usvaL(b) (20)

If Ih(a)=zlh(b), a<f-1>2b(f-1>20, alf>=alf+1>=..xa<lh(a)-1D, b<{f>=b<{f+1>=_ sb<ih(b)-1),
then
TCVAL((a+b)<t:0>) = TCVAL(a+b) (21)

If th(a)=Ih(b) and TCVAL(a) + TCVAL(b) = 2M(8)°1 then
: TCVAL(a+b) = TCVAL(a)+TCVAL(b)-2'"(8) (22)]
It Ih(a)=Ih(b) and TCVAL(a) + TCVAL(b) < -2'M8)=1 4 on |
TCVAL(a+b) = TCVAL(a) + TCVAL(b) + 2'N8&) (23) |

If th(a)=Ih(b) and -2M(8)-1 <rcvaL(a) + TevaL(b) <281 then i
TCVAL(a+b) = TCVAL(a) + TCVAL(b). (24)

RA (real arithmetic) terms

Wa list here only the rules concerning RA terms which contain BSV terms.

Let c, and c, be functions of | (as are the f's and g's). If c,.c,>0, f2f, g,=g,, and 1
Vl(cl(l)#cz(l) = g,(>1,(1), then
:9.3) - : ’ (25)
cl'v(a(fl.gl)) cz'v(a(fz.gz>)=>

cl.zmux(fz-gzﬂ 'o)'v(e(fl:glomax(fz-gz+1 ON).

Note that we do not demand that Vl(fzzgz).

It a<lh(a)-1>=1, then
TCcvaL(a) + 2M(8) 3 ysvar(a).

e

27

ke X th it et AARm & M 2

3 S it 2t " Y
“_&"f?b" "“ﬁ'f"‘v“.m

MICROGODE VERIFICATION

RR (real relational) terms
TCVAL(a<Ih(a)-1:n>) € 2-"*TCVAL (a) (27)
THE USER INTERFACE

The SD proofchecker Is controlled by the Kernel which executes a sequence of low
level proofsteps that are submitted to it by the User Interface. The User Interface

assists the user in entering the proofsteps in the right format (User Mode); in entering

groups of proofsteps that were prepated earlier (Batch Mode); and in enteting
trequently used sequences of proofsteps (Propose Mode or Symbolic Simulate). The
User interface provides miscellaneous services (in Exec Mode) such as Initialization, f.e.,
assigning a fixed symbolic value to contents of places, probing the status of the proof,
redoing proofsteps, entering other modes, etc. Following are some more details about

using the User Interface.

The Exec Mode is Initiated from INTERLISP by evaluating "(StartExec)"; it is suspended
by "QUIT"; and restarted by “(ContinueExec)". In addition to calling the other modes,

Exec Mode does the following:

FixLast aliows editing and resubmitting the last proofstep that was
submitted to the Kernel (useful in case of fallure).

GetISPS vsubmits an "Open" and sequence of "NewDecomposition"s that
setup proofs that involve Symbolic Execution of ISPS programs.

ResetProof resets the whole proof system.
SetSwitches sets or resets onoe of the trace switches.
DisplayState displays separately tha following parts of the current state: State

Deltas, Variable Values, General Facts, Coverings, Mappings, Place
Map, and Othet Predicates.

User Mode assists the user in constructing the correct format of the proofsteps and
allows the user to correct the proofsiep and okay it before submitting to the Kernel.

User Mode uses the full power of tha INTEFILISP editor and ASKUSER.

——}

MICROCODL VERIFICATION

A batch Is a sequence of proofsteps. It can be edited off-line and generated by the

"Transcript” tracs. Batch Mode takes the following commands:

PerformNext submits the next proofstep from the batch.

Doit submits the next n proofsteps from the batch.
DisplayNext shows the proofstep that PerformNext would perform.
SkipNext skips the proofstep that PerformNext would submit.

The User Interface Includes two heuristics, one for symbolic execution and one for
symbolic simulation. The one for symbolic execution is referred to as ProposeMode, for
historical reasons. ProposeMode generates and submits proofsteps until one of the
following conditions Is met: Control-Y Is issued, a "Close" proofstep Is submitted, the
breakpoint Is true In the current state, or it has nothing to propose. The only proofsteps

it (currently) tries to propose are "Close" and "ApplySD".

The Symbolic Simulation heuristic generates and submits the following sequence of
proofsteps for each SD in the current "GOAL": Open the SD; Apply a mapping; Propose
til the state can be mapped again; Apply a mapping; Close. An additional "Close" Is
submitted to add the "GOAL" to the current state.

29

E MICROCODY VERIFICATION

' 4. EXPERIENCE AND EXAMPLES
The bulk of our work has used examples taken from the FTSC. As we outlined In the
overview, we have divided the FTSC target description into two levels. One leve!
provides an algorithmic description for the Instructions. For the simple Instructions, e.9.,
load, store, and Integer arithmetic instructions, this level of description is easy to read
and requires no further refinement. Howaover, for the floating point instructions, an
algorithmic description of the effect of an instruction Is nearly opaque and is useful only
to a specialist who needs to track down the daetailed results for particular cases. For
these Instructions, we need to prove that the results guaranteed by the algorithmic
description may be understood In terms of some simply stated properties. The square
root instruction is the most interesting example In this area, and we have focused most
of our attention on proving Just the simple property that the effect of the square root
Instruction as described by the algorithmic description does indeed compute the largest
fioating point number whose square Is not greater than the original number. We felt this
example would expose the hardest Issues first and provide some chance that the rest
of the proof would be comparatively easy. We have not yet determined whether this

strategy will be successful.

At the same time, we have been concerned that the mechanics of carryling out a
complete proof should be well understood. Accordingly, we have hedged our bets a bit
and constructed a very small fictitiovs example of a microcoded machine, written the
microcode to Implement a simple Instruction set for that machine, and prepared a

complete proof. We call the machine the "TOY" machine.

This chapter detalls the proofs for both of these examples. To give the flavor of a

complete proof, we present tha TOY machine first.
THE TOY MACHINE

The TOY machine Is a simple microprogrammed machine. We have provided a formal
description of Its target Instruction set and of its host architecture. We have written
the microcode for the host level that implements the target instruction set, and we have

¢ specified the states in the host and target levels that correspond to each other.

n

e e e el L
R
.

AP L
g Cid '
ik l}‘lﬁ.‘l.‘“l Mo Tl AL St

i
E ‘ MICROCODE VERIFICATION

Finally, we have written a set of commands for the proofchecker to guide it toward
proving that when the microcode runs on the host machine, it correctly implements the
target Instruction set. For a problem this simple, the commands to the proofchecker are
entirely devoted to setting up the proof. The actual details are carried out completely

automatically.
! The TARGET Machine

In order to keep this experiment simple, but still deal with a realistic machine, we

designed the TARGET machine according to the following requirements:

- 4K-word 18-bit memory

- a 12-blt program counter, a 16-bit accumulator, and a 168-bit Instruct
register

intinite Indirect addressing

six possible operations: add, subtract, store, load, skip or negative, jump.

We decided on the following word format:

15 13 12 11 0

L L L L Ty R PR §

| | I |
| OPCODE |IND | EA |

drnmrancnncdroccrfonncccnnancas cmerccsaccene L e k4

TOY starts operating by fetching the instruction from location 1 in memory. It proceeds

by repeating the cycle of execution and tetching.

Fetching Is performed as follows: the machine loads the instruction register from the
memory location that the program counter points to; while the Indirect bit Is set, the 13
least significant bits of the instruction reqister are overwritten by the contents of the
memory location that the effective address (EA) points to; then the program counter is

incrementod.

B T I T .. B R T AT e R R 5.

MICROCODE VERIFICATION

The execution performs one of the followirg operations according to the 3-blt opcode:
add MEM[EA] to the accumulator; subtract MEM{EA] from the accumulator; load the
accumulator with MEM[EA]; store the contents of the accumulator in MEM[EA]; skip the
next operation If the most significant bit of the accumulator is one (negative

accumulate); jump to EA.

The precise ISPS description of the TARGET machine was written according to the
English description and is shown in Figure 1. The ISPS program Is divided into the
following declarations: the memory; the registers; the fetching algorithm; the execution

algorithm; the main cycle.

The markings we selected in the TARGET machine are the labels MAIN, XFETCH, FLOOP,
and EXEC. The paths that the algorithm found were one from MAIN to FETCH, one from
FETCH to FLOOP, one from FLOOP to FLOOP, one from FLOOP to EXEC, nine from EXEC to
FETCH.

MacroPC Is a dummy place that holds the contro! state (the label) and TinvReg covers

the internal registers. The complete set of SOs that the 1SPS to SD algorithm found Is
"". shown in Figure 2. Let us look closer, for example, at the third SD: it describes the path
from FLOOP to EXEC which Is denoted by .MacroPC=FLOOP in the pre: and
#MacroPC=EXEC In the post:. The pre: aiso Includes .IRC12>=0, which Is the
precondition for taking this particuiar path The post: includes also the new value of PC,

: PCe+1.
The HOST Machine and the Microcode

The HOST machine is the actual hardware that implements the TOY machine. Because
the goal of th!s experiment Is microprogram verification, we chose a microprogrammed
HOST. The HOST machine was somewhat tailored to the TARGET, for simplicity, but still

much generality and extendability were maintained. The description of the HOST

machine explicates all the detalls of registers, combination circults, and data paths.

MICROCODI: VERIFICATION

TARGET :« BEGIN
Veve Nemorg Yoot

MEM[Q:4k) <15:8>

Yes' Registers Veve

PC<11:8>, ! program counter
ACC<15:0>, ! accumulator
IR<15:0>, ! insfruction register

OPCODE<2:@> := IR<15:13>, ! operation code
EA<11:8> :a 1R<11:8> ! effective address

vor Inatruction.Fetching v
XFETCH := BEGIN
IR « MEM[PC] NEXT
FLOOP1 := REPEAT
FLOOP := DECOCE [R<12> =>
BEGIN
P := LEAVE FLOOP1,
1 := JR<12:8> « MEMIEA)
END
NEXT PC « PC + 1
END

veve Instruction.Execution i
EXEC := BEGIN
DECODE OPCODE =>
BEGIN
B\ADD := ACC « ACC + MEMI(EA],
1\SUB :« ACC « ACC - MEMIEA],
2\STR := MEMIEA) « ACC,
3\LOAD := ACC « MEMIEA],
4\SKPN := IF ACC<15> => PC « PC + 1,
S\JMP := P(+ EA,
6 := NO.OP (),
7 1= NO.OP 1)
END
END

tee Exacution.Cycle v
CYCLE {MAIN) := BEGIN

PCe1 NEXT ! program counter init
REPEAT
BEGIN
XFETCH() NEXT ! call fetch algorithm
EXEC() ! call execution algorithm
END
END

END

Figure 1. ISPS description of the TARGET machine

33

C e o e e ey

K
= U
. ""'rs' '.J

i e

MICROCOD!. VERIFICATION

((SD (pre: (.MacroPC)=MAIN)
{(mod: TlnvReg MacroPC PC)
! (env:)
! {post: MMacroPC«XFETCH #PC=1(12)))
| (SO (pre: (.MacroPC)=XFETCH)
{mod: TlnvReg MacrcP [R)
(env:)
(post: #MacroPC-FLOOP #1R«(DOT (WORDS MEM .PC .PCl
{SD (pre: (.MacroPC)=FLOQP
(NZERQP (USEQL (DOT (BITS IR 12))
)
(mod: TInvReg MacroPC PC)
(env:)
(post: #MacroPC:-EXEC #PC=(BITPLUS .PC 1(12))))
[SO (pre: (.MacroPC)=EXEC
(NZEROP (USEQL (DOT (BITS IR {(PAIR 15 13)))
2
{m~d: TlnvReg MacroPC ACC)
(env:}
{(poat: AMacroPC«XFETCH HACCw (B TPLUS i
.ACC
(D01 UIOROS MEM (USSUB L IR 11 @)
(USSUB .IR 11 8]
(SO (pre: (.MacroPC)<EXEC
{NZEROP (USEQL (DOT (BITS [R (PAIR 15 131))
1))
{mod: TInvReg MacroPC ACC)
{env:)
(postt tMacroPU=XFETCH #ACCa(B]TPLUS
ACC
(BITMINUS {(DOT (WORDS MEM
(UssuB .IR 11 8}
(UssuB .IR 11 8]

(SO (pra: (.MacroPC)=EXEL
(NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
201}
{mod: TinvRea MacroPC
(LWORDS MEHM (DOT (BITS IR (PAIR 11 81
{env:)
(post: #MacroPC«XFETCH # (LWORDS MEM
(USSUB .IR 11 &) -
(USSUB .IR 11 @1)=(.ACC)}) 1

‘ (SO (pre: (.MacroPC)=EXEC
| (NZEROP (USEQL (DOT (BITS IR (PAIR 15 13)))
31)) 1
{(mod: TinvReg MacroPC ACC) 3
(env:)
(post: #MacroPC«XFETCH #ACC=(DDT (WORDS MEM
{ussuB IR 11 @)

(Ussus .IR 11 @]

Figure 2. The SD description of the TARGET

v

’

(SD

. (s0

(SD

(SD

(SD

(SO

MICROCODFE VERIFICATION

{pre: (.MacroPC)<EXEC
(NZEROP (UISEQL (DOT (BITS [R (PAIR 15 13)))
4))
(NZEROP (00T (BITS ACC 151
{mod: TInvRey MacroPC PC)
(env:)
(post: #MacroPC=XFETCH #PC«(BITPLUS .PC 1(12})))
{pre: (.MacrcPC)=EXEC
(NZEROF (LISEQL (DOT (BITS [R (PAIR 15 13)))
4))
~(NZERCP 100T (BITS ACC 15)
(mod: TlnvReg MacroPC)
(env:)
(post: #MacroPC«XFETCH))
{(pre: (.MacroPC)=EXEC
(NZEROF (USEQL (DOT (BITS IR (PAIR 15 13)))
5)))
(mod: TlnvReg MacroPC PC)
(env:)
(post: #MacroPC=XFETCH #PC=(USSUB .IR 11 ©)))
(pre: (.MacrcPC)=EXEC
(NZEROF (UISEQL (DOT (BITS IR (PAIR 15 13)))
6)))
(mod: TlnvReu MiacroPC)
{env:)
(post: #MacroPCeXFETCH))
(pre: (.MacrcPC)=EXEC
(NZEROP (USEQL (DOT {BITS IR (PAIR 15 13)))
7)))
{mad: TlnvReq MacroPC)
(env:)
{post: #Macr PC=XFETCH))
(pre: (.MacroPC)=FLOOP
(NZEROF (USEQL (DOT (BITS IR 12)})
0y
(mod: TInvReg MacroPC IR)
(env:)
{(post: #MacroPC.FLOOP #[R=(USCONC
(USSUB . IR 15 13}
(USSUB (DOT (WORDS MEM (USSUB .IR 11 @)
(Ussus .IR 11 @1

iz @l

Figure 2. (continued)

MICROCODE VERIFICATION

We decided to keep the microprogram In a B4-word 21-bit ROM. ROM words contain

21-bit microinstructions with the following format:

19 18 16 15 13 12 11 98 65 0

The HOST machine (see schematic in Figure 3) includes the following: two memories,
STORE, and ROM; registers R1, R2, R3, MAD, MPC (microprogram counter) and M
(microinstruction register); combinational circuits ALU, MD, and MUX; data paths; the
scanner. R1 holds the value from the ALU that receives its value either from STORE or
from R1; R2 holds the value from R3 or increments Its old vaiue; R3 holds the value from
MD that receives Its value from STORE or R3; MAD holds the value from MUX that

recelves its value elther from R2 or R3.

The HOST repeats the cycle of loading the microinstruction register from the location in
ROM that the microprogram counter points to; incrementing the microprogram counter;
and scanning the microinstruction and decoding a field at a time. The scanner sends
signals that establish data paths and latch values Into registers. It also raceives values

from registers.

The precise ISPS description of the HOST machine Is shown In Figure 4, and the
1 description of the ROM In Figure 5. The description of the HOST includes the following
declarations: the memories; the registers; the combinational iogic; and the execution
cycle that fetches and scans the IR. The microprogram is specified as a set of
E i assignments to ROM. The comment In ecach assignment shows the microinstruction in a

mnemonic form: The nonzero fields of each microinstruction are separated by @ The

mnemonics correspond to the ones in the DECODE statements in Figure 4. For axample,

—ww

MUXR3Q@LMAD@ONIND@10 means that MUX = 3, ALU = 0, MD = O, LATCH = 8, MPC = 2 and
MNEXT = 10.

TTYWw YWY T w e

MICROCODE VERIFICATION

el 64
N
1
c > E‘j F
R Z» SC AN c
£ M

€
MPC

Figure 3. Schaematic of the TOY Host

'
T

A = i

.'"‘-;"‘\

.

.

MICROCODE VERIFICATION

HOST i1« BEGIN
veve Memory v
ROM(8:63] <281 8>,
STORE [B:4k] <15:8>

vo¢ Registers #%

v« Combinational.Circuits

MPC<5:8>, ! micro program counter
Ml <20:0>, ! micro instruction reglster
2 MNEXT<G:8> 1o MI<5:8>, ! next micro instruction
M R1<15:0>, ! Accumutlator
R2<11:0>, ! Program Counter
? R3<15:8>, ! Instruction Regloater
MAD<11:8> ! memory address

Feve

k ALU<15:08>, ! arithmetic, logic unit
MUX<11:8>, { memory address multipiexer
MD<15:0> ! memory data multiplexer

% Execution.Cycle yor
CYCLE {MAIN} := BEGIN
REPEAT
BEGIN
Ml ~ ROMIMPC] NEXT
MPC « MPC + 1
NEXT
DECODE M1 <19:18> =>
BEGIN
8 :« NO.OP O,
1 :« NO.OP O,
2\MUXR2 1= MUX « R2<11:8>,
3\MUXR3 3= MUX « R3<11:0>
END NEXT

DECODE M1<16:15> =>
BEGIN
8 := NO.OP (),
1\ALUNOP := ALU « STORE[MAD],
2\ALUADD := ALU « Rl + STORE(MAD],
3\ALUSUB := ALU « R1 - STORE (MAD)
END NEXT

DECODE M1<13:12> =>

1 := NO.OP 0),

2\ALL :e MD « STORE (MADI,

3\ADD :« MD « R3<15:13> STORE [MAD] <121 8>
END NEXT

Figure 4. ISPS description of the HOST

MICAROCODI: VERIFICATION

. DECODE Mi<11:9> =>

k BEGIN

| B := NO.OP (),
I\LRL := R « ALU,
2\LR2 1= RZ « H3<11:8>,
3\LR3 1= R3 « MO,

' 4\INCR2 := R2 « R2 + 1,

E S\WRITE :e STORE (MAD) « RI,

. B\LMAD := MAD « MUX,

; 7\INIT 1a R2 o 1

k END NEXT

DECODE M1<8:6> =>

f BEGIN

@ := NO.OP (),

1\ONPOS := IF NOT Rl<1%> => MPC « MNEXT,
2\ONIND := IF R3<12> => MPC « MNEXT,

3 := NO.OP (),

G\NXT := MFC « MNEXT,

S :« NO.OP (),

i 6 := NO.OP (),
: 7\ONOP := MPC « R3<15:13>
END
END
END

END

Figure 4. (continued)

39

MICROCODE VERIFICATION

f ROM t=
BEGIN
v Memory wvew
ROM(B:63] <20:0>
o Execution.Cycle v
CYCLE {(MAIN] : =
BEGIN
ROM (@) « #0201410 ; ! ALUADDalLR1aNXTe8
ROM(1] « 408381410 ; ! ALUSUBelLR1eNXTe8
ROM[2) « #BBBS41D ; ! URITEeNXTe8
ROM(3) « #@181410 ! ALUNOPelLR1eNXTe8
ROM(4] « #PBBBL1E | NXTaelé
ROM(S) « #0PB2418 : ! LR2eNXTa8
ROM(6) « #PBB3410 : ! NXTe8
ROM(7) « #DBPOB4L1D ; ! NXTa8
ROM(8) « #2026000 ; I FETCH: MUXR2elMAD
ROMI9] « #8B823413 : ! ALLeLR3eNXTell
ROM(18) « #BP33000 ; ! ADDeLR3
ROM(11] « #3886212 ; | FLOOP: MUXR3elLMADeONINDel8
ROM(12] « #P20B4BRY | EXEC: INCR2
ROM([13] « #P0BR700 ; ! ONOPe@
ROM(14] « #0000110 ; ! ONPOSe8
. ROM(15] « #0B@B4410 ! INCR2aNXTe8
s ROM(16] « #00B7418 ! IN]TeNXTe8
] NEXT EXEC := ND.OP O

END
ENU

Ly
S
s .

Figure 5. The specification of the Microcode

40)

. i e e emeye e e ey ey
b gy - L 5, e Sty o D Yy P, Ly S e SO
"*W‘“ '-r;'.rﬁ .o in Ly, ! N ST E PRIV SIS 1 <

) LR Stk bk bl »' H TR PTT e B i ;

v Jop,

v

N o o e O e e A e M e B S

MICROCODE VERIFICATION

The first phase of the proof converts the ISPS description of the HOST into a single SD

whose post: flald Includes the complete representation of the HOST. This 8D Is used In
the next section as the specification of the control state of the HOST In the mappling.

The ISPS description of the microcode Is converted to SD notation too.

The current implementation requires that the ISPS description of the HOST consist of a
single cycle, for reasons of simplicity. The HOST will indeed usually be a single cycle
because It represents hardware. Minor implementation changes will accommodate

arbitrary 1SPS descriptions of the HOST.

The next section introduces the mapping and the following section explains how the
symbolic simulation of the TARGET by the microprogrammed HOST machine is set up and

performed.
Relating the TARGET and the HOST

In order to show that one machine simulates another, a relation between the two must
be established. The relation addresses control Issues and data Issues. The control part
of the relation specifies all the pairs of control states (in the TARGET and HOST,
respectively) that have the following properties: whenever a control state Is reached in
one machine then the corresponding one is reached in the other machine. Two obvious
pairs are the palir of initial states and the pair of final states. A necessary condition for
simulation (of terminating machines) is that corresponding Initial states always lead to
corresponding final states. The data part of the relation specifies the pairs of carrlgrs
that should have the same contents whenever a pair of control states Is reached. This

data relation Is called a coveting.

The control states in the TARGET machine to be mapped from or to were selected as the
set of all the markings. For the particular TOY machine example the following markings
were selected: the Initial state is MAIN; the top of the main cycle Is XFETCH; the infinite
fetch loop Is broken at FLOOP; the fetch algorithm Is separated from the execution
algorithm at all the control states in the TARGET map to or trom a state described by the
top of cycle of the HOST and an additional predicate (usually the value of the

microprogram counter).

41
eI T SRR L B S
¢ ! . . g
—_— - -oT 1 £ 3PN PR R, =% d : - RE S L '\'-f-.'_
- . b A

L

;
|
!
j
4
i
|
!

MICROCODFE VERIFICATION

The top of Figure 8 shows a set of contro) relations; the first element of each is a
marking (represented by an ISPS label) in the TARGET and the rest is a predicate that
together with the code of the HOST makes up Its control state. The bottom of Figure 8
shows the coverings that specify the relation between registers (or memotries) In the

TARGET to registers (or memories) in the HOST.

Ouring the first phase of the proof, a saet of internal MAPPING records Is generated from
the concise representation of Figure 6. Figure 7 shows two out of the eight mappings. A
MAPPING record has three flelds: from:, that specifies the - ontrol state of either the
TARGET or the HOST; to:, that specifies the corresponding control state of the other
machine; and map:, that specifies the covering. The notion of MAPPING records is bullt

Into the SD proofchecker and Is used in the second phase.

We have described the TARGET, the HOST+microcode, and the relation between them in
three forms: English, formal, and a form that can be processed by the SD proofchecker.
The first phase of the proof generated the batch of SD commands from the formal ;

descriptions.
Symbolic Simu)ation

The previous sections presented the TARGET machine, the HOST machine with Its
microprogram, and the mapping between the machines. This section shows how the
proof of simulation of the TARGET by the HOST with respect to the mapping was
performed using the SD command batch. The simulation is performed within the state

delta symbolic execution framework, thus it is called symbolic simulation.

The SD proot system operates by maintaining a "current state" of the executlon, which

can be manipulated by opening or closing proofs, or by applylng SDs or mappings. A SD

Is & notation for specifying a segment ot execution, elther as the "goal" or for changing
] i the current state. A SD has 4 tields: pre:, mod:, env:, and post:. When a SD |Is used to
4 Open a proot, then the pre: Is added to the current state and the post: becomes the
goal; when it Is being "applied”, then the pre: must be true In the current state, and the
effect of the SD Is removing from the current state everything that depends on mod:
and adding post:. A MAPPING has three fields: from:, to:, and map. When a mapping Is

d
]

R

: . t: " C
H3S, ST

S,
ot
ad_ *et.

% & s N
e -

DR et Sk A Mottt S

P

MICROCODE VERIFICATION

((MAIN (.MPC)al6)

(XFETCH (.MPC) =8)

(FLOOP (.MPC)<11)

{EXEC (.MPC)e13 (.MAD)«(USSUB .R3 11 @)))

({Covering MEM <<STORE 16 16>>)

{Covering PC <<R2 12>>)

(Covering ACC <<Rl 165>)

{Covering IR <<R3 16>>)

(Covering MacroPC <<MicroPC 2> <MPC E55)

(Covering HinvReg <<Ml 21> <MAD 12> <ALU 16> <MUX 12> <MD 16>>)
(Covering TInvReg <<HlnvReg 22>>))

Figure B. Mapping between TARGET and HOST

PR

I A s

MICROCODFE VERIFICATION

(MAPPING (from: (.MPC)ell
(SD (pre:)
{mod: MicroPC MI)
{env: MicroPC)
(post: #MI=(DOT (WORDS ROM MPC))
(TR ((SEQ (USSET MPC 8)

(DECODE $ 8 8 8

(DECODE $ 8 8 8

(DECODE 8 8 8 8

(DECODE 8 8 8 8
$)

(DECODE 8 8 8 8
$))

(REPEAT 8)
{ProcMark HODST)
(to: (.MacroPC)«FLOOP)
{map: (.MEM)=(.STORE)
(.PC)=(.R2)
(,ACC)=1{.R1)
(.1R)=(.R3)))
(MAPPING (from: (.MacroPC)<=EXEC)
{to: (.MPC)=-13 (.MAD)=(USSUB .R3 11 @)
(SO fpre:)
{mod: MicroPC MI)
(env: MicroPC)
{past: #M]=100T (WORDS ROM .MPC))
(TR ((SEQ (USSET MPC §)
(DECODE 8 8§ & 8
(DECODE 8 8 8 8
(DECODE 8 8 8 8
(OECODE 8 $ 8 8
(OECODE ¢ 8 8§ 8 8
(REPEAT §)
(ProcMark HOST]

(map: (,STORE) = (,MEM)
(.R2)=(,PC)
{.R1)={,ACC)
(.R3)=(.1R)))

Figure 7. Two of the MAPPING records

¢)

MICROCODI VFRIFICATION

"apphiad", its from: must be true In the current state, and the effect of the mapping Is

adding to: and map: to the current state

Figure 8 shows an outline of the batch of commands that drives the proof In the second
phase The first Open and NewDecomposition declare the memorles and registers In the
HOST machine. The pre: of the second Open includes the microcode and the mapping
between the TARGET and the HOST. The post: of the same command Includes the set of
SDs that describes the TARGET machine. t xecuting this command adds the microcode
and mapping to the current state and makes the TARGET the "goal". A sequence of
seven NewComposition commands declares the memories and registers in the TARGET
machine and thelr relation to the places in the HOST. The command SymSimulate performs

the symbolic simulation according to a heuristic that we have developed.

The SymSimuiate command executes a heuristic that drives the symbolic simulation. For
each SD in the "goal" do the following: open the SD; apply a mapping from the TARGET to
the HOST; symbolically execute (l.e., keep applying SDs) until the state can be mapped
back to the TARGET; apply the mapping to the TARGET; close the SD. Finally close the

whole "goal".

The combined effect of the two phases of the proof is the generation of a set of SDs
from the TARGET using symbollc execution of the TARGET and proving these SDs by
using symbolic execution of the HOST and microcode. The rest of the effort is setting
up the right relations among the registers and memories and between the HOST and
TARGET to assure Integrity of the proof. Note that the only Input needed is the ISPS
description of the TARGET, HOST, and ROM and the concise representation of the

mapping between the machines. The rest is done automatically.
THE FTSC

The FTSC was chosen as the real example on which to try out the microcode verlification
system because it Is a general-purpose computer with enough features to thoroughly

test the system; in addition, it is still In the development stage, so that successful

verification or discovery of bugs would influence the final version.

—

kg
E :
MICROCODF VERIFICATION
((Open (vars: MicroPC EXP MD MUX ALU MAD R3 R2 Rl M! MPC STORE ROM UNDEF INED
CLXLOCS LABLOCS& ASSLOC& ARRLOCS)
(SO (pre: (Covering OMEGA
<<MicroPC 1> <EXP 440> <MD 16> <MUX 12>
<ALU 16> <MAD 12> <R3 16> <R2 12> <Rl 16>
M} 21> MPC 6> <«STORE 16 1000810>
<ROM 21 1880> <UNDEFINED 440> <CLXLOC8 44Q>
<LABLOC& 440> <ASSLOCS 440> <ARRLOCE 440>>))
{mod: OMEGA)
(anv:)
(posti)))
(NewOecompoaition (Covering OMEGA
<<MicroPC 1> <EXP 440> <MD 16> <MUX 12>
<ALU 16> <MAD 12> <R3 16> <R2 12> <Rl 16>
<Ml 21> <MPC B> <STORE 16 18001Q>
<ROM 21 1880> <UNDEFINED 440> <CLKLOC& 44Q>
<LABLOC& 440> <ASSLOCE 440> <ARRLOCS 440>>))
{Open (vars: MicroPC EXP IR ACC PC MEM UNDEFINED CLKLOCS LABLOC& ASSLOCS
ARRLOCS)
(SO [pre: (DOT (LORDS ROM B))~!(OCONST 2814180 21)
+es. L1l Specitication of microcode }}
(MAPPING (from: (.MacroPC)=MAIN)
(to: (.MPC)elB
(SD (pre:)
{mod: MicroPC MI)
(env: MicroPC)
(post: #M1a(D0T (WORDS ROM .MPC))
Bl (TR ((SEQ (USSET MPC 8)
(DECODE 8 8 8 8 8)
(OECODE 8 8 8 8 8)
(DECODE ¢ 8¢ 8 8 8)
(DECODE 8 8888888 0Y)
(DECODE 8§ 8 888888 8))
(REPEAT §)

(ProcMark HOST)
(map: (.STORE)a{(.MEM)
{(.R2)=(,PC)
(.R1)={,ACC)
(.R3)«(,IR)))

seee (LU AL mappings 11)

Figure 8. Outline of the command batch

————————————

- -

(mod:)
(anv:)
(post:

(RN

(NewComposition
(NeuComposition
{NeuComposition
(NeuComposition
(NewComposgi tion
{(NewuComposition

{(NeuComposition
(SymSimutate))

cwwae
.

(SO (pre:
{mod:
(env:

MICROCODI: VERIFICATION

(.MacroPC)=MAIN)
TlnvReu MacroPC PC)
)

(poat: MMacrFPC.XFETCH #PC=11(12)))

State Delta representation of TARGET }}1

(Covering
{Cover ing
{Covering
{(Covering
{Covering
{Covering

(Covering

MEM <<STORE 16 16>5))

PC <<R7 12:3))

ACC <<R]l 1&>>})

IR <<R3 16:5)}

MacrofC <«<MicroPC 2> <MPC B>>))

HinvReg

<<M[21> <MAD 12> <ALU 18> <MUX 12> <MD 16>>))
TinvReg <<HlnvReg 22>>))

Figure 8. (continued)

- |
i

IR

-—

MICROCODF VERIFICATION

Some of the characteristics of the FTSC (as of May 1979) are:

- 112 instructions, including integer, floating point, and vector operations

data formats: fixed point (32-bit, two's complement Integer) and floating
point (24-bit, two's complement mantissa; 8-bit, two's complement
axponent)

!

0 address modes

8 general-purpose registers (that serve as accumulators, index registers,
or address pointers) and 8 working registers

10 Interrupt levels

81K of addressable program memory

The first step In the verification process is writing the format host and target machine
descriptions in ISPS. Ideally, the designer of the machine would write the formal
description along with the Informal description ("user's manual"). In lleu of this, the
writer of the formal descriptions must submit them to the designer for "dascription
verification" (that this Is really the machine Informally described In the manual) before
proceeding with the proof. in addition, the writer of the formal descriptions may discover

"bugs" (Inconsistencies or Incompleteness) In the user manual.

As explained earller, we consider the total problem of microcode verlfication as

consisting of two parts: the proof that the host machine with its microcode Implements
;’.” the target machine (as described In a language containing only those operations
avallable to the host) and the proof that the target machine, Instruction by instruction,
satisfles some higher level specification. For example, the target machine description of
the Integer multiply and divide instructions, and all floating point Instructions, would most
likely consist of an algorithm using the host machines operations of shifting, testing,
adding, XORing, etc. The higher level specification would Le that these Instructions do g

In fact find the product, quotient, etc. to a given precision. The Instruction definitions]

given in the user manual, which are largely English, ara most likely those Instructions

needing this second favel of proof.

48

e N
T AN AN C

MICHOCODI. VERIFICATION

All ot our work to date on the verlificaticn of the FISC has been concerned with the step
from the target to the higher specification. This seemed a wise choice, since we knew
that at tho start of our project the F1SC host macnine design was not finalized, althcugh
the targat machine would remaln mora or less the same. In addition, many aspects of

the system had to be developed before a fruly large example could be attacked.

The particular instruction chosen was «quare root. Square root was chosen because of
the relative compactness of its algorithmic description in the target machine, and the
wide difference between the algorithm and its higher specification. Although the
second-level verification has nothing to do with the microcode or the host machine, one
characteristic making it less than general program verification Is that the data types
used In the target and higher level descriptions are usually restricted to be bitstrings
and integers In the target, and values of bitstrings and reals in the higher level. Thus
we used the square root Instruction as a testing gro’ 'd for developing the automatic

simplification of expressions in these dita types.

The status of our work on the square root algorithm is that the simplifier is able to
handle automatically a!l the derivations nneded to complete the proof of correctness.
Smoothing the user Interface and gracefully setting up the induction needed for the loop

remain to be done.

It is hoped that many of the special simpification rules adopted In proving the square

root wil also be useful in the other proofs of higher level correctness.
Square Root Proof

In this section we give the ISPS version of the algorithm that constitutes the FTSC
target machine description of the floating point square root instruction (SRTF). See
Figure 8. This description of the algorithm was written on the basis of the microcode
flowchart, which is derived directly from the host descriptior, and the microcode. Then
we show the derivations the simplifier Is able to accomplish automatically in proving that

SRTF finds the square root to within a certain accuracy.

MICROCODE VERIFICATION

SRTF: =

BEGIN
DECODE AMODE=> (LHB«W1 GPXRA, W@l MD) NEXT
IF W@ LSS B«> (OVFF«1 NEXT LEAVE SRTF) NEXT
IF HB<31:8> EQL B@=>(GPXRB+"88 NEXT LEAVE SRTF) NEXT
WB<31:8>+-HB<31:8> SLB 1 NEXT
WO<7:0>+B NEXT
DECODE UW1e>
BEGIN
8: « (GPXRB+WB<31:38> NEXT
WB~-UB SLB 2 NEXT
W1<31:8>+8 NEXT

Wi<7:8>Ul<75allc7:1>)},
1:« (GPXRB+WB<31> NEXT

WEe-WB SL8 1 NEXT

Wi<31:8>+8 NEXT

EXPOUTN1<75>@l1<7:8> + 1 NEXT

W1<7:0>«EXPNOUT<7:8> NEXT

Wle7:8>:01<750W1<¢7:1> NEXT

IF EXPOUT<8> XOR EXPOUT<7>=>W1<7:8>#188)
END

NEXT
SUM-GPXRB-1 NEXT
GPXRB+SUM<29: 8>eWB<31:308> NEX]T
COUNTER«B NEXT
SLDOP: L]
REPEAT
BEGIN
COUNTER«COUNTER+1 NEX1
WB<31:8>+WB<31:8> SLB 2 NEXT
DECODE SUM<31>e>
BEGIN
B:m (W1<31:85¢2vW1<31:8> + 1 NEXT
[F COUNTER EQL 23=>{(LEAVE SLOOP)} NEXT
U2~61'<U1<31:8> + 1 NEXT
SUM-CPXRB-W2 NEXT
GPXRB«5UM<29: 8>@WB<31: 38>},
lte (W1e31:85¢2:M1<31:8> NEXT
1F COUNTER EQL 23=>{LEAVE SLOOP) NEXT
W2-4+l1<31:8> + 3 NEXT
SUM-GPXRB+W2 NEXT
GPXRB-SUM<23: 8>allB<31:38>)

END

END
NEXT
GPXRBU1
END

Figure 8. ISPS description of the square root algorithm

MICROCODE VERIFICATION

Let us "talk through" the algorithm now: The first line decides If the input Is to be from
registar GPXRA or register MD. If the Input Is negative, the algorithm is terminated with
overfiow flag set. If the Input is O, the algorithm is terminated with output register

GPXRB set to the floating representation of 0. From here on the algorithm splits Into two

parts: the calculation of the new exponent and the calculation of the new mantissa. The
exponent calculation splits depending on whether it is even or odd. If the old value Is
] even, the new exponent Is half the old value. If the old value Is odd, It is made even by
adding 1 and shifting the mantissa accordingly (in the even case the mantissa is shifted
F two bits; in the odd case, only one bit). Now the new vaiue Is half the old value (with a
check for exponent overflow thrown in). The mantissa Is now calculated by a variation
of the longhand high school square root algorithm. The mantissa Is shifted two bits at a
time through the loop 23 times. The loop has two branches according to the sign of the

"remainder," the register SUM.

The theorem which expresses the correctness of SRTF is

Theorem: If FL(INPUT)=x20, then SRTF terminates with FLIOUTPUT)? $x € FL*(OUTPUT)?,

If FL(INPUT)<O, then SRTF terminates with OVFF=1.

Explanation of notation: FL(R) is the value of the bitstring R as a fioating point number in
the FTSC format: 24 leftmost bits coding two's complement fractional mantissa and
rightmost 8 bits coding two's complement exponent. INPUT is either the register GPXRA
or MD, depending on AMODE. OUTPUT |s the register GPXRB. FL’(R) is floating
successor to FL(R), l.e.,

FL*(R) = (TCVAL(R<31:85)+1) » 2TCVAL(R(7:03)-23

Letting MAN(R) = TCVAL(R<31:8>) * 272 gnd EXP(R) = TCVAL(R(7:0)), it Is sufficlent to

\
i

prove

(1) It EXP(INPUT)=ze Is even and MAN(INPUT)"Z‘s:ARG, then SRTF terminates with
3 27EXP(OUTPUT)=e and (MAN(OUTPUT)*2%)? < ARG < (MAN(OUTPUT)*22%¢1)?, and

(1) 1t EXP(INPUT)ze Is odd and MAN(INPUT)*2‘° = ARG, then SRTF terminates with
r 2"EXP(OUTPUT)=e+1 and (MAN(OUTPUT)*2%%)? < ARG < (MAN(OUTPUT)*22%+1)2,

v

Ty P ""S ?J T i
Tyt f
PR o v 1
o L - 3 " 9 o

N TN Vo
. o 0
) A

! ;"m:.l Lanrh a1

P I

A e

EWr I

-,

‘mmmw

MICROCODE VERIFICATION

So the proof is carried out by

1)

(2)

symbolically executing through the end of the expnnent calculation for
even and odd Input exponent, and proving the relevant parts of (1) and)
at that point (note that OUTPUT is assigned the contents of working
register W1 at the end of SRTF);

at that point, for even Input exponent,
MAN(INPUT)*2*® = USVAL(GPXRBC1:0>@W0(31:10>)*2% = ARG,

and for odd exponent,
MAN(INPUT)*2*® = ARG.

Thus to complata both (1) and (ll) It remains to show that

CLAIM: TCVAL(OUTPUT(31:8>)> S ARG S TCVAL(OUTPUT(31:8)+1 Y.

Here Is where we use Induction to prove loop Invariants that lead to a proof of the
CLAIM. Let R denote the contents of R after | times through the loop, that Is, the last

contents bafore COUNTER changes from i to i+1.

The CLAIM is proved from

2
SUBCLAIM: For 11523, USVAL(W1,¢30:8>)° Int(ARG*2""*®) S (USVAL(W1,<30:8>)+1)".

(The actual calculation with the Integer part function int Iis done by noting that If

X=zUSVAL(R), then Int(X*2™*) = USVAL(R SRO k).)

The CLAIM is proved from the SUBCLAIM by taking I=23. The SUBCLAIM is implied by the

first three of the foliowing loop Invariants for 1<i$22. ((H1) is shown here for the case

of even exponent only).

(H1)
(H2)
(H3)

(Ha)

(2“USVAL(W1‘(3O:8))*‘l)2 + TCVAL(SUM) = USVAL(a<30:8>@0(23) SRO 44-2I)

TCVAL(SUM‘) S 4'USVAL(W1.(30:8)) +2

=TCVAL(SUM) < 4'USVAL(W1'(30:8>) +1

Wo, ®us (a<28:8>Q0(11) SLO 21

MICROCODE VERIFICATION

(H5) W1|(31 148> *us 0(24-1)

(H8) W2‘(31 He2)> “uUs 0(30-1)

(17) SUM.(ZQ:O) =us GPXRB‘(ZH 12>
(H8) SUM| 1c GPXRB|(31 12>

(H9) GPXRB.(1:0> 2us WO|(31:30)

Thus we prove that if (H1)-(H9) are true for 1€i€21, then they are true for I+1.
Additional induction hypotheses ((H4)-(H9) were found to facilitate the proof of
(H1)-(H3)). Then we prove that if the SUBCLAIM Is true for 1€i€22, then it is true for
i+1. The simplifier asutomatically carries out these deductlons.

53

. e e - o e
— oy o o il D VPR
L e i .ﬁ.#w I R g e YT

YA N IO T I)

MICROGODI: VERIFICATION
8. CONCLUSIONS

PLANNED EXTENSIONS

The basic theoretical work for proofs of correctness of sequential microcode Is
reasonably complete, and a preliminary system for carrying out proofs has been bullt and

exercised. Within the scope of the present work, the following extensions are planned.

Proof Language

The system Is divided into a user interfaco and a rigorous proofchecker. In the present
implementation, the user Interface knows too little about the direction of the proof. ina
proof by cases, for example, the separate cases are presented to the proofchecker,
then combined. It is possible to declare the intended result in a superior proof, but no

use s made of this information in elther the user interface or the kernel.

We now see that the user interface can interpret a simple goal-oriented language. For a
proof by cases, the user would specify what iemma is to be proven and would specify
that the form of the proof is to be by cases with a given predicate. Room for specifying
the detalls of each subproof would also exist, but the packaging of the separate proofs
would be carrled out by the proofchecker. In the present system, a proof by cases now
tooks like the following:

(Open P)

(Open P and C)
<{detalils of the proof of the first case>

(Close P and C)
(Open P and not C)
<{details of the proof of the second case>
(Close P and not C)
(CombineCases)
(Close P)

in many Instances, the proof of each case may be carried out automatically. In the
present system, a ProposeMode statement Is required. We can eliminate the "obvious"
proofs if we use null lists where proof details are permitted. Combined with the

automatic setup and packaging of compound proofs, the proof above might become the

following:

’

e g o
A W
e okl b

‘‘‘‘‘‘

B it ¢

MICROCODE VERIFICATION

(Prove P (Cases C Croom for detalls of positive subcase>
<room for details of negative subcase))

Similar savings would result in proofs by induction. Some of the savings are not
apparent from proof sketches like the ones above. The lemmas are often quite langthy.
Even with the lemma suppressed from the Close command, the current system requires
three copies of the main lemma, one for the statement of the lemma In the main proof,
and two more for the subcase proufs. The compressed form requires only one
appearance of the lemma. In addition, the compressed form Is much more readable and,

we hope, more writable.
Editing

The present system permits only limited editing of the proof. Using the structured proofs
llustrated above, It should be possible to edit a proof quite freely and have the proof

restarted from the last point it was changed.
Efficiency

The present system is fairly slow. With a little experimentation, It has become clear
that a lot of time Is wasted In the simplifier. The simplitier has evolved through an
accretion process, and Is due for a complete redesign. We have also studied Derek
Oppen's work (see, for example, [Nelson and Oppen 78)), and it appears reasonable to
use his simplifier for parts of the system. His simplifier Is carefully crafted and should

be much faster.
FUTURE CONSIDERATIONS

A number of Ideas for logical next steps have emerged, though these are beyond the

scope of the present effort.
Floating Point Arithmetic Specification

Floating point arithmetic needs to be characterized precisely. Notation to describe the
Intended precision of the results and relationship between floating point operations and

the corresponding abstract operations on the reals would materially reduce the slize of

e A e BP

add 3

Tokpy . 7 oo 'v-’.c'- !3 jﬁ . A N, o PR
n‘ A L S NI D TR ;"“‘\-‘\: St BN

NS

MICROCODF VERIFICATION

the target machine description and remove the need for proving a separate set of

constraints.

Some of the Initial work has been done by Brown and others [Brown 77, Brown

78, Wijngaarden 84, Kahan 77a, Kahan 77b}.
Timing

Performance characteristics play a large part in the design of host machines and In the
design of the microcode. However, to date no work has been done to characterize the

running time of microcode. Proofs of running time limits should be reasonably
straightforward, but work Is needed on the spaclficatlons.
Concurrency

Essentially no work has been done on correctness proofs of truly concurrent microcode.
The 'present work requires a sequentlialized model of the host and target machines.

Exténsions to the basic theory will be required to model concurrency.

6

e — R - e . [
RBiA s, - - 7 u""‘;ﬁ'ﬁ;‘i‘.‘: : c R e, SO v o
- 1‘.|‘ ﬂ“ '&‘“ﬂ ,d ," e [‘.'»1\ “?» ‘.‘ o ‘.' ".'" ’ vl'l.“,f' v . A‘:‘

REFERENCES

[Alfvin 79] Peter W. Altvin, A Formal Definition of AMDL, Master's thesls, University of
Callfornia, Los Angeles, 1979.

[Barbacci et al. 77] Mario R. Barbaccl, Gaty I'. Barnes, Roderic G. Cattell, and Daniel
P. Slewlorek, The ISPS Computer Description Language, 1977. (Unpublished paper
from Carnegie-Mellon University.)

[Bell and Newell 71] Gordon C. Bell and Allen Newell, Computer Structures: Readings and
Examples, McGraw-Hill, New York, 1971,

(Birman & Joyner 76] A. Birman and William H. Joyner, "A Problem-Reduction Approach to
Proving Simulation Between Programs," IEEE Transactions on Software
Engineering SE-2, (2), June 1976, 87-06.

[Brown 77] W. S. Brown, A Realistic Model of Floating Point Arithmetic, Bell
Laboratories, Technical Report 58, 1977.

[Brown 78] w. Stanley Brown and Stuart |. Feldman, Environment Parameters and Basic
Functions for Floating-Point Computation, Bell Laboratories, Technical Report 72,
1978.

[Burstall 74] R. M. Burstall, "Program Proving as Hand Simulation with a Little Induction,”
In Information Processing 74, pp. 308-312, North-Holland, Amsterdam, 1974.

{Crocker 77] Stephen D. Crocker, State Deltas: A Formalism for Representing Segments
of Computation, Ph.D. thesis, University of California, Los Arqeles, 1877.

[Gordon 79] Michael J. C. Gordon, The Denotational Description of Programming
Languages: An Introduction, Springer-Verlag, New York, 1979.

[Joyner et al. 78] Willlam H. Joyner Jr., William C. Carter, and Daniel Brand, "Using
Machine Descriptions in Program Verification," in Information Technology:
Proceedings of the 3rd Jerusalem Conference on Information Technology (JCIT3),
pp. 515-522, North-Holland, Amsterdem, 1978.

[Kahan 77a] W. Kahan and B. N. Parlett, Can You Count on Your Calculator?, University of
California, Berkeley, Memorandum No. UCB/ERL M77/21, 1977.

[Kahan 77b] W. Kahan, And Now for Something Completely Different: The Texas
Instruments SR-52, University of California, Berkeley, Memorandum No. UCB/ERL
M77/23, 1877.

—————

MICROCODE VERIFICATION

{London 77] Ralph L. London, "Perspectives on Program Verification," In Raymond T. Yeh
(ed.), Current Trends In Programming Methodology, pp. 151-172, Prentice-Hall,
1877.

[Manna & Waldinger 78] Zohar Manna and Richard Waldinger, "Is 'Sometime' Somatimes
Better than 'Always'?," Communications of the ACM 21, (2), Fabruary 1878,
158-172.

[Marcus 79] Leo Marcus, State Deltas that Remember: a System of Describing State
Changes, 1878. (Submitted for publication.)

[Nelson and Oppen 78] C. G. Nelson and D. C. Oppen, Simplitication by Cooperating
Decision Procedures, Stanford University, CS Report No. STAN-C§-78-852, 1978.
(Al Memo AIM311.)

[Patterson 77] Davlid Patterson, Verification of Microprograms, Ph.D. thesis, University
of California, Los Angeles, 1977.

[Raytheon Corp 78] Raytheon Corp., Brassboard Fault Tolerant Spaceborne Computer
(BFTSC), Raytheon Corp., Tachnical Report ER79-4135, May 1978.

[Telteiman 78] Warren Teltelman, Inter!isp Reference Manual, Xerox Palo Alto Research
Center, 1078.

[Wegbrelt 77] Ben Wegbrelt, "Constructive Methods in Program Verification," IEEE
Transactions on Software Engineering SE-3, (3), May 1977, 183-200.

[(Wijngaarden 64] A. van Wijngaarten, "Numerical Analysis as an Independent Sclence,"
BIT 6, 1964, 66-81.

