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This report summarizes data on those models of propagation loss in the field
of underwater acoustics that have been converted into an automated computer code
capable of being executed by someone other than the originator for a wide variety
of problems. Currently no single model exists that is adequate for all applica-
tions. As a result, a large number of models, each with its own domain of
validity (in many cases difficult to define precisely), have been developed. The
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coordinate. These models, discussed in section 1, are in a fairly complete
state of development, as evidenced by the concern with reducing computer
execution time and memory without significantly sacrificing accuracy. The range-
dependent models, discussed in section 2, allow the speed of sound to be an
arbitrary function of either two or three spatial coordinates, and boundaries
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COMPUTER MODELS OF UNDERWATER
" ACOUSTIC PROPAGATION |

f FOREWORD |

This report summarizes those models of propagation loss in the field of underwater acoustics that

have been converted into an automated computer code capable of being executed by someone other

than the originator for a wide variety of problems. No single model currently exists that is adequate

for all applications. This is not surprising considering the diversity of the ocean environment and its
boundaries, and the concomitant fact that the acoustic frequencies of interest range from less than 10

Hz to greater than 100 kHz. As a result, a large number of models, each with its own domain of

o b validity (in many cases difficult to define precisely), has been developed. This evolutionary process
£ b has been strongly influenced by a combination of three major factors:

1. Capabilities of sonar equipment
2. Available experimental/environmental data
3. Advances in computer technology.

The trend in sonar equipment has been from predominantly high frequency (kHz), short range (less
than a convergence zone, CZ) sonars, which are largely energy detectors, to lower frequency, longer
3 range, physically larger sonars with signal processing schemes other than energy detectors. The
corresponding model development went from semi-empirical/semi-analytical, requiring an extensive
R propagation loss (fotal energy) data base, to classical ray theory, and then to ray theory with
VO corrections and wave solutions. The theory underlying these latter models was, for the most part,
available earlier. However, the transformation into specific results could not take place until suf-
ficient advances in computer technology occurred. Given this perspective and the necessity for
restricting the number of models to be discussed (the sheer number of which makes an exhaustive
summary impossible within the scope of these pages), it was decided to limit consideration to those
models which purport to be solutions of the wave equation. Fundamentally, these models consider the
ocean to be a deterministic environment for which the speed of sound is only a function of the spatial
coordinates. Nondeterministic effects, if accounted for at all, are included in an ad hoc fashion
following the ascertainment of the deterministic propagation loss result. Development of a model for
the more general problem is required, as evidenced by the trends in future sonar designs, and is in
progress. However, this effort has not reached the point where hands off computer codes are
available. In part this is because experimental/environmental data are unavailable and the need for
larger and faster computers.

The models to be discussed can be further segregated into range-independent and range-dependent
categories. Range-independent models assume that the ocean is cylindrically symmetrical, that the
speed of sound is an arbitrary function of only the depth (z) coordinate, and that all boundaries are
parallel with the range (r) coordinate. These models, discussed in section 1, are in a fairly complete
state of development, as evidenced by the concern with reducing computer execution time and
memory without significantly sacrificing accuracy. The range-dependent models, discussed in section
2, allow the speed of sound to be an arbitrary function of either 2 or 3 spatial coordinates, and bound-
aries need not be parallel. Their state of development is not as complete.
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9 f In general, the models which fall within these two subdivisions consider the ocean surface to be a
] pressure release boundary. nuuamuhofthelcuemhmamhinchmimmm
F water and air. The water column itself is treated as an ideal fluid incapable of supporting sheer 3
‘ stresses and having a uniform or, at most, piecewise constant density variation. For some models, it is . g
necessary to specify sound speed, attenuation, and density values within the bottom. In these in- ]
stances, the bottom is treated in a manner analogous to that of the water column, i.e., as an ideal 5
fluid. Otherwise, the effect of the ocean bottom is accounted for by ascribing to it a reflection loss
versus grazing angle. The treatment given both boundaries is, of course, approximate. In the case of
the ocean bottom, a clear point of departure is delineated between underwater acoustics and seismic
propagation. Nonetheless, the approximations have been found to be generally adequate when
comparing theoretical and experimental propagation loss results. This is perhaps related to the second
point of departure, which is the concern with the infinite CW propagation loss (fotal/ energy) versus
range in underwater acoustics, as opposed to a detailed analysis of waveform structure versus time in
; the seismic field.
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COMPUTER MODELS OF UNDERWATER
ACOUSTIC PROPAGATION .

1. Range-Independent Models
INTRODUCTION

Studies of wave motion in a plane stratified medium are undertaken in many diverse ficlds. The
techniques developed in one field, however, are often applicable to others. This is not surprising since
the waves, whether electromagnetic, acoustic, seismic, etc., have common mathematical
denominators. Of particular interest are the phenomena associated with wave propagation in a
medium whose characteristic properties are not uniform. Although such phenomena are, in general,
functions of all spatial coordinates and times, the case of arbitrary variation in only one spatial
direction is a sufficiently accurate assumption for many applications.

It is rather easy to express the formal solution for the field produced by a point monochromatic
source embedded in such a medium as a Fourier-Bessel transform! or, equivalently, a Green’s func-
tion convolution.2 However, the explicit general form for the kernel, which results when the variation
within each layer is arbitrary and, in addition, when the source and field point depths are also ar-
bitrary, has not appeared in the literature to date. Previous treatments3:* are concerned with either a
specific index of refraction variation or do not permit the source and field points to be in different
layers. Wait,* for example, uses the Fourier-Bessel method to generalize the Sommerfeld problem to
the case of m-homogeneous layers. Harkriders and Kutschale’” have also given integral solutions for
this case. Felsen and Marcuvitz? give an excellent account of the Green’s function method for ar-
bitrary depth variation within each layer. However, their explicit results hold only when the source
and field points are within the same layer.

The formal Green’s function integral to the reduced wave equation in cylindrical coordinates for an
arbitrary index of refraction and source and receiver depths is given below. The formalism given
pertains to the acoustic case but can be used to describe other types of wave propagation with the
appropriate change of variables describing the characteristic properties of the medium. The integrand
is defined as a product of a range r-dependent Bessel function and a depth, z-dependent Green’s
function. Since the index of refraction is independent of range, the derivation of the range-dependent
Bessel function is straightforward. The result for the depth dependent Green’s function is rather
complicated owing to the piecewise nature of the depth dependence of the index of refraction.

The available models for. computing the propagation loss versus range in such an environment can
be grouped into five major categories dependent upon the method used for solving the integral:

1. Direct Numerical Integration

2. Residue (Normal Mode) Theory
3. Multipath Expansion

4. Ray Theory with Corrections

5. Classical Ray Theoty
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f,b This is shown schematically in figure 1. Within each group, one or two particular models have been
1 identified as being representative. These models are discussed in some detail to provide a familiarity
E with the overall features and shortcomings of all modeis falling within one category as opposed to
! ‘ those in another. It is also possible to quantitatively assess the accuracy of the models of this section. .‘
‘ In addition, a description of the methodology used to obtain the results is provided. The same con- _
1 vention and notation for mathematical functions have been used throughout, rather than adopting 3
; those utilized by the originators. Thus, depth (z) is always taken to be measured positively downwards
‘ from the ocean surface, and the harmonic function, e-1@t, has been uniformally suppressed.
RANGE INDEPENDENT
, V 3P+ W2) P =-iwp (2g) S, S (N 8 (2-29
. * 2wy
Yy DIRECT NUMERICAL
A FOURIER BESSEL | INTEGRATION
, ; INTEGRAL SOLUTION [ ] cccmm e e = =
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----------------- "1 RAY THEORY

Figure 1. Range-Independent Flow Diagram of Theoretical Solutions
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FORMAL SOLUTION

A given stratified medium is approximated by N - 1 inhomogeneous layers sandwiched between
two homogeneous half spaces, as shown in figure 2. A point source of harmonic waves (time factor of
exp(-iwt) has been suppressed) is located at (0, zg) in the LStR layer, where 0 € LS € N. The field point
is located at (r, 2) in the LRth layer, where 0 € LR < N. It is assumed that z = 2 3 z; when 2 < z¢
reciprocity is used.

IMPEDANCE
LOCATION 0 (SEMI- INFINITE) DEPTH
ln z,:0
2! ! 1
1
| 2
2 24
~k
i w
z
k k -
ZN -1
~N
bZn-) N-1 2,

N
fz)
N (SEMI - INFINITE }

Figure 2. Range-Independent Environmental Description

The Helmholtz reduced wave equation for a point source located at fg in an inhomogeneous
medium is given by

V6 4 2 pel2) = -t/ P(2 )5 8(7-T). ("

The effective wavenumber kege(z) is assumed to vary piecewise with z. It is defined in terms of the
usual wavenumber k(z) { = w/sound speed variation ¢(z)] according to
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K ee(2) = KE(2)- vo(2) "—zz( ‘ ) (2)
eff dz° \vo(2)) * .

where, for acoustics, @(z) is the density. In electromagnetics, ¢(z) may be ecither the dielectric
parameter e(z) or the permeability u(z). In seismology o(z) is the Lame’ parameter u-1(z) for SH
waves.

By the simple transformation #= \/¢ G, equation (I) may be rewritten as

2 2 Ypev2 _ - -
v+ kKo(2)” - -Q——p -iwp(zs)Sws(r-rs) , (3)

where # represents the pressure (Green’s function) at some point r owing to the point source, and S,
is the source strength.8 If cylindrical coordinates (r, 8, z) are assumed with azimuthal symmetry, the
following equation is obtained:

T 3 1 a9\ L .2 '1“"’(’;)
]?;: (7‘5;) + p(Z)a—z' (-p(_z)- 32 + k™(2)7 = T Sw 6(")6(2'15) .(4)

The vertical depth coordinate z varies from - € z< + % and the range coordinate r varies from 0
< r < «, The boundary conditions imposed on equation (4) are that

(1) 2 must satisfy radiation conditions for

reoandz-++w (5)
) imp?/'g% and? must be continuous across all interfaces which are assumed to b= parallel in the r

direction.

Equation (4) can be separated as follows:

s(r)s
B8] o

[p(z)f',—, (-p-‘(,—)-j;) + kz(z)-ez] 6(2028) = ~fun(z)s(z-2),  (7)

where £2 is the separation constant. G(r, £) represents a range-dependent Bessel function and G(z, zg;
&) represents the depth dependent Green’s function.

The integral solution to the above boundary value problem can be given either by the Fourier-Bessel
transform first used by Lamb® and Sommerfeld,!? or by the Green's function convolution first used
by Marcuvitz,!!
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Sm ®
2 (riz,zg) = 3= ‘f) 6(z,2_i¢) Jolerde de (8)
) = EQ 7 &( ;) (1) d
g (r.l.zs 4' “e+i" z.zslg 0 (Er)E E . (9)

Many of the features/shortcomings of proceeding down one path versus another in figure 1 are in-
timately related to the particular manner in which the depth dependent Green’s function G(z,2g:¢,w),
appearing in the integral solution, is obtained and numerically evaluated. For these reasons, this
function will be discussed first.

Depth Dependent Green’s Function (Impedance Formulation)

In cylindrical coordinates with azimuthal symmetry, the depth dependent Green’s function G must
satisfy '

40§ (e £) remes-sz-z) . )

where q(z) = (k2(z) - 52)/(imo(z)), k(z) the wavenumber and g(z) the density. All the models of this
section assume that the density varies in a piecewise constant fashion within any layer. The dif-
ferential operator .7 is defined as

_d 1 d
<= 4z (mp(zi dz) *a(z) .

The solution of equation (10) is found by using the matrizant method!2-1$ to obtain two linearly in-
dependent functions, ¥ and F, which satisfy equation (10) for z < zg and z > zg and the respective
continuity conditions of G and (dG/dz)/iwp(z), [= G(z)/(iwe(z))] in those regions. These functions
represent the depth dependent pressure and are unique up to an arbitrary constant. This constant may
be chosen in such a way that equation (10) is also satisfied at the source depth z,.

The notation used in this section was instituted to conserve space. Although compact, it is unor-
thodox, and will be explained at points where it is felt that confusion might arise. The symbol U
without a subscript or superscript is an abbreviation for the depth dependent particle velocity, U =
(dF/dz)/(iwe(z)), for z > zg. When U appears with a subscript and superscript, e.g., Uk"' l, the
subscript (k) refers to the layer in which F is defined. The superscript (k + 1) refers to the depth
(zk + 1, see figure 2) at which the operation is evaluated.

Thus
dF
k+1 1 K
Uk 1mpk(Z) dz . )

= Zk”
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As such, Uk +1 i5 the depth dependent particle velocity in the kth layer evaluated at the depth 2. 4 1.
If the subscript is absent and the superscript is z, then UZ is the depth dependent particle velocity in
any layer (LS € k € N - 1) evaluated at any depth (25 € z € z)). The layer in which the source is *
located will be designated by LS and the receiver layer by LR. The depth dependent particle velocity 4] '
= (d?/dz)/(iwq(z)) for z < zg is abbreviated similarly. Functions other than the depth dependent :
particle velocity will appear with a subscript and superscript (e.g., y{"‘ l). Unless otherwise stated, the .
meaning of the subscript and superscript, when they occur with these functions, will be the same as ‘
that explained above for U.

Terms of the form (df/dz)/(iwe(z)) and (dg/dz)/(iwe(z)), appearing frequently throughout the
analysis, have been abbreviated as (Df) and (Dg), respectively. Thus

df
k+1 _ 1 —k
(Df)k impk(Z) dz

(12)
=2, 1
Although closely related to the depth dependent particle velocity UE + l, Df and Dg differ from it
in that the function being operated on is not the total depth dependent pressure. Rather, it is one of
the linearly independent (fundamental) solutions used to form F.

S F Matrizant Method

The equation for the depth dependent pressure F, z > zg, may be written as

=G (T..%Gy ﬁ{-) ta(z) F=0 (13) :

where F is subject to the continuity conditions on G and G*/iwg for z > zg. In the matrizant method,
equation (13) is written as the following two equations,

1 dF
U(z) = ‘hnplls dz

(14)
:—2 +q(z) F=0
or, equivalently, as the matrix equation,
82 . p2) v(a) (15)
F .
(z)) A - ( 0 fwl(2)) .
u(2) ~-q(2) 0
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The solution of equation (15) satisfying initial conditions at z; is given by

V’(z) = ﬁ(Z.zt) W(zi) ’

where ﬁ(z,z;) is the fundamental matrix (matrizant, propagator, etc.) which satisfies the matrix
equation,

dﬂ(z.zi)

- " A(z) ﬁ(z.zi). (16)

such that M(z;,z;) = I, where I is the identity matrix.

, . It is not possible to find a closed form solution, other than the Peano-Baker expansion, when the 3
y ‘ ‘ entire interval (z) € z € z)) is considered as a single layer with k(z) arbitrary. An alternative is to 4

‘ subdivide the total interval into N - 1 subintervals, as in figure 2. In this case, known closed form
' 3 solutions to a second order differential equation in yZ (= y(z)) can usually be found associated with
some ky(z), which constitutes a good approximation to the given k(z) over the subinterval (zg € z <z
2 +1)- If two fundamental solutions, f(yZ) and g(y2) of #(-) = 0, can be expressed in terms of the

; . - known solutions, then the matrizant
P } i . Ay ,v4)  p(yE )
. M(z,2y) = M(v",y%1) = SO RGEa) (17)
! ' ) over some arbitrary subinterval [z,;} can be expressed as
M E ) = (f(y’i g(v’i) ("1 “z)_ ()
(0)° (0g)°/ \®1 B/

From equations (15) - (17) Q and P are also solutions of .#(-) = 0 with iwe(z)S and iwg(z)R as their
respective derivatives. Explicitly from equation (16)

ggw iwp(2)S , g{- = fwp(2)R

ﬂ-g— = -q(z)Q , g% = ~q(z)P .

The constants in equation (18) are determined uniquely from the condition M(z;, Z) = L. Thus,
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Ay A, fly ) aly )
= z, z, :
B, 8, (of) ' (0g)
and, since f and g are linearly independent solutions of .~ () = 0, the quantity (Aj- B - By-Ap)
cannot be zero; hence, Q and P are linearly independent solutions of .Z(-) = 0. The argument yZ is
used as a visual reminder that f and g are to be expressed in terms of known solutions to a differential

equation in yZ. Then the matrizant for the entire interval can be obtained by making use of its group
property,

M(vZ 2 1) = M) M(viRaR) L 2, 250 2, € [25,2,] (19)
and M~ 1(y2,y%) = M(y%,y?). From equation (18), the elements of equation (17) are found to be

Z 4 b 4 ¥ 4
| 1 . Z, 2
0y = ! z, zi- z, zi' LAy Yy =
[¢, 000" - (o) Tgty )

y 4 b 4 ¥ 4 ¥4
- i i 2, 2 1
D: + f . R(Y 107 1) = 1 . ]

R(YZOYZ1) = 2 Z Z
ety 1y0a) T - (on) Yoty )]

i 2 2 2 2, 2, z 7 2
! S(Y 2Y 1) = sz1 zi- 21 21 » S(Y 1.7 1) =0
§ [f(v )(Dg) " - (Df) ‘g(y )] (20)
7 2 PPN I 7z
Ply oy 1) = Lf z, Z, * 7, 7,7° Ply ' =0,
[tv o)™ - (o) ety )
and additionally

2 z
R(y 1ov?) = Q(v%,y :)
2
P(y ,v%) = -P(v2,y Y " |

2 b 4
S(Y 1!Yz) = 'S(szY i)




z z z z
alvZy 1) R(yZ,y i) - PlvE,y 1y s(y2.y 1) =1.

The Green'’s function solution to equation (10) can now be constructed from the following two
matrizant equations:

6(2) - (l-’(z)) z 2, .
] = 1. .H( » * )D <
(a (z)/(‘lup(z)) W i) ) Wz (2,

( 6z) ) (2) (Fm) My o ) ez (252)
' = ¥(2) = - o ) ez (252) |
6 (2)/(1uo(2) wz/ YRS

where z) and 2z, respectively, represent the lower and upper boundaries (see figure 2) of two
homogeneous half spaces between which the index of refraction is allowed to vary arbitrarily. Thus
the initial values are known up to some multiplicative constants a, and ap, respectively:

(21)

. -8 (z-z,) . -8 .
F(z) = ae o'¥ ™1 » U(2) = F-?-a- F(z) Z < z]

0

1ay(z-2)) 8
F(z) = aye , U(2) = IN?E)- F(z) z> zN .

where B, and B are the z components of the wavenumbers kg, and kN, respectively, and Im {f,} and
Im {BN} > O satisfy the radiation condition.

In what follows, it is useful to rewrite y4z) and y{2) in terms of the impedance defined as

22) = H2L ang 2(2) « KL (22)
u(z) u(z)
since the terminal impedances, |
N, B st
Iy 'E: and 2, Toﬂ , (23)

are known uniquely. The convention adopted is that the superscript always refers to the depth at
which z is evaluated. The subscript always refers to the layer where the evaluation takes place. The
impedance anywhere above the source can then be written uniquely in terms of its terminal impedance
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- *1 ]
S 2z) My y') (Fo) .
‘ ) {Zl S(yZ,y') + R(vz.v])} .

Similarly, impedance below the source may be expressed as

N
2(z) M(y* .YN) (:“)

A TR e

where the denominators (terms in braces) of the above equations are constants. The continuity of
impedance at the boundaries z) and zy is satisfied automatically from the imposed condition that
M(yzl.rz‘) be the identity matrix.
) The solutions y(z) and w(z), written in terms of their respective terminal impedance and
. multiplicative constant, are

. F(z) 2 1 qil - |
¥z) = (ﬁ(z)) M(v",v') (] v, 2z

and below the source

F(2) :n [3) o
wz) = (u(z)) = Myy") <1 Uy gz .

The impedance within any layer, written in terms of the terminal impedance of that layer, is

~2 Sk -
< Zk> - M) (:u) / [z:,,sk(y:.y';) + Rk(vﬁwt)]

1
(24)

2\ .,z k1, [ k4] K+
( ") "Ml ) ( k+1 [zk-f'lsk(":"'k bE Rk(":"':ﬂ)]
!

10

N e e
) - e ¥ttt e . WP . Ly g v - .




Since continuity of impedance is assured, they may also be expressed explicitly in terms of the im-
pedances of the half spaces according to ’ '

72 M (thYk) [pyk 1 p(b'.)] ZO ‘
): () N

(25)
TY lsk(yk’yk) +R (ykqu L [Zp S (b.l) +R (b.a)] .
p=k-1 o
and |
N-1 A
: k+1 N
Zz .M (Y:’Y ) [ptkﬂ p(aab)] (] ) (26)
( k) i k"'] ( z k+l ( 2 k"']] rn‘l zp"']s ( b) +R (l b)]- ’
! [ kklvienc ) Revewc )] B [p+'l 2 ’

P

where C’an b'Yp+]-

P

If the total interval (z] € z € z)) is partitioned into N - 1 subintervals, then the matrix W) in the
kth layer may be expressed as

k+1 k+] gk 'I
- . z k+ +

where zy € <€ zg 4 for 1 € Kk € LS - 1 and 21 § € z < zg for k = LS, the source layer. Applying
equation (19) over (zx.1,zk 4 1] yields

~k+1 uk

.k kel
Uk k ‘ ( k- " k(b’a) +R (bta)) s & Y .m b »

k Yk

. il
B (2) = M GEp) , [ (i';, ,‘(b.a)n(b,a))] (27)
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Likewise, the matrix wk(z) may be expressed as
ey (S 1
= z _k+ k+l +
*k(z) nk(Ylek ) ‘l uk"’] ] (28) :

wherezpy € z€ zg 1 forLS + 1€ k< N-1and 1 # 2> 24 for k = LS. The impedances
2k+1and Zk 1| are the terminal impedances Z; and Z} referenced to the bottom of the kth fayer.
They may be easily found from equations (25) and (26). The Green's function in the kth layer for z <
zg may now be written as

| () = A7 Qi R lrinkY] [k, (B sytbeors 8 (b.2)](29)

Similarly the Green’s function in the kth layer for 2 > z; may be written as

| | L[k o oz kT z _k#ly] k#1

The subscript on Gy(z) generally will be omitted since the receiver is always located at (r,2) in the LRth
layer. .

Thus the Green’s function G(z), z < zg, may be written in terms of 2&"' 1 and the multiplicative ;
constant UE _; 2k _, Sk(b,a) + Ri(b,a)l. Similarly G(z), z > z is given in terms of ZK+ | .
and the constant U[T]. Since the local terminal impedances 2K+ ! and Zk1 | are uniquely .
determined from equations (25) and (26) in terms of the known half space impedances ‘l, and ;
1 ZN, respectively, the Green’s function G(z) is completely specified upon determination of the
; multiplicative constants. 1

If continuity of ?k and ﬁk is to hold everywhere above the source, we must insist that

* % (2) = v _,(2)
’ or, equivalently, that
L %[5k . k1

;o wherea = r{, b= yE"’ 1. The relation to the constant in the source layer is

\ .
L . R s 315 s (IS LSy & R (1541, LS)
.- Uy |Zc-q Si(bs2) * R (b,a)] =
,. k-1 ["k-1 "k LS .o
. n [zp_] sp(b.a) + Rp(b.a)]

[N pek+]

z | 12
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1<k sLS-1.

Similarly, if the continuity of Fi and Uy is to hold everywhere below the source, then
% (2 = Y (Be)
k+1 k+1
Upeq ™ uk [zm S (2:b) + R (a b)] (31)

which may be written in terms of the source constant as

” ULS+1
+ _LS+) LS+1 < k < N-1
Ul R [2"*' 5(asb) + R ( bﬂ P, b= (P (32)
a, a as =
psLs+1 L P*1 ’ AR

The two constants it §' ! and U[j §1’l are determined by integrating equation (10) between the
limits z; - ¢ and z5 + ¢ and taking the limit as ¢ goes to zero,

Z+ ¢
Tim § | Z(6) dz = -1

e-+0 Sl

or, equivalently, satisfying the source conditions,

s E =

Fis - Fis 0
s 5
Us - YUs !

Upon substitution of equations (27) and (28) into the above three equations, one finds that the
above conditions will be satisfied if the constants are defined according to

=)
User = /¥

~LS LS
Uis-1 [ZLS 1 Ls(b.a) + RLs(b.a)] -2 .

where the Wronskian is

i SRR Bt
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W=and2 T fate

and it is convenient to express the components of W withe = YES as

o (Ztgﬂ ]) (QLs(e.b)) . (Zt,f,ﬂ 1) (SLS(-.b)) .
-P glesb) Hysles) ‘

FLSH i34 |

., ® (qu(e,b) PLS(e.b)) <]"S )‘zz - ((sLs‘e'b) Rl.S(e'h)) <1|.s )

The explicit expression for W is then found to be

Lse1 0 1 2LS+1
W= (ZLS‘H ]) (] 0) MLS(b'c)MLS(c’b) ‘LS ’

which reduces to

LS+]  sLS+!
W=2'shn"4s

the difference between the terminal impedance ZN referenced up to the level z = z g4 ) and the
terminal impedance ?6 referenced down to that same level. The constants for 1 S K< LS - 1 in each
layer are then found to be

- LS
[zk 1 (b.a) + R (b,a)] U":" - (-a-a-]) | [ p-1 S (b,a) +R (b.a)]

p=k+1
andforLS+ 1< k<N -1,
. (—-11) I [ S(a:b) + R (a b)] (33)
| ]
k+1 W paLS+] p+l . .
Thus G(z,z,) in any layer can be found by using these constants in equations (29) and (30). If both the .

source and receiver are the same layer (i.e., LS = LR), the Green’s function forzp g€ z€ z;and 1 €
LSEN-1is

- ""‘\-«u-—'\_‘\_* e WP wme . g . s - - PR -
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G(z.zs) -
LR+1 z LR+ uml | LS+ EUN Ls+1i!
at) QLR(’La'* )+ "LR(*LR'Y ) s+1Q|.s( LS*YLS Ls‘ LS‘ LS
Zise - Is
(34)
1]
G(z,zs) =
LR*1, .2 _LR#) R+1 [LS+1 LS+ s LS+
[ZLMQLR"’LR'Y ) + Pl LR"’LR ’I Z QLs(YLs'YLs )+ Pstristvis )l
L'sh ~ s -
(35)

322264

If the receiver is below the source and in a different layer (i.e., LR > LS), the Green’s function is

G(z,zs) =
ZLR# R#1 LSHl, ;S  LSH s  Lse1] LR

[LRHQLR(YLR’YLR )+ PLR(YLR'YLR )] [z Usbiswis ™)+ Pusbiisos )]fsn
TSFT—IS¥T ’
Lisa ~ Is

where

LR LR " !
+
A s n [Zk+lsk(a.b) + Rk(a.b)] (36)

LS+ ksLS+1

2 S TS T ey Ls+j < LR < N-1.

From a notational standpoint, the results for G, when either the source or receiver are in the zero or
Nth jayer, are special cases. They are given in appendix A. The form of the solution for G provided
above is the familiar way of expressing the Green’s function solution. Felsen and Marcuritz? (p. 280,

‘18
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equation (22)) and also Coddington and Levinson!$ (p. 248) provide solutions which are identical in
1 formtoequation(maceptfortheabseneeofthefactorA{:gH.Asanbeseenbyenmining
: equation (35),this factor is absent if both the source and receiver are in the same layer (LS = LR).

. Thus our result represents an extension of this earlier work in that the source and receiver may be put

?; ‘1 at any depth in an arbitrary layered media.
'F The Green’s function may be expressed in various alternative forms using the relations provided in "
1 this section. One such form which explicitly displays the dependence on the known terminal im-
pedances ZH and % is found to be
4 |
(1-2
6(z,2,) = —2 . (37)
wherezjR€z€ 2z R4 forLS + ISLREN-landzz<z1 g+
All of the terms in the above expression are matrices. In particular, the following abbreviations
, have been made:
' . .
. . : S _Ls+l
P elvie Yie )
= LS LS, LS - z _LR+] z2 LR+ .
*s s LS g (‘QLR(’LR.”LR TR TR
“Qslns, s ) -
- P k _k+
4 P.
| | K = T My ) .

k=2

The denominator of equation (37) is an expression for the characteristic or dispersion equation. It
is the difference in impedance of the entire region between the half spaces evaluated at z = z;
(Zl - 7&) or, equivalently, evaluated at z = z,; (ZN - ZH - 1)- The expression for ?“LR(Z)' valid
above the source, is obtained from equation (37) by interchanging LS and LR and also zg and z.

DIRECT NUMERICAL INTEGRATION FAST FIELD PROGRAM (FFP)

The observation that the Fast Fourier Transform (FFT) algorithm could be used to evaluate Bessel
transform was first made by H. W. Marsh!7 in 1967. It was subsequently developed into a general
3 purpose model by DiNapoli.!8

\ The first step in this method consists of replacing the Bessel function in the integral solution with
L o the Hankel function associated with outward propagation. If the first term in the asymptotic ex-
' : pansion is substituted,

to PV (er) « V2 M T
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7 the integral may be written as
£ : 1/2s =
: ‘ 7(r.z.z;) = (%1- e 5 V7T 6(z,258.0) el e . (38)
Next, let the horizontal wavenumber and the horizontal range be evaluated at the discrete values,

& = 8o ¥ ML, LI 8 + nar, (m,n) = 0,1,2...L-1,

with the added restriction that
Arag = 25/L ,

- ‘ where L is equal to 2 raised to some integer power. Equation (38) is then given by the discrete Fourier
' ; Transform
L 1/2s ieorn L-1
g Prazaz) = agld) 28
i nr's i 4 r m=0

£ eizarmn/L ., (39)

where the input values are obtained from

\ imre AE
= . 1/2 0
: Em G(zszssﬁmvw)ﬁm e . (40)

The evaluation of equation (39) via the FFT yields, essentially simultaneously, the value of the field
at each of the unaliased L/2 ranges. As a result, this format is ideally suited for the rapid calculation
of the field as a function of range for a fixed source and receiver depth.

The only restriction imposed upon the matrizant solution for G was that the sound speed variation
ck(2) associated with the known solutions be a good approximation of the given sound speed variation
within the subinterval zy € z € zy , 1. The solution for the pressure field via the FFT necessitates the
evaluation of equation (40) for each of the L equispaced discrete values &y(m = 0,1,2...L - 1) of the
horizontal component of the wavenumber. This calculation represents the major portion of the
required execution time. It is evident that the particular manner in which fi, gx depend upon ¢ will
have a strong bearing upon the ease with which G can be found as a function of ¢g,. Consideration of
a few possible choices for the fundamental solutions will illustrate the point:

Trigonometric functions: ck(z) 8.2 S22,

£, (reogy) = sinlyp) 9 (vpog,) = coslyy)

17

-
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where

w_ 2

B Ve -E

The evaluation of a square root and a trigonometric function are required for each of the L values of

ém-
. . -2
Airy Function: ¢ (2) = a * bk(zk - z), 7, 2222,
z 2z z
] Y : where
' it 8], &
. - The Airy functions must be recalculated L times.

In contrast to that above, allow the sound speed to vary exponentially within each layer according
to

(z -z )M
ck(z)=ake zkizizk+l,]<kiN-l

where aj is the sound speed at the top of the kth layer, which need not equal ci .. j(zg), and Hy is an
arbitrary scale factor. The fundamental solutions are then found to be

£ lvie,) = (vg) 9k‘*§"m"v(vk)m‘*sf” (41)

( k)m

i.e., cylindrical functions of complex order,

("k)m s (gmHk - 10.Hk) , Where k(z) - m/ck(z) - {a,

‘ with o a positive constant and real argument,

[}

). . WH dvr

! z = . —k = z .

\ ) —(k)-ck 27 ¢ a3z k/Hk . (42)
o

The dependence upon &y, can then be efficiently found by evaluating equation (41) once for a pair
of hypothetical starting values, (vk)g. (vk)1, and utilizing the recurrence relations:




g BRI G A A < e NG

Y 0 B

Sa ks

PR

L

(43)

Q R ] 2
.. (22 vil _ wl| o, ()"
i ("a"b) Fug * %) [ Pa P JONE

where

Py = Tube,(z,) pp = Tule (249)

The arguments of the matrizant elements, which have been suppressed for notational convenience, are
as given in the discussion of the depth dependent Green’s function (impedance formulation), i.e.,a =
yk, b= yE*’ 1, The recurrence relation sequation (43), is stable except when the v falls between the
arguments a,b. A discussion of their use in this situation is provided in reference 19.

Upon noting that the recurrence reiations require that the change in v be unity, the wavenumber
domain sampling distance, A, is found to be

AE = l/Hk . (44)

The fact that the FFT requires equispaced values of &p, is in conflict with equation (44). This is so
because Hy is different for each of the (N - 1) possible layers. Let Af equal the reciprocal of the
largest scale factor, Hpyayx,

ag = 1M (45)

max »
and restrict the remaining scale factors to be some arbitrary integer multiple, py, of this value; i.e.,

H__/H k= 1,2...N-1 .

max kK - pk

This restriction limits the ability to approximate the given sound speed variation arbitrarily close but
allows enough flexibility to model most cases of interest in underwater acoustics. If the discrete values

of &y, are given by




Ep ™ & * M m=0,1,2...L-1,

. then they yield the discrete values of the order of the cylindrical functions in each layer ™
(v = (&M, - TaH,) + m/p me0,1,2...L-1, .
k'm ok k 1<k <NIl.

The condition that the change in vk be unity can be satisfied if py pairs of starting values are
calculated and used in the recurrence relations.

The required computer memory for each layer with exponential sound speed is 2py complex values
of P(")k and py complex values for both Q(y), and Ryy), . The values for S(y)) can be obtained from
equation (20). For some m, the appropriate vasues of P(), , and Q(v) md v (1 € k€N - 1)are
selected and used to calculate equation (40) . The result of this calculauon is storela
of size L. Equation (43) is used again form + 1.

in a complex array

Since the minimum value of & should be zero and it can be shown that G(z,z);§) decays when
£>w/Cppin, Where Ciyipy is the minimum sound speed within the region 21 € z € z|N;, one finds that the
number of sample points needed, L,is approximately

L- Coin Hmax (46) .ﬁ

Typically Hpax v l05; thus at high frequencies not only does the number of calculations increase
\ but also available core storage may be exceeded. A technique has been implemented? for rigorously
circumventing the core storage problem when it arises. It is noted that although the execution time
and storage requirements grow with increasing frequency, the solution remains perfectly valid and
accurate.

The only remaining point involves the accuracy of replacing the Hankel function H& (&r) with the
, first term in its asymptotic expansion which was introduced without justification. A discussion of this
i approximation is provided in appendix B. »

NORMAL MODES (AND BRANCH LINE INTEGRAL) MODELS
STICKLER (EJP CUTS), BARTBERGER (PEKERIS CUTS)

Normal mode models may be viewed as the result obtained when the integral solution to the wave
equation is solved by the utilization of Cauchy’s residue theory. In that case, the pressure field is given
by a sum (possibly infinite) of residues associated with discrete eigenvalues and a branch cut integral
: representing the contribution from the continuous portion of the eigenvalue spectrum. It is common
| to assume the ocean surface to be a pressure release boundary. If this is assumed, the single branch cut
' integral arises from the lower half space which is the Nth jayer in figure 2. The particular manner in
' which the branch cuts are chosen determines the extent of the discrete portion of the eigenvalue

spectrum and the associated physical interpretation of the modes (eigenfunctions). . 7
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In the past, normal mode models in underwater acoustics have generally ignored the branch cut
contributions, assuming that they would be of nugatory importance at the horizontal ranges of in-
terest. Two notable exceptions can be cited. One is the pioneering work of Pekeris22 which treated a
simple ocean and also dealt with waveform structure rather than propagation loss. The second ex-
ception is the work of Kutschale?® on the arctic environment. Kutschale is interested in propagation
loss but at “‘seismic’’ frequencies as well as the higher underwater acoustic frequency regime. Kut-
schale’s model is also unique in that it allows for solid and liquid constant sound speed layers.

The primary mathematical difference between the two models to be discussed is the manner in
which the branch cuts are chosen. Stickler? uses the EJP (Ewing, Jardensky, Press)?s cuts, which in
the limiting case of no absorption, would run from the branch points + ky along the Re{¢} axis to the
origin and then along the Im(#) axis. Bartberger?s prefers the Pekeris cuts, which are lines parallel to
the Im{¢} axis (see figure 3).

Y3
4 2 ﬂ‘e2
_:él b
10 T ‘N “r
*Z ‘\B N
~ . _ . .
-kyy f kv € -kyy };B w/ky §
1 LA ~3
1 ¢ \_Aa. .
{a) wewE JP BRANCH CUTS (b)swwPEKERIS CUTS
-7/2<a<0(SECOND QUADRANT) -w/2SB<S3w/2  -w/2Sas3w/2
0<a< 2w (ELSEWHERE)
- w/2$BSO(FOURTH QUADRANT)
0<B< 2w (ELSEWHERE)

Figure 3. Definition of o and § for EJP and Pekeris Branch Cuts
For both models, the sound speed within each ocean layer is assumed to be well approximated by
c'z(z)-a +b (z,-2) 2 <2<2
k k k' 'k k—="="%+# °*

where ag is the sound speed at the top of the kth layer and need not equal cigl(zk). and by is
proportional to the sound speed gradient. In this case, the solutions f and g are given in terms of Airy
functions according to

£,0r56) = M(vp)s g, (vs6) = Bilv),

21
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where the argument is found to be

3 2o [fgkn - ], 2R

The Green's function formulation previously given as equation (36) could be used to obtain a
solution which would be equivalent to those obtained by Bartberger26 and Stickler?# but not of the
same form. In order to obtain their results, equation (36) must first be rewritten by recalling that the
impedance was defined at any level above the source as

2(z) = F(2)/U(2)

and, similarly, below the source as

Z(z) = F(z)/u(z) .

Upon substitution one then has

X G(z,2) =
LR+1 LR+1 LS+ =1 541 )
[FLMQLR“"b) * U perPalds b)] lF Q g(e.b) + Urg P (e, b)] s LS+'I
v (z o) -
. el Vs Bisa -
(47)
where
2 s S
d= g €= s

and b is the function y evaluated at the lower boundary of the layer (in this case either LS or LR) in
which it is defined.

Next, the difference in impedances evaluated at LS + 1 occurring in the denominator is transferred
to the level zN. In doing this, use is made of

5LS+1 >N
z N-1 2 N-1
S )= pom@e) | VT T (2P s (baa) ¢ R (b.a)]
1 peLs+1 P 1 peLS+l - .




N-1 z=
zI.SH n M (a.b)
LS+1 ]| . peLS+] |

1 TR N-1
P*1 s (a,b) + R (a,b "1 s (a,b) + R (a,b
p-fs-r'l pH (a )+ (a )]p-llfkﬂ [ P+l (‘ )y (. )]

where as beforea = yB,b =yp+1.
The constant in the denominator of the last equation has been written as a product of two constants
in anticipation of cancellation of terms arising from the fact that

-1

LR
LR k+1
A = n z S (a,b) + R (a,b)

LS+ peLse)  K# K (Sl

LS#l  5LSH]
Zise - X5

N-1
5= [ ,s(b.a)+n(b,a)]
peLs+1 | P~

-1

N-1
o 1 zp*} 5,(2:b) + R (a,b)
p=LS+1 pt

[Ci“ + D] IZLSH . iLS+'I]

- - +
:zﬂ - z:_]j (Ap - BC)
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Iczu . Dl [2£541 - iLS+‘I]
NGRS ICRD I

zy - 2 ;) (A0 - B
but S
A B
AB - CD = =
C D
or
Vo) T L] S (a) 4 R (aub) "
= lez' + D .. S (a,b) + R (a,b
[ N N']
B= lczy+D| = =m [ +15p(0s2) + R (b.a)}
| p=Ls+1 | P
Additionally one has that
S+1 _ 5LS+1) | N ) N
(st+1 s ) o [AZN * D] [Azu 1 B}
or
Ls+1 _ 5us+41) _ [N _ 5N
Gwn s ) GN %4>m . (48)

Substitution of the above into equation (47) gives a formulation

G(Z.Zs) =

LR+ LS+ SLS+
_L 19p(9:0) * UrpiiP pldib) [F Qglesb) + U s™P (e b)]

S (b,a) + R (b.a)]

LRHIZLSHT (N _ N
Uralls (z -1 ) i

N~ N1 p -1°p
N-] 1 *
n z"*,s (a,b) + R (a,b)]
p=LR+] p*
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which allows for the source and receiver to be in any layer. However, the evaluation of the Wronskian
occurs at z. The denominator may be simplified considerably by noting first that if the identity

. EUE . T
N N-1 uN-'I N-1 ZN

is substituted into the denominator,then one has

N-1

However, with the aid of equation (33), it is easy to show that

| 3P s (b,a) + R (b,a yLR*1 LS+l -
3 f p-ESﬂ [ p-1 p( ) p( ’ )] LR+1 LS & F"_
' p [Esemeren]  da, M \Y A
, i p=LR+1 pli p P -

.- ) )
N-1 ptl
S ke [P
« P2 2 = 1 ZP*'s (a,b) + R ab)]
| W LT [Lp+1 paLR+1 ["” p’ (s
) - N n z HS (a,b) + R (a,b)
N ngS+'| p P p .
Thus
LR+ -1
v N-1
LRI 0 [2P*)s (aub) + R (a.b)] .. (49)
N psLR#1 L PHI°P p
Uy
Similarly
N-1 i l',LSH
r |ZP S(ba)+k(ba)]_.r-55 =1 . (50)
pLS+] [M P A

To show this successively substitute k = N - 1, N - 2 ... into equation (29) and it becomes evident
that




- N-1
N aLS+]
=y n Kt (b.l) +R (b.l)

which is the desired result.

The required result for Green’s function is then
LR+ ] S+1 ~L$4] ]
6(z.2) = ke QLR(d’b) + Upra(a)] R g gles) + Us Pusled)]
*’s NN
Ny N-1 N-1 (51)
4 l
N
' ' ‘ The residue contribution to the pressure field occurs for some value of §,labeled §y,, called the
) eigenvalue, for which

y D L I

N N-1
E ¢, -,
i.e., the impedance of the last half space Zﬁ exactly equals the impedance of the entire medium above -
it,ZH - 1 cvaluated at ZN. Assuming that these eigenvalues give rise to simple poles, the residue
contribution is found to be
v 5
] LR+1 LR+1 ] l =LS+1 Ls+'l J '
E 2 2 A £ m
m=0 N
N a¢ | 'N-1 - _—
Iy
(1)
x Ho'lg e (52)
where the terminal impedance ZN is known to be
. 2 = o/ (k ¢ ) .
i 7 N N N . . L
]
The residue contribution obtained by both Stickier# and Bartberger?s can be obtained from .
equation (52). However, there are some important exceptions related to the choice of branch cuts.

- . - D T e PR R Sl .

T —— L




Stickler’s Residue Contribution

By choosing the EJP cuts and utilizing results from the spectral theory of ordinary differential
equations, !¢ Stickler is able to conclude that all the eigenvalues which occur on the sheet of integration
in the complex £ plane are real. (It should be recalled that the entire medium is assumed to be a perfect
fluid with no energy loss due to absorption.) Furthermore, only a finite number of such values exist.
They give rise to simple pole type singularities. These modes are trapped within the medium. The only
loss of energy with range, assumed to be sufficiently far from the source, may be interpreted as r~ %2,
i.e., cylindrical spreading. The equivalent mode-ray (a plot of ¢y = k(2)sin® (z) versus depth and
range with © measured from the vertical) should either have a turning point between 2] and z, or be
incident upon the boundary at z;, at an angle for which total reflection occurs.

To obtain Stickler’s result, note from equation (48) that at the ecigenvalues the functions F and U
are equal to ¥ and Uat all levels. The Green’s function portion of the residue may then be written as

Performing the indicated differentiation yields

=N N =N =N - N
. ’UN-I TS R TS T RS TN Gy oy (54)
3 N 3 "R T R
N N Iy
where the identity
o~ GN
N-1 _ . N-1
~KIZI"-N°
(z) Zy

which holds when (Z) = 2} _ ;) has been used.
Stickler24 assumes the solution in each layer to be

pk(z,;) = Ak A‘I(Y:) +B, 31(7:) 2 2 22224,

which corresponds to
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~ . ok z k+l ~K zZ k+l

in the notation used here. The relationship between the constants is

i:-k

K AL (b) BY(b) A

k=1
= N (55)

0, Ai‘hf 1 8k-1

R R BRI

where primes denote differentiation with respect to the argument b, which is
k
b= Yk'] o

Then, in terms of Stickler’s notation,?4 one finds that

S [A“_]A,(Yx_])]+ By B0y * [AN-‘Af(Yx_I) + BN_1Bi(y=_,5]2L§_,e

. N o N 3 oN
- [AN-IAi(YN-1)]+ Bu-181(_q) * 2Ly qEleoy qUy
upon recalling the definition of 'l‘,'ﬁ -1

Similarly,

N « 2 N « 2 N N =
.y | [AvaA ) * By iBilyg)] . 2y 1Ery. 1Py

om—

3; 1 Np"_i(-"-.l 1 mu-‘ »
where the dots denote differentiation with respect to ¢. It is also a straightforward matter to show that
N 3
9
L
L1

(wop)

-
T ¥ b et 4 . L. WAL - g
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Upon substitution and noting that
-l E"uit_“4’ - e
i l '
g one finds that
;
E N . 3
3 L u- ’ZL 1N, B ey | o :
; 3 1 Y- ra N-
| @ “N-1 (woy) @)
?‘ !
E v [ ] P2 N *
| . (A iAitr) * By 1Bty [Au,1“’(7n 1) + By By ) 14]
g ‘”°N-1Ln 1 Zﬁ
x3
The entire denominator of equation (53) may then be written as
' Ml ooty »
‘ N 3 )N N-1 0 *m
g ) ’Jr:-l 2z )UN-1 7 "21':’ * T (56)
where
2, o, | tee  20w)eLy
C'](E ) = -1°'N-1 N N-1pN-1 ("-,N )2
0'°m )Z ) N-1
PN-1 (UDN (

o et " At |,
PN-1"N-1 = m

which is identical to equation (12) of reference 24, with the exception of a multiplicative factor of k
(&m in this notiition) that arises from the original Bessel transform. A typographical error in
Stickler’s2 equation 12 occurred by omitting the factor equivalent to yN - 1 in the first term inside
the {} of equation (56). To facilitate the comparison between the results presented here and those
found in reference 24, the following correspondence in notation is shown, in addition to that already
given by equation (55):

"F' - M. AP — T T T e S o Y ONGTIIL ST T e A s e s ".'.“_

\" N Nkl e e WP e s g g L - - -




. -, m=0
(), "
xeHo (g r) o (57)
.‘ which is identical to Stickler’s?4 corresponding residue contribution.
Bartberger’s Residue Contribution (Pekeris Cuts)
Althqugh Bartberger26 assumes an it time dependence, his work is summarized as if the harmonic
factor 8@t had been used in keeping with the conventions adopted earlier.
The formulation used by Bartberger26 is based upon Green’s function given by equation (51). Thus
the only difference in the form of his residue contribution versus Stickler’s?* is that the functions
FERE] UL R 1 | defined below the source are not replaced with their counterparts,
PER+]. U R 1], defined above the source.
In order to find the zeros of equation (48), the derivatives must be evaluated with respect to the
wavenumber of the function ?H -1and N _ ;.
Utilizing equation (27) and recalling that
) . .
~k Sk k+] .

OQurs  Stickler's

N ll!k;
£=k |

w2 = ZN(z)

The residue contribution may then be written as

oS, P =L R+1 ~LR+] =L$+1 ~LS+1
=2t 1 Coley) [FLR-!-'IQLR(d’b) * U gnPra(dsB)f | Fiig T lesb) + g PLS(e’b)]

one is able to write the functions in terms of their terminal values as




- k nk+l k
Mk(a.b Uk Mk(a.b) .

: | ok 7k+1 gkl
) gk+1

1
However, from the continuity conditions, one has

%1 (Zin) = 9 () s

and upon substitution it is found that

¥ ~ =k zk+1

! gk k'"* gk+l

k k+1
K , Successive use of the above formula yields

P GATLS et
; I Uy p=1 N-1
S E :

- wherea = yg,b=yg+l.

é An essential component in calculating the above mentioned derivatives is
& | M, (a,0)

13

It is found by differentiating equation (19) that ;

aQ (a,b) 2L &b P _(a,b)

“Ppr— = 2tlup(2,)5 (a,0) - —f—b—

p Zptl

10 - .. 3PE(a nb)

« o3 - 3
L sr— = ~2ptlu (2))R (a.,b) - fup (2, )21 060 (a,b)




isp( a,b)
13

-ZLpszp(a,b) . 2L_eaQ (a,b)

1“°p(zp+l) ‘lmpp(zp)

3R _(a,b) 2L aP (a,b) 3
—r = 2P - 2L klwp (2 . .)S (a.b)
wp_(z) O A U
PP
(59)
« (P b= P*
a= vy b LIS

The quantitative difference between the two residue contributions arises from the type and number
of eigenvalues which satisfy the dispersion equation,

LS+l _ ;5LSH]

sa < 4s

or its equivalent form derived by setting equation (48) to zero. When the Pekeris branch cuts are
chosen, the number of discrete eigenvalues will be infinite. Furthermore, the discrete eigenvalue
spectrum can be thought of as containing two subsets spanning the regions on either side of the
Pekeris branch cut. The first contains a finite number of eigenvalues with real parts larger than kN,
i.e., those lying to the right of the Pekeris branch cut. The imaginary part of these eigenvalues would
be zero if the attenuation in each layer were set to zero. In this instance, Stickler’s?# total residue
contribution would be identical to that portion of Bartberger’s26 residue series arising from this subset
of his eigenvalues.

Bartberger’s26 second subset of cigenvalues lay to the left of the Pekeris cut. They are infinite in
number and complex even with the attenuation set to zero. Then for these eigenvalues

m Am+18m ’

where
°<Am<kN' Am+1<Am’"mBm i Bm+1<Bm :

mMo>oe

Under the assumption that the Hankel function is well approximated by the first term in its
asymptotic expansion, examination of the range dependence of the terms in equation (57) yields

eiAmre-amr / /r_
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These modes, sometimes called leaky modes, suffer the same cylindrical spreading loss as the trapped
modes from the first set. In addition, they are attenuated by an amount proportional to the imaginary
part of the eigenvalue. It is common to physically interpret these modes in terms of bottom bounce
energy since the mode-ray equivalent for ap, would be incident upon the boundary z at an angle be-
tween critical and normal incidence. The angle of incidence approaches 90° as m increases. The
magnitude of the reflection coefficient for these angles would be less than unity, resulting in a loss of
energy into the borrom. On this basis, it might be expected that, as the mode number m increased, the
range at which these leaky modes would significantly contribute to the total field would diminish.
Bartberger26 has found this to be precisely the case.

On the other hand, an increasing number of higher order modes would have to be included in the
sum as the range point approached the source. Five-hundred is the maximum number of modes
calculated in Bartberger’s AP2 program. Thus for some hypothetical combination of frequency,
water depth, and source/receiver depths it is possible that some hypothetical range interval exists
close to the source but not necessarily starting at r = 0. Bartberger’s26 results for the total field will be
in error due to the truncation of the infinite series. The end point of this interval is associated with
that range at which the mode-ray equivalent for the first omitted mode would have reached the
receiver. The beginning of the interval is usually marked by a sudden drop in level of the propagation
loss versus range curve.

Branch Cuts and Branch Cut Integrals

The two choices of branch cuts discussed in this section are shown schematically in figure 3. The
behavior of the square root

in the complex plane (¢ = &1 + i&)) is determined by first defining

e‘la ig

kN-E=D+ kN+E=p_e

so that

By = (o,fp_)”zei(“w)/2 =ay *iby

where the reference line and direction of measurement for a and p are shown in figures 4 and $. The
values of a and § at critical points are shown in figure 4 for the EJP cuts. With this information, it is
possible to show that by > 0 everywhere on the top sheet and that aN > 0 in quadrants 2 and 4 while
aN <0in quadrants1and 3.

The analogous information for the Pekeris cuts is given in figure 5. It can be seen that the imagina-
ry part of B is positive everywhere in the upper half plane except for that sector of the first quadrant
between the Im{¢} axis and the branch cut. It is in this sector that the complex eigenvalues associated
with the leaky wave modes are located.

33




TR 5867

a--rlzt Tclarlz
0SA<w®/2 § 0SB ™2
@ i O]

s M G'O, 3 : qzz,' *0 s s
a:0,B:w B:0 4§ 2:ImB:0 a=0,8:0
"‘O.B'Z'r 0.043'0
0sasw/2|}j0sasw/2

B:3w/2

| @

B:-w/2

bn20,0,>0, QUADRANTS 2 AND 4; oy, <0,QUADRANTS 1 AND 3

Figure 4. Definition of S for EJP Branch Cut

az-w/2 a:3w/2
0spsw/2f 0sBsw/2
an>0 N >0 On<0
bn>0 by <0 bn>0
3
4 e * T 80
ay<0 a, >0 an>0
by>0 by <0 bn>0
3-3«’/21 1ﬁ'-r/2
O0sagw/2 0<as<w/2

b0, ay >0 \\\\\\ay20,b, >0

Figure 5. Definition of p for Pekeris Branch Cut

It can also be seen that the value of g approaches a purely real positive value on the left hand side
of the branch cut in the first quadrant and a purely real negative value on the right hand side as §¢3—>.
Thus fj assumes purely real values at the extremities of the branch cut and complex values elsewhere.
In both cases, after indenting around the respective branch cuts, the contour is closed in the upper

half plane.




Jordan's Lemma and the Pekeris Cuts

It is of some interest to examine P along some line connecting the branch cut and the positive
imaginary axis as this line approaches infinity. For this purpose we introduce the equivalent definition

i of the square root,
l/R+1s = T+1sign($)%|-.k>0

gl»« f sign(S)T , R< 0,

- where

'

3 1/2

T = Rz + S2 + R
2
' and

I/R +1S = +vR when S=0.

Then, with & = £; + i€, in this sector %

1 kN'-E. -l/tz1-1s1 R .

whereR) = kN - £ >0,S) = -§2<0and

S, |
1
k-E-T-— o
N LI

Similarly
I te =]/R,)+ 15, R, =k + 0,S. = 0
il Vin®e S Tu T RO Tl R
\ : Thus

— T, +1|s |
21’2
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and upon multiplication it is found that ‘ L
2
/2 | T, T
k:'ez' T.|72+ 52 -—EA i-—l
\ aT,7 2 \T, T,

Since Ty > T}, it is seen that aN > 0, by <0, as it should be in this sector.

From
R R V72
, )&t
B ..
-— '| + —
§2 &2
it can be seen that
T
11m1.13 =
€2+¢

and £ —*  lim by is indeterminant.

Application of L’Hospital’s rule yields

2
im |_1 T2_T1 d TZ _ T‘l
20 I\ T e \T, T,
1 T2 2\ T
where

4 (= 4.
d;z T] T2

X, VXAV - X, JX Y,
’X1 - x2+ 1V 2V 2 2‘/(252,(‘)(2‘/x1+y] ,/X2+79
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1
z
'i
!

1/2
. | Ry
F "
; 2 1/2
: = __'_ =
Xl 5 +1 . Y1 R‘IRZ
; and
| DN LA
; E)3r o .
2 dgz Tl T2 52
! Thus
' ' lim by + 0
w N
8, The behavior of the integrand is now examined for the case LS = LR = N, z > zg. In this case,
3 , both the source and receiver are in the lower semiinfinite half space. Here the depth dependent
! Green'’s function is found to be
Lo 3
&S g2 .
F>F | ’
\ . 6(z,zg36ww) = L2LR |
s
where ,
S, N - N -
FLS (12“) singn(zs zN) + ZN-I cosan(zs zN)
g, (z-2y)
z L. N N :
[} FLR [ IBN
EI - L1} . - N -N
s "Iy - Iy
ESS
Recalling that in the sector under consideration N = aN - ibN, FL— is rewritten as
LS
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_.._FSLQ ) C“N(ZS'ZN):N(ZS'ZN) A

Ws

olantzsmzy) by (zs72y) |

2

and the total Green’s function becomes ]

G(Z] izs; E]N) =

1 fa(z-z5) +by(z-z5)
_zeaszse n(z-2g

! where the first term represents the wave which initially started upwards struck the boundary at z =
' ZN. At this point, its amplitude is modified by the reflection coefficient referenced to that level and .
then propagates downward. The second term, of course, corresponds to the direct wave which propa- -
gates downward from the source.

\ When this information is coupled with the first term on the asymptotic expansion for Hq(1), the
portion of the integrand corresponding to the direct path is

1 1 [a,(z-2¢) + g,r -l r - by(z-
e [u“s 1]e [z N“s’]

In all other regions of the upper half complex plane, by has the opposite sign of that above and
Jordan’s Lemma would be satisfied for z finite. Without regard to the behavior of by as §2-+, it
would appear that, unless r is sufficiently large, Jordan’s Lemma would not be satisfied in the sector
which gives rise to the leaky modes. However, on recalling that

: , Ez-i ®

N

b o it is seen that Jordan’s Lemma is satisfied in this region for z finite as well. Beyond this, it is noted * T
' that, if z = zg the direct wave satisfies Jordan’s Lemma irrespective of the sign of by.

L~ The mathematically esoteric problem of the satisfaction of Jordan’s Lemma in the case of z .

o becoming infinite is not considered. In this case the model itself is of questionable physical value.
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Now that the behavior of the square root, AN, on the top Riemann sheet has been specified, it is
possibie to obtain explicit results for the branch cut integrals. It becomes necessary to evaluate

' ;."' 6 zozs3£|u) “(;’(Er’ gdg

along paths on either side of the branch cut in the upper half plane. For this evaluation, the for-
mulation of the Green’s function equation (37) will be used. The equation explicitly displays the
dependence upon the terminal impedance ZJJ. Next we introduce the abbreviations

A B\ g N1
LI M. (2.b)

¢ o) v pe

EF
. (S N-1
N NI

Then Green’s function may be expressed as

51 51y N
(k - Gy + (F - WEy) 2,
(A - czg) + (B - 0Z)) 2y

G(Z,ZS;E.N) =

It is noted that for a pressure release surface % =0.
For the Pekeris cut

E'kN'i"l-r, O<ctrcecom ,

and on the right hand side of the cut, where
/EN_--é = Tl/2e-iw/4 .

one obtains

39

L "--\a.v..p_-\...a\.-a-. fs P g L .

e gl L
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where
-E - 62 cee ol VT E 12-t1a/e

E, " A.l E GZO Az (F HZO) W T @
b ch. O cm sl VAR E v2-tea
1 A3 A - CZo A " (8 DZO) '—“;;"—" T e .

To the left of the cut

;/kn_-;' = _11/2e-11r/4 ,
g ‘
’ which results in
iS <t JA -A
1 [ 1 2 ( ] )
' ; =K e M {gr)de .
b, W g 3 s 0
4 j
‘ Reversing the limits of integration of the first integral and combining yields 5

- 1S, T (EB - FA (1)
\ 2;— f -(—“—AT)-—N—)-Z' H 0 (;Y‘)Edt .

With some straightforward but lengthy manipulation summarized below, this may be expressed in the
same notation as that used for the residue series:

E F\JA B 0
EB - FA=(1 0)

Qb

v e e N e e

which, upon substitution for the 2 x 2 matrices, reduces to

A e e — o ——— e+

1 0
n Mp(b.a) .

J. .| EB - FA = (1 O)K%SO
p=LR -1

Ls*LRr

Now examine
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ot
L
FERYTg ((dub) + TLRTP o(dib) = (Qg(dib) P p(d,b)) IS / :

Substituting for the column matrix from equation (58) with N - 1 = LR and setting Z} = Oyields

I‘LRH “LR+1 l
- |F d,b) +U P, .(d,b 1 0
LR Q ( ) rLR R( ) n M(b,a)

=9
i LR patr P -1

Next rewrite the source term as

o -1
Ls+1 SLs+1 . (it jLs+
[ﬁ.s Qstesd) + U5 P Ls(e'b)] (FLS “is ) 1 oS

With the use of equation (58) with N - I = LS and the identity

0 -1 0 -1
My (b,2) - M, (a.b)

this term may be expressed as

[ S*‘Q glen) + uLS*‘P s(e.b)]
L (0 0K e -
U

The numerator of the Green’s function is then given by

EB - FA =

l s+ - §41 l | R+) =L Re1
Fre G glesb) + Uy Uis Pugtesp) Fip Qgldsb) + Uy 8 PLR“""J
@)

41




TR 5867

The denominator of that function may be written as

[ -(a/zu)] . -(41)"[ A(#)Z];

or, equivalently, in matrix notation as

RIRING

o I aT10Aaz:
-(z:)(-z"”coooc o\ 1

Utilizing the fact that

1 () -1> 1 (o 1)
n M(a,b) = n M(b,a)
p=N-1 P 1 of p=N-1 P 1 0

R 0 N (z")
() ma (-1 0 1 omias)

p=N-1

yields

and upon substitution from equation (58)

p N
(z:,‘)" (1 z{,‘)(i}) o ﬁ:_,(: ;)(j“)

Finally, then, the denominator of the Green’s function is

4 e o] - [t B e




< kol S 3 R
; — L S - S i

The Pekeris branch cut integral is then

- .
1im -'lSu T
z g

™™ =

e

[FLS+1QLS(e,b)+ﬁt§+1PLs(e b)] [FtR*q pd.b)+U e, (d.b)] el (eraae

l‘”u-1) - (/) ] N

i where ¢ = kN + it |

WON R (#)2 (upN 2

V& + ¢ g8

The form of the Green’s function given by equation (37) may also be used to arrive at the EJP
branch cut integral obtained by Stickler.24 In this case, explicit expressions are found for the integrals
;o along the real and imaginary axis. Above the real axis let

E=1 0<-¢'<kN

,/kN-E'o]

while below,
v kN -E= -p].

Following the same procedure used with the Pekeris cut, one obtains for the branch cut integral
along the real axis

k
2o /!
2n 0

[FL"Ta gleut) + :5Th Sleub)] [Fig o glasb) + g™ glaub)
'4

[0 - Rl

Qs

|
| rL | — T -.'} L T T T ] “i
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This is identical to Stickler’s4 integral containing Cj(k) upon muitiplying that answer by iwgg S,
substituting for the difference in the notation given earlier in this section, and noting that an extra
multiplicative factor of k appears in Stickler’s result.

For the integral on that portion of the branch cut along the positive imaginary axis, let .

k-it

/k]-E '\/kN-‘lt

on the right hand edge, and let

\ Vig - & = - Vi - ix i

on the left hand edge. The result is identical to the Pekeris branch cut integral except for the tran-
slation in &:

K (S) =
‘ 1im --%}- 6 '

T+ o L3

[FLS*‘Q (e.b) + uLS*‘PLS(e.b)] [FtR*q, (a0 + iR (4, b)]

LR LR
~N 2 (k +1 )
[(UN_-l) - (FN -——)-2'—

f | 2, 2

N

e o

Numerical Considerstions -

3 .

' As one might expect, the implementation problems are roughly similar for all normal mode
programs. Thus a summary of one program, in this case Bartberger’s?6 AP2 program, should provide

the reader with an overall feeling for what might be expected in general. The reader interested in

greater detail should consult reference 26.

4
h In AP2, the effect of the ocean bottom is accounted for in one of two ways: (1) an empirical bottom
represented by a bottom reflection loss curve as a function of grazing angle at a given CW frequency
Thaind or (2) a physical ocean bottom consisting of up to 9 layers (excluding the semiinfinite half space; Nth
layer in figure 1) with constant sound speed, density, and attenuation. The attenuation a is introduced
by letting the wavenumber

-




s

s 2 + 1
kp cp g

be complex.

The AP2 program is broadly divided into a section for the computation of the eigenvalues and a
section for the calculation of propagation loss. The execution time for each section is comparable.
The maximum number of modes allowed is 500, a number sufficient for typical deep ocean problems
at frequencies below approximately 100 Hz. Excluded are the higher order modes (m > 500 in the
residue summation) which introduce an error at the short bottom bounce ranges but not beyond. The
attenuation (a,, dB/distance) within the water column, which is small at these frequencies, is initially
set to zero. Later the attenuation is accounted for by adding the term a,r to the propagation loss
calculation. Almost all the limitations imposed upon the applicability of hormal mode programs stem
from the difficulty encountered in numerically locating the eigenvalues which are the zeros of the
Wronskian Wy _ 1(8),

N NN
Wn-108) = Upq = Fad/Zy

appearing in the denominator of equation (51). This is done iteratively. An initial estimate
(? m)j is made and the ?N _ 1((? mi) and m _ l((? m)i) are found from equation (58) where

= 0 pressure release and surface t'J] is an arbitrary normalization constant which is proper-
ly accounted for in the Green’s function formulation. In addition, the derivatives of these
functions with respect to & are also calculated with the aid of equation (59) . The initial cgndi-
tions assumed by Bartberger26 in this case are aF]/ ¢ = aﬁ]/ 3t = 0. Since WN.1(E m)i)
will in general not be zero, a new estimate (¢ m)i + 1 is obtained from

- ~ W

(Em)1+~' (Em)i - aN-l
N-1
14

(&)

where the derivative of the Wronskian with respect to & is given by equation (54). The itera-
tions are terminated when the modulus of the last term in the above equation falls below a
preset minimum value. T '

If the initial estimates are not sufficiently accurate, the above procedure may fail to converge and
the mode will be missed. Alternatively, it may converge to the wrong mode resulting in a duplicate
ecigenvalue. If the eigenvalues are evenly spaced, it is usually sufficient to obtain initial estimates by
extrapolating from previously found eigenvalues. This procedure is used for higher order modes
(phase velocity exceeding the maximum sound speed, including that of the first bottom layer). The
spacing of the eigenvalues for lower order modes may be sufficiently irregular to render this
procedure unreliable. In response to this, Bartberger2s has devised a scheme for obtaining initial
estimates of these modes based upon Wentzel, Kramers, and Brillouin (WKB) approximations which
explicitly display the mode number. The total phase of the mode depth function is calculated for a
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two-way transit from ocean surface to bottom. Included are the phase changes in the oscillatory
region both between and at mode turning points and discrete phase shifts at ocean boundaries. The
value of ¢ is varied iteratively until the round trip phase change equals a(m - 1)r. If multiple sound
channels which give rise to different families of trapped modes exist, the AP2 scheme computes the
phase changes in all channels. Except for a few isolated instances of complete failure, this process
provides the initial estimates of the eigenvalues rapidly. The failures have been observed to occur in
instances when ¢ is very close to the wavenumber at one of the layer boundaries. This case must also ~
be treated with care in the multipath expansion programs and has been examined by Tolstoy.?” In this
case, successive values for the initial estimate oscillate around this wavenumber. Bartberger? then
switches to an extrapolated value based upon previously computed eigenvalues.

The WKB iterations for the first mode begin with the initial estimate § o = w/(VMIN + ¢), where
VMIN is normally equal to the minimum sound speed. However, deep water problems are frequently
encountered for which a number of low order modes are weakly excited. This results from the fact
that their phase velocities are appreciably less than the sound speed at the source and receiver depths.
In such instances, an algorithm exists which excludes the calculation of the associated eigenvalues.

DEPTH DEPENDENT GREEN’S FUNCTION (TRAVELING WAVE FORMULATION)

Summarized in this section are results for the depth dependent Green’s function analogous in form
to equation (36), but expressed in terms of generalized reflection coefficients instead of impedances.

The matrix :74((2) above the source may be expressed directly in terms of the fundamental solutions
by using equations (18), (19), and (21):

z z -1
2z z k k -k
i K g () f (v ) 9 (v.) Fe-1
wk(z) = . 2 ) v Z,S2SZ, 0 (60)
(on;  (og)y J\(oe) % (0a) o

The above expression may then be put into the form

. f 00 g D\ / RS
"k(z) = Ak »
2 z

_ o -onR R g (a) UK

A
K (Dg)f () - g (2) (D)

The generaiized reflection coefficient in the kth jayer evaluated at zk is
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(ng)* [z g,(a)/ (D))
k B - J = k , .o 62
g (Df)E (3, - f (a)/(of)E] ' 4Tk €2

where f) and gy are chosen to be independent traveling wave solutions (reference 2) to Z(-) = 0. The
ratios gk(a)/(Dg)E and fk(a)/(Df)E are partial impedances whose importance will be discussed
shortly. The physical interpretation of R (and its counterpart RE +1500n to be introduced) continues
to be the subject of considerable discussion (see references 28-33). For constant sound speed and
density layers, the partial impedances are independent of depth and it is possible to uniquely separate
upgoing and downgoing waves. Thus the angle between the normal to the surface of constant phase
and the vertical remains the same throughout the layer. For example, a wave which initially moves in
a downward direction never changes its direction of propagation within a layer. The reflection
coefficient is thus independent of depth. It may be thought of as originating at the boundary where a
mismatch occurs between the local partial impedances and the total impedance 2& - 1 of the medium
above. When the product of sound speed and density is a function of depth, the generalized reflection
coefficient is also a function of depth through the partial impedances. Thus reflection occurs at all
depths within the layer, as well as at the boundary. Functions fi and gy can then be written as having
upgoing and downgoing components. It is apparent that the ratio fi/gi or vice versa cannot be in-
terpreted in the same manner as that of constant sound speed and density layers.

In underwater acoustics, however, the generalized reflection coefficients have been and continue to
be treated as if they were identical to the plane wave counterparts. The error of this approximation
has recently become apparent, as evidenced by determination of negative experimental values for
bottom loss (see reference 34).

With this short dialogue firmly established, the word generalized will be abandoned for the
remainder of the section.

Proceeding in exactly the same manner used for 31(, the solution below the source may be reex-
pressed in the form

k(le() gk(y:) 1

"’k(z) " A s b= ytﬂ , (63)
z 2
(of),  (Da), J\Ry
where
k+1 k+'l k+1
(Ds!)j%'1 F gL(b) U
(Dg)g™ f,(b) - gk(b)(nﬂE T
and k+1 Zk'l'] f (b)/(Df)k‘.]l

- 2 —H——"———h]- (64)

(o) 24y - 9, (b)/ (Do)

caaaltle ;
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The reflection coefficients in any layer may be written in terms of the reflection coefficients in any
other layer and, ultimately, in terms of the terminal values. To accomplish this, the matrix form of

. equation (62),
(-(og): gk(a)) (i:_,)
oK (onk - )/ \
ReYoe oo 'k
k)= — . 65
( ‘> [z, (o E%fk(‘)l . (s

W

is introduced. A similar equation involving ZE +1 results for ﬁtt l If equation (24) is used to express
Rt H I in terms of 2{ + 1 and if that expressicn is substituted into equation (65), one finds that

k+1 =K
o [P Gt f(a) g(a)\ fRe)
R ke M (b.&) A
k#1 k1 k ko, ok k »
' L (0F)p47 = Fiar (@) (0f) (0g) J\?
where the constant rkis found to be
5k k
. ; . — [EK'] fnf)k j‘a)]
KOZTT (0N f - Frag(@] [E_; S, (bsa) + R (b,2)] Wlg, .F,:2,]

and the function W(gy,fk,zk) is the Wronskian of the fundamental solutions evaluated at zi. With
some additional algebraic manipulations, it can also be shown that

W - 'ﬁt [ty i) = fq@) (Df):ﬂl
-1
+ [(0N}h) 9,(b) - £ () (Df):+]l| :

The desired relationship may then be abbreviated as

, (66)
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where

k+1

. . k1 ‘
(Ak Bk)_ =(09) 41 9per(@)\ [T (B) g, (D)
(00537 ~fn @\ 00! (o)™

G %

Another common form of the above relationship is

e I e AT &g O

-k kel , skel
] “k+l = ~k+1 , “k+
| I Il e < RS RS
b, k1 jT (0g)y
3 : S ()T ,
B : (08) | 41 ~k k_ ck+l
: 1+ Rk ry
‘ (bg),
LA whererk 3 ] is a local reflection coefficient in the (k + 1)St layer evaluated at zj 4 |
k1 | %(B) g ,4(2) f .1(a) g (b)
ksl T a7 - eyl [ ey - Ay
(0g), "~ (D) pyy | [ |(PF)sy  (DA)

andr ]g *+ 1 the local reflection coefficient in the kth layer evaluated at z 4 |

) £.(0) £ ()] [[f. ()  g(b)
e [—"TT"‘ﬂrr] [‘kﬂkTT_kTT

(R (0f)aq | (0N  (0a)

The expression relating ﬁh Il to the terminal reflection coefficient iil follows directly from
equation (66) and is found to be

o [T S f,(a) g (a)\ f&)

Rk‘” = n M (b,a)

1 TN L (o)} (09 J\1
k+1 k+1 1 1
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: Wlg .f iz ]
ll g Y .Z
aP ¢
pEk [l!p (:p +D ] ‘
Results for the coefficient below the source are obtained in the same manner and given by
k k-1 k-1
(0g)k"] PR '(‘D;#‘} Rea1 D+ g * M
(Df)k:z k-2 ” (Dg)k-1 k k-1
v T —HF R Ml
: (0.1
X f._.(a) £ _,(b) (v) (a)
k-1 - -
re o= "le—T- "'Lzli_T- "LZE'T -k—lrr
' k-2 [“’f)m “’f)k-z] (09)yp  (BF)y
k-1 19,103 g _,(b) (b ¢ .(a)]
rN1= -k—‘-k—-r_ -—k—zk—‘-_ 'L'ZR_T _L]T(_T
: k-1 [(og)k_, (o) | [ [z (007
{
.
The term ( ) Rk-2 is a reflection coefficient measured at the level zy _ | but referenced to
Df
k 2
the level 2 _ 2
k-1 N
I RLENTIL P O) CRIQRMIOAY L
(nk_2> - o L ACON B
1 (Dg)y-5 -9, _p(b)] P~ (0g)y_qy (0ON.1/ \1
| v (68)
e -21 AT RLIY
| ' ol ’
g~ p-ll: 1 [R" P ]
T\
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where Cp and Dp are defined by the matrix equation,

- (pf)P p p p
(Ap Bp) ] (0f), 4 fp_,(vp_,) gp(vp) folvp)

P
¢, 0, (09)]_y ~8p-q(vpy)) \ (0w)y (o)}

Satisfaction of the source conditions

s =5
F|.s"’is 0
S s
Us = Ys = -1

yields

<“Ls) <‘12> ( .
= a,,4a

- n%2 " a2
Bs M

1 = [figle) + Rtgﬂ 95(e)1s 2y, = [f le) RS +.g ()]

S LS+1 =
= [(0F)g + RiS™' (00)3G) 2y, = LONP RS + (0g)% ]
from which the Wronskian of Green’s function is found to be
. . sLS ,LS+1
1222 " 2y “ WIfge932gd [V - Rg Rig )
Green’s function with both the source and receiver in the same layer (LS = LR)is

[, (v2g) RES + 9,6 (v2)T [ laps) * R2' 9, c(y)s)]
z,z,) = 15187 s T s ST Disis s s

WIfy 59 gizgd [ - g s ]

2) 5<%
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4 LS+1 oLS H
GuJ)'IQ§n§+R§4§huntﬁ€n€ﬁs+q§ngl.

] ‘i : HEf g9y sizs] [1 - R Rig ]

(69)

ZS <Z<, ZLS 4

With LR > LS the result is

RLR+'| RI.S ] R

[f, o(vip) + 9, p{vip)] [f S(Y ) RS + g (v g)
G(z’z ) = _.LB-—LL—LB——LB—-LL—{S—&-‘&—A_L_ ALS+] (70)

Wf 509 g32g] [1-Rg Rig

where
. LR [f .(a) +R" _ g .(b)]

] LR . D] = =1 = p' b = P

| T s T e T g @y T e

The above results are identical to those obtained previously, equations (34), (35), and (36), with the
impedance formulation.

In proving this equivalence, it is helpful to note that, whereas equation (62) expresses Kk in terms of
the impedance ZK _ |, above, it can also be expressed in terms of 2k + 1 as

( “(0)*! g, (b) (jz“*i)
(Df)F -f (b)
(, ) (0F),"" - £, (b)]

It will also be required to have a form of the Green’s function, similar to equation (47), which ex-
plicitly displays the dependence upon the terminal reflection coefficients ii} and RH—I . Substitution
from equation (47) and the matrix form of equation (48) gives

- (51 ﬁ) RO 0 (0 Nus w1 (o 1(”) 1(”) “u 1
. 1) \g @ (o)) \1 of 7 LS LRILRH | (o)} ] (o),
' jo - i
! g (2) (09); ] \1 o q (Dg)N_] (Df)N_] 1
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which is more useful when written in the form

gN_ (b) f,_,(b) ﬁ_]

(l-il KLS N1
1 2 PRTRTY
(09)1 'g](b) QN_I(b) fﬁ_](b) -1

(0g)3 -g,(b)

-1
(Ml) 2 2 N N
-(on? £,(0) o, w0, /\u

(n)

In order to provide some insight into the role played by the partial impedances, examine the inner
product of matrices within Mi(a,b) My 4 1(a,b). Then

CINEAOAGAOR ARG 3'
onk! r o [\ ongn 0k

(0g)}*!
fra(2) 9 (b) —g:rh— -;:H-] 9 41(2) g, (b) —g—k(ﬁ— —H—]H

[ (o) (o) X! [ (of)k*! ng)"*

~fra(@) £ () fk(bjf— fk:,JH'] o1 (2) £ () 'F;(ﬁ" O

If the assumption is now made that the partial impedances are equal, i.c.,

(D,f)k"'] Df)k+] )k‘” )k‘”

k+'| E ] Ier '8

then the diagonal terms reduce to

)k*‘ Df)k+1 (b)

RIO KAL) _Th_ fray'\d ﬁ;rT kﬂ’gkn"kﬂl
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f. (b)

N (ogk?? |
9 (2) £, (0) £, (b) * E;:;%i} A WCfes it

and the off diagonal terms are zero so that

g, (b)
((og)t“‘-gk(b)> (fm(a) 9aq(2) ) ey O ]
- £.0) e hadzind .
-0 om0/ \onkl oot 0 fk(I), k151 o
+
WEf,09,52,4]
and in general
(o) - g (b)) | gt o N[t -g ()
( I M (a!b) = . (72)
oAkt £ (0)/ ek o A J\ont*! 1
where

If the above result is used in conjunction with

Ls+1 s
(Dgls ™ - 95(b) %s (is)
0 =
LS+ LS

and
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in equation (71), one finds that the Green’s function may be written in non-matrix form explicitly in
terms of the terminal reflection coefficients:

6(z,z.) =
[A5° £ ¢ (v2) RY +85S gl_s(yfs)] [a{jL‘ fip i) * MG RY S g alvip)]
AN )
WUTITILTNE - ¥ Ry Ryo)
1 (73)

In making the assumption of continuity of partial impedances in equations (67) and (68), one also
finds that

K+l _ AE+] =1 k- 1 A

~k+

Rknt et "1 R By_» R=-‘ .
1

In order to carry the analysis further, specific forms for the fundamental solutions are required.
For the moment let these solutions be represented by the WKB approximations. In order to avoid the
problem of their validity at turning points, attention can be limited to values of § associated with
bottom bounce energy for which no turning point exists between zy and z). Then it can be seen that

£(2) = 04200,V 2) expli(aienr)], g, (2) = 0V (2)er V4 2) expl-1(4Tn/a)]

2 2
o 2) = (Prea) - ol2) S (—l—) SRR ENAR TR

vo(2) (74)

and the partial impedances are found to be

(0F)F /1, (2) = 10)/%(2) - & (a;'2(2) dq,/d2)

B R P - -
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(09)Z /9, (2) = -1q)/%(2) - } (a'/%(2) dq,/62).

Continuity of the partial impedances is obtained if

and

qu/dz = qu”/dz at z = 2

i.e., the sound speed and its first derivative with respect to depth must be continuous in addition to the
density. Assuming this to be the case, it is a straightforward matter to verify that Green’s function
reduces to

G(z.zs) =

ile +n/4]- -1[¢5+n/4] ileZ ,+n/4]
-1/4 1 1 -1/4 N-1 N
(z )[ ]qLR (2)[e *Ry.q ©
e 1N 21¢?

DDy, e ]

'1 [‘:_f"ﬂ/‘]]
1

WIf RS piZpe] ©

(75)

where "
+
Rk 21’1 *l

21¢:: \
N-1° "k © Ry -

]
k-1, 2
Wit a1, Rk._2 e R

LR SRR

Thus the absolute magnitude of the reflection coefficient at any level (with no turning points) below
the source equals that of the reflection coefficient at the bottom and, similarly, above the source.
Furthermore, the resulting equation (75) is identical to that which would be obtained if, instead of
layering, the fundamental solutions over the entire interval (z; € z € z))) were approximated by WKB
solutions. For this approach to be useful, the sound speed and its first derivative plus the density must
be continuous throughout the interval. Alternatively, if a discontinuity in the local partial impedances
exists at any level, it gives rise to a reflection at that level whose magnitude is frequency dependent.

The sound speed in the deep water column has generally been thought to exhibit a smooth behavior
with the possible exception occurring at the bottom of a surface duct. However, recent developments
in the study of sound speed microstructure (see reference 35) show that the sound speed can exhibit a
step like behavior in both the lower and upper portions of the water column. Two alternatives suggest
themselves to properly account for the effects caused by such a sound speed structure utilizing the
approach which approximates the fundamental solutions over the entire interval: (1) more terms
would have to be introduced into the approximate solution or (2) the sound speed profile would have
to be layered over the appropriate depth intervals.
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MULTIPATH EXPANSION MODELS

The models to be discussed in this section use a combination of wave and ray theory. The
mathematics involved is concerned with expanding the kernel of the field integral in terms of an in-
finite series of integrals (sometimes referred to as the Rainbow or Debye expansion (see references 36- ;

. 44)) which correspond to various types of multiple reflections. Weinberg*s does not consider the i
sound speed profile to be layered except under some special instances which are to be taken up ¥
separately. Instead, approximate solutions for f and g are found for the entire depth interval z; € 2 €
zN. These are then used to construct the depth dependent Green’s function. Weinberg’s model of the
ocean with respect to figurc 2 would consist of the 3 layers air, water, and bottom, with the water
layer contained between z) and z3. In this case LS is always equal to LR. From equation (69), the
depth dependent Green’s function above the source is

[f, ()R] + 9,(2)] [F,(2.) + & g (z)]

6(z,z.) * 2 . zy<z<z_ . (76)
: NIfp9y 2. (1o K] o
The solution for one of the functions used in the program,
]
£,(2) = €V (2) (BI(y") + 10AI(Y)}, (77) -

arises from taking the first term of an asymptotic expansion. The constant C is defined as

b

¢ o V2646002 2, 0) I/ s o f L) -2 2
a

(78)

The argument of the Airy functions is yZ = w73¢(z,1) and the functions g, and V, must satisfy the
Eikonal and transport equations (see reference 45), respectively. The constant j is either 1,
depending upon the juxtaposition of z; (the turning point depth), and z,,, some arbitrary depth usually
taken as that depth where the sound speed is a minimum. In particular j = 1 when z4 < z; (lower
turning point) and j = 1 when 25>z (upper turning point). Finally, the parameter 1 is related to the
separation constant £ according to A = wé.

The solution for gj is obtained from equation (77) by systematically replacing i with -i. Whereas
the full solution (if it converges) accommodates an arbitrary sound speed variation, it can be shown
that equation (77) exactly satisfies .~(fj) = 0 when c‘z(z) is linear in depth. This is the same sound
speed variation assumed by Bartberger26 and Stickler24 (discussed earlier) within each of their layers.
An indication then of the approximation made by using the truncated solution, equation (77), can be
obtained by comparing the given sound speed profile with

¢z = a1ty (2-2) 2,222, (79)
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which can have at most one turning point. For this variation
o(z,2) = -y:/3 (z-zt) . VO(Z-A) = |3p/32| -2 (80)

Thus the argument of the Airy functions is zero at the turning point. Then, if for large yZ the Airy
functions are replaced by their asymptotic expansions with¢ = w %q(z;)«),

22/3

/2 f”‘ SIN (3¢ "#n/8) , Bi(-g)= =

-1/2;-1/4 2 2/3+1r

Cos(3 ¢ /4).
(81)

Af(-g)= )

The functions next reduce to the WKB solutions given by equation (74) (multiplied by w'ﬁ) with
K =24 .

Another indication of the approximation introduced by using the truncated solution, equation (77),
was provided at the end of the previous section. Discussed in that section were the approaches of
modeling the ocean with layers and that of approximating the solutions over the entire interval (in this
case z] < z< z3 = N). It was noted that the latter approach fails whenever the exact partial impedances
become discontinuous, which is related to the continuity of sound speed and its first derivative. In
such instances, the approximate solution approach must be modified either by the insertion of layers
or the inclusion of higher order terms from the full solution. For the time being, consideration should
be limited to cases where at most one turning point exists and equation (77) is exact.

Before proceeding to the multipath expansion, it is convenient to redefine the reflection coefficients
(ﬁl , Rf) previously given as equations (62) and (64) as

vl 1
YO = (M)]/g](z)

~1 91(21) ~1 1
RM*71z=T /4 » B = — (82)
U T (o) /fy(z) - Y,
2 2
2 fi(z) Yy - (BR)y/h(z) o)

Ry = Ry » R =
L 91"2’ L L (Dg)flg,(zz) - vg

with ?{,, Yg representing the admittance at the surface and bottom, respectively. The behavior of the
reflection coefficients when z is close to a turning point is, from equation (77),

()« e 2laRlzguin) /221 M (1) /0y (1))

Rf . _9211»0(10.2;A)e-Jn/2e21jtan.][A1'(y%)/B‘I'(y%)J . (84)
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When z is not close to a turning point, the WKB solutions yield

i'} = e-‘l [ZwQ(Zo, z].;) ] R? o e21uﬂ(zo, zz..x) .

The Green’s function may be expanded in two ways. Multiplication of the components of the
numerator gives four terms. Each term represents a ray path type which includes all cycles of the ray.

The individual cycles of the rays may be obtained by expanding the term (l—ﬁ] Rf) appearing in the
denominators of the four terms in a binomial series. This expansion and simultaneous substitution
from equations (82) and (83) yield the multipath expansion for z < z,

g2ty (z)  fIf (2 e (200
) AI/B, l = '-z']"'s'("]')"]—mf, Z,

n=0

f.(2)g9,(z )g.(2,)f,(2,) . g (2)9 (z )f (z,)
Lt S s R A 1.2 1 2) 2
. l _
where 8] = 91(2/9(z) . A = K26 (z).

For the cases of either no turning points (e.g., bottom bounce paths) or a solution at a sufficiently
large distance from a turning point, the WKB solutions are appropriate. Then A]/ Bl = e2iQ(z1, 213
1), On replacing the Hankel function in the field integral with the first term in its asymptotic ex-
pansion,* one obtains the multipath integral representation for the pressure, #(z,z,r), as

g(znzsor) = (86)

g 6 (2.2 i, 1) ellA223)200(2025 \)-w/ATlurrg, s (1140 ),
n-o

where the terms in ( ) would be of a form similiar to that shown explicitly and G is an expression
involving Airy functions which reduces to

=21 V2+2nurr

G(z.zs;x,f) =

Hgl) (uM‘) o (2"2“(0}")-]/2 e 1(war-n/4)

provides a closer approximation for small values of the argument.
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far away from turning points. The integrals above are of the form

12 \
1= 6 RLILYPN (87)

A

1

and can be evaluated by the method of stationary phase.

The stationary phase points can be related to the eigenrays of classical ray theory. (This is discussed
here under the heading entitled Connection Between Modes and Rays.) In the event that the stationary
phase evaluation fails, Weinberg’s* response is to evaluate the phase integrals in equation (86)
numerically. The breakdown occurs in the vicinity of caustics which can be located from classical ray
theory. After locating these regions, the difference in phase between a ray on the caustic and a ray
near the caustic is calculated. If this difference is small, the integrals are evaluated numerically.
Otherwise, the stationary phase technique is used. Weinberg has found that for the deep ocean and
for acoustic frequencies greater than 100 Hz most integrals are evaluated by the method of stationary
phase.

Before discussing the numerical integration procedure, it is appropriate here to note a significant
difference in emphasis between the models previously discussed and those of this section and also the
classical ray theory models with corrections (Connection Between Modes and Rays) such as FACT .4
In the latter case, the primary emphasis was upon accuracy. A minimum number of approximations
were introduced after the initial statement of the problem. The resulting execution speed was fun-
damentally that which were needed to evaluate the mathematics. Stickler’s2* branch cut integral, for
example, might be routinely evaluated even though in many instances it would not significantly
contribute to the total field. Similarly, the limits of integration for the FFP are generally larger than
required from a practical standpoint.

In the former case, the models were developed with the goal of minimizing execution speed without
significantly effecting accuracy. To meet this end approximations are introduced based, in many
instances, upon the long experience of the developer. It is impossible to summarize all such ap-
proximations. Indeed, when examined in isolation, a false perception of their validity with respect to
the overall answer may result. However, in order to provide an indication of what is involved, the
major steps in the program are outlined below for a typical deep water profile shown schematically in
figure 6.

In order to perform the numerical integration, formulas for the amplitude of G must be obtained.
To illustrate the process, let it be assumed that both source and receiver are in the surface duct. In this
case, the lower limit of equation (87) is set to zero (corresponding to infinite sound speed) and 1) is
taken to be the sound speed at the surface (z1), which is the local minimum sound speed. The A
domain is then divided into the subintervals, .

0 to )‘B' "B to ADUCT’ ADUCT to Az. Az to Az and Az to 2

s s 21’

which are identified in figure 6. Each of these subintervals is further divided by tracing 16 non-
vertexing rays (o to Ap),32 vertexing rays (Ag to Azs), and 16 rays vertexing above the source (Azs to
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AZI). In addition, 30 rays are traced through (0 to lzl). In each instance the spacing between the rays is
nonuniform in angle so as to improve the numerical evaluation of integrals to be discussed below.

SQUND SPEED —

; A =gl
28
—Rouer!
=
T
2 N pt—s

Figure 6. Typical Deep Water Profile

The particuiar formulas used for the amplitudes of f and g within each subinterval are chosen based
upon the size of ¢ = w? ¢ (z:4). If ¢ < - 0.8477, no turning points are encountered and the amplitudes
are calculated from the WKB solutions. For example, this might occur in the interval 0 to Ag where
steep bottom bounce rays exist. However, if ¢ > 20, a turning point exists but it is far removed from
either z or zg so that the amplitude would be exponentially decaying. Such a case would exist for (4,_,
Az,) with rays vertexing far above either the source or receiver depth. In such cases, Weinberg*s sets
the amplitude to zero on the basis that contributions from other subintervals would dominate the
total answer. Finally, if ¢ falls between these two limits, turning points exist near either the source or
receiver depths. In this instance, the amplitudes are obtained from the Airy functions.

As mentioned earlier, the truncated solution approach used by Weinbergs must be modified when
either the partial impedances are not continuous or when two or more turning points are in close
proximity. Such a situation exists for the profile considered within the interval (ApyCT, Az)- Green’s
function for the multipath integral, equation (86), corresponding to the direct path connecting source
and receiver in the surface duct, is modified by replacing Rf with a reflection coefficient referenced to
the bottom of the surface duct. This new reflection coefficient is obtained by replacing the profile
below the duct with a semiinfinite layer. Within this layer the sound speed is given by equation (79),
with yq obtained from that portion of the original profile immediately below the surface duct. The
reflection coefficient for this bilinear profile, obtained by satisfying the continuity conditions, is then
approximated so that the final resuit is a ratio of the difference and sum of Airy functions.

The reflection coefficient Rf is also modified for the interval (Ay, ApycCT), Which, in this case,
corresponds to refracted-surface reflected (RSR) ray paths. When the turning point is sufficiently
above the bottom, the magnitude of Rf is set to unity and its phase to -n/2. In those cases where the
turning point is close to the bottom, Rf is replaced with equation (84).
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The interval of integration (A, A) in equation (87) is initially approximated by (0, 1,1). This is
further divided into subintervals,

(0 <Ay <A, =2, <A

1 %% g <Ry,

)
] ]

where 1 and A; correspond to caustic regions defined by either Ag, min (Az, A7), or A’s for minimum
and maximum range values. Thus a typical integral to be evaluated numerically is of the form

A

1= [ 6(x) V() 4, (88)
A
f

For this subinterval, the phase w(}) is fit with a cubic function. The amplitude G(}) is fit with a linear
function. If A is sufficiently far from a point of stationary phase, y(R) is monotonic so that equation
(88) can be transformed to

A

3

1= lew) £1eVay. (89)
A
i

Then the quantity in brackets can be approximated by a polynomial in y and the expression can be
evaluated in closed form. However, if A is near a point of stationary phase (but still close to a caustic),
equation (88) is evaluated by the trapezoidal rule.

The philosophy adopted in Leibiger’s Raymode X program*’-48 is to utilize, whenever possible, the
simpler tools of ray theory while retaining the more exact formulation of mode theory. Two im-
portant benefits are thus realized: (1) It is possible to interpret mode theory expressions in a manner
similar to ray theory* and, (2) the use of ray theory simplifies some of the computational aspects of
the normal mode theory, allowing for considerable savings in computer execution time.

Leibiger initially assumes the medium to be layered with the sound speed given by equation (79)
within each layer. A fundamental solution of #(-) = 0 may then be written as f(z;¢) = V(z;§) e‘+z.
where

172 (

z
1 (42 e Mo, ke (ay2) /2 M52

V(zig) = K{oélq]lz(z;c)}

In the definition of 4 and ¢ in equation (74), ¢(2) is assumed to be unity. The solution for g(z:¢) is
taken to be the complex conjugate of f. When sufficiently far from a turning point, V(z:é)~ q~ Y and
the exact solutions reduce to the usual WKB approximations. It is also noted that Leibiger’s fun-
damental solutions, f and g, are formally equivalent to Weinberg’s truncated solutions.

*The discussion of this aspect of Raymode X seemed more appropriately suited to the discussion
under the heading Connection Between Modes and Rays.
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Leibiger makes the approximation that the wave is totally transmitted across all interfaces until
: either a layer is reached where a turning point exists or the wave interacts with either the ocean surface

‘4 Lo or bottom. At a turning point, the reflection coefficient,R, is assigned unit magnitude and a n/2 phase
1 ; shift. The magnitude of R is obtained from a scattering model and the phase shift is assumed to be —x
% ': at the ocean surface. At the ocean bottom the phase of R is zero. The magnitude of R is obtained from
b an input table of values.

With these provisos, the approximate expression for the exact depth dependent Green’s function,
equation (70), for z > zg is

[f(fs;:)i} + 9(z ;5)' [f(z;;) + Rzi] g(z;z)]

g G (2,2 3Ew) ~ .
s _ -
21 ¢ 101 [1 <R R e"‘"’l]

The subscript of ﬂqis a phase reference depth for the numerator term containing ﬁl » which is either
the ocean surface or an upper turning point associated with a downward refracted wave. The
superscript N is the phase reference depth for the remaining numerator term, and it is either the
X bottom depth or the depth of a lower turning point corresponding to an upward refracted wave.

: ‘ The conditions for which the above expression is a reasonable approximation for G are the same as
those discussed here under the heading Depth Dependent Green’s Function (Traveling Wave For-
mulation), namely that the partial impedances be continuous. In the presence of a surface duct, the
formula is modified by replacing RN-—I with the reflection coefficient at the bottom of the duct ob-
tained from the continuity conditions for a bilinear profile.

Although Leibiger4’48 and Weinberg*’ initially approach the problem from different viewpoints
(layering versus asymptotic solutions) both make fundamentally the same approximation (continuity
of partial impedances) and arrive at basically the same Green's function. For the profile shown in
figure 6, Leibiger would replace the (0,%) limits of integration with the subintervals (EN,£éBOT),
¢BoT-éDUCT): €DUCT 4SURF): Where &N is an input parameter related to the largest source angle
to be considered. Next, the integral expression for the pressure field is rewritten in terms of the four
: integrals obtained when the numerator of the Green’s function is expanded. These integrals over the
previously defined limits of integration are evaluated by either normal mode theory when the number
of trapped modes (the default criterion is 10) within the £ partition is small,or via the multipath ex-
pansion.

In both instances, the integrals to be evaluated are of the form

r S 4
o 8 6(z,z_,6) el [T E
o Plriz,z) - [ —5= | Uk ]de
[ T [ -1 N ezw]

| ! A (90)

§ ~in/2 V2 .
¢ 6(z,z 3€) = 1 [e E/(Zwr)] V(zgig) V(zie) .

TR IS U TR T Ty,
~
4
»
.
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where, for illustrative purposes only, the integral resulting from the product of gf and substitution of
the first term of the asymptotic expansion for Hg) is considered here.

When normal mode theory is utilized, the branch out contribution is not included. However, when
equation (90) is evaluated by the multipath expansion for different limits of integration, the branch
cut contribution to the total field is at least partially accounted for. The singularities §p associated
with the modes are assumed to be simple poles obtained by solving

N
e 151 N 21 L.
W(gy) = 1Ry Ry €541 =0

If the reflection coefficients are defined in terms of a magnitude and phase (6] and 8)), one sees that

] N -
IR)] 1R ] = € 2™ . ang o +e 2Re(ql} = ~2pr, p = 0,1, 2....
(91)

The real part of the eigenvalue 2p = Re{&p} is found by solving equation (91) without recourse to
iterative methods which results in a considerable savings in execution time. To accomplish this, the
extreme mode numbers (N5, Np) are determined by substituting {5 and &p into the second part of
equation (91) and solving for p. In addition, differentiation yields

dp.1 (p .21 ez o oN
3% 2n (Ro =3¢ *3z) »  Where R =3¢ 2'““1"E
P

is the cycle range, R, associated with the mode eigenvalue.

In the next section, it is shown that R, is also twice the horizontal distance traversed by an eigenray
which connects the phase reference point 1 to the phase reference point N. The value for R is
available in closed form due to the assumed sound speed variation within each layer. If one assumes
that the phase of the reflection coefficients is a slowly varying fun::tion of &, the above equation may
then also be solved for the extreme values ¢ A ; £g. Thus a curve of ‘p versus p passing through the end
points (§A,NA), (¢5.NB) and having the slopes prescribed above can be obtained. This curve is ap-
proximated by a cubic polynomial. The unknown coefficients are determined by interpolation. This
expression is then evaluated for each integer p such that No € p € Np for a direct (noniterative)
evaluation of the real part of the eigenvalues. '

The imaginary part of ép can be shown to be given approximately, with the use of WKB ap-
proximations, by

-InC[R1] RN ]
R

I ~
nl6p) - )
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Then the residue expansion associated with equation (90)_ becomes

- ] N
| B 6(z,z_3¢) 2_,2
! P(rozaz) - 2nt | ——iB olleeysterd
: i 3 aw (92) .
| U
b £

The normalization term in the denominator can be written approximately as

o1
: Wy .9 =1 3 ) -1
\ aw 2 - —ﬁ ] s N
! i3 (R et (Ryy) R
- [ P
Y
' and further approximated by retaining only the term involving R. The final form of the residue series
is obtained by expanding the phase terms (e.g. ﬁ) in a Taylor’s series about Ep and retaining only the
] ' first two terms since lm{tp} is small for trapped modes. Then
8,
' "8 6z, ) i[ -o3stg vl _-Im{g Mr(z,,2)-r(2,,2_)-r]
o 2(r,2,2.)" 2n pzN _(R:TL N7HTET e p 1 1°%
j A P

where r(z1,2), r(z],z) are the horizontal ranges obtained from ray theory from zj to z and zg,
respectively.
For the multipath approach, the denominator of equation (90), for example, is expanded so that

%

v q z_,2 N

#(r,z,2) 1 [ 6(z,2g38) (R} RN_]) o [47-07s+200, + £r] d
q=0 &,

The interval of integration is divided into a number of unequal sections based on the number of rays
traced. This number is an input parameter. For some of these subsections the value of & is sufficiently
far from a stationary phase point so that their contribution is excluded.

Although stationary phase technigues are not used, the stationary phase point is available from ray
calculations. (See discussion at the end of Connection Between Modes and Rays.) The justification
for neglecting such subsections is based on the spiral-like nature of the cumulative result for the field
discussed in the beginning of Connection Between Modes and Rays. When the subsection does not
meet these criteria, the phase term is approximated by a quadratic expression in §. The amplitude of
the kernel is assumed to be slowly varying over the subinterval, evaluated at an interior point and
removed outside of the integral. By a suitable transformation, the resulting integral can be expressed
in terms of Fresnel integrals. Leibiger4”-48 evaluates the multipath integrals by quadrature. Weinberg**
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utilizes a combination of quadrature and stationary phase. An indication of the relative accuracy of
the two methods, for a single example, can be obtained by examining the accuracy assessment results
provided in Quantitative Model Assessment.

CONNECTION BETWEEN MODES AND RAYS

Pedersen and Gordon*® have compared normal mode theory with ray theory and obtained many
useful results regarding diffraction corrections to classical ray theory. Bartberger® has investigated
the behavior of the mode (residue) summation at a fixed range in order to gain a better insight into
normal mode theory. Leibigert’4® has conducted a similar study as part of the development of
Raymode X. He utilized the resuits to considerably reduce the required execution time (see table 3) of
that program.

Before examining the underlying mathematics (the notation will be that pertaining to Raymode X
(see text under the paragraph heading Multipath Expansion Models)) it is instructive to consider the
example of a cumulative mode sum Bartberger’? shown in figure 7. A straight line is drawn from the
origin in the complex plane to the point representing the first mode. From there, another straight line
is drawn to the point representing the sum of the first two modes and so on. The vector distance from
the origin to the final point represents the resultant acoustic pressure at the fixed horizontal range
(12.6 kyd in this case) examined. At this range, which ray theory states is dominated by bottom
bounce paths, a broad peak caused by multipath interference results in the plot of propagation loss
versus range. The composite plot, figure 8, is a useful tool for interpreting the behavior of the spiral-
like curve of figure 7. A smoothed version of the propagation loss is shown in the upper right hand
corner. Observe the dashed line, intersecting the peak at 12.6 kyd, to the lower right hand portion of
the figure. The curve shown there is a plot of Re{é,-£n_1} r = 2n where the difference between the
real parts of the eigenvalues is labeled Ak in figure 8. Next observe the dashed line to the lower left
hand portion where the locus of Ak’s for successive modes is plotted versus mode number. Finally the
dashed line intersects the plot (upper left hand corner of figure 8) of relative mode amplitude (depth
functions only) versus mode number at a peak value occurring between mode numbers 355 and 360.

Figure 7. Vector Mode Plot at 12.6 kyd
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Returning to figure 7, it can be seen that the low order modes, which have a large amplitude, wrap
around themselves to form large polygons and then return to the origin. These modes would be im-
portant at the convergence zone range, about 65.6 kyd. However, they contribute essentially nothing
to the resultant intensity at the bottom bounce range considered here. As the mode number increases
(160-300, which surrounds the second peak of the upper left hand portion of figure 8), the phase
difference between successive modes gradually passes through 180 degrees, leading to the spiky ap-
pearance of the plot in figure 7. This group of modes also contributes little to the final mode sum. As
the mode number approaches the third peak (upper left portion of figure 8), the phase difference
passes through 360 degrees in the vicinity of mode 355 and the flat portion of the spiral is formed.
Later, at about mode 480, the phase difference between successive modes approaches 720 degrees and
the curve has another smaller flat portion. Finally, a third flat portion is barely visible at the end of
the plot which corresponds to a phase difference of 1080 degrees.

Thus the dominant contribution to the mode sum at this range is made by a relatively small group
of modes (350-360) whose phase difference is approximately 2n. These modes are associated with rays
which reach the receiver after interacting once with the bottom. Their contribution to the propagation
loss curve would be similar to the smooth result shown in figure 8. Additional smaller contributions
come from the second flat portion of the spiral associated with a group of higher order modes, whose
successive phase difference is approximately 4n. These modes are associated with rays reaching the
receiver after interacting twice with the bottom. Their contribution to the propagation loss result
would produce a higher frequency oscillation on top of the previously mentioned smooth curve. A
still smaller contribution is made by the group of modes (successive phase difference of approximately
6m) associated with rays which have interacted three times with the bottom.

The explanation for the dominance of a small group of modes within the total mode sum can be
obtained with the aid of the Poisson summation formula (see references $1-57),

N N
B ® B -
Ip = z £ Ip e 121lpqdp ,
P'NA q=0 A

where on the right hand side Iy is taken to be a continuous function of p. If this formula is applied to
Leibiger’s residue series, equation (92), one of the four terms in the field expression is given by

No  6(z,2.3%)

@® z .2 =
#(r,z,2.)" 1 2x ‘ ell0)-0ys * Er-2mpq] 4 (g3
(3 aw/ag
q=0 A E

Although the stationary phase technique will not be used to evaluate this expression, it is in-
formative to examine the points of stationary phase given by

342 - o 4 Er] =
% [01 0]s+€r] 2nq .




TR 5867
- :
This implies that for a fixed range only the successive modes whose phase changes are integer
3 multiples of 2n will make a significant contribution to the total field. The phase difference of the '
F - . remaining modes leads to cancellation and gives nonflat regions of spirals similar to those discussed :
previously. 1
. The equation for locating points of stationary phase can also be written as
T 2
'% ("'"13)4' r= 2nq 2‘? ¢
13 13 ;
However, from the mode equation it is understood that
- 3 3_.N 3 AN o)
S 5 = b2 0)) + 1= Tn(RRy_¢)]
b o P JE 3t
‘ 3E .
{ and to a good approximation ;E' 2n/ Rc ,» where R is the cycle range for the pth mode, i.e. the
' ' horizontal range needed for the angle associated with the eigenvalue to return to its initial value when
s -, plotted as a function of depth and range. Specifically
i
. R, = -2 Reu'l'} .
i 3L
\ ; From classical ray theory the horizontal range between two points, say z; and z, on a ray path is {
given by
r(zye2) = - 2= Re(e]).
t 5 E
Thus the stationary phase equation may also be written as
; | i
,} % rs r(zl.z) r(z],zs) + ch(z].zN) ,
; which is also the equation satisfied by an eigenray from classical ray theory.
E Although the number of modes in the residue summation is identical for all ranges, at a given range
g , f only a finite subset satisfying the equation
f i 1
f - - + +
L . % 2nq [-r(2;,2) + r(z)52.) + r]
o
Sy . will constitute the major portion of the field. Furthermore, this subset of modes can be associated

with the eigenrays from classical ray theory. At that range they connect the source and receiver.
Viewed in another way, since [-r(z},z) + r(z1,zg)] is generally small, the acoustic pressure for a stated
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- * range, as given by mode theory, is produced almost entirely by those modes whose skip distance, R,
‘ times an integer multiple corresponds to that range.

Although equation (93) can be approximately evaluated by stationary phase, in demonstrating the

“ connection between modes and the multipath expansion it is more informative to transform that
; result to .
k ® EB z z N ]
o(raz) = 5 [ 6z, 20 RIER (819 'l - 4t 20 B g
qso -
%A
where use has been made of

3_r.p) Ny = 242D N_ R - -
- [ R1R=_1exp(21¢])] 2,.iaE and 2q¢) 1q1n(R]R:_l) 2pgr.

This integral over  is one of the four terms previously derived for the multipath expansion.

If this integral is evaluated by stationary phase, the following is obtained:

v '. t, ™ ]/2 - q R
3 9(1‘.2.25)' qZO [x/v"(g*)] G(e*) [R}(E') R:_] (e*)] eW(E ) .
| v - * - * -
. . 6b eivz,,z av b Ve) = (v(e )/n)]/z(e-e ) »
a

where the phase w(§) = ﬁ - ﬁs + 2q #P + &r has been expanded in a Taylor’s series about the
stationary phase point £* with only terms up to the second order retained. This result represents a
diffraction correction to classical ray theory since, in the limit of increasing frequency, it yields
classical ray theory except for a factor of c(zg)/c(z). For the details, one should consult the
illuminating paper by Haskell.58 Haskell has also obtained corrections at caustics (' '(¢*) = 0) by
retaining higher order terms in the Taylor expansion for y(£). Similar corrections, sometimes called
nonuniform, have also been derived by Brekhovskikh.3? Thus it is possible to show (1) the connection
between the multipath expansion and classical ray theory as well as (2) the nonuniform caustic
corrections used to modify classical ray theory models such as the FACT (Fast Asymptotic Coherent
Transmission) Model. 46

) QUANTITATIVE MODEL ASSESSMENT

The discussion to this point has been tacitly concerned with the accuracy of those models of
propagation loss in underwater acoustics which have been converted into an automated computer
code capable of being executed by someone other than the originator for a wide variety of problems.
An indication of accuracy can be obtained in general terms by understanding the approximations
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involved in going from the exact integral solution to the equations calculated in the computer code.
However, a user must be able to translate this general understanding intp a decision regarding
suitability for a particular application. One recourse is to ask the opinion of experts. However, their
subjective opinion is often found to be in conflict with that of other experts. This results in a fair
amount of confusion.

Additionally, as can be seen from examining figure 9, although accuracy is a concern, it is not the
only factor involved in the selection of a model. The amount of required execution time is of obvious
concern because of the cost involved. Similarly, if the model is accurate but requires more core
storage than is available, it is of limited viability. If the model is not operational at a facility, time
delays will be encountered with its implementation. Some models can only be properly run by the
originator because of subjective choices for input parameters controlling the accuracy of ap-
proximations. If the originator is not available, the user may choose another, less accurate model.
Very often it may be possible to decrease the execution time of a model for an application at hand
without seriously affecting accuracy. This would be difficult without extensive documentation.
Finally, the model may provide only propagation loss between omnidirectional sources and receivers
when a beamformer output may be required.

A. ASSESSMENT OF ACCURACY
. RUNNING TIME
. AMOUNT OF COMPUTER MEMORY REQUIRED

. EASE OF IMPLEMENTATION
. COMPLEXITY OF PROGRAM EXECUTION
. EASE OF EFFECTING SLIGHT ALTERATIONS TO THE PROGRAM

m O 0N

-

G. AVAILABLE ANCILLARY INFORMATION

Figure 9. Factors Influencing Model Selection

Given a multitude of candidates, the analyst must arrive at a decision based upon tradeoffs between
accuracy and the above mentioned factors in the context of the application at hand. The problem of
merging the user’s requirements with the proper model has recently received considerable attention.
The effort of the Panel On Sonar System Models (POSSM)®0:6! is fairly typical of the activity in this
area and will be summarized. That group decided that quantitative information should be provided
about candidate models for the factors contained in figure 9. With such information available, the
analyst could then arrive at objective decisions regarding the required tradeoffs within the context of
his application.

The assessment of accuracy is the most difficult portion of the matrix to complete. One reason for
this is the desire that the methodology used be more objective than the older subjective technique of
overplotting predictions and arriving at a value judgement. The methodology adopted is summarized
in figure 10.

The process begins by selecting a standard against which a model is to be evaluated for accuracy.
The standard may be either an experimental data set or the output of a model. Since accuracy is
assessed in terms of the mean level (which, of course, varies with the independent variable, be it range,
azimuth, time, etc.), fluctuations about this mean must be eliminated before meaningful comparison
can be made.

n
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Figure 10. Summary of Model Assessment Methodology
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In the discussion and examples to follow, the data considered will be transmission loss versus range.
The applicability of the comparison method, however, is not restricted to such data. Typically, data
which are broadband or derived using incoherent phase addition show little or no fluctuations and are
suitable for comparison without modification. Conversely, narrowband data and/or CW coherent or
semicoherent model outputs typically show significant rapid fluctuations about the mean. In such
cases, the range dependent mean is obtained by smoothing the data by applying a moving average.
The width of the moving window is determined from considerations of sonar system integration times
and own-ship’s and target’s speed of advance. Given the range dependent means of standard and
model, the difference between the two curves is obtained and divided into range intervals. These
intervals correspond to ray path regimes such as direct path, first and second bottom bounce regions,
and first, second, and third CZ’s. The next step is calculation of the mean and standard deviation of
the differences within each interval. Finally, these means and standard deviations are appropriately
| weighted and averaged, resulting in Cumulative Accuracy Measures. In the example to follow, only a
, single scenario is examined, a fairly simple one environmentally. Therefore, the accuracy results
‘ " o should not be considered to be indicative of a model’s expected performance in other environments.

L e vt e b

The scenario used by the various models is described in figure 11. The water depth is 2743.2 m, the
source at 24.384 m, receiver at 106.68 m, and sound speed profile approximately bilinear. The bottom

reflection loss, extracted in part from measured data, had a critical angle of 22°. At normal incidence 1

) the bottom loss is 6 dB. Four cases were examined, corresponding to the four frequencies shown. The

. -, ‘ standard chosen was the results of the Fast Field Program (FFP). All models compared against the
standard used a single sound speed profile and a flat bottom and were provided with identical input ;
information. !

The models used in this example were supplied by various Navy laboratories* as shown in figure 12.

Note that two versions of the FACT model were used. The version at Fleet Numerical Weather i
\ C Central (FNWC) is, of course, an operational model and, therefore, cannot be altered to generate
: results with the requested data density. Perhaps more important, as will be seen shortly, the running 1
time of the FNWC version is of an order of magnitude greater than what might be termed a bare i
bones version of FACT generally available at Navy laboratories. The bare bones version is free of the {

input/output requirements necessitated by a variety of Fleet support needs. Similarly, it should be
pointed out that the version of Raymode X used in this study is not the Fleet operational version. In
! that version certain parameters which would be assigned fixed values for such usage were varied in
4 this example. These parameters basically determine the tradeoff between accuracy and running time.
‘ If the choice of phase addition is considered, a total of 21 models were put through the accuracy
assessment procedure.

' In figure 13 the results of the standard (FFP) before and after smoothing for 67.5 Hz are shown.
The window used for the running average was 2 km, which is nearly equivalent to a 5§ minute average
on a 12 knot target. A similar plot is shown in figure 14 for the Raymode X model.

The difference between the smoothed versions of FFP and Raymode X is shown in figure 15. Sets
of curves such as these were generated for each model and type of phase addition. Although no CZ
was obvious in the FFP and Raymode X results, the range intervals chosen for dividing the difference

*Information regarding documentation of these models is given in references 18, 26, 45-48, and 62-
68.
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curves were direct path region, first bottom bounce region, CZ, second bottom bounce regions, and
50 km intervals thereafter. It is the large critical angle of the actual bottom loss that accounts for the

Silling in of the inter-CZ regions.

NAVYWIDE PROPAGATION LOSS
MODEL COMPARISONS

¢ MEDITERRANEAN SCENARIO

¢ FREQUENCIES
35, 67.5, 100, 200 Hz

e STANDARDS
HAYS-MURPHY DATA
FAST FIELD PROGRAM

¢ MODELS
SINGLE PROFILE
FLAT BOTTOM
INPUTS PROVIDED

Figure 11. Scenario for Accuracy Assessment

CONTRIBUTORS
PHASE
LABORATORY MODEL ADDITION
FNWC FACT S
NADC AP2 c
PLRAY S|
NOSC GORDONN. M. c
LORA CSt
RAYWAVE Il i
NRL RTRACE Ci
NSWC NSWC N. M. [+
NUSC CONGRATS V (o8
FACT CsSi
FFP c
FFP (1/3-0CT) c
RAYMODE X CJ

C = COHERENT
= INCOHERENT
S = SEMICOHERENT

Figure 12. Listing of Models Assessed
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Table 1 shows mean and standard deviations of the difference curve for each model in each range
interval. Numbers in parentheses represent the results of a second model submission. These resulted
from followup contact with each modeler. Each modeler was given the results of the assessment of his
model. He was also shown how his model compared with other models. Running time, core storage, &
model description, references to his model, etc., were also provided. The modeler was then given the
option of rerunning his model, possibly trading-off accuracy for running time. Four modelers availed
themselves of the resubmission option. '

Recall that the Cvmulative Accuracy Measure for the mean and standard deviations is obtained by
taking weighted averages of these quantities over all cases and range intervals. Since this example is
for illustrative purposes, unit weights were assigned. The cumulative accuracy measures reduce to the
grand mean and standard deviations shown in table 2. Each model’s accuracy is now condensed to
two numbers, both in decibels, giving the mean level of accuracy and the spread in accuracy over all
cases and ranges. Note that all models were able to achieve values for grand means between 0.9 to 2.2
23 (upon consideration of only second submissions) and 2.1 to S dB for the standard deviation. This
happy state of affairs would not be expected to persist for more challenging environmental scenarios.

Two facts regarding this accuracy assessment are worthy of note. First, the methodology results in
a hierarchy ranging from the basic data to a single number. Thus a model’s accuracy can be examined
at many levels of detail. Further, this allows the results to be used for diagnostic purposes. The second
point is the statement of a limitation: accuracy results should not be extended to other environmental
scenarios, particularly those which are more complex.

In most cases, a second submission improved accuracy by 1 dB or less. In the case of Weinberg's*®
multipath expansion model, the larger improvement is due to two factors: (1) alteration of logic in-
volving bottom bounce paths and (2) an error discovered in the sound speed profile input.

The cost of the modest accuracy improvements in terms of running time is provided in table 3. Note
that the execution times are not directly comparable owing to the use of different computers.
Examination of the first and second submissions reveals an approximate doubling of running time for
Raymode X and Weinberg's multipath model. LORA’s second submission was the addition of Cases I
and 11, but the basic program parameters were left unchanged.

Table 4 presents the core requirements for the models. Only one model, Raymode X, has less than
16K words. Four models require less than 32K the remaining six models less than 64K words.

WAVEFORM PREDICTION MODELS

The major emphasis in modeling underwater acoustics has been with the prediction of propagation
loss for an infinite CW point source. When information about the arrival structure or frequency
dispersive characteristics of the waveform was desired, it was either obtained in a gross fashion from
classical ray theory programs (reference 69) or, for low frequencies, by the use of stationary phase
techniques in conjunction with normal mode theory™ following the approach used by Pekeris.22

Recently the alternative approach of direct numerical evaluation of the double integral expression
for the pressure field via the FFT has been successfully implemented by DiNapoli.” In this approach,
the real part, ?R. of the pressure field is given by the Fourier synthesis,
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Table 2. Averages of Means and Standard Devistions Over All Cases and u
Range Intervals (Standard of Comparison: FFP Model Results)
|
S— .‘
73 T
AP2
NORMAL MODE 11 24
CONGRATS V 24 35
COHERENT (1.3) (2.2)
CONGRATS V 18 25
INCOHERENT 0.9) 2.1)
FACT/FNWC
SEMICOHERENT 12 26
FACT/NUSC )
COHERENT 1.0 25 7
FACT/NUSC 3
INCOHERENT 12 24
FFP
cwW . -
FFP
1/3-OCTAVE
GORDON @
NORMAL MODE 0.6 23 .
LORA © 2.0 5.0 ,
| COMERENT (1.6) (4.5)
LORA © 14 32 :
SEMICOHERENT (1.2) (2.9) ' ]
LORA b 15 3.0
INCOMERENT (1.0) (2.8) '
NSWC
NORMAL MODE 10 28¢
PLRAY 1.0¢ 2.6¢
SEMICOHERENT (1.3) (2.5)
PLRAY
INCOHERENT ax a3
RAYMODE X 31 | 27
COHERENT (2.2) 25)
RAYMOODE X 15 24
INCOHERENT (0.9) 2.3)
RAYWAVE Il
INCOHERENT 20 25
RTRACE
COHERENT 09 35
ATRACE ¢ :
INCOHERENT 19 25
a2 CASES |-l b CASESIN-IV ¢ CASESII-IV d CASE Il
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Table 4. Words of Computer Storage Required
i | COMPUTER STORAGE ]
1 MODEL (DECIMAL WORDS) =
RAYMODE X 14115 ‘
NSWC
NORMAL MODE 18940
AP2 20000
PLRAY 20480
FACT (NUSC) 21855
R LORA 35000
! RAYWAVE I 37000
2 FFP 51572
3 CONGRATS V 51760
3 GORDON 53000
s . NORMAL MODE
*RTRACE. 58100
FACT (FNWC) 60000 )
v Pp (ruz.t) = [ 2(riz,f) alf) 1o gr "
where

Q(f) is the Fourier transform of the input source waveform and (r,z,f) is the transfer function of the
medium which can be expressed in terms of the Fourier-Bessel transform previously examined for CW
propagation. The impulse response of the medium is then given by

h(r,z,t) = [ 2(r,z,f) e ionft df.

Let the continuous variables t and f be evaluated at the discrete points ty and fp, where with At Af =
1/M, tgx = to+kaAt, fp = fo+ pAf; (k,p) + 0, 1, 2...M-1. The constant t, is usually set equal to the
approximate arrival time of the beginning of the waveform and f, would correspond to the lowest
frequency present after filtering. Since Af is predetermined from sampling theory, information about
the waveform will be obtained from tg, to approximately ty + (Af)"1 . Generally, the time duration of

The pressure field waveform is obtained upon evaluation of

. L . the received waveform will increase with increasing range. Thus Af is chosen small enough so that the .
- time duration of the received waveform is adequate at the largest range of interest. As might be an-

S ticipated, the required computer storage and execution time increases as the frequency resolution, Af,
' ~ ’ decreases, resulting in a significant data management problem. -
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. -121rf°tk 2M-1 ) ~{2xpk/2M
pR(r.z.tk)s afe mzo Ep(r.z.fp)e ,

where, in order to obtain a real answer, the input is arranged according to

- ~12rpaft
Ep(r.z.fp) n(fp)?(r.z.fp) e o

* p= 13203"‘"'1
Emp(r.Z.fp) = EM—p

where the * indicates the complex conjugate and, additionally,

-121rHAfto _
E, = Re{n(fo)g(r.z,fo)} Ey = Re{n(fM)e(r.z.fM)e ) :

If the FFP, equation (38), is used to obtain the transfer function, the evaluation of the double FFT

. ( oA -1/2 2M-1 . -121rpAfto L=l c {2nmmn/L -{2xpk/M
r ,z,t )=Ar e e ’
where
172 i(gr -2¢f t ) imr_AE
- e on ok = . 1/2 0
A= afag 3 e » Enp G(Z.zs-em.fp)cm e

provides the received pressure waveform as a function of range and time.

As an illustration of the above procedure, consider the typical arctic profile shown in figure 16. The
rough under ice cover effectively filters out high frequencies at significant ranges from the source.
Limit the frequency range to 0 € f € 250 Hz. With Af = 0.12207 sec-1, At = 0.002 sec, and M =
2048, the time duration of the predicted waveform will be 8.192 seconds. This is adequate for ranges
less than a few hundred kilometers. The value of t, is set equal to ty = ry,/(1475); this is roughly the
average arrival time of the deep RSR paths which come in first. The bottom was assumed to be a
semiinfinite half space fluid layer with a constant sound speed of 1600 m/s. Its density and that of the
water column were set to unity. The treatment of the bottom is, of course, unrealistic and justifiable
only in that the example is solely for illustrative purposes.

The FFP must then be run at each of the above discrete frequencies in order to obtain the input Ep.
The parameters used for this calculation were
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AE = 9.964727793x10°° ¢

Ar = 76.9705 m o
% zg = 100 m 2

o .02372488 L = 8192,

ar
100 m

: P @
»
ounmmi.
. . -
]
i i it

3 which provide sampling of all significant wavenumbers.
SOUND SPEED (m/s)

1433
350 - 1458 2g=2,=100 M
' E_ | water
aE
W~
' [«
' .
» » . 15m .
’ 3200
b . 1600 :
BOTTOM
r

‘ Figure 16. Typical Arctic Profile

The impulse response at rpa 100 km is shown in figure 17. The three groups of spikes near the end
of the figure from right to left correspond to bottom bounce energy associated with increasing angles
of incidence. Three spikes, which correspond to the four rays interacting with the bottom, are evident
within each group. The middle spike represents two rays whose travel time difference is so small that
they cannot be resolved with the frequency resolution used. Excellent agreement with ray theory
travel times is found to exist between each group and also within each group.

With the exception of the beginning, the remainder of the figure represents RSR rays which are
trapped within the water column. The pattern of low amplitude arrival followed by arrivals of suc-
cessively higher amplitude and then abrupt termination is typical of that commonly observed in the
deep sound fixing and ranging (SOFAR) channel. In the case of the Arctic this has its axis at the ocean
surface. Finally, the spikes at the beginning correspond to a combination of the deepest penetrating
RSR arrivals and bottom bounce rays incident on the bottom between critical and grazing.

1 Kutschale’>7? has also examined this same problem with the FFP technique. In one case study, he
L . compared the predicted frequency dispersion in that portion of the waveform, which would
' correspond to the first mode, with the analogous experimental results. That comparison is reproduced
in figure 18 where it can be readily seen that excellent agreement was found. This agreement would
v not be expected to persist at higher frequencies where nondeterministic effects would be more
Zanhn significant.
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2. RANGE DEPENDENT MODELS

INTRODUCTION

evolution. In some instances, the validity of the solution is understood but its numerical im-
; plementation for underwater acoustic scenarios poses severe practical problems with existing com- 1
: puter technology. Alternate solutions are available which, to some extent, obviate the implementation
problems. It is difficult, however, to precisely translate the required mathematical approximations
into conditions of applicability of the solution. A limited amount of comparisons with experimental
data has occurred. Often, however, this is not a totally satisfying process due to the incompleteness of
the associated environmental data. For these reasons, a definitive appraisal of these models is best left
for the future, It is felt that a brief survey of active areas of research would be more appropriate. This ;
survey is provided below.

i .
Lr : Computer models for the range dependent problem exist but are still in the developmental stage of
‘ 1
{
]

SPLIT STEP ALGORITHM FOR PARABOLIC EQUATION

The conditions under which the solution to the range dependent Helmholtz equation is well ap-
proximated by the parabolic approximation are discussed in reference 74 and in Chapter 2 of
reference 75. Here attention is focused on the inherent approximations made in solving the parabolic

e equation by the split-step algorithm introduced by Hardin and Tappert?¢in 1973.

The parabolic equation may be written as

(r,2) . 5 (a(r,z2) + B(2)) U(r.2) (94)

\ i ar

e e o

where the operators A and B are given by |

% Alr,2) = (k /2 (n%(r,2)-1) 5 B(2) = (V2 )(%7a2®) . (99)

To obtain the split-step solutionatr = rqy + Ar assume that

rotar rotar
U(r,z) = exp{i rf A(r,z)dr + § [ B(2)dr U(r,e2), (96)
) Yo

. . ———— — ey &7

1
N P .
S which is only partially true since the quantity [A(r,z) + B(z)] does not commute with its integral. Next
! assume that the index of refraction is a slowly varying function of range so that

4 U(ro+Ar.z) « exp[iarA + 1ArB]U(r°.z) . (97)

87
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i The exponential operator can be approximated (split) in various ways. Originally Tappert’s
- assumed

u(ro+Ar,z) = [exp(iarA) exp(iarB)] U(ro,z) (98)
and later (see reference 77)

U(r,* or,z) = [exp(1arB/2) exp(iarA} exp(iarB/2)] U(roz) . (99)

If the splitting given by equation (98) is assumed, it can be shown that the error incurred by
assnming commutativity of the operators A and B is

¢ 2 2
. - - gm aU an . ny _U_
[exp(iarA)exp(iarB) - exp iar(A+B)] U(r' z) =+ Nzt -a:B- 53] [+
In order to obtain the split-step algorithm, let V = [exp(iarB)JU(rq,2). Since V= # ‘l[y(V)] one
\ has that
[exp(18rB)JU(r s2) =9 texp(-1ars?/2k )Ulr )}
where
o < -{zs
#LU(rys2)] = Ulr,s) = | U(r .2) e dz . (100)
, Then from equation (98), the split-step solution is
i
. . 1k Ar(n -1
; U(rgtar,z) =e © )/2.
A T )
T The Fourier integral transform indicated by # is numerically evaluated with the FFT at each range
step, i.e.,
™ .
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The solution can thus be marched out in range in a stable manner. In the evaluation of equation (100),
attenuation is added to the medium below the depth of interest to ensure that the field decays to zero

Co for large depths.

Consider the following three assumptions:

f _ 1. [A+B, [ (A*B)dr] = 0

(needed for equation (96) to be valid)

r_+AT
0 2 2

2. (1k/2) [ [n%(r,2)-11dr = (K /2)[n%(r,2)-1]ar
r

[\ (101)

: (needed for equation (97) to be valid)
{ 3. exp[iar(A+B)] = exp(iarA) exp(iarB) -

A feeling for their composite effects can be obtained by determining 8 U/ dr from equation (98) and
then comparing the result with equation (94). From equation (98) one obtains

%’ . ra2) . [iar,2) + far 2 ir,2) + [elArAIra) gy 1ar8lzly, gy
! .
’» - The second term may be simplified upon rewriting equation (98) to obtain
e Mripe’Bry(r i) = (¢MTiBe ™) U (r).  (109)
89
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‘ - The term in parentheses can be written by the Baker-Hausdoroff expansion™ with the eolmnuutor
: {A,B] = AB - BAas

‘ exp(1arA)(iB) exp(-1arA) = 18-ar [A,B] -1(Ar)2l2![A.[A.B]] + ... . ‘]
Then equation (102) may be written as

raz) . gpa(r,2) + B(2)] U(r.2) + iarkn (an/ar) U(r,2) 1

ar
+ (-ar[AB1-1((ar)¥/2!) [A,[A.B]] + ... J(r,2) , ]

-: ' and the error (difference in differential equations) incurred by using the split-step solution,

1 : 2 2, ikU 2
% _ anay, nan, U ion —0 an
9. : 1kgarn ~U+oar [n TETRE —Qaz *3 (31) I- 5 (nAr az) + ...,(104)

is seen to depend on the step size, Ar, the frequency, and the gradient of the index of refraction. Thus .
whenever significant energy from the field interacts with the bottom where (9n/82) is large, the Ar
needed to make the error acceptable may lead to prohibitive computer execution times.

The result, equation (104), was also obtained by Jensen and Krol™ who assume n ~ 1 and ignore
higher order terms in the Baker-Hausdoroff expansion. Their work also contains additional analysis
regarding applicability of the split-step algorithm and comparison of execution times between the
split-step solution and other models for several cases.

PARABOLIC DECOMPOSITION METHOD

Papadakis and Wood® seek an exact solution, 2 (z,zg;r), to the Helmholtz equation for range
dependent problems as an integral of the solutions of two parabolic equations. Specifically, with
cylindrical symmetry and a separable index of refraction given by nz(z.r) - nf(z) + nf (r), one has

L #(z,2,3r) = ;I; G;(t.r) 6y(ts2,2,) dt | (105) .

where the asterisk denotes the complex conjugate and G and G satisfy the parabolic equations: '

* ""\a.‘-.‘wow_a\-a e e . . g

” it e,
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z . .
%,
21k —5§ + —-65 + k"’[n§(z)-1] 6, = 8(t)e(z) my)

This approach reduces to the parabolic approximation usually obtained, which involves the solution
of a single parabolic equation multiplied by a function dependent upon range. To see this, let nj(r) be
zero. Then

AN )
6 (rit) = [H(t) / (4at)] e 2

where H(t) is the unit step function. A stationary phase evaluation of equation (105) with the
stationary phase point at t = r yields

o (kr+n/4)

#(z,2.37) =

s Gz(r.z.zs) .

2 Jukr

-

For arbitrary nf(r). Gy is, in general, not known and would have to be approximated. The solution
for 2 could then be obtained by stationary phase techniques. Alternatively G; and G could both be
found numerically (see the discussion in Finite Differences) and the solution for # obtained by
quadrature. In this instance, attention would not have to be limited to an index of refraction which is
slowly varying. Complex boundary value problems could be accommodated.

Finally, if the index of refraction is an arbitrary function of depth and range and nonseparable, the
representation (105) remains valid. However, Gj depends on r, z, and t. This case is also discussed in
Chapter 2, reference 7S under Corrected Parabolic Approximation. Research on evaluating equation
(105) for this case is in progress.

FINITE DIFFERENCES

The application of finite difference schemes to range dependent problems in underwater acoustics
has received limited attention. Smith®! used finite difference to solve the coupled time dependent
fundamental equations. McDaniel®2 has investigated a finite difference solution of the parabolic wave
equation and compared it with the split-step algorithm solution. The appeal of finite difference
schemes lies in their ability to solve complicated boundary value problems which would be intractable
with other approaches. Their shortcomings are primarily the excessive demands made upon computer

o e o N S LT -
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memory and execution time. It should be noted, however._thattbemutunofthuem
within the context of underwater acoustic propagation has yet to be generally defined. Work along
this line has recently been initiated by Lee and Papadakis.®® A brief summary is provided below.

- The solution of the elliptic wave equation given in terms of the parabolic decomposition integral,

3 equation (105), is to be solved numerically. If the variation in both range and depth is rapid, the
associated parabolic equations, (106 and 107), would be solved by finite differences. On the other
hand if, for example, the range variation is slow, an asymptotic solution for that parabolic equation

may be used. In any event, finite difference solutions of parabolic equations must be obtained.
Consider as an example the parabolic equation
2 108
U, = a(rsz) U+b(r,z) U, = (ash ;;2-) U=LU . (108)
1 i
' The conventional development of implicit schemes can be expressed by ?
o -kL/2 n+1 _ _kL/2,n
k¢, e Um e Um
and approximated by ‘
. . +1
. (-kL/2)gp"" = (kL/200 (109)
where m is the depth index for a step size of h and n is the range index associated with the range step
size k.
Introducing second order central difference operator,
2 2
= & (1-
0, = 4 (1-o(kuh)) |
where @ is a parameter chosen for optimum efficiency yields j
)L | | nt1 (1-p)k ,n+1 [ 1k "‘:ﬂ] 1 .
- - n+ n+ ‘
; A et [t by - [
:A"‘ ; t
T}_ . %2

h -~ T L4 fand . ~ e T N e Vvt e o e o L T . . e g
)




.l
N 1+b (1-p) k/h"(1-cos(Jh)) + kas/2
!

n-n 1- ntl | on (1-p)k
.(_..2%_0 an_z':%-u:ﬂ
k‘ N ".
+[1-b:';7<1.-o>+-z=]°:+°2“-‘;}":.1 -

The above may be written in matrix form, viz, AUR+1 = BU® + V} + VB+! where A and B are
tridiagonal matrices and Vj (J = 1,2) contain information sabout the boundary conditions. Ap- K
i propriate selections for @ will result in the familiar Crank-Nicolson and Douglas schemes.

The initial local truncation error is of order 0(k3 + kh2) for range independent problems and of |
order 0(k2 + kh2) for range dependent problems. The finite difference methods can be shown to be :
i consistent and the stability condition is 4

1-b (1-p) k/h2 1-cos(Jh)) - ka/2 .y j=1,2

Unconditional stability results if all a,b,k,h > 0. The convergence of the finite difference scheme can
be shown by examining the norm inequalities ||t.s.-n.s.||€||t.s.~f.s.|| + ||f.5.-n.s.||, where
- t.s. stands for the theoretical solution of equation (108)
n.s. stands for the numerical solution of equation (108)
f.s. stands for the finite difference solution of equation (108).
The convergence is established by applying the consistency criteria to the first norm on the right hand
side and applying the error control to the second norm.

A second approach involves the use of finite difference schemes developed to solve ordinary dif-
ferential equations. Let the U,, term in equation (108) be discretized by a second order central dif-
ference. Then

- bm
(Um)r = aUn * ;f (ullﬂ'l B 2um * um-l) ’

which leads to a system of ordinary differential equations,
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They may be written in matrix form as U’ = AU + g(r,z,U). A family of noalincar multistep

- (NLMS) methods,™ as well as linear multistep (LMS) methods® have been developed to solve such N
2 B systems. The conditions for consistency and stability for both the NLMS and LMS methods are well :
known and these methods are convergent. 'n addition to the existence of well develogiod numericel

: mfwsmhm.mammummmtmhndmhud .

m«mmmmammwymmmmmwmmamum.

To lrovkh a feeling for the execution time, consider equation (108) with b(r,z) = 1, a(r,2) =
12 - 22 and the boundary conditions

U(o,2) = 1, U{r,0) = 1, U(r,1) =e "

! for which the exact solution is U(r,z) = ¢-TZ, The answers, as obtained on a PDP 11/70 computer, for
a range of 1609 meters and a depth of 804.5 m are given below.

L ¢ - Method k(m) h(m) Time(s) Solution

Finite Difference 1.609 160.9 7 .6066E + 00 .
O.D.E.* 1.609 160.9 92 .6067E + 00 '
Exact .6065E + 00

*Ordinary differential equation.

RANGE-DEPENDENT NORMAL MODE THEORY

Kanabis® has developed a computer model for the range dependent problem which has its foun-
dations in normal mode theory. The rate of change in the stratification with range is not limited to be
slowly varying since the effect of mode conversion is approximately included. For this reason, large
changes in the sound speed profile, water depth, and bottom composition with range may, in prin-
ciple, be accommodated.

The total range interval is divided into segments in which the sound speed profile and bottom

composition are arbitrary functions of depth but do not change with range over the subinterval. The

trapped modes within any range interval are calculated as if the problem were range independent.

o These modes are then summed to give the total field at the junction of the next segment. Next it is
1 L ‘ assumed that this field may be adequately represented by a vertical distribution of appropriately .4
- weighted point sources. The trapped modes of the new range interval are calculated for each point '
; source and summed to give the total field at the end of that section. In the early development (see v
‘ reference 87) each range segment was rectangular. This resulted in a bottom height with a staircase o
i .~ behavior. The backscattering of energy from this bottom structure, as well as backscattering, which i
St would result from the difference in impedance of the water column between segments, was neglected.
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This approximation was subsequently improved wpon (sce reference 86). This madel has undergone
limited comparison with both experimental data and analytical test cases. As a result, js is difficult at
this time to reach a conclusion regarding the adequacy of the approximations made. In addition, the
determination of the number of required range segments seems best arrived at by running the model
for an increasing number of range segments until convergence in the answer is observed.

RANGE-DEPENDENT RAY THEORY MODELS

Two methods for implementing range dependent ray theory are in common use.$ The first
method® allows the sound-speed representation to be arbitrary in depth but linear, quadratic, or
cubic in range at fixed depth. The second method" is based upon segmenting the région between the
profiles into triangular sectors in which two vertices of the triangle correspond to two points on one of
the profiles. The third vertex corresponds to a point on the other profile. Along the connecting legs of
the triangle the sound speed varies as c(z,x) = ¢o + az + bx. Both methods have their drawbacks.
The first method is easy to automate but leads to ray-tracing difficulties because closed form ex-
pressions for the ray paths are not available. Additionally, this method can lead to totally
unreasonable profiles at intermediate ranges between reasonable specified profiles. The second
method is quite difficult to automate. It usually requires an oceanographer to determine the required
connections. Aside from this problem, however, the linearity of the sound speed ieads to a closed
form expression for a ray’s path within each triangular sector resulting in a relatively rapid trace.

FINITE ELEMENT APPROACH

Kalinowski% has recently examined the applicability of the finite element method (FEM) solution
to acoustic propagation problems in a range dependent environment. A synopsis of that survey has
been provided by Kalinowski and is presented below.

The FEM solution (in its current form) was initially developed (reference 92) in the structural
mechanics field of the aircraft industry. A complete historical treatment is provided by Oden.”? The
initial generalization to other fields™ has been followed by papers?.9 in nonstructural applications
such as fluid mechanics, acoustics, electromagnetic field theory, heat transfer, etc. FEM is well
documented in introductory books,-10! a5 well as in more detailed theoretical developments, 102.109
Further, reference 104 provides a collection of 7115 references on the subject.

The propagation of acoustic energy in the ocean involves interaction between the areas of acoustic
wave propagation in fluids and stress wave propagation in solids. A good deal of work related to the
finite element is found exclusively in the fluids area (cither fluids alone or interacting with submerged
structures), sce references 95-97 and 105-106, or, exclusively, in the solids area (¢ither solids alone or
interacting with buried structures). See, for example, references 107-115 and numerous articles in the
Earthquake Engineering & Structural Dynamics Journal and the Bulletin of the Seismological Society
of America. However, very little finite element orientated work®!.!'6.117 gppears to have been
published specifically in the area of acoustic wave propagation in the ocean in which the ocean bottom
is treated as a coupled part of the solution (i.c., the bottom is modeled with more detail than implied
by the usual approach of treating the fluid-bottom interaction with interaction with either a rigid or

known impedance type boundary condition).




In references 91 and 117 a displacement formulation FEM is suggested for acoustic propagation
problems. mmmmmmwummamndmmmymmmw-_
bottom with either rotationally symmetric ring elements or with planar elements, This technique
allows for a sound speed profile which can vary in both range and depth; a nonflat ocean surface or
bottom; both dilatational and shear waves in the bottom; dissipative loss in the bottom; asunply'
connected fluid domain (e.g., voids to represent a school of fish); 3-d directional sources modeled via
a Fourier expansion of the field solution in angular harmonics; and a methodology adaptable to
existing general purpose programs (e.g., Nastran"') Asample solution taken from reference 91 is
provided later in this section.

Although not specifically stated as such, in reference 116 a Galerkin type variational scheme is
employed which leads to an FEM type formulation. The fluid domain is treated as rotationally
symmetric and bounded by a flat free surface and an arbitrarily shaped (but rigid) bottom. The main
contribution of this work is an accurate procedure for handling the infinite domain (i.e., transparent
boundary) at the truncation end of the finite element mesh.

The Finite Element Method
As previously pointed out, the finite element method has been firmly established for the past 20

years. Consequently, its development is given briefly for completeness.* Consider the case in which
the response of the continuum is expressed by the solution to the partial differential equation(s),

[A(¢)]1 =0, | (110)
which applies to a domain Q where boundary conditions
(8(¢)] =0 (1)

are satisfied on the boundary I". [A] and [B] are general partial differential operators and {4} are
function(s) representing the continuous field solution.t Often, [B(¢$)) is defined as a mixed boundary
value problem (i.e., [B] = [By($)] on '} and (B] = [Bx($)] on F2 where I = 'y + ). The specific
meaning of {¢} depends on the formulation selected by the analyst (a specific example for a fluid
domain is ¢ = pressure in the fluid and ¢ = field displacements in a solid ocean bottom).

*Reference 119 gives a concise description of the FEM. It is condensed here with some notational
differences and with emphasis on the aspects of these methods relevant to the ocean-bottom in-
teraction problem.

1The standard notation for matrices and column vectors, respectively, is employed throughout the
finite element section.
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: The unknown response function(s) {¢} is approximated {3} by a series of prescribed shape func- 4
- ’ tions, [N(R], and associated unknown multiplying factors {a}, where

(X)) (o(x)} = [N(X)] {a). (112)

The column vector {a} has I components, [a}, 83,... aj)T. The specific structure of equation (112)

is displayed more clearly with a specific example. Let {¢} denote two dependent functions of a par- 3

H ticular problem (like displaced components in a solid). The more detailed form of equation (112) then
s ! becomes

,Zm] ME 0 KB 0 L R o | e,

0 | N,(i) 0 Nz(i) ee. 0 NJ(E) L

wherel = 2J.

The problem unknowns in the FEM are represented by discrete {a} values rather than the con-
tinuous {$(®} function. The {a} values are determined as solutions to a set of approximating
equations which have integral forms like

] R ! -o ‘
Fyla,) g 6,(4)dp + { 9,(e)dr , (113)
j = 1.2....1

where the generation of Fj(a;) is obtained by alternate formulations to be defined shortly. The domain
Q and boundary I" are subdivided into K finite element zones (see figure 19), where Qf, '§ denote the
domain and boundary of a typical kth finite element. The integrals appearing in equation (113) are
then composed of the sum of the K element contributions
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. K .
g ej(o)dn = k);‘ / GJ(O)dn

@
- K -
Isj(o)dr = 'z' [ 95(e)ar .
r - k=1 e
Ty
where the Z operators refer to the standard assembly rules of structural forms (see references 97 and

100).
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Figure 19. Definition of Interior Domain and Boundary

; Although not absolutely necessary, the usual condition imposed is that the trial shape functions,
§ N;i(®, be narrowly based (i.e., for an arbitrary i, N;(® are given zero values everywhere, except in

elements containing the unknown, a;). The narrow based trial functions leads to a set of banded
(often symmetric) set of simultaneous equations for the unknown {a}.

Thus, substituting shape function expansions given by equation (112) into equation (113) (and
performing the explicit spatial integrations, numerically if necessary) yields a set of simultaneous
equations for the unknowns {a}. The above triction only affects the bandedness of the resulting set of
simultaneous equations. It is not a strict requirement of the FEM technique.!?0 The differences
between various finite element approaches arise from the choice of the shape functions, N;(®, selected
and also by the manner in which the approximating equations, equation (113), are derived. Specific
integral formulations of equation (113) are constructed from (1) weak formulations of the Galerkin
type or least square or collocation types or (2) through the introduction of perhaps the most popular
(although not always applicable) variational principles. In the least square and variational principle
' formulatiz;ns, the development of the Fj(aj) in equation (113) involves the minimization of the func-
L tional, I(9),

i puag) = 200 . g (114)
I gy 3=1,2,...1
" -~ 3 over the problem variables {a}, where l(‘) is of the form

.
- ——
1 -- R - ~ . -~ B
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16)-!Mb«+£nﬁur. (115)
fl

The evaluation of the Fj(a;) expression (113) usually leads to a linear set of algebraic equations of
the form*

| [K] {a} = {f,} . (116)

For cither the variational principle or the least square formulation, it follows from equation (114)
that the Gj(#, ;($) are related to H(®, h(} by

| | a 3H(8) . (% o 3h(s
| o ayld) - 2;§:L FXORE-

aaj ‘

The matrix [K) (known as the generalized stiffness matrix of the system for structural applications)
is obtained from the volume integrals in equation (113). The problem loading, {f;}, is determined
. : from the surface integrals in equation (113). From a computational viewpoint, it is desirable to have
: : the resuiting [K] banded and symmetric. However, not all FEM formulations yield this feature.

s, -, The volume integration in equation (113) generates the generalized stiffness matrix, [K]. Attention
is focused on the various forms for the kernel, H(‘). that are employed for a specific probiem. Briefly
stated, the problem is that of solving the steady state acoustic response in a fluid domain governed by
the Helmholtz equation,

v2e(x) + K2(x) =0 m7)

{

; where the fluid pressure, p, is related to the velocity potential, ¢, by the relation ¢ = Liwqp, with g =
f fluid density, k = w/c, @ = circular frequency, and ¢ = a piecewise constant (within an clement Qf
; sound speed). Reference 122 employs a variational principle, where
|
!
!
!

§ = M) . 2 oo e o
6;(¢) Ty 32~ v4.vp - k2q2 (118a)

that leads to the development of equation (116). In another approach, refterence 115 employs.ﬂ
Galerkin variational form, where

sj(i) = - v;-w,j + kz;,j . (118b)

(with y(® as a shape function having the form of the shape functions N;j(¥) and leads to another

. alternate development of equation (116). Finally, reference 123 employs a least square approach,
i ‘ where ’

- ) GJ(;) = %%l = 333 (vz; + kz;)2 , (118¢)

*In certain cases such as transient solutions% or with special continuous coordinate finite element
formulations, 2! equation (116) is replaced by an ordinary differential equation in {a}.

—
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which leads to still another alternate form of equation (116).

{ - Merits/Shortcomings of FEM ’

The merits and shortcomings of numerical solutions employing FEM, which are summarized in
references 91 and 119, are given below with special emphasis on the ocean-bottom interaction
problem.

Merits of FEM. 1. Representation of both the ocean (fluid) and bottom (solid) with finite elements
is easily done. The total fluid and bottom domain are modeled with individual finite elements (each
having their own physical constants). Therefore, the representation of solid media with multimaterial
properties (¢.8., layers) or representation of the fluid with variable sound speed profile in one, two, or
three directions is achievable. The boundaries of the media can be irregular allowing sea mounds etc.,
to be modeled. A demonstration problem employing some of these features is presented below.

2. Nonlinearities (e.g., a nonlinear representation of the bottom media stress-strain law) potentially
can be included in the formulation. This, however, is accomplished at the expense of having to treat
the time variation as a transient rather than steady state problem. Thus transient ordinary differential
equations in {a} must be solved.

3. Owing to the locally based shape functions, the final equations for the discretized unknowns are 3

] banded (and usually symmetric). This offers certain computational advantages with relation to speed
‘ . of solution and computer storage capacity.

4. The unknown parameters {a} are physically identifiable (e.g., displacement and pressure .

variables for the ocean-bottom interaction problems). :

Shortcomings of FEM. 1. The number, I, of unknown parameters in {a} is large in that both the

volume domain, Q, and surface domain, I', are discretized. This is a particularly strong disadvantage
v for the ocean problems, especially if a total three-dimensional representation is considered. Prac-

tically speaking, 2-d planar or rotationally symmetric domains are considered to keep the number of
degrees-of-freedom manageable. Theoretically, however, the method is totally applicable to the :
general three-dimensional case.

2. Representation of the infinite domain presents the problem that only approximate truncation
boundary conditions are normally employed. The closely related boundary solution methodology
(BSM) and boundary integral methodology (BIM) offer relief from element modeling. However, this
is often at the expense of requiring the media to be homogeneous.?!.117.119

3. For steady state problems, as many as eight elements per wavelength are potentially needed to
adequately model the domain.!08.12¢ However, reference 116 appears to require less fine modeling
(e.g., two clements per wavelength) with its particular approach.

4. Singularities that arise under concentrated loads are troublesome to model, e.g., the represen-
tation of a point (or line) source radiating from some location in the ocean.

' TRANSPARENT BOUNDARY SIMULATION TECHNIQUES
’
l‘ - Aside from the obviously large number of degrees-of-freedom required to model a problem, the :
; chief disadvantage is the proper treatment of the infinite domain truncation. A typical planar or axis-
1 of-revolution finite element model for an ocean-bottom problem typically involves four separate .
o~ boundaries of an overall elongated region bounded by four surfaces (e.g., figure 20). The region is a

T} 100
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planar section for two-dimensional Cartesian coordinate problems or it is a cross secuon of a torus
for rotationally symmetric (r-z cylindrical) problems.

The ocean surface boundary is perhaps the only clear cut boundary, when a zero pressure condition
is imposed along this side. Depending upon the degree of bottom detail imposed by the modeler, the
bottom boundary condition presents several choices. It may be considered rigid: (1) modeled with a
prescribed impedance; (2) modeled with finite elements terminated by either of the two previously
mentioned options; (3) modeled with finite elements and terminated with a prescribed impedance; or
(4) modeled with finite elements that are terminated with a transparent boundary condition. The
remaining two vertical surface boundaries cut through and truncate both the fluid and bottom
domains. Each of these two boundaries has the problem of requiring the imposition of a proper
radiation (i.c., transparent) boundary condition. In situations where the problem loading is such that
a plane of symmetry exists (¢.g., the sample problem considered later figure 20), a boundary con-
dition demanding that the particle displacements be zero normal to the plane of symmetry clarifies
one of the vertical boundaries. In various forms (in both the field of acoustics and the field of
seismology), the remaining down range vertical boundary has received a good deal of attention in the
literature. Other than in references 91 and 125 there appears no single reference that considers the
most general case: that of having the vertical boundary made up of part fluid and part solid. Con-
sequently, the transparent boundary treatment for each of these two types of media is briefly and
separately considered. The reader is referred to in references 91 and 125 for a more detailed survey.

SOLID DOMAIN BOUNDARIES

Perhaps the simplest idea for handling the transparent boundary is given in reference 108. In that
case, a plane wave type boundary condition of the form

= cC v
on °nn (]]9)

% TP %Vt
is applied at the truncation of the solid finite elements, where op, 0¢ are the normal and tangental
interface stresses, @ is the solid media mass density, Cs C( are the dilatational and shear wave speeds,
and vy, v; are the corresponding normal and tangental velocities at a typical point on the solid
boundary surface. The conditions in equation (119) are exact if the incident radiating energy im-
pinging on the surface is made up of plane waves of normal incidence to the surface. As pointed out in
references 108 and 124 these conditions are still reasonably accurate, even when either of the incident
waves is substantially off normal incidence. If one employs a displacement finite element approach
(i.e., the unknown parameters {a} are displacement quantities at the finite element grid work), the
transparent boundary gives the appearance of having viscous dampers applied normal and tangental
to the solid domain boundary point (where the gcp, (or gc5) velocity coefficient multiplied by an ap-
propriate area factor represents the value of the viscous damping constant). An application of this
type of absorber is illustrated in figure 20. References 91, 108, 126 and 127 consider the accuracy of
this type of boundary condition.

101




TR 5867

PONR 1WA L] UONISINN] MOYOP-UEII) 0T 0.-"—..—

NOLLIGNOD AHVANNOSA
IVINOQ W Z€0Z X W § ‘609 AHLINWAS
AHVONNOE NIVIWOQ o 40 3NV .
«l ONISUOSEY 3AVM —— AUVONNOS O ] ||w
{i- ... 5 inl imee g aeqee - -
= Il ; NERS I Tl
% : L R S S : 11
- it i e o
\Fm o . e 3
T o i - I
h'-
a1 ]
& %08 A 35HNOS 3NN
.Iﬂlnl
d\- N W N g I - o
oo 30v4HNS 3384 -

0t =e 3908/ 020 = 55 /B 655t =d %9s/w 06281 = 92 08 1408 [ ]
B0 =l 208/Ww 0'LLS = 82 WI/B 2502 = d 908/w 0'982Z = 92 08 s [
wo/B 920't = ¢ 298/w 0'eavt = 92 y3Av1 AN worroe [

awo/B.920's = o 908/w 0'%251 = 92 wIAYI GINd doL [

e ¥ b e s

102




i = AR

Sl o o

TR 5867 !

More accurate methods of treating the transparent boundary exist but result in a more complicated
formulation. Reference 128 considers a Rayleigh wave type viscous absorber similar to that in
reference 108, except the right side of these equations are multiplied by known depth and frequency
dependent parameters. A semianalytical consistent boundary concept involving Ayperelements is
considered in references 113 and 114 for rotationally symmetric domains and in references 109 and
112 for planar domains. These techniques are not easily utilized because they involve finding
cigenvalues and associated eigen frequencies of the solid media beyond the mesh truncation.
Reference 110 considers an approach analogous to that in references 109 and 112-114, except that
Jinite element substructuring is employed. This enables one to treat a large domain of finite elements
representing irregular material and irregularly shaped variation zones of the solid domain. Reference
121 considers an approach viewed in reference 114 as a generalization of the hyperelement. A main
difference is that the solid domain is modeled with finite elements in all spatial coordinate directions
except one, which, as in the usual FEM, is represented continuously rather than discretely. The result
is that even for steady state problems, the final governing equations are differential equations (rather
than algebraic equations) in the problem unknowns {a} . Finally, reference 119 considers treating the
infinite domain by coupling FEM with either the boundary solution method or boundary integral
method.

FLUID DOMAIN BOUNDARIES

In theory, one should be able to appropriately reduce the various schemes for the solids' case
described above into the fluid application case by appropriately discarding the shear wave response
portion of the solid media response. As an example of this, consider the viscous type boundary
condition given by the first of equation (119). Reference 129 employed this type boundary condition
for pressure element formulation and references 105 and 124 considered it for a displacement fluid
element formulation. The accuracy of this type boundary absorber with relation to fluid applications
is discussed in more detail in references 124, 116, and 91.

Considered next are other transparent boundary treatments which are not limiting cases of the
solids’approaches already discussed. Reference 116 considers a generalized radiation condition of the
form 8¢/3r = T(¢) which is incorporated into a Galerkin type variational formulation. In this
formulation ¢ is the velocity potential and T(¢) is a Hankel function expansion representing outward
radiating waves with coefficients determined as part of the solution methodology (e.g., for the
equation (119) type of absorber, T($) reduces iw¢). Infinite elements are considered in references 130-
132, which constitute the last (outmost) elements of the domain. The shape functions Nj are of the
form

-s/l.ei ks

N‘1 = s.;J(s)e

where s is a spatial coordinate in the direction of the parametric coordinate extending to infinity, ; i)
is a Lagrange polynomial allowing for the usual amounts of shape change in the field of interest,
e-s/L represents the wave decay with increasing s (where L is an approximate decay length constant),
and ciks represents the usual harmonic waveform variation. Reference 133 derives a generalized
outflow boundary condition by the application of Fourier transforms in the region exterior to the
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computational domain. Finally, techniques employing the boundary integral method are often used to
handle the infinite fluid domain. However, these are primarily concerned with application of these
techniques to radiation or scattering problems related to various types of solids!0%. 134136 gubmerged in o
a constant sound speed fluid. ’

COMBINED SOLID-FLUID DOMAIN BOUNDARIES

The ocean-bottom interaction problem has not received much attention in finite element literature.
Consequently, those wishing to apply FEM to this field must employ ingenuity in utilizing (or
combining) the separate techniques (described earlier) for treating the solid domain alone and for
treating the fluid domain alone.

1 As an example of making one such combination, consider the problem of solving for the pressure

response in a variable sound speed, two-dimensional fluid region bounded by a free surface from
above and by a multimaterial soil media (terminated by rock) from below (see figure 20). The input is
a steady state line source whose axis is normal to the two-dimensional domain. For convenience in
modeling, it is assumed that the source lies on a plane of symmetry enabling one to use an appropriate
plane of symmetry boundary condition along one of the vertical faces. The remaining vertical face, at
the opposite end of the model, is the one requiring the transmitting boundary condition. This
boundary, shown at the right and in the finite element model (figure 20), contains part fluid and part

T solid media. The elementary viscous boundary condition of equation (119) is used for both the solid
and fluid (the fluid case omits the unneeded viscous shear dampers). Wave speed parameters are
assigned values according to the material they directly contact. The 430 element model is only used as
a demonstration of the approach. Consequently, the size of the mesh modeling, particularly in the
solid domain, is rather large.

The model is selected to emphasize the positive features of the finite element method. These
features include the irregularly shaped bottom, the variable material bottom, inclusion of dissipative
loss factor in the bottom, and a variable sound speed fluid domain (note fluid layers need not be flat
and parallel with the global coordinate system). The generalization of the above sample problem to
additional solid material variations and more complicated sound speed profiles is straightforward. 1

The finite element model is constructed from a displacement formulation approach for both the
solid and fluid domain. An alternate approach more often used is to represent the fluid with pressure
type finite elements, and only the solid domain with displacement type elements. The distinction
between these basic type of elements is covered in more detail later. The FEM model satisfies the
fluid-solid interface boundary condition of equal displacements normal to each point of interface
contact. The physical constants of the sample problem such as mass density, @, dilatational sound
speed, cp, shear wave sound speed, cg, and loss factor, n, are specified directly in figure 20. A 10 Hz
line source pressure loading is represented by a set of nodal forces (applied at the open cut in the
figure 20 mesh) which corresponds to a unit pressure at the initial wavefront (all other response
pressure plots are referenced to this value).

In order to emphasize the importance of including the effect of bottom compliance on the down
range pressure response, the problem was solved twice; once with a compliant soil sloping bottom (as
shown in figure 20) and again with a rigid sloping bottom. The solution time on a Univac 1108
o~ computer is approximately four minutes of computer program unit (CPU) time per incident

frequency considered.
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One method of displaying the pressure response is with contour plots. Since the solution is complex,
plots reflecting both the real and imaginary parts of the solution (or, alternately, the amplitude and
phase angle) are usually made. The amplitude phase angle contours are perhaps the most informative
for the ocean-bottom interaction class of problems. Contour lines of constant pressure amplitude
reveal the location of possible shadow zones. Lines of constant phase indicate wavefronts (lines
normal to the constant phase contours are analogous to rays indicating the direction of wave .
propagation). The plot package used to generate the figure 21 results is not sophisticated in that ;
contours approaching the boundary nodes are not as reliable as contours at or near interior nodes
(due to the interpolation scheme employed at the boundary). Consequently, the contours are ter-
minated at the nodes that are just inside the boundary nodes. Further, only pressure amplitude in the
fluid (i.e., omitting the solid domain) is plotted.

For the phase angle plots, the 0° and -360° contours mathematically represent the same plotted line.
As a result, this nonuniqueness creates some confusion to the contour plotter, particularly for closely
packed contours. The computer plotted phase angle contours in figure 21b were considered unreliable
in the shadow zone area. Consequently, the contours were sketched in by hand (dashed portion of i

contours only) based on conjecture and analogy with figure 2id.

Upon making a comparison of the corresponding rigid bottom and soil bottom plots the im-
portance of modeling the compliance of the bottom in the problem formulation is clear. A closer look
at the data reveals how some erroneous conclusions could be drawn from an improperly modeled
bottom (e.g., if the bottom were approximated as rigid as a modeling simplification). Consider, for
example, the point labeled Dy in figures 2la and 2lc. The rigid bottom pressure amplitude indicates
point D to be in a shadow zone in which the soil bottom pressure amplitude for the same point, all
other things held constant, is twice as large. Conversely, comparing points D, (same range but
roughly 44 meters deeper) in the same plots reveals the reverse situation. The rigid bottom pressure
amplitude is twice as large as the corresponding soil bottom pressure amplitude.

As a final comment regarding the suitability of the standard viscous transparent boundary in the
fluid domain, it is noted that in figure 21d normals to the wavefronts at the right end are very nearly
; perpendicular (90° is normal incidence) to the right side vertical face. This is the ideal situation for this
viscous absorber to work. On the other hand, the figure 21b plot shows the wavefront normals are as
far as 55° off normal. Reference 124 contains percent error versus angle of incidence plots indicating
t that at 55° approximately 97 percent of the energy is still absorbed by a plane wave. This plane wave
would be obliquely incident upon a set of fluid viscous absorbers as employed in the figure 20
demonstration problem. In fact, according to reference 124, 90 percent of the incident energy is
absorbed even at a shallow 30° angle of incidence. The phase angle contour plots approaching the
mesh termination boundary thus provide a secondary use in aiding the modeler to check the validity
; . conditions of the viscous absorbers. In fact, speculating further, it appears possible (although as yet
[ untried) to alter the size of the damper according to the observed angle of incidence as determined

' from a contour phase angle plot. Portions of the boundary not meeting a prescribed tolerance
' i regarding the deviation from the ideal normal incidence can have those particular absorbers adjusted
- . T by a prescribed amount (the amount depends on the angle of incidence) so that a second iteration

computer can be made to improve the fluid portion transparent boundary performance.
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FLUID-FINITE ELEMENTS

The solid finite elements are well established and are treated in sufficient detail elsewhere.%.101.137
Conversely, the fluid elements deserve additional discussion in that the interface of solid and fluid
elements require a certain degree of care. For the class of FEM problems which explicitly model the
fluid, three approaches are used: (1) the pressure formulation for the fluid domain wherein there is
one scalar (pressure) per discrete point in the FEM mesh;129.137.138 (2) the displacement formulation in
which there are M unknowns per grid point, where M corresponds to the number of independent
spatial coordinates (1, 2, or 3) needed to describe the response;105: 13-141 and (3) the mixed for-
mulation where both pressure and the displacement vector (or equivalently by velocity potential ¢ and
its divergence V-¢) are taken as the problem unknowns.!42.143 The displacement and pressure for-
mulations have certain advantages over each other which are discussed in detail in%1.144,




mmmcu.) NOT CONSIDERED BY EQUATION (36)

Expilicit results for the depth dependent Green's function are given for the case in which either the
source or receiver is in the zero or Nth haif space. These results are derived in the same manner used to
obtain equation (36). Hm.mumdtdoammwthequﬁmmmmdn
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Appendix B
AN ALTERNATIVE NUMERICAL EVALUATION SCHEME FOR BESSEL TRANSFORMS

The observation that the Fast Fourier Transform (FFT) algorithm could be used to evaluate Bessel
transforms was first made by H. W. Marsh in 1967. The utilization of this approach requires that the
Hankel function be replaced by its large argument (¢r) asymptotic expansion. Small values of r
correspond to close proximity to the source. Small values of ¢ may result from either a very low
frequency or angles which are close to 90° as measured from the horizontal.

Recently,Tsang?! et al., evidently unaware of the work of Marsh, have proposed a different scheme
for the evaluation of Bessel transforms which also utilizes the FFT algorithm. Their approach has the
advantage of being exact for all values of {r. Its major disadvantage is that it requires considerably
more execution time if results are desired for more than one value of horizontal range. Their approach
is used in this appendix to obtain results for the pressure field for small values of &r which are then
compared with Fast Field Program (FFP) answers. '

First we summarize the Tsang approach. The Bessel transform for the pressure field is

)

?(r.zs.z) = ﬁ G (z.zs;g) Jo(;r)gdg, (8-1)

O'—8

which is recast into the equivalent form,

w

arizg2) = 32 [ Glzazgede " Cyglerdede

O =8

where

6(z,zg3¢) = G(z.zs;;)e"

and v is a theoretically arbitrary constant except for the restriction that Re (v) > 0. Next the Fourier
Integral Transform pairs are introduced:
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Az,231) = } G(z.zs;e)e"z'“dt

: 5 - (8-2)
i c(z,zs;;) = } A(z‘.zs;x)eizf Xax .

Then the solution for the pressure field is

Ar,z,.2) = 7 A(z.zs;x)l(v.k.r)dx , (8-3)

where

T ~(v-12m)e - v-12x) .
J.r)= [e Joler)ede
I(v,A,r) £ o€ voizeE + v

Evaluation of equation (B-3) at the discrete points A, = n Al yields

v ?(r,z,z, ) =aa Z A(nar) I{v,naar,r)
n=-L/2

where it has been tacitly assumed that contribution from the integrals corresponding to values of |n| >
L/2 can be safely neglected. Assuming that A(nAA) will be found from an FFT evaluation of equation
(B-1), the pressure field may be written as

?(r.z.z ) = ax A(0) W %l% (8-4)

v+ ixlar)” ¢+ r

L/2-
+ a2 {A(nax)!(V.r.nAA) + A(Jl-n ar) 1*(v, r.nax)}

' where the asterisk denotes the complex conjugate.
i The above equation is valid for any r, but for each different r the equation must be recalculated.
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