AD-A081 885

GEORGIA INSY OF TECH ATLANTA SCHOOL OF INFORMATION A~=ETC F/6 17/2
INTERPROCESS COMMUNICATION IN HIGHLY DISTRIBUTED SYSTEMS = A WO--ETC(U}
DEC 79 P H ENSLOWs R L GORDON DAAG29=T79=C=0010
61T=1C5=79/11)

. .- .:“:' *“ » ;‘ - . ..!-_ . ¢ e -i.\ ; ks
R -

e

INTERPROCESS COMMUNICATION IN
HIGHLY DISTRIBUTED SYSTEMS
=== A Workshop Report ==-

20 = 22 Novembers 1978

FINAL TECHNICAL REPORT

GIT-ICS~T79/11

Philip He Enslow Jre.
Robert L. Gordons

Decembery 1979

UeSe ARMY RESEARCH OFFICE
PeOe Box 12211
Research Triangle Parks North Carolina 27709

ARO Grant Number DAAG29-79-C-=0010
ARO Project Number P-16334-EL
GIT Project Number G36-632

School of Information and Computer Science
Georgia Institute of Technology
Atlantae Georgia 30332

* (PR1IME Computere Inc.)

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

THE VIEWSy OPINIONSe AND/OR FINDINGS CONTAINED IN THIS REPORT
ARE THOSE OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITIONs POLICYs OR
DECISIONs UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

Georgia Institute

of Technology IPC WORKSHOP

et i A

rqoag 5 e
Py
iy

;
l

T T

.
Ao

ey

Unclassified Page iii
_SICUIH’V CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE BEF G COUPL T R

2. JOVY ACCESSION NO mPIENT‘S CATALOG NUMBER

LE (and Subtitle) e
Interprocess Communication in Highly Distributed [{Final _}(echnical)(epst
Systems - A workshop Report - Zﬂ to 22, November }|13 Nov 8 e

1978. N s

M AGIT-1CS~

‘o UTHOR(s) N] ANT NUMBER(s)
.fﬂﬁ:ip H. JEnslow, Jr, ﬂ

Robert LW Computer, Inc.) /5 DAAG29-79-C-p14

» I

$. PERFORMING ORGANIZATION NAME AND ADURESS 0. PROGRAM ELENENT. PROJECT. T ASK

School of Information and Computer Scf&nce,

Georgia Institute of Techredesgy

Atlanta, Ceergia- 30332
11. CONTROLLING OFFICE NAME AND ADDRESS N M

U. S. Army Research Office / { J| Decombar @79

P. 0. Box 12211 L ard ES

Research Triangle Park, .iC 27709
[T3 WONITORING AGENCY NAME & ADDRESS(I{ different from Controliin, . 18, SECURITY CLASS. (of thie report)

U.S. Army Research Office ey - /

U.S. Amy Rese (_/QL/:ZZJ Unclassified

Research Triangle Park, NC 27709 = 18s. DECLASSIFICATION/DOWNGRADING

N/A

16. DISTRIBUTION STATEMENTY (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract sntered in Block 20, 11 different from Report)

N/A

160. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, «r decision, unless sc designated by other documentation.

19. KEY WORDS (Continue on reverse side if necessary and identity by dlock number)

Interprocess Communication Computer Networks

IPC Distributed Operating Systems
Distributed Processing

%A'STRACT fContinue on reveras side It necesesry and identify by block number)
Interprocess Communication (IPC) has been recognized as a critical issue in the
design and implementation of all modern operating systems. IPC policies and
mechanisms are even more central in the design of highly distributed processing
systems aw systems exhibiting short-term dynamic changes in the availability
of physical and logical resources as well as interconnection topology. A
workshop on this subject was held at the Georgia Institute of Technology in
November 1979. Four working groups,(l) Addressing, Naming,

N/ €YV

DD . 2", 1473 coiTion oF 1 NOV 68 13 OBSOLETE . .
unclassified
CEFIIMITY FI ARRIFICATIAN NE TUIS BARE riWhvan Dara Entecad)

A0/ Yy .

Page iv
20, cont.
and Security,(é) Interprocess Synehronization,(3) Interprocess Mechanisms,
and(4) Theory and Formalism, addressed the current state of the art in these
areas as well as problems and future research directions. This report

incorporates much of the material and working papers from those fields
as well as selected references useful in understanding the topic.

A~
o

4
R AT S NN

‘f—}’ 44

ABSTRACT

Interprocess Communication (IPC) has been recognized as
a critical 4ssue 4n the design and implementation of all
modern operating systemse IPC policies and mechanisms are
even more central in the design of highly distributed
processirig systems -~ systems exhibiting short-term dynamic
changes 1n the availability of physical and Logical resour-~
ces as well as interconnection topologye A workshop on this
subject was held at the Georgia Institute of Technology 4n
November 1979 Four working groupse 1) Addressinge Naminag,
and Securitys 2) Interprocess Synchronization. 3)
Interprocess Mechanismse and 4) Theory and Formalisme ad-
dressed the current state of the art in these areas as well
as problems and future research directions. This report
incorporates much of the material and working papers from
those fields as well as selected references useful in under-
standing the topic.

AQQSSSXW For

vabitity C des

\ .m - ""‘ail e.nd]ol-
\Biat \ special

Georgia Institute of Technology IPC WORKSHOP

e R 8 oS AR b 2 i) el L £ A AT LAY < s AR

oy
%

Page vi
PREFACE . 3

The workshop organizing committee had originally intended to
‘1 utilize the material developed by the individual working
groups to prepare a summary report of the proceedingses This
v toncept was abandoned when 1t was recognized that a2 “"summary
¥ report” would not adequately report on and document all of
the work and topics that were covered during the meetinge.
1t was obvious that documentation much more thorough than
merely & summary report was warranteds so the members of the
. organizing committee decided to directly utilize as much as
- possible of the material and notes prepared by the working
groups and assemble and edit that material into an organized
A workshop reporte It was'felt that this approach would much
better capture the true flavor of the workshop and the
breadth of the material covered there.

Decembersy 1979 Philip He Enslowse Jre
Robert Le Gordon

. ACKNOWLEDGEMENTS

Certainly the most important acknowledgement for assistance
in the preparation of this report goes to the working group
leaders who prepared the summary reports for their in-
dividual groups and to those individuals who acted as recor-
ders during the working groups sessionse To a great extent
the materjal developed by those 4individuals has been
utilized exactly as ft was prepared with only minor editinge
We would also Like to acknowledge the invaluable assistance
of two Georgia Tech students who were responsible for the
mechanical organization and preparation of the report
utilizing our text editing system - Timothy Saponass who
also served as our resident translator for the hieroglyphic
notes prepared by session recordse and Shelly Smithe

Wwe would also Like to acknowledge the support of the U.Se
Army Pesearch 0ffice and the U.S. Afr Force Office of
Scientific Research 4n funding the Workshop as well as the
Office of MNMaval Research which also partially supported the
preparation of 4 his reporte.

[}
3 '. . Decembery 1979 Philip He Enslows Jre
Robert L. Gordon

]
N, Georgia Institute of Technology IPC WORKSHOP

-y

LN

&
;
E
3
:
:

Y

Page vii

JABLE QF CONIENIS

Section 1. INTRODUCTION.'.QOO.........0..0.................1
o1l OBJUECTIVES OF THE WORKSHOPeeeceoecsooscoescssvoesssnsssnsel
e2 WORKSHOP ORIGINSseeseosceccvccscccosceossscscssoscccscnconl
3 PURPOSE AND SCOPE OF THE WORKSHOPeoeveooseossevcsscscscne?
.4 STRUCTURE OF THE “oRKSHOp.............................3

.5 ATTENDEES.....I..‘........................O...........a

O6 ORGANIZATION OF THIS REPORT..............‘..........007
Sect‘on 2' BACKGROUND..........l....‘......................e

.1 INTRODUCTIoN...................“..........(......'...8
e2 PROCESS MODEL OF COMPUTATIONesecseocscescscocsssvcsnncssee’d
o3 HIGHLY OISTRIBUTED SYSTEMSseeceecscncososscccossccsnsosse?d
.“ IPC STRUCTURES...............‘.......................10
e5 INTERPROCESS CONTROL STRUCTURESeeeececscsccsscsccsncsnccsell

Section 3. ADDRESSINGe NAMINGe and SECURITYeeeeosoveocscenel?

o1 WORKING GROUP SUMMARY REPORTeeceecscecccescoccsncsncsnsel
e2 AMPLIFYING MATERIALoeccoevsccncscsecsecccssccscccscsoncsnoscasld
o3 CASE STUDIESeeceeccescsssccosscoscccsecsscscscsescsncsneeld
el Distributed Data BaseSecessecvncsccssscssssssnssnnsell
02 MininetecsesscorccssnccrscsnsvnsscossscnsossccossovonesllB
e3 DISCUSSTONesvesessscsrnsessevscsscsvessosncscsscscnsnocsncell
ef POSITION PAPERSeeceoscccccccevccsnccncsscsssccvsnsnssosncsseeld
el HamiltoONeecesososoosovcccecessscsvcsescvnsvecssonsnosssnnsld
e2 SUNShiNCeacessseeseccccsncsccscsssesancscncsssssvosnssnsneelh
3 GOrdoONececcscccsssecsscnssccnncscsossscscscscsncssncnscsneelb

o4 ChesSSONeseesvessecsnosscessncvesccsscsescssccscccnsoneldl

Section 4. INTERPROCESS SYNCHRONIZATIONeseoesecovocscocnssnell

el WORKING GRQUP SUMMARY REPORTeeecesocescncscccncscccscnnell
el Statement of the Problemeseccscccccscvesscecsosssesanll
e2 Solution Space........o..................o..-o..o..SO
e3 Some Existing SolutionsSseecescecssccccccsscsccscsccennsld?
e AttributeSecescsscssccsvccscssesssccccsccnssnscsnsseseell
¢S5 Other ISsSuUESsecsscccecscccsscosnscscnscscssssscncssescnnsd

I2 pOSITION PAPERS........Q.....'............0‘..‘......3“

.1 Lee..'.'..'.O..........C.........‘..............‘..3‘
SeCtiOn 5. MECHANISNS..I.......C..................l.‘.....36

el WORKING GROUP SUMMARY REPORTeesecscsecsscsscscscssoscssoscelb
e2 AMPLIFYING MATERIALeocoecsscccsccsccsccscnsscvsccncsoncaci
el Prepared by the Uorking GrOUPesoesscoccssssnnesnsssasei?
o2 Prepared by PeebDleSeesoscecsscsnsscsccnncscscscsnsssnsil
el Introduction and Explanation..................-..44

¢2 Desfirable Propert1es.............................44

¢3 IPC TaxonNOMyeesvesssescoccescsscsnosscccssscscsscncsnoscih

L4

Georgia Institute of Technoloay IPC Workshop

Page viii

¢l Non-message=~based IPCececssscssscncscccocconsscecsih
2 Message-based IPCevoecsccsccscaccnososnncssocconcerced?
«3 Higher=-lLevel MechanismSeecseccoccescccsossccosconet?
e4 ReferenCeSeccessesecseccccncccsssoscsnsscccscnsscncei?

* e3 POSITION PAPERSeevececccvscscccsccsccsscsoccnscccccsceeil
o]l PeebleSeecessnscscscscnsssssecsscncscsccncscssccnsoceeh9
} o2 Hallentine.o..-...o......o......o.o................51

Section fe THEORETICAL WORKeooessessscosscsccecscescscsneessdd

el WORKING GROUP STUDY REPORTeeesses ssccoescssssscssseesS
| - o2 AMPLIFYING MATERIALecsscccncsscsccccacsccescnccscscsccoced’
) ol SpecificatiOnNneeccsccecoscnnscsvscsccccsosossccenescsoeed?
3 el Applicative Proqramming..........................57
* o2 TeLetype paradigm..O.............O.......0000000057
«3 Behavior by Interleaved Teletype ROllSceeccescsse5?

«4 State-based MmethodSeeeecesssccasscscssecssccenccseS8

«5 State Graphs..........--.........................58

° «6 Jellybean EXaMDleooooooccoc0000.00.00.000.0...00058
7 How to Spec1fy COmplex SyStCMSooooooo0000000.000058

e2 ModelSecescecccecesvscossssosscsccessnssssnsssosnsonsossssS?

el The Test=and=Set Model O0f IPCacocseccsccscscosceseed?

e2 83t Transmission ModeleeescesssssssosecsssssneseeS9

e3 SS Mod@lesssuseesssssssssncscnscscsvcesssesssnnscce’d

C T, o4 Other ModelSeseesoesossssosscssssscssssescsctcsscccsehl
, ¢5 Relevance of ModelSecessecesscccssessssacsssssescnahl
’ ¢e6 Problem AreaSeesscscesscscscsscscencsesscsncosscsssenebl

3 AnalYSiSQooooou-o-u..ooooocooo.oooooooooooo.ooo.ooosl
el State Graph Analysis...................-...-.....61
e2 Critical Reqion Algorithm Proofesesccecsccscscsscsaebhbl
+3 Global AssertionNSeececccccvrcsccssccscccsvcsncsscescaebl
o4 Fault ToleranCeecsecesscsscsscsnsocsscscsccscssscssssnssseb?
e5 MeasurementSecesecesssvescsscsscscvsccsscsscssncsessaeb?
«6 Space COMDLQX1tY fOr IPCecccosncoccsccccsccscsccncsachbl
«7T Time COmDLEX1ty Measures for IPCesssscvccscccssseebd
«8 Data Transfer PerformanCeececsscessssscccssnccsncbé
«9 Performance ResuUltSeesecsessccssoscensscscsncsccnneebi

e3 POSITION PAPERSeeccencvsscescsessccncsascesccccscscncsccenebd

ol AbelSONeccosccsscosnsscsscscscssscsscsscsscscscscsssccncseeebd

e2 FAScChereoeseseesssecsccscsnssscscscssccsscssssccnsnsbb

3 Lamport..........-..........-.............-........67

ol LYNChocooooooooooo.o-ooocooooo.o00000000-000000000067

oS SMmOliareeecsacescecccsssonscsescsccncsssscnssessscsncscebd’

Section 7. CURRENT TECHNIQUES AND EXPERIENCEssesescssessee?l

el A PROCESS BASED COMPUTER SYSTEMeeeevccovcccsccnsocosell
. «2 IPC IN HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKSeee74
el INtroductioNececesscecscscsnecroscscnscsccsscsnncscssncelt
i ¢2 Fundamental Quantfities in a Computer SysteMeecececess?5
. - 3 Naminq ConventionsSeeesssccecsscscsssscssssncssnssselb
' o4 Impltementation in a Distrivuted Environmenteecsceese76
- ! 5 Examples.........o..........-..-...-...............77
«3 PROTECTED MAILBOXES AS AN IPC MECHANISMeseeveceoeosooesl9
‘W * el Introductionesccsesvesscesssoscscesssccssssccncssessssel’9
«2 Proposed IPC PrimitivesSeessevscesesesasscevsnssscnnseld
&T
N Georgfa Institute of Technoloagy IPC Workshop

B s s s .

s S &3

'

I ke

L2 e

KOt A U A A AN T 0 005 ek AR 94 it S 1 3 ST e

Page ix

3 Initializationececoscsocecscissccvsecsvocscnnsssccnnseell
o8 SecuUrityeeosccesccccvescoscoscsccncsnscscccsccccscosncncocelD
5 SYﬂChTOﬂ‘ZBt*Onooo-cooococoooooo.oooooooo-..oo-ooooal
o6 Fault Tolerant AspecCtSecscvecsssscscccccscsoscsssnvssnsnsell
o7 Summary....-.......o..oo..............o............BZ
«4 SRIEF DESCRIPTION OF DSYS«PLITSeeooceccocoscccccssscnee8l
¢S5 MODELS OF CONCURRENT COMMUNICATION ACTIVITIESeessecese87
e6 PRIME JPC CONFERENCE REPORTeesecccocsccssssscccsssnnefl
ol INtroductioNeecescscscecssoscscccscsncrosssccscecnssncsnsel i
o2 SynChronization/IPC FacilitieSesecsenescessesccnscneeld?
el Process Communication in DEMOSeeesescocssescseseesl?

«2 UNIX Process Control/Communicationeescecccccscessd3d

«3 Interprocess Communication in TANDEMiecesescsssee4

e84 Process Communication in Vaxeesooossessosocsoscosessld5

«5 The Multics IPC Fac1l1ty.......--......-.........96

o6 Event Counting and Sequencing.......o............97

e7 Intertask Communication Primitives For PRIMOSseee98

o3 Conclusions and Future DirectionNnSeseccccecsscssceceslll
.7 DATA COMMUNICATION SOFTHARE...'.....................104
e8 CISTRIBUTED IPC AND SIGNALLINGeoeoosseccecscsssssosssesllld
el The General Contextessosecrssssacossccscscossscssscnnelll
e? The ProblemSececceccccsscccssosscscsosscssccsssncsscsnneelld
o1l Multiple Sender/Single Receiver SystemSeseseceeoesllS

«2 Multiple Sender/Multiple Receiver SystemSeeceeseeelld

o3 Looking for a Solution: RequirementSeeceosevssscceneellp
el Parallelism and Response TimMCeeescescossscscccseell?

e2 ResiliencyYeeososeosconsecscccosccescccsacsnscossosell?

e

e3 Overheaddeecossessccccoscccssscscscsoscscsosscsncsssnsacnecll?
ed Permanent RejectiONessvsesessrcvecscnvocscssccsneell?
e9 FairnesSeeessosscesccencsscvscssvcccscvsocsscssccsessell?
b Extensibility...-..................-............117

o7 Simplicity..-o..o......................-........118

o4 A SOLlutioONecesccecssnesnscscsssscessssssnsscssascassell8
el A Virtual Ring Structureececccosccccccasssscnsneslll
el Mutual SUSD1C10ﬂoooo-oooo.tooo.coooooo.ooo.coollg
o2 Explicit Message Acknowledaementesssescesssceecsell?
o2 R1nq ReconfiaurationNecsscesccsccsccossncccesvncseneesll?
«3 The Extensibility Property..-..--...............120
o4 The Control Token MechanisSMeseescecessceessssssscelll
el Re51l1ency...............................-..-.121
e2 Nistributed Si1gnallinCecescsccccncssesscccvcennsel??
el Fortuitous Serfalizationececeosscsescccosecesel?d
e2 Enforced Serfalfzationesceccscccscsssvcssccsesscellds
e3 Performance ConsiderationNnsecesccescccsscscoccellé

-

e5 ConclusiONecessncescsccsccssscovscossccnsascssnccnsassell8

Section 8. SUMMARY AND FUTURE DIRECTIONSeesecsscoccsceeseslls

el GENERAL OBSERVATINANS AND CONCLUSIONSescocssccsecccesesl?9
e2 WORKSHOP SUMMARYseeoesescescorecscsccscssscscsccssosancslll
el Addressings Nam1ngc and Securityececsccccscrecssccenselldl
o2 Interprocess Synchronizationesccscesessoccccsccscsceeslll
3 InterDFOCCSS MechanismMSeessscsccceosccacssosssnsoncncell?
o8 Theoretical WOrkeeooseooeooosoecovosnsnsossosssnsnsnnelldl
e3 CONCLUSIONS AND RETROSPECTesceeosccecsoscssncsescsanslld

Georaia Institute of Technology IPC Workshop

‘! N -
i
Page x
-
Section 9. SELECTED READINGS AND REFERENCES..............135 .
I
.1 SELECTED READINGS.........l.QQI.....ll.....'.......'lss ;
- .? LIST OF REFERENCES‘C.............Q...00000.0000000.0137 i
.
%
. ¥
. :
4
¢
L]
. ‘
»
{
;
]
i, §
PR N -
] Georgia Institute of Technology IPC Workshop
‘1
4
R\ . ~— - - - g ’, - -— 9

we T

R SO ek ot L e e e e

Section 1 INTRODUCTION

SECTION 1

INTRODUCTION

1.1 QBJECTIVES OF IHE WORKSHQP

The subject of the workshop was Interprocess Communication
Mechanisms with 2 particular focus on process-to-process
communications in highly distributed systemse. Highly
distributed systems are characterized by very loose coupling
between physfcal resources as well as between Logicat
resourcess Sucth systems also exhibit dynamice short-term
changes in the topology and organizaetion of the total
systems These characteristics place new reaquirements on the
design and performance of IPC mechanisms} these requirements
are assuming extreme {importance in advancing the state-of-
the-art in all forms of distributed systemse.

1.2 WORKSHOP QRIGINS

The last meeting that focused on interprocess communication
was the "ACM SIGCOM/SIGOPS Interprocess Communications Work-
shop"™ held 24-25 Marchy 1975, (CIPC 751

One might conclude from the paucity of material published on
this topic since that workshop that the problem {is totally
under controle. (The BBN "Network Operating Systems" study
CLTHOM 78] <cites only one reference since 19744) Such is
definitely not the case. wWork on IPC's has been covered
within projects on operating systems3 howevers many im-
plementation and performance problems are only partially
solved or solved only on an ad hoc basise and it appeared
that the time was ripe to again focus a meeting of
specfalists onto this topice especially in view of its key
role 1in the operation and performance of distributed
systemse.

Sitnce 197% advances in the field of computer communications
have provided mechanisms for connectina computers together
in a variety of configurationse. For instances high speed
serfal communication paths [METC 76¢ GORD 791 have permitted
effective local networks [CLAR 781le in which many computers
share specialized vresources (storages printing facilitiess
etce)e while each node still retains some degree of
autonomye. In additionsy many mini-computers support lLarge
address spacesy and a corresponding high deaoree of mul-

Georaia Institute of Technoloagy IPC Workshop

Section 1 INTRODUCTION Page 2

tiprogramminge. One natural way to construct the software .
for such systems is to base the software architecture on the
notion that most tasks will be performed by a collection of
communicating asynchronous orocessess running on the same or
different processorse Such systems are known as "highly
distributed systems"y and are characterized by a very L(oose
coupling between physical resources as well as between

Logical resourcesy and they allow dynamice short-term
changes in the topoloay &and oraanization of the total
system,

The fact that these systems are very loosely couplede both
physicaltly and logicallys places quite different demands on
IPC from those applicable to more tightly coupled contem-
porary systemsy even those incorporating a local network as
the dnterconnection mechanisme. Practical attempts to
construct such systems immediately direct ones attention to
available Interprocess Communication (IPC) mechanisms and
their shortcomingse Lack of well constructed and well un-
derstood mechanisms is the root of most of the difficulties

in bujtdipg distributed systems.

1.3 PURPQSE AND SCOPE QF IHE WORKSHOP

The "Workshop on Interprocess Communications in Highly
Distributed Systems" was intended to bring together a selec-
ted group of workers in the subject area to address the five
general qgoals listed below:?

0 Assess the present state-of-the-art for 1IPC
mechanisms 1in distributed data processing
systems

2) Identify the data available on the actual
performance of wvarious IPC policies and
mechanismse

3 Assess the potential value of various 1IPC
mechanisms satisfying the operational and
cerformance reauirements for highly
distributed systemse.

4) Identify shortcomings in the present state-

of=-the-art and identify promising areas for
future research and experiment on this sub-

jecto
5) Identify possible standardization Llevels of
IPCe .
Georajia Institute of Technoloagy I1PC wWorkshop

e

—

Section 1 INTRODUCTION Page 3

The scope of the workshop will be Limited to IPC mechanisms
for use i1n cdistributed systems. (This acknowledges fatrly
common agreement among the research community that the fol-
lowing are not DDP*s === multiprocessorss computer networks
per sey intelligent terminal systemss and satellite proces-
sor systemse)

1.4 SIRUCTURE OF IHE WQRKSHOP

Workshop attendees were setected from individuals actively
working 1in the fields and the size of the workshop was
purposely Limited to approximately 40 attendeess. Special
attention was given to obtain participants who met one or
more of the following criteria:

- Had had practical experience in the design and
implLementation of IPC policies and mechanfifsms in
highly distributed systems.

- Had analyzed and/or measured the actual per-
formance of various IPC mechanismse

- Would contribute a written submission to the
workshope

The workshop was held from 12:00 noons 20-Novembers thru
12:00 noone 22-Novembersy 1978y at the Atlanta Townehouse
Motor Hotelesy 1immediately adjacent to the Georgia Tech cam-
pUSe

Before the workshops invitees were requested to {identify
their areas of interest. Based on that inputs the organiz-
ing committee established six working groups:

1) Addressing and Security

2) Fault Tolerance

3) Synchronizations Signallinge and Flow Control
4) Theory and Formalism

5) Hardware and Primitives

6) Programming Issues

Howevery as often (usually?) happens 1in such situationse
when the groups met and discussed their areas of interesty
realignments in the working group organization resulted 1n
four working groups rather than sixe

1) Addressinqge Naminge and Security
2) Interprocess Synchronization

3 Mechanisms

4) Theory and Formalism

Georgia Institute of Technology IPC Workshop

«®

Section 1 INTRODUCTION

The output of these four groups fs the basis for this
reporte.

1.5 ATLIENDEES

. JBC NORKSHOP
LISI OF AITENDEES
(» Members of the Organizing Committee)

Hal Abelson
Laboratory for Computer Science
Massachusetts Institute of Technology

Allen Akin
Georgia Institute of Technology
S A School of Information & Computer Science

Edwin Basart
4 Hewlett-Packard Coe.
! General Systems Division

Morton lI. Rerstein
System Development Corpe

Bill Buckles
General Research Corpe

James £+ Burns
Georgia Institute of Technology
School of Information & Computer Science

Gregory Chesson »
Bell Laboratories

Wushow Chou
North Carolina State University
Computer Studies

v Phillip Crews
Georgia Institute of Technology

‘ i School of Informatfon & Computer Science
r L)
' Richard As DeMillo
Georgia Institute of Technology
. School of Information & Computer Science
p -

1‘“ : Georgia Institute of Technology 1PC Horksﬁop

Section 1 INTRODUCTION

% . Philip He Enslowe Jre «
~ o Georgia Institute of Technology
£ School of Information & Computer Science

M{ichael Fischer
University of Washington
Department of Computer Science

Mark Gang
Ford Aerospace & Communications Corp.
Western Development Laboratories

: Robert L. Gordon =
f PRIME Computers

Jim Hamilton
Digital Equipment Corpe

Mohommad Hassan
MODCOMP

¢ Steven Fe. Holmgren
’ . Digital Technologyse Ince.

Doug Jensen «
Honeywell Research
(Presently Carnegie-Mellon University)

Richard Kain
University of Minnesota
pepartment of tlectrical Engineering

N Steve Kimbleton
: Institute for Computer Science & Technoloay
: Natfonal Bureau of Standards

Peter Koschewa
UeSe Army Institute for Research in Management
Information and Computer Sciences

Leslie Lamport
SRI International

David Lapin
Burrouaohs Corporation
Computer Systems Group

W2 PN NREE e e

Thomas Lawrence
Rome A4r Dcvelopment Center
UeSe Adr Force

- -
»

Richard LeRlanc
Georgia Institute of Technology
School of Information & Computer Science

Georgia Institute of Technology

G YR e - :
R = Frw o FT AR w— T - - - - L.

Page 5

IPC Workshop

Section 1 INTRODUCTION

Gerard Le Lann
SIRIUS
IRI (France)

Edward Y«Ses Lee
TRW Defense § Space Systems Group

Jon Livesey
University of MWaterloo
computer Communications Network Group

James Reo LOwW
University of Rochester
Department of Computer Science

Nancy Aes Lynch
Georgia Institute of Technology
School of Information & Computer Science

Edith Martin
Georgia Institute of Technology
Engineering Experiment Station

Wayne McCoy
Kennedy Space Flight Center
NASA

Nancy Meisner
University of Waterloo
Computer Communications Network Group

Ira Newman
Department of Defense

Richard Peebles
Digital Equipment Corpe

Steve Ratzel

UeSe Army Institute for Research in Management

Information and Computer Sciences

Donald Sharp
Georgia Institute of Technology
School of Information & Computer Science

David Sincoskie
University of Delaware
Department of Electrical Engineering

Stephen We Smoliar
General Research Corpe

John Staudhammer
UeSe Army Research Office

Georgia Institute of Technology

Page 6

IPC Workshop

g Section 1 INTRODUCTION Page 7
i Carl Sunshine
M Rand Corporation
. i (Present Location: ISIe Unfversity of Southern California)
¥
§ Joseph S. Sventek
4 3 Lawrence Berkeley Laboratories
t’ Computer Science & Applied Mathematics
Y.
5, Pe Se Thiagarajan
. . Institut fuer Informations-systemforschung
. A GMD
- _ Virgil £. wWallentine
¥ Kansas State University
: Department of Computer Science
. . Don Weir
Telenet Communication Corpe
Douglas E. Wrege
Georgia Institute of Technology
Engineering Experiment Station
. .
»]
1.6 QRGANJIZATION QF IHIS REPQRI
; Following this introductory sectione there 4s a short sec-
p tion on the general background of interprocess communication
4 techniquesa The main body of this report is Sections 3¢ 4,
: Se and 6 which cover the results of each of the Working
} Groupse Within each sectiony the first material presented
" is a summary of the Working Group presentatfon made at the
. end of the workshope Following thate there sy in some
l 3 instancess a collection of amplifying material and selec-
F ¥ tions from the position papers that were prepared prior to
} i the workshop and distributed to the attendees.
3 4
§
E . Section 7 contains several Longer papers that were either
t ¢ prepared specifically for dfistribution at the workshop or
! ? were felt by the authors to be applicable to the workshop
. and were distributed to the attendees there. Section 8 is a
|
EE ! very brief summary and discussion of future directions for
' s IPC and Section 9 contains the references utilized 1in the
: i, reporte
‘- '
.
n .
. Georgifa Institute of Technology IPC Workshop

Section 2 BACKGROUND

SECTION 2
BACKGROUND

2¢1 INIRODUCTION

Probably the single most important hindrance to the develop-
ment of interprocess communication has been the lLack of
general acceptance and agreement on the notion and abstrac-
tion of a "processs"” Until the "process modet" of computa~
tion becomes generally accepted and used as the basis of
software architecturess there will be Little motivation for
interprocess communication mechanismse

In most systems the abstraction of a "process" has not been
developed well enough for it to be treated as an “object" in
tts own right so that "processes®™ can be used conveniently
by system architects and others as building blockss
Primitives for the <creations synchronizations addressinagys
and communication of processes have in the past only been
generally available to operating system developerse and
therefore not widely used by application programmers in ap-
plications software systems. Unfortunately operating system
developers tend. to Live with and use poorly documented ex~
perimental primitives and other gagd ho¢ mechanismse The
notable exceptions to this rule form the core body of clas=~
sic Literature in this field [BRIN €69y OIJK 68be DIUK 7l
DALE 68]e For the most parte application programmers in the
past have been restricted to conventional 1/0 using shared
files as a pragmatic method of finterprocess communication,
with only partial successe
\

When the notion of a "process®™ becomes recognized as a fun-
damenrtal building block for distributed applications,
stronger support and dccumentation will have to be provided
by the system suppliers and manufacturersy thus making
available to application coders a robust set of "process-
based" primitivese. After such widespread support
materfalizesy the design experience and performance
statistics will provide the basis for a fuller understanding
of all aspects of dnterprocess communicatione.

A comprehensive survey of the present state-of-the-art in
interprocess communication is presented in paragraph Te6e

Georgia Institute of Technology IPC Workshop

i

R

" £

T anaee

sy

CETTL L T L T TR e

TR W NIt Y e s

Section 2 BACKGROUND Page 9

2.2 PROCESS MODEL QF COMPUIATION

An excellent survey of the "process model of computation®
can be found in [HORN 73] Prior to thise articles on
operating systems developed the notion of a "process"™ or
"taske™ as an entity that could be scheduled and own other
resources in multiprogrammed systemses but they did not treat
a process as a structuring methodology in its own right.
Examples of these notions can be found §n [SALT 661 and [IBM
711,

Access to resources in early operating systems presented the
very first examples of interprocess communications but these
early IPC techniques varied widely from one 1{implementation
to the nexts. For examplesy in most systemss the Line printer
daemon (or process) owned the Line printery and access to
the printer was restricted to ordinary "write” statements at
the Language level coupled with "logfical unit” assignment at
the job control of command language levels Other examples
may be found where the Login process "owns" the communfica-
tion Liness or a file manager owns the file system as in the
MERT operating system [LYCK 781, An early message~based
operating system structured around processes is the RC4000
operating system [BRIN 699 RRIN 701

Trends in software engineeringes applicationsy and technology
certainly point to an increasing awareness of a process as a
fundamental method of structuring systems. The prolifera-
tion of 1inexpensive processors and low cost bandwidth sug-
gest a process model of computations even 1f there 1{is only
one process per processing elemente since control and shar-
fng of common resources must be by some form of interprocess
communication. New architectures are now being proposed
that exploit these trendss eege U[NELS 78Je The CNELS 78]
proposal s based on a high~-speed packet=-oriented bus inter-
connecting a Large number of processor-memory pairse termed
"ecells." Each cell includes a CPUy 2 primary memory system
(typically one or two megabytes)y a packet bus node control-
Lery and posstbly some peripherals such as disks or com=-
municatfons devicese The architecture supports applications
decomposed at the process levels the entire system is viewed
as a set of cooperating processess distributed among the
cells to improve performances coste or availabilitye.

2.3 HIGHLY RISIRIBUIED SYSIENS

Highly distributed systems are characterized by very Lloose
coupling between physical as well as logical resources, In
addition they exhibit dynamice short-term changes 4n the

Georgia Institute of Technology IPC Workshop

- ~ ~ e n et - - . . & - i

Section 2 BACKGROUND Page 10

topology and organization of the total systems The fact
that these systems are very loosely coupleds both physically
and Llogicallys places quite different demands on IPC from
those applicable to more tightly coupled contemporary
systemsy even those incorporating a "network" as the 1inter-
connection mechanisme

Such systems should support multiple name spacese including
the management and translation of file and unit names in
these name spacese In additione such systems should handle
abstractions built from collections of communicating proces-
ses and provide mechanisms for addressing and synchronizing
aroups of processese High bandwidth message transport
mechanisms will potentially allow multiple Logical connec-
tions between processes to be constructed whenever con-
venienty but system support must be available for those con-
nections to be useful. To datey very Little experience fis
available ¢to assist a designer attempting to construct com-
plex systems out of communicating processese.

2.4 IPC SIRUCTURES

Most existing IPC primitives and structures are based on a
“two-party"™ communication models in which there 4s a single
“gsender® and 2 s$ngle "receiver® for each ¢transaction or
messagee. {This 1s certainly the basis for IPC facilities
built around the X.25 Level 3 protocol ([CCIT 781].) Other
kinds of communication facilities may better support rings
tree and general graph models of process networkse
Protocols 1nvolving more than two processes are called "N-
process® protocols [PARD 7913 they should find use in shared
data base and electronic mail systems.

The major functions supporting these protocols are storings
forwarding and routing variable Length messageses These
functions can be difficult to 4dmplement {1f communication
Linkse processing nodesy or other resources are only
partially availablee.

2.5 INIERPROCLSS CONIROL SIRUCIVAES

Communication Links between procesgses can be allocated
strictly to control functionse. In facte the degree of
separation of control and data is an important research {s-

Geor3fa Institute of Technology IPC Workshop

L TR e

et g me .t cw o e

"oy

Section 2 BACKGROUND Page 11

sue. A path primarily used for the transport of data may
have no mechanism for control or ®out of band” signalling,
which may make error detection and recovery difficulte if
not impossible. The system®s control path structure is
primarily determined by the "control model"™ used during
system developments The "classical"™ system organizations
are 23a) master/slavey b) hierarchicale c) democratice or ¢
autonomouse The first two are well understood and readily
implementeds while the latter control organizations are not
well understood (4in an algorithmic sense) and are the sub-
ject of much research [HOAR 7813,

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGe NAMINGe and SECURITY Page 12

SECTION 3

ADDRESSINGe NAMINGe and SECURITY

3¢1 HORKING GROUP SUMMARY REPOQRI

What are objects

filesy processesy devices

Uniform mechanism?
File metaphor == UNIX
Process metaphor =- MININETs RC4500
Abstractions =-- WEB
Worldview: (a La DISY)
S Universe >>> Systems >>> Objects
Distinguish between:
? NAMES == what
‘ ADDRESSES ~= where
| ROUTES =~ how to reach
Basic Problem: map
NAMES >>> ADDRESSES
L Desirable features:
1 Generic naming
Context independence
Location independence
Broadcast (group name)
Unicueness

Path addressing

Georgia Institute of Technoloagy IPC Workshop

o N
BER LT LN RS PR

Section 3 ADDRESSINGy NAMINGe and SECURITY Page 13 i

Other concerns:

Flat vse hierarthical

Centralized vse distributed :
Steps
Search rules
Connections
* Transactions
Merging two systems:
* l. one below other
2+ both below new prefix
3. corresponding unused addresses
8 . Name >>> Address mapping may be separate from IPCe
} ' IPC between specific addresses
Directory object with well-known address
DISY "MAILBOX"

Generic naming

Location independent
| Unigueness
Object pointer
Resource Limits
Access controls
Segyrity
| ' Madn attributes of subject:

Logical ddentity

; '0 Physical location
: :
|
“ -
P Georgia Institute of Technology IPC Workshop

;
i
Section 3 ADDRESSINGes NAMINGsy and SECURITY Page 14 g
¥
| Problems: %
i
£
t
l. authentication * access |
b control of location
2. storing authorization on areas
outside security environment :
1 3. moving objects if encryption L
based on location
j 7
; |
4 - t-
L]
(I
»
i
) ! 1
E
[
:
1]
l.
. »

1‘« Georgla Institute of Technology IPC Workshop

Section 3 ADDRESSINGes NAMINGe and SECURITY Page 15

3e2 AMPLIEYING MATERIAL

What are objects? filessys devicess processes
- What things should be in a List of primitive ob~-
jects?
- Should we <choose one object type to represent
all objects?
Should there be a uniform mechanism for all objects?
- file "metaphor™ - Unix [THOM 741
- process "metaphor®™ - Mininet [(PEEB 78]y RC 4000
(performance?)

- abstractions

- WEB at DEC (performance?)
- Capability based systenms

Uniform mechanism 1is a good thinge Being able to do this
requires picking one of the aboves NoOt sure we cane

Worldview: ANSI/SPARC/DISY [DESJ 78] or IS0 SC 16 modetl

- Universe consists of multiple systems.

- Systems have many objectse
Distinauish Between Names (whatle Addresses (where)s Rgutes
(how to reach)s (see [SHOC 781)

Basic Problem: mapping NAMES to ADDRESSES.

Desirable features of this mapping:

1) generic naming - many potential servers
- within one system or across
systems
- selected by server or by

requestor ("request for service"
facility s Just Latter [FARS

73

2) Location independence - same name may be used
no matter where server is located

L3 broadcast - (group name) - communication with
multiple servers

4) uniqueness = only one name for given object
or set of objects at some level

%) path addressing or source routina =~ source

specifies sequence of addresses to reach ob-

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGe NAMINGe and SECURITY Page 16

jecte. Useful 3Jif "system"®™ does not know
routey or {f destination {is outside normal
name spaces

Additional mapping concepts:

n Flat vse hierarchical - latter allows each
directory or switch to know only about
elements at its own Level ==> many smaller
directories vse one large onee.

2) Centralized vse distributed = centralized
can be reliabley but requires roundtrip delay
to get informationes high Lload at centere
Distributed may allow Llocal Lookupse or may
require broadcaste Update more complexe.

3) There may be many directoriess and many
"steps" in the address lookupe Example: "my
name"® to gqalobal names global name to systen
address/localt namee (send to remote system)dy
Local name to Local addresse.

4) Search rules <~ each user may have rules for
tailoring lookup to his needs.

NAME -=> ADDRESS mapping may be costlys. Hence desire to do
it once for many successive messages to same destinatione.
Leads to g¢onnection notion. May dnclude route setupe
Cacheing of recertly used names/addresses also helpfule
Connection also needed when desired that successive messages
to a given name co to the same objectse dn order. If
transactions are independentsy then a different instance of
the named cbject can serve each =~ no connection neededs
INSW 761

Problem of merging two previously independent systems:

1) Yay add "prefix" to all addresses (a higher

level 4n hierarchy) to distinguish systemse.

Make one system "below" other in hierarchye.

k) Make unused addresses in each system
correspond to addresses 1{in other system.
Inly good for small numbers,

"

NAME -=> ADDRESS translation may be separate from basic IFC
which is between specific addresses only. Then directory
object (process) with well-known address can be accessed to
provide translations with vresult returned via basic IPC.
Ihen requestor does basic IPC with specific address of ser-
vice actually desirede Examples: ARPANET Initial Connec-~
tion Protocolsy Mintnet [PEER 781,

Important “xamplte: Our view of DISY "mailbox"™ C[DESJ 78] has
properties or components:

Georgia Institute of Technology IPC Workshop

TN g P N 8P

Section 3

ADDRES

- generic name
- lLocation independent
- unfiqueness
- pointer to object

SINGe NAMINGs and SECURITY

- resource control (how many in use)
- access controlse oOwner

i Security:

1)
2)
3)
4)
5)
'
.

Georgia Institute of Technology

Poes not
recoverye

Coes include authentications access controlsy

encryption
Basic goa
only by sp
Two main a

- Llog
- phy

Probtems:

a)

b)

c)

include reliabilitys failure

s correctnesse.

L - allow objects to be accessed

ecified subject.
ttributes of subject:

fcal identity
sfcal location

AlLow object to be accessed
from one place but not ansther
(eegee not via dial=-in)e. Must
authenticate Location as well
as fdentity.

Removable media plus unsecured
sources: Can authorization
information be stored in arecas
outside of physical control?
Encryption problem, 1f
authorizations are encryrted
based on Location of objecty
how ¢an object move? (Two
constraints: need to aqgive
authorizations to otherss but
must not be forgeable (hence
encryption)).

(process) mailbox stands for

IPC Workshop

ittt

Section 3 ADDRESSINGe NAMINGe and SECURITY Page 18

3¢3 CASE SIVDIES .

3¢3.1 Distributed Data Bases
by

Edward Lee
TRW

Most DDB protocols seem to assume that Data Base Managers
can fiaqure out how to communicate between themselves and
that naming one another is not a problem. Is ¥t reasonable
to assume that file system operations and process IPC are
basically the same mechanism? DISY has process as the basic
communicating objects You basically open a channel to a
process and then communicate cdirectly with ite It is the
Sessfon Controller (DISY) which opens the channel for youe.

3.302 Mininet
by

Je Livesey
University of Waterloo

Mininet 1s a system 1{in which addressing 1s bastfcally
separate from IPC. In many systems some form of addressing
method (name -=-> address translation) is implicit in IPC.

In Mininetsy IPC consists solely of the transmission of a
message from a Sender Task to a Regeiver Task which has to
be identified by an idnteger JTask Identifier (an address
rather than a name)e In the distributed case the host id is
concatenated with the task fdentifier within the hoste.

The question then 1is how to get the task identifier for a
task to perform a particular functione.

In facts all system resources (tasksy filese devicess direc-
tortess osee) are formalized as taskse A task has code and
data segmentse. A files for instances is a task whose code
segments are the Access Method and whose data segments are
code segmentse A file task gets messages of the form:

read (record #)

and reacts by returning a message to the user containing the
record data.

Georgia Institute of Technology IPC Workshop

LY

.nwja{"q .-

‘?:-4_;‘__; A

»
Wis hi et ae L a Fest - adae et e ivee ea L — e = L

Section 3 ADDRESSINGe NAMINGy and SECURITY Page 19

There 1is only one well-known task {fn each hosty the

rectory lask which has the responsibitity to maintain a
List relating function name (a character string) to task
identifier for each task tn this host. As the ultimate
parent of each task he can find out their task idse (Task
identifier of a new task 1s returned to the <creating tasks
the parent.) Nowe when user task Ay for instance wants to

perform
open (filename)

it does so by asking the directory task for the 1identifier
of the "file-open" taske Assuming this exists Locallys the
directory task returns its task {d. The wuser now com-
municates dfirectly with “"file-open” (a La DISY session) and
sends 1t a message

vopen (filename)"

The task "file-open" now creates a file task whose data seg-
ments are the data records of "filename" and returns the
"file” task identifer to the user taske.

The wuser task now communicates with the "file" task (a
second host session a La DISY) with messages

"read (record #)*"
“write (record #)"
"close ()"

The "file-open" task handles mutual exclusion on the file
(by refusing to create new file tasks for the same file as
long as someone has it open to write)e The "file" task han-
dles record mutual exclusione.

In the case where no task exists in the local hosts to hand-
Le function "X" the local directory task talks to remote
directory taskse who are responsible for knowing which tasks
exist fn their hosts (and which can be created to do "X"),

Directory tasks announce themselves to one another at boot
time.

References:

CPEEB 781
CLIVE 78al

CLIVE 78b1]

Georgia Institute of Technology IPC Workshop

Section 3 ADDRESSINGe NAMINGe and SECURITY

3¢3+3 Diacussion

Medisner:
Is this more complicated than a strafght function
CALL/RETURN system?

Livesey:
Yese but more flexible since you can impose a function
CALL/RETURN system on top of the basic task/message-
passing system using library routines if you wante. It
is also assumed that we have a homogeneous system.

Sunshine:
Clearly we can have server processes to guard and ad-

minister
directories
open function
file tasks
etce
Lapin:

We need hardware to support process 4{nvocation/context
switch better than at presente.

Livesey:
Yesy but future hardware should not lock us into func~-
tion call/process invocation capabilitiess etce

Sunshine:
Curiouslys in Mininetese every resource (object) 1{1s a
task (process)y but the creation of a process {involves
reading a file (an object containing 1{ts code seg-
ments)e.

Enslow:
Lee says ¢that his distributed data base should be
redundant. Does the system itself select the optimal
record!

Lapin:
Redundancy 1increases the reliability of the systems

Livesey: :
We have both homogeneous and heterogeneous redundancy :
heree }
. Homogeneous !
i - j§dentical copies of data i
3 - - increases reliability !
]
! Heteroaeneous
Sl - copies of non-identical objects to operform %
similar functionsy ege FORTRAN compilers
1iu . Georala Institute of Technoloay IPC Workshop

Section 3 ADDRESSINGe NAMINGe and SECURITY

increases system band width

McCoy:
Can we get a system to give us both!

Sunshine:

To do 1t across several systems has a2 cost and we have
to ask §f the utiltity of redundancy 1s worth the <coste
The ARPANET Resource Sharing Executive (RSEXEC) was a
stripped-down operatina system for remotely Llogged-
{nusers who actually executed on the first avatlable
DEC 10 but never knew which ones This was also an at-
tempt to provide a network-wide file systeme Multiple
server systems such as the Irvine Net recognize the
need to go accross the system to get resourcess To use
this we may need utility programs to perform

Local COBOL =-=> ANSI COBOL
and maybe even

P ANSI CO080L =-=> Local COBOL

. .

] Livesey:

. May also have a network JCL so that a user only uses
the JCL of his Local machines and then we need to be
able to do the translation

Local JCL #1 ==> Network JCL ==> Local JCL #2
Lapin:
There are two approaches to a multi UNTX system file "
systeme We can have
/net
as a special file and address files on machines Ay Py
‘ etce as
? /net/A/pathname <o
’ /net/B/pathname <o
H
We can also localtize host id in the pathname explicitly

) ‘ cartl/part2

l, partl: host id part2: pathname]

[

Sunshine:?

- There 4s a conflict between REAL and IDEAL worldse In
the Real Worlde we tend to involve the user in specify-
ing the location of a function (service)e In the ldeal

. Worlds we would Like to oive the wuser gagpstractions
‘I' .
’ Georata Institute of Technology IPC Workshop
.) - .. . 3

——

Section 3 ADDRESSINGy NAMINGs and SECURITY Page 22

generic naming and location independent naming.

Livesey?
Part of the problem is that the concept of the stze of
the universe (of which the system forms a part) {is 1im-
plicit 4n the system at a high cost. One i1s then for-
ced to choose between add-on features such as?

/net/A/resource

which are not location independent on the one hand,s and
a more or Less complete rewrite on the other hande.
UNIX d1s an example of such a system that makes assump-
tions about the size of the universes

Meisner:
We now have chofces between

i) Centralized Directories

which can now be made very reliable
11) Distributed Knowledoge
if1) Tree Structures

Livesey:
(i34) 3s Just a disguised directory methode There are
really two choicest centralized and distributede.

Hassan:
Efficlency may dictate tree structures rather than
directory taskse This was a factor 1in the MULTICS
designe

Georaia Institute of Technoloay IPC Workshop

o o

£ A

o eTeT e R VT

I R e U

Section 3 ADDRESSINGs NAMINGe and SECURITY Page 23

3.4 BQSIIION BAPERS

3.4.1 Hanilton
Addressing and Security

by

Jim Hamilton
Digital Equipment Corporation

Because of ever increasing complexity of software develop-
ment and maintenancees providing any programming environment
which complicates software development would be a mistake.
This argument Leads to a view of distributedness as a
property of the {implementation of a systems and not of the
application development environment.

Addressing and protection are criticatly 1imoortant 1in ap-
plication development. The above view of distributedness
implies that addressing must be Location independente. That
ise Llocal and remote objects must be addressed {identically.
Furthermorey I believe that addresses should also be in-
dependent of the context of reference (different processes
should address the same object in the same way)e and uniform
across all object types (hardware defined objectss system
defined objectsye and application defined objects should all
be addressed similarlyl.

1 also believe that the use of processes to abstract all
other objects 14s a mistakey for cseveral reasons: 1) it
restricts the flexibility of the environment for the execu-
tion of functtonse 2) it often forces the invention of ad-
ditional addressing mechanisms within the applicatione 3) it
is inadequate to address system and hardware defined objects
(eegey devices)sy 4) 1t 1dnevitably colors the application
designer?s conceptualization of the systemy and finallys 5)
it does not appear to be recessarye

To achieve a distributed implementations 1t will stitl be
necessary to solve the problems of physical communication
and its associated addressing problems at a Llower Llevele
But the problems are considerably simplified since the
mechanisms can now be highty specializeds because they are
not visible to the application desianers

1 believe that the notion of capability based acdressinae
when properly fintercreted and implementedsy provides all of

the properties mentioned above. Moreovere It can be
naturally extended to provide capability based protection,
which 1s further discussed belowe The <c¢hallenge 1s to

achieve an implementation which is cost~effectivey and which
still has all of the necessary propertiese A failure in

Georagia Institute of Technology IPC Workshop

Page 24

Section 3 ADDRESSINGe NAMINGy and SECURITY

efther domain wWwill be fatale An even greater challenge 1s
to convince tne computer industry that the inevitably higher
cost of the pasic system will be more than offset by the
redquced cost of softwarees

I believe that the issue of sharing is partially separable
from that of addressings Context independent addressino 1s
a prerequisite for sharinges but 1ts existence does not imply
concurrent access by separate processese (oncurrent access
to immutable objects should be possinles for performance
reasonss 0put concurrent access to mutable ohjects now ap-
pears to be a dangerous mistakee By precluding this kind of
sharinge we also simplify the construction of distributed
implementationse.

Given an addressing mechanism with the properties mentionec
abovey a variety of protection mechanisms can be d{im-
plementede. Capability based protection still seems to be
the most promising of theses although it has been criticized
as inappropriate for distributed implementationse. I tend to
reject this criticisme but the notion of self-authenticatina
capabilities has been developed at “erkeley to address this
pronlema

The notion of system security has many different aspectse
Included among these are physical securityes correctness of
implementations and the logical access control model being
implemented. In comparison with centraltized im-
plementationsey distributed ones seem notably weaker 1{n
physical securitys and possibly weaker in correctness
because of greater complexitye. The access control mooel
shoutd note in principaly depencd upon the implementation. 1
believe that these are inherent problems with distributed
implementations but thate with the suitable use of encryp-
tione such systems can still be acceptably secure.

3.4+2 Synshine
Addressing

by

Carl Sunshine
RAND Corporation

Any discussion of addressing must start by making a clear
distinction between NAMES (whod)e ADDRESSES (whered)s and
ROUTES (how to get there)s on which John Shoch of Xerox PARC
has written an excellent notees [SHOC 78]

Several key concepts or capabilities must be d4ncluded 1in 4
gocd distributed IPC systeme These include generic naminay
Llocation independences request for servicees source rcutinags
ancd extensibilitys Each will pe described separately in the
followina paragraphse althouah there are clearly some

Georcta Institute of Technology IPC Workshop

Lo

T Y e TN

Section 3 ADDRESSINGy NAMINGs and SECURITY Page 25

relationships between theme

. Generic naming 1s the ability to request communication from

- a service without specifying the exact process that will
provide the services This is normally useful when multiple
instances of a process providing the desired service sare
availables A specific process is selected (or created) at
the time of the inftial requesty and bound to the source for
the duration of the interactione This binding may reauire
transmitting the specific process ID to the sources or
merely keeping 1t at the destination. The classic example
of this facility s a timesharing Login service.

Location independence is the ability to request communica-
tton with a process by name without knowing 1ts Location or
addresse Since the source user does not supply the addressy
. it must be found by the IPC system in some directorye. Such
name-to-address directories may be maintained at sourcesy at
a central servers or at destinations (the names are normally
1 handled at the sources with the consequent need to change
p all tables whenever a host address or name changes or 4s ad-
i ded; I8BM%g SNA centralizes Lookup in the SSCPS and the Ir-
4 ’ vine DCS kept name tables in destination machiness reauiring
broadcast of requests to be reccanized by the appropriate
‘ . ' destination. The ARPA Internet Name Server proposed by Jon
| ' Postel 4n a recent note is another centralized example. A
major feature of Location independence is the ability for a
? named process to move to a different location without f{ts

users knowledge. (0f course the directories must be up~-
dated,)

Request for service 1s the ability to broadcast a request

for service to an unknown (to the source) number of
L potential providers of the services who return bids to per-
: form the requested servicey thereby identifyino themselvese.
This s similar to generic naminge but includes facilities
for the source to select among multiple bidgse Such a
facility was implemented in the Irvine DCSe.

Source routing s the abf{ity for the source to fdentify the
destination by specifying a route to ite This 1s necessary
in Loosely concatenated systems where no global address
: space existse The route is given in terms of a sequence of
‘ addresses through successive switching points or systems
[which each have {ndependent address spaceses Hence this
]

l

fieldse or they must be extensible. Adding additional
1‘ Layers of addressing often proves a biager problems for

concept 1s also called rath addressinge. Oisadvantages are

* ' the need for the source to maintain connectivity in-

’ formatione and the variation of a given destination®s "name"

I |. (consisting of the route) depending on the Location of the
[source.

Extensibility s the ability to add new users (addresses) to

.- : the system. To add new users at an existinag Level of the

address spaces sufficient room must be availabte in address

Georaia Institute of Technology IPC Wworkshop

-

Section 3 ADDRESSINGe NAMINGe and SECURITY Page 26

example replacing a user by a network of many userse If the
hierarchy 1s fixed (eesQes <net/locald)y then the bottom
"leaves" of the addressing tree cannot be replaced by sub-
trcess In this cases addressing must be used to deal with
networks outside the fixed hierarchys This {s a serious
problem with attachment of private networks to public data
networkse

Interconnectina two previously independent systems is an im-
portant subcase of extensibility. ALL the users of one
system can be given new addresses in the other system §f
such widespread changes are acceptable. Alternativelys some
unused local addresses in each of the systems may be mapped
into addresses in the other system if only a Limited number
of users must be accessable. Finallysy 1f the addressing
hierarchy 1{is extensiblesy one system can be attached as a
subtree of the othery or both can be made subtrees of a
hiaoher levele

Se4.3 Gordon
Addressing & Security

by

Robert L. Gordon
PR1IME Computers

An extremely important aspect of interprocess communication
ifs the scheme used for addressing and namina the processes
and communication paths usede The importance of this sub-
ject stems from the fact that in any addressing scheme
protection and control mechanisms are explicitly or 4dm-
plicitly present and either aid or hinder the users ability
to share objectse Many current systems have inadecuate
facilities for fdentifyina names and controlling access to
the processes within the same hoste let alone for processes
residing on other hostse Part of the problem stems from an
inconsistent view of the relationship between the names and
uses of filess devicess processesy usersy mailboxesy generic
and specific system serviceses The uttlity of abstractino
many of the above objects as processes has increased the im-
portance of "process naming" and "orocess addressing®™ in
overall system desiane Therefore until these basic dssues
are settled the destign of specific interprocess communica-
tion primftives is difficult since they cannot focus on the
fundamental objects that they will be dealing with,

Georgia Institute of Technoloay IPC workshop

—
prp—1

Section 3 ADDRESSINGe NAMINGy and SECURITY Page 27

Fault Tolerance & Security
by

Robert L. Gordon
PR1ME Computers

Any communication {s inherently an error pronec process due
to both the natural distortion of the medium and the contex-
tual requirements needed for 1{interpreting the transmitted
messagee In attempting to design robust interprocess com-
munication primitives one of the more difficult tasks is the
defining and handling of the many (natural) errors that can

occure Control of communication mechanisms between proces-
ses fundamentally depends on how the designer envisions
process relationships. If process relationships are tree

structureds then the status and control of a processes® com~-
munication with other processes might be monitored ang
controlled by the parente 0On the other hand 1f each process
wants to maintain the concept of soverefgnty then the basic
challenge is either how to provide the ability for cooperat-
ing processes to establish a monitor process that is capatle
of controlling the communication paths between the proces-
sese or how to build 1into the communication primitives
mechanisms for the detection of and recovery from errorse
Since error recovery must make assumptions about Lines of
authority and responsibility between system componentss many
of the issues associated with system security are pertinent
to this discussione.

Se.4.4 Chesson
IPC Opinions

by

Ge Le Chesson
Bell Laboratories

Process Naming

Process namesy file namesy and I/0 strear names should
resicde Iin the same name spacees This avoids the tyranny of
the "access method®™ and attendant ®8ronlems of making a
program that can "talk" to anything in a system. One can
allow process names to be passed into processes in the same
way that file names and I/0 streams are passed arounde and
this n turn permits progress toward interactive command
processors that can set up araph-{ike structures of proces-
sesy file 1/09¢ and IPC streamse

Non=Quplication of Mechanisnm

Georqgia Institute of Technology IPC Wworkshop

Section 3 ADDRESSTINGs NAMINGs and SECURITY Page 28

A philosophy that has been proven many times over in
tanguage design may be stated as follows: it {s "bad" to
provide more than one mechanism for a particular operation
or functions This {1s a roundabout way of saying that there
are benefits to be gained by providina a single IPC
mechanism for use by "local" processess 1ece on the sare
machiney and "remote"™ processes on different machinese.

Transport Mechanism

It is fine to wuse shared objects (memorysy files) for
interprocess communications but 1t is important to hide this
facte The reason is that explicit sharing of objects 1is not
portable with respect to different machine and operating
system architectures and should be consicered a Locel op-
timization. Thusse IPC primitives at the compiler or operat-
iny system lLevel should appear as 1/0-Like idnterfaces that
imoly copying of data even if they do not actually copy data
on some systems.

IPC in Programming Languages

Most IPC proposals for inclusion in programming lanauages
amount to Little more than dnterfaces to subroutine
Librarics which a) cannot be inherfited by processes across
process fork operationss b) belong in the orerating system
anywayes and c) were done better by “urrounhs Corp in DCALGOL

10 years &0 The result of addginy IPC to o lanauage i¢
analoaous anc about as useful as the notion of a file systenm
in Pascale. 45 representation of the funcdamentals of IPC that

helonais more to the orogrammina language realin thanm the
operatina system realm has yet to be demonstrateds and woul?3
Fill & much=neecea aape

Hardwarg

There are applications for which IPC bandwidths must ap-
proach or exceed disk speedse It 4s clear that such per-
formance cannot be obtained with software (or even firmware)
alones Although there may not be much interest in this sort
of thing at the IPC workshope I have been working toward
hardware and firmware implementations of my software
mechanisms,

Elow Control

Ipc mecharism need flow controle. 1t ¥s better to have a
scheme where the sender selfblocks than schemes which depend
on "stoop" messiaes from the recejvere For most oapplications
the sctheme used in UNIX for pipes and other things would
serm to work well: the sender blocks (sleeps) on a queue

Georgia Institute cf Technology IPC Workshop

Section 3 ADDRESSINGs NAMINGs and SECURITY Page 29

length upper Limit and s awakened when the oqueue drains
below a Lower Limite There exists a timeout call which can
wake the writer if the queue drains too slowly or is other-
wise delayede An additional non-blocking mechanism has been
built 1into the mpx software (see section 7.7) which is
useful 1n those few cases where blocking cannot be tolerated
-- network servers and the like. This avoids the problems
that occur with varying process and communication delays or
Loss of control messagess

Synchronization

Cognoscienti agree that message=-passing IPC schemes are
equivaient 4n "power" to schemes which employ shared objects
although the message schemes seem "harder". This has not
been proved or disproved mathematicallys although there s
substanttial empirical evidence that pairs of processes can
be synchronized by exchanging messagese.

Food for Thought

I submit that it is seductively easy to synchronize process
pairse but that strategies are needed for synchronizing
groups of process2s in various wayse. Is {t reasonable to
set wup "overseer" processes that arbitrate and synchronize
thingse or are there better ways that can be proven correct?
For some thinagss Like call-processing in my network I use
overseer proctesses because they reduce complexity and can be
made reasonably efficient. For other thingss Like synch-
ronizing a process group carrying out a3 paraltlet com-
putationsy 1 would try to eliminate the Deus ex machina and
use direct process to process methodse.

—— — — o - s

It is important to demonstrate univeral IPC {ddeas and to
distinaguish Local optimizations and special cases within the
universal modela. One would hope that a suitable IPC model
could be used with protable operating system icdeas to bring
up compatible IPC mechanisms on dissimilar machines. Sec-
tion 7.7 on Data Communications Software outlines some {fdeas
that have heen partially demonstrated to have portability
oropertiess

Georala Institute of Technology IPC Workshop

Section

4

INTERPROCESS SYNCHRONIZATION

SECTION 4

INTERPROCESS SYNCHRONIZATION

4.1 YORKING GROUP SUMMARY REPQRT

4.1.1 Statement of Lhe Problem

1) Synchronization vie explicit communication (messages).
2) No global memorys
3) System-wide control with only dinaccurate/incomplete in-

formation
procedures

on the system states
data or hardwaree.

without any centralized

4) Transit delays are: variables wunprecdictables unboun-
dede
5) Losse errory desequencings duplicatee.
6) Other fadilures (processors)e.
4.1.2 Solutien Space
SOLUTION SPACE
=-=>1 | | | | |==>
| S |====m=een- [|=m==eeeea- IR |
==>|___I | | | L
| |
— | ! —_—
-=>| i | | | |==>
| S |=====em=-- | |===o======| R |
el P | | | |l ==
| |
[' l L]
o | W | - .
. |) |
| |
— { | —
==>| | i | | |==>
| S |=====me=- all |====e=====| R |
== | | i o ==>

GENERAL CONFIGURATION (LOGICAL?
FOR A SINGLE SET OF MESSAGES

Georgia Institute of Technoloay

IPC Workshop

. : : L e S S A N 3 i T Y SIS o S A NI 1,

.
Section 4 INTERPROCESS SYNCHRONIZATION Page 31
MOTIYATIONS:
1) Distributed servicee
2) Survive sender/receiver failurese
3) Non=-technical reasonse
4) Modularity (growthe see)de
¢ 5) Performancese.
'
. . CONFIGURATIQNS:
a) *"Single Sender / Single Receiver"
. Single Path Signalling
I End-to-end Synchronization
(Used to achieve flow control for example)
)
& b) Single Sender / Multiple Recelivers

Multiple Path Signalling

PROCESSING AT

| |

| RECEIVERS |

I |

| | |

| IDENe | DIFF. |

| | |

| { | |

MESSAGE | IDENe | 1 | 2 |
| | |]

| | { {

CONTENT | DIFFe | 3 | 4 |
| | | |

(1) Pure broadcasting in a fully replicated system.

(2) Pure broadcasting in a heterogeneous replicated
data basee.

(3) Transaction processing 4in a homogenous
(replicated?) system.

(4) Transaction processing in a heterogeneous
replicated data base.

OBJECTIVE:? To maintain a unique orderinc of {ncoming
messages for all receivers (whether initially
fortuitous or enforced)e.

Georagta Institute of Technology IPC Workshop

d)

Section 4 INTERPROCESS SYNCHRONIZATION Page 32

Multiple Senders 7/ Single Receiver

Multiole Path Signalling

0ORJECTIVE:? Reveal/Cause/Express relationships between
incoming messages belonging to different flowse

Multiple Senders /7 Multiple Recelivers
#ultiple Path Signalling

1) Fully reolicated systems
same obJjective as (b)

2) Partioned systems
same objective as (c)
3) Mixed systems

same objective as (b) for dynamically changing
subsets of receivers plus the same objective as
(c)

4.1.3 Some Existing Solutions

a) Logical Clocks: L. Lamport
To implement a sequential (T. Ordes) processing 1in a
) distributed manner (each process has an image of "The
Lf) Waiting Queue™) - may be used to achieve mutual ex-~
clusione
! b) Physical Clocks: Le. Lamport
How to implement Llooical clocks on a set of physical
clocks (unique physical time framede.
c) Logical Clocks plus Voting: Re Thomas
How to resolve conflicts hetween
simultaneous/concurrent processes competing for
identical resources (fully replicated systems).
d) Eventcountsy Sequencers: Reed/Kanod{ia
To observe (READy AWAIT) or to express the occurence of
some event (ADVANCE) - to serdalize eventse.
e) Circulating Token: Ge. Le Lann
- Without tickets
To achieve mutual exclusion.
- With tickets
To serifalizesy to express relationships
between events
f) Some "naive"™ or Less general solutions:
- Shared variables: Eo Dijkstra
. - Monftors and Messages: Ps PBrinch=Hansen
¥
l.
. -
1 . Georgia Institute of Technology IPC Workshop

JY

Section 4 INTERPROCESS SYNCHRONIZATION

4.1.4 Attributes

a) Response time.
b) Overheads (traffics processinges storage)de.

Page 33

c) Extensibility (is full connectivity requireds global

knowledge of the system statuse ocesde

d) Deterministic synchronization / probabitlistic synch=~

ronization / convergence.
e) Fault tolerancee.

- Detection,

- Recoverye.

) Simplicity (correctness proving, implementabit ity

headachesy ooede

4.1.5 Qther lssues

a) Effects of probabilistic synchronization.
b) System considerations:
- Hard/soft partitioninge.
- Application processing / system
partioninge.
c) Evaluation of solutions with respect to
- Attribute spacee.
- Problem spacee
d) Policies (fairnessy enforced priorfties).
e) Adequacy to resource management,
f) Classification of solutionse

Georgia Institute of Technology

processing

1PC Workshop

Section 4 INTERPROCESS SYNCHRONIZATION Page 34

4.2 POSITION BAPERS

4201 Lee

Interprocess Synchronization
by

Edward Y. Se Lee
TRW Defense and Space System Group

My dnterest 1in IPC 4s mainly connected with update synch~
ronization in redundant distributed data bases (DDR). The
protocols developed for IPC must be viable and be able to
satisfy the following major requirements for DDB operations:

1) Performance (response time)

2) Efficiency

3) Peadlock prevention

4) Error recovery (surviving errors and faults
and continue operation)

5) Security

Recent state-of-the-art developments {n this area can be
divided in two major categories:

1) Frotocols assocfated with a centralized
control approach CALSB 76¢ BADA 784 ELLI 77,
ESWA 769 ROTH 771

2) Protocols relyirg on distributed control
CGRAP 769 JOHN 759 ROTH TT7e STON 78y THOM 7712

Howevery most of the oprotocols do not 4nclude secrious
considerations of interprocessor communications but rather
take the approach that some kind of messages can be passed
amona the distributed processors for communication and Llet
someone else to worry about {t.

There are considerable difficulties in taking this kind of
approach in a Loosely coupled distributed system. Because
IPC {1s the Life Line of the systemy it is needed for the
distributed control (operating system)ey distributed data
base operationes recovery of the system as well as the DDB
under fail-soft and fail=-safe conditions and reconfiquration
of the network when one or more processors are digabled.
ALL these essential functions of a distributed system demand
effictent and fail-safe IPC mechanisms.

Georgia Institute of Technology IPC Workshoo

Section &

INTERPROCESS SYNCHRONIZATION Page 35

The second obstacle is the Lack of evaluation criteria and

methodologties to test and measure?

1)
2)
3)
4)

[Ty
”

Performance
Efficiency
validity
Verfiability

of any protocol that is being proposed as the best protocol

for 0DB.

There are some efforts present in this area [GARC

78¢ SUNS 763y but a Lot more work will be requirede.

In a practical systemo it 1s very Likely that a mix of

several

protocols will be wused for updating redundant

distributed data bases depending on the specific situation
and requirement. Howevery it should be possible to have a
unified approach to IPC for all protocolse. Additional
research in this area is needed.

Georgia Institute of Technology

IPC Workshop

MECHANISMS

Section §

SECTION 5

MECHANISMS === JMPLEMENTATIONs UTILIZATIONs and PERFORMANCE

Se1 WORKING GROUP SUMMARY REPORI

Interesting lssues Not Discussed

Data Interface to program not resolved
Control interface to program

*To poll or not to poll"®

Eventss interruptse on-conditions

Mechanisms

Signals

Events

Semaphores

Shared Memory
Monitors

Message Queues
Pipes

Ports

Full Duplex Streams
Virtual Procedure Calls -

IPC Workshop

Georgia Institute of Technology

Section S MECHANISMS Page 37 #

Sharacteristics of the Hechanisas b

. SHARED OBJECTS
I EXPLICIT DATA MOVEMENT
|
h } | EVENT OPERATING BY
| |
. X | | | PROCESS CREATION
K ' { | } | SIDE EFFECTS
| | |
. | | | (| EASE OF DISTRIBUTED
{ | { 1 | IMPLEMENTATION
| | | | |
=Y Y Y Y | .
. | | | | | |
Signals i U | N | naj N | + |
| | | | | |
| | | | | |
Events | U | N | na | N | + |
| | | | | |
4 | | | | | |
* Semaphores ! S t N | nsa | N | = |
’ | | | | | |
| { | i | {
1 . Shared Memory { S | N |} S/R| N | - |
f | | l | | I
' | | | | | |
Monitors I s | Y | R | N | 0 |
] [[[| I
| | | | | |
Message Queues] S/ZU | Y IS/R/T) Y | + |
| | | | | |
| | |]) J
Pipes i U | Y | na| N | =+ |
| | | | | |
| | | | | |
Ports | SZU] Y | na | N | + |
| | | | | |
i (| { | |
Full Duplex Streanms | v I Y | R | N | + |
I | | | { |
1 | | | l | |
Virtual Precedure Calls | U | Y | T | Y | <+ |
i | | [[| [
) S = Shared S = Sender
|. U = Unshared R = Receiver
T = Transport
i . Mechanism
na = not applicable
. B Y ~

‘ Georgia Institute of Technology IPC Workshop

e,

Section S MECHANISMS

Qesirable Qualities of Mechanisms

Performance

Randwidth

Delay
Provabtility

Correctness of use

Correctness of implementation
Security
Transparency

Naming

Location (Physical)

Environment (Logical)
Separation of control from data
Complete and small set of primitives
Fault tolerance

Encapsulation

Detection

Recovery

Size of fault set covered

NOTES: The priorities used to weight these desirable
qualities
depend on:
- Application
- Level
- Environment

Georgia Institute of Technology I1PC Workshop

— o o Q [=]
—— —————— —— — ———— — f (3} (8 (8} (= -~ - [=) o ~ -~
" (8] (8] (5] (8]
" —— ————— — ——————— —— ————————— ——— —— ——— ——
®
WP e S - ——— — — S ———
[+ o 8
» -) . - —————— — —— ————— ———— —— —————————
-’ O
@ Q) v o e o e —— ——— ——— o ——— -] *] 'Y '] [
o L 6)
L] o0 . — — —— — — —————————— ———————— —— ———— ——
a a3 ™
Q O b " o s e - —— ———— > ' + L) + L g *]
LL o)
>0 - —— —— ——— — —t— ———— ——————— —————— —— —
~ 0C
R T I - Rl oy D —— -
N O)
o ! — o ———————— ——— ——— ——— — ————— —t—t— — — —
L o C
- b @ O e o e — v —— - + + * ' * * * + *
SJ OCwwr
0O L O " - —— — ——— —————— ——————— — o — ————
utOeoe
td -t N e — — ————— -0 o (8]] * * * * *
[- 2 |
oewn i — . ———— ————————— —— ———— —————— - —— ——— ——— —
QN C
© @ ¥ O = = e oo o= — | o L L L) * * * * +*
W e |
(7, u CoO+1 — ———— —— ———— —— —— —— —— ————— — — —— —————— —
x Ww o~
(7] [I S o o Q (=] o o
- O C e - - < - - -« - * * * L
r 4 Aol
P - OB\ ——— . G — — — ———— — — ——— ———— ———— — —— ——— —
x QU C o~
Q = o C (=] o [=] (=] o o
W O ® t O v emwn e - < L ¢ L L 4 + * * -
x Qe |
o DM ——— —— —— —— ———— —— — — ——————— ——————————
VO C B~
PNW O O o= = 1 [* 1 * L 4 *
—aw OC
» O - | A S ST G S G SEu S — — — e G G G G I S SIS e G D S G G G
* b rw B
B4+ O 0 4 = P] [}] [} + * * * *
- CECnZ2w)
aove.c 3 ™
B O N U P
aAatoveo~ 1
O R CU ad || e o e e e e e - - —— - G— — — —— ————— — -
cae - o
[F- x
. -« C® e C [J []
3 0 -osAQa >6 [-t [
“. 0 [- 2N] [[] o [
c - C o b @ (-} [[1)] - D
o [a o -t [£ T ™ o -] oS [-]
-~ - - Q &> Q [I +» LN] [] [] [Joen
+* - (9 [c < [S .) - “w 3 L4 +~ - © >~ Q-
. (3] ® o [] & LR] c ”® o Q e - b & O
f [1 a - > [) £ o o ® J - o D« - L &
; (7] (7] W ") [4 x o o o w v >0 0
i
p 7
’ . ’ - - »
[
. . .

IPC MWorkshop

Control only

c

Addressing
Mechanism
Dependent

AD
Georgia Institute of Technology

a—

Section 5 MECHANISMS

comments on Mechanism Qualities

1) A functionally complete 1PC

. mechanism requires both data and
control capabilities

2) ALl were considered to be “"basic"

mechanisms => No embellishments to
improve desirable programs
3) Thus ability to recover from faults
depends on implementation i
4) Another trade - Bandwidth VSe
status consistency

5) Perceived hierarchy (in mechanism ,
. List) :
6) Omissions |

- Broadcasts
- Addressina
-« IPC mechanisms 2?7

m A desian exercise to try to over-
come Hatgh in table would be
fnteresting === Also table comple-
tion
L
’ PROZLENS
1) Migration of applications from
centralized to distributed en~-
vironment
2) Not enough known about these
mechanisms:
- Complexity of IMPL
- Size of IMPL
- Efficiency of IMPL
- Useful hardware assists
3 Common understanding of all
mechanisms
- NDictionary
4) Lack of a number of implementations
5) Cost /7 time / complexity
6) Premature standardization
IR) Difficulty of modifying / ex~-
perimenting with hardware support
devices
8) Premature vendor mechanism selec~- y
. tion
N 9) Compatibility ;
l. - Obstacle
- Objective l
) 19) Evaluation criteria)
11) Papers don®*t tell reasons for
- designs (some designs based on few
examples) :
12) Definiftions of universes
‘1 b Georanla Institute of Technology I1PC Workshop 't
‘ .
p‘ L

—
-

Section 5

Research Questions:

1)

2)

3)
4)

5)

£)

IR

g)

9)
10)

Georgla Institute of Technology

MECHANISMS Page 41

Identify collections of primitives
for

- Easy programmer understandinag

- Efficiency

- Mateh to application

(Answer probably depends on en-
vironment)

Fault Tolerance of 1IPC mechanisms
not well understood

Trade =-- User or IPC mechanism?

How much must wuser be aware of
process creation/existence?

How should responsibility be
distributed? Visibility of fault
responsibility.

How to decouple bindings:

- Modules to qraph

- Process to nodes

- Resources to processes

What set of IPC mechanisms is

- £3asy to use

- Complete

- Efficient

Refine virtual procedure catdl
mechanisme

Tools for top=-down design

How to select architectures from
option criteria

How to decompose applications

IPC Workshop

]

Section S MECHANISMS Page 42

Se2 AMPLIFYING MATERIAL

Se2.1 Prepared Ry the ¥orking Sroup

An attempt was made to define "a set of primitives that alL-
lows an application software engineer to design the best
solution for his probleme" It was quickly realized that
this is not an easy task. Some of the issues {involved are:

1) Some applications require highly reliable
IPCy while in othersy communicated dinforma-
tion becomes useless after a certain pertod
of times A single set of primitives to {im-
plement IPC may not solve both types of
problems,

2) Should IPC primitives be operating systenm
services or shoulc IPC constructs be parts ot
various programming Llangquages? A relevant
reference to this Latter oproposal may be
found in [HOAR 781,

At this pointy 1t was felt that it was necessary to outtline
the hierarchy of tevels at which IPC mechanisms can be 4n-
vokedes For each levels we attempted to describe those ob-
jects which may be manipulated and those 1IPC operations
which may be performed on each objecty 1f any,.

Hierarchy of Levels

Command Level

High Level Languages
Operating System
Instruction Level
Microcode Level
Hardware Level

The description of objects and IPC operations can be
enumerated for three different situations:

1) Accepted practice - those commercially
avaflable
2) State of the art - current practices of

researchers in the field
3] Wish List

Enumeration of Quantities for Accepted Practice

Compang Level:

Georgia Institute of Technology IPC Workshop

Section 5 MECHANISMS Page 43

objects - processey filey Links devices programe
task graphs directory

IPC operations =

files: file Locks (control functtion)
pipes

processes: create
delete
link via a pipe
suspend
resume
status

Links: <creation
temporary files
Link management in DEMOS

Reference: [BASK 772.

Note: Though not all types of objects are availa -e on many
systemss some of them can be wused to emulate those
capabilities which are unavailable. For examples tem-
porary files are used in UNIX to emulate pipese.

High Leyel Languages:

objects -~ typed objects (integersy realsy charactersy etce)

semaphore

monitors

events

ports

shared common (typed objects)

Except for the use of shar < typed objects (via global com-~
mon areas)s current languagyes commonly available do not use
the other objects for IPC (eeges PL/I)e Almost dnvartiablys
onc must drop into a runtime (ibrary routine or to the
operatina system to perform IPC functionse.

PL/1 is most progressive

Alaol 68 provides some capabilities

APL supports shared varfables

Miscellaneous notes:

There was some discussion concerning the two types of com=
monly used IPC mechantsms: message-oriented vse procedure-
oriented (monitor)s A good reference to this area is [LAUE
7913

Georgia Institute of Technology IPC Workshop

Section 5 MECHANISMS

Se2.2 Prepared by Peebles

S5e2¢2¢1 Introduction and Explanation

The IPC mechanisms described here are known as ‘“primitive"
for several reasonss they are primitive in the sense that
they are Llow-lLevel ©builaing blocks from which more
sophisticated forms of IPC <can be buflts they are mostly
ortented towards two-party communications the simplest cases
and they are mostly derived from existing uniprocessor
s,;stemse .

5¢2e2+.2 Desirable Properties

It is fairly easy to List some desirable properties that any
fnterprocess communication mechnisms should have?

Performance =-- In terms of bandwidth and also
delays We would Like mechanisms with a
minimum of overheady 1in order to maximize
performances THis should note of <courses

reduce functionality.

Provabilijty =-- A desirable property for any IPC
mechanism should be that it (end dtself to
the wverification of systems which are built
up using processess

Secyrity =-- By this we mean protection of two com-
municating parties from one anothery and also
with respect to third partiess 1in terms of
leakage and interferencee.

Transparency == This refers back to the issues of
naming and Llocation. The users of an
interprocess communication mechanism sdhould
not have to deal with that mechnism at other
than the advertised Levelsy nor should they
have to be aware of the details of its 4im-
plementatione.

Separation of Data and Conirol -- It may or may
not be a good property of an IPC mechanism to
contain elements of both data and control.
In some 4implementationss data and control
(signal) transfer from sender to receiver are
carried out 4n the same operation. Separate
data and control transfer operations cans of
coursey be combined in higher-tevel non-
primitive interprocess communication
operationse.

completeness and Smallpess =- Interprocess com-

Georaia Institute of Technology IPC Workshop

Section 5 MECHANISMS Page 45

municetion primitives should certainly be
completey 1n the sense that one should be
able to do any operation which is valid in
the given system without d{ntroducing new
primitive operationse. It 4is not so clear
that they shoutd be smally consistentsy of
courses with performance.

Fault JTolerance <--This Lleads to the concepts of
encapsulation and recoverye In order to
achifeve fault tolerancey an operation should]
fulfitl the following conditions:

faults should be detected.
faults should be handled at the
appropriate Llevely and not simply
passed back wupwards towards the
users
faults generated at a lower Level
should not terminate a user ses-
sione. Insteady they should be
recovered at a Llevel <close to
that at which they occurrede.
in interprocess communications {f
data or control transfer failsy
4t may be sufficient to 4nform
the senders ory in some critical 1
applicationse it may be necessary
to inform both the sender and the
recefver that some message or
control signal did not get
throughe

s

The concept of encapsulation suaggestes the
enforced localization of errorse so that an
error in the communication between two proc-
cessors can have no effect on any otherse.
The concept of recovery suggests that
whatever errors do not occur are cleaned up
in such a8 way that a consistent system state
is restoredy and that unresolved error states
are not simply passed wup the lines Error
messages of the form:
SURNETWORK ERROR - PLEASE LOG IN AGAIN

should never occure.

Cost -- The concept of cost ¥s very difficult to
define exhaustivelyy but one can sugnest some 1
kinds of cost which can be {ncurred:

- implementation
- performance
- appltication flexibility

Note that 4n the evaltuation of primitive mechanisms given in
sectfion 5.1 we assume a fafirly standard implementation. The
properties above <c¢learly depend in part on implementation

| Georgia Instttute of Technology IPC Workshop

. - P - "
WO . — - i - sEn!ulll-u-u--‘i

Section S MECHANISMS Page 46

and we cannot give any hard and fast rulese

562e2¢3 IPC Taxonomy

One of the most obvious dimensions along which to
differentiate IPC mechanism 1{is whether they are message-
based or note Mechanisms canes of coursey be data-transfer
baseds without being message-based.

Examples: Pipessy portsy full-duplex streamse.

S5e2e2e341 Non=mgssagez=based IPC
These are clearly the IPC mechnisms favored 1in those

distributed systems which are themselves not message-based.
Instead of messagesy these depend on a variety of communica-
tion mechanisms?

1) Signals
Signals are process finterruptss which can
arrive with or without accompanying type 4n-
formatione and perhaps the identifier of the
originatore # signal may cause a transfer of
control 1inside the receiver oprocesssy and
there may be enable/disable mechanismsy
analogous to those for hardware interruptse.

2) Events
An gvent 1s a state variables One should be
able to test 1t and set 1t. It should be
possible to implement a wait on the event by
means of a test in a loop.

3) Semaphores
A semaphore 1is a storage cell with an as-
sociated queue of processesy and with two
operationss wailt and signal (no relation to
signals in section 3+2¢1.1) which have side
effectse

4) Shared Memory
Shared memory consists of data cells which
are accessible to sending and to receving
processess perhaps with an associated access
discipline which 1is designed to avoid
crittical section problems 1{in accessing the
shared resource,

%) Ports
Ports are input/output channels belonging to
processess Ports 4n corresponding processes

can be connected together by Links to form
communiccation channels.
6) Full Duplex Streanms

A full duplex stream is effectively a bi-
directional pipes In place of 2 sender and
receivers the processes at either end of the
full-duplex stream can both send and receivee.
Naturallye 4in order to achieve some measure
of synchronizations a read should suspend

Georgia Institute of Technology IPC Workshop

¥ Y

Section S MECHANISMS Page 47

until a corresponding write 1s executed at
the other end of the full duplex streams and i
. vice versa.

5e2e2¢3.2 Message-based 1PC

These are the IPC mechanisms which depend on messages }
between processess They can be further subdivided along the
following Lines:

. e Single send pl ==> p2

) 2) Single receive pl <== p2

3) Multiple send pl =-=> subset of P

4) Multiple receive pl <~- subset of P

Blocking and Non=blocking Primitives

A further way of subdividing 1{interprocess communication
primitives is on the tasis of whether they are blocking or
non-blocking 1in naturee. A Dlockipng primitive 1s one which
causes its 1invoking process to be suspended wuntil the
primitive operation {s completede Thuse after invoking a
blocking recefves a process will suspend (sleep) until some

S . . message does arrive.
f ' Distributed systems have been implemented with blockinag
send/recetves with blocking send and non-blocking receivey
3) and with non-blocking send/receive.
Yirtual Procedure Calls
Virtual procedure calls ccan be viewd as a highly stylized
form of message passing but entail a aqreat deal more
semanticse They are used in support of an object model -~
s processes access objects and objects are controlled by other
‘ processese IPC consists of one process invoking a function
' on an object and another process executing that function.
S5e26243¢3 Higher=level Meghanisms
There are also higher-Level mechanisms which can be produced
using the primitive operations as building blockse For
i instancey one frequently encounters virtual circuits built
on message passing combined with signalling.
S5e2e2¢4 References
, The following references may be helpful in explaining the
| specific IPC concepts identified: 1
. il
{
. 1) Semaphoress Sianalssy Eventse Monitorse Pipes: ,
[HOLT 78b1) :
.) 2) Virtual Procedure Calls:
' o {HAMI nd]
- 3) Message Passing Operating Systems:
» [MANN 77)

| Georgia Institute of Technology IPC Workshop

Section S

4)

Georgta Institute of Technology

MECHANISMS

Message Passing versus Procedure Calls:
CLAVE 79]

IPC Workshop 1

Page 48

Section 5 MECHANISMS _ Page 49

5.3 POSITION PAPERS

5.3.1 Peebles
PROGRAMMING ISSUES

by

Richard Peebles
Digital Equipment Corporation

Relialous Issues

A Programmer®s environment (languagey operating system ser-
vices and model of process structure) tends to be a
religfous issuee. My religion calls for the simplest pos-
sible environment by providing a set of "orthogonal basis
vectors®" for programminge The result is a set of primitives
that allows an application software engineer to design the
best solution for his probleme Orthogonality of software
tools means that one pteces or primitives does not preempt
design choices for ¢the otherse This is to be contrasted
with another approach to simplicity which preempts almost
all choicese.

In additions my religion calls for the removal of
representational irrelevancies to the highest degree pos-
siblee. As a consequences the underlying process structure

is not visible at all to most programmerse nor {is the
distributed nature of the machine that implements his ap~-
plicatione.

The difficult part of religion 1s applying 4t to our daily
Lives. Just what are these primitives; what makes an
orthogonal set3 can we find & set of "basis vectors"?
Furthermores can we reasonably expect to hide the process
and machine structure from programmers? In my views most
research in distributed systems {is (should be) aimed at ans-
wering these questions.

Consiraints on IPC Mechoanism

The above goals for the programming environment impose
several constraints on the IPC mechanisme First 4§t should
be Location independente The same mechanism should be used
for both 4dinter-host and 4ntra-host communicatione. This
means ¢that a programming decision does not preempt a
process-loc.tion decision and vice-versas A more difficult
question 4s whether the IPC mechanism should be visible as
such to the proarammer. It is possible to provide him with
an extended machine in which IPC appears as the application

Georgia Institute of Technology IPC Workshop

— - . e -~

| - o

_anb

-_— T T T

Section 5 MECHANISMS Page 50

of an operator to an operand; this is the approach taken in
our experimental WEB system. It 1s a simple matter to
construct both datagram and virtual circuft abstractions
with this mechanism 41f “"communicating processes™ 1is a
relevant abstractions It 1s considerably more difficult to
provide the operator/operand abstraction mechanism than a
simple send/receive mechanism$ particularty i1f abstractions

State of the Art

In vendor-implemented products neither location transparency
nor process structure transparency 1s wusually providedes
Research systems haves for the most parte made IPC an ex~
plicitly separate concept among other abstract extensions of
the operating systemes The WEB operator-invocation architec~
ture 1s seeking to provide a single mechanism that will ser-
ve as a general basis for "operating system" and user func-
tions - they are not distinguishable. It ise howevery only
in the final stages of design - about to be implemented.

Obstacles

The most siognificant obstacle to providing an IPC mechanism
that least perturbs the programming interface is historical
artifacte. Finding a design that is fdeal and that allows
reasonably simple migration of customer applications 1s a
hard problem, Wwe may be forced to throw up our hands and
call on users to swallow yet another conversion effort.
Will we do 1t again in 1988 when distributed systems go out
of vogque? Hence my strong belief in the need for process
and machine structure independence of IPC. Early standards
will be a hindrance to this but may be inevitable given the
state of the art and user impatience to builde If that s
acceptedy the next biggest obstacles are thin wires and
different architecturese Hiding the network structure is
hard when physical Links are under 100K bpse Then too there
is the problem of the complexity of the WER abstraction ap-
proach =~ 1t¥s hard to understand.

Georgia Institute of Technology IPC Workshop

Section S MECHANISMS Page 51

5.3.2 Yallentine
PROGRAMMING ISSUES IN DISTRIBUTED SYSTEMS

by

Virg Hallentine
Kansas State University

Problem

The programmer in a distributed processing environment must
be provided with a set of facilities which permit easy
specification of the distributive properties of his/her
programe. The word program here is used to refer to edither
the output of a single compilation or the output of indepen-
dent compilations of proqgram modules which are to be com-
municating via an IPC. These distributive properties
include the specification of the concurrencys data flows
resource requirements {memorys devicesy etcedo andg
intraprogram (intermodule) protocol properties inherent in
the execution of a confiauration (system) of <cooperatina
software modules. Given a description of these propertiess
an operatinag system must he able to distribute the wuser®s
proaram across multiple machines 4n a manner which is
transparent to the programmere. Traditional approaches to
providing these facilities include the concurrency support
in high-level languages and the resource allocation anga
concurrency support in conventional operating systems,

Cyrrent Approaches

Several hfgh-level languages such as Concurrent Pascal [BRIN
771 and SP/K [HOLT 7831 have {incorporated the monitor [RRIN
73] (HOAR 741 concept to provide structured concurrencye.
This concept 1s excellent in a centralized system but relies
on shared data (and therefore shared memory)s and f{s
therefore not an appropriate concept on which to base a

distributed systems Howevere an effort is uncerway at the
National Physical Laboratory [DOWS 78] to distribute a
Concurrent Fascal program across Loosely coupled

microprocessorse The distribution of passive system com=
ponents (such as monitors) on disjoint machines implies many
cooy operations for parameters and also additional active
system components (processes) which do not appear {n the
program texte

A much more appropriate high=level Lanauage concept for
distributed programs 1{s nproposed by CeheRe Hoare in
reference [(HOAR 78]s Each function is a sequential process
which 1s connected to other communicating sequential proces~
ses via input/outpute This concurrency support is based on
data flow and not shared datas therefores it is not cepen=-
dent on shared memorye. As a resulte each function 1is
distributable. Howevery 1t seems that buffering of data
between processes is necessary to {improve operformance in

Georgia Institute of Technology IPC Workshop

Section 5 MECHANISMS Page 52

distributed systems with slow speed connectionse Since the .
compiler for such a language opresumably can generate the
resource requirements for the programe since processes are
. fdentified by namey and since the protocol between processes
is fixeds enough knowledge is available to distribute a set
of processes which are compiled togethere.

A second area of programmer concern for distribution occurs

because concurrent program functions (modules) may be

separately generated (compiled)e These may well be existing

programs or just separate functions based on programming
¢ stylee The interconnection of these modules into a program
is dynamic and therefore requires operating system supporte.
In early conventional operating systemsy the support for
combining these functions 1into a configuration of com-
municating concurrent software functions {s specified at
three Levelse Firste overlap of CPU and 1I/0 are made
avallable for standard I/0 file functions. Secondy added
concurrency 1s achieved only with unstructured (low=Level)
facilities for process creationy namings and communicatione.
Thirds complex job control Languages are provided to achieve
allocation of resources to9 run these functionse In a
distributed systeme these JCL steps must be synchronized
across machinese Complex resource control in a distributed .
. ’ system should certainly not be the programmer?®s
responsibility. This 1s alleviated by viewing distributed
operating systems and their executable programs as cooperat-
{na processeses A hightly successful system is the N
Distributed Computing System of Farber [FARB 73]s In this
systemsy the structure and distribution of the set of proces~-
ses Is transparent to the wuser; and a high Llevel of
concurrency 1{s achieved without use of Llow-level process
control primitives,

Process naming of cooperating processes is still burdensome
to the proarammer. The same problem also occurs in current
"“mailoox" schemes as epitomized by the VAX 11/780 system
{DEC 7713 The namina or numbering of mailboxes must be
known to the programmer or a creating processe. This 1s com=
monly referred to as the IPC-setup problems coined by tlliot
Oraanick in reference [ORGA 721]. The designers of UNIX
CTHOM 741 [RITC 781 sought to alleviate this problems They
tnvented the "pipes"™ In UNIX a user programe running in its
own processs may take the plLtace of a file in a manner which
is transparent to the original programe Each program may
have 1its standard 1{input and output files replaced by
programse thus building via the UNIX shell arbitrarily long

v Linear chains (a pipeline) of programses UNIX automatically

, transfers the data between processes and synchronizes the

\ process as 1t 1ntercepts the standard input and output file
L]

operationse

1" . Georgia Institute of Technoloqy IPC Workshop

Section 5 MECHANISMS Page 53

UNIX "pipes™ eliminate the need for process naming and treat
concurrencyes resource allocationy and inter-process protocol
as a data flow probleme Interprocess protocols are treated
simply as simplex data streamse The Job control Llanguage
provided by the UNIX shell becomes a pseudo data flow
Language and resource allocation 1is transparent to the
programmere. Howevery there are a considerable number of
programmer protocols which are not served by "pipeso" As
acknowledged 4n reference [RITC 781y "pipes" cannot be used
to construct multi-server subsystems,

UNIX will support generat interprocess communication
protocols but these are not generated by the shells These
can be programmed as a set of child processes whose "pipes"®
have been setup by a parent processe.

A Research Direction

If we are to be successful in distributing programs across
highly distributed systemss we must provide the oprogrammer
of dynamically dnterconnected <cooperating nrocesses a Jjob
controtl lanouage (software configuratton control) as easy to
use as Hoare®s communicating sequential processess It seems
that the most promising direction is to extend the <concept
of the UNIX shell to automatically generate the more complex
protocols available to the parent processes previously
describeds It must then also be extended to generate
(representations of) distributable configurations of com-
municating processese

Wwork in this area is underway at Kansas State University.
The project* fnvolves development of a Network Adaptable
Executive (NADEX)LYQUN 79]e The attempt is to permit the
user to specify data flow at the command lLevel and have the
command interpreter generate a distributable software con-
figuration of nodes connected by full duplex data transfer
stream connections (DTS connections) to form an wundirected
graphe In generals a node may be thought of as a processe
Fach of the connections consists of two d{ndependent bi-
directional data transfer streams. Onec of these streams
uses small parameters whilLe the other uses a standard-sized
data buffer, The data buffers carry along with them size
and status indicators whereas the parameter buffers contain
only a small amount of user-supplied data.

A wuser program running in a node performs serial buffered
READ and WRITE operations in 4ts various <connectionse. The
connections are numberedy and the proaram attaches
particular meanings and implements particular protocols tor
each of 1{1ts connectionse A connection can connect a nodge
efither to a user program or to o system process used to ac-
cess a file or an I/0 devices The program cannot tell the
difference between these modes of operation. This <clearly
provides all of the power of the UNIX pipelines while remov-
{na the linearity constraint on the structure of the connec-

Georqgia Institute of Technology IPC Workshop

fonkiodnid g S IURIEAS S M e TR vt Sl i e o

Section § MECHANISMS Page 54

tion graph. Alsos the connections are bi-directional so
thate for exampley 2 write-request/read-response protocol to
access a random file can be implementede.

For these sertal buffered READ and WRITE operationsy a
oriory protocol knowledge can be specified to the underlying
data flow 1implementation (buffer control) to enable it to
maintatn a check for validity of user protocol (in terms of
data flow) during execution. This protocol checking 1is
critical in "un-debugged®™ (user-written) nodes. Examples of
such protocol violations occur many times in the facitities
of SOLO (BRIN 761, Deadlock detection is also performed
based on data flow in a configuration which is distributed
across machines connected by a network IPCe Multiserver
subsystemsy such as a8 data base management systemy are 1im-
plementable as a configuration with multi-connection READ
(multiple condition WAITs) and conditional WRITE operations
provided on data transfer streamse. Interconfiguration con-
nections are also provided. Finallyo the command
interpreter and the node interface (PREFIX) provide all the
mappinc of Logical data streams (ports) onto implementation
data streamse

* Supported in part by the Army Research O0ffice under Grant
Number P=16160-A=-ElL.

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 55

SECTION 6

THEORETICAL WORK

6.1 MORKING GROUP SIYDY REPORY

STRUCTURE of Discussion:
Distributed system without central (or any) control
Free ranaings undirected (no standards)
Principlesy not mechanisms
Theorys not formalism
Independent of Technology
Nutline: Target drawn arocund arrows

WHAT IS A DISTRIBUTED SYSTEM?
A distributed system is one in which the <communication
of data between processes takes a significant amount of
time compared to the time needed to execute one step of
a processe

Exagmplel PDP.10

SPECIFICATION

(Note: Numbers 4{n parentheses are "pointers™ to am-
plifytng material in paragraph 6e2.)

t A specification is that which Lets one
e if a running system s behaving correctlye.

State-free Methods
Applicative programming (6e2e1el)
Teletype paradigm (6.2e1.2)
Observable I/0 behavior (6¢2¢143)
State~based Methods (6e2ele4)
State graphs (6e201e9)
Critical sections (6e¢2¢143)
Problems
Avoid explicit state description (6e2el1le6)
How to specify complex systems (6¢2e1e7)

MOQELS

Retinition: A model exhibits the properties of an im-
plementation

MODELS CONSIDERED (Procedures and Files)
General test and set model (6e2¢241)
31t transmission model (6e2e242)
Interpretive model (6¢2¢243)

OTHER MODELS (6e2e2¢4)

Actor- induction

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 56

LISP .
etce i

RELEVANCE OF MODELS (6e2e2¢5)

* PROBLEM AREAS (662e2e6) .
Exfstence of sitngle basic model
ANALYSIS

Inferring a system®s behavioral properties

Formal proofs of correctness (6e2e3ely Gelelels
6e2e¢343)

Fault tolerance (6e2e3e¢4)
Performance
. MYeasurements (6e203+5)
Complexity
Space (6e2e366)
Time (60203.7)
* Data transfer (6e2¢3¢8)
Simutation/emulation (6e2e¢349)
Problems (6¢2e345)
Trade-off techniques
2elevance of models

Geornia Institute of Technology IPC Workshop

" C o b

Section 6 THEORETICAL WORK Page 57

6.2 AMPLIEYING MATERIAL
-

6.2.1 Specification

6e2e1s1 Applicative Programming

Wwant to represent a system as composition of side-effect-
free functionse.

Can extend a "pure" applicative programming Llanguage with
constructs for multiprocessing:

- Suspended evaluation of subexpressions.
- Multisets =~ unordered collection of expressions
which becomes ordered as evaluations terminate.

Encapsulation of expression evaluations gives alternatives
of distribution of compution: factor problem into assigning
"capsules" to processing nodess

Potential disadvantage: in any "real" situations there 4s a
need for some global reference; such a reference cannot be
handled if side-effects are forbiddens

Reference: ([3UCK 1

6e2ele2 Teletype Paradignm

ALL that the user knows about a system is what goes 1{in anc
what comes oute What happens behind the panels is of no
concern to hime This view 1is captured by the following
paradigme There are N userss each sitting st a teletypes
The system pehavior tonsists of the N rolls of papere. The
correctness of this behavior must be decidable just from
looking at those teletype rolls.

6e2e1+3 Behavior by Interleaved Teletype Rolls

It 1/0 behavior is to be described in a way suitable for
reasoning about composition of systemsey it is not sufficient
to consider only the separate "teletype rollse™ It %s pos-
sible for two systems with the same individual port behavior
to be incorporated as modules In a Llarger systems causing
different external behavior for the larger systeme. A
sufficiently dnclusive behavior description to avoid this
protlem «can be given by describing the interleaved teletype
rollse Thus fare such descriptions have been used for sim-
ple synchronization and data base behaviors and appear to be

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 58

guite natural and usablee

6£e2ele4 State-based methods

A state-based specification method was used for the al-
gorithms §n [RBURN 783e There the appropriate mutual ex-
clusion behavior was expressed by groupina process states
into "regions" comprising critical statesy other program
statess and protocol statess Desired exclusions deadlock=-
free and fairness behavior was then described 1in terms of
the progress of processes through their regionse Such
description Led to clean formal reasoning about the proces-
SeSe The descriptiones howevers does not appear to be very
easily suited for reasoning about the system as a building
block for Larger systemse

6e2¢le5 State Graphs

Thiagarajan has used the global state model to give a simple
definition of Shapiro's algorithm for the maintenance of
redundant data bases in a distributed environment. This
permits an elegant and simple proof of correctnesse

6e2eleb Jellybean Example

There are examples of simple systems in which one cannot
talk about the state of the system at any particular point
in time. The example involves two processes modifying the
number of jellybeans in a factorys and one proctess counting
the total nrumber of jellybeanss The behavior of these three
operations cannot oe explained by any sequential ordering of
their executionse How ¢an we specify correctness of this
system in a sufficiently general way to allow this type of
implementation?

Reference: [LAMP 763

6elele? How to Specify Complex Systems

We are faced with a dilemmaes We do not want to have to men-
tion states in our specifications PBut it is very difficult
to write any non-trivial specification without talking about
statess For exampley try specifying a memory cell without
talking about statesa

Georada Institute of Technoloay IPC Workshop

=

e« e = e ey

SN S BRI

Section 6 THEORETICAL WORK

6+2.2 Models

6¢2¢2¢1 The Test-and=Set Model of IPC

The Test-and-Set primitive is a powerful indivisible opera-
tion for accessing a shared varfable for communication among

asynchronous processese. The model treats asynchronous
operation by <considering ¢timing sequences., Correct al-
gorithms must work for all timing sequenceses Fairness

properties may require that the timing sequences be restric-
ted to those satisfying "finfte delaye" A sequence satis-
fies finite delay if no process has to wait forever for a
timing messagee.

The Yest~and=-Set primitive is in one sense the most powerful
primitive possible. Hencey the Lower bounds results for
this model apply directly to all weaker primitivese.

To model general distributed systemsy it 1{s necessary to
model processes and sianificant-distance communication. To
model a message channel in the simplest and most natural
ways we think of it as a special type of process with access
to two variabless one at each of 1ts ends. The process sim-
ply reads the contents of one of the variables and writes
the result in the other vartabley ad infinitume We 1imagine
this process to be asynchronous with respect to the other
processes in the system. Thus communication delays are as-
sumed to be arbitraryes This model seems simple and general
enough to provide a basis for simulating and comparing
distributed systems of practically any type.

6e2¢242 Bit Transmission Model

Lamoort favors a more Low-level IPC model:! transmission of
1 bit of information from one process to another. Requires
a 1 bit storage device which can be written by process A and
concurrently read by process Re Mon=-trivial to implement on
atomic register which acts as 1f reads and writes are total-
Ly ordered. Some results are in [LAMP 771y others are un-
publishedes

6e202¢3 SS Model

The applicative technique uses an interpretive Llanguage to
describe a distributed system. An interpreter for ap-
plicative Llanguaqge may then serve to model system behavior.
The wunordered evaluation of expressions 1in a multiset
becomes implemented as a scheduler. Communication may be
modeled 1in terms of the elapsed simulated time associated
with each parameter passing operatione

Georata Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK

62244 Other Models

Certain modelss although significante Yailed to receive at-
tention due to the LlLack of advocates in the groupe Most
notable were the Actor-Induction Model of Carl Hewitt and
Petri Nets.

6e2e2¢5 Relevance of Models

Models of distributed systems are abstractions of real or
hypothetical systemse. The relevance of any abstraction
depends stronaly on {ts intended application =-- the abstrac-
tion should preserve the important features of the sftuation
beina modelled and discard the unimportante “odels reflect-
ing details of current technoloqgy are appropriate for under-
standina opresent-day distributed systems but they become
quickly obsulete as the technology shiftse Models attempt-
int to <capture the universal constraints on any system im-
posed by basic laws of physics are more fundamentale but
evaluating thedfr relevance to digital systems requires a
considerable understaning of electronics and physicse and
they will Likely be too primitive and detailed to shed much
Licht on hioher~Level issues such as those discussed el-
sewhere in this reporte.

For exampley most models of parallel systems include some
snrt of synchronization primitive whether it be P and V,
monitorse message-passinae or whatevers and most practical
systems have hardware which d{mplements these primitives
satisfactorially. Howevery the glitch problem aparently
prevents the construction of a perfect arbiter (as oppsed to
one which is satisfactory becausc its probability of failure
is tnfinftesimally small)e so any physical realization of an
arbiter has a possibility of fatlure throuoh infinite delaye.
The test-and-set model and the 1-bit transmission model can
both describe perfect arbiters and so both must be
considered only approximations to reality. While test-and-
sets seem at first siaht to be far from primitives they
encompass operations such as reads writes increment memorys

etce which might or might not be atomic iIn a given systems
so lower bounds on complexity apply ¢to all such weaker
mocdelse The fact that a fair arbiter is needed for a hard-

ware realization of the model does not detract from {ts
usefulness {in describing solutions to the critical section
probleme for building critical section solutions with strong
fairness properties (bounded-waitinges FIFQ) from arbiters
only known to be free from lockout 4s a non~-trivial taske.

Georata Irstitute of Technoloay IPC Workshop

Section 6 THEORETICAL WORK Page 61

6e2e2¢6 Problem Areas

Although o number of models were proposed for interprocess
communicationy we observed that there was no "basic unit" by
means of which all of them could be implemented. ldentify~-
ing such a basic unit would give a uniform scale for compar-
ing different communication mechanisms,

6243 Apalysis

6¢2e3s1 State Graph Analysis

See 6el2eled

6e2e¢3e2 Critical Region Algorithm Proof

A formal proof has been developed for one of the mutual ex-
clusion alaorithms given in [BURN 78Je Although the proof
follows the general format of invariant-assertion proofsy
the major {ideas in the parts of the proof that deal with
fairness are contained 4in precisely-stated Lemmas which
mirror natural intuttive understanding of the alqorithms.
The parts of the proof that deal with reachability of states
have a Lless intuitive and more case=-analytic flavor. A
current effort is to decompose the invartants in a way that
will allow reachability properties also to be verifiec in a
way that accords intuition.

6e2¢343 GLobal Assertions

There are well-developed techniques for provina <correctness
properties of non=-distributed multiprocess proaramse. Lam=-
port used to feel that they were not «aood tor distributed
systems because (1) they used gqlobal assertions which imply
a global system statey which is undesirable (see 6e¢261e6)y
and (2) they require that communication arcs be represented
by processess which means Lots of processese Howevers he
has recently discovered that these techniques do work welly
since (1) there seem to be a <c¢lass of "good"™ global as-
sertionsy and (2) you have to specify the communfcatfon arcs
very carefully anywaye.

Gearqgtia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 62

6e2e3¢4 Fault Tolerance

Wwe consider two types of faflure: unannounced halting
(steeping) and announced shutdown (dying)e. Peterson and
Fischer [PETE 77] and Rivest and Pratt L[RIVE 7631 give
critical section alqorithms in a shared-variable read/write
model that are immune to process dyings feees the remaining
processes continue correct operatione.

Performance and tolerance to failure by sleeping are closely
relatede If one process can be hung up forever because {t
. is waiting for a fadled processe then 1ts performance will
; be degraded by a non=-failed process that ¥s simply running
very slowlys

We have alaorithms for the test-and-set model solving the
k-critical section problem which 41n a sense have k {ndepen-
f dent paths to the critical sections That 1ise even 1f k -1

* processes failey the other processes will not be waiting on
them and will continue operating and gaining access to the
remaining resourcess

6e2e3e5 Measurements

The traditional measures of "time" and "space"™ do not form
’ an adequate framework for assessing the complextty of
distributed computationse. In order to understand the "cost"
of a distributed computationy we need to enlarae and refine
our collection of <cost measurese. For examples "time" may
refer to total time or time measured at an individual sitee.
Similarly "space" could refer to cither the size of the
total systemy or the size of individual sitese In addition
to the "time" and "space" required to perform a computationy
we should also consider the "amount of interprocess com-
municationy" both the total traffic flow over the whole
systeme and the bandwidth requirements of individual chan-
nelse

In analyzing sequential processeses we are used to thinking
in terms of time-space tradeoffse Are there analogous
tradeoffs for distributed systems? For examples one can
usually get by with smaller individual processors {i1f one is
willina to have more oprocessorse and consequentlys more
interprocessor communicatione. Can this tradeoff of
interprocess communication wvse complexity of dindividual
process be made precise? Againe one usually has the choice
of efther implementing shared global resources or duplicat~-
{na these, resources at different sites. Are there
auidelines for deciding which of these strategies to pursue?
In generals we need to deal with the following sorts of

cuestions: (1) What are the <characteristics of those
problems which allow one to make effective use of
distribputed computation? (i1) Converselyes can we learn to

recognize problems whose solution would require such Llarage -
amounts of interorocessor communication as to render these

Georaia Institute of Technoloay IPC Workshop

y T

Section 6 THEORETICAL WORK Page 63

problems 4inherently unsuited for solution in a distributed
manner? (141) Can we identify techniques for tailoring
distributed architectures to the solution of particular com-
putational problems? (iv) Can we formulate a theory which
combines concerns for time-space complexity with concerns
for minimizing interprocess communicatione thus providing an
adequate framework for assessing the complexity of
distributed computationse

6620346 Space Complexity for IPC

In measuring space complexity for IPCy the shared variable
models provide a natural measure = simply the number of
states necessary 1in the shared varfablesos Tight upper and
Lower bounds on the communication space required have been
demonstrated for certain synchronization problems using the
Test-and-Set model, Additional bounds are anticipated for
other problems and primitivese.

Reference: [BURN 78]

6e2¢347 Time Complexity Measures for IPC

A qgreat deal of work has been done in the time complexity of
sequential alqgorithmse. Synchronous parallel computations
commonly use a "tree depth" measuere for the time <comr-
plexitye These technigques do not extend easily to asynch-
ronous parallel processing because there {s no direct
measure of global time directly derivable from the steps of
the individual processes, For examplee if any process
reaches a state where it must wadt for communication from
another processy it may take an unbounded number of steps

before the remair.der of the system changes state. Since a
simple sum of all processor steps would often give unbounded
Lower bounds for many problemsy (and hence are

uninterestingd, new measures are needede. Current work is
proceeding examining time bounds of test-and=-set algorithms
using the foltlowing types of boundse.

1) Count the total number of *"transitions”
between two events of intereste.

2) Count the number of transitions of a
particular process between two eventse.

1) Count the total number of transitions between

two events divided by the number of processes
tnvolved.

(A "transition" 4s a step of a process which causes a chanae
in the shared variable) Fach of these bounds appears to be
of intereste.

Georgia Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK

6e2¢3+8 Data Transfer Performance

Abelson [ABEL 78] has recently developed techriques for
proving 1{inherent lLower bounds on the amount of interprocess
communication required for performing computations 14n a
distributed systemes Using these techniquess he has analyzed
distributed systems which perform matrix operations and
solve systems of Linear equationse His work shows thats
from the point of view of minimizing communications the ob-
vious techniques are optimale

6e2e3¢% Performance Results

An alternative (perhaps a copout) to formal analysis 1is to
use a simulation or emulatione Thisse howeveres 1s not an
entirely straightforward proposftion. Firste a suitably ac-
curate description of the distributed system must be derived
and secondsy the artificialities of the simulation/emulation
must be factored oute

Georqgta Institute of Technoloay IPC Workshop

———— - T
e vt ARSIV, TN i Tl 45 e e AMQM

Section 6 THEORETICAL WORK Page 65

6+3 EOSITJON PAPERS

6.3.1 Abelson

Theoretical Issues in Distributed Computation
by

Harold Abelson
MIT

Current research 1in the area of distributed computation
focuses almost exclusively on algorithms and systemse while
the problem of determining the 1{inherent complexity of
distributed computations remains virtually unexplorede.
Moreovery most theoretical work in the area of parallel
processina relies on a model of computation 1in which ail
processors have ready access to all memory registers =-=-- an
assumption which is unrealistic when dealing with
distributed computationss For exampley although the solu-
tion of n Linear egquations in n unknowns can be accomplished
in order (log n)+**2 steps if one {ignores information trans-
fere 1§t can be shown thate for typical interconnection con-
figurations among n processors the Jnterprocessor data
transfers alone require on the order of n stepse.

We need to address directly the problem of interprocessor
data transfer and to establish bounds on the amount of com-
munication required for a wide variety of problems in a wide
varfety of distributed architecturess In generaly we need
to deal with the following sorts of questions: (1) What are
the characteristics of those problems which allow one to
make effective use of distributed computation? (44) Conver-
selys can we Learn to vrecognize problems whose solution
would require such Large amounts of 1{interprocessor com-
munication as to render these problems inherently unsuited
for solution 4n a distributed manner? (141) Can we identify
techniques for tailoring distributed architectures to the
solution of particular computational problems? (iv) Can we
formulate a theory which combines concerns for time-space
complexity with concerns for minimizing interprocess com=-
munications thus providing an adequate framework for asses-
sing the complexity of distributed computations.

Georgla Institute of Technology IPC Workshop

Section 6 THEORETICAL WORK Page 66

6.3.2 Fischer
Time Complexity of Distributed Computations

by

Michael Jeo Fischer
University of Washington

A fundamental question in the theory of distributed comput~-
iny is how well a particular system does 1{its Job. To
determine thise one needs a spectfication of the job and a
means of comparina the efficiency of the given system with
other candidate systemse.

Three aspects of distributed systems complicate considerably
the specification of the desired behavior. First of ally
non-terminating computations tend to be the rule rather than
the exceptions so 1{infinfte execution sequences must be

describede Secondlys because of vartablity in the relative
spreds of the different processesy the system is dinherently
non-deterministice. while determinate behavior is

nonetheless possiblesy 1t may not be requireds so the
specification must allow for wvartablity 1in the observed
behavior. Finallye the 4dnputs and outputs of a distributed
system may be dispersed over a number of sitess and the com-
munication aspects of the problem need to be captured in a
natural waye

Finding a satisfactory time measure for distributed systems
s much more difficult than for sequential programse 1In the
Latter casey elapsed time is Just the sum of the times of
the basic instructionss With parallel computationse certain
steps may execute concurrentlys so the simple Linear depen-
dence of elapsed time on the instruction speed is lost. For
this reasoney it becomes attractive to Look instead at the
dependencies between steps of various processes rather than
at elapsed time. When these dependencies are represented as
a partial ordery the longest path through the order gives a
natural measure that reflects the time necessarys assuming
maximum concurrencyes

Once we have a satisfactory notion of the execution time for
a particular interleaved sequence of stepsy it is still not
clear how to base a comparative analysis of systems on this
information, for different systems solving the same problem
will not necessarily exhibit the same {nterleavingse What
is needed 1is a set of parameters common to all solution
systems in terms of which the time can be exoressede

Finallye the relative efficiency of a system may depend
stronaly on whether one 1{1s interested in some notion of
total system throuahput or in response time at a atven site
tor in some other aguantity).

Georafa Institute of Technoloay IPC Workshop

A —— s o e e

Section 6 THEORETICAL WORK Page 67

6.3.3 Lampori

Theory and Formalism
by

Le Lamport
SRI International

Formal methods are needed to specify and prove the correct-
ness of distributed systemses The primary requirement for a
specification 1is that it be understandable by humanse since
onlty a human can determine the correctness of a
specification. Moreoverey a specification involving program
variables does not meet this criteriony since proaram
variables are part of the solutiony and are of no concern to
the users There has been very Little progress in this arece.
It is rare to find even a precise informal statement of what
a simple distributed algorithm 1s supposed to do =-- Llet
alone a specification of an entire system.

A formal specification is wuseful only {f there s some
formal method for deciding if a system meets its
specifications Currentlys there exist formal methods for
provina properties of non~distributed multiprocess systems.,
We need to discover how these methods can be extended to
distributed systemssy or else develop new methodse There hes
been some oprogress 3In this areas but we are very far from
being able to handle reals complex systemse.

1 feel that in order to make progress in these areasy it s
necessary to be able to deal formally with non-atomic
operations ~=- to describe the system as a collection of
operations which do not act as i1f they were executed in any
sequential order. I have some vaquey preliminary ddeas on
how this can be donee

6«3.4 Lynch
Complexity Theory of Distributed Systems

by

Nancy Lynch
Georgla Institute of Technology

Most of the current work in theory of distributed systems
seems to me to focus on a rather high level of oprogrammina.
Virtual machines and networkse Hoare=-style communication
mechanisms which combine powerful synchronization and value-
passing behaviory relaoted mechanisms which assume preserva-
tion of unbounded numbers of messagessy serializersy abstract
data types with “"™nonatomic" elementsy etce are all user-
oriented abstractions which allow togical organization of
complex algorithmic behavior without concern for troublesome

Georgfa Institute of Technology IPC Workshop

. .
N VORI R R PRV S P T Y T <

Section 6 THEORETICAL WORK Page 68

implementation detail. Unfortunatelyes there are good
reasons why such detail cannot entirely be suppressede
Efficiency of operation of a distributed system 1is of
paramount concern to the user. There are so many more pos-
sible wvariations in implementation in a distributed en-
vironment than in more traditional computing environments
that knowledge of the implementation method cannot help but
influence the wuser®s program design? indeed, some such
knowledae s probably necessary for even acceptably
efficient use of the systeme

It is important to complement high-Level theoretical and
lanauage~-design work with a firmly-based theory of lower-
level distributed programmings geared particularly to
measurement of the efficiency of performance. Very simple
and general primitives such as shared variables and one-way
arbitrary-delay communication <channels should be used as a
general basis for such a theorye. Various appropriate
measures o0f vresource use and performance (ee.gee communica-
tion "bandwidth"e total number of changes to variables that
occury total "depth" of the computation) can then be defined
preciselys Then the costs of implementing the various high-
level mechanisms mentioned above can be assessed objectively
and comparede While the user might not need to know precise
implementation detailse he would at Least benefit from
knowledge of these costs in resource usey for the various
available mechanismse

As for sequential computings the theory of distributed
systems will not ultimately be concerned with implementation
of different system primitivess but with efficient fulfill-
ment of application requirementsa. Thuse the theory can be
expected to focus on design and analysis of systems exhibit-
ing certain desired behaviorey in application areas suitable
for distributed computing (eegees Load=-sharings multiple use
of databasess mail communications synchronization)e A Llow-
level model and elementary complexity measures such as those
described will form a useful basis for such analysise with
higher~-Level constructs used alona the waye Also 1important
for such a theory will be the development of reasonably
consistent means of specifying desirable btehaviors for
systemse Such behaviors might idinvolve the input-output
interface of a system or the d{internal state behavior of
processeses

A prototypical development has been carried out (Jointly
with Michael Js Fischer and graduate students Je Burnse Ps
Jacksone and G Peterson) for simple mutual exclusion
behaviore Further work {1s currently in proagresss

Georala Institut-: of Technoloay IPC Wworkshobp

Section 6 THEORETICAL WORK Page 69

6.3.5 3Speliar

Theory and Formalism
by
Stephen W. Smoliar

Conventional modes of programming and alaorithmic specifica-
tion have many potential snortcominas in the design and im-
plementation of distributed systemse. In his 1977 ACHM Turina
Award Lecturesy .lohn Backus cited seven "inherent defects at
the most bastc ievel®™ in traditional programming lLanguages:
"their primitive word-at-a~time style of programming in-
herited from their common ancestor--the von Neumann com-
puters their <close <coupling of semantics to state
transitionss thedir division of programming into a world of
expressions anag a world of statementse their 4{nability to
effectively wuse powerful combining forms for butlding new
programs from existina onesy and their Llack of wuseful
mathematical properties for reasoning about proaruamse.”" Un=
fortunatelyy a good deal of thinking about distributed
systems has become bogged down precisely because of a
preconceived commitment to these same fnherent defectse

A fruttful alternative {s the functional style of ap-
plicative programming. The central idea 1{1s that all
programs are expressed as functions., The coupling of a
function with its arguments constitutes an gxpressions and a
process 1s that computational activity involved in the
eyaluation of an expression. The most important aspect of
this aprroach is that it has eliminated the need for the as-
signment statements since the only allowable assignments are
parameter bindingse Recursive composition of functions
eliminates the need for loops (and with it many of the
concerns of structured programming)s Finallys input/output
functions may be transcended by a view of files as arquments
and values of expressionse.

Multiprogrammina concepts may be best expressed in ap-
plicative terms by introducing a data structure known as a
myltisete & multiset may be viewed as an unordered collec-
tion of expressions whose evaluations may proceed in paral-
lels Retrieval of data from a multiset is continaent wupon
termination (also known as copnvergepge) of at least one
evaluation process; and retrieval effectively transforms a
multiset from an unordercd collection of expressions into an
ordered sequence of valueso. Furthermores multisets may be
constructed through multiple applications of the same func-
tion to each of the rlements of an already=-constructed mul-
tisets Finallys the conventional conditional expression may
be extended to control whether or not an evaluation oprocess
ever converges: 1f the predicate of a guardeg conditional
is not truee then the evaluation process automatically
divergese

Georaja Institute of Technology IPC workshop

Section 6 THEORETICAL WORK Page 70

It 4s thus possible to formulate algorithms for distributed
systems in terms of a rather simple applicative Lanqguage.
In facte the applicative lLlanguage provides a very powerful
tool for the study of distributed systemss this toot is the
language's dinterpretere. Such an interpreter must know how
to implement the evaluation of expressionss bute more fim-
portantlys 1its definition must include a protocol for how
multisets are constructed and how their elements are
evaluatedes This protocol may be {instrumented to reflect the
behavior of a real-time environment. The interpreter thus
provided a basis for simulation experiments within which one
may investiqate how multiple processors may be profitably
applied to multiset interpretation.

Georaola Institute ot Technoloay IPC workshoo

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 71

SECTION 7

CURRENT TECHNIQUES AND EXPERIENCE

7.1 A PRQCESS BASED COMPUIER SYSIEM

An Informal Paper
by

Ed Basart
Hewlett-Packard Company

Processes are the basic entity in our computer systems When
a program runse 1t exists as a processe and gives a Program
the flLlusion that 1t has its own private processore. The
system is then constructed to support processes effectively
by making process communication and switching efficient and
fnexpensives As a consequencey multiple processors can be
used to increase the parallelism of the processes running in
the system.

The advantaqes of such a computer system are program
modularfitys increased performance through parallelismy
arowth by adding processorss and physical distributability
of functionse Processes are wused as the single "object"
that unifies operating system services and resourcess The
operating system exists as a collection of processess and
process primitives are used a3s the kernel of the operatinag
system.

Processes communicate usina queues and the send and receive
primitivese Multiple queue writers are permitteds while
onty & single gueue reader is allowed. Send and receive
handale the details of the path vetween processes for any ar-
bitrary hardware configuration of processorse This includes
providing mutual exclusion for processors sharing memory and
invoking data communicatdion drivers in systems not sharing
memorye. The data communications processes resolve the con-
nection between processorss whether the connection is a high
speed buse through telephone Liness or an indirect path
through more than one processora.

In order to send & message to another processy the sendina
process must first establish a Link to a receivina process
queue. Links are made by the file systemes OUpening a Link
is very much Like opening a disc file. Capabilities and ac-
cess riahts to queues are checked at open time by the file
systemy which eliminates message verification for the send
and receive primitivesy and also for the communicating
pProcessese

Seorgla Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGUES AND F¥PT"IfnCE Page 72

After a Link 1s openy the sending process sends a message to
a receiving process by specifying a Link numbery along with
the data. The receiving process reads 1its cueue by specify-
ine {ts queue number and issuing a recefves. The receiving
process creates a queue inftially by asking the file system
to allocate space fer the queue and grant the receiver
"aueue® accesss Linking a sending and a receiving process
establishes half duplex communicatione. Fullt duplex com-
munication may be established by creating another queue and
opening another Link 4n the opposfte direction between the
two processess

As the file system opens a Linksy it determines whether the
two processes are residing on different computerse. If soe
the address placed din the Link 1is that of a surrogate
processy a data communications driver that handles the
details of the communication Lline. At the other end of the
Line is another surrogate data communications processs Thisg
process has a Link pointing to the receiving prccess gueue.
This mechanism allows uniform process communication for both
local and remote processese.

Creating a single queue for multiple writers seems to be a
mixed blessinge One advantage is that the system makes a
single space allocaticn for the «queues and no new al-

locations need to be made for each writere. Another ad-
vantage is that the reader aces to only one Location to read
messagesSa This is particularly important when the writers

and reader exists on different computers,.

The disadvantage of a single queue is that a "mad" writer
can <c¢loag the aqueuee. There are two solutions tc this
prohlems The system can bSe made cognizant of a writer®s
"message rates" and a proctess can be given lower execution
priority 1f its rate becomes too highe The other solution
is to maintain a message count for each writere The reader
then decrements the count as the queue is reade

Neither of these solutions i1s very attractivee They both
suagest high cost to protect against the mad writer. For
the present the arproach is to make gueues Large enough to
absorb an dnitial outburst from the writer. The reader is
given a "break Link®" function that disallows any further
messaaes from a particular writere This forces detection of
the problem on the communicating nrocesses while relieving
the send and receive primitives of an added complication.

Three similar computer systems have been influential in the
design of our systeme They are: 1) the Tandem 16 computer
system manufactured in Cupertinos California, 2) the Demos
oprrating system for the Cray~-1 computer at Los Alamose New
¥exicoe and %) the Thoth operating system developed at the
iniversity of waterloos Ontario.

rala Institute of Technoloay I°C Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE

Qur system has two primary differences from the mentioned
onese The first 1s 1n handling all types of physical
processor 1interconnections at the primitive Levely rather
than doing 4t in the operating system. The second 1s 1in
making much greater use of processes and messagese ALl of
the above systems break away from their message systems for
certain types of functions that are considered to be too ex-
pensive to be done in a message systeme

Georgia Institute of Technology IPC Workshop

S T e s TR TR T e S

Section 7

CURRENT TECHNIQUES AND EXPERTENCE Page 74

Te2 1PC IN HETEROGENEQUS DISIRIRUIELDR COMPUILR NEINORKS

HETEROGENEOUS DISTRIBUTED COMPUTER NETWORKS

AND INTERPROCESS COMMUNICATION THEREIN
by

Je S. Sventek
Lawrence Berkeley Laboratory

T.2.1 Intreoductien

The primary focus of the Advanced Systems Group in CSAM is
the question of distributed processing in a network consist-

ina of hosts with vastly differing architecturese Our

qoale at this point in time,

vironment

needss for example:

1)

2)

3)

4)

In order to achieve the goal of easy uses we are somewhat
less concerned with "efficiency" 1{1ssues than with merely

a research group developing a distributed
relational database system

rdministrative personnel maintaining current
accounting databases

araphics researchers exploring new and novel
reoresentations

hiah energy physicists destfunina systems to
cotlect and sample on-lLine vast quantities of
experimental data

making the system tunctionale. From empirical studies

working systems we hope to discern the "inefficient™ aspects
systems and may devise algorithms to alleviate the
Ffficiencys in this contexty {s only concernecd

of the
nrotvlems,

with throuahpute

Two entities must exist before an easily used distributed

system can be realized:

1)

2)

Georaqia Institute of Technology

a3 common shell (command Line 1interpreter).
It 1is of somewhat Limited utility to provide
virtual terminal capabilities on the hosts in
the network if the wuser must Learn a
d4fferent Llanguage to communicate with each
onee Much of our recent research has been in
the development of Just such a portable
shells A prototype of this shell ¥s current-
Lty running on the followina systems: FDF-
117780 (VMS), POP=-11/70 (TAS) coc 6600
(homearown operating system),

2 common file namina convention. Current
rescarch (based on a pathname structure) is

is to provide a distributed en-
which 1s easily used by people with very diverse

IPC Workshop

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 75

progressing 1in this areas and a prototypical
system is operational on the PDP=-11/70 (IAS)
systeme

The rest of the discussion will asume that these two
entities exist on all hosts in the networke.

7.2.2 Fyndapental Quantities in a Compuler Sysienm

There are three basic quantities in a civilized computer en-
vironment which a programmer must be able to manipulatee.
They are:

l. file - this categqory includes non-file struc-
. tured devices (eeges tt0y mtOy etcede data

‘ filess and executable image files.
2e process - this entity describes an image file

nlus its context (standard inputes outputese and
error filess default directorys privelegess

etce) which s currently in a schedulable

'] state or wattina upon some resource in order
. to become schedulable 4n a particular hoste

,) 3e vertex - this “"virtuat"” entity allows two

processes to extabldish an 4nterprocess com-
munication Linke.

Several operatina system primitives are necessary to allow a
programmer to manipulate these aquantitiese.

File oriented

open open a file
i . close close a file
3 i create if file exfistse open 1t3 else create it
delete delete file
rename rename file
getc get a character from a file
putc put A character into a file
mark note current position in a file
seek position o file
prompt output string with no terminating carrtage
controt
: frocess oriented
]
! |. spawn spawn processsy sending specified araquments
to it
pstat query status of a process W
kiltl terminate process
- suspnd suspend process
,? resume resume suspended process
1 Vertex griented

J Georaia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 76

pipe create a vertex and open a Link to 1t

A few more words concerning vertices are in order. A vertex
is a valid input parameter to the open and close primitives.
In this ways subprocesses may be linked together by redirec-
tina the respective standard outputs and standard finputs to
a vertexs The subprocess itself {is oblivious to the source
or destination of 4ts idinformatione A vertex is also a
transitory aquantitys 4n the sense that when all Links to 1t
have been terminated (via a close operation)y it vanishes.
ALL 1/0 through a vertex shoutd be synchronous to avoid all
of the problems 1dinherent in bufferinag asynchronous 1/0 in
dynamic system memory.

T«2.3 Naming Conyentiiops

Files are known gtobally by their pathnames:
/hostname/default directory/filename

Once a process has established a Link to a file (via an open
or create)y the file is then known internally to the process
oy the 1d returned as the value of the primitive function
invokeds

Processes are known globally by the 1d returned as a
parameter of the spawn primitive:

/hostname/processid

Vertices are known alobally by the followina pathname:

/hostname/processid/vertexname

One sees that as Long as the first field of a file pathname
can never assume the value of a process id fields this nam-
ing convention unfquely identifies all quantities.

7T.2.4 Implementation in a DRistributed Environment

A skeleton of a typical primitive would look as follows

if (Local (AKGUMENTS) == YES)
{
perform function
}
else
{
reformulate request (if necessary)
forward request to KERNEL
wait for result

Georagdia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 77

The purpose of the local functfon 4is to determine {f the
request can be performed within the requesting processe
(File and process oriented primitives can wusually be per-
formed Llocally 4{f they 4nvolve Llocal files and processess)
If it cannot be performed internallys the request may have
to be reformulated to include process context information,
and is then forwarded to the KERNELy which is an extension
of the native operating systeme DNDue to differences in the
services provided by most natfve operating systemse oOne sees
that the local function will be system dependents The KFER-
NEL s a separate processs one per hoste which has access to
the physfcal Links of all hosts in the network which are
directly connected to the current hoste The KERNEL fields
three types of requests:

l. Llocal requests for local services not
provided by the native operating system

e Local requests for services on remote hosts
in the network

Je remote requests for Local services on behalf

of a requestor on a remote host

For the first type of requesty the KERNEL will perform the
services and return status and any other information to the
requestor. The last two types of requests are Llinked in
thetr functione For type 2y the XELRNEL forwards the request
to 1{ts counterparte which receives a request of type 3.
This request is performedy and return information is forwar-
ded to the original requestor through the networke.

ALL types of distributed activity are then supported in such

a network environmente The following examples will serve to
emphasize this pointe

Te2.5 Examples

Virtyal terminal

User is currently interacting with the shell on host A with
standard 1inputsy outputs and error files being ttns and
default directory DEFAULT, User wishes to establish virtual
terminat connection with host Be To do soe he/she dssues
the following command at his/her terminal

%“ B/shell

A/shell detects that this is a request to spawn a process at
another hoste so 1t reformulates the command as

B/shell <A/ttn >A/ttn >+A/ttn (DEFAULT)

Georaia Institute of Technoloaqy IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 78

and forwards request to A/KERNELes whiche 4n turne forwards
the request to B/KERNELy which performs ¢the service and
returns status to the requesting process via A/KERNELe. The
next prompt that the user sees will be that of the shell
operating on host Be with the shell on A being suspended
until B/shell has received an end of file on the standard
inpute.

Host Ltransparency to native utilities

User on host A wishes to copy a file from host A to host B3}
he issues the following command:

% copy file B/path/file

The shell will spawn copyes copy will open files and attempt
to open B/path/files The open request will be forwarded to
A/KERNELe which in turn forwards request to B/KERNEL.
B/path/file will be openedsy and all writes to it will be
directed through the KERNELs and the network Linke

Interprocess communication between processes on different
hosts

User on host A wishes to analyze a data file with a utility
available on host By directing the output of that utility to
a graphic display program on host A which displays the
results on the user®*s graphics terminal.

% B/analyze <mydata | A/graphit

A/shell will 1issue a spawn request to A/KERNEL with the fol-~-
lowing command Lline

B/analyze <A/DEFAULT/mydata >A/shellid/pipel &

where A/shellid/pipel 3Js a vertex created by A/shelle The
ampersand (&) 4indicates that A/shell does not wish to wait
for the completion of the spawned processes A/shell will
also spawn A/graphity redirecting its input to
A/shellid/pipel. A/shell can then sit back and monitor the
progress of the two cooperating processesy regaining control
when they complete or terminating them 1f errors occur dur-
ing their execution.

Georaia Institute of Technology IPC Workshop

B s stin s -

e

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 79

7.3 PROIECIED MALLBOXES AS AN IBC HECHANISH

by

ReLe Gordon
PR1ME Computers Ince

Keywords: mailboxs IPC primitivess switch=-board taskse
access lists

7T.3.1 Jptroduction

It is the thesis of this short note that IPC facilities
built arcund the notion of a2 protected mailbox could provide
the basis tor a robust set of primitivese Robustnessy in
this cases implies their utility 4{4n conventional mul-
tiprogrammed uniprocessor systems as well as shared memory
multiprocessorss Loosely coupled multiprocessors and local
and Long haul networkse The proposed mechanism can support
different communication forms (N-process protocols)s addres-
ses security dssuess and assists users in the synchroniza-
tion of what 1{s basically an asynchronous phenomenon
{process communication)e

7.3.2 Propesed IPC Primitives

Mailboxes are created by a process "P" executing a primitive
of the form:

u = create(Access_Listy T)

which Js sufficient to bind the process name "P" to the
unique descriptor "u" of the created maflboxe and associate
the List of processes appearing in the "Access_tist? with
the mailbox "u®". In addition the create primitive specifies
a maximum time "T" between mailbox use (1 assume mailboxes
that are not wused are not wuseful)e Thereaftere if the
identifier "u" is valids (eege not equal to ERROR) then any
process "P*" appearing on the "Access_List" and wishing to
send mail to the process "“P" would use a system call of the
form:

send message(bufs u)

and continue execution. This primitive would have the
effect of eventually placing the contents of "buf" in the
maiibox "u® of process "P" along with the name of the sender
wpen, Process "P"y wishing to receive messages in mailbox
"ute would make a system call of the form:

Georgia Institute of Technology IPC Workshop

L P

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 80

receive message(bufe u)

which would prohibit any further oprogress of “P" until
etther a message {s received from a process on the
"Access_List" or no message has been received during the
time {dnterval "Tw, specified 1dn the *Create"™ primitive.
Notification of this fact would would appear as a message in
"puf® if the user had included a system process responsible
for communication monitoring 1in his "Access_List"e. [See
Section Te3e6 on Fault Tolerant Aspectse]l To complete the
set of primitives 2 system call of the form:

delete(u)

would cause the maiilbox "u" to be retired forever.

Te3.3 Inltialization

Initial dfalogues . are established by "recefving® an
identifter "g" of the current system mailbox in a mailbox
"r" that was originally created with only the name of a well
known system process on the access lists The system mailbox
identifier "so" would then be used to send messages to the
system kernely with replies being received in mailbox "r%.

One of the more difficult issues is with the desiagn of the
mechanism needed to establish communication with generic
processesy (es.ge processes that represent a single service
but may have multiple instantiations) and with discovery of
newly created processese. The trouble stems from the fact
users are incapable of establishing a dialogue with any
process not known to thems and therefore cannot tnclude thenm
on the access Lists For these reasonsy it seems desirable
to provide a "switch-board process" whose sole function f{s
to provide a generic to specific name mappinge For examples
such a service would be used to return the specific process
name (or names) of the LlLatest version of a fancy text
formatters when supplied with the generic name "format".

Te3e4 Security

A unique descriptor represents a sort of capability (at
least for communication purposes) since possession of a
majilhox identifier provides the possesser with the potential
for sending messages and requests to the process bound to
the identifier. Howevery if the target mailbox does not
have the sender on the access List the message may be
discarded by the systemy thus essentially controlling com-
munication through the maintainence and enforcement of the
"aAccess_Liste" It is cleary therefore that security dssues
revolve around the ability to control <changes to the
"Access_Liste" an issue already explored by file system
designerse

Georgia Institute of Technology IPC Workshopo

Section 7 CURRENT TECHNIQUES AND EXPERIENCE

I1f one takes the view that a message is an attempt to access
an object by a principal U[GRAH 72]e then this facility
contains all the elements of the access matrix model [LAMP
71] of protectione. By having different processes act as
monitors of objects one has a formalization of the access
model since the identification of the accessor and the ob-
ject being sought are both available to the monitor processe

T«3+5 Synghronizatien

The availabitlity nf the senders identification coupled with
the access control Ulist provides the means to achieve
solutions to synchronization of processes and to detection
of boolean combinatfons of eventse Creatton of mailboxes
with only one process name on the "Access_List" provide the
factlities for a simple "pipe" (one way communication chan-
nel) that can be wused to <construct a self clocking
*pipeline" with the "send" and "receive" primitivese
Logical "or"=-ing of the input from two processess say A and
By can be accomplished by simply including & and B on the
"Access_Liste"™ More complicated forms of synchronizaticn
can be accomplished by creation of an intermediate process
that performs the appropriate Llevel of demultiplexinge.
Broadcast transmissions are simply achieved by {iteration
over 2 set of available maitlbox 1dentifierse.

T.3+6 Faylt Iolerani Aspegts

There appear to be many forms of communication errors that
are recoverable by the technology underlying the IPC level.
Fatlure of underlying mechanisms can easily be reported to a
process 1f it opens a channel for that purpose by 4dncluding
the name of 3 system process on the "Access_List" on an al-
ready opened mailboxe or opening one for Jjust that purpose,
It seems to me that users who do not want to be concerned
with error handlings should not be forced to carry along a
Lot of extra apparatus for those who doe. One nagging
concern of mine is whether the system should force error
messages (especially for timeouts) into mailboxes that have
not included the communication monitor on the "Access_Lists"

Positive acknowledgement is purposefully not included in
this schemey but 1s Left to the user to construct his own by
setting up a duplex path between processese AS an aide the
desian of the "create"” primitive must have a value *"T" for
the maximum time between messagese Since the primitives are
designed to be used over a wide range of situations most ap-
plications will have some knowledge of how Llong it is
reasonable to watit for a reply or input from a <cooperating
processe

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERJENCE

Te3e7 Sumpary

A set of primitives for interprocess communication have been
proposed that seem suitable for implementation in a wide
variety of circumstancess Only briefly mentioned howevery
is the issue of process addressability when communication is
desjred between several processese The solution of this
problem requires the development of a2 name space architec-
ture that tackles the relationship between filess devicesy
processesy users and many other system objectse certainly
beyond the scope of this short note,

Georaia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGUES AND EXPERIENCE

To4 BRIEE QESCRIPIION QF DISYS:-BLLIS

by

James Re Low
University of Rochester

Jhe Model of Computation

The model of interprocess communication that we use in DSYS~
PLITS has evolved from that wused 1in the RPIG (Rochester
Intelligent Gateway) Operating Systemes Basicallys we think
of a program being composed of several independent processes
(we call them "modules") communicating with each other only
through messagese. There is no directly shared memorye.
Processes are relatively stable and to "fork™ a process
means to create a totally new environment independent from
that of the <creatore. Our basic model does not force any
hierarchy on the processes though it 4s relatively easy for
a programmer to think In terms of hierarchies if he wishes.

QSYS (Distributed System)

DSYS s basically a set of facilities 3dded to existing
programmina Languages and operating systems to support
inter-process communication across a network of heteroqgenous
machines (hEC PDP=~-10 runnina DECSYSTEM~10, Jdata General
ECLIPSEs running RIGe and XEROX ALTOs running the ALTO
operating system)s DSYS consists of operating system inter-
faces and user interface procedures.

Processes communicate via messaaese The SEND primitive sup-
ported by DSYS takes three parameters: the message to be
sents the process identifier of the destination (originaltly
obtained through 1interactions with a name service processe
or provided in a message from some other oprocess)s and a
transaction key f(analogous to a "port")s. ALl connections
petween processes are implicite 1f a process has obtained
another process®s name it can send that process a message
without any explicit "open" command. Of courses the proces-
ses themselves may {gnore messages which do not conform to
higher Level (user-specified)) protocolss Transaction keys
are used to separate various conversation streamse CSYS
will guarantee that all messages with a specific transaction
key sent from one particular process to another will arrive
in the proper ordere. No guarantee s made about messages
with different transaction keys. Details of the reliable
transmission and flow~control mechanisms in the 0SYS subnet
may cause messaaes from one process to another with
different keys to arrive in a diff -ent order than they were
SENT,

Georala Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGUES AND EXPERIENCE Page 84

Selective reception of messages is provideds A process may
state that {1t wishes to receive only messages from a
specific set of other processes or about specific transac-
tion keyse Thus the general form of RECEIVE 1s

RECEIVE msg FROM (sndrle sndrdeees sndr3)
ABOUT (trndly trngs2eecs)

I1f there 1s more than one message that has suitable SENDER
and TRANSACTIONs an arbitrary one §s selected (subject to
the constraint of ordering within a SENDER-TRANSACTION pair
mentioned above). 1f the wuser wishes to enforce more
general priority mechanisms he may use the PENDING construct
to see §f there are suitable high priority messages before
he receives Lower priority ones. PENDING takes the same ar-
guments as RECEIVE and returns TRUE 1f there are suitable
messages and FALSE otherwisee. It does not actually perform
the RECEIVE so the message queues are left intacte. If all
else fails and the user wants more aqeneral reception
criteria then he can ask to receive all messages and then do
his own Local qgueing. We believe this to be very rare arnd
have not seen this done in the programs coded so fare

DSYS performs all queue managements reliaple transmissions
and flow controle. Application programs are notified of ex-
ceptional conditions (communication Lines aoina downe other
processes fn the "distributed job"™ breaking) via emergency
messagese

PLIIS Messages

DSYS Jtself considered messages as just strings of bitse We
have found it desirable to provide higher level message sup-
port to applications proaramse. This hiacher lLevel message
support is called PLITS,

Traditionallys fixed message formats have been used for ap-
plication orogramse. To desian a new message typbes a
proagrammer would Lay out an explicit template for his data.
He would bhave to state the number of pieces of datas their
data-tyres; the external representation of the data types
and the translation routines to use to translate beiween the
external (used in messasges) representation and the 4nternal
(used in his proaram variables) representation of the datae.

In PLITSe we try to remove the burden of message template
desiane. “y automating the process we also remove one class
of possible errorses In PLITSy the applications programmer
sees a messaae as a set of keyword value pairse We call
these pairsey "slots"s To construct a message he specifies
the particular set of slots he desireses The receiver can
determine (for individucl messaaes) which stots are present

Georata Institute of Technology IPC Workshco

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 85

and their valuese. Thuse a message to a file server might
Look tike:

SEND (action “openfiles mode “updates name “"MYFILE",
directory “®"<mydird>®s initialposition "0y bytesize
TO FileServer ABOUT OPNTransaction;

"action"e "mode%"y "name" and so forth are the keywords (or
slotnames). The message would be identical as far as the
receiver were concerned 1if the sender had specified a
different order of the slotse We do not require that every
message contain a specific set of slotse but of course it is
an error {1f a process attempts to fetch the value on a non-
existent slot. Defaults may be easily implemented using the
PRESENT IN primitive. For exampley the file server above
might wish to assume that the directory 1is "<SYSTEMD>» {f
none {is specified,

RECEIVE msg FROM ANYSENDER ABOUT ANYTRANSACTION;S

IF NOT (directory PRESENT IN msg) THEN
PUT (directory™"<SYSTEM>") IN msg;

thedirect := msge.directorys

When a user wants to wuse a slot in his program he must
declare the keyword and the type of its value both in the
sending and receiving process.

STRING SLOT filenames

MODULE SLOT continuation;

In the existing implementation of PLITS (see below) the
data~type of each slot is sent in the message and
consistency 1is <checkeo durina the translation from the ex-
ternal format of messages to the internal format of messages
during reception of the message. Implementation 3s underway
to have a "lLoading" time (when a process joins a
"distributed Jjob") when the consistency of slot definitions
would be checkeds Small {identifiers for each slot would
also be given at this timee This would decrease the over-
head of the slot mechanism (currently in addition to the
datas a type code and a character strinag are sent for each
stot)e.

Georgla Institute of Technology IPC Workshop

AD=A081 885 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A==ETC F/6 17/2
INTERPROCESS COMMUNICATION IN HIGHLY DISTRIBUTED SYSTEMS = A WO==ETC(U)
DEC 79 P H ENSLOW: R L GORDON DAAG29=79=C=0010

UNCLASSIFIED GIT=ICS-79/11 NL

2.

2

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 86

In the current implementation the "data-type” of a slot im-
plies the external representation of the value of the slot
within messagess Thus we have several INTEGER typese

g INTEGER16 SLOT small}

INTEGER32 SLOT targel

s e N

o : with implied external representations of sixteen and thirty-
two bitss Note: this does not 4mply that the {internal
* 3 representation for the value of the two slots above must
necessarily be differente For exampley in the PDP-10s both
values would be represented using 36~-bit integers. When a
- message s sente howevere a check 1s made during the encod-
j‘ : ing 1dnto the external format that the values are in the ap-

: propriate rangese Future implementations may have a
*negotfation” phase during "loading™ in which the various
processes "agree” on the external precisfon necessary for
each data value (one "negotiation™ strategy would be to use
enough bits for the maximal declared range).

Current State of Implementation

The DSYS has been running since Last Spring on the POP-10

and ECLIPSE computerss A distributed vision application was

encoded this past Summere. Recently an ALTO DSYS support

package has been used to Link ALTO*s to the ECLIPSE. The

PLITS message format has been running on the PDP-10 for over
: a2 year (using a preliminary version of DOSYS that ran only on
i the PDP=10)s A design for the support facilities necessary
for PLITS on the ECLIPSEs and ALTOs has been completed.

B i

Almost all the support software has been written efther 1in
SAIL C(on the PDP-=10) or BCPL (on the ECLIPSEs or ALTOS).

Georgia Institute of Technology IPC Workshop

e < s s —

Section 7 CURRENT TECHNIGQUES AND EXPERIENCE Page 87

7.5 MODELS OF CONCURRENT CONMUNICATION ACIIVIIIES

) PARAMETRIC MODELS OF CONCURRENT COMMUNICATION ACTIVITY

by

B4LL Buckles
General Research Corporation

INTRODUCTION

Using a distributed system to feign, simulate, or emulate a second
distributed system is of interest primarily to those engaged in design. The
principal problem in this approach is the inherent timing discrepancies between
the existing and target systems. Lamport [1] has made invaluable contributions
applicable to this area and this study is directed at specializing his results
to emulation.

MODELS AND STATES

The goals are to determine (1) what aspects of communication behavior
can be observed from an emulation? (2) what ancillary relationships must be
embedded in an emulation to assure that the primary behavioral attributes can
be extracted? and (3) if the ancillary relationships are not exact, how much
confidence may we place in the extracted primary behavioral attributes? 1In
order to achieve this, a definition of process state has been derived that
deals only with aspects of inter-process communication. The target process
state is distinct from the emulation process state, but the former is embedded
within the latter. Additionally a progression of six communication models have
been defined, each an elaboration of the previous one.

Model 1 is a single process emulating itself. It may be schematically
represented as

atg/my aty/my aty/my atg/m, Ltg/m,
m ‘m

*
Work sponsored by the Ballistic Missile Defense Advanced Technology Center,
P. 0. Box 1500, Huntsville, Alabama 35807 under contract number DASG60-78-C-0058.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 88

where At, denotes a time interval, W, a message, and the even intervals denote
active communication periods. Model™2 is a single process emulating a second
process with uniform time distortion (either rate increase or decrease). Model 3
is a single process emulating a second process with both uniform time distortion
and non-uniform perturbations (strictly slow-down). In this model, the emulation
process may contain more periods than the target process. However, there must
exist an order-preserving mapping from the target process periods to the emulation
process periods. Model 4 advances to multiple processes with equal time distortions
and perturbations. Model 5 relaxes the equality constraints on distortions and
perturbations, but requires the two be balanced. That is, inequality among the
time distortions of various processes must be offset by perturbation. Model 6

is completely unconstrained with respect to both distortion and perturbation.

The state of a single target process, i, at time period j is denoted by
the pair iy = [at, n] where At is the duration of the most recently completed
period and n is the information sent or received. The state of the target
system is denoted S = [s s 8 s seey 8]. The state of a single emulation

13," 23, nj

process i after time period k is denoted by the S-tuple o, = [sij’ at'u,r,o(k)]

where sij is the state of the target process, At' is the duration of the most

recently completed period, uis the information sent or received during the last

period, r, a constant, is the uniform time distortion, and p(k) is the

instantaneous perturbation at the beginning of the current period. A system

state is denoted by L = [0.. , 0., , ..., 0,]. A system state change occurs
lk1 2k2 nkn

when exactly one ¢ assumes a new value.

1]

PRELIMINARY RESULTS

Time models are inherently continuous while the state model described
above 1s discrete. Lower and upper bounds on the time relationships are
desirable to fix the amount of error between state changes. Because r (the
discortion) is constant, only p (the perturbation) may introduce error:

n
glb(p) = o(n) [1 - (at' /Y at"]
n {=1 i

n-1
= 1]
lub(e) = o(n) + [ae ., / rT aty]
i=]
Unfortunately, lub(p) required the prediction of the period durationm, Atv+

1]
of a current target process. An assumed order-preserving mapping illustra%ing
the lower and upper bound errors follow.

Georala Institute of Technoloay 1PC Workshoo

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 89

EMULATE] . o
PROCE;? - - \ glb Example

I o
EMULATION L__f__—L \\Avx

PROCESS | DIVERGENCE
REGION

EMULATED
PROCESS * 1lub Example

/\/ /’\'\

Z__LL———H —
" N
e

Model 6, being the most general, is of interest. For example, determining
what measures must be taken to preserve the state transition ordering in the
emulation to reflect accurately the state transition ordering in the target
process 1is necessary. If Sa < Sb in time and the transition to Sa is embedded

in Zx and the transition to Sb is embedded in I then we would desire that

zx < Zy. Let Oij be the specific substate that changes value at :x and ¢

Yy km
be the specific substate that changes value at 2y. Both Sa < Sb and Ex < Zy if
y-1 C] EE}
Yoo " T2l v - e]eY 1

y'ij Sx v y 1] x'km “—o ¥
where pqu P qv(p(v)) v(r) and T, is the normalized elapsed emulation
time in period w-1. 1In symbols*

T, e cij(p(w) . J(S(At))
Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 90

. CONCLUSIONS “
; These and other relationships dealing with the communication behavior
of emulation processes have been formally proved. Some knowledge on the problem
of what information to collect and how to analyze it has been gained. It is
s believed that future investigation will further strengthen the utility of the
models.
REFERENCES
oy
1. Leslie Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System,” CACM 21, 7 (July 1978), 558-565.
3 ~ o —
r’ . -
.
E
:
L
. ;
)
l. 1
L]
rA YU) -
1}5 ‘ Georgia Institute of Technoloay IPC Workshoo

o

'
i
‘

©min . an i oA AR YT B BT Y P e A

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 91

Te6 PRANE IPC CONEERENCE BEPORI

by

Robert L. Gordon
and
Jack Ae Test

The enclosed Prime research note 1is partly based upon a
couple of early 1978 internal Prime R&D meetings concerned
with *"Task Control and Communication for Multiple Processor
Systems", It discusses the synchronization and interprocess
communication mechanisms used 4in a number of Jimportant

- operating systems and explores the 4importance of these

mechanisms for the development of future computer systemso
and 1s offered as additional material for the current tech-
nigues and experience section of the conference reporty
since 1t summartizes a review of mechanigms used in several
well known systemse.

Te6¢1 Introduction

Two in-house meetings concerned with "Task Control and Com-
munication for Multiple Processor Systems"™ were held on
January 11s 1978s and March 22y 1978, The purpose of the
meetings was to provide a forum for the discussion of exist~-
ing operating system mechanisms for process management and
interprocess communication as related to Prime®s efforts 1in
process-based computer network architectures.

The two meetings consisted of a serles of {nformal
presentations by members of Primes R&D staff on other
systems and discussions on related PRIMENET communication
meetingse The particular topics were? (1) *®"Process Com~
munication In DEMOS"e (2) "Process Control And Communication
In UNIX"y (3) "TANDEM And VAX Process Structure®y (4) "The
Multics IPC Facility"s (5) "Event Counting And Sequencing In
Distributed Systems™y and (6) "Communication Primitives For
PRIMOS",

The purpose of this note fs to discuss the synchronization
and interprocess communication mechanisms developed for the
systems mentioned above and to explore future directions in
the development of process-based computer networkse. Obser~
vations concerning the IPC facilities of the operating
systems discussed are based upon the authors® knowledge of
the systemsy available Literaturey and the Prime Conference
talkse Accordinglye Section Il of this note presents brietf
summaries of the IPC facilitiess and Section IIIl states some
conclusions and future directionse The References & Selec-
ted Readingse at the end of this notey Lists several
articles pertinent to the study of Interprocess Come~
munications.

Georgia Institute of Technology 1PC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 92

Te6e2 Synchronization/lPC :mmm

. Included 1n this section are discussions of the
synchronization/ipc mechanisms developed for the systems
L mentioned in the Introduction. For additional 4{information

regarding each systemy refer to any of the pertinent
referencese.

. Te6e2+1 Process Communication in DEMOS

DEMOS is an operating system under development at the Los

. Alamos Scientific Laboratory for the CRAY-1 computer [BASK
77). A t3sk or process in DEMOS consists of a program and
its assoctfated state 4information which 1includes & link

. tablee The primary mechanism for communicating between user

1 and operating system tasks 48 by passing messages over
Linkse Links are associated withey but maintained outside
the address space of sender tasks and are essentially one-
way (simplex) communication paths. ALl operations on Links
are performed by the kernal of the operating system which
insures their integritye.

Appropriate standard ALipks are provided by the system for

, ' user tasks requesting operating system services. These are
provided in an automatic and transparent ways one such stan-
dard Link being to & gwitchboard taske Switchboard tasks
can arrange to get two or more mutually cooperating proces-
ses togethery and since tasks may under certain conditions
pass Link {dentification information as a messages dynamic
process networks may be easily constructed,

Links resemble capabilitiesy so their management must take
into account many of the well known difficulties of managing
capabitities.s Some of thesesy such as Lack of control over
Link passing and Link duplication have been partially al-
Lleviated by classifying Links 1{nto specific types and
restricting specific operattons to these typese Other
facilities include gata seament Links and gchanpels that are
associated with Links 1n order to provide facilities for
multiple event handling and windows {nto task address
spacese

The communication mechanism of DEMOS 1s not pure in several
wayse Firsty data segments are an escape from communication
only by messages$ and seconds conditional receives and chan-
nel interrrupts provide an escape from the sychronization

! provided only by message primitives. Howevers with proper
‘. . hardware support these escapes might not be necessarye.
]
l:\ »
1!\ .
! Georgia Institute of Technology IPC Workshop

~

i
3

- i

.. _ il T : ik i e o ot i a4 A e el L el Yo i o -~ ac
’. 2N M‘ -~ Mi‘ L e JARAR w

L]

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 93

746422 UNIX Process Control/Communication

The UNIX system was developed at Bell Telephone Laboratories
for the DEC 11/40s 45¢ and 70 minicomputerse The basic
Literature reference to the system [RITC 74] provides a good
explanation of the principle 1deas incorporated in the UNIX
designe.

In UNIXe @ "process® is defined to be the execution of an
"image®™ where an image is a computer execution environment,
namely: allocated corey register valuess open filessy etce
Images are small 4dn UNIXe roughly 32K words ¢+ status in-
formations and the system is orifented around their execution
manipulation.

Processes are organized 1in a parent-child tree-structure
within the UNIX system environment. Parent processes can
spawn (create) child processes dynamically through a fork
system calls Inftiallyes the child process 1s a copy of the
parent process but with a different return value from the
fork calle. The child inherits the parent®s environment
({eee open filess register valuesy etc.) but does possess
its own memory 4{mage. Typicallys a <child process will
inttiate an gxegc system call which will overlay the child
image with the startup 1image of a program named in the
calle In this mannere a parent process can create any child
process it desires.

The main form of communication between parent and child
processes 1{s accomplished ¢through pipes created by the
parent process. Since the parent®s environment is Lost when
a child process overlays {tselfy the pipe descriptor must be
passed as an argument to the overlaying "exec" system calle.
Pipes serve as serial data paths with one "write end"” and
one "read end®. Multiple processes can write or read a
single pipe but data can be intermixed 1f the pipe is not
Locked on writese In addition to the pipe mechanism 4n the
original release of UNIXsy new versions of the operating
system allow processes to communicate through messaaeg that
are routed and queued for unique process identificationse.
Messages {fn UNIX serve as a more generatl form of
interprocess communication than pipes since "unrelated"
processes can communicate using thems For mutual exclusion
and synchronization purposess the UNIX system provides both

wait/’/signal and g¢counting semaphores for use by user proces-
{2

There are a number of L\(imitations ¢to the current IPC
mechanisms avajtable 4n UNIXe Specificallys pipess because
of their serial naturey must be used carefully in order to
avoid mixed streams on the write end or Lost streams on the
read ende In additiony the message mechanism 4in UNIX
requires the process-id of sending and receiving processese.
Unfortunatelys this information 1s not available through any
system administered switchboard and must be handled b) the
processes themselves 1n some arbitrary manner. The naming

Georgia Institute of Technology IPC MWorkshop

L

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 94

of processesy thereforey 15 not adequately addressed in
UNIXe

In summaryes the UNIX timesharing system provides a dynamic
and flexible process environment with a high degree of
modularity. Some notable shortcomings in the UNIX IPC
facility (in addition tc the problems discussed above) are?
(1) the inability of a prucess to wait for multiple piped or
message inputse (2) the small address space available per
processy admittedly a PDP=-11 {imposed Limitatione and (3) the
lack of any network process management capability.

7e6424¢3 Interprocess Communication in TANDEM

The Guardian Operating System [BART 77] for the Tandém Com-
puters model 16 computer has as 1ts foremost goal the
maintainance of a failure-tolerant computing environment.
Even though the underlying Tandem hardware consists of mul-
tiple computers and multiple dual-ported 1/0 devicesy the
operating system 1s designed to give the appearance to the
user of a unified system through the novel application of
several software abstractions.

The first abstraction provided is that of & processe Each
processor module may have one or more processes residing on
ity however a process may not execute on any other processor
than the one it was initfally created ons Each process ¥n
the system has a wunique d{dentifier or process-id of the
form: <cpu #e¢ process #>y which allows 1t to be referenced
on a system wide basis,

Process synchronization primitives include counting
semaphores and process local gyent flagse Semaphores may be
onty used for synchronization between processes within the
same processor and are typically used to control access to
resources such as resident memory buffers and message
control blockse Event flags are predefined for up to eight
different events and are signalled within a processor by
either hardware eventss such as device interruptse or by the
function AWAKE. ALL event signals are gqueued so that they
are not Lost §f the event 1s signaled when a process 4s not
waiting on 1ite and a process may wait for the first of one
or more events via the function WALT. Processes may" also
specify a maximum time to block whiche 1f exceededy results
in the return of an error condition ¢to the process that
requested 1t.,

The message system used for communication between processes
residing on different processors uses five primitive
operations: LINKs LISTENs READLINK WRITELINKs and
BREAKLINKe to implement what can be best thought of as
dialogues between requestor/server pairse Messages are
queued for processes and result in the setting of an event
flag for processes wanting to “"LISTEN". '

Georgia Institute of Technology IPC MWorkshop

e —

L i e ———_

Ca

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 95

With the implementation of processes and messagesy processor
boundaries effectively disappears System wide access to I1/0
devices 1s provided by the mechanism of process pailrgse An
1/0 process=-pair consists of ¢two cooperating processes
located in two different processors that control a
parttcular 170 devices One of the processes {s considered
the ®primary"™ one and the other the "backup®™ processs The
primary process handles requests sent to it but sends 4n-
formation to the backup process via the message system in
order to assure that the backup process will have all the
information needed to take over control of the device 4in the
event of an I/0 channel or device error. BRecause of the
distributed nature of the systems it 4s not possible to
provide a "block™ af driver code that could be called direc-
tly to access the device. While potentially more efficient,
such an approach would preclude access to every device in
the system by every process in the systenm.

Processes are not grouped in classical ancestry treese. No
process s considered subservient to any other process on
the basis of parentagey and two processese one created by
the other will be treated as equals by the systems When a
process "A"™ creates another process "B"y, via a call to the
procedure NEWPROCESSe no record of B 1s attached to As, The
only record kept is in process B where the creation "id® of
A 1s saved and is known as 3%s "mom"™. When process B stopss
a STOP message 1ts sent to process A I1f B wants to know
whether A has stopped 1t must “adopt® its mome.

The innovative aspects of the Guardian Operating System Lie
not 1in any new conceptse but in the synthesis of pre-
existing {idease. O0f particular note are the \ow Llevel
process and message abstractions. By wusing thesesy all
processor boundries can be hidden from both the application
programs and most of the operating systemes These Initial
abstractions are the key to the system®s ability to tolerate
failures and provide the configuration 4independence neces-
sary to run over a wide range of system sizese.

Te6a244 Process Communication in vax

The VMS operating system architecture [DEC 77] supported by
the VAX hardware s a process structured system. Because of
thise the designers of VMS were motivated to Llook for and
evaluate the utilization of alternate process communication
schemes in order to ease the design and implementation of
VMS. It s significant that this study resulted in three
different mechanisms for process comunication in order not
to force-fit applications 4into wusing any one particular
type.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 96

The three interprocess communication facilities provided by
VMS are all software implementeds The first facility is ap-
parently used for trusted processes (e.ge Kernal processes)
and consists of the notion of eyent flaase event flag
clusterss and masks that altow boolean combinations of event
flagse Since it is well known that this form of (semaphore)
type communication can be eastly abused by naive wusers it
apparently is restricted only to trusted processese.

The second type of interprocess communication used in VMS
tinternal communication) consists of gsend receive gueues
that have implicitly associfated event flagse This mechanism
serves as a way of passing variable quantities of data
between trusted processes with a fairly high degree of
efficiencye Each wuser process builds 1ts own buffer (data
packet) and sends it to a "receive" qgueues which then sets
the associated event flag for the receiving processes

The third type of dnterprocess communication mechanism
(generalized communication) consists of primitives for hand-
Ling mpiilboxess Mailboxes can also be thought of and 1im-
plemented as queue or FIFO filese thus they can use the same
protection mechanisms as filese Of course mailboxess Like
filese can be classed as both temporary and permanent so
that interprocess communication can take place while proces-
ses are "absent" or dormantey a useful feature for writing to
logged out terminalse In additions processes ctommunicate
with mailboxes in a fashion similar to record-oriented 1I/0
thus providing a framework for advanced concepts such as I/0
redirectione.

VAX/VMS supports not only processess but also jobs that
constitute a collection of subprocesses and groups that are
sets of processes that share resourcese Subprocesses can be
spawned and c¢an have the rights of the creator as well as
the rights of the spawned image thus allowing a form of en-
hanced rightse

It seems that the VMS operating system provides a rich set
of interprocess communication primitives: whether 1§t 1s a
consistent set and can be managed over the Life of the
system remains to be seen.

Te6e2¢5 The Multics IPC Facility

The interprocess communication facility supported by the
Multics system is based upon the concept of event chapnels.
The primary purpose of an event channel 1s to provide synch~-
ronization between processese.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 97

Event channels (which can be thought of as a numbered slots
in the ipc-facility tables) are efther gyent-wait or gyent-
_call channelse The event-wait channel receives events that
have occured and awakens the process that established the
channel if 1t is blocked waiting for an event on that <chan-
nele The event=call channel responds to the occurence of an
event by calling a specified procedure 1f the process which
established the channel is blocked waiting for any evente.

For events to be noticed by explicitly cooperating proces-
sesy event channel {identifier values are typically placed in
known Llocations of a shared segment. Processes can block
waiting for an event to occur or can explicitly check to see
i1f the event has occurede If an event occurs before the
target process blockssy the process is immediately awakened
when 1t does blocke

In summarye the event-channel facility in Multics provides a
flexible synchronization mechanisme. Typicallys processes
establish channels and wait for events on one o~ more of the
channels they have createds The utility of this approach is
clearly demonstrated by the use of the {pc-facility
throughout Muttics for all user process coordination and
terminal 1/0 handlinge.

Te6e2.6 Event Counting and Sequencing

Synchronization of concurrent processes is usually required
for the relative ordering of events 4internal to each
processe Most currently favored synchronization technigues
such as monitors [HOAR 74] and semaphores involve mutual ex=
clusiony a technique that only indirectly notes the oc-
currence of an evente A alternate set of synchronization
primitives have been proposed by Reed and Kanodia (REED 771
where a process controls 4ts synchrony with respect to other
processes by observing and signalling the occurrence of
events through operations on objects called gyertgcountse An
eventcount s an abstraction representing the number of
events 1in some <class of 1{interest that have occurred.
Operations on eventcounts are: ADVANCEC(E) = Sdignal one
event? READ(E) =~ Return the number of previous ADVANCES on
Es and AWAIT(EesV) - Suspend a process until READ(E) >= V.
ADVANCE purely transmits informationes READ and AWAIT purely
observee In contrast the P operation on a semaphore is not
a pure observation primitive since 4t <can modify the
semaphores. Pure observation or signalling primitives are
more attractive for use 1n secure systems [LAMP 73]. 1If
only one process executes ADVANCE operations on an
eventcountey ADVANCE and READ can be concurrente If more
than one process does ADVANCESy a different eventcount can
be given to each processy and the sum of those eventcounts
gives the total number of events in the classe

Georgia Institute of Technology IPC wWorkshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 98

When mutual exclusion is needed (when events must be ordered
dynamicallys such that the ordering 1s not known 4n ad-
vance)s a sequencer can be usede A sequencer operates Like
the ticket machine in a bakerys and has one operation called
TICKETy that returns the number of previous ticket
operations on that sequencer. An eventcount and a sequencer
can be used to implement a semaphore. Several eventounts
and sequencers can be used to implement semaphores that al-
Low a process to wait for several different events.

There seem to be at Least two attractive advantages over
other alternate synchronization schemes that eventcounts
have for distributed systemse The first advantage {s that
the ADVANCE operation affords a natural broadcast mechanism
to all processes that might be waiting on an events because
unlike simple semaphores the signaller need not know the
names of the 1intended observersos The second advantage is
the avoidance of mutual exclusion where only the relative
ordering of events 1s requireds thus tending to Limit the
amount of serialized code 1in systemsy <code that often
results in performance bottleneckse Eventcounts and
sequencers could be used by an operating systems instead of
user-visible semaphoresy for 4{implementing more general
interprocess communication mechanisms with shared files and
this mechanism could be made available to the user to coor-
dinate the use of shared resourceses

7Te6e2¢7 Intertask Communication Primitives For PRIMOS

Several intertask communication capabilities currently exist
within the Prime operating system (PRIMOS), Both
Lock/unlock and gounting semaphoress are implemented at the
microcode Levely and are available for system and user
taskse In addition to these basic synchronization
primitives for communication between processes on the same
processor PRIMOS supports a set of PRIMENET 4nter-process
communication capabilities based on x25 flavored "virtual
circuits®. These capabilities allow a wuser process to
establish a full=-duplex virtual connection to another wuser
process whether Local or remote.

Virtual circuits can be managed at the user program level by
the proper use of a collection of subroutine calls to PRIMOS
and provide a VYiLevel 3"y Xe25 Interprocess Communication
Facility C(IPCF)e

The major services provided are for forming a connectiony
breaking a connection and transmitting or receiving data.
Generallys two different forms of a service are provided.
The first form is an abbreviated calling sequences with only
a minimum amount of information needed to be supplied by a
user in order to establish and use a virtual circuite. The
second form 1is a more detailed one that allows a user full
access to all fields of the Xe25 "Level 3" defined packet

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 99
\

formatse. The Latter form 1s intended primarily for users
wishing to form Xe25 connections to non=-Prime hosts on
Public Data packet networkse.

Eleven network primitives currently compose PRIMENET and
provide capabilities to: establish status as a network user
(XSASGN)y establish a network comnection (X$SCONN)y get Llocal
connect information (X$GCON)e accept a connection (XSACPT),
clear a connection (X$SCLR)y hand off a connection (XSGVVC(C),
receive via a connection (X$RCV)e transmit via a connection
(X$STRAN)e watt on transmit or receive (XSWAIT),y get network
status (X$STAT)y and terminate network user status (XSUASN).
This set of PRIMENET primitives 1s based wupon the X.25
protocol and is due for release under REV 17 of PRIMOS. The
chief shortcoming to the current PRIMENET set of primitives
is the inability to support multiple readers and/or multiple
writers per connectione.

The addressability defined in the basic X«25 specifications
refers only to a single 14~-digit address per hosts although
it is not uncommon for a host (Like PRIMOS) to handle mul-
tiple processes and userse Therefores in order to decide
which user or operating system service should control a con-
nectioney each incoming "call request packet® {in PRIMENET
must specify a network "porte"™ This porty coupled with the
1a-digit address of the target systems¢ designates a target
processs

Each host in Ringnet has a pool of 255 available ports that
may be assigned to any process on a ftfirst comes first served
basis by a call on the operating system. Howevers only
ports 1 through 99 are available for users; the rest are
reserved for system use. Permanent port assignments to a
process are possible by controltina the order in which
processes are infitiated just after system startups other-
wisey there 4s no absolute guarantee that a particular
process is associated with a given port number.

The short form of the initial connection protocol uses an
ASCI1 host name (eeqe "ENGel5") instead of the (ong 14-
digit address and a port number previously acquired by the
target processe The "connect" function is typical of the
IPCF primitives and the request for it is shown as a partial
example of how a circuit ts formed at the program Level.

CALL X$CONN (VCIDy PORTy ADRe ADRLe VC_STAT)

The variable ADR points to a string containing the name of
the 14intended host (fe.e ENGe15)y ADRL contains the Length of
the name (6)9 and VC_STAT represents the status of the
requested service. Upon completion of a successful connec-
tione a "virtual circuit tdentifier™ (VCID) 1s returned that
can be used for the subsequent transmission of datae« Incom=-
ing calls for a particular port tn a host are queued on a
first come first served basise Information concerning a
call request at the head of a port queue can be obtained via

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 100

a system cally so that connections can be accepteds refused,
cleareds etce Calls are kept pending for 90 secondse during
which the requestors® status s that of *®connection 1in
progresse™ Other Xe25 services are provided to users that
allow for waiting on the completion of a network evente ac-
cepting or clearing a calle passing off a virtual circuit to
another process 1fin the same hoste and obtatning status in-
formation about a particular circuite.

At a Level above the PRIMENET primitivesy PRIMOS supports a
remote-login capability (RLOGIN) and a network file~access~-
method (FAM)se The File Access Manager (FAM) {s a PRIMOS
subsystem that extends the functions of the PRIMOS file
system to a network of hostses Virtualization of ¢the file
system is accomplished by permanently assigning a port (255)
to the Local FAM process of each hoste over which virtual
circuits to netfghboring FAMS are used to accomplish remote
filte operations on behalf of a user.

A FAM process in a host fields requests from local users for
file operations on remote hostse handles 4incoming file
requests from remote hostse and maintains status and update
information concerning the current state of network connec-
tions and file system devicess When the PRIMOS supervisor
decides that a particular wuser request is destined for a
remote devices it queues the request for the Llocal FAM
process and suspends the useres FAM packages this request in
a message and passes 1t off to the appropriate remote FAM,
which performs the requested fite operatifons on behalf of
the usere The remote FAM process sends the original request
and the requested data back to the Local FAMy which copies
the returned values into the user®s address space and causes
the user to be rescheduleds Because certain file primitives
are guaranteed to be "atomic® operationss all file functions
are performed to completion just as 1f they occurred Local-
Lys even 1if they require multiple messages or updating of
Local supervisor tables.

Since both Local and remote operations on a particular file
are handled through the file system of the host that owns
the particular filey all of the normal file protection and
other mechanfsmse such as Locking a particular record while
writinge are automatically accomplishede Applications using
remote data as well as local data run without any changes

In a simiLar fashione the ability of a wuser to "remotely
Log=ine® as {f their terminal were physically attached to
the host of their choicey 1s achieved by the operating
system multiplexing all remote terminal traffic through port
"O" When a user "logs 1ne" they may designate a system to
be attached to as: *

LOGIN SMITH =ON ENGe1l5S
At this point the Local Login server establishes a virtual

circuit ¢to the target host and requests the initiation of,

Georgia Institute of Technology 1PC Workshop

-!-—'"--‘QF'ﬁ!EF ——— - e . - .
L : :) ‘e ::::!
e . e —- . DU SR S — e ——

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 101

and connection toe a process in the remote hoste From then
on the tocal terminal buffers are effectively diverted to
the input and output buffers of the remote process running
on the selected nodee.

A proposal for an 1{implementation of pjpeg (SCHE 78] was
discussed as an alternative to virtual circuitse The pipe
mechanism does allow multiple readers and multiple writers
and thuse together with the X.25 PRIMENETs would facilitate
most applications that demand IPC facilities dncorporating
multiple readers and writers.

In summarys the current PRIMOS 1interproctess communfication
capabitities allow Llocal and remote process cooperation
through Xe25 flavored "virtual circuits”y in addition to the
semaphore primitives for Local communications These "point-
to-point" mechanisms may not suffice for distributed process
applications demanding N-process protocols$ however the set
of apptications demanding such protocols at this time seenm
smalle.

7.6.3 Conclusions and Future Directions

As this report has {fllustrateds the process concept has
become increasingly centrals in recent yearss to the design
of computer systems both at the hardware and software
levelse. There are many reasons for this developments two
important ones being: (1) the continuing decomposition of
systems and applications problems into sets of cooperating
parallel programs for greater modularitys functionality.
flexibilitys and maintatnabiiityy and (2) the increasing
cheapness of processors and memory allowing the assignment
of processes rto processors in an economical waye As proces-
ses have become "cheaper®™ to creates maintainy, and destroys
the flexibilitys scopes powery and economy of 1interprocess
communication mechanisms has become increasingly central to
the effectiveness of multi-process systemse.

A wide variety of mechanisms for interprocess communication
have been surveyed in this report. Perhaps the major reason
for such a variety comes from a desire to provide in one set
of primitives: (1) flexible process synchronization toolse
(2) data transfer mechanismse and (3) communication control
and error recoverye. Some of the major issues involved in
the design of dnterprocess communication mechanisms are
briefly discussed below.

1. Process Naming: M™Many systems have inadequate
factlities for identifying names of processes
within the same hosty Llet alone for processes
residing on different hostse Part of the
problem stems from an 4{nconsistent view of
the relationship between the set of allowable
names for filesy devicesy processesy usersy

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 102

matlboxese generic system servicesy and
specific system serviceses Until this problem
is settled the design of specific
. fnterprocess communication primitives cannot
focus on the set of fundamental objects that
they will be dealing withe This s a
difficult Jssuese since it 1is here that many
of the system security 4issues are also ad-
aressede

. 2. Ccontrol Of Links Between Proceggses: Control
. of communication paths between processes fun-
damentally depends upon the nature of process
. relationshipse If process relationships are
tree structureds then the status of a child®s
communication with other processes might be
monitored and controlled by the parent. Oon
. the other hande 4f each process wants to
maintain the concept of sovereignty then the
basic challenge 1s how to provide the ability
for cooperating processes to establish a
monitor process that is capable of control-
ling the communication paths between theme

¢ . d
Lo 3. gcontrol Qf Data Elow Between Procesgses: The
, . need for a flexible set of operations ¢to
control data-flow between processes {s of 4
major 4dmportance 1in the desian of 1PC

mechanismse This 4dssue 1involves providing
processes with the ability to: control mul-
tiple ULinksy respond to out-of-band signalss
receive/transmit/flush stream and message
data typess and recelive/transamit Link
capabilities. A number of additional
capabilities might also be considereds such
as allowing processes to define data-type-
i Links that facilitate the passing and
manipulation of complex data structurese.

4« Synghronization 0Qf Progesses: Clearlys a
major function of interprocess communication

is to provide either explicit or {implicit
synchronfjzation between processese. Farly
forms of interprocess communication depended
only on the <correct use of explicit synch-
ronization primitives for sharing sections of
main memorye. In some systemso temporary

d files serve as synchronizing points between
' job steps (implicitd)e while 4n other systems
I.) processes synchronize and exchange data by

. . signaltling (explicit)e Whether explicit or
, implicit synchronization primitives should be
provided is still very much an open question,

Georgia Ingstitute of Technology IPC Workshop

- e .

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 103

Wwith the advent of cheap communications and distributed
systems these 1ssues are becoming more important each day to
both the manufacturers and users of computer systems. A
workshop addressing IPC design 1se therefores scheduled to
be held in Atlantaes Georgias on the 20-22 of Novembery that
will bring together a selected group of researchers in this
subject area to address the five general topics Llisted
below?

(1) Assess the present state-of-the-art for IPC
mechanisms {n distributed data processing
systems,

(2) 1dentify the data available on the actual
performance of various IPC policies and
mechanisms,

(3) Assess the potential value of various IPC
mechanisms satisfying the operational and
performance requirements for highly
distributed systemse

t4) Identify shortcomings in the present state-
of-the-art and 1{dentify promising areas for
future research and experiments on this sub-
Jecte

(5) ldentify possible standardization Levels in
IPC designe

Some of the issues the workshop 1s intending to examine in
detatl are: addressinc issuess hardware supports transport
mechanismse flow controls out-of-band signallings fault
tolerancey securitys synchronizations and performance and
application programming impacte Prime Research 1s actively
participating in this workshop which also has the support of
both IEEE Computer Society and the three ACM Special
Interest Groupse SIGOPSe SIGARCH and SIGCOMM,

In conclusioney there are far reaching ramifications to the
demand fore and the development ofe interprocess communica-
tion facilities and cheap processess At the user Llevely, a
greatly enhanced system functionality and flexibility can be
achievede and at the operating system and hardware Llevelsy
the need to efficiently support this functionality is LlLead-
dng to new architectures and 0S designse As the section on
PRIMOS 4n this report suggestsy Prime 1s developing new IPC
mechanisms for the enhancement of current systems and {is at-
tempting to 4Yncorporate some of the ideas developed in other
systemss In additions as new computer architectures are ex-
plored at Primey the need to include hardware support for
critical IPC functions is an area that requires study and
understanding.

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 104

7«7 DAIA CONMUNICATION SOQFINARE

DATA COMMUNICATION SOFTWARE
by

Ge Lo Chesson
Bell Laboratories

Introduction

Distributed computing environments are based upones and whol~-
ly depend upony data communicationse Although there exists
a sizable and growing hardware technology for data com-
munications software has not generally kept apace in recent
years. Better software tools and technfques are needed {n
order to experiment with the new hardware devices that are
available in the LlLaboratory as well as to improve the
capabilities for cooperation between our normally monolithic
operating systems, These notes outline the direction and
status of communication-oriented software research with the
context of the 7th edition of the UNIX operating system.

Several software components are being experimented with in
computer systems at Murray Hille 4ncluding a PDP=~11/45,
11/70%sy an Interdata 8/32¢ oand LSI-1l°ts, Some of the
software is part of the UNIX kernely or resident operating
systemy and the remainder consists of programs that utilize
the new kernel facilities. The software components {in the
kernel Ynclude?

1) primitives for managing 1intermediate-sized
contiguous areas of kernel data spacey

2) a "packet driver" which can be used to impose
framings sequencing, checksumming, and
retransmission procedures on a character
devices

3) multiplexed and non-multiplexed 4dnterprocess
communication channels.

The salient characteristics of these components are
described in the next three sectfonses .The organization of
the higher=-Level codes which use these components will not
be discussed here.

spage Mapnagement Primitives

The previously exfisting space-management procedures 1{n the
UNIX kernel were wused to implement the terminal character
Lists and the disk buffer caches Since the size of an al-
location permitted by these routines is either one byte or
512 bytese it 1s not surprising that an additional mechanism
was needed for data communicationse. There are but two

Georgia Institute of Technology IPC wWorkshop

=T

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 105

primitives needed: one to allocate and one to releases The
new primitives manage contiguous memory segments that are
some multiple of 32 bytes in size up to a maximum of 512
bytese

It was 4dntended that the buffer management primitives be
fast enough to be invoked from within dinterrupt routinese.
This means that recombination or garbage collection must
also be capable of being done at dinterrupt time, These
considerations Lead to a strategy which employs a few
judiciously chosen bit-map tricks in conjunction with the
constant allocation sizes mentioned abovee.

The allocator may be <called with a flag which directs
whether it should sleep when space 1{is not available or
whether 4t should return a failure $ndications This was
buitt in because the allocator must not be allowed to sleep
when called from an interrupt routine. Howevery it may be
equally distressing to have 1t fails Current practice in-
volves building strict space bounds into interrupt processes
that cannot Live with allocation failurese This way space
requirements are known in advances and the allocator is used
to dedicate a private buffer pool where it is needec.

Although the new space management primitives are useful for
allocating "ordinary® 1/0 bufferse their real usefulness is
in supporting the fifo queues needed for data rate balancing
between readers and writerse Because of the address-space
Limitations of the PDP-114 memory 1s a critical resource,
and {t 41s not possible to devote as much space to data
queues as many high-bandwidth applications require. As the
software described below maturesy it will become necessary
to extend fifo mechansims to secondary storage or to non-
kernel memory spacee. The _methods used 1in the current
primitives cany and probably wille be applied in these other
circumstancese

Packet Driver

The packet driver consists of a group of routines similar in
name and function to the parts that make up the typewriter
control software; namelyes there are opens closeys reads
writey foctle read interrupte and write interrupt entriese.
A software switche called the Line~discipline switche placed
at the proper Locations 4in a character device driver selects
whether a call should be made to the standard system control
routinesy or to the corresponding entries 4in the packet
driver or other Line-disciplines This switch mechanism may
be thought of as a bidirectional filtering process which may
be selectively inserted between a device driver and a user
program,

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 106

The packet driver {s designed to operate character devices
in a packet mode with the error checking and flow controls
that are necessary for reliable data communications The 4im-
plementation 1s organized so that flow control functions are
at a high Levet and are independent of framing and other
details of Link controles This means that device charac-
teristics are transparent at the flow control lLevely allow-
ing the code to be used in different contexts = eeQge with
both bit-oriented and byte-oriented Linesy or DMA and non-
DMA devicess Alsos implementations exist for the UNIX ker-
nely as a user-level subroutine packages and currently for
one non-UNIX systeme Emphasis has been placed on Learning
how to produce communication software ¢that 4s operating
system-independent as well as machine-independent. In prac-
tice this means that the packet driver f{implementations
Listed above consist of protocol routines which are common
in all cases plus 1o and clock routines which are system
dependent. Since protocol <changes invariably affect only
the common codey the Logistics of making network-wide {m-
provements or repairs simplify to updating a common file and
reloading the appropriate system programse

There exist numerous Link control and flow control
proceduresy however they were judged not suitable for our
uses for a variety of reasons. Some typical complaints are
that flow control procedures are not really end-to-ends pac-
ket formats are complicaeated and verbose requiring a fair
amount of real~time scanningsy multiplexing 4s wusually
defined in immutable wayse and error controle framings mul-
tiplexingsy and flow control are wusually mixed together
instead of peing gseparated where possible. These
considerations Led to the following:

1) flow control 1s based on a sliding "window"
of sequence~-numbered packets. The numbers
are modulo-8s the maximum window sfze is 7,
and the window sizes are controlled by the
receiverse The retransmission strategy uses
efther "go-back~-N" or selective single packet
retransmission at the receiver®s discretion.

2) packet sizes and window si1zes are negotiated
oetween ¢two communicating packet driverse.
The packet and window sizes in each direction
need not be the same.

X)) packets may range in size from 32 bytes to a
maximum of 4096 as determined by the formula
32 » (2 #+ k) where k s an integery 0 < k ¢
Te

4) all message headers are the same sizey unlike
Xe25 and other simtlar protocolse.

9) it 1s possible to multiplex the Link at the
packet Levels or within packetss or bothe

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 107

The software overhead of running the packet driver on 9600
baud Lines 1s quite Llowe The implementation is efficient
enough that data rates exceeding 50K baud have been
demonstrated with this software using a a POP~-11/4%5 and non~
DMA devices, As one would expect the overhead at higher
data rates consumes the available ¢pu resourcese. For this
reason the packet driver is Looked upon as an algorithmic
testbed and dintermediate step toward 1{1mproved computer
peripheral hardware for communicationse

Interprocess and Process-device Commynication

Multiple 1independent asynchronous data streams and events
comprise the greater part of the environment for data com~-
munication software. It has been observed many times that
*blocking” 1/0 as implemented in the UNIX timesharing system
does not provide direct methods for dealing with these
entitiess and there are sound architectural reasons why it
does nots Neverthelessy 2 process that must read from more
than one source sould not have to wait on idle data sources
since input data will be missed or delayedd on Llines that
are actively producing data while the process 1s blocked.
(It 1s assumed that polling techniques are unacceptables.)?
Alsos the flow-control scheme used throughout the systenm
causes writer to block 1f the total amount of written data
exceeds a threshold. Such processes sleep until the
corresponding reader (process or device) consumes some or
all of the waiting data. A communications process typically
must write to several processes and/or lines at once. It is
somewhat 1inefficient to force such a process to block on a
"sLow"® device or process when there are other readers that
can be written toe. Thus 1t would apppear that an operating
system must provide technigues for dealing with asynchronism
and blocking or flow=-control problems as well as supply a
useful means for establishing data bpaths between the
various data sources and sinkse The mechanism outline below
accomplishes these immediate goals in a simple and direct
manner.

Two entities are defined: <channels and multiplexed chan-
nelsy also called channel groups or groups due to the
simtlarity with existing notions in telephonye A channel
consists of a pair of full-duplex communication pathse. One
pafr 1s designated as the "data"™ path and the other as the
Weontrol” or "signaling® pathe This architecture explicitly
recognizes the need for what 1s usually called "out-of-band"
signalling by dedicating a communication path for the
purposee. In the implementations each path has some amount
of fifo or data queuing buflt into the transport mechanism,
Howevere the actual data transport 1s dealt with indirectliy:
in order to avoid unnecessary copying of data from place to
place within the systemy the data 1s placed somewhere using
a buffering mechanismy tokens indicating where the data can
be found are passed from place to places This decoupling of

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 108

the fifo and buffering functions from the data transport
mechanism d{ncreases the efficiency of data movement and
permits insertion of or tuning of buffering mechanisms in a
transparent manner.

A channel <c¢an be thought of as a software null-modem: a
null-modem consists of two plugs connected by some wires
(fifo/buffering) so that data and signals transmitted at one
plug are received at the other and vice versae In the hard-
ware world one may connect computerss computer terminalsy
and various other digftal devices to one another via null-
modemse. In the software world one may attach processess
devicesy other channelss and groups (see below) to the endsy
or plugss or a channel.

The multiplexed channel construct 1s a bundling mechanism
("Bundling”™ 1s a convenient term to describe a construct
which fans~ine fans-oute or otherwise merges data. Examples
include the PORT mechanism developed at RAND and elsewheres
certain aspects of the Cemmp systeme and the UNIX timeshar-
ing system tee command.) which supplies both a multiplexing
discipline for merging data from many channels and the {in-
verse mechanism for sending data to the individual channels
in a2 bundles Or groupe A process c¢an arrange to have
various devices and processes "plugged=-in" to the ends of
channels and bundle all the opposite endings together 1in a
multiplexed channely or groupe In this way a read command
{ssued on the multiplexed channel will return any and alt
data (up to the requested Limit) available from all the at-
tached <channels., This eliminates the blocking reader
problem mentioned above.

It 1s possible to bundle the multiplexed stream assocfated
with a group into another bundles or super-hbundle., This at-
Lows tree-structured data path networks to be built ups. The
maximum tree hedight and fan-in at each group 1s fixed at &
and 16 respectivelyes By numbering the channels bundled into
a groupes a unique name for every possible tree node is
defined as the pathnamey or sequence of channel numbers
encountered along a path from the "topes" oOr rootse of the
tree to any particular node. The pathname or sequence num-
bering of a particular node is referred to as an index. (An
index 1is represented as a 16-bit quantity interpreted as a
sequence of 4=-bit numberse) ALL excthanges between the
operating system and a process owning channels and groups
are carried out using indicese.

Multiplexed channels are created using the following C code:
fc = mpx ("name"ymode)}

which has the same effect as creat ("name"ymode) {in that

"name® 4{s placed in the file systems In addition reads and

writes on "fd" are translated by the operating system {into
1/0 operations on channels attached to the groupe.

Georgia Institute of Technology I1PC Workshop

Bl

- -
[

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 109

1/0 operations on a group are carried out via the standard
UNIX timesharing system calls:

cc = read (fdybufscount)s

write (fdebufecount)s

[

The contents of "buf®™ are a concatenation of some number of
variable-length structures each having the form of an index
followed by a byte count followed by the indicated number of
data bytese (Control channel data 1s distinguished from
data channel data by an escape convention based on the mes-
sage byte counte. If the count indicates a zero-lLength mes-
sages then the actual byte count follows the 2ero and 1s 1in
turn followed by control channel data.) The "buf®"™ formats
for reading and writing are identicaly and in both cases
"ecc"™ fndicates the number of bytes actually transferred out
of 8 total request of "count" bytese (Another form of write
is provided 1n which "buf" consists of indicess byte countse
and opointers to the actual datae. This format reduces the
buffer filling overhead on output and 4dmproves the per-
formance of certain programse) On write operations §f "cc¢c"
< "count”" and the contents of "buf" were destined for more
than one channels then it 4s known that at lLeast one channel
fifo threshold was exceeded or some error condition was
encountered. FPrecise information can be obtained by reading
the group because the system Jmmediately passes back status
information. The index numbers of blocked channels and the
number of datas one sessage for each blocked data channele.
When the previously written data 1{1s finally <consumeds
another control message is sent to the aroup owner {indicat-
ing the readiness of a channel to accept data. These *"bloc~-
king" and "unblocking” messages allow a process to continue
to serve channels even though it temporarily cannot transmit
to all 1ts channelss & complementary function 4{s provided
whereby a process can enable or disable incoming data trans-
fers on selected channels.

If ®"d" {4s a character device file descriptor obtained via a
call resembling

d = open ("/dev/name®4¢2)3

then a channel can be created and the character device at-
tached to the channel by executing

ch = Jodn (dexfd)s

where "xfd"” {s the file descriptor for the multiplexed chan-
nel and "ch" is the new channel number,

Georala Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 110

Multiplexed <channels may be joined or "bundled” to other
channels by using the join primitive as outlined above and
tetting "d" be the file descriptor of a3 multiplexed channel.
There are additional primitives for “unbundling™ and
manufacturing file descriptors that map dnto channelse.
Moreover the non-multiplexed file descriptors for channels
may be used as the standard dnput or output for any UNIX
programe (The multiplexed file dexcriptors provide direct
access to the <control paths of <channelssy but this not
meaningful for the non-multiplexed casee Currentlys foctl
. commands on the non-multiplexed end of a channel are treated
’ as messages on the control path of the channels) The
preceding discussion indicates how channels and devices can
be attached to groupse It remains to indicate how channels
are attached to processese There are two techniquese One
involves using the extract primitives which 4s a converse of
the join operatione to manufacture a file descriptor from a
channel. Using standard techniques founds for examples in
k the UNIX shell one arranges fro an extracted file descriptor
to be the standard input and output for a new process by
executing UNIX close and dup calls wusually followed by

fork/execa The second method has more interesting
P properties - 1f "name"™ 1s the name of a groups then .
, fd = open ("name"¢21}3
triggers the following sequence of events:)
1) the kernel notices that an open is being done
on a group rather than an ordinary file.
2) if a new channel cannot be joined to the
aqroup or if the process which created the
aroup 3s no longerrunninge the open fails im-
medtatelye 1
3) otherwises a message 4s sent on the control
channel of the group to the owner process
H stating that an open was requestedes The
effective UID of the openina process as well

as the dindexs xe¢ o0f a new channel are
fncluded in the messagees

4) the owner process may respond with efther at-
tach(x) or det2ach(x) which respectively com-
plete the Job of hooking channel x between
the group and returning file descriptor fds
or cause the open to fail.

An open sequence as described above results in the creation

\ of a channels The file descriptor returned to thr bprocess
. executin aht open will be "plugged-in" to one end of the
channels and the other end of the channel will be attached

' to the groups. A read on the file descriptor will be satis-
fied by writing on the channel through the groups and con=-

W versely for writing on the file descriptor and reading the
' groupe. An immediate application of this facility is 4in 4m=

1‘\ . Georgta Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 111

plementing virtual terminalse or a "telnet server" as 1t is
called by the Arpanet communitye. A process first
establishes a group and arranges for one channel to be a
data path to a similar process runing on another computer.
If the remote process sends a8 message asking that an
tnteractive environment be establishedes then the Local
process forksy opens 1ts own groups and starts up the shell
with the file descriptor returned from the open as the stan-
dard input and outpute Meanwhile the original Local process
arranges to copy data from the newly created channel to the
remote computer and vice versa. Of course there are certain
niceties involving access permissiony process groupse and
other details which are not explained herey but they can all
be handled neatly within the channel/group organization.

The method outlined above provides a form of “port?®
facilitye. Its main disadvantage 1s that one must know a
port name. System or network-wide services would presumably
have well=-known namess but it is important to have a <class
of unbound names that the system can recognize. Interpreta-
tfon of such names might require searchina for a remote
machine having a certain service facility or might require a
simple transtation of some sort. In order to accomplish
this a mechanism has been established whereby a3 multiplexed
channel may be designated as the unique interpreter for all
such wunbound port namese In the operating system any open
requests on names containing "!w are treated as open
requests on the special channels One use of this mechanism
is to treat "namel'name2" as & request for a file with name
name2 on a machine designated by namels Since strings of
this form may be passed in to any program on the systemy oOne
may write

diff machinel!'filel machine2!file?

and exvect the UNIX diff command to be run with dnput from
machinel and machine2.

For some applications the bandwidth that can be achieved by
implementing data stream switeching between <channels 1in a
user processey Iimplying a copy operation from the kernel to
the switch process and back to the kernel and then a final
copy to the destination process or devicey may be qguite
adequate. The primary example 4s the virtual terminal
scheme outlined aboves However this is not true for many
other applications especially those involving file transfer
or file accesss For these cases a connect primitive is sup-
plied which establishes a "short=circuit" connection in the
kernel between a channel and file descriptor.s That 1ssy at
the place 4in the operating system where data buffered in a
channel would be copied to a user process as part of a read
operationy the data is handled as though a write on the file
descriptor had been donee. The cornect primitive specifies
whether the symmetric short-circuit path is also meant to be
established - that 1sy whether writes on the file descriptor
should induce a direct copy to the agent reading the "other"

Georgia Institute of Technology IPC Workshop

TR R e el L b L i AL I TP SN s

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 112

end of a channels A disconnect operation is also provided R
to break open short circuitse

The semantics of carrying out a normal open call on a mul-
tiplexed channel name provide a useful range of interprocess
communication capabtlitiess This 1s what one expects from a
process communication systems Howevers by making silight ad-
justments to the name recognition algorithms in the system a
wider class of file names can be “trapped®™ by the open
routines 1in the kernel and passed as messages to a program
for further interpretations. This comprises a very powerful
mechanism for distributing system functions in interesting
and useful ways: once a channel has been established via
this name translation procedures subseguent I1/0 on the chan-
nel by the process can be redirected to other computers or
other process at will and without modification to the
tnitiating programe.

{ Georgia Institute of Technology IPC Workshop

R R

LEWETREIE = o o NG 581, 5 B i i

Section 7 CURRENT TECHNTIQUES AND EXPERIENCE Page 113

7.8 DISIRIBUIED IPC AND SIGNALLING

DISTRIBUTED INTERPROCESS COMMUNICATION AND SIGNALLING

by

Ge Le Lann
IRIA/SIRIUS

Te8.1 The General Copntext

Let wus consider a system including several processors being
linked together through an 1{interconnection structuree We
will distinguish between processors being accessed by exter-
nal wusers who wish to initiate activities and processors
which run these activities and may return results to some
external userse Initiation of cctivitiess execution control
and transmission of data are accomplished through transmis-
sion of messagess In the followings we will refer to these
processors respectively as senders and receivers of messages
(see figure 1), We will not make any assumption regarding
the size of these messagese

Georgfa Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND,EXPERIENCE Page 114

Edgure 1 = A Schematic Repreasntatiopn of Lhe Svateam

senders interconnection receivers

l---------' '---------' R '

- - - - |= = = =)

|
|
!
|
|
|
|
|
|
I I
| |
| | —
| il LA LS B
I
|

structure

@ = = e« = == > Flow of messages

OQur assumptions will be:

We

Georgia Institute of Technology

would Like first to describe some of the problems we see
to exist in such systems andes seconde to present a solution.

senders and receivers may be micros mini or
maxiprocessorse

these processors may falls

the dnterconnection structure is any resilient
hardware structure (using alternate routes 1in
telecommunication networkss muttiple
busses/cables in multiprocessors/multicomputers,
radio frequenciesy etcedy

errorse duplicates and losses are possible dur-
ing the transmission of messagesy

message transit delays are variables

there 1{1s no privileged processor in charge of
handling either communication or {interprocessor
cooperatione.

IPC Workshop

k.

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 115

Te8.2 Ihe Broblens

7.5.2.1 Multiple Sender/Single Receiver Systems

Let us consider a system as depicted in figure 1 but {includ-
ing only one receiver. We can f{identify two different
problems?

1) for any sendersy {1t may be necessary to
maintain a strict sequencing of messages be-
ing sent to the receiver

i11) the various message flows converging at the
receiver may have to be serviced by the
recetver according to a particular
disciplines which may be dynamically changed
and not be known statically or guessed by the
receivere.

Problem (1) is a problem of end-to-end signalling or single-~
path signalting (sps)e Solutions to the sps problem are
well knowne The "window" technique 1s an example of such a
solution.

Problem (i14) raises the issue of multiple-path signalling
(mps) that is the problem of serfalizing 1{incoming messages
issued 1in parallel by different asynchronous sources. A
mechanism is needed whereby senders may enforce distantly a
particular serialization of messages at any time. For exam-
pley this 1is needed when two senders A and B wish to
establish a particular ordering for 14initiating activities
(eeges A before B),

TeB8e2¢2 Multiple Sender/Multiple Receiver Systeams

Let us now consider a system including several receiverse
We will distingquish between two cases?

H Fully redundant sysiems

Major motivations for running several
identical receivers are to make the system
able to survive receiver failuress to provide
for a geographically dispersed but unique ac-
tivity visible from - various locations
(receiver areas)y or to relax constraints
regarding system maintenance.

The serialization of incoming messages
(efther fortuitous or enforced) must be
unique for all receivers. This 1s an wmps
problem.

Georgfa Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 116

$4) Partially redundant systemse partitioned
systens

~ These systems tnclude several recetvers run-
L ing activities which may be strictly

identical for some of the recefverss as well
as activities which are different for all
recefverse.

. In addition to the motivations already mentioneds other
. reasons for considering such systems are to provide for
1 various activities being run in parallel and to allow for a
modular and dynamic growth of the systeme In these systems,
an activity being 4nitiated by a sender may span several

receiverse This raises the need for coordinating the
' various individual serialization processes over these
. receivers. Finallys according to user requestses the mapping

between senders and receifversy feee the need to set and
reset cooperation paths between senders and receivers will
be constantly changing with time.

To summarizey, we want to maintain a unique serfalization of

f incoming messages for those recefvers which act as "twins.” -
h Lo In addition to thiss we want to be able to achieve:
s,
- For every receivery a specific and tocal .

serialization of messages in step with the 1
dynamically changing subset of senders {t s
cooperating with
- decentralized coordination between those
receivers which have to serialize messages
. retated to multi-recetver activities in order to
} avoid conflicts between such activitiese

This 1s again an mps proplems

T.8.3 Logking for a Selution: Reguiresenis

Potential advantages of distributed computing systems are
numerous. Howevery 1t is not so simple to find a solution
to a particular design problem which does not annihilate
some of these advantagese A number of requirements which
are considered to be of primary dimportance for a
"distributed solution™ to the mps problem are Listed below.

Georgia Institute of Technology I1PC Workshop

K S

CURRENT TECHNIQUES AND EXPERIENCE Page 117

Section 7

Te8e¢3¢1 Parallelism and Response Time

A solution should take full advantage of the parallel nature
of the system; parallelism in processing as well as in com~-
munication may result in a2 good resource utilization ration.
This has a non-negliogible 4dimpact on system costs and
response time,

Te8e3es2 Resiliency

A solutton should survive failurese. Actuallye we need 2
more precise measurement of such a property which would ex~
press the number of simultaneous fatlures a solution may
survive, This i1s the notion of resiliency.

7e8¢3¢3 Overhead

Costs of a solution may be Lowe monstrouss or acceptable,
It 1s necessary to evaluate overheads as regards traffic
(number and sfze of additional messages)y processing (handl-
ing of additional messages) and storage (for "control" in-
formation)e.

7eB8e3+4 Permanent Rejection

When conflicts occur (between "simultaneous" activitiesy for
example)y how does a solution Lend itself naturally to avoid
infintite waitinge without resorting to any exotic or ad-hoc
mechanism?

7e8e3e5 Fatirness

Againe when conflicts occure a solution should not favor
systematically the same processoris),

TeBe3eb Extensibility

1f a solution may keep on working under dynamic system
reduction (failures)e then it 41s necessary to show how this
solution matches the requirement of dynamic system ex-
tensione What this means 4s that it should be possible to
reinsert or to add processors to the system without disrupt-
ing the functioning of the system.

Georafa Institute of Technology IPC Workshop

— I S
B . S

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 118

7e8¢3¢7 Stmplicity

Wwhen time has come to implement a systeme problems of under-
standingsy specifyinge debugging and maintatning the software
corresponding to a particular solution become preponderante.
This Last requirement may well be one to Look at very
carefully when considering to build a real systeme.

Te8+4 A Soluticn

We have seen that an mps mechanism is needed if one wishes
communications between several senders and receivers to ex-
hibit some specific propertiess Obviouslys signalling in a
distributed system will be accomplished through the exchange
of messagesy 1.2e signalling will rely on communicatione

This apparently recursive problem requires some structuringe.
we will then assume that any convenient technique 1s used in
the system for solving the sps problems

On top of this "lLayere" we will build our mps mechanisme.

Te8e4el A Virtual Ring Structure

Sending processors are given permanent fdentities.s If n is
the predicted maximum number of these processorss identities
will be integers betonging to the interval [(Gs n - 11, As a
resulty i1t 4s possible to view these processors as being
sequencially Located along a virtual ringe Each processor i
has a well known predecessor and a well known successory { =
1 and {1 + 1 4n the absence of failure (the marks - and +
stand for operations modulo n)se There is no assumption made
regarding the mapping of processor identities on physical
addressese In other words a virtual ring strructure does
not assume any particular physical topologye.

As processors are located on & virtual ringe {1t 4s only
needed for each of them to know the identity of theilr
respective predecessor (pred) and successor (suc)e.

A permanent and virtual communfication path 4§s established
between adjacent processorss A message sent on such a path
may travel over different physical Links as provided by the
interconnection structuree. Specific techniques may keep the
failure of a particular Link transparent to processorse
Howeversy occurrence of one or several failures may preclude
communication between adjacent processors. Cetection of a
communication path breakdown as well as detection of a
processor fatlure <can be achieved by usina one of the fol-
lowing techniquese.

Georgia Institute of Technology IPC Workshop

ERE R F L I

T o oL 4 i 2o e
Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 119

TeB8eeloel ﬁutgat &gugigﬂ

Every processor sends regularly *"lLife messages®™ to its suc~
cessor on the ringe These messages should be acknowledoede.
1f the successor fails to return acknowledgements for a
given period of timey it is declared dead and its predeces~
sor undertakes a ring reconfiguratfone Actuallys there 15
no difference between an abnormal behaviour of a successor
and a breakdown of a communication pathes 1In both casess the
successor should not be maintained on the ringe.

Acknowledgement of Life messages is bound to some {nternal
checking procedure whichse 1f successfuls indicates that the
processor 1s safe. In order to achieve correctness checking
transitivity along the ringe 4t 4s necessary to bind the
transmission of Life messages to this checking procedure as
well,

Consequentlyy a processor cannot be returning ack~
nowledgements to 4ts predecessor and fafil in checking its
SuUCCesSsore

7e8e40102 Explicit Message Acknowledgement

It may be required for messages sent over a communication
path to be acknowledgede A number of retransmissions are
allowed before deciding that the communication path {s
brokene Numerous exampies of protocols aimed at montitoring
transmission on vartous transmission media can be found 1Iin
the Lliteraturee. They will not be detailed heres Alsos it
may happen that messages are not acknowledged because the
successor has faileds As explained befores whatever the
casey that successor should not be kept on the ring any
Longere.

Thuse every processor on the ring must be provided with a
reconfiguration protocol to be used every time a failure
Leads to a ring breakdowne A simple example of such a
protocol is given below.

Te8e4e2 Ring Reconfigurastion

Let us consider a situation where processor 1 and processor
142 are respectively predecessor and successor of processor
$+1 when this processor fails or when the communicatfion path
between {1 and 4+1 4s Dbrokens It 4s only necessary for
processor {1 to send to 1{1+2 a specific messagey to be
referred to as a reconfiguration messages meaning that from
now on predecessor or processor §+2 is processor 1. This
message must be acknowledged by i1+2. 1If an acknowledgement
is not received by { after several attemptsy 4 will send a
reconfiguration message to 1+3¢ thus excluding 1+2 from the
ringe The extreme situation 1is that of a ring including
only one processore.

Georgta Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIGUES AND EXPERIENCE Page 120

The decision of initiating a reconfiguration being taken ex-
clusively by one processor for any particular failures 1t is
easy to infer that no fncoherence can arise because of the
exclusion of a processor from the ringe Because it 1is
required for a2 reconfiguration message to be acknowledgedy
it {s possible to devise some more elaborate scheme (for
instances utilizing passwords) to avoid the possibility of
having a single faulty processor excluding all the others
from the ringse An example of a protocol using passwords s
given helowe

Te8¢4e¢3 The Extensibility Property

1f processors are allowed either to fail or to Leavey it
should be possible to reinsert on the ring a processor which
has been repaired or which decides that 1t 1{s "on"™ again.
Alsos we want it possible to expand the system while the
system is runninge To this endes a three-party protocol 1is
needed such that the ring 1s always correctly configurated.
This protocol must survive fajlures {ftself and should entatl
as small a disturbance as possible. Let wus assume that
orocessor § has to be inserted on the ringe

To this ends J must send a specific messages called an
"insert" messages containing its identity j to 1ts potential
successor (j+ly J+2y eeeds Let us assume that k is on the
ringe Processor k knows the 1dentity of {ts current
precdecessor. Let us assume that pred [k] 4s processor 1.

Upon receiving such a messagey k checks that the following
condition holds:

pred [kl < 1dentity within insert message < k
(< s modulo n)e.

1f 4t 1s soe k checks for an exchange of m Life messages
with §J and then sends to ¥ a message meaning that {1 should
accept § as 4ts new successores This message contains a pas-
sword X, Upon reception of this requests 4 checks for an
exchange of m Life messages with Jo« When this is completeds
{ sends to k a "switch” message containing the password Xe.
This message 1s intended to avoid processors 1 and k being
fooled by 2 malicious processor j and it 41s also used as a
means to perform gafely message transmission switchtng on
the new path (is je k) as explained belowe

Upon receiving the "switch® messages k acknowledges it and

Listens to §J to detect the reception of a message containing
code X

Georgia Institute of Technology IPC Workshop

) ey oase e

Cmmix ey

vy -

~d

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 121

Upon receiving this acknowledgements 1 performs the update
suc (1) := j§ the first message to be sent to § 1s a message
including code Xo This message and other subsequent mes-~
sages are passed on to k by J.

Wwhen receiving a message with code X¢ k updates pred [k]
with value § and then stops Listening to 1.

There 4s no interruption of message transmission on the
ringe. If something goes wrong with j no disturbance is
introduced on the existing ringe. The message containing
code X is a good vehicle to maintain a FIF0O message trans~
mission on the ring should this be required. There 4$s no
special provision made to guarantee that Loss of messages
does not occur between 4 and k just before or after recon-
figuration of the ring performed by ke Loss of control mes-
sages {s accepted on the ring and is harmless as will be
shown Llater.

1f transmission between. i and § or between j and k turns out
to be impossibley then a normal ring reconfiguration ¥s un-
dertaken,

T7eB8e444 The Control Token Mechanism

Cooperation between processors located on a virtual ring can
be achieved by providing them with some control privilege.
The solution suggested here is to have a particular messages
called the control tokene circulating on the ring. Only
when holding the token should a processor be allowed to
infitiate some specific activity. Upon completions the token
is sent to the successore. Obviouslys in the case the toker
is Loste 1t should be possible to regenerate {t.

Wwe begin by describing how the control token mechanism is
made resiliente Thene we show how this mechanism can be
used to solve the mps probleme

TeBe8.4.1 Regiliency

We assume that every processor owns a timer and that timer
values being used by the various processors on the rina are
not necessarily d{dentfcale Processors are allowed to read
headers of messages circulating on the ringe.

Transmission of a token between adjacent oprocessors s
monitored through a positive acknowledaement ¢+ retransmis-
sion protocol. The token carries with 1t an integer value,
called the cycle numbery which 4s incremented for every com-
plete revolution on the ringe This incrementation 4s per-~
formed by processor x such that x > suc (x)e At any times
this processor 1s unigues Alsoe the numbering cycle to be
used should be chosen so that duplicate detection can be
performed safelye. This 1s possible if maximum “hardware"
transit delays are known.

Georgia Institute of Technology IPC Workshop

. .
- RS - - - . . e . i

Section 7 CURRENT TECHNIGUES AND EXPERIENCE Page 122

Timer values being used by processors correspond to the ex-
pected round=-trip time with the successor on the ring. A
timer 1s reset when the token has been acknowledged by the
SUCCEeSSOre

Each processor keeps a recording of the value (N) carried
within the token during fts last visit. Next real token to
be received (not duplicates) must carry value N + 1. \When
the sender*s timer awakess transmission 4s tried againe up
to a maximum number of attemptse. Should this Limit be
reacheds a ring reconfiguration 1s undertakenes The token is
not Lloste

If fatilure of a processor 1s noticed through the mutual
suspicion protocols then it may be the case that the token
was held by this processor which fajlede Detection of such
a situation and regenerstion of the token can be performed
as followse

Let h be the identity of the predecessor of that processor
which has fatiled and {4 the 4{dentity of the successore.
Processor h undertakes a ring reconfiguratione. The recon=-
figuration message <carries with it value NCh)e Last token
value known in he Upon reception of this messagesy processor
1 runs the following algorithm:

jf ¢+ > h and NCh) 2 N(1)) or
(i < h and N(h) = N(4)) then
create token N(I) 2= N(1) + 13

With such an algorithmy it is possible to assert that a
token is never Lost and thate at any times there is only one
such token circulating on the ring tor zero for a finite and
hopefully short period of time).

TeBe4e4e2 Distributed Signalliing

A simple way to achieve a specific signalling sequence in a
distributed system is to have the processors serfalizing
themselves so that at any times only one processor is "ac-
tinge" This can be done very simply by wusing the control
token as a vehicle to achieve mutual exclusion between these
processorse Howevere the speed of this sfgnalling technique
s very much deopendant on the time spent within the critical
sectione. The problem 4is that very oftens both the number
and the nature of mutually exclusive actions are aiven
beforehand and {1t may be very difficult to adjust the size
of the critical section so that response time requirements
are matched. Such a technioue <could slow down a system
artificallye.

Instead of thisy it 4s suggested to uncouple completely the
sfanatling mechanism and the execution of the critical sec-
tione As a resulty mutually exclusive actions will be
inttiated 1n parallel. A proper sequencing can be built by
assigning identifiers to theme The control token will be

Georgfa Institute of Technology IPC Workshop

N - - - - PR ~

e

_

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 123

used for the purpose of distributing sequencial ftdentifiers
within the systeme These sequential dJdentifiers wilt be
referred to as ticketse Every message issued by a sender
must be ticketed.

1f we want receivers to service incoming messages according
to @@ purely sequential orderings then we need one ticket
space per receiver category. In a fully redundant system,
we have only one category of identical receivers.s One tic-
ket space is neededs. In a partitioned or partially redun-
dant systems we need one ticket space for each partitione.
Theny according to the system under considerationy the token
will carry efther a ticket value or an array of ticket
valuese.

It has been shown how the birtual ring + token structure cen
survive failurese. But tickt=at allocation must also be
resilients To this ende one m s require that a processor
should be either selecting tickets or using them but not
bothe What this means 4s that those tickets which are
selected by a processor should not be used until the token
has been acknowledged by the successore As a consegquences
should a failure occur in the midst of ticket selections the
correct ticket wvalue or array of ticket wvalues can be
regenerated with the token exactly Like this is done for the
cycle number (see 7eBebedel)e Another dssue {s that of
fatlures dnterrupting processing at randome 1In particular,
what should be done with those messages which have been is-
sued by a processor which failed Later on? Another problem
1s what to do with tickets not being used because they were
held by a processor which died.

Actuallys the whole issue would require a complete discus-
sion which §s out of the scope of this paper.

JTeBedebe2el Fortuitous Serjalization
1) Siagnalling within fully redundant srstems

The broadcasting of a ticketed message to all receivers may
be done by the sender (parallel broadcastina)s The usual
problem with this technique is that the sender may fail
while 1{issuing messagese. Howevers because tickets must be
sequentiale 4t 1s simple for a receiver to detect such an
unsafe stiftuation.s A copy of the missing message may be ob-
tained from another receiver.

Another approach to broadcasting consists 4n organizing
recefvers along a virtual ringe This ring {is intended to be
a resilient vehicle for message broadcastinue Only one copy
of a message must be created by the sender which hands 1t
over to one of the receivers. This receiver 1{s then in
charge of {initiating the revolution of the message on the
ring.

Georgia Institute of Technology IPC Workshop

i A - i S ’ s gt s

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 124

i9) Signalling within partioned or partially redundant
systems

The transmission of ticketed messages 1s done by the sender
which selects tickets from the ticket spaces correspodning
to the relevant partitionse

TeBeb4e4e2e2 Enforced Serfaltization

Let us assume that two senders A and B want the receivers to
process messages issued by A first and then messages issued
by 8« This {is done very simply by having A sending to B a
"go-ahead"™ message after A has ticketed its lLast message.
There is no need for serializing the retated activities
outside the system (for exampley A waits until {4ts activity
is over and then sends a message to B).

Senders A and B may also wish to d{ntitjate <co-related ac-
tivities whiche in a partitioned systemy share at Least one
partition. These activities are such that the message from
A should be serviced before the message from E and also the
message from % should not be processed if the activity
initiated by A could not be completede.

The following protocol may be suggestede In the "go-ahead"
messagey A stores the value of the ticket used for its mes-
sagee. It 4s then only needed to provide for a flag and a
field in message headers to be used as followss When a mes-
sage M is received with the flag sete the receiver should
read the ticket value stored in the filelde. If the
corresponding activity could not be completeds message M s
discarded and the sender is told that its activity was not
inftiated.

TeBed4e4e2¢3 Performance Considerations

We want the signalling mechanism not to put any artificial
Limitation upon the system performancess Consequentlys this
mechanism should not be dependent upon the rotating time
period of the token on the virtual ringe Senders should be
able to ticket and to dJssue messages at any time. This
means that senders should be allowed to select tickets not
only for pending messages but also for “future™ messagess
{ece messages to be created and issued between two succes-
sive visits of the tokene

Let p be a sender. At token visit #iy Let CoiCp) be the
exact number of messages which are pending when the control
token 1s receiveds foi(p) be the predicted number of future
messagess Toi(p) be the current value of the relevant ticket
space upon reception of the token and T8i(p) be the new tic-
ket value when the token is sent on the ringe.

Sender p is allowed to acquire Cei(p) ¢+ foei(p) consecutive
ticketss starting from Tei(p), Ideallys during token
revolution #4i+1ey P needs exactly foeitp) ticketse. Clearlys
predictions are only predictionses Furthermores the token
cfrculatinag speed 4s variables Hencey 4t 1s necessary to

Georgia Institute of Technology IPC Workshop

-

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 125

consider two possible situations:

- R runs short of ftickets: 1t has to wait for
reception of the tokene.

- some tickets are not wused when the token is
bagk: Let uesitp) be the number of unused tic-
ketse Because of the mutual independence
principles these tickets should be used up im=-
mediatelye For that purposes we provide for the
utitlization of a no-operation codee. Exactly
uei(p) "fake" messages carrying a NOP code will
be isued by pe

When neededy and as long as tickets are availables new mes-
sages are fssueds

Probablyy this will achieve a good parallelism between sen-
ders but §t is not clear whether or not this will result 1in
a good average response time. Response time for a given
sender is dependent on how fast predecessors wuse wup their
ticketse.

Should such an interference be judged unacceptables another
solution 1s needed.

What we would Like to build 45 a mechanism whereby current
pending messages and future messages are distinguishablesy so
that current pending messages for any sender receive tickets
*smaller™ than those given to future messages.

Let us make it clear that we do not attempt to build a per-
fect chronological ordering of messagess. We only ¢try to
achieve some system=-wide statistical FIFD service so that
the average response time for every sender can be kept below
a reasonable valuee.

The way this can be done is rather simples. It 1s only
needed to maintain two ticket values T and 8y in the token
instead of one (or two arrays instead of one)e T as above,
ts to be used for ticketing current pending messages and 8
for ticketing future messagese By the time the token s
back 1n pe only one of the three following conditions can
hold:

- Uuellp) = Ceitp) = 0 (1deal case)

-~ Cei(p) messages are waiting because p s lacking
ticketsy uei(p) = 04 Ceoitp) > 0 (under-
estimation)

= uef(p) tickets are still availables uesi(p) > Oy
Cef(p) = 0 (over-estimation).

Georglia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 126

A requirement regarding the ticketing function is that the
two sets of numbers being used to assign a value to T and 6
should not be overlappinge.

Two numbering cycles N(T) and N(®) should be chosen so that
tickets Lifetime 1s conveniend (see computations below)e.

As T=ticketed messages and 8-ticketed messages will be
received interleaved by receiverse it 1s necessary to
provide for some means whereby receivers are able to decide
when to stop processing T-ticketed messages and start
processing 8-ticketed messages as well as the reversee.

Such a "switching" should correspond to a complete revolu-
tion ot the token on the virtual ring. We need a sender to
flag the corresponding T and & ticket valuese.

That sender could be x such that successor (x) < xe Oue to
the properties of the virtual rings this processor is unique
and always existse

The algorithm t¢ be followed by sender p upon reception of
the token is described below (+ and - operations are modulo
N(T) or N(B)).

N
F suc (p) < p and Ceidp) = 0 THEN
8EGIN
Ceit(p) := 13
creat Fake message
ENDS
IE Ce4¢(p) > 0 IHEN T®e4(p) 2= Tei(p) + Coitp)
(acquisition of tickets HTei(p)le eoey9 #Tadi(p) + Cofl(p) - 1)
ELSE LIE uei(p) > 0 THEN
send uei(p) Fake messaages (ticketed with the u.i(p)
highest 8~tickets obtained during the Last
token visit)s
assian a value to f.1(p)3
IFE suc (p) < p AND feilp) = 0 THEN
fei(p) = 13
create Fake message
ENDS
8*'.1(p) == 9.1(0) + f.“(p)
(acquisition of tickets H#B49(D)o eoey #Bei(p) + foit(p) =~ 1)
IF suc (p) < p THEN Flag messages carrying tickets
#T44{(p) + Cei(p) = 1 and #8.1(p) + fei(p) - 13
END

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 127

The algorithm to be followed by a receiver is given belows
Notations:

X stands for either state T ("current®™) or
state 8 ("future®)}

X~ T 1f (X=8)

0 1f (X=T)3

t(X) ¥s a Local variable containing the ticket value of the
Last processed messages f1e€s t(T) or t(8)e

WHEN IN STATE X DO
LQOP: Scan fore or wait for reception of message
X=-ticketed t(X)el:
CASEl (X=ticket t* > t(x)+1 is received):
mod
Record requests
CASE2 (X“~-tficket is received):
Record requests
CASE3 t(X=ticket t(x)+1 {is present or received):
BEGIN initiate processingsi
IF message t(Xx)+1l is flagged

switch to state X~
ELSE
teX) = t(X)+1l
END
CASE4 (timeout):
Marks dtself out of synchronization and initiate a

recovery proceduree

A simple way to provide for two separate numbering schemes
of equal Llength ds to use one bit to distinguish between
T-tickets and @ticketses Howevery one should mention that,
if predictions are not too {Ynaccuratesy 8-tickets are to be
used up more rapidly than T~ticketss Then an equal share of
the ticket number space may not be the best solution.

We will discuss onty ©obriefly the {1ssue of fafirness 1in
estimating fei(p)e We consider two cases:

- senders are processors (maxises miniss micros)
cooperating within a distributed computing
system to be viewed 2s a unique system by userse
Algorithms to be followed by senders are
designed by system builders who are responsipble
for choosing convenient values for fei(p).

- senders are computers connected on a computer
networke Over-estimation is costly to senders
because (1) processing wasted in handling NOP

Georgia Institute of Technology IPC Workshop

Section 7 CURRENT TECHNIQUES AND EXPERIENCE Page 128

messages cannot be used to process useful mes-
sages (throughput 1s LlLower)e (§4) a sender is
bitled for messages carrying NOP code and for
the corresponding processing in the distant com-
putere.

Because of the "pipe-Line" nature of this mechanismy there
will be no interruption of message transmission. What this
means iJs that receivers may be kept as busy as desireds 1If
used cleverlyy the signalling mechanism using anticipation
can achieve any desired throughput,

Tickets Lifetime

For 16 bit ticketss values are re-used after 65 seconds if
ticketed messages are issued every millisecond for the whole
systemy after 18 hours and 12 minutes i1f ticketed messages
are issued ever seconde

For 32 bit ticketsy Lifetime {is much Longer. Values are re-
used respectively after 1 hour and 12 minutesy 119 hours or
136 years when ticketed messages are issued every
microsecondes 100 microseconds or second in the whole system,

7.8.5 Conclusion

In this papery a solution to the problem of multiple~-path
signaltine in distributed computing systems has been
described. This solution is based on the utilization of a
particular control structure which can achieve a distributed
and resilient generation of sequential identifiers.s In ad-
dition to solving the mps problems this solution can be used
tn distributed systems which should be resilient and where
unique names need to be generated dynamically. Alsoey a
side-effect of this solution is to allow for a safe detec-
tion of duplicate messages at a high Level in the system,

Georqgia Institute of Technology IPC Workshop

| NP o - - — - — — _&{._,_.__. - h —
?‘ Section 8 SUMMARY AND FUTURE DIRECTIONS Page 129
i SECTION 8
N . SUMMARY AND FUTURE DIRECTIONS
14

8.1 GENERAL QBSERYATIONS AND CONCLUSIQNS

The idea of a process has not been fully absorbed by
programming Llanguages or by modern hardwarees Consequentlyy
the concept of an abstraction of a process and 1its support
1s left to the realm of operating systems (which sft between
] the Langquage and the hardware)y resulting in Little or no
standardiztion of a "process" (especfally when compared to
E o the Level of standardization enjoyed by other features or
aspects of higher Level Languages and hardware)e.
Neverthelesse as this report has illustratede the process
concept 1s becoming central to the design of computer
systems both at the hardware and software levelse There are
many reasons for this developmentsy probably the two most im-

¢ portant ones being:? (1) the decomposition of systems and
‘ ‘ . applications problems 1into sets of <cooperating parallel
’ processes for greater modularity, functionality,

flexibilitys and maintainabilitys and (2) the 1{ncreasing
cheapness of processors and memory allowing the assignment
of processes to processors in an economical waye.

As processes have become "cheaper™ to creates matntaine and ¥

destroyy the flexibilitysy scopes powery and economy of

interprocess communication (IPC) mechanisms has become an
7 important key to the effectiveness of multi-process systems
% in generals and highly distributed systems {in particulare.
Howeversy there currently exists a wide variety of mechanisms
for interprocess communications resulting in what one
researcher [SALT 79] has termed the "IPC Jungle". Perhaps
the major reason for such a variety comes from a desire to
provide in one set of primitives all of the following
capabilities:

1) Flexible process and/or data synchronization

toolsye
2) vata transfer mechanismse and
3 Communication c¢ontrol and error recovery

mechanisms,

' : Surprising to some researchers at the workshop was the lack

i, of attentfon paid to securitys fault tolerances and error

recoverys howevery this may be taken as an indication of the

, general state of affairs of a young technologye In such

casesy attention is usually first focused on achieving a

- ’ certain Level of functionality before much effort {s devoted

. to engineering those features that make the technologqy
robust enough to be put into wide=-spread use,

J Georagla Institute of Technology IPC Workshop

»
- " ~— . . AR - - - . e ~
! -

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 130

Finallys dissemination of information about IPC techniques
and options with respect to both implementation and per-
formance has been extremely poor in the paste and there do
not appear to be any immediate advances being made on this
aspect of the problem.

Georgla Institute of Technology IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 131

8¢2 MORKSHOP SUMMARY

Below is a summary of the major focus areas of the workshop
and their conclusionse.

8.2.1 Addressinge Nasinges and Securify

Many systems have 4{nadeaquate facilities for identifying
names of processes within the same hoste Llet alone for
processes residing on different hostse. Many existing
systems almost totally sidestep the naming issuee. Part of
the problem stems from an 4inconsistent view of the
relationship between the set of allowable names for filesys
devicess processesy usersy mailboxesy generic system ser-
vicesy and specific system servicess As Livesy pointed out
during the workshops the concept of the size of the namina
universe (of which the system forms a part) is {mplicit dn
the system at a very deep level. One 4s forced to choose
between "add-on"naming techniques such as?

/net/A/resource

which are not wocation independent on the one hande and a
more or less complete redesign of the naming architecture on
the other hande UNIX {is an example of a system that makes
assumptions about the size of the universee. Until this
problem is settleds the design of specific interprocess com-
munication primitives cannot focus on the set of fundamental
objects that must be dealt withe This is a difficult issuey
since 4t 1s here that many of the system security {issues
must also be addressede.

8.2.2 Jpterprocess Synchrenizatien

Clearlys a major function of interprocess communication is
to provide either explicit or 1implicit synchronization
between processes and/or access to shared data. £Early forms
of interprocess communication depended only on the <correct
use of explicit synchronization primitives for sharing ob-
Jects (usually sections of main memoryl)e In some systemsy
temporary files served as synchrontizing pointes between job
steps (implicit)e while 4{4n other systemses processes ex-
plicitly exchange data by signaling. Whether synchronfiza-
tion primitives should be explicit or implicit is still very
much an open questione.

1t is also becoming clear to some of the researchers in the
field that error recovery may be integral to the question of
synchronizations Visibility of the state of a computational
process s at the heart of the synchronization and error
recovery issues. Concerr over the "atomicity® of an opera-
tion 1{is becoming more of a focael point for distributed
systems as the dimensions of time and space for com-

Georgia Institute of Technology IPC Morkshop

Section 8 SUMMARY AND FUTURE OIRECTIONS Page 132

putational operations begin to <change by orders of
magnitudee. This concern {s reflected 1n the recent
Literature concerning synchronization in distributed systems
(see the 1978-79 references)y and 1in some of the recent
theoretical worke. Howeversy their effectiveness using
current technology 1s Llargely unknown until prototype 4m~
plementations appear.

8.23 Interprocess Mechanises

At least ten currently used IPC mechanisms were f{dentified
along with some estimate of their support of certain
aqualities deemed desirable by the workshop attendeess There
was more agreement on the set of desirable qualities than
there was on which mechanisms fulfilled those qualitiess It
was also obvious that none of the present mechanfisms did
everything that everybody hoped fors which should tell wus
that we have yet to obtain maturity of abstraction (in the
sense that the abstraction of a subroutine 1s well under-
stood) for a general IPC mechanisme For these reasonsy it
seems reasonable to keep exploring new mechanisms while we
also continue to build real-world systems with the best
techniques we have heard about.

In addition it appears important to devote some additional
work to selecting the factors to be utilized iIn assessing
trade-offs between provability versus convenience of 1im-
plementation and use. ™“any of the mechanisms discussed at
the workshop present enormous obstacles to rigorous proofe

8.2.4 Theoretical Mork

Distripbuted systems present new theoretical challenges to
researchersy Largely because the specification of a
distributed computation involves time and space boundaries
that are difficult to defines and may be constantly
changinge Variability in speeds and state definition may
even make a "system" 1inherently non-deterministice Such
difficulties throw much of the previous work in proogram
specification and correctness into disarray when applied to
distributed systemse There is Little agreement whether to
approach the problem using "state-free"™ or "state-based"
descriptionse or whether to grapple with atomic or non-
atomic actionse or even what are relevant measures of "time"
and "space", Once againe this seems to reflect the im-
maturity of the whole field of distributed systemss

Georgia Institute of Technology IPC Workshop

Section 8

SUMMARY AND FUTURE DIRECTIONS Page 133

8.3 CONCLUSIONS AN BEIRQSPECT

Lastlye we should be honest as to how well we achieved

orfginal

goalse Each goal {s repeated here with a short
comment as to our view of the Level of success we enjoyed

and the reasons for 1it.

n

2)

3)

4)

5)

Georaia

Institute of Technology

Assess the present state-of-the=-art for IPC
mechanisms in distributed data processing
systems.

» = Successfule A reading of many of the
enclosed working papers and the references
should adequately reflect the present state-
of-the=arte.

Identify the data available on the actual
performance of wvarious IPC policies and
mechanismse

* Unsuccessfule An attempt was mades however
tack of agreement on approorfa‘e measures
(see mechanisms) has probably prevented any
great data base being built up,

Assess the potential value of varfious IPC
mechanisms 4n satisfying the operational and
performance requirements for highly
distributed systemse

** Moderately successful. Many of the ad-
vantages and disadvantages of the functionat
aspects of current mechanisms dn use were
examinedy althoughe obviouslys more thorough
operational and performance assessments must
await more "distributed® implementations.

Identify shortcomings in the present state-
of-the-art and dJdentify promising areas for
further research and experiments on this sub-
jecte.

#+% Successfule A reading of the report
reflects many of the shortcomings of current

techniquese Promising areas for further
research were not specifically addressed in
all eas’ howevery they are indirectly

identYfied by many of the authorse.

Identify possible standardization Levels in
IPC designe

* Unsuccessfule The plethora of available
abstractions and the notable Lack of any
single outstanding set useful for distributed

IPC Workshop

Section 8 SUMMARY AND FUTURE DIRECTIONS Page 134

applications reflect the 4{mmaturity of the

. field and possible premature standardizatione.)
)
(' .
1]
.
P » .
‘I‘_\ B
‘ Georgia Institute of Technology 1PC Workshop

Section 9 SELECTED READINGS AND REFERENCES

SECTION 9

SELECTED READINGS AND REFERENCES

9.1 SELECIED READINGS

On Process Models and Structures

CHORN 731
LDIJK 68al
LHOAR 781

On Addressing and Naming

(SALT 781
CSHoC 781

CMILN 771
Lzav 761

Opn Procegs Synchronization

[DIUK €8b1
THOAR 741
CHABE 721

On Message Based Opgrating Systems

CBRIN 69]
CBRIN 701
{BALL 761
CLYCK 781
CNELS 78]
LFARB 731

On Logal Networks

CCLAR 78]
CMETC 761
LGORD 791

0n Porise Pipes and Victual Cirguits
CWALD 721

[THOM 74]
{cCcIT 781

Georgfia Institute of Technology

Page 135

IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 136

Qn the Early Ireatment of Processes and IPC in Qperating
Systems

[DALE 681
[SALT 661 e
(DIJUK 711
£18M 712

on IPC Protocols

CPARD 791
[DESY 781
i

1]
i
]
PR Y ~
‘]'\ Georqfa Institute of Technology IPC Workshop

Section 9

SELECTED READINGS AND REFERENCES Page 137

9.2 LISI QF REEERENCES

LABEL 78] Harold Abelsons "Lower Bounds on Information

CALSB

CBACH

[BADA

CBALL

{BART

CBASK

(BOBR

[BRIN

[BRIN

761

781

781

761

771

771

721

691

701

Transfer in Distributed Computationss” Proceedings
ef the Nipeteenth Anpual Symposium on Foundations
of Computer Sciences October 16-184 1978y pp 151-
158.

Pe Aes Alsberges Ge Ce Belfords and Se Re Brunchys
“Synchronization and Deadlocks® Center for Ad-
vanced Computations Doce NOs 1859 University of
ItlLinoise March 1976,

Charles We Bachmane "™Provisional Model of Open
System Architectures” Proceedinas of the Third

Berkeley Workshop opn Disiributed Data Mapaagement
and Computer Networkgse August 29-31, 1978,

De 2+ Badal and Ge Je Popeks "A Proposal for
Distributed Concurrency Control for Partially
Redundant Cistributed Data Base Systemse"®
Proceedings of the IThird Berkeley Workshop on

Distributed Rata Manaaement and Compuler Nefworkss
August 29-31, 1978,

Je FEe Balle Je Feldmans Je Re Lowe Rae Rashide and
P. Rovnerey "RIGes Rochester?®s Intelldigent Gateway:
System QOverviewe" JEEE JTrangsactions on Software

tngineerings vole SE=29 noe 49 December 1976+ ppe.
321-328. ’

Je Fe Bartlette "A *NonStop® Operatina Systemy"
Srogceedings of the Hawaii International Conference
of System Sciengess January 1978,

Fe Basketts Jo He Howarde and Js Te Montaguey
*"Task Communication in DEMOSe" Proceedings of the
Sixth Symposium on QOperating Sysiem Pringipless

6=-18 Nov 1977. Reprinted 4n Qperating Systers
Reviews vole 1l9 noe 59 November 1977.

De Ge Bobrows Je De Burchfiels De Le Murphys and
Ry, Se Tomlinsone "TENEX = A Paged Time Sharing
System for the PDOP-104" Communications of the ACH.

Volume 159 Number 3¢ March 1972.

Per Brinch Hansene “RC 4000 Software? Mul -
tiproaramming Systems® Regnecentralens Copenhageny
Denmarks April 1969.

Per Brinch Hanseny "The Nucleus of a Multiprogram-

ming Systems" Commynications of the ACMe vol. 13,
noe 49 April 1970y ppe 238~50,

Georgla Institute of Technology IPC Workshop

Section 9 SELECTED READINGS AND REFERENCES Page 138

CBRIN

C3RIN

[BRIN

[RURN

fccIrv

CCLAR

CDALE

73] Per Brinch Hansens Qperating Systems Pringiplese
Prentice~Hally 1973,

761 Per B8rinch Hansens "The SOLO Operating Systems”

Software Practice and Experiences vole 65 noe 29
April=-Jdune 1976y ppe 141-206,

77] Per Brinch Hansens The Architecture of Concurrent

Proaramss Prentice-Hally 1977,

78] Je Eo Burnse Me Jeo Fischere Pe Jacksony Ne Ao

Lynche and Ge Le Petersons "Shared Data
Pequirements for Implementation of Mutual Ex-
clusion Using a Test-and-Set Primitives"

Proceedings of the 1978 1International Conference
on Parallel Processings Auaust 22-25+ 1978y op 79-

87.
78] CCITTy Provisional Recommendations Xe3s Xe25e¢ Xe28
and X.23 on Packet Switched Qata Iranspission

Servicess Genevay 1978,

78] De Ce Clarkey Xe Te Pograney and De Pe Reedy "An
Introduction to Local Area Networks"s Proceedings
of the IEEEs vole 6649 noe 119 November 1978+ ©ppe
1497-1517.

68) Re Ce Daley and JeBe Dennises "Virtual Memorys
Processess and Shaping in Multics"es
Communications of the ACMs wvole 11y noe Sy ppe
306-~124¢ May 1968.

(DEC 77) VAX1l Sofiware Handbooke Digital Equipment

[DESJ

(CTUK

LDIJK

(OIJK

Coows

Corporation 1977.

731 Richard desdJardins and George Whites "ANSI
Reference Model for Distributed Systemse"
Proceedings of COMPCON 1978¢ Washingtone DeCoy

September 1978s ppe 144-14%.

68a) Eo We Dijkstras "The Structure of the 9THE® -
Multiprogrammina Systems" Communications of the
ACMy vole 119 noe Se May 19684 ppe 341=346.

68b3 Eo We Dijkstras "Cooperating Sequential Proces-
sese" in Programming Languagese (Editor: F.
Genuys)e Academic Presss New Yorks 1968,

71] Eo We Dijkstrae "Hierarchal Ordering of Sequential
Processess" Acta Informatica vole le noe 24 1971,
ope 115-38.

78] M, Dowsony "The DEMOS Multiple Processor Technical
Summaryes™ Natdonal Physical Laboratory Technical
Reporte NPL Report 101e Apriley 1978e4 Teddingtony
"Yddlesex TWII OLWe UKe

Georgia Institute of Technology IPC wWorkshop

Section 9 SELECTED READINGS AND REFERENCES Page 138

. CELLI 77 Clarence Ae. Ellise "A Robust Algorithm for Updat-
ing Duplicate Databasess"™ Proceedings of the
. Second Berkeley MWorkshop on 0QDistripbuted Data

Management and Computer Networkss May 25-27, 1977.

-y i -

CESWA 76) Ke Pe Eswarans Je Ne Graye Re Ae Lories and l1e. Lo
Trataecry "The Notions of Consistency and Predicate
Locks in a Database Systems" Communications of fhe
ACMe vole 19y noells November 1976¢ pPpPe 624=633.

. LFARR 73] Re Je Farbers Je. Feldmaney Fe Re Heilnrichy Me Co
’ Hupwoode Ce Larsone Ce Loomises and Le Ae PRowey

"The Cistributed Computing Systems" Digest of i
N Papers from CQMPCON 13+ San Franciscos Californiay

27 February = 1 March 1973y ppe 31-34,

[LGARC 78] Hector Garcia=-Molinae "Performance Comperison of L

Two Update Algorithms for Distributed Databasess" ’

Proceedinas of the Ihird 3Zecrkeley dorkshop on

Oistributed Data Management and Computer Networkse 1

{ Auqust 29-314 1578,

g . [LGORE 79) Re Le Gordons “Ringnet: a Packet Switched Local
r s Network with Necentraltzed Controle® 4th
) conference on Legal Computer Networkse Min-
! neapoliss Minnes October 19794 ppe 13-19.

CGRAH 723 Ge Se Graham and Ps Je Denninge "Protection --
Principles ana Practiceqy" AEIPS conference
Proceedingss 1972 SJCCe ppe 417=-429.

CGRAP 761 Enrifque Grapas anc Geneva Ge Relfordy M"Techniques
for Update Synchronization in [Distributed Cata
Basess" unpublished popers 1976,

CHABE 721 Ae. Ne Habermanne "Synchronization of Communicating

Processess™ Communications of the ACMs vol. 15,
noe 29 March 1972¢ ppe 171=76.

[HAMI nd] Je Hamiltons "The Functional Specification of the
WEB Kernelo" Digital Egquipment Corporation,
Coproate Research Groupes ML3-2/E41e no datee.

CHOAR 741 Ce Ae Re Hoarey "“onitors: An Operating System

Structuring Concepts" Compunications of the ALM.
vOole 179 noe 5S¢ October 19744 ppe 549-557.

[HOAR 78] Ce Ae Re Hoarey "Communicatina Sequential Proces-

M. sese” Commypications of Lhe ACMs vol. 21y noe Sy
August 1978+ ppe 666-677.

CHOLT 78] R, Ce HOLty Go Se Grahamy £« D¢ Lazowshkas and M,
Ae Scotts "Announcing Concurrent SP/ke" QOperating

- System Reyiews vole 129 noe 2¢ April 1978,

T CHOLT 78bJ1 R Ce Holto et ale Strustured Copgurrent

| Georaifa Institute of Technoloqy IPC Workshop

]

* -y
» A
- ~ - b

P -

,, >

. T A"’"?'.E;j“mﬂ

Section 9 SELECTED READINGS AND REFERENCES Page 140

>{v

rograpming with Qperating Sysiems Appligations.
ddison-Wesley Series 1n Computer Sciences 1978,

[HORN 73] Je Je Hornings and B. Randalles "Process Struc-

turinge" ACM Computing Surveyse vole Ss noe 1o Moy
15739 ppe 5=30, '

£18M 711 IBM System/360 Operating System Supervisor Ser-
vicesy I2M Systems Reference Librarys Order Number
GL28=~6646~4y 1971,

CIPC 751 ACM SIGCOMM/SIGOPS WORKSHOPs ACM SIGOPS Reviews
MARCH 1975,

CJOHN 751 P. Re Johnson and Re He Thomase *The Maintenance
of OQOuplicate ODatabasess™ RFC Noe 6779 NIC Noo
31507y January 19754 ARPA Network Information
Centery SRI-Augmentation Research Centers Menlo
Parke CA 94025,

[JONE 77] A. Ke Jonessy Rs Jes Chanslers le Durhame Pe Fellery
and Xe Schwanse "Software Management of Cmx <~ A
Nistributed Multiprocessors" AFIPS Conferepce

CLAMP 761 Le Lamports "Towards a Theory of Correctness for
Multi-user Data Basese"™ Masse Computer Associatesy
Inces CA-7610~07119 October 74y 1976, >

TLAMP 77] Lo Lamports "0n Concurrent Reading and uWritings"
Communications of the ACMs vole 20y noe. 11y MNovem-
~er 1977, ppe 806-811.

CLAMP 711 He We Lampsons "Protections" Proceedipas of 1the
£ifth Anpual Conference on Information Sciences
and Systemses Department of Electrical Engineerings
Princeton University, March 1971 ope 437-443.

CLAMP 73] B3« We Lampsons "A Note on the Confinement
Probleme" Communications of the ALMs vole 169 no.
S5¢ October 1973s ppe 613-615.

CLAUE 791 He Ce Lauer and Rs. M. Needhamy "On the OQuality of

Dperating System Structuress" Operatipna Systems
Reylews vole 134 noes 29 April 1979.

e e e e s

CLIVE 78a] Ne Je Livesey and Lo Ge Manninaos "Protection 4n a

v Transaction Processing Systems™ Proceedings of the
i 7th Texas Conference on Computing Systemss October
] . 1978

CLIVE 78b] N. Je Livesey and £+ Ge Mannings "What Mininet

Taught Us About Proarammino Styles" 2roceedings of
r - COMPSAC 18e Chicagos Itlinoise Novemner 19789s ppe
|

£92-697.

Georglia Institute of Technology IPC Workshop

Section S SELECTED READINGS AND REFERENCES Page 141

CLYCK 78] He Lycklama and De Le Bayery *The M{RT Operating

Systeme” The BELL System JTechnical Jourpale vole.
57 NOoe 6¢ Part 2¢ July=Aucust 1978¢ ppe 2049-86.

’ [MANN 77]) Ce Ge Manning and Re We Peebless "A Homoaenous
Network for Data Sharing: Communications.”
Computer Networkse Vole 19 NOoe 49 19774 pp 211~
228

[METC 76J] Re Me Metcalfe and DNDe Re BoOaggse "Ethernet:
. Distributed Packet Switching for Local Computer

Networkse" Communications of Lfhe ACMs vol. 19 no.
Te July 19769 ppe 395-404.

CMILN 771 Ge Milne and Re Milnery “"Concurrent Processes and
their Syntaxe™ University of Edinburghs Department
of Computer Science Report CSR=2=-77¢ May 1977,

[NELS 78] Ne Le Nelson and Re Le Gordony "Computer Cells = A
Network Architecture for Data Flow Computing."

Proseedinas of COMPCON 78+ Washingtone DeCes Sep~
tember 1978s ppe 296-301L,

f . CNSW 76) NSW Protocol Committeesy "MSG: The Interprocess
' Communication Facility for the Hational Software
Workse" 8BN Report No. 3483y Massachusetts Com-
puter Associates Document Noe. CADD=-7612-2411,
. December 1976.

[ORGA 721 l. Organicks Ihe MULTICS System: An Examination

Ee
of Its Structures MIT Presses 1972,

[PARD 791 Re Pardo and M. T Liue "Multi-Destination

the 1319 Ceomputer ﬂ:tunnk Symposiume Gaithersburay
Mdes December 1979,

[PEER 78] Richard Peebles and Eric Manninge "System Ar-
chitecture for Oistributed Data Managementy"
Computers vole 11le noe le January 19784 ppe 40-47,

[PETE 771] Gary Le Paoterson and Michael Je Fischery
"Fconomical Solutions to the Critical Section
Problem {in a Distributed Systemos" Progeedings of

Lthe 1211 Nipth Appual Symposium on Ibhgory of
Computings May 2-4s 19774 pp 91-97.

CPOWE 77] Me Le Powelle "The Demos File Systems" "Task Com-
\ munication in NEMOSe" Proceedings of the Sixth
* Symposium on Qperating Sysiem Pringiplese 16-18

Nov 1977. Reprinted in Qperating Systems Reyigws
vole 119 noe H5¢ NoOve 1977,

el (REED 77) De P. Reed and Re Ke Kanodias "Synchrontzation
with Eventcounts and Sequencersy" Operating
Syslems Reyigwe vole 119 noe 59 ppe 91-92.

| Georaia Institute of Yechnology IPC Wworkshop

Section 9 SELECTED RFRADINGS AND REFERENCES Page 142

CREED 783 D¢ Pe Reedy "Naming and Synchronization {n a
Decentralized Computer Systems® MIT LCS Report
MIT/LCS/TR=2054 September 1978.

CRITC 747) De Mo Ritchie and Ke Le Thompsono "The UNIX
Timesharing Systeme” Communications of the ACM,
July 1974,

LRITC 78] De Me Ritchieo™A Retrospective on the UNIX Time-

sharing Systems" The Bell System Techpical
Journale vole 574 noe 64 part 2¢ July=-August 1978,

CRIVFE 76] Re Le Rivest and Ve Re Pratty ®The Mutual Ex-
clusion Problem for Unreliable Processes:
Preliminary Reports" Proceedinags of the
Seventeenth Apnual Symposium on Foundatigons of
Computer Sciences 19764 pp 1-8.

LROTH 77] Je Be Rothnie and Ne Goodmane "A Survey of
Research and Development in Distributed Database
Management," Proceedings of 3rd International
Conference gn Yery Laroe Data Basese Tokyos Japans
Dctober 1977,

[SALT 661 Je He Saltzere "Traffic Control in a Multiplexed

L8 , Computer Systems” Project MAC Technical Report
MAC-TR=30 (Thesis)y Massachusetts Institute of
& , Technologys July 1966 .

CSALT 781 Je He Saltzere "Naming and Binding of Objectss® in
i dperating Systems = An Adyanced Coyrsees Re Bayerys
Re M, Grahams and Ge Seegmuller (edse)s Berling
Springer-verlagy 1978+ ppe 99-208.

[CSALT 79) Je He Saltzery Comments at the "7th Symposium on
Operating Systems Principless" Novembery 1979,
concerning distributed systems.,

[SCHE 78] Le Schefflery "Pipes = Interprocess Communfication
for PRIMOS and PRIMENET " (PE-T in final
preparation).

FSHOC 781 John Fe Shochy "Inter=-Network Naminge Addressings

and Routinge" Proceedings of COMPCON I8+ Washing-
tony DeCes September 1978y ppe 72-79.

[STON 78] Michael Stonebrakery "Concurrency Control and
Tonsistency of Multiple Copies of NData in
Ndstributed INGRES+" Progceedings of the Ihird

derkeley Workshop on Distributed Lata Management
. and Compyter Networkss Auqust 29-31, 1978.

[SUNS 763 Carl Ao Sunshine, "Survey of Communication
' °rotocol vVerification Techniquess" Proceedings of

the Symposium on Computer Networks: Irends ang -
B Applicatione Gaithersburgy MDs November 17 1976
T Georagla Institute of Technology IPC Workshop

Section 9

. (THOM 771

CTHOM 781

CTHOM 741

CwaALD 721

CWILK 791

CWULF 741

CYOUN 793

LZAVE 761

Georagia

Institute of Technology

SELECTED READINGS AND REFERENCES Page 143

Robert He Thomase "A Majority Consensus Approach
to Concurrency Control for Multiple Copy Data
Baseses™ Bolt Beranek and Newmane Inces BBN Report
Noe 3733¢ December 1977.

Robert He Thomasey Richard Es Schantze and Harry Ce
Forsdicky "Network Operating Systemse® C[olt
Reranek and Newmane Incesy BBN Report Noe 37960
March 1978, :

Ke Te Thompson and De Me Ritchies "The UNIX Time-

sharing Systeme™ Commupications of the ALHs» wvol.
17¢ nNoe 79 July 19744 ppe 365-375,

DeCe Waldeny "A System for Interprocess Communica-
tion in a Resource Sharing Computer Networke"

commynications of Lthe ACMe vole 15s noe 4o Aprit
1972,

Maurice Ve Wilkes and De Jeo Wheelery "The Car=-
bridge Digital Communication Rings" Progeedinas of
the Local Areas Commynication Networks Symposiums
Mytre Corporation and National Bureau of Stan-
dardse Bostone May 1979.

We Wulfy Fo Coheny We Corwing A, Jonessy Re Leving
Ce Piersony and Fe Pollacky "HYDRA: The Kernal of
a Multiprocessor Operating Systems” Commupications
0f the ACMy Volume 174 Number 64 Junc 1974,

Re Young and Ve Wallentince "“The NADEX Core
Dperatinag System Servicess"™ Kansas State Univer-
sity Department of Computer Science Technical
Reporte noe CS 79-114 Novembers 1979.

Pa Zaves "On the Formal Definition of Processess™

Proceedings of the Conference g0 Paratlel
Processinge Wayne State Universitys IEEE Computer

Societys 1976,

IPC wWorkshop

