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Abstract

'he problem of simultaneously estimating phase and decoding data

symbols from baseband data is posed. The phase sequence is assumed to

be a random sequence on the circle and the symbols are assumed to be

equally-likely symbols transmitted over a perfectly equalized channel.

A dynamic programming algorithm (Viterbi algorithm) is derived for de-

coding a maximum a posteriori (MAP) phase-symbol sequence on a finite

dimensional phase-symbol trellis. A new and interesting principle of

optimality for simultaneously estimating phase and decoding phase-

amplitude coded symbols leads to an efficient two step decoding procedure

for decoding phase-symbol sequences. Simulation results for binary,

8-ARY PM, and 16-QASK symbol sets transmitted over random walk and

sinusoidal jitter channels are presented, and compared with results one

may obtain with a decision-directed algorithm, or with the binary

Viterbi algorithm introduced by Ungerboeck. When phase fluctuations

are severe, and the symbol set is rich (as in 16-QASK), MAP phase-

symbol sequence decoding on circles is superior to Ungerboeck's tech-

nique, which in turn is superior to decision-directed techniques.

______ _A sp.......



I. Introduction

Phase fluctuations can significantly increase the error probability

for coded or uncoded symbols transmitted over a channel that may or may

not have been equalized. This is especially true for PSK and QASK symbol-

ing in which case accurate phase discrimination is essential for symbol

1
decodingI . Even when the receiver contains a decision-directed phase-

locked loop (DDPLL), performance loss in SNR with respect to a coherent

decoding system can be in the range 5-10dB. This fact is established in

[1] for practical symbol sets and typical values of the phase variance

parameter and symbol error probability.

On telephone lines linear distortion and phase jitter dictate the use

of a channel equalizer and some kind of phase estimator to achieve high

rate, low error probability, data transmission. A common approach to

phase estimation and data decoding is to use a decision-directed algorithm

in which a phase estimate is updated on the basis of old phase estimates

and old symbol decisions. The DDPLL of [5] is a first-order digital

phase-locked loop (PLL) in which the phase estimate is updated on the

basis of a new measured phase and 4n old symbol decision. In the jitter equal-

izer (JE) of [31 and [4] a complex gain is updated according to a simple

decision directed stochastic approximation algorithm. The complex gain

is used to scale and rotate the received signal, thereby correcting phase

jitter and normalizing rapid fading variations. Although there is no

explicit interest in phase estimation itself in the JE, it is possible to

interpret the structure as an adaptive gain-phase correcting equalizer.

iThe modifiers PSK and QASK stand for "Phase Shift Keyed" and "Quadrature
Amplitude Shift Keyed," respectively; SNR will mean signal-to-noise-
ratio.
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Both the DDPLL and the JE are very simple to implement, but apparently

neither achieves optimality with respect to any statistical criterion for

symbol (or data) decoding. Furthermore, neither the DDPLL nor the JE is

optimum for estimating and/or correcting phase. Therefore an important

question to be answered is whether or not symbol decoding can be improved

using a better phase estimator. The answer, based on the results of []

and this paper, is that significant improvements can be realized when the

phase fluctuations are severe if one is willing to pay the price of an

increased computational burden. In practice, cases of severe phase

fluctuation can occur in high data rate PSK and QASK systems in which the

angular distance between symbols is small.

In [I] Ungerboeck recognized the potential of maximum a posteriori

(MAP) sequence estimation for jointly estimating phase and decoding data

symbols. A path metric was derived and its role in a forward dynamic

programing algorithm for obtaining MAP phase symbol sequences was indi-

cated. Because of the way phase was modelled in [1), the dynamic pro-

gramiing algorithm could not be solved directly. Using two approximations,

Ungerboeck derived an implementable algorithm and obtained performance

results that were on the order of 3dB superior in SNR to the DDPLL in a

16-QASK system,at interesting values of the phase variance parameter.

We call the algorithm of 11) a discrete binary Viterbi algorithm (DBVA).

The reader is referred also to [5] and [6] for discussions of other

sub-optimum, but computationally tractable, algorithms for simultaneously

estimating phase and decoding data symbols.

In this paper we observe that baseband data is invariant to modulo-2w

transformations on the phase sequence. This motivates us to wrap the
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phase around the circle, so to speak, and obtain folded probability models

for transition probabilities on the circle. When the phase process is

normal random walk on the circle, then the transition probabilities are

described by a folded normal model. This model has also been used in

[7] and [8]. It is then straight-forward to pose a MAP sequence estima-

tion problem for simultaneous phase and symbol sequence decoding as

described in [8] and [9]. The basic idea is to discretize the phase

space [-w,n) to a finite dimensional grid and to use a dynamic program-

ming algorithm (Viterbi algorithm) to keep track of surviving phase-symbol

sequences that can ultimately approximate the desired MAP phase-symbol

sequence. The MAP phase-symbol sequence, itself, is the entire sequence

of past phases and symbols that is most likely, given an entire sequence

of recorded observations. Details of the algorithm are given in [8] and

[9]. For PSK and QASK symbol sets an interesting principle of optimality

leads to an efficient two-step decoding procedure. With this procedure

computational complexity is reduced by a factor near to the square of the

number of admissible phase values per amplitude level. This amounts to

a factor of 16 for the 16-point QASK diagram that has been recommended by

CCITT for data transmission on telephone lines at 9600 b/s. Finally,in

order to make the computation and storage requirements tractable in the

Viterbi algorithm, we use it in a fixed delay mode, as do other authors.

By appealing to known results for fixed-lag smoothing of linearly-observed

data, we are able to intelligently choose the fixed delay. Without signif-

icant performance loss we decode phase-symbol pairs at a depth constant

of lb- 10. This obviates the need for huge storage requirements for long

sequences. With these modifications the Viterbi algorithm becomes a

feasible, albeit sophisticated, decoding procedure.
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Simulation results for the proposed Viterbi algorithm (VA) are pre-

sented for several symbol sets consisting of 2, 8 or 16 symbols. Several

types of phase jitter are investigated such as Gaussian and non-Gaussian

random walk, and sinusoidal phase jitter. The resulting error probabilities

are compared with those of the simpler decision-directed algorithms (JE and

DDPLL), and those of the DBVA. As expected, performance of the VA is

always superior to that of the other systems. On the other hand the increase

in computational burden is substantial and the improvement in performance

is not always great enough to warrant the use of the VA. In our conclud-

ing remarks we discuss situations in which one might reasonably use the

VA rather than a simpler decision-directed algorithm such as the JE. or the DDPLL.

Remarks on Notation:

Throughout this paper H denotes statistical independence. The nota-

tion {#k)K will mean the set fok , k=1,2,...,K). When the indexes 1 and

K are missing (e.g., { k)) , it is understood that K is infinite. The

symbol N+ denotes the positive integers. The notation x:N (U,o 2) meansX

the random variable x is normally distributed with mean U and variance

S2;Nx(,o 2) will also be used to denote the function (2o2 )
-% exp {-(x-u)2/

2021. When x is complex, x:N (pa2) means x is complex with density

Nx(uo2) - (270247 exp{-Ix-ul 2a .o By f(x/y) we mean the conditional

probability density of the random variable x, given the random variable

y. Thus f(x/y) is generally a different function than f(w/z), even though

we use no explicit subscripting such as f w/z('/)to indicate so. We make

no notational distinction between a random variable and its realizations,

relying Instead on context to make the meaning clear. A density function

for a random variable, evaluated at a particular realization of the ran-

dom variable ii termed a likelihood function. "Hatted" variables such as

refer always to MAP estimates that maximize an a posteriori density.

Ik
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Finally it is convenient to define the function

M-1 MIgx)= H E h~x-£2t- (r-l) 2,rfM] (1)

where h(-) is a probability density. The function gM H plays an

important role in our discussion of phase-symbol decoding on QASK symbol

sets.

W.
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II. Signal and Phase Models

Assume complex data symbols fak) are phase or phase-amplitude modulated

onto a carrier and transmitted over a channel with linear distortion and

phase jitter. The received signal, call it y(t), is typically processed

as illustrated in Figure 1. The signal y(t) is passed through a bandpass

noise filter and demodulated with two quadrature waveforms. The resulting

complex baseband signal xW(t) + jx2 (t) is equalized with a complex adap-

tive equalizer in order to reduce the intersymbol interference due to

linear distortion in the channel. The equalized signal is a sequence of

samples at symbol rate I/A (A is the interval between successive data

symbols). The output of the equalizer is a complex sequence xk = xk(1) +

Jxk(2) which is a noisy, phase-distorted, version of the original trans-

mitted sequence. Thus we write

xk= ake +nk, kEN +  (2)

Here {ak ) is the complex symbol sequence, typically encoded according

to one of the diagrams illustrated in Figure 2. The sequence fok ) repre-

sents phase fluctuations (jitter and frequency drift) in the channel.

The two real components n ) and n 2 ) of the complex noise sequence

nk - n I )-  + jn( 2 )- are the noise variables in the respective baseband

kk kquadrature equalized channels. The variables n 1 )- and n (2)- can b

shown to be independent when the carrier frequency is in the middle of

the input noise filter bandwidth and the additive channel noise is white.

If the equalizer is perfect, then nk is the usual Gaussian, additive

noise with zero-mean. If the equalizer is not perfect, then nk contains

a residual of the intersymbol interferences, and is not Gaussian; nor
aresucessve arible (), (1)

are successive variables nk+l,..., independent. However, for a



7

reasonably good equalizer, we may assume that {n k } is a sequence of inde-kl

pendent identically distributed (i.i.d.) complex Gaussian variables.

Strictly speaking this assumption is valid only at the input to the

equalizer when the baseband equivalent of the input noise filter and low-

pass demodulator is the so-called sampled, whitened-matched filter of [10].

In practice the assumption of Gaussianity is more realistic than the

assumption of independence for the sequence {nk}. Assuming that the

equalizer of Figure 1 is perfect we model the noise sequence {nk } as

follows:

(1) (2) +nk = n k)+ jn 2k keN

n k) Jn(2) V(k, ) (3)

() (2)
n I ) H. n~l), k n £ n2]J - nZ2) k

(1) 2 (2) 2nk N(,a ); nk N(0,cy)

Here 2an is the variance of the complex noise variable nk and an is

the variance of each real component.

Consider now the phase distortion {0 k . The term generally re-

flects two effects, one long-term and the other short-term. In modern

high speed data modems no carrier or pilot tone is transmitted for

locking the local oscillator at the receiver. Thus long-term,

large-range linear phase variations result from frequency drift in the

channel which cannot be eliminated. In addition, nonlinear intermodu-

lation with local power supplies gives rise to short-term, small-range

phase variations. The variations exhibit energetic harmonic content at

the harmonics of the fundamental power supply frequency. Hence a realis-

tic model for {#k} is
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p +(4
k = ( 0O+2wBk) + E A sin(2nvtkA+) keN (4)

Z=1

where t= 1'50 Hz or v. = £60 Hz, depending on the place of use.

A typical phase process is depicted in Figure 3. The first term in

parentheses in (4) is the so-called frequency drift term and the

summation term is the phase jitter. In practice the constants 00P B,

{AR, V19 Pi}1= vary with time kA, but at an extremely slow rate.

The spectrum of the phase jitter, i.e. the behavior of AI vs. Vk

has been investigated experimentally in [14]. The spectrum is roughly

fitted by a 1/v2 curve. A phenomenological model for phase having a

1/v2 spectrum (like that of phase jitter at high frequencies) is the

Wiener-Levy continuous time process,

dO(t) w(t), t > 0, (5)

dt

where {w(t)} is a white noise process. The discrete time analog is

the independent increments sequence

Ok - Ok-l + wk, keN+  (6)

where {w k } is a sequence of i.i.d. random variables with even probability

density h(w).2 When w :N (0,o, ), then {O } is the so-called normal ran-

dom walk.

In detail the model of (6) falls well short of a reputable proba-

bilistic model for phase, because at low frequencies the spectrum is

unbounded. Furthermore the spectrum is not integrable, corresponding

to the unbounded growth of the variance in the diffusion model of (6).

However, in gross terms, i.e. for short-term fluctuations, the model

captures, with appropriate selection of h(w), the correlated evolution

of phase. The main virtue of the independent increments model is that

2That is, h(w) - h(-w).
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it forms a convenient basis from which to derive estimator structures

which may then be evaluated against more realistic phase sequences.

As the measurement model of (2) is invariant to modulo-2n translates

of lk we may represent phase as if it were a random sequence on the unit

circle C or equivalently on the interval [-rr). Call ok this represen-

tation of k' Note 0k+l may be written

k+l =k + wk (7)

where the + denotes modulo-2n addition of real variables or equivalently

rotation with positive (counter-clockwise) sense on C. The variable wk

is a modulo-2v version of wk.

The conditional density of Ok+ 1 
= k + wk. given is h(4 k+l- k).

Since *k+l is a modulo-27 version of Ok+l' we may reflect all of the

conditional probability mass into C to obtain the transition (or condi-

tional) probability density

= E h(k+l -k-9 21r) = g(k+-k) (8)

where gl is the function defined in (1). Hereafter g () is called

the folded density of the phase increments. Usually the phase increment

is small and its distribution h(.) is very narrow with respect to 2n.

Therefore, in the sum of (8) only one term is relevant and f( k+i/ k

2 .h( -k+l- ). In the normal case this imples a w  2, where a wis the

variance of wk. As it is cumbersome to carry around the overbar notation

k+l- k we drop it with the caution that from here on k is defined on

C unless otherwise stated.

In the normal case (71, [8], the density gl( k+l-ok) may be written

9= ( No  (0k+L27,o) (9)1kl-k Z=-" k+l
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This case and the Cauchy case (in which the distribution tails are much

heavier than the normal tails) are studied in Appendix A. It is shown

that gl(x) achieves its maximum at x = 0 and that it is monotone decreas-

ing on 0 < x < w.

The sequence {0k}1 is Markov. Therefore, we may write for the

joint density of the K phases { k)1
K

f(f = HI f(0k+l /k) (10)
k=l

f{1/0 0) f(O1) the marginal density of

Usually *1 is uniformly distributed on C, because phase acquisition

starts at k = I with no prior information about its value. By the

independence of the nk in (2) it follows that the conditional density
K

of the measurement sequence {Xk}I, given the phase and data sequences

foKl {ak )K' is

K K K K J~ k 2f({xkll/{Ok~l {ak)} = ki N (a ke a n
k=l Xk k 'n

Equations (8)-(11) form the basis for the derivation of a MAP

sequence estimator. The key element is that {$k} is a Markov sequence

with a bounded range space [-i,'). Discretization of this bounded

interval leads to a finite-state model from which a finite dimensional

dynamic programming algorithm can be derived.



III. Decision-Directed Algorithms

The usual way of dealing with phase fluctuations is to design a

phase estimator and use the estimated phase, call it kP to rotate the

received signal as follows:

Yk=ke jk kcN+ (12)

The phase corrected signal yk is then fed to a decision device

which, in turn, delivers the symbol estimate ak. Typically the phase

estimate *k is functionally dependent on the old measurements {"" xk 2 '

Xk-I } and the past symbol estimates {..., ak 2, k-l}. If a carier

or pilot tone is transmitted as in single sideband (SSB) systems, then

k is obtained from a simple phase-locked loop (PLL). In suppressed

carrier systems such as PSK or QASK systems the PLL is "decision-directed".

That is, k is updated on the basis of akl* For instance in [5]

Ok+l = k + PIm[xkak e  
(13)

- Sk + k sin(arg xk - arg ak -0k )  I = 11Xk[2

where * denotes complex conjugate and v is a constant that depends on

the signal-noise ratio. The estimator of (13) is called a DDPLL.

In the Jitter equalizer (JE) of [3] and [4], xk is rotated and

scaled as follows:

_ Yk = xkG k , k(14)

0k Gk-l + "-ik-l-k-1 Xk-

The complex gain Gk is the single complex coefficient of a one-coeffi-

cient rapidly-adaptive equalizer. We may think of Gk/Gk as the

phase correction e , and IGkI as a gain correction Ck' Thus, al-

though there is no explicit formulation of a phase-gain estimati.on

problem in [3] and [4], the net effect of the JE is to correct phase
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and normalize rapid fading variations. As explained in [4], when phase

fluctuations are large, the JE performance may be improved by setting a

constraint on Gk that keeps its value inside a given domain including the

complex point (0,1).

Geometrical Comments:

The combined effects of random phase fluctuations and additive noise

may be illustrated as in Figure 4(a). The transmitted symbol ak = a
(0 )

jok

(say) is rotated by the random phase angle *k to give ak e . To this

is added the complex noise sample n k to give the measurement xk defined

in (2). For the case illustrated, the resultant measurement is closer

to symbol a(1) than to a(0) and consequently, with no phase or phase-

gain correction, a decoding error would be made. To emphasize the

combined effects of phase fluctuation and additive noise, we have illus-

trated a case for which either phase jitter or additive noise alone would

cause no error. See [11] for a probabilistic discussion of this issue.

Figure 4(b) is an illustration of how a DDPLL works. The angle * k is

the noisy measured phase (arg xk) minus the sum of the phase of the de-

coded symbol and the previously estimated phase (arg ak+$k). A given

amount k of this angle is added to *k as a correction to get the new

phase estimate *k+l f ;k + Pkk" Note that only phase is corrected. In

the JE both phase and gain are corrected, offering potential for improved

performance. This potential is particularly important in QASK symbol

sets where amplitude errors in xk can result in decoding errors.
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IV. Map Phase and Symbol Sequence Decoding with the Viterbi Algorithm

The basic idea behind MAP sequence decoding is to find a sequence

of phase-symbol pairs {%k,ak}K that, based on the observation sequence

{Xkl1 appears most likely. The applicatiin of this idea to data commun-

ication was first proposed in [1] and refined in (9]. The most likely

sequence, call it t$k ak}, is the sequence that maximizes the natural

logarithm (or any other monotone function) of the a posteriori density

of { k,ak1I, given the sequence of observations {Xk}K. Thus we pose the

maximization problem:

max in f({k l , faK K/fk}K) (15)

4k 1

/{ 
(5kilThis is equivalent to maximizing the natural logarithm of the likelihood

function fMYx,1}, {Yk1 , {a k II), obtained by evaluating the joint density

function for {xkl, 1401, and {ak1l, at the observed values of
K

{xk} I . Using the results of (10) and (11) we may write:

K K Kk 2 f(Ak/f)f({}K) (16)f({Xk, 40 1' {a kil) Nxk=1 N k (ake 'an) k~ kl k

Assuming the [ak}l to be a sequence of independent, equally likely

symbols, using (8), and neglecting uninteresting constants, we may

write the maximization problem as

max rK

k i K a ke2= K
2 E xkk e E in gl( k-Ok-) + in f( l) (17)

K c,2 k=1 k_2 l k

Note that rk satisfies the recursion
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rk rk-l + Pk k- 2,3,...

= - xkake + In gl(0k-0k.l) k = 2,3,... (18)rk 2a2 1 •. •-

n

2o2

r ix -a e + In (
n

where p is the so-called path-metric. For convenience, let us make

explicit in rK the last phase and symbol: rK (0K9aK). The other argu-

,..{K-I {ak}l remain implicit. Then, from (18)
menits {kl k

rK(.K,aK) = rK(Kl,aKl ) + PK(xK,aKK,Kl) (19)

Thus, the maximizing sequence, call it (fk (a1 asn hog

(OKK-I 1 ) on its way to (0K,aK), must arrive at (6Kl,aKI) along a^K-2 ^K-2

route ({;kl ,k} 1  ) that maximizes rK_(6KI,aK_1). It is this

observation which forms the basis of forward dynamic programming. In

the actual implementation of a dynamic programming algorithm, one must

discretize the phase space C to a finite dimensional grid of phase

- m
values }  The function In gn(0"-lis then defined on the

two-dimensional grid - x -. However, as discussed in [8] and (9] the

resulting m x m matrix of conditional probabilities has Toeplitz

symmetry which means only an m vector of conditional probabilities must

be computed and stored.

The Viterbi algorithm for simultaneous phase and symbol decoding

consists simply of an algorithm which determines survivor phase-symbol

sequences terminating at each possible phase-symbol pair. One of these

surviving sequences is ultimately decoded as the approximate MAP phase-

symbol sequence. The complexity c Qf the algorithm lies mainly in the
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evaluation of the mM possible values of Ixk ake Jk 2 for each new

measurement xk . Here M is the symbolling alphabet size and m is the

number of discrete phase values. For each calculation of Ixk-ae 2

there are 6 real multiplies. Compared to this multiplication load of

6mM per sample, the determination and addition of the m possible values

of Xn gl( k-l ) that appear in (18) is negligible. The determination
3k2

of Jxk-ake k would likely be computed in a pipe-lined parallel archi-

tecture, while the terms in g would be read by appropriately addres-

sing ROM. When there are many symbols and short-term phase fluctuations

have small amplitude (a small), so that m must be large for accurate
w

phase tracking, then the complexity is great. For example with M=8

and m=48, c a (384), indicating on the order of 2 x 103 computations

at each k-step.

As we show in the next section the com-

plexity of the Viterbi algorithm can be dramatically reduced by making a

change of variable and tracking a total phase variable that is the sum of

Ok and the symbol phase, arg ak. And, of course, for PSK symbol sets M

may be set to unity because only one symbol amplitude is admissible and

admissable symbol phases may be chosen to fall on one of the discrete

phase values. Thus for PSK symbol sets the complexity is simply m and

the number of path metric computations is on the order of 300 for

m-48. Even this figure may be reduced by using one of a variety of so-

called M-algorithms in which all survivor states are saved but only a

handful of candidate originator states are considered for each survivor.
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V. A Principle of Optimality for Phase-Amplitude Coded Symbols

and an Efficient Two-Step Decoding Procedure

In order to simplify matters and to illustrate the key ideas, let

us consider PSK symbols of the form

ak e (20)

with {ek } drawn independently from an M-ary equl-probable alphabetk

0 - f(1=1)2v/M M. Write the measurement model of (2) as

J*kk
xk " e + nk (21)

where the total phase 'k is represented as follows:

9k= k + 6k

k
6 t Ae =8 0 =8e e(2
k = Aet, k k -

8k-l, A81 1 81(22)

k
It is clear that 8k =  AGt and *k = *k - 8k" Thus we may replace

the MAP sequence estimation problem posed in (15) by the problem

Kmax Kf((,x}l, k 11, ek1 (23)

The joint density fK f(.,.,.) in (23) may be written

K J*k 2 k-i k-lfK= I N (e aJ)f (* ,Ae/{O)l 9 {A6 ) (24)

k.1 Xk n k, kJ j 1

where for k=1 f(*l1,A81/.,.) is simply the marginal density f(*,1,A81).

The conditional density on the right hand side of (24) is easily

evaluated with Bayes' rule:

f(*kg AE)k/{J} 1 ,(a {81 1 ) fP/* -1 9 (A8e}

k-1 k-lf (Aek /{,}-l {AB.. }k-1 (25)
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Now Aek is independent of the previous data, additive noise and phase

fluctuations. Thus

k-I k-l
f(Ag/o } • Ae } ) - i (26)

k i ji

Moreover if we rewrite *k as

k = k- + wk + 0k-I + 0 k -8 k-i

=pk- + Aek +w k (27)

we see immediately that

k- ie}k) = (28)f(*k{, )i 9 {A61 18j k (28)

Recall *k is defined on the circle C. Therefore, for clarity we might

think of k as a random variable k-I + A61 + wk, whose density is folded in

[-r,ir). Putting (24)-(28) together, we have for the joint density fK

K K Jk 2 1
f = 11 N (e •o3 ) gl(0k-_kl-A6k)

k=l xk

AG1 = 19 L 0 (29)

Principle of Optimality: Call { tAOk}K the MAP sequences that

maximize fK; {AOkK enters only in the gl(.) term on the right hand

side of (29). Now let us suppose (as is usual) that gI(w), which is

even, is also znimodal with a peak at w 0. This single-mode assump-

tion for gl(.) is valid in particular when the phase increment wk in

the Markov-process (6) has a Gaussian or Cauchy distribution h(w).

See Appendix A. It follows that fK is maximized by choosing

Adk = [@k-"k l ]  (30)

where [x] denotes the closest value of (1-1)2u/M to x. By substitu-

tion of the constraint (30) Into (29) and defining the "rest" function

R(x) on the circle C by



18

R(x) - x - [x] (31)

we find that

K 21
kff N xk n n M glM (R(qk-k-l)) (32)

The maximization of jK with respect of {IkI1 is formally equivalent

to maximizing the joint density f({xk 1, {)k 1 when the total phase

*k follows a Markov-model similar to (6):

+ Uk (33)

Here the independent increments uk have"probability density', folded

on the circle C,

f(u) -1 gl(R(u)) (34)

This interpretation is purely formal since f(u) is not generally

a probability density. However when

gl(u) - 0, Jul >_ - (35)

then f(u) is a probability density because in that case

1 gl((u)) f gM(u) . (36)

Thus (34) can be interpreted as an approximate density when

the peak of g(u) is narrower than the minimum phase distance between

the symbols. This condition is always satisfied in communications

applications. Otherwise phase distortion is so large that dat.

transmission is not possible. Thus we have a pure phase-tracking

problem as in [8] and [9] and we may proceed accordingly. Taking the

-Knatural logarithm of f we have the maximization problem:
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max
{K}K

_ 1 xl-eJl 2 + n gl(R(l) (37)k - + ;k 1 2°a
n

I I Xk e ik 12 + in gl[R(k

n

which is solved by the dynamic programming algorithm discussed in Section

IV. The complexity c' of this algorithm lies essentially in the evaluation
N12

of the m possible values of Ixk 2 for each new data value xk . The m

different values of in gl[R(.)] will be pre-computed and stored in ROM.

For each computation of Ixk-eJk 12 there are 6 multiplies, so complexity

is simply proportional to m.

This represents a

reduction in complexity proportional to M for M-ary PSK.

Usually, the phase is differentially modulated rather than

directly modulated and therefore the relevant symbol is A8k itself

(see (30)). For the purpose of data transmission, there is no need to

k
reconstruct the absolute data phase e = E A6 This reconstruction

k Z=1 C

has, however, been carried out in the simulations in order to recover

the estimates *k = *k - 0k of the phase fluctuations, and to get the

approximate variance of the phase estimates

2 1 K 2= K I lkkI (39)

Geometrical Comments and Densities Galore: The entire development of

this section has a nice geometric interpretation which we illustrate

in Figure 5. In Figure 5(a) the basic phase noise density h(x) is

illustrated on (-®,m). Figure 5(b) is the folded version gl(x) of h(x)

to account for the wrapping on the unit circle C. Figure 5(c) is the

function gl[R(x)] that arises in our discussion of the principle of A
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optimality, sketched in the case of 4-ary phase modulation. Figure 5(d)

shows g1 [R(x)] wrapped around the circle C. Since gI(x) is very narrow,

g1 [R(x)] is approximately the repeated copy of gI(x) at all possible

values of data phase. With x = @k-l'k1l Figure 5(d) illustrates the

choice of AOk nearest kk-l (A6 k ffiw/2 is the best choice here), and

the resulting value of gl[R( k- k ) is shown by the heavy segment on

the axis ik terminated by the heavy dot.

We now extend this principle of optimality to phase-amplitude en-

coded symbols. Assume the independent, equally probable data symbols

are complex symbols of the form

ak - Ak e (40)

with the Ak positive real numbers drawn independently from the alphabet

A = (a1 02 L). Denote by p(Ak) the probability mass function

for the random variable Ak. Assume the 8k are drawn from the alphabet

B f (B1, B2,..., BM). Denote the conditional probability mass function

of 8k' given by Ak, by P(Ok/Ak). For the (4,4) diagram of Figure 2,

A (ral, 3i, 32al, 5al) ; B - (b _i P b i  (i-)-. The prob-

abilistic description of the source is

POO - 1/4 for all Ak

P(ekAk - a 1/4, 8k = 82, 04' 86, a8

0, otherwise

p(ek/Ak = 03) = P(Sk/Ak = a1) (41)

P 8k/Ak - a -1/4, ek = 81, 83, 85P 87

0, otherwise

p(ek/Ak = 04) - p(ek/Ak - a2)
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In place of the maximization problem posed in (23) we write

K K (42
max 4(xk 1' {AOI {AK (2

with 0 k and AOk defined as in (22). The density f K(. ..... ) appearing

in (42) may be written

K K j 4 k 2 k-1 k-i k-1
f Z N (A ke o ) f(k,AkA/{f } 9 k A- I- , A i

k=l Xk k nk}il j {

(43)

The conditional density on the right-hand side of (43) is simply

f( k,Aek,Ak/.,.,.) = gl(kk-lA k ) p(Aek/Aksk 1 ) P(Ak) (44)

where p(A6k 'Ak,Akl) is the conditional probability mass function for

Aek, given A k and A -l" Putting (43) and (44) together we have as the

joint density function to be maximized

K K J k 2
f= N (Ake ,a) gl(kk-l-A6 k ) p(AOk/Ak,Akl1) p(Ak) (45)

k=l 'k

It is important to note in this expression that the N (.,.) term

Xk

is dependent only on the measurement model; g1 (.) is dependent only

on the random phase model, and p(AOk/.,.) p(Ak) is dependent only

upon the symbolling constellation (or encoding scheme). Thus (45) is

a useful canonical decomposition that is generally applicable to commun-

ications problems involving additive independent noise and independent

increments phase processes.

For the (4,4) diagram of Figure 2 we may compute p(AOk/AkA k )

as follows:

1/4, Aek 19 B39 a87 i,j even-

even or odd-odd

p(AekIAk ,, ai,Akl aj) - f

1/4, Aek = 829 B4, 669 88, i,j even-

odd or odd-even (46)
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It is a straight-forward matter to substitute these results into

(45) and derive a path-metric as in (37).

[
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VI. Linear Performance Results and the Selection of a Fixed Lag

There is one more simplification to be made: namely the selection

of a depth constant k such that phase-symbol pairs may be decoded at a
0

fixed-lag k0, thereby obviating the need to store long survivor sequences.

K
The idea is the following. Call {k/K11 the MAP phase sequence based onK/ I

measurements {Xk} I . The subscript k/K indicates that lk/K depends on

amtM K+l
all measurements up to time K. In general the MAP sequence ( k/K+l 1^ K
based on measurements to time (K+l) may differ from kK} at all

k/K I

values of I < k < K. However, one expects that for large K and for

k k, the sequences {Z/K and {i£/K+I}I will not be very differ-

ent for a well chosen depth k In other words, long survivor sequences

have one common trunk up to K-ko, at which point they may diverge as

illustrated in Figure 6. Thus we may use hKk 0/K as a final estimate

of 1KPk since KkiK+i K for all £. Thus, as a practical
Kk0 Kk0 KZ -k0/

matter, one may choose a depth constant k0 such that the sequence of
^0

fixed-lag estimates 'k-k0 k = =k + 1, k0 + 2,..., gives an approxi-

mate MAP sequence. Here k-k0/k is simply the phase value, k0 samples

back, in the MAP sequence based on measurements up to time k. In this

way phase values are estimated with delay k0 and only survivor sequences

of length k0 must be stored.

How to choose k 0? This is a difficult question to answer precisely

because there exist no analytical results for the performance of non-

linear Ohase trackers of the Viterbi-type. We can, however, study the

filtering behavior of a related linear problem and find how performance

varies with fixed-lag k0 . To this end, we consider the problem of

tracking phase when there is no data symboling. Assume { k1 is a

normal random walk of the form (6) with wk :N (0,0)2 Let xk=e k n
k
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{nk } a sequence of complex i.i.d. N 2 ) random variables. A PLL
n ,O)n d

with gain K for estimating {*k is the following:

*k = 'k-l + Kl kI sin(arg xk- k_l )  (47)

Note that this is similar to (13) when there is no data.
2

For Y << I we approximate (47) with
n

k + k-l + K1(arg xk - k-l )  . (48)

When K is selected to be

K = (a2/2 )[-0.5 + 0.5 (1+4a2/n2)1]  (49)

then (48) is the Kalman filter for the "linear observation model"

arg Xk = *k + nk + Xk = exp[j(*k+nk)] (50)

The steady-state filtering error P0 for this linear problem is related

to K as follows:

a2 P 0

K =-W 0 (51)
2 2a an w

A general result due to Hedelin [12] for fixed-lag smoothing may

be adapted to random walk smoothing from observations of the form (50).

The steady-state fixed-lag smoothing variance Pk at delay k0 is

0k

2 2 2 2k 2

01/a G2 (1-G 0)/(I-G ) (52)

G = 1 - K1

The infinite-lag smoothing variance is

P / 2 _ P /02 212 (53)
w 0 w (53)-0

In Figure 7 several error expressions and asymptotic forms are

2 2 2 2plotted versus a w/a n, which is a kind of SNR. For large w /a , the

wi
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error variances Po/a2w Plo/a and P /o go a s (Y2/o2) -l For small
2 2 2~ 2-wn
a w/a nthey go as (a /o n) although infinite-lag smoothing offers 6dB

improvement in 2/a2 over zero-lag smoothing for a fixed smoothing vari-n

ance. Over the range of values 0.01 < 2/a 2< 10, a delay of k0 = 10

offers all but 1 to 2dB of the theoretically achievable gain from in-

finite delay. In communication problems for which random phase is a

2 2
significant effect, the ratio a /a is typically in this range. Only

W n

at very small values of a I2/a 2 can very large delays k0 provide large
w n0

performance gains. But in this case there is no real phase fluctuation

problem for the purpose of data decoding, and the gain is not worth the

2 2large delay. Shown also in Figure 7 is the Kalman gain K versus a/a.w n

The problem considered in Section IV is admittedly different from

the linear problem considered here. However, the numerical results

given in Figure 8 for the Viterbi phase tracker illustrate that the

performance gain to be achieved with a fixed-lag of k0 = 10 is much as

predicted by the linear theory. Furthermore, over the range of values

0.1 < a2/ 2 < 2, the phase estimator variance for the Viterbi phase
wn

tracker operating with delay k0 = 10 is essentially equivalent to the

filtering variance of a Kalman filter that has access to linear obser-

vations and provides estimates without delay. Performance is not

measurably degraded by the presence of data which is concurrently de-

coded. For the results of Figure 8, the phase space was discretized to

m = 48 values. Data transmission was 8-ary PSK.



26

VII. Simulation Results: Gaussian Increments

For all simulation results discussed in this section the phase

space [-n,r) has been discretized to 48 equally-spaced phase values and

a Viterbi algorithm has been programmed to solve the MAP sequence esti-

mation problem. The principle of optimality established in Section V

has been used to derive the appropriate path metric and thereby reduce

computational complexity. The choice of a fixed-lag decoding (or depth)

constant is k0=10. Source symbols have been generated independently.

The random phase sequence has been governed by the independent incre-

2ments model of (2) with wk:N(Oa w) and initial phase uniformly-distrib-

uted on [-r,w). Initial phase acquisition has been achieved by trans-

mitting a preamble according to one of the following schemes.

a) During a pre-transmission period of length N, the sequence of

transmitted data is known to the receiver. Thus, in the DBVA and VA

systems, based upon MAP estimation, the Viterbi algorithm works as a

pure phase estimator during this period. At the end of the preamble,

the Viterbi algorithm is turned into a joint phase-data MAP estimator.

In the DDPLL and JE systems, based upon decision-directed algorithms,

the algorithm is directed by the true data during the preamble period.

b) During the preamble period, identical (but unknown) data are

emitted. This keeps the phase away from severe sudden fluctuations,

and makes the joint phase-data estimator able to adequately acquire the

initial phase.

In our simulations the VA has achieved the same data-error proba-

bility for both methods; i.e. its performance

has not depended upon which learning procedure was used. On the other

hand, the DEVA has proved to be sensitive to the learning procedure.
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2 2,
For example, at SNR = 20dB, with phase variance a =4 a, for a

w

learning period of N=60 data, the number of errors during an emitting

period of 490 data values has jumped from 7 for procedure a) - known

data - to 59 for procedure b) - constant but unknown data. Moreover

the DBVA typically requires a longer learning period than does the VA

(roughly two times longer). A value of N=50 is sufficient for the VA,

while the DBVA needs N-l00 learning iterations in our simulations. The

decision-directed systems (DDPLL and JE) work as the VA in these respects.

That is, a preamble period of 50 data values is sufficient. These data

may be unknown to the receiver, provided they are kept constant (pro-

cedure b). No degradation with respect to procedure a) results.

Binary Symboling: Shown in Figure 9 are binary symboling results for

the VA when = 0.01 rad2 ( =5.7*) and SNR ranges from 4 to lOdB.
t w

(Recall SNR = 10 logo10  /2a ). For comparison the performance curves

for coherent binary orthogonal and coherent binary antipodal systems

are also shown. The simulation results for binary orthogonal symboling

are of no inherent interest in their own right because even fully coher-

ent binary orthogonal symboling provides only marginal gains over in-

coherent binary symboling at SNRs of practical interest. This point is

made with curves I and 2 of Figure 9. However, the simulation results

for binary orthogonal symboling serve to validate the simulation. The

simulation results for binary antipodal symboling are interesting be-

cause incoherent reception is not possible with antipodal symboling.

The results indicate that performance with the VA is essentially

equivalent to that of a fully :oherent receiver - even for a relatively

large value of ow.
W

.... ....
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8-PSK: Shown in Figure 10 are simulation results for 8-PSK when SNR

22 -3 2
ranges from 16-19dB and (OwOn) remains fixed at 4.4 x 10 rad . The

solid circles correspond to the VA and the solid triangles correspond

to the markedly simpler JE. Also shown on Figure 1 are performance

bounds for fully coherent 8-PSK and 16-PSK symboling. The values of a
w

under investigation range from 1.60 to 2.20 and the ratio a 2 a2 isvr

small, ranging from 0.03 to 0.12. In this case neither the VA nor the

DBVA provides significant improvement over the JE or DDPLL. The latter

two receivers are simpler than the DBVA which, in turn, is simpler than the VA.

Therefore for such cases of weak phase noise, and a simple symbol constellation,

neither the VA nor the DBVA would be favored over the JE or the DDPLL.

16-QASK: Shown in Figures 11, 12 and 13 are simulation results for

16-QASK symbols encoded according to the (4,4) CCITT rule. The decoding

procedures are JE, DDPLL, DBVA and VA, for three distinct values of the

222 2ratio la/n . Figure 11 is concerned with a weak phase noise (aw/a nw n"wf

0.25). Figure 12 is concerned with an average phase noise (a 2/a= ),

and Figure 13 is concerned with a large phase noise (a2 /a2 _ 4). Ww n

recall (1] that the DBVA performs some kind of phase estimation along a

path that satisfies

n = n-l - °w , (

using a Viterbi algorithm. The DBVA that we have simulated is somewhat

different from Ungerboeck's DBVA, in which the number of possible phase

states at each iteration is limited to 6 or 8. In our simulation the

number of phase states is not limited, thus avoiding one possible cause

of errors and improving the error rate, but also increasing the compu-

tational complexity with respect to [1].
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Behavior of DDPLL and JE on CCITT (4,4) Constellation: The decision-

directed algorithms (DDPLL and JE) have essentially the same performance

as shown in Figures 11-13. The DDPLL is superior to the JE by only 0.5dB.

The slight inferiority of the JE is largely conpensated by the fact that

the complex gain of the JE can also correct rapid gain fluctuations in

the channel. We emphasize that the curves of the DDPLL and JE are

biased and cannot be trusted just as they are, because of the occurrences

of very large bursts of errors at relatively high error probabilities.

When such bursts have occurred in the simulation runs, they have been

withdrawn from the error rate computation. For instance, with a2 . 0.25a2
w n

and SNR = 17 dB, at an error probability on the order of 10- 2 , between

one fourth and one third of the simulation runs (with length 500 data

values) have exhibited bursts of about a hundred errors. In the simula-

tions, the bursts began to occur at SNR = 18dB, 21.5dB,and 26dB for

a2/a2 = 0.5, 1 and 4 respectively. This corresponds to a value of c such
w n w

that 4a0w ranges between 11.50 and 200. The phenomenom of error bursts

can be explained as follows: because the phase increment is Gaussian it

will occasionally reach the value 4a . If, at the same time the noise

is relatively large, the angle between the observed data and the trans-

mitted symbol will exceed the value 22.5 ° that corresponds to the angular

threshold for an error in the 16-point CCITT diagram (see Figs. 2d and

4a). No type of decision-directed phase estimator can correct such an

error. Therefore the phase estimate will become incorrect (by a shift

of ±45*), causing a burst of errors. Moreover, as expected, the error

probability at which bursts of errors occur decreases as the phase

fluctuations increase, making the receiver less and less reliable. For

instance, at the error probability of about 10-3 with a2 = 0.25 a 2 no

__ n
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bursts occurred; on the other hand, at the error probability of about

10 with a - 4a2 , we have obtained one 500 sample run out of 40 such

runs that was a burst. For the other 19500 samplesof the other 39 runs,

no error was observed.

With respect to burst phenomena, the DDPLL and JE behave similarly.

Behavior of DBVA and VA on CCITT (4,4) Constellation: The performance

of the VA is superior to that of the DBVA. The gain achieved by the VA

over the simpler DBVA is monotone increasing in the ratio of phase
2 2

fluctuation variance aw to additive noise variance a
2
. While there is no gain

w n
when 2/C 2 0.25, the gain is IdB for a 2  1 and 2dB for a2/a 2f_ 4.

w n w n w n

Both systems perform better than the DDPLL or JE, the improvement again

2 2being a monotone increasing function of a2/a 2 .
wn

A very important point is that the use of either of the two MAP

phase estimators precludes the occurrence of error bursts. The errors

seem to be grouped by two or three and no error multiplicastion occurs

since the phase estimator is not decision-directed. Thus such MAP

sequence estimators can be used even at high error probabilities on the

order of 10
- 2 or 10-

1

Comparison between MAP and Decision-Directed Phase Estimators: The

improvement that can be gained by using any type of MAP estimator for

phase rather than a simple decision-directed algorithm is again an

2 2increasing function of a w/a n . Figure 11 shows that 1dB only is gained

2 2by the DBVA and the VA over the DDPLL if a - 0.25 a . This gain isw n

realized at a high computational price. For phase fluctuations and

2 2
additive noise of the same importance (awlan-l), the VA outperforms the

DDPLL by 3 dB (see Fig. 12), but the gain is reduced to 2dB for the simpler

DBVA. For large phase fluctuations, the gain is important. For instance
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Figure 13 shows that the VA outperforms the DDPLL by 5dB when a2 2a = 4.
w n

In addition the VA brings the insurance that no burst of errors can occur,

even for very poor SNR and large phase fluctuations.

2 2
Sensitivity to imperfect knowledge of aw/an: It is easily seen in (18)

or (37) that the only parameter required in order to proceed with the VA

algorithm is the ratio of phase variance to additive noisepower. The

same holds for the DDPLL whose optimal gain K1 depends on this ratio

(see (49)), and for the JE whose step-size p (see (14)) is to be kept

close to KI, but smaller, provided the data diagram has unit power. As

for the DBVA it requires only the knowledge of a2 in order to determine
w

the number m of discretized phase levels. Thus an important feature of

each system is its sensitivity to an imperfect knowledge of a2 /a2 (or o2)
w n2

because firstly a can vary with time and secondly the actual phase can
w

fluctuate according to a statistical model that is different from the

one expected. The less sensitive the system is to the knowledge of

2 2 2*2/o (or aw), the more robust it is.

a) Sensitivity of the decision-directed systems. Let us denote
2 2

Ow/On by c. The function K(,) that gives the optimum loop-gain of the

DDPLL is sketched in Figure 14. It is quite flat except for a very

close to zero (e.g. a < 0.2).

Now the case a << 1 is of no real interest for the purpose of this

paper. Indeed it has been seen previously that, in this case, no MAP

phase estimator is worth being worked out. Moreoever any type of

(reasonable) phase estimator will perform satisfactorily. When a is

not negligible, K1((a) is slowly varying. For example K1(1)/K1 (0.25)

- 1.59, and K1 (4)/K 1 (l) - 1.34. Thus the value K.(l) - 0.62 for the
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DDPLL gain is correct for a large range of values of ot. This fact is

largely confirmed by the simulations. However, due to the risk of

error multiplication that increases very rapidly with K1, it should

rather be set to the lower bound K (a min ) corresponding to the smallest
1 mini

a that can be expected, rather than to an average value K1 (ave ), which

will sometimes be too large and bring error bursts. Thanks to this

precaution, the DDPLL is insensitive to a. It is a robust system.

The robustness of the JE is also excellent. This fact was checked

on numerous computer simulations: as a function of the step-size pi

the error probability P(E;u) exhibits a minimum which is very flat, as

sketched in Figure 15. The range where the minimum is reached does not

depend critically upon a. A value such as p0i. 4 corresponds to the

minimum of error probability for a in the range [0.25-1], and for a unit

energy data diagram.

b) Sensitivity of the MAP phase estimators. The VA sensitivity to

imperfect knowledge of a has been tested in our computer simulations. It

appears that the VA performance is not appreciably degraded by an error

of ±6dB for a. Hence the VA robustness is at least as good as that of

the decision-directed algorithms.

On the other hand the DBVA robustness has turned out to be poor.

For instance, with SNR=2ldB and a=4, the DBVA is supposed to work with
2ir

m - - 50 phase levels. If only 45 levels are used, corresponding to
w

a 0.9dB error for a, then the error probability is increased by a

factor of 2. In fact, as a function of m, P(E;m) exhibits a minimum, but it

is a sharp minimum. This poor robustness can be understood by noting

2 2
that in the DBVA, the path metric is not a function of - Ow/a n , but only

2
of a • This may be one of the main drawbacks of the DBVA. This
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observation suggests that one should implement the DBVA with a conserva-

tively large number of phase levels to provide robustness. This increaseg

complexity.
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ViII. Simulation Results: Bounded-increments Phase Jitter

For all simulation results of this section the phase space [-n,w)

has been discretized to 32 equally-spaced phase values and a VA has

been programmed to solve (17). The assumed increment density h(w) is

the uniform density

12 -a < w < a; 2a - 2w/16

h(w) = ( (33)
0 , otherwise

The corresponding discrete transition density for use in the path

metric is

1/3 ,w k-l =-/16 , 0 , w/16
f(k = I f (34) -

0 , otherwise (

The resulting VA is related to the class of so-called M-algorithms

in which all survivors are saved, but only M (in this case 3) candi-

date originator states are allowed. This significantly reduces calcu-

lations and results in an algorithm similar in spirit to the DBVA of

[1]. Still, however, phase is tracked only on [-w,ir) rather than on

Source symbols have been generated independently from a 4-PSK

alphabet and used to differentially-encode phase according to a Gray

code. The random phase sequence has been generated in ways to be dis-

cussed below.

Markov Phase with Non-Gaussian Increments: Here the phase is generated

according to (6) with h(w) given by (33). Thus the algorithm is matched

to the actual phase sequence. Shown in Fig. 16 are performance results

for the VA and for the JE. The VA outperforms the JE by 1.5dB over the

i_______________________________________________________



35

range 10dB < SNR < 15dB. The probability of error is "probability of

bit error."

Sinusoidal Phase Jitter: Here the phase jitter is sinusoidal ksee

(4)) with uniformly-distributed initial phase and frequency v. The

frequency is chosen such that vA = 1/24, corresponding to a transmission

rate of 4800 b/s with baud rate 1/A = 2400Hz and jitter frequency v =.100Hz.

The runs are 2000 to 10,000 steps long, corresponding to 4000 to 20,000

transmitted bits. The peak-to-peak phase deviation is 20* or 600. For

these experiments the VA outperforms the JE by 1.5-1.7dB. This gain is,

of course, achieved at a high price in complexity.

Comparison of the JE and VA: In the simulations reported above, the ratio
2 2

- a /an ranges from 0.02 to 0.81, that is from small to average values.
w n

No burst of errors has ever been observed

for the JE. This is due to the fact that the phase increment is always

bounded as appears in (4) and also (33). The bound is much smaller than

the angular distance between adjacent data. Thus there is no risk of

a ±90* slip torresponding to the 4-PSK diagram) in the JE phase estimation.

Hence the errors will be scattered rather than grouped, and no error

multiplication phenomenon can happen.

Owing to this consideration, to the fact that the VA outperforms the

JE by only 1.5dB, and to the complexity of the VA, a practical system

will implement the JE (or DDPLL) rather than the VA (or DBVA), in the

case of bounded increment phase jitter and a simple symbol constellation

such as the 4-PSK.

'A"
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IX. Conclusions

We have derived a principle of optimality for phase-amplitude

encoded symboling that allows one to simultaneously trac random phase

and decode data symbols using the VA derived in [8] and [9]. The VA

is designed for a random walk phase process, a very severe type of

phase process. In such a process there exists the possibility of

large phase jumps. The VA gives excellent performances.

In order to reach conclusions about the type of phase estimation

that should be used for given type of phase fluctuations, performance

comparison of the VA with two simple decision-directed phase estimators,

namely the JE of [3] and the DDPLL of [5], and with the DBVA, have been

thoroughly investigated on computer simulations, with various data dia-

grams. They indicate that the choice among the four systems is to be

made according to four parameters:

(i) the error probability P(E) at which the system is to be used;

2 2
(ii) The relative importance a =fa 2la 2 of phase fluctuations with

w n

respect to additive noise;

(iii) The complexity C that is technologically feasible and accept-

able;

(iv) the maximum phase increment Am that is to be expected, asmax

compared to the angular distance between points of the data

diagram.
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Suggestions for this choice are sketched in the Tables 1 and 2

where Table 2 is concerned with cases 2 and 3 of Table 1.

a/P(E) small large A max/C small large

ase ase2 JE or JE or

small JE or see small DDPLL DDPLL
DDPLL Table 2

case 3 case 4 VA or
large see VA or large DBVA DBVA

Table 2 DBVA

Table 1 Table 2

The choice between the two decision-directed phase estimators,JE

or DDPLL,is irrelevant for the matters discussed in this paper. It

appears in Tables 1 and 2 that the VA and DBVA are preferred when a, P(E),

and AOmax are large. The comparison between these two MAP phase esti-

mators shows that the VA is more robust, has a smaller learning period

and outperforms the DBVA by 2dB or more when a is at least equal to 4.
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Appendix: Monotonicity of Folded Normal and Cauchy Densities

There are many choices for the phase increment density h(x) that

are physically interesting and mathematically tractable. Two of

particular interest are the normal density and the Cauchy, the latter

being useful in the modelling of "heavy-tailed" behavior. When folded

around the unit circle according to (8) these densities yield transition

densities which achieve their maximum at 0k - Ok-i = 0 and decrease

monotonically on the interval 0 < 0k - *k-l < 7"

Consider first the Cauchy case

€o a/w (-l
91 W)= 2 2(A-)

k=-- a -(x+k2R)

According to Poisson's summation formula [13], this may be

written

Ilx  =2 e - a j k j ej k x

k=-w

S_ (le-2a )(l-2e -acos x + e-2a) - I  (A-2)2W

This function achieves its maximum value at zero and decreases mono-

tonically.

In the normal case

W)= C2 2 2
g1 (x) = E (2a) exp{-(x+2kw) /2a (A-3)

Again, by Poisson's summation formula

CO

g1 (x) E (2) - exp{jkx-k2 a 2/2) (A-4)

2

This infinite sum goes by the name J 3 (x,q=e- /2 in the theory

of Jacobian elliptic functions and theta functions [15]. The theta

function J 3(x,q) is known to be monotone decreasing on the interval

o < X < W
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