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Corrigendum

p. 2, Line 15 "moribind" should be "moribund".

p. 3, line 11, "in" should be "in-".

p. 5, line 6, "basic process" should be "basic processes".

p. 5, line 11, "exists" should be "exits".

p. 6, line 5 from bottom, "[0,-)" should be " {0,1,2,....".

p. 9, line 12 from bottom, "Remembering" should be "Remember".

p. 9, line 3 from bottom, "out" should be omitted.

p. 10, line 2, "errormous" should be "enormous".

p. 11, line 10, insert "in the steady state" after "For fixed n," and

change "i.i.d. random variables to independent

random variables".

p. 17, line 6 from bottom, "family" should be "familiar".

p. 18, line 1 and 2, change the sentence "The busy period is in general..." to

"The busy period sequence is also a sequence of i.i.d.

random variables" and then delete the next sentence,

"For the special case..."

p. 18, line 15, insert "an" between "to" and "empty".

p. 24, line 9, "sume" should be "sum".

p. 28, line 24, "research" should be "researched".

p. 31, Syski reference should be "Congestion" not "Conjection".
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QUEUEING NETWORKS

Ralph L. Disney'

ABSTRACT. The study of queueing networks is a rather recent addition
to queueing theory. In this paper we will review about the last 20
years of developments in the area. Primary emphasis is placed on
Jackson networks and the major contribution of Kelly. We discuss
queue length processes, waiting time processes, busy period processes
and departure processes. We will also note a few new studies that
have appeared in the area of network flows. Topics that are not
discussed in detail in the paper are briefly noted in the final sec-
tion. The bibliography can serve as an introduction for further
reading in the area.

1. Introduction and Some Background

1.0 Introduction. In this paper we will briefly review some developments that

have occurred over the last 20 years, in an area of applied mathematics called

queueing network theory. The need for such applied work has been clear almost

since the beginning of what is called queueing theory. Some of the work of

A. K. Erlang (see Brockmeyer, et aL (1948]) seems to be pointing toward a study

of interconnected systems of service centers. Certainly by the 1930's it was

clear that such work was evolving (see chapters 7-10 in Syski [1960]). In most

of these early studies, the developments appear to be closely tied to attempts

to solve problems that occur principally in telephone switching systems.

Much of classical queueing theory (say up to about 1957 or 1960) was con-

cerned with properties of Markov processes and except for names given to the

parameters and processes it is difficult to separate out the peculiarities of

queues from other Markov processes that were being used as models, for example,

1
This research was supported jointly by NSF Grant ENG77-22757 and by the

Office of Naval Research Contract N00014-77-C-0743 (NR 042-296). Distribution
of this document is unlimited. Reproduction in whole or in part is permitted
for any purpose of the United States Government.



2 Ralph L. Disney

in biological modelling. In fact, many of the birth-death models of biological

studies have interesting and useful counterparts in queueing theory. For this

reason a carefully drawn history of queueing theory would be strained because

of the interrelations with other fields. The useful thing to remember is that

in its beginning phases the field was closely allied with attempts to solve

real life problems.

The 1950's were perhaps the "golden age" of developments in the field.

Under many impacts (including the introduction of more sophisticated and real-

istic models into problems that here to fore had been the domain of the indus-

trial engineer) the field began to take on a life of its own. In much of the

1950-60 work and extending even to today, the work in the field veered more and

more away from its applied bent. It was at this time that queueing theory

started to be sufficiently arcane that many researchers were turned away from

it. Easy queueing problems had been solved. Many papers were and had been

published on special cases of birth-death processes. The field was moribind

after about 1965-70.

Starting about 1965, the field of computer systems analysis began to delve

into properties of time sharing and interconnected systems. Here the research-

ers encountered many of the same types of problems encountered earlier in tele-

phone systems and production systems. It was natural, therefore, to use exist-

ing, known results. By 1970 and certainly by 1973 research into comriters and

computer systems had uncovered a large number of problems beyond the work in

earlier queueing theory.

At the same time these developments in computer systems were taking place,

new problems were occu:ring and old unsolved problems were becoming more pres-

sing in telecommunication theory and production theory. New areas of applica-

tion were evolving in military command and control modelling, disease modell-

ing, military tactics modelling, public sector models for police fire depart-

ment and medical emergency systems design and many others. All of these topics

put demands on the queueing theory (and indeed other areas of probability and

random processes) that theory was unable to handle. Systems (e.g. networks) of
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queues became areas of important study in many of the above application rather

than single queues. Markov process theory did not provide a rich enough body

of knowledge and new ideas evolved.

Largely because the applied topics put demands on existing theory that

could not be accommodated quickly enough, much of applied work turned to Monte

Carlo simulation of systems. But that placed a new load on the theory of Sta-

tistics as well as probability, random processes and queueing. Because of the

relative quiescence of the 1957-70 period queueing theory has lost ground to

applied topics.

1.1 Purpose. The purpose of this paper Is to briefly summarize where we stand

in the study of queueing network theory. Time and space do not permit any in

depth discussion here. The bibliography should be consulted by the reader in-

terested in "reading themselves into" the area. However, that reader should be

forewarned that papers on these topics are spread over a large number of jour-

nals of the world. There is no one best place to look for research papers or

to expect to follow diligently and thereby stay up with the field. For back-

ground into queueing theory the reader might consult Syski [1960] who does a

masterful job summarizing work in queueing theory up to about 1960. Kleinrock's

two volumes [1975; 1976] suarizes many known results in queueing theory and

gives a nice aiscussion of many of the problems of queueing phenomena occurring

in computer systems. There are no textbooks on the subject of queueing network

theory though one can find some discussions concerning section 2, to follow,

in most post 1975 texts. Material in section 4 is nicely presented but unfor-

tunately it is in unpublished lecture notes by Prof. Frank Kelly. Material in

section 5 coupled with the Disney (1975] reference therein is a fair review of

those topics. Topics in section 6 have not been pulled together in any one

place to the best of our knowledge so the reader is on his own there. Refer-

ACCESSION for
ences are provided herein but that list is far from complete. NM White Section

OKD Huff Section C3
1.2 Some Background, Notation and Symbolism. In order to embed our future VWfBIufWfCE o

discussion in the more classic field of queueing theory, we will present a JUSTIFICATION

Dist. AVAIL and/or PECX
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4 Ralph L. Disney

brief review of a few ideas in basic queueing theory.

At an intuitive level queueing theory is concerned with problems arising

in waiting lines. One supposes that there is something that can perform a need-

ed service, a server. In the simpler cases it is assumed that the sequence of

service times is a sequence of mutually independent random variables that are

identically and non-negatively distributed. In queueing theory such a service

process is called a -type service process. In the theory of stochastic proc-

esses such a process is called a renewal process.

The demand for this service is usually modelled with the times between de-

mands being the variables of interest. These times are assumed to be a sequence

of independent, identically distributed random variables that are non-negative

(another renewal process). Such an arrival process is called a GI-type arrival

process. It is usual to assume that the arrival process and service time pro-

cess are independent processes. Such a queueing system is called a Gl/C/.

queue.

Queueing or waiting occurs in such systems whenever an arrival occurs to

find the server already engaged serving a previous arrival. If an arrival oc-

curs and the server is not so engaged, that arrival immediately enters service,

under the usual assumptions. (There are studies that do not include this as-

sumption. They are called queueing with set up).

When service is completed, the next unit in the queue to be serviced is

chosen and under the usual assumptions, that unit immediately goes into service.

The rule used to choose the next unit to serve from among all those in the

queue is called the q..eue discipline. The most comon assumption in queueing

theory is that the first unit in the waiting line is the first customer to be

served. Such a discipline is called a first in-first out discipline. For other

applications other disciplines have been considered. (In military studies the

next unit to be served may be the one posing the most immediate threat. In a

computer center jobs may be assigned to classes of importance - called priority

classes - and the next job chosen is from among those with the highest priority.

In production systems the next job to manufacture may be the one whose promised

j
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delivery date - the so called "due date" - is closest.)

There are four basic processes created by the interaction of service times,

interarrival times and queue discipline that are of particular importance though

others have been studied. The length of the waiting line, called the queue

length process (N(t): t > 01, is one of the basic processes of concern. The

length of time from entry to exit of the queueing system (Qu: n - 1,2,.- call-

ed the sojourn time process, is another of the basic process. The time from

first entrance of a unit to an idle server until first entrance of the next

unit to an idle server {B n - 1,2,.-.} is called the busy cycle. The time

between consecutive exists from the server (Xn: n - 1,2,...) is called the

departure process.

Somewhat more formally we can define the problems as follows:

(1) Let 0 < To < T, < T .-- be a sequence of real random variables representing

the times at which an arrival occurs to a queueing system. Let An

=T -TI, n . 1.2,... AssumeA - {An ) is a sequence of i.i.d. randomn. n-l' ,,*.Asm

variables (a renewal process). Call A the arrival process to the queue.

(2) Let S be a non-negative real random variable. Let S - (S - n - ,2,'''}

be a sequence of i.i.d. random variables. Call S the service time process

for the queue. We assume A and S are independent processes.
o%

(3) Let 
1
[Ot] (Tn) be an indicator random variable taking values 0 (or 1) if

T does not (or does) occur in 0,t].
n

(4) Define NA(t) 1 n lt0,t](Tn). (A(t): t > 01 is called the arrival

counting process.

The four processes of basic concern to queueing theory can be defined

formally in terms of the A and S process. Prabhu [1965] provides a formal

definition of the queue length process. We will not reproduce that here but

rather me assume that everyone has an intuitive understanding of such a process.

The sojourn time process is closely related to the waiting time process for

first in-first out disciplines which can be formally stated as
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Wn Wn- + Sn_ 1 - An' if Wn_ 1 + Sn-_ - An > 0'

- 0 , otherwise.

Then Qn W U + S defines the sojourn time of the nth arriving customer. The
n n

busy cycle process is the sequence of first passage times already discussed.

If we define X° as the time between the n and (n-I)
st 

service completion then

the departure process (Xn: n - 1,2,.-.) can be more formally given as

F th
S ,  if the a1 unit leaves someone in the

n thX- n queue,

In + Sn' if the n unit leaves an empty queue.

Here In is the foreward recurrence time in the arrival process measured from the

time of departure of the (o-I)
st 

unit. In, is called the idle time of the server.

1.3 Special Cases. The major thrust of queueing theory for much of its life

has been to compute formulas for the above measures of effectiveness with

special assumptions on the arrival process, service process, queue discipline

or systems capacity. For future reference, we will record some results for one

special case here. The following results as well as many of the special cases

are discussed in most standard texts on the subject (for example, see Kleiurock

[1975; 19761).

If we assume that NA(t) is a Poisson process (with parameter A as is usual)

and Sn is exponentially distributed (parameter u as is usual), the service center

has I server, the queue discipline is first in-first out and the system's capac-

ity is unlimited then the system is called an M/M/1 queueing system. A con-

siderable amount is known about the above four processes (Kleinrock [1975]).

For example.

(1) N(t)} Is a Markov process with state space [0,.).

(2) Pr[N(t) - ki is known (but we'll not reproduce the results here. Essen-

tially the probability is given by an infinite sum of Bessel functions of

type - I i.e. Bessel functions of the second kind with imaginary argu-

ments).
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(3) lim Pr[N(t) - k] - (1-P)p 
k
, k - 0,1,2,..- for p - A/p (called the traffic

intensity). Such a limiting distribution exists if and only if p < 1,

otherwise the limit is identically 0 for all finite k. These limiting

probabilities, when they exist, are called the steady state probabilities.

(4) (W } is a random walk on the non-negative reals with a delaying barrier at

0. (see Feller [1963] or Borovkov [1976]).

(5) Pr[Wn < t] is known in principle (through the theory of random walks).

(6) lim PrjQ, < t] - l-e
- (V- )t

, t > 0. This limit exists if and only if

o < I, otherwise the limit is 0 for all finite t > 0.

(7) The busy cycle process is a sequence of i.i.d. random variables whose

distribution is known (see Cox and Smith (19611, for example).

(8) The departure process {X a - 0, l,2,.--} is, in principle, known for all

n from (2).

(9) In the steady state (i.e. t * ), when p < 1, {X } is a sequence of i.i.d.n

random variables that are exponentially distributed with parameter A.

That is, the departure counting process is a Poisson process with the same

parameter as the arrival process. (see Burke [1956] or Disney, et al.

[19731).

Results (1), (3), (9) are useful to our future discussion.

2. Jackson Networks

2.0 Introduction. It was recognized early in queueing theory that a theory of

single server systems was not adequate. Indeed, at least by the 1930's (and

before if one is not too picky) research in queueing had begun to explore sys-

tems of queues or what we shall call networks of queue. Erlang, about 1910 had

studied systems where many identical servers all handled the same arrival pro-

cess (the M/M/c model) in telephone systems. A good discussion of these and

multiple server models is given in Syski (19601 especially chapters 5 and 6 as

well as chapter 7 to 10.

2.1 Jackson Networks. A general model in this historic mold that has served

almost as the definition of a queueing network was studied in a paper by J. R.

,1.41~ss



8 Ralph L. Disney

Jackson (19571. These models and related problems have come to be called

"Jackson networks." His 1957 model assumed:

(1) There are I < M - - service centers (Jackson did allow servicing center

to be compriseu of more than 1 server. However, to keep the problem simple

we assume throughout that each servicing center has only one server).

(2) These M servers are arbitrarily connected by arcs over which units travel

instantaneously fast.

(3) To establish how units proceed through the network one defines pij to be

the probability that a unit completing service at service center i proceeds

M
to service enter j for its next service. Then for each i, 1 - E is

the probability that a unit exiting node i leaves the system. The matrix

P whose elements are Pj is called the switching matrix for the network.

Note that these assumptions about switching imply that a unit leaving

service center i chooses the next service center to visit without regard

to any other condition. We call this switching behavior a Bernoulli

switch.

(4) Service times, Sni, n - 1,2,-" at center i are i.i.d. random variables.

These times are each exponentially distributed random variables with
M

parameter wi" The sequences (Sni}iMI are independent sequences.

(5) There may be many arrival processes but each one is a ?oisson process (with

parameter Xi if the arrival process is to service center i). These arrival

processes are independent of each other and of the network.

(6) All queue disciplines are first in-first out.

(7) All queue capacities are unlimited.

2.2 The Queue Length Process. The results that Jackson obtained were rather

surprising. Jackson's major results were as follows:

Define N(t) to be a vector whose jth element, N (t), J - 1,2,-,M, is the

th
queue length at the J service center at t.

Then

(I) (N(t): t ' 0) is a vector valued Markov process.
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(2) lim Pr[NI(t) - ki , N2 (t) k2".. N() - kM]

li Pr[NI(t) - k JPr[N 2(t) - k2 I .. Pr{NM(t) = kM,

That is, the queue length processes in these Jackson networks are asymp-

totically (t-.). mutually independent.
k1

(3) lim Pr[N (t) - k ] - (1-b )b , j - 1,2,-'' if and only if bi < 1. Other-

wise this limit is 0. Here b, - aj/1j and aj satisfies the so called

traffic equation

a - X + Pa.

a is the N-vector of ail A is the M-vector of Ai. P is the switching

matrix. We assume throughout that the traffic equation has a positive

solution (or alternatively the maximum eigenvalue of P is less than 1).

In elemental form, this equation says simply that a iis the rate of

arrivals to service system J. This arrival rate is simply the sum of

exogeneou arrivals to system j (Xi) plus the sum of all arrivals to j

from inside of the system (Pa)

It is instructive to spend a moment looking at what Jackson said and did

not say. Many papers have been written on Jackson networks that misinterpret

and misuse his results. The major confusion occurs around the third result.

Remembering that in the example of section 1.3 we shoved that the queue length

process was asymptotically (t-) geometrically distributed with a parameter

P - X/o < I. If p > 1 the limit is zero. Also recall that A was the parameter

associated with the Poisson arrival process and p was the parameter associated

with the exponential service times.

Now result (3) above is also asymptotically geometrically distributed with

a parameter aj that is acting as an arrival rate and a parameter v acting (is)

as a servicing rate. This result led Jackson to state "This theorem (our

results (2) and (3) above) says, in essence, that at least so far as steady

states are concerned (out t-), this system with which we are concerned behaves

as if its departments (our centers) were independent, elementary (i.e. N/M/I)

systems ... ". So far, so good. The as if emphasis is Jackson's and as it
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stands is innocuous enough. Jackson makes one more statement about his results

that may have caused an errormous amount of confusion. He says "This conclusion

is far from surprising in view of recent papers by E. J. Burke (that should be

P. J. Burke) and E. Reich." It appears from his references that Jackson is

here alluding to the result (9) of section 1.3 which is sometimes called

"Burke's Theorem".

Confusion in queueing network literature has occurred by taking the "as

if" of Jackson too seriously. Researchers seem to have taken this to mean that

the queue length processes are independent and are created by M/M/l subsystems.

As a consequence there are papers in the queueing literature that study queue-

ing networks one node at a time (the independence assumption) as M/M/l queues

(the assumption of Burke's theorem). There are other papers that study sojourn

times in networks as sums of independent, exponential random varialbes (see

section 1.3. result (6)). Unfortunately, many authors have shown that the flow

of units within the network are, except for special network configurations such

as trees, not Poisson processes and in fact, are not even renewal processes.

Thus each service center in isolation is not only not an N/H/i queueing system,

it is not even a queueing system with a renewal arrival process. That is, for a

time there was serious confusion in the literature as to what as if really

meant. The problem is fairly well understood now. Section 5 and its references

discuss the topic more thoroughly.

2.3 Waiting Times. Waiting times in Jackson networks is a rather unexplored

area. Attention has recently turned toward that area but research here has

only started. There are a few special cases that have been studied in detail

principally in what are called tandem queues.

One can define a tandem. Jackson network as one having the structure of

section 2.1 with the added featurest

(1) There is only one arrival process and it occurs to the first server (in

terms of the section 2.1 scheme X,= ' X 0, j 1).

(2) piJ - 0 unless j - i + 1 in which case pij - 1. j 1,2,...M. (see next

II
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page) Since the only results, with which we are familiar, are concerned

with first in-first out queue disciplines, we assume this discipline

throughout. We need a bit more symbolism here. So define:

WoU - the total time unit n spends waiting in service center i. Call

this the waiting time of unit n in service center i.

Qn - the time spent by unit n in service center i. Call this the

sojourn time of unit n in center i. Wni + Sni " Qni' i - 1,2,...M,

n - 1,2,.-.

The first result is from Reich [1957] which shows:

For fixed n, IQn} is a sequence of i.i.d. random variables each of which

is exponentially distributed.

Thus, if Qn is the sojourn time in the system for unit n, this result says

simply that this sojourn time is the sm of independent, random variables

Q.- + Qn2+"+QnM"

The Qni may depend on u V Nonetheless the distribution of Qn can be obtained

from simple convolution operations.

The next result is surprising. It comes from Burke [1964]. For the

tandem queueing system he shows:

The sequence {Wn I for n fixed and i - 1,2,...M is a sequence of dependent

random variables.

That is sojourn times at successive service centers in the network are

independent but waiting times are not. It is curious that the sequence

{Wni i - 1,2,--') for fixed n is a sequence of dependent random variables.

But if to each term in this sequence we add a random variable, independent of

{Wni) and exponentially distributed (the Sni) to obtain a new sequence

IQni- Wni + Sni: i - 1,2,'') that sequence is a sequence of independent

random variables for each n.

These waiting time problemu exhibit another nasty property that has been

proven in two distinct cases. Burke [19691 proved the first result. To expose

it we must assume that a service center can have more than one server. It is
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QULKUEING kETWORKS 13

usual to assume that all service times at a given center are mutually independ-

ent and all are exponentially distributed with parameter P that depends only

on the center (not on the server in the center - the servers are "identical").

With this set up, Burke considers a three center tandem queue with the first

center having just one server, the second center having any finite number of

servers, ( > 1), and the third center having just one server. Otherwise, the

problem is that of Reich discussed above. Burke is then able to show that for

each n.

QnI and Qn2 are independent random variables.

On2 and Qn3 are independent ramdom variables.

Qnl and Qn3 are not independent random variables.

This results is surprising. In this network one does not have the Reich mutual

independence. In fact, one does not even have pairwise independence.

Simon and Foley [1979] have found a similar result to that of Burke in a

different network. In their three service center network, there is one server

at each center . A1  A A, Xj . 0, j - 2,3,. The new idea is that the network

is not a tandem queueing network. Rather one has p12 ' p
' 
P1 3 " I- p,

P23 ", P3J - 0, j - 1,2,3 in the structure of section 2.2 (see next page).

Then they are able to show that:

Qn1 and Qn2 are independent random variables.

Qn2 ad Qn3 are independent random variables.

Qnl and Qn3 are not independent random variables.

One conjectures that what is happening here is that in both the Burke

problem and the Simon - Foley problem a unit in queue 2 (in those examples) may

be by-passed by units in server 1 that arrive to the system after unit n. In

both cases then the queue length and hence the sojourn time at server 3 will

depend on how many such units by-pass unit n which in turn depends on how long

unit n was in server 1.

Following this line of thought, the following conjecture appears reason-

able. If there is only one path connecting any two single service centers in
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the network then one can use the result of Reich [1957] to determine the total

sojourn time of a given unit through a Jackson network. If, on the other hand,

there are multiple paths connecting single server service centers then the

sojourn times of unit n at the service center at the start of these multiple

paths and that at the termination of the multiple paths are dependent. Further-

more, if there can be multiple servers at any service center then the sojourn

times at service centers feeding this multiple server service center and those

being fed by it are dependent unless the multiple server center is first or

last in the sequence.

Unfortunately, we do not know the nature of these dependencies. Neither

do we know the sojourn times through either the Burke or Simon and Foley net-

works. This is an area in need of considerably more study.

There is yet one more problem with sojourn times in these Jackson networks.

In perhaps the simplest non-trivial Jackson network one takes all of the assump-

tions of section 2.1 with the added assumption of single servers at each service

center. The only alteration is to have just one service station with p11 - p

(see next page). We call this a queue with instantaneous, Bernoulli feedback.

The definition of sojourn time needs a modification. So let:

i thQn- the sojourn time of unit n the i time that unit passes

through the server. Then

Qn - the sojourn time of unit n.

i 2 k
Q- "Qn + Q+ n+. n

where k in a geometrically distributed random vartable.

It has been shown by Takacs (1963] and Disney and D'Avignon (1978] that for

each fixed n, (Q i , i - 1,2,." l is a Markov renewal process. Takacs andnDisney

and D'Avignon each solve the problem for slightly more general cases than

Jackson networks using rather different methods. Once again as in the Burke

and Simon and Foley examples the lack of independence seems to be coming froe

what we loosely called by-passing.
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2.4 Summary of Results. In sumary, unlike the Jackson queue length process

results that have been obtained and are elegant in appearance, waiting time and

sojourn time properties are largely unknown. For tandem queues studied by

Reich the problem can be considered solved. For general, single server,

Jackson networks that do not have multiple paths between any two service centers

in the network, it appears that the Reich results can be used to obtain results

easily. For more general networks of Jackson type, the sojourn time problem is

largely unsolved. Because of its importance to many areas it is one of the most

pressing problems in queueing network theory.

3. Busy Periods and Departure Processes

3.0 Introduction. The queue length process and sojourn times have been the

major topics of interest to queueing theory since its beginning. While of some

importance to systems analysis, the busy period and to a lesser extent (until

rather recently) the departure process from single service queues have been of

less importance. The same result is true for Jackson queueing networks as we

shall see below.

3.1 The Busy Period. One can define two related processes of interest. One is

called the busy period. The other is called the busy cycle. Both are first

passage probabilities. The busy period is the time from first entrance of a

unit to an empty queue to first exit of a unit that leaves the system empty.

The busy cycle is the first return time from entrance of a unit to an empty

queue to the next time of entrance to an empty queue. If the queue is ergodic

such points occur infinitely often. If the queue is not ergodic such points,

except possibly the first one, may not exist. Almost all studies of the busy

cycle and busy period with which are are family, assume these entrance times

occur infinitely often (see Cox and Smith (1961]).

In single server queueing theory in which (A n } is a sequence of i.i.d.

random variables, (Sn) is also a sequence of i.i.d. random variables and (An }

and (S n ) are independent sequences, the sequence of busy cycles (Bn: n-l,2,...)

is a sequence of i.i.d. random variables if the origin of the time scale is
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taken as a point of arrival to an empty queue. The busy period is in general

not a sequence of i.i.d. random variables because successive periods are not

independent. For the special case in which (NA() } is a Poisson process, the

busy period process as well as the busy cycle process are both sequences of

i.i.d. random variables. General distributional results are known for the

cases in which the two processes are sequences of i.i.d. random variables (for

example, see Kleinrock [19751).

Unfortunately, the related problems in queueing networks are in a much less

well developed form. To the best of our knowledge there are no known results

for busy periods or busy cycles for Jackson networks. The area could stand

some study.

Stating the problem that needs to be considered is rather easy. Recalling

from section 2.2 (item 1) that {N(t)} is a vector valued Markov process, the

busy cycle process is then simply the time from first entrance of an arriving

unit to empty network to the next time of first entrance of an arriving unit to

an empty network. In the busy period case the problem is to determine the time

from first entrance to an empty network by an arriving unit to the time at which

a departing unit leaves behind an empty network. We surmize that such points

occur infinitely often for ergodic networks but as pointed out above we know of

no results for the busy period or busy cycle of a Jackson queueing network.

3.2 Departure Processes. There are two problems here that lead to interesting

questions related to our discussion of the queue length process and waiting time

process. One problem is concerned with the nature of the departure processes

from the Jackson network. The other problem is concerned with the nature of

the departure processes from single centers in the network. To simplify our

discussion we will assume the network is irreducible in the sense that the

switching matrix P is an irreducible matrix. More general cases have been

studied. The interested reader is referred to Melamed (19791 and its references

for these other cases.

When a, < 1 for i 1,2,..M every entering unit eventually leaves the
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system. Then from M4elamed [1979] we have:

(1) In Jackson networks with single server service centers if j is a node from

which departures from the network occur then the departure process from

the network at this center is a Poisson process with parameter a,.

(2) The collection of Poisson processes of departures from the network are

mutually independent.

The first of these results is quite in keeping with the Burke theorem

(section 1.3, item (9)). The second result is, at first glance, rather surpris-

ing. One would expect that the network itself imposed some dependencies on the

departing processes.

When one turns to consider departure processes from individual service

centers in the network things became a bit more complicated. For the time being

we will continue the discussion within the framework of Jackson networks.

Furthermore, we must distinguish two cases. If p(n) > o is defined as the n
pi

step transition from i to i in the switching process, then there is some path

leading from service center I back to that service center. In this case we

will say that service center i has feedback. Otherwise we will say service

center I does not have feedback. The latter case we can dispose of quickly.

If service center I does not have feedback, the departure process is a

Poisson process with parameter ai.

The service center with feedback requires distinguishing two processes.

In one process units leaving service center I will eventually return to i. In

the other process, units leaving service center i vill never return to i. Call

the former process, the feedback stream and the latter the departure stream.

(see figure 3). Then again from Mhlamed [19791 we have:

(1) The departure stream is a Poisson process.

(2) The feedback stream is not a Poisson process and in fact is not a sequence

of i.i.d. random variables.

We can flesh out item (2) a bit more in the case pii " 0, that is feedback

occurs in one step - the so called instantaneous feedback case. In that case
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the total process of units leaving the service center (called the output prEo-

cas_) Is a Msrkov renewal process whose transition functions are known. Then

it has been shown by Disney, et al. [1979] that the output process is never &

Poisson process nor is it a renewal process. However, the departure process is

a Poisson process (parameter X). The feedback process is not a renewal process.

There is reason to believe that the departure process and the feedback process

are not independent random processes but we know of no proof either way here.

These Nelamed and Disney st al. results raise some interesting questions.

In these Jackson networks as was noted in section 2.2 item 3, queue lengths at

individual service centers act as if they were independent, M/M/l queues. Yet

if the network has feedback loops, the flow on those loops is not a Poisson

process nor even a sequence of i.i.d. random variables. It is this property

(i.e. the distinction between properties of the network and properties of the

individual service centers in the networks) that seems to have created confu-

sion in some applications of the Jackson network results both in the study of

the queue length process and that of the waiting time process.

4. Extensions to the Jackson Network Theory of 1957

4.0 Introduction. Following his 1957 paper, Jackson next published a paper in

1963 in which he followed the basic ideas of the earlier paper. The new ideas

were to allow the arrival processes to the network to be birth processes whose

parameters could depend on the total number of units in the network. Similarly,

the service time processes were death processes with parameters depending on the

number of units at a given service center. In this way the queue length process

N(t)} becomes a vector valued birth-death process.

4.1 Queue Length Processes in the Vector-valued Birth-Death Process. We will

not reproduce the exact form of Jackson's 1963 results. They would require

introducing a large amount of new symbolism and currently available work which

we shall discuss later includes these results. However, it is important to

sumarize the findings of Jackson (at a cost of imprecision) because they have

___________
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lead many others to explorations in queueing networks in an attempt to gener-

alize the concept of a Jackson network.

In his 1963 paper, Jackson finds that the joint probability of the vector

N(t) is asymptotically (t-,) geometric. The first term in this geometric dim-

tribution, representing the probability that the entire network is idle, how-

ever, cannot be factored (except in special cases) into a form that would imply

that the individual queue length processes were independent.

Since these results appeared, considerable effort has been expended trying

to determine approximations and easy ways to compute the initial term. Other

research effort has been expended on exploring the "product form" (implied

above) of the solution to many networks. There are no up to date summaries of

the large amount of work. The Kleinrock [1975;1976] books are basic. The

papers of Kelly [1976; 1978] and Schassberger [1977; 1978] trace some of the

work.

4.2 A Generalization. In a 1976 paper, Kelly significantly generalizes the

concept of Jackson network and provides important extencions to the concept of

"product forms" of solutions. In an unpublished series of lecture notes (Kelly

[1978]) he provides further insights and significantly broader applications of

his study. We will follow his 1976 publication because it is accessible In the

open literature.

Suppose that there can be I types of units entering the network. Units

of type i e I enter the network as a Poisson process with rate v(i) and pass

through the servers according to the path

r(i,1)r(i,2)..r(i,S(i))

before leaving the system. Thus at stage s (a - 1,2,...S(i)) of his route, the

unit is at queue r(i,s).

Within each queue, the units are ordered so that there are units in posi-

tions 1,2,-..n . n is the total number of units in queue J.

Each unit requires a random amount of service. This service time is an
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exponentially distributed random variable with mean 1.

There is a single server who supplies a total service effort at rate

0 (n ) in such a way that y (Z n ) of this effort is directed to the unit in

th
position Z. When this unit leaves the j service system, all units behind it

move up a space.

When a unit arrives at service center j it moves immediately into loca-

tion t with probability 6 (t, nj +1). Units formerly occupying spaces 1,

i+ 1,'.-n are moved to spaces t + l, t + 2,'-n + 1.

Such a structure is rather general for queueing network behavior. The

queue discipline of the earlier Jackson networks has been considerably gener-

alized. Arrival processes are still Poisson but note the arrival rate may

depend on the "type" of the unit. "Type" may be associated with the path taken

by the arrival simply by associating an arrival "type" with the path that

arrival will follow. Service times here are also more general.

Another important aspect of the Kelly paper is its method of determining

the limiting probability vector for the queue length random process. Whereas

the earlier Jackson network paper of 1957 and 1963 proceeded from the structure

of the problem to set up the usual limit form of the Kolmogorov equations of

the Markov process fN(t)}, Kelly prefers to work with relations embodied in a

reversed process. It appears that when such an approach can be made to work.

detailed calculations are obviated. The Kelly lecture notes expand on this

point and considers these methods for a wide variety of problems in multidimen-

sional Markov processes, including the queueing networks of this 1976 paper.

Kelly starts with a stable, conservative, regular Markov chain (all of

these networks discussed so far have these properties). Then it is well known

to the theory of such processes that if i, j are vector valued states in these

networks, then a solution to the equations

IP - 0

with H > 0 and R- 1 is unique and

7(j) - lim Pr[N(t) J]
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(The elements of a are the limiting probabilities - the so called "steady state"

probabilities - of the Markov process).

Now it is known that if (N(t)} is a Markov process in equilibrium (eg.

the initial vector for the process is n) there then exists another process -

called the reversed process, (N(-t)}, that is a Markov process in equilibri m.

The reversed process has the same limiting probability vector, n but its

infinitessimal generator may not be that of {N(t)). (If the two processes have

the same infinitessimal generator then {N(t)} is said to be reversible). In

general if q(i,j) is the (i,j) element of the infinitessimal generator of

{N(t)) and q'(i,j) that of the infinitessimal generator of {N(-t)} and if

q(i), q'(i) are the corresponding diagonal elements of the infinitessimal

generator of (N(t)}, and fN(-t)} respectively, then we have

(4.2.1) R(i)q(i,j) - n(j)q'(J,i)

and

q(i) - q'(J).

(If the process is reversible these equations are called the equations of de-

tailed balance).

The extremely useful result is that for the network set up by Kelly, one

can find q(i,j) and q'(i,j) rather easily. This, along with (4.2.1) and the

uniquess of H as a probability vector then allows one to determine n.

For his network, Kelly defines a two-tuple c (1) - ((t (0, a M) where

tj(t) denotes the "type" of unit in position Z in queue j and sj(1). as pre-

viously defined, represents the position along its path reached by this Ith

unit in queue J. It is shown that for the vector

cj - (c (1), c (2)-.-c (a )

C (c ,c2,...cM)

is an irreducible Narkov process on a countable state space. The infinitessimal

generator for this process and its r-versed process is found. Then using the

results on reversed processes stated above, Kelly shows that his network has

* ... .. ... . . . . .. j " I j .. .. " . . . . .. . . . ..
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the product form of solution which is determined up to a normalizing constant,

4.3 Another Generalization. Kelly generalizes his model one more step and in

the process provides the basis for taking a major step out of the restrictive

assumption of Poisson processes and exponential service times. Unfortunately,

this step has a price to pay.

The first step is to generalize the service time assumption of section

4.2. Now instead of service times being exponentially distributed random

variables, it is assumed that when at queue J, the unit that is at stage s of

its path requires an amount of service that is the sume of Z(J,s) independent,

identically distributed, exponential random variables (rate d(j,s)). That is,

service times are now gamma distributed random variables with parameters Z(j,s)

and d(j,s).

The other assumptions of section 4.2 are retained except that it is

required that

(4.3.1) 8j(t,nj + 1) - Y7(Ili + 1).

For this problem the state space of the Markov process of interest must

now become a three-tuple. A state now is defined by t1 (1), S (W), as in section

4.2, and x (t) which denotes the phase of service currently occupied by the

unit. Then, on this three-tuple space one can define a Markov process whose

states are the three-tuples. This process is irreducible and the state space

is countable. The process has a reversed process, its infinitessimal generator

and that of the reversed process can be found. As before the properties of

reversing are used and it is shown that the process has a product form of

solution.

4.4 A Major Generalization. Were the Kelly results to stop here they would

make interesting, perhaps useful, contributions to the theory of Jackson queue-

ing networks. The restriction of Poisson arrival processes and either expo-

nentially distributed or gana distributed service times would preclude a wide

spread use of the results (although much of the computer systems analysis



QUEUEING NETWORKS 25

literature finds these conditions to be reasonable for many computer studies).

But more is available.

Under the conditions of the model of section 4.3, Kelly conjectures that

his results go through for G-type service times (see section 1.2). The con-

jecture is based on a result of Whitt [1974] which shows that finite mixtures

of game distributions are dense in the set of arbitrary non-negative distribu-

tions. Though Kelly does not prove that his model of section 4.3 extents to

G-type servers, it is proven with the requisite care by Barbour [1976].

Finally, Kelly drops the Poisson arrival process assumption that has run

through his work. Commenting on his models in our sections 4.2 and 4.3 he

notes that one can allow these arrival processes to be birth processes whose

parameter depends on the total number of units in the system. Recall that this

step was made in the Jackson [1963] paper.

4.5 Coments. The Kelly work probably represents the state-of-the-srt in the

study of queueing networks originally arising out of the papers of Jackson.

Work continues on these problems and the Kelly work will probably be mined for

quite a while. If condition (4.3.1) could be removed from the Kelly model and

still obtain computable equilibrium solution, one would have a major contribu-

tion to the theory of queueing networks.

Concerning waiting time, busy period, and busy cycle analysis we know of

no results presently available. Concerning departure processes, Kelly presents

some results on the departures from the network. These processes are independ-

ent, Poisson processes for the models studied in our sections 4.2 and 4.3.

It has been noted by many authors (for example, see Kelly [1976]) that

since the Jackson limiting probability vector depends on the assumptions of the

arrival process and service time process only through the expected values of

these processes, similar results may well hold for more general arrival end

service time processes. That is, results such as those obtained may be

insensitive to the distributional assumptions of the model. Schassberger [1977;

19781 explores this topic in more detail and provides a bibliography for further

--------.---- ---- -- ..
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reading.

5. Flow Processes

5.0 Introduction. Many writers, in recent years, have cowe to realize that the

results of the 1957 Jackson paper are remarkable. Even though the results imply

that the queue length processes act as if they are those of independent M/M/i

queues, they are, in fact, not. The result has lead to a collection of papers

investigating the properties of the flow of units within the network. Such

analysis is important if one is to gain an understanding of these flow proces-

ses, if one is to generalize the simple switching structure in Jackson networks,

if one is to gain an understanding of waiting times and if one is to gain some

understanding of sampling data produced by service centers in the network.

The only attempt to survey this overall field with which we are familiar

is Disney [1975]. That paper is somewhat out of date by now. However, the

bibliography therein is rather complete up to July, 1975.

5.1 A Few New Results. The study of flow processes in these networks consists

primarily of the study of five subareas called: decomposition, recomposition,

departures, feedback queues and queues with non-renewal arrivals. Few new

results seem to have appeared since 1975 concerning the area of decomposition.

Therefore we refer to the Disney [1975] paper for an up to date discussion on

that topic. Recomposition studies, likewise, have received scant attention

since 1975 as is also true for queues with non-renewal arrivals. We suggest

that the interested reader consult the above review for work in this area.

There have been two major results on departure processes in Jackson net-

works and the networks of Kelly. In particular, Kelly shows that departures

from his networks (both those discussed in section 4.2 and those discussed in

section 4.3) are Poisson processes and that the several streams of departures

from the service centers are mutually independent processes. (See Kelly [1976]).

In Melamed f19791, the results of Kelly for Jackson (1957] networks are veri-

fied using quite different method. In addition Melamed shows that flows on

arcs internal to Jackson network are Poisson processes on those arcs joining
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non-communicating classes of states in the switching process. On arcs within

communicating classes, the flows are not Poisson processes and in fact are not

even renewal processes.

In an attempt to study these flows in subsets of communicating service

centers, Disney and D'Avignon [1978] and Disney, McNickle and Simon [1979] study

a simple case in detail. This case is called a queue with instantaneous feed-

back (see p.16). The 1979 paper studies four random processes in these queues

to show that the departure process from the system is a Poisson process if and

only if service times are exponentially distributed random variables (see also

Disney, Farrell and de Morais [1973] on this topic for single server queueing

systems.) In case of renewal process service times the departure process is

not only not a Poisson process, it is not a renewal process. it is shown that

the process is a Msrkov renewal process and its transition functions are given.

Flows internal to the network are never (for any service time process) Poisson

processes (except for the trivial case in which there is no feedback). In

general these internal flows are Markov renewal processes and in the single

case studied by Disney, HcNickle and Simon the transition functions for some

of these Markov renewal processes are given.

The Disney and D'Avignon paper (1978] is a major study of queues with

instantaneous feedback. In particular, the arrival process is allowed to be a

Markov renewal process, service times may depend on the state of the arrival

process and the switching probabilities may depend on queue length increments,

previous switching decisions, types of units being switched and the amount of

service time received by the customer being switched. This oaper is probably

the state-of-the-art for the study of queues with instantaneous feedback. It

includes references to all work with which we were familiar in aid 1978. The

details are far too complex to summarize here. We ask the interested reader

to consult the paper.

Current research is being conducted on queueing processes as well as flow

processes in queues with delayed feedback (see, for example Foley [1978]).

Except as noted in Disney and D'Avignon (1978] almost all of this work is



I

28 Ralph L. Disney

concerned with non-Jackson networks with emphasis on queue length processes and

flow processes. We know of no results other than those already cited on the

waiting time process.

6. Suary

6.0 Summry. We have attempted to review in a few pages, more than 20 years

worth of research in the field of queueing network theory. To accomplish this

in such a short space we have concentrated on two topics: Jackson networks and

flow in networks. Our primary emphasis has been on the Jackson network results.

In areas of application these are the results that are of primary importance.

Under the pressing restrictions of time and space we have concentrated only on

the basic Jackson work and the important Kelly work. While we have alluded to

other work. we have by no means provided a definitive state-of-the-art survey.

Considerable work has been done on Jackaon networks in the past 15 years. This

work is to be found principally in the literature of the computer scientist

whose interests in these topics seems to have revitalized that field. We can

only hope that the reader interested in a host of results and fascinating

applications will consult this literature. The best starting point is probably

the two volumes of Kleinrock (1975; 19761 and especially the interesting

chapters 4,5,6 of volume II which present some of the basic queueing problems

occurring in computer networks as well as an interesting discussion of trials

and tribulations of applying known results to the design of a large scale

system. Beyond that we can only suggest that the Interested reader peruse the

journals of computer science (e.g. J....or Acts Informstica) as these topics

continue to be research and applied.

The study of flow processes in queueing networks is fragmented at present.

There are many results. We have mentioned a few. There is much that we have

not said and much that remains to be said. We have not discussed the interest-

ing work referenced in Schassberger [1977; 1978] that is attempting to tie

queueing theory into the more general field of stochastic point process theory.

Indeed, it is our view that this link up is natural. For the study of flow
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processes in networks, it is natural to think of the network and its components

as operators on random point processes. That view will probably provide greater

generality and deeper insights into these flow processes than is now possible.

At present, results on the study of flow processes in queueing networks

appear n print sporadically. Unfortunately, such results when they do appear

are published in literature through the world. The journals Aopl. Prob. and

Ady. Appl. Prob. are necessary reading but not sufficient.

There are many other topics in these areas that we have not even mentioned.

The useful computational work of Wallace [1974] and Neuts (for example see Neuts

[1979]) has been left untouched. The study of closed networks has been nearly

ignored (e.g. Gordon and Newell [1967]). The interesting network decomposition

ideas of Courtois [1978] deserves attention both for its theory as well as its

application potential. The concepts of approximations including diffusion

approximations and heavy traffic approximation have not even been mentioned.

One might consult Harrison (1978] to start into this area. It would sees that

there is no end to such an enumeration. The study of queueing networks is an

enormously large and diverse field. Our tutorial has at best "hit the high

spots".

References

This list of references is intended to be a guide to the literature. If

an author wrote two papers one a continuation of the other we only reference

the latter under the kiowledge that the first paper is included in the bibliog-

raphy of the second. In this way the references can be used to get one started

in the field. More extensive searching would then have to be done by the usual

"follow your nose" principle.

1. Barbour, A. D. (1976), " Networks of Queues and the Methods of Steges,"
Av. Apjl. Prob., 8, 584-591.

2. Borovkov, A. A. (1976), Stochastic Processes in Quouaint Theory,
Springer-Verlag. New York.

3. Brockmeyer, E., Baletrom, H. L., and Jensen, A. (1948), "The Life and
Work of A. K. Erlang," Trans. Danish Aced. Tech. Sci., Transactions No. 2.



30 Ralph L. Disney

4. Burke, P. J. (1956), "The Output of a Queueing System," Oper. Res., 4
699-714.

5. Burke, P. J. (1964), "The Dependence of Delays in Tandem Queues," Ann.
Math. Stat., 35, 874-875.

6. Burke, P. J. (1969), "The Dependence of Sojourn Times in Tandem MIM/s
Queues," Oper. Res., 17, 754-755.

7. Courtois, P. J1. (1977), Decomposability: Queueing and Computer Systems

Applications, Academic Press, New York.

8. Cox, D. R. and Smith, W. L. (1961), Queues, Chapman and Hell, London.

9. Disney, R. L., Farrell, R. L., and de Morais, P. R. (1973), "A
Characterization of M/G/l/N Queue. with Renewal Departures," Mgt Sci., 20,
1222-1228.

10. Disney. R. L. (1975), "Random Flow in Queueing Networks: A Review and
Critique," Trans. Amer. Inst. Industr. Enr., 7, 268-288.

11. Disney, R. L., McNickle, D. C., and Simon, B. (1979), "The H/Gil Queue
with Instantaneous Bernoulli Feedback," (to appear).

12. Disney, R. L. and D'Avignou, G. R. (1978), "Some Problems of Queues
with Feedback," paper presented at Colloquium on Point Processes and Queueing
Theory, Kassthely, Hungary, Sept. 4-8, 1978. Also Tech. Report VTR 78-2, Dept.
of Industrial Engineering and Operations Research, Virginia Polytechnic Insti-
tute and State University. To appear in Proceedings of Keszthely Conference.

13. Feller, W. (1966), An Introduction to Probability Theory And Its
Applications, vol. 2. Wiley, New York.

14. Foley, R. D. (1979), "The H/Gil Queue with Delayed Feedback," text of
talk given at National O.R.S.A./T.l.M.S. Conference, New Orleans, La., April
30-May 2.

15. Gordon, W. J1. and Newell, G. F. (1967), "Closed Queueing Systems with
Exponential Servers," Oper. Res., 15, 254-265.

16. Gordon, W. J. and Newell, G. F. (1967), "Cyclic Queueing Systems writh
Restricted Length Queues," Oper. Res., 15, 266-278.

17. Harrison, J. H. k1978), "The Diffusion Approximation for Tandem Queues
in Heavy Traffic," Adv. Appl. Prob., 10, (to appear).

18. Jackson, J1. R. (1957), "Networks of Waiting Lines," Opr Res., 5,
518-521.

19. Jackson, J. R. (1963), "Jobehop-like Queueing Systems," Mamt. ci.,
10. 131-142.

20. Kelly, F. P. (1976), "Networks of Queues," Adv. Appl. Prob., 8,
416-432.

21. Kelly, F. P. (1978), Reversibility, and Stochastic 'Networks, unpublished
lecture notes, Dept. of Math., Cambridge Univ., Cambridge.

22. Uleinrock, L. (vol. 1, 1975, Vol. 2, 1976), Queueing Systems, Wiley
Interacience, New York.



QUEUEING NEMWORCS 31

23c.g MaaeB 17 "Characterizations of Poisson Traffic Streams in

24. Neuts, M. F. (1978), "Markov Chains with Applications to Queueing
Theory. which have Matrix Geometric Invariant Probability Vector," Adv. AP21.
Prob., 10, 185-212.

25. Frabhu, N. U. (1965). Qu~eues and Inventories,' Wiley, New York.

26. Reich, E. (1957), "Waiting Times when Queues are in Tandem," Ann.
Math. Stat., 28, 768-773.

27. Schasberger, R. (Part 1, 1977; Part 11. 1978), "Inaensitivity of
Steady-State Distribution of Generalized Semi Markov, Processes," Ann. Prob.,
(Part 1) 5, 87-99, (Part 11) 6, 85-93.

28. Simon, B. and Foley, &-. D. (1979), "Some Results on Sojourn Times in
Acyclic Jackson Networks," (to appear).

29. Syski, P.. (1960), Introduction to Conlaction Theory ino Telephone
Syst ems, Oliver and Boyd, Edinburgh.

30. Takaca, L. (1963), "A Single Server Queue with Feedback," Bell Syst.
Tech. J., 505-519.

31. Wallace, V. L. (1974), "Algebraic Techniques for Numerical Solution
of Queueing Networks." Math. Mathods in 2ucueing Theory, Lecture Notes in
Economics and Mathematical Systems, No. 98. Springer-Verlag, New York.

32. Witt, W. (1974), "The Continuity of Queues," Adv. App. Prob., 6,
175-183.

Acknowledgement

I would like to thank Robert 0. Foley and Burton Simon for many helpful

discussions in the preparation of this paper.

DEPARTMENT OF INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNVIERSITY
BIAKCSBURG, VIRGINIA 24061


