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Corrigendum

Line 15 "moribind" should be “"moribund",

line 11, "in" should be "in-".

line 6, "basic process" should be "basic processes",

line 11, "exists" should be "exits'".

line 5 from bottom, "[0,®)" should be " {0,1,2,...}".

line 12 from bottom, "Remembering' should be "Remember".

line 3 from bottom, "out' should be omitted,

line 2, "errormous" should be "enormous".

line 10, insert '"in the steady state" after "For fixed n," and
change "i.i.d. random variables to independent
random variables',

line 6 from bottom, "family" should be "familiar",

line 1 and 2, change the sentence '"The busy period is in general.,,"

"The busy period sequence is also a sequence of i,i.d,
random variables'" and then delete the next sentence,

"For the special case..."

line 15, insert "an" between "to" and "

empty".

line 9, "sume" should be "sum'".

line 24, "research" should be "researched".

Syski reference should be '"Congestion" not '"Conjection",

to
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QUEUEING NETWORKS

Ralph L. Disney1

ABSTRACT. The study of queueing networks is a rather recent addition
to queueing theory. In this paper we will review about the last 20
years of developments in the area. Primary emphasis is placed on
Jackson networks and the major contribution of Kelly. We discuss
queue length processes, waiting time processes, busy period processes
and departure processes. We will also note a few new studies that
have appeared in the area of network flows. Topics that are not
discussed in detail in the paper are briefly noted in the final sec-
tion. The bibliography can serve as an introduction for further
reading in the area.

1. Introduction and Some Background
1.0 Introduction. In this paper we will briefly review some developments that
have occurred over the last 20 years, in an area of applied mathematics caliad

queueing network theory. The need for such applied work has been clear almost

since the beginning of what i{s called queueing theory. Some of the work of

A. K. Erlang (see Brockmeyer, et al. [1948]) seems to be pointing toward a study

of interconnected systems of service centers. Certainly by the 1930's it was
clear that such work was evolving (see chapters 7-10 in Syski [1960]). In most
of these early studies, the developments appear to be closely tied to attempts
to solve problems that occur principally in telephone switching systems.

Much of classical queueing theory (say up to about 1957 or 1960) was con-
cerned with properties of Markov processes and except for names given to the
parameters and processes it is difficult to separate out the peculiarities of

queues from other Markov processes that were being used as models, for example,

lThis research was supported jointly by NSF Grant ENG77-22757 and by the

Of fice of Naval Research Contract NOOOl4-77-C-0743 (NR 042-296). Distribution
of this document {s unlimited. Reproduction in whole or in part is permitted
for any purpose of the United States Government.
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2 Ralph L. Disney

in biological modelling. In fact, many of the birth-death models of biological
studies have interesting and useful counterparts in queueing theory. For this
reason a carefully drawn history of queueing theory would be strained because
of the interrelations with other fields. The useful thing to remember 1s that
in its beginning phases the field was closely allied with attempts to solve
real life problems.

The 1950's were perhaps the "golden age" of developments in the field.
Under many impacts (including the introduction of more sophisticated and real-
istic models into problems that here to fore had been the domain of the indus-
trial engineer) the field began to take on a life of its own. In much of the
1950-60 work and extending even to today, the work in the field veered more and
more away from its applied bent. It was at this time that queueing theory
started to be sufficiently arcane that many researchers were turned away from
it. Easy queueing protlems had been solved. Many papers were and had been
published on special cases of birth-death processes. The field was moribind
after about 1965-70.

Starting about 1965, the field of computer systems analysis began to delve
into properties of time sharing and interconnected systems. Here the research-
ers encountered many of the same types of problems encountered earlier in tele-
phone systems and production systems. It was natural, therefore, to use exist-
ing, known results. By 1970 and certainly by 1973 research into computers and
computer systems had uncovered a large number of problems beyond the work in
earlier queueing theory.

At the same time these developments in computer systems were taking place,
new problems were occu.ring and old unsolved problems were becoming more pres-
sing in telecommunication theory and production theory. New areas of applica-
tion were evolving in military command and control modelling, disease modell-
ing, military tactics modelling, public sector models for police fire depart-
ment and medical emergency systems design and many others. All of these topics
put demands on the queueing theory (and indeed other areas of probability and

random processes) that theory was unable to handle. Systems (e.g. networks) of
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queues became areas of important study in many of the above application rather
than single queues. Markov process theory did not provide a rich emough body
of knowledge and new ideas evolved.

Largely because the applied topics put demands on existing theory that
could not be accommodated quickly enough, much of applied work turned to Monte
Carlo simulation of systems. But that placed a new load on the theory of Sta-
tistics as well as probability, random processes and queueing. Because of the
relative quiescence of the 1957-70 period queueing theory has lost ground to

applied topics.

1.1 Purpose. The purpose of this paper Is to briefly summarize where we stand
in the study of queueing network theory. Time and space do not permit any in
depth discussion here. The bibliography should be consulted by the reader in-
terested in "reading themselves into" the area. However, that reader should be
forewarned that papers on these topics are spread over a large number of jour-
nals of the world. There is no one best place to look for research papers or
to expect to follow diligently and thereby stay up with the field. For back-
ground into queueing theory the reader might consult Syski [1960] who does a
magterful job summarizing work in queueing theory up to about 1960. Kleinrock's
two volumes {1975; 1976) summarizes many known results in queueing theory and
gives a nice discussion of many of the problems of queueing phenomens occurring
in computer systems. There are no textbooks on the subject of queueing network
theory though one can find some discussions concerning section 2, to follow,

in most post 1975 texts. Material in section 4 i3 nicely presented but unfor-
tunately it {8 in unpublished lecture notes by Prof. Frank Kelly. Material in
section 5 coupled with the Disney ([1975] reference therein is a fair review of
those topics. Topics in gsection 6 have not been pulled together in any one
place to the best of our knowledge so the reader is on his own there. Refer-

ences are provided herein but that list is far from complete.

1.2 Some Background, Notation and Symbolism. In order to embed our future

discussion in the more classic field of queueing theory, we will present a
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4 Ralph L. Disney

brief review of a few ideas in basic queueing theory.

At an {(ntuitive level gqueueing theory is concerned with problems arising
in waiting lines. One supposes that there is something that can perform a need
ed service, a server. In the simpler cases it is assumed that the sequence of
service times 18 a sequence of mutually independent random variables that are
identically and non-negatively distributed. In queueing theory such a service
process is called a G-type service process. In the theory of stochastic proc-
esses such a process is called a renewal process.

The demand for this service is usually modelled with the times between de-
mands being the variables of interest. These times are assumed to be a sequence
orf independent, identically distributed random variables that are non-negative
(another renewal process). Such an arrival process is called a GI-type arrival
process. It is usual to assume that the arrival process and service time pro-
cess are independent processes. Such a queueing system is called a G1/G/-
queue.

Queueing or waiting occurs in such systems whenever an arrival occurs to
find the server already engaged serving a previous arrival. If an arrival oc-
curs and the server is not so engaged, that arrival immediately enters service,
under the usual assumptions. (There are studies that do not include this as-
sumption. They are called queueing with set up).

When service 15 completed, the next unit in the queue to be serviced is
chosen and under the usual assumptions, that unit immediately goes into service.
The rule used to choose the next unit to serve from among all those in the
queue {8 called the queue discipline. The most common assumption in queueing
theory is that the first unit in the waiting line is the first customer to be
served. Such a discipline is called a first in-first out discipline. For other
applications other disciplines have been considered. (In military studies the
next unit to be served may be the one posing the most immediate threat. In a
computer center jobs may be assigned to classes of importance - called priority
classes - and the next job chosen is from among those with the highest priority.

In production systems the next job to manufacture may be the one whose promised

PR
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QUEUEING NETWORKS 5

delivery date - the so called '"due date" - is closest.)

There are four basic processes created by the interaction of service times,
interarrival times and queue discipline that are of particular importance though
others have been studied. The length of the waiting line, called the queue
length procegs (N(t): t > 0}, is one of the basic processes of concern. The
length of time from entry to exit of the queueing system (Qn: n=12,--} call-

ed the sojourn time process, is another of the basic process. The time from

first entrance of a unit to an idle server until first entrance of the next
unit to an idle server (Bn: n=1,2,:-+} 13 called the busy cycle. The time
between congsecutive exiats from the server {Xn: nwl1,2,---} {8 called the
departure process.

Somewhat more formally we can define the problems as follows:

(1) Let 0 < T, < T1 < Tz--- be a sequence of real random variables representing

0
the times at which an arrival occurs to a queueing system. Let A“

- Tn-Tn_l, n=12,---, Assume é - {An} is a sequence of 1.1.d. random
variables (a remewal process). Call A the arrival process to the queue.

(2) Let Sn be a non-negative real random variable. Let S = (Sn: n=1,2,"°}

be a sequence of i.1.d. random variables. Call § the service time process

for the queue. We assume z and 3 are independent processes.

(3) Let 1l (Tn) be an indicator random variable taking values 0 (or 1) if

{0,¢c}
T, does not (or does) occur in [0,t].

(4) Define N, (t) = nEO 1[0,:](Tn)' (NA(t): t > 0} is called the arrival
counting process.

The four processes of basic concern to queueing theory can be defined

formally in terms of the Q and é process. Prabhu [1965] provides a formal

definition of the queue length process. We will not reproduce that here but
rather we assume that everyone has an intuitive understanding of such a process.
The sojourn time process is closely related to the waiting time process for

firet in-first out disciplines which can be formally stated as
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Vn - wn—l + Sn_1 - An' if "n-l + Sn_’1 - An > 0,

=0 , otherwise.

Then Qn - Un + Sn defines the sojourn time of the nth arriving customer. The
busy cycle process is the sequence of first passage times already discussed.
If we define Xn a9 the time between the n and (n-l)St service completion then
the departure process (Xn: n=1,2,--+} can be more formally given as
th
s“, if the n " unit leaves someone in the
queue,

In + Sn, if the nth unit leaves an empty queue.

Here In is the foreward recurrence time in the arrival process measured from the

time of departure of the (n—l)sc unit. I“, is called the idle time of the server.

1.3 Special Cases. The major thrust of queueing theory for much of its life
has been to compute formulas for the above measures of effectiveness with
special assumptions on the arrival process, service process, queue discipline
or syatems capacity. For future reference, we will record some results for one
special case here. The following results as well as many of the special cases
are discussed in most standard texts on the subject (for example, see Kleinrock
[1975; 1976)).
1f we assume that NA(t) is a Poisson process (with parameter A as is usual)
and Sn is exponentially distributed (parameter u as 1s usual), the service center
has 1 server, the queue discipline is first in-first out and the system's capac-
{ey i3 unlimited then the system i{s called an M/M/1 queueing system. A con-
siderable amount is known about the above four processes (Kleinrock [1975]).
For example,
(1) {N(t)} ts a Markov process with state space [0,=).
(2) Pr(N(t) = k] ts knowm (but we'll not reproduce the results here. Essen-
tially the probability is given by an infinite sum of Bessel functions of

type - 1 1i.e. Bessel functions of the second kind with imaginary argu-

ments),
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(3) 1im PrN(t) = k] = (1-p)o%, k = 0,1,2,--- for o = A/u (called the traffic
[ o
intensity). Such a limiting distribution exists if and only if p < 1},
otherwige the limit {s identically 0 for all finite k. These limicting

probabiliries, when they exist, are called the steady state probabilities.

(&) (Hn} i3 a random walk on the non-negative reals with a delaying barrier at
0. (see Feller [1963) or Borovkov [1976]).
(5) P:[Hn < t] 1s known in principle (through the theory of random walks).

(6) 1im PriQ_ < t] = 1-¢” WNE
e a

t > 0. This limit exists if and only if
p < 1, otherwise the limit is O for all finite t > O.

(7) The busy cycle process is a sequence of 1.i.d. random variables whose
distribution is known (see Cox and Smith (1961], for example).

{(8) The departure process (Kn: n=0,1,2,---} is, in principle, known for all
n from (2).

(9) 1In the steady state (i.e. t + ®»), when p < 1, {xn} is a sequence of 1.1.d.
random variables that are exponentially distributed with parameter A.
That is, the departure counting process i{s a Poisson process with the same
parameter as the arrival process. (see Burke [1956] or Disney, et al.
[1973]).

Results (1), (3), (9) are useful to our future discussion.

2. Jackson Networks

2,0 Introduction. It was recognized early in queueing theory that a theory of
single server systems was not adequate. Indeed, at least by the 1930's (and
before if one is not too picky) research in queueing had begun to explore sys-
tems of queues or what we shall call networks of queue. Erlang, about 1910 had
studied systems vhere many identical servers all handled the same arrival pro-
cess (the M/M/c model) in telephone systems. A good discussion of these and
multiple server models is given in Syski [1960] especially chapters 5 and 6 as

well as chapter 7 to 10.

2.1 Jackson Networks. A general model in this historic mold that has served

almost as the definition of a queueing network was studied in a paper by J. R.
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Jackeon {1957]. These models and related problems have cowe to be called

"Jackson networks.” Hig 1957 model assumed:

Q%]

ra

(2)

(3

(%)

(5)

(6)
(7)

There are 1 < M < = gervice centers (Jackson did allow servicing cencer }
to be comprise: of more than 1 server. However, to keep the problem simple
we assume throughout that each servicing center has only one server).

These M servers are arbitrarily connected by arcs over which units travel
instantaneously fast.

To establish how units proceed through the network one defines pij to be
the probability that a unit completing service at service center 1 proceeds
to service enter j for 1ts next service. Then for each i, 1 - jgl pij is
the probability that a unit exiting node 1 leaves the system. The matrix
5 whose elements are pij is called the switching matrix for the network.
Note that these assumptions about switching imply that a unit leaving
service center { chooses the next service center to visit without regard
toe any other condition. We call thig switching behavior a Bermoulli
switch.

Service times, S n=1,2,--- at center i are i.i.d. random variables.

nl’

These times are each exponentially distributed random variables with

M
The sequences {S__} are independent sequences.

parameter
0l ey

My
There may be many arrival processes but each one 1s a Poisson process (with
parameter Xi if the arrival process is to service center i). These arrival
processes are independent of each other and of the network.

All queue disciplines are first in~first out.

All queue capacities are unlimited.

2.2 The Queue Length Process. The results that Jackson obtained were rather

surprising. Jackson's major results were as follows:

Define z(t) to be a vector whose jCh element, Nj(t), j=1,2,---,M, 18 the

queue length at the jth service center at t.

(1)

Then

{N(t): t > 0} {s a vector valued Markov process.

A it Pt ul PP AR Sl <zt e -1
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(2) %E.‘; pr[ul(:) -k, N, (t) = k?_---NM(c) - kH]
- Lh: Pr(N, (£) = kyIPT[N,(t) = k,]--Pr(Ny,(e) = kI,
That is, the queuve length processes in these Jackson networks are asymp-

totically (t+=), mutually independent.
k

(3) 1im Pr(N,(¢) = k,] = (1-b )b, 3, § = 1,2,-+- 1if and only 1f b, < 1. Other~
oo i i 3773 ]
wise this limit i3 0. Here bj - ajluj and aj satigfies the so called
traffic equation
a = ) + Pa.
~ " AN

a is the M-vector of a A is the M-vector of A P is the switching

3~ S
matrix. We assume throughout that the traffic equation has a positive
solution (or alternatively the maximum eigenvalue of 5 is less than 1).
In elemental form, this equation says simply that aj is the rate of
arrivals to service system j. This arrival rate is simply the sum of
exogeneous arrivals to system }J (Xj) plus the sum of all arrivals to )
from inside of the system (53)1'

It 18 instructive to spend a moment looking at what Jackson said and did
not say. Many papers have been written on Jackson networks that wmisinterpret
and misuse his results. The major confusion occurs around the third result.
Remembering that in the example of section 1.3 we showed that the queue length
process was asymptotically (t-+=) geometrically distributed with s parameter
p=A/p<1l, Ifp >1cthe limit 15 zero. Also recall that A was the parameter
agsociated with the Poisson arrival process and u was the parameter associated
with the exponential service times.

Now result (3) above is also asymptotically geometrically distribuced with

a parameter a, that i3 acting as an arrival rate and a parameter uj acting (is)

]

48 a servicing rate. This result led Jackson to state "This theorem (our

resulta (2) and (3) above) says, in essence, that at least so far as steady

states are concerned (out t+»), this system with which we are concerned behaves
s if its departments (our centers) wvere independent, elemencary (i.e. M/M/1)

systems ...". So far, so good. The as if emphasis is Jackson's and as it




10 Ralph L. Disney

stands is innocuous enough. Jackson makes one more statement about his results
that may have caused an errormous amount of confusion. He says '"This conclusion
is far from surprising in view of recent papers by E. J. Burke (that should be
P. J. Burke) and E. Reich." It appears from his references that Jackson is

here alluding to the result (9) of section 1.3 which is sometimes called
"Burke's Theorem".

Confusion in queueing network literature has occurred by taking the "as
1f" of Jackson too seriously. Researchers seem to have taken this to mean that
the queue length processes are independent and are created by M/M/1 subsystems,
As a consequence there are papers in the queueing literature that study queue-
ing networks one node at a time (the independence assumption) as M/M/1 queues
(the asgumption of Burke's theorem). There are other papers that study sojourn
times in networks as sums of independent, exponential random varialbes (see
section 1.3, result (6)). Unfortunately, many authors have shown that the flow

of units within the network are, except for special network configuratioms such

as trees, not Poisson processes and in fact, are not even renewal processes.

Thus each service center in isolation is not only not an M/M/1 queueing system,
{t 1s not even a queueing system with a renmewal arrival process. That is, for a
time there was serious confusion in the literature as to what as if really
meant. The problem fs fairly well understood now. Section 5 and its references

discuss the topic more thoroughly.

2.1 Walting Times. Waiting times {n Jackson networks is a rather unexplored
area. Attention has recently turned toward that area but research here has
only started. There are a few special cases that have been studied in detail
principally in what are called tandem queues.
One can define a tandem, Jackson network as one having the structure of
section 2.1 with the added features:
(1) There is only one arrival process and it occurs to the first server (in
terms of the section 2.1 scheme )

=X, A, =0, jF1).

1 3

() pij = 0 unless j = 1 + 1 in which case pij =1, §j=1,2,'*M. (see next
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page) Since the only results, with which we are familiar, are concerned
with first in-first out queue disciplines, we assume this discipline
throughout. We need a bit more symbolism here. So define:

"ni = the total time unit n spends waiting in service center i. Call
this the waiting time of unit n in service center 1.

Qni = the time spent by unit n in service center 1. Call this the

sojourn time of unit n in center 1. W + S = Q

ai * “nt 1=1,2,...4

ni’
na=1,2,---,
The first result is from Reich [1957] which ghows:
Por fixed n, {Qni} is a sequence of i1.1.d. random variables each of which
is exponentially distributed.

Thus, if Qn 1s the sojourn time in the system for unit n, this result says

simply that this sojourn time is the sum of i{ndependent, random variables

Q = Gy *+ Oty

The Q . may depend on uy. Nonetheless the distribution of Qn can be obtained

ni
from simple convolution operations.

The next result is surprising. It comes from Burke [1964). For the
tandem queueing system he shows:

The sequence {"ni} for n fixed and 1 = 1,2,--*M is a sequence of dependent
random variables.

That 13 sojourn times at successive service centers in the network are
independent but waiting times are not. It is curious that the sequence
(Hn1 i = 1,2,--+M} for fixed n is a sequence of dependent random variables.
But if to each term in this sequence we add a random variable, independent of
(Hni) and exponentially distributed (the Sni) to obtain a new sequence
{Qni = Hni + sni: i =1,2,-+-) that sequence is a sequence of independent
random variables for each n.

These waiting time problems exhibit another nasty property that has been

proven in two distinct cases. Burke [1969] proved the first result. To expose

it we must assume that a service center can have more than one server. It is
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QUEUEING NETWORKS 13

usual to assume that all service times at a given center are mutually independ-
ent and all are exponentially distributed with parameter uJ that depends only
on the center (not on the server in the center - the servers are "identical").
With this set up, Burke considers a three center tandem queue with the first
center having just one server, the second center having any finite number of
servers, ( >1), and the third center having just one server. Otherwise, the
problem is that of Reich discussed above, Burke is then able to show that for
each n.

in and an are independent random variables.

an and Qn3 are independent ramdom variables.

in and Q , are not independent random variables.
This results is surprising. In this network one does not have the Reich mutual
independence. In fact, ome does not even have pairwise independence.

Simon and Foley [1979] have found a similar result to that of Burke in a
different network. In their three service center network, there is one gerver
at each center . Al = A, lJ =0, § =2,3,. The new idea is that the network
is not a tandem queueing network. Rather one has p12 =P, Pyy " l1-p,

Py3 = 1, p3j =0, j =1,2,3 in the structure of section 2.2 (see next page).
Then they are able to show that:
in and an are independent random variables.

an and Qn3 are independent random variables.

in and Qn3 are not independent random variables.

One conjectures that what is happening here is that in both the Burke
problem and the Simon - Foley problem a unit in queue 2 (in those examples) may
be by-passed by units in server 1 that arrive to the system after unit n. 1In
both cases then the queue length and hence the sojourn time at server 3 will
depend on how many such units by-pass unit n which in turn depends on how long
unit n was in server 1.

Following this line of thought, the following conjecture appears reason-

able. If there is only one path connecting any two single service centers in
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QUEUEING NETWORKS 15

the network then one can use the result of Reich [1957] to determine the total
sojourn time of a given unit through a Jackson network. If, on the other hand,
there are multiple paths connecting single server service centers then the
sojourn times of unit n at the service center at the start of these multiple
paths and that at the termination of the multiple paths are dependent. Further~-
mcre, 1f there can be multiple servers at any service center then the sojourn
times at service centers feeding this multiple server service center and those
being fed by it are dependent unless the multiple server center is first or
last in the sequence.

Unfortunately, we do not know the nature of these dependencies. Neither
do we know the sojourn times through either the Burke or Simon and Foley net-
works. This is an area in need of considerably more study.

There is yet one more problem with sojourn times in these Jackson networks.
In perhaps the simplest non-trivial Jackson network one takes all of the assump-
tions of section 2.1 with the added assumption of single servers at each service
center. The only alteratiom i{s to have just one service station with Pjp =P
(see next page). We call this a queue with instantaneous, Bernoulli feedback.
The definition of sojourn time needs a modification. So let:

Qi = the sojourn time of unit n the 1th time that unit passes
through the server. Then
Qn = the sojourn time of unit n.

k
n

wn s e
where k is a geometrically distributed random variable.

It has been shown by Takacs (1963] and Disney and D'Avignon (1978] that for
each fixed n, (Q:, { = 1,2,:--} 18 & Markov renewal process. Takacs and Disney
and D'Avignon each solve the problem for slightly more general cases than
Jackson networks using rather different methods. Once again as in the Burke

and Simon and Foley examples the lack of independence seems to be coming from

vhat wve loosely called by-passing.
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l 2.4 Summary of Results. In summary, unlike the Jackson queue length process
results that have been obtained and are elegant in appearance, waiting time and
sojourn time properties are largely unknown. For tandem queues studied by
Reich the problem can be considered solved. For general, single server,

Jackson networks that do not have multiple paths between any two service centera
in the network, it appears that the Reich results can be used to obtain results
easily. For more general networks of Jackson type, the sojourn time problem ias
largely unsolved. Because of its importance to many areas it is one of the most

pressing problems in queueing network theory.

3. Busy Periods and Departure Processes
3.0 Introduction. The queue length process and sojourn times have been the
major topics of interest to queueing theory since its beginning. While of some
importance to systems analysis, the busy period and to a lesser extent (until
rather recently) the departure process from single service queues have been of
less importance. The same result is true for Jackson queueing networks as we

shall see below.

3.1 The Busy Period. One can define two related processes of interest. One is
called the busy period. The other is called the busy cycle. Both are first
passage probabilities. The busy period is the time from first entrance of a
unit to an empty queue to first exit of a unit that leaves the system empty.
The busy cycle {s the first return time from entrance of a unit to an empty
queue to the next time of entrance to an empty queue. If the queue 1is ergodic
such points occur infinitely often. If the queue i3 not ergodic such points,
except possibly the first one, may not exist. Almost all studies of the busy
cycle and busy period with which are are family, assume these entrance timas
occur infinitely often (see Cox and Saith [1961]).

In single server queueing theory in which (An) is a sequence of 1.1i.d.

random variables, {sn) is also a sequence of i.1i.d. random variables and {An)

and (Sn) are independent seq , the sequence of busy cycles (Bn: n=1,2,:--}

is a sequence of i.i.d, random variables if the origin of the time scale is
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taken as a point of arrival to an empty queue. The busy period is in general
not & sequence of i.1.d. random variables because successive periods are not
independent. For the special case in which (NA(:)} is a Poisson process, the
busy period process as well as the busy cycle process are both sequences of
i{.1.d. random variablea. General distributional results are known for the
cases in which the two processes are sequences of i1.i.d. random variables (for
example, see Kleinrock [1575)).

Unfortunately, the related problems in queueing networks are in a much less
well developed form. To the best of our knowledge there are no known results
for busy pariods or busy cycles for Jackson networks. The area could stand
some study.

Stating the problem that needs to be considered is rather easy. Recalling
from section 2.2 (item 1) that {Q(t)} is a vector valued Markov process, the
busy cycle process is then simply the time from first entrance of an arriving
unit to empty network to the next time of first entrance of an arriving unit to
an empty network. In the busy period case the problem is to determine the time
from first entrance to an empty network by an arriving unit to the time at which
a departing unit leaves behind an empty network. We surmize that such points
occur infinitely often for ergodic networks but as pointed out above we know of

no results for the busy period or busy cycle of a Jackson queueing network.

3.2 Departure Processes. There are two problems here that lead to interesting
questions related to our discussion of the queue length process and waiting time
process. One problem is concerned with the nature of the departure processes
from the Jackson network. The other problem is concerned with the nature of

the departure processes from single centers in the network. To simplify our

discuseion we will assume the network is irreducible in the sense that the

switching matrix P is an irreducible matrix. More general cases have been
"

studied. The interested reader is referred to Melamed [1979] and {ts references

for these other cases.

When D1 < 1 for { = 1,2,--:M every entering unit eventually leaves the
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system. Then from Melamed [1979] we have:
(1) In Jackson networks with single server service ceaters if { is a node from
which departures from the network occur then the departure proceas from

the network at this center is a Polsson process with parameter a,.
(2) The collection of Poisson processes of departures from the network are

mutually independent.

The first of these results is quite in keeping with the Burke theorem
(section 1.3, item (9)). The second result is, at first glance, rather surpris-
ing. One would expect that the network itself imposed some dependencies on the
departing processes.

When one turns to consider departure processes from individual service
centers in the network things became a bit more comwplicated, For the tima being

we will continue the discussion within the framework of Jackson networks.

(n)
i1

step transition from 1 to 1 in the switching process, then there is some path

Furthermore, we must distinguish two cases. 1f p > 0 is defined as the n
leading from service center i back to that service center, In this case we
will say that service center 1 has feedback. Otherwise we will say service
center 1 does not have feedback. The latter case we can dispose of quickly.

If service center i does not have feedback, the departure process is a
Poisson process with parameter a.

The service center with feedback requires disctinguishing two processes.
In one process units leaving service center i will eventually return to 1. In
the other process, units leaving service center i will never return to i. Call

the former process, the feedback stream and the latter the departure stream.

(see figure 3). Then again from Melamed [1979] we have:

(1) The departure stream is a Poisson process.

(2) The feedback stream is not a Poisson procees and in fact is not a sequence
of 1.4.d. random variables.
We can flesh out item (2) a bit more in the case Pyy 0, that is feedback

occurs in one step - the so called instantaneous feedback case. In that case

e it e B . -
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the total process of units leaving the service center (called the output pro-
cess) is & Markov renewal process whose transition functions are known. Then
it has been shown by Disney, et al. [1979] that the output process is never s
Poisson process nor is it a renewal process. However, the departure process 1is
a Poisson process (parameter A). The feedback process is not a renewal process.
There is reason to believe that the departure process and the feedback process
are not independent random processes but we know of no proof either way here.
These Melamed and Disney et al. results raise some interesting questions.
In these Jackson networks as was noted in section 2.2 item 3, queue lengths at
individual service centers act as 1if they were independent, M/M/1l queues. Yet
1f the network has feedback loops, the flow on those loops is not a Poisson
process nor even a sequence of i.{.d. random variables. It is this property
(1.e. the distinction between properties of the network and properties of the
individual service centers in the networks) that seems to have created confu-
sion in some spplications of the Jackson network results both in the studv of

the queue length process and that of the waiting time process.

4. Extensions to the Jackson Retwork Theory of 1957
4.0 Introduction. Following his 1957 paper, Jackson next published a paper in
1963 in which he followed the basic ideas of the earlier paper. The new ideas
were to allow the arrival processes to the network to be birth processes whose
parameters could depend on the total number of units in the network. Similarly,
the service time processes were death processes with parameters depending on the
number of units at a given service center. In this way the queue length process

{Q(t)) becomes a vector valued birth-death process.

4.1 Queue Length Processes in the Vector-valued Birth-Death Process. We will
not reproduce the exact form of Jackson's 1963 results. They would require

introducing a large amount of new symbolism and currently available work which

we shall digcuss later includes these results. However, it is important to ‘

summarize the findings of Jackson (at a cost of imprecision) because they have
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lead many others to explorations in queueing networks in an attempt to gener-
alize the concept of a Jackson network.

In his 1963 paper, Jackson finds that the joint probability of the vector
E(t) is asymptotically (t+w) geometric. The first term in this geometric dis-
tribution, representing the probability that the entire network 1s idle, how-
ever, cannot be factored (except in special cases) into a form that would imply
that the individual queue length processes were independent.

Since these results appeared, considerable effort has been expended trying
to determine approximations and easy ways to compute the initial term. Other
research effort has been expended on exploring the "product form"” (implied
above) of the solution to many networks. There are no up to date summaries of
the large amount of work. The Kleinrock [1975;1976] books are basic. The
papers of Kelly [1976; 1978] and Schassberger [1977; 1978] trace some of the

work.

4.2 A Generalization. In a 1976 paper, Kelly significantly generalizes the
concept of Jackson network and provides important extencions to the concept of
"product forms'" of solutions. In an unpublished series of lecture notes (Kelly
{1978]) he provides further imsights and significantly broader applications of
his study. We will follow his 1976 publication because it is accessible in the
open literature.

Suppose that there can be I types of units entering the network. Units
of type 1 ¢ I enter the network as a Poisson process with rate v(i) and pass

through the servers according to the path
r(1,)r(1,2)..-r(4,5(1))

before leaving the system. Thus at stage s (s = 1,2,...S(1)) of his route, the
unit 1is at queue r(i,s).
Within each queue, the units are ordered so that there are units in posi-

tions 1.2.---nj. nj is the total number of units in queue j.

RBach unit requires a random amount of service. This service time is an
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exponentially distributed random variable with mean 1.
There is a single server who supplies a total service effort at rate
n
OJ( 9
position ¢. When this unit leaves the j:h service gystem, all units behind it

) in such a way that vj(z.nj) of this effort is directed to the unit in

TwOVE up B space.
When a unit arrives at service center j it moves immediately into loca-

tion £ with probability 6 (2, nJ +1). Units formerly occupying spaces &,

b

are moved to spaces & + 1, 2 + 2,-+°n,_ + 1.

3 b]

Such a structure is rather general for queueing network behavior. The

¢ +1,-°°n

queue discipline of the earlier Jackson networks has been cousiderably gener-
alized. Arrival processes are still Poisson but note the arrival rate may

depend on the "type'" of the unit. '"Type"” may be associated with the path taken
by the arrival simply by associating anm arrival "type" with the path that
arrival will follow. Service times here are also more general.

Another important aspect of the Kelly paper is its method of determining
the limiting probability vector for the gueue length random process. Whereas
the earlier Jackson network paper of 1957 and 1963 proceeded from the structure
of the problem to set up the usual limit form of the Kolmogorov equations of
the Markov process (E(c)}. Kelly prefers to work with relations embodied in a
reversed process. [t appears that when such an approach can be made to work,
detailed calculations are obviated. The Kelly lecture notes expand on this
point and considers these methods for a wide variety of problems in multidimen-
sional Markov processes, including the queueing networks of this 1976 paper.

Kelly starts with a stable, conservative, regular Markov chain (all of
these networks discussed so far have these properties). Then it is well known
to the theory of such processes that if 1, j are vector valued states in these

networks, then a solution to the equations
P=0

with 1 > 0 and Al = 1 is unique and

ny) = %_1_2 Pr(N(t) = j]
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(The elements of 11 are the limiting probabilities - the so called '"steady state"
probabilities - of the Markov process).

Now it is known that {f {N(t)} 1s a Markov process in equilibrium (e.g.
the initial vector for the process is [I) there then exists another process -
called the reversed process, {N(-t)}, that i{s a Markov process in equilibrium, |
The reversed process has the same limiting probability vector, N bur its
infinitessimal generator may not be that of {N(t)}. (If the two processes have i
the same infinitessimal generator then {N(t)} is said to be reversible). In !
general if q(i,]) is the (1,j) element of the infinitessimal generator of '
{N(t)} and q'(1,}) that of the infinitessimal generator of {N(-t)} and if

q(1), q'(1) are the corresponding diagonal elements of the infinitessimal

generator of {N(t)}, and {N(-t)} respectively, then we have 1
(4.2.1) T, 1) = 1(4)q" (3,1) i
and ;
F q(1) = q'(§). i

(If the process 1s reversible these equations are called the equations of de-

tailed balance). ;
The extremely useful result is that for the network set up by Kelly, one

3 can find q(i,3) and q'(i,3) rather easily. This, along with (4.2.1) and the

uniquess of 1 as a probability vector then allows one to determine I.

For his network, Kelly defines a two-tuple cj(l) - ((tj(l), 8, (L)) where

]
tj(l) denotes the 'type" of unit in position £ in queue j and sj(l). as pre-

viously defined, represents the position along its path reached by this lth

unit in queue j. It is shown that for the vector

¢y = (cj(l), cj(2)--'cj(nj))
c- CHTIRPREN

is an irreducible Markov process on a countable state space. The infinitessimal

generator for this process and its reversed process is found. Then using the

results on reversed processes stated above, Kelly shows that his network has
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the product form of solution which 1s determined up to a normalizing constant,

4.3 Anothsar Generalization. Kelly generalizes his model one more step and in
the process provides the basis for taking a major step out of the restrictive
assumption of Poisson processes and exponential service times. Unfortunately,
this step has a price to pay.

The first step 1s to generalize the service time assumption of section
4.2. Now instead of service times being exponentially distributed random
variables, it is assumed that when at queue j, the unit that is at stage s of
its path requires an amount of service that is the sume of Z(j,s) independent,
identically distributed, exponential random variables (rate d(j,s)). That is,
service times are now gamma distributed random variables with parameters Z(j,s)
and d(j,s).

The other assumptions of section 4.2 are retained except that it is

required that

(4.3.1) §,(%,n

3 +1) =y (l.jj+1).

3 b
For this problem the state space of the Markov process of interest must

now become a three-~tuple. A state now is defined by t (L), s, (1), as in section

i 3

4.2, and xj(l) which denotes the phase of service currently occupied by the
unit. Then, on this three~tuple space one can define a Markov process whose
atates are the three-tuples. This process is irreducible and the state space
is countable. The process has a reversed process, its infinitessimal generator
and that of the reversed process can be found. As before the properties of

reversing are used and it is shown that the process has a product form of

salution.

4.4 A Major Generalization. Were the Kelly results to stop here they would
make interesting, perhaps useful, contributions to the theory of Jackson queue-
ing networks. The restriction of Poisson arrival processes and either expo-

nenctially distributed or gamma distributed service times would preclude a wide

spread use of the results (although much of the computer systems analysis
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literature finds these conditions to be reasonable for many computer studies).
But more is available.

Under the conditions of the model of section 4.3, Kelly conjectures that
his results go through for G-type service times (see section 1.2). The con-
jecture is based on a result of Whitt [1974] which shows that finite mixtures
of gamma distributions are dense in the set of arbitrary non-negative distribu-
tions. Though Kelly does not prove that his model of section 4.3 extents to
G-type servers, it is proven with the requisite care by Barbour [1976].

Finally, Kelly drops the Poisson arrival process assumption that has run
through his work. Commenting on his models in our sections 4.2 and 4.3 he
notes that one can allow these arrival processes to be birth processes whose
parameter depends on the total number of units in the system. Recall that this

step was made in the Jackson [1963] paper.

4.5 Comments. The Kelly work probably represents the state-of-the-art in the
study of queueing networks originally arising out of the papers of Jackson.
Work continues on these problems and the Kelly work will probably be mined for
quite a while. If condition (4.3.1) could be removed from the Kelly model and
still obtain computable equilibrium solution, one would have a major contribu-
tion to the theory of queueing networks.

Concerning waitiné time, busy period, and busy cycle analysis we know of
no results presently available. Concerning departure processes, Kelly presents
some results on the departures from the network. These processes are independ-
ent, Poisson processes for the models studied in our sections 4.2 and 4.3.

It has been noted by many authors (for example, see Kelly [1976]) that
since the Jackson limiting probability vector depends on the assumptions of the
arrival process and service time process only through the expected values of
these processes, similar results may well hold for more general arrival and
service time processes. That is, results such as those obtained may be
insensitive to the distributional assumptions of the model. Schassberger [1977;

1978] explores this topic in more detail and provides a bibliography for further l
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reading.

5. Flow Processes

5.0 Introduction. Many writers, in recent years, have come to realize that the
results of the 1957 Jackson paper are remarkable. Even though the results imply
that the queue length processes act as if they are those of independent M/M/1
queues, they are, in fact, not. The result has lead to a collection of papers
investigating the properties of the flow of units within the network. Such
analysis is important 1f one is to gain an understanding of these flow proces-
ses, if one 1is to generalize the simple switching structure in Jackson networks,
i{f one is to gain an understanding of waiting times and if one is to gain some
understanding of sampling data produced by service centers in the network.

The only attempt to survey this overall field with which we are familiar
{8 Disney [1975]. That paper is somewhat out of date by now. However, the

bibliography therein is rather complete up to July, 1975.

5.1 A Few New Results. The study of flow processes in these networks consists
primarily of the study of five subareas called: decomposition, recomposition,
departures, feedback queues and queues with non-renewal arrivals. Few new
results seem to have appeared since 1975 concerning the area of decomposition.
Therefore we refer to the Disney [1975] paper for an up to date discussion on
that topic. Recomposiﬁion studies, likewise, have received scant attention
since 1975 aa is also true for queues with non-renewal arrivals. We suggest
that the interested reader consult the above review for work in this areas.
There have been two major results on departure processes in Jackson net-
works and the networks of Kelly. In particular, Kelly shows that departures
from his networks (both those discussed in section 4.2 and those discussed in
section 4.3) are Poisson processes and that the several streams of departures
from the service centers are mutually independent processes. (See Kelly [1976]).
In Melamed [1979], the results of Kelly for Jackson [1957] networks are veri-

fied using quite different method. 1In addition Melamed shows that flows on

arcs internal to Jackson network are Poisson processes on those arcs joining
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non-communicating classes of states in the switching process. On arcs within
communicating classes, the flows are not Poisson processes and in fact are not
even renewal processes.

In an attempt to study these flows in subsets of communicating service
centers, Disney and D'Avignon [1978] and Disney, McNickle and Simon [1979] study
a simple case in detail. This case is called a queue with instantaneous feed~
back (see p.16). The 1979 paper studies four random processes in these queues
to show that the departure process from the system is a Poisson process if and
only if service times are exponentially distributed random variables (see also
Disney, Farrell and de Morais [1973] on this topic for single server queueing
systems.) In case of renewal process service times the departure process is
not only not a Poisson process, it is not a renewal process. 't is shown that
the process is a Markov renewal process and its transition functions are given.
Flows internal to the network are never {for any service time process) Poisson
processes (except for the trivial case in which there is no feedback). In
general these internal flows are Markov renewal processes and in the single
case studied by Dismey, McNickle and Simon the transition functions for some
of these Markov renewal processes are given.

The Disney and D'Avignon paper {1978) is a msjor study of queues with
instantaneous feedback. In particular, the arrival process is sllowed to be a
Markov renewal process, service times may depend on the state of the arrival
process and the switching probabilities may depend on queue length increments,
previous switching decisions, types of units being switched and the amount of
service time received by the customer being switched. This ovaper is probably
the state-of-the-art for the study of queues with instantaneous feedback. It
includes references to all work with which we were familiar in mid 1978. The
details are far too complex to summarize here. We ask the interested reader
to consult the paper.

Current research is being conducted on queusing processes as well as flow

pr in g with delayed feedback (see, for example Foley [1978]).

Except as noted in Disney and D'Avignon [1978] almost all of this work is

e e e -t a— -
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concerned with non-Jackson networks with emphasis on queue length processes and
flow processes. We know of no results other than those already cited on the

waiting time process.

6. Summary
6.0 Summary. We have attempted to review in a few pages, more than 20 years
worth of research in the field of queueing network theory. To accomplish this
in such a short gpace we have concentrated on two topics: Jackson networks and
flow in networks. Our primary emphasis has been on the Jackson network results.
In areas of application these are the results that are of primary importance.
Under the pressing restrictions of time and space we have concentrated only oan
the basic Jackson work and the important Kelly work. While we have alluded to
other work, we have by no means provided a definitive state-of-the-art survey.
Considerable work has been done on Jackson networks in the past 15 years. This
work is to be found principally in the literature of the computer scientist
whose interegts in these topice seeas to have revitalized that field. We can
only hope that the reader interested in a host of results and fascinating
applications will consult this literature. The best starting point is probably
the two volumes of Kleinrock [1975; 1976] and especially the {nteresting
chapters 4,5,6 of volume II which present some of the basic queueing problems
occurring in computer networks as well as an interesting discussion of trials
and tribulations of applying known results to the design of a large scale
system. Beyond that we can only suggest that the interested reader peruse the
journals of computer science (e.g. J.A.C.M. or Acta Informatica) as these topics
continue to be research and applied.

The study of flow processes in queyeing networks is fragmented at present.
There are many results, We have wmentioned a few. There is much that we have
not said and ouch that remains to be said. We have not discussed the interest-
ing work referenced in Schassberger [1977; 1978] that is attempting to tie
queueing theory into the more general field of stochastic point process theory,

Indeed, it is our view that this link up is natural. For the study of flow
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processes in networks, it 1s natural to think of the network and its components
as operators on random point processes. That view will probably provide greater
generality and deeper insights into these flow processes than is now possible.
At present, results on the study of flow processes in queueing networks
appear in print sporadically. Unfortunately, such results when they do appear
i are published in literature through the world. The journals Appl. Prob. and
Adv. Appl. Prob. are necessary reading but not sufficient.
There are many other topics in these areas that we have not even mentioned.

The useful computational work of Wallace [1974] and Neuts (for example see Neuts

[1979])) has been left untouched. The study of closed networks has been nearly
ignored (e.g. Gordon and Newell {1967]). The interesting network decomposition
ideas of Courtois [1978] deserves attention both for its theory as well as its
application potential. The concepts of approximations including diffusion
approximations and heavy traffic approximation have not even been mentioned.
One might consult Harrison {1978] to start into this area. It would seem that
there 18 no end to such an enumeration. The study of queueing networks is an
enormously large and diverse field. Our tutorial has at best "hit the high

spots”,
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