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Abstract

Three methods are proposed for estimation of the parameters of an autoregressive

process of order p with missing observations. These methods are based on the

maximum likelihood approach and use the EM algorithm, the Newton-Raphson method

and the method of scoring, which are applied to the likelihood equations. Finally,

comparison on those methods is also discussed.
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1. Introduction

An autoregressive process {y t t - 0, + 1,...} of order p is defined by

eyi ytai ndt ,  t - 0, +
i=O

where Y I and (C t) is a sequence of uncorrelated random variables with mean

0 and common variance a2 . We assume that the roots of I ¥i z  0 are outside

the unit disc. The process (1.1) is completely specified by

NO .. 9Y, a2)' when the E are assumed to be normally distributed.
1 p t

Throughout this paper we shall assume normality of Gt"

Usually statistical inference is based on a set of T consecutive observations

-on yt" Let

(1.2) y - (Y]l Y2'"" YT ) '

and let P be a permutation matrix such that P (', i')', where s is a

(T-m) x 1 vector and m is an mxl vector, with the ordering in s and m preserved.

Suppose only observations in s are available and those in m are missing. Our

goal here is to obrain maximum likelihood estimates of *.

For any TxT matrix C, let us define Cs, C , C and C to be the

(T-m) x (T-m), (T-m) x m, m x (T-m) and mxm matrices, respectively, satisfying

IC C
aSs osm

(1.3) P C P'

C C

For the rest of this paper, let fyl) denote the probability density function
of Y, f(al) denote the probability density function of 8, f -A , denote the

conditional probability density function of at given s, log f(yIf) denote the log
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likelihood function based on y and log f(s 1) denote the log likelihood function

based on s. We assume that the maximum likelihood solutions satisfy

3 log f(~S10)

(1.4) . 0.

2. Some basic results

Assume that y is distributed as multivariate normal with mean 0 and

covariance matrix E, that is, f(yjo) is given by

(2.1) f -Y " 1 exp y' 1 -1y).2=y).

Then Py - (s', i')' is distributed as multivariate normal with mean 0 and

covariance matrix P E P'. Since P P' - IT, where I is the TxT identity matrix,

(2.2) (P E P') - pE-1 Pt

,I--e- p P ,

-"BS .- sm

2
\O-ms mm

where a2 E-1 = M, and M , M , M and M are as defined by (1.3). Also, by
--ss A-sin -'ins in

(1.3), we get

.... .. -- ---- + i .. U ,+.... . .



3

(2.3) P E P,

: ).

Therefore from (2.2) and (2.3), it follows that

1-
(2.4) [C) - -E -1 M

11%- -s - amM

,mq -55 -
-1

-asm - m M ~

and

(2.7) [- 'I

From (2.4) and (2.7), we obtain

eIM ( 1 s' [ sM M -1

(28) f(eI -(, )T-m 2
1 -

--M M H- s .
2,, ma -Mm -MS

Expressions (2.5) and (2.6) will be used in the following sections. Though (2.8)

gives the expression for the probability density function of a, we will not use

ii. .

A _______________
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It to obtain the score function f(sl) , due to the simplicity of

a, log f (y e s
and Lemma 1 in section 3. We will use (2.8) In proving the asymptotic

properties of the estimates in a subsequent paper. Under suitable conditions,

the estimates of * based on the Newton-Raphson method and the method of scoring

are shown to be I - consistent, asymptotically normal and one-step asymptotically

efficient if the initial estimates are ,' - consistent.

3. Estimation

Let

(3.1) Y - (YV" " ... )'

and

(3.2) Y - (1,y'),.

Then (see Anderson (1971), sec 6.2, and Box and Jenkins (1976), sec 7.A.5)

T 2

(3.3) log f(L1) oog (2w + l o g I MI My

T (2
log (2 log y22 2

where the elements m of the TxT matrix M is given by

(3.4) m t mT+l-t, T+l-s

min(s t)-1

I j 8j+l.-tl, ... , p,

-l " j mj+as-tx m (st) >_ p+l,

min (s,t) < T-p,

s-ti -0,1,..., p,

i-t -p+,....
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and the element d of the (p+l) x (p+l) matrix .D is given by

(3.5) d ij A il

with the element a of the TxT matrixA . givenn

by

(3.6) a - 1, if (m,n) - (i+s, J+s).

a - 0,1,.... T+l- (I+J),

0 0, otherwise.

From (3.3) we obtain

a log f~ a log I ! 1
ayj 2 ayj 0

2  I di'+lj+-

J - 1,.,., p,

and

3 log f(Y10)(3.8) ...~ - . ' L
Do 2 2a 2  2a 4

a log f(sIl) a log f(y1l)
It is - that is of interest to us and not-, since

a log f~ )
observations in m are missing. However, can be derived from

a log f(zI±)
as indicated in the following lemma.

LEMA 1. (Orchard and Woodbury (1972)).

a log f(~I) aE[ log f(Y J
(3.9) E =,

I.

t . --. .. . . -, : -- . - - , . .
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Prnof. The result follows immediately from

,3 log f(Mls,)
(3.101 1.K I o.

It i.n clear from (3.7) - (3.9) that

3 log f(810) - 1 log1'dI5,0

.11) 2 y i E dLi+l,j+la i- 1

J - 1,..., p,

and

3 log f(210) T 1
(3.2) 2  22 +24 yJ E [D as,- "y•

The term log IMI is 0(1) (see Hannan (1973), e.g.) while dtj is 0 (T). The
IV p

effect of neglecting log IHI is negligible for moderate or large T, and we shall

neglect log IMI and other negligible terms henceforth. From (3.11) and (3.12),

it follows that the likelihood equations are given by

(3.13) 0g E[dg'+, ]J+l 0, j . p

and

(3.14) CY 1 r '1U

When there are no missing observations, E[d~l11+l I j7- d~ 1  + does not involve

unknown parameters. Then the equations are linear in yi I,.. p, and are

the Yule-Walker equations. When missing observations do occur,

Erdl I € involves unknown parameters and (3.13) and (3.1) are

htghly non-linear in the unknown parameters. In fact, fro,- (2.5) and (2.6),

(3.15) Erdg+.l

-s' (A) -(A&,J+l)Sm K

-K' (A ) + K' (A ) 1(1

+ tr (A . -1
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where K M -1 M and the matrices involved are as defined in (1.3), (3.4)

and (3.6). Therefore solutions of (3.13) and (3.14) are not straightforward

and iterative procedures have to be used.

We propose the following three methods of solving (3.13) and (3.14):

the EM algorithm, the Newton-Raphson method and the method of scoring.

a. The EM algorithm, Since is to be estimated, it is natural thAt

one replace Er- I a, 01 in (3.13) and (3.14) by EL. I s, 4 1, where 0 is

some estimated value of 4, and obtain i+ iteratively by solving

(3.16) (Yg~~ Et:g+11j+l 0.i1
gO0

and

(3.17) 0,+1 =4 (y)i ErDI E .a. ](Yi

I. I

Here (yg) and (y ) denote the estimates of y and y, respectively, at

the J-th iteration. As shown in Tan (1979), the above method gives the same

solutions as the EM algorithm proposed by Dempster, Laird and Rubin (1977).

b. The Newton-Raphson Method. From (3.11) and (3.12), we obtain

* ~ ~~ ~ (.8 k 2 log f('810 I ggl~ ~~(3.18) 0 ~ a- I.ay- fI ~

j, k"* 1,..., p,kj Dika 2 V i Y ~~~

I rI .~.*--~**-*.,..-.**.-*~** ~ - -

. . . . . . . . . . . . . . . .



a log a2 -

J-P1 yj c " 9a1 -gB,j}, -a

j - 1,.. p,

and

a2 lgf 8J!)(3.20) loT + -; B
P3.20) (2) 2 2a 2

where the element b j of the (p+l) x (p+l) matrix B ldgTVen by

(3.21) b1  - Efd11 I a,1+ tr _

Thus, the Newton-Raphson method leads to the following set of equations:

(3.22) - 3 log f(SI~

a log f(sIo
where the element 0 of 0 is as given by (3.18) - (3.21) and

is as given by (3.11) (without the first term on the right-hand side) and (3.12).

c. The Method of Scoring. From (3.1.5), (3.18) - (3.21), we obtain

(3.23) i0 EG~ I. T a(t-.j) + yg E - E[g+,J~1 I
a g-O

(3.24) tECO~~ 1  m tr (A ) M
2 gO .6g+1,J+1Mm -mmg-O

j - 1,..., p,
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and

(3.25)_ E[ + + (i-jp+l, p+l 0PT+o,p+ll 2a4 a i-0

I y, Yj tr (A M
2a i,j-o Y i YjI~ tM -

where O(k) " E Yt+k Yt]" Thus, the method of scoring leads to the following

set of equations:

(3.26) a log f(sj )
-32) ~ (-. + i )  , I-

a log f(al)
where the elements 'i' of 0 are given by (3.23) - (3.25), and - -

is given by (3.11) (without the first term on the right-hand side) and (3.12).

We have used the fact that E[di+lj+l] = [T - (i+j)] o(i-j), which can be

approximated by T a(i-j) for moderate or large T.

4. Comparison of the methods of estimation

The estimates of 0 based on the Newton-Raphson method, the method of

scoring and the EM algorithm can be expressed in the folloirAng form

alog fl )l
H. (0t+l - = 9 - ,

alog f s!owhere l is given by (3.11) (without the first term on the right-hand

side) and (3.12). In the Newton-Raphson method, we have

H

where e is given by (3.18) - (3.21). In the method of scoring, we have

L -- ~~ ~~~~ ~ ~~. . ...4. .... .... .... ... .. .
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H-0

where 0 is given by (3.23) - (3.25). In the EM algorithm, we have

H ,

where elements w of w are given by

gj jg

2 Eg+1,J+l .. ag'P
a

, g -1,..., p,j p+l

T-T- , g p+l, j p+l.2o 4

Let

Awe- 0,

B -

C -W -0

and

,2

a2 log f(SIO)

. log f(Yj0)

" - J-E[E1.

-- 7-
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I (6) fs referred to as the loqir. :informarion matrix in Orchard and Woodbnry

(1972). It follows that

E(A) - 0,

.ad also

EM . 11lim -- - lim .... -- Iim
T-M T-m T-m

E(w) 2o
. 2 log i"j [4)

since lim T- = lim -- E (see Box and Jenkins (1976)T m T u T- T-m 3 ]

i (0)
section 7.A.5). In general, lrm T-m is not negligible. For exampL-,

T-m-m
when p - 1 in (1.1) and the process {y t is periodically observed for e time

points and then not observed for two time points, it can be shown that (see

Tan (1979))

lim
T-m- T-m

2 2 2 42

x2 X

\Y -(i -+ 1
2 2

2 4
where X = (1 + + y1 ). It is easy to see that the above matrix is positive

definite.
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