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TRANSITION STATE THEORY AND THE COMPENSATION
EFFECT IN CHEMICAL KINETICS

Robert L. Palmer

IRT Corporation
P. 0. Box 80817
San Diego, California 92138
U.S.A.

ABSTRACT

Detailed balancing is applied to transition state theory with
the result that the necessity of a compensation law relating the
pre-exponential factor and the energy in chemical kinetics is
clearly established. It is pointed out that the correct compen-
sation behavior is achieved if the volume change that enters
into the Clapeyron equation is taken to mean the volume change

in phase space.

1. INTRODUCTION

In a recently published letter, Menzel et al. use a very simple transition
state model to describe their kinetic results for the chemisorption of CO on
Ru(OOl).(l) The close agreement of their model with the observed pre-exponen-
tial kinetic factors, obtained by several independent methods, argues convincing-
ly in favor of their general model for the desorption mechanism. Another
interesting experimental feature in this study is the pronounced 'compensation'
behavior exhibited by the measured isosteric heat of adsorption versus coverage.

In fact, the variation in Eis exactly compensates, within experimental accuracy,

[o)

the concomitant change in the pre-exponential factor versus coverage which was




observed to vary almost six orders of magnitude from 6 = 0 to 6 > 0.5. The
explanation for this compensation behavior is actually quite simple, but
further consideration of this simple case gives important insight into the
reason for the existence of a more general compensation law. Although previous
attempts to derive an explicit compensation law from basic thermodynamic argu-
ments have been largely unsuccessful,(z) many intuitively appealing qualitative
explanations have been proposed in the past to explain this effect.(s) We will
now consider this problem again in the light of Menzel's results and, hopefully,
clarify some issues relative to the compensation law, transition state theory,

and the use of Arrhenius plots in chemical kinetics.

2. THE COMPENSATION EFFECT IN ADSORPTION/DESORPTION KINETICS

The necessity of a compensation effect for the cases such as that studied
by Menzel et al. can be illustrated by considering a heterogeneous chemisorption
system at thermodynamic equilibrium with the gas phase. Since the introduction
of an intermediate precursor or transition state can in no way affect the
equilibrium gas phase pressure, then an increased pre-exponential factor for
desorption that results from the insertion of a high entropy state into the
reaction path must be compensated by a concomitant increase in either the
sticking coefficient and/or the heat of adsorption. (We assume for the moment
that we have simple first order kinetics and that the adsorption is not
activated.) While it is reasonable that the sticking probability S would
tend to increase if a precursor adsorption state is introduced, the maximum
value for S is, of course, unity so that only a limited amount of compensation
can be attributed to changes in S. Certainly not the many orders of magnitude
change required by transition state theory. Conceptually, we can always pick

o :
the transition state partition function F to have sufficient degrees of freedom
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(i.e., entropy) such that S = 1 so that a further increase in F* then requires
strict compensation behavior in AHiso(e). Consequently, we have established,

at least for this simple example, the necessity of a compensation effect although
we have yet to identify the mechanism by which the introduction of a transition

state into the reaction path would change the measured AHiso(e) in precisely

the right fashion.

3.  TRANSITION STATE THEORY

In order to look for the link between the pre-exponential and exponential
factors in chemical kinetics, first consider the idea of a transition state.
This is visualized in n-dimensional phase space as the dividing surface between
reactant and product and the area of this surface controls the probability of
transitions, both ways, across the boundary. By analogy, this can be compared
with the rate of evaporation of a water droplet in equilibrium with its vapor.
As we increase the geometrical surface area (i.e., transition state) of the
droplet, both the rates of evaporation and condensation are increased by the
saine geometrical factor. However, if we increase the evaporation rate by
increasing only the entropy of the surface layer or transition state we no
longer have a corresponding increase in the rate of condensation since the
geometrical surface area in real space is constant, so again either the stick-
ing probability (i.e., transmission factor) or the heat of vaporization must
then increase. Increasing the entropy of the transition state might be
visualized as analogous to packing together more compactly or miniaturizing
the molecules at the physical dividing surface. Of course, for homogeneous
processes, every molecule is at the physical dividing surface, but in this
case another non-physical surface in phase space could be constructed wh%ch is

a subset analogous to a physical surface so that the rate of the reverse reaction
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is again limited by the rate of arrival at that surface. For example, we might
consider that some particular vibrational state of a molecule is part of the
transition state for dissociation. We could consider increasing the transition
probability by creating more and more rotational states at that particular
vibration. But the rate of recombination at equilibrium is still kinetically
limited by the frequency of physical collisions, so although we could conceptually
increase the rate of dissociation without limit by increasing the number of
rotational sublevels, the rate of recombination eventually reaches a maximum
rate equal to the collision frequency. Thus, it is clear that a compensation
effect is needed for this very general case and is not peculiar to heterogeneous
processes. Discussions of transition state theory have traditionally avoided
the foregoing line of reasoning by considering only reactions in the forward
direction which are, of course, all that one is usually concerned withﬁ4) But
there is often a great deal of additional insight to be gained by considering

a particular process at thermodynamic equilibrium and then applying detailed

balancing.

4, ISOSTERIC HEATS AND THE CLAPEYRON EQUATION

We have shown that increasing the entropy of the transition state must,
eventually at least, lead to a strict compensation relationship between the
entropy of the transition state and enthalpy of reaction. Previous attempts
to derive this relationship from thermodynamic considerations have not been very
convincing,(z) so it would appear that further efforts in this direction are
perhaps ill advised. However, it may be important to at lefst point out that
there are two assumptions in the derivation of the Clausius-Clapeyron equation
from the more general Clapeyron equation for a change of state that may not be

valid for cases similar to CO chemisorption on Ru(001). First, the assumption
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is made that the gas phase obeys the ideal gas law and, second, that the
specific volume of the condensed phase is negligible compared with the specific
volume of gas. For an adsorbed layer like CO on Ru(001) which is better de-
scribed as a two-dimensional gas, this is probably a very bad assumption. An
Arrhenius plot, in this case, of the equilibrium pressure versus T'1 at constant
coverage may still give a reasonably straight line, but the slope will no longer
be equal to the isosteric heat of adsorption. As a matter of fact,the slope
will be increased by the factor (KS--KZ)'1 where K3 and K2 are the compress-
ibilities of the three dimensional and two dimensional gases, respectively. It
appears likely that for the case of COon Ru(001), the increase in the measured
AHiso(e) that accompanies the highly mobile transition state can be attributed
to Kz becoming significant compared with K3. A slightly different way of
looking at this would be to consider the entropy of the transition state as a
measure of the 'volume' of the state not only in physical space but in phase
space as well. Whereas the change in volume in the Clapeyron equation

%% = %%% has always been taken to mean physical volume, if we expand its sense
to include phase space then we have a much more general explanation for the
compensation effect since increasing the entropy of the transition state will
increase the total volume difference in phase space. Whether it will prove

effective to use this interpretation of the Clapeyron equation in general, of

course, remains to be seen.

5.  SUMMARY

Arguments have been made which, it is hoped, will persuade the reader to
consider the so-called '"compensation effect'" a likely result of changing the
entropy of a transition state and absolutely necessary if the change exceeds

what can be compensated by a change in the sticking probability or transmission




factor for the reverse process. While a rigorous derivation of a "Compensation
Law" from basic thermodynamic or other arguments is not obvious, some ideas in
that direction have been considered. Certainly we must not assume that an
Arrhenius plot gives a straightforward isosteric heat unless the specific
volume of the reactant can be assumed to be negligible. Finally, it has been
suggested that it may be helpful to expand the meaning of the Clapeyron equation
to include the change in volume in phase space. We then achieve a very general
compensation law with, at least qualitatively, the right dependence on the
entropy of the transition state. From this expanded viewpoint then, we only
expect a transition state to affect the overall rate of a process when the
specific volume of the reactant in phase space, including the transition state,

is small compared with the phase space specific volume of the product.
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