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The increasea hzportance of softwdre for 7.beo avionics syste.s nas

leu to an increasin(j jesire to insure tnat avionics software meets

very strict r-eliaoility and quality goals. however, a significant

prooler, in assuring sucn goals are i'ret is the inability of Goverr-ent

personnel to accurately predict tne reliability of an avionics

software aeveloprent project. Tnis probleai has been expressed at

several Government and inaustry sponsored conferences, as well as in

documents sucn as the Joint Logistics Commanders Software Reliability

working Group) Report (N.\ovemoeL 1975) and tne Joint Logistics

Cornnaers Software Quality anagement workshop Peoort (July 1979). As

a result, efforts nave been initiated to develop and valiaate

atnematical Toaels for predicting tne reliability and error content

of a software syste., iowever, mouels developed to date have not

acequatley aouressej tne unique features of avionics software

aevelopinents.

This effort was initiateu in response to tne need for ueveloping

software reliability preaiction xwels applicaole to avionics software

aevelopwents, & --d fits into the goals of RADC T1, No. 5, Software Cost

seauction, in tie subthrust of Software Quality (Software M.%odeling).

This report sumnarizes the development of a matnematical model for

predicting tne reliability ana mean-tiae-to-failre of a software

developTent unaer the assumptions of incomplete infor~mation available

on error correction, ano discrete versions of the software being

aeveloped. The report also .escribes tne Wifiea nonlinear search

algoritrun developed for finairj ixxel parameters ana an accompanying

vii
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computer program for operating the model. The importance of this model

development is tinat the assumptions underlying this model more closely

reflect the actual avionics software development process than prior

model developments.

The theory an model algorithm developed under this effort will lead

to much needed predictive measures for use by software managers of

avionics software developments in adequately tracking those

developments in terms of reliability and mean-time-to-failure

objectives. More importantly, the measures developed under this effort

will be applicable to current avionics software developments and thus

help to produce the high quality, low cost avionics software needed

for today's aircraft.

ALAN N. SUKERT
Project Engineer
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1.0 Introduction

1.1 Problem Statement

As the cost and complexity of computer software continue to

increase, there is a growing need for accurate determination of soft-

ware reliability. Before a software package is put into operation,

there is a testing period during which errors are detected and corrected.

The problem with which we are concerned is the estimation of certain

reliability parameters from the error data generated during the test

phase. Specifically, we wish to estimate the number of errors remaining

in the software package at any time, and the mean time to failure (MTTF).

Accurate determination of these parameters could reduce the cost associ-

ated with excessive testing, and could increase the confidence with which

the package is used.

In order to estimate software reliability, it is necessary to

develop an appropriate model describing the error detection and correc-

tion processes, and to develop procedur-es-for estimating the parameters

of this model from observed error data. Our intention is to generalize

certain models which have previously been used for this purpose in order

to depict more accurately an actual testing environment. In addition,

we will consider a somewhat different approach to the estimation of the

parameters of this generalized model.

1.2 Previous Work

A substantial body of work now exists on the application of

statistical modeling and estimation techniques to the determination of

-b1.1-
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software reliability. We make no attempt to describe all this work,

but rather restrict ourselves to those efforts which are directly re-

lated to our own. For a comprehensive review and bibliography, see [13

or [2].

One of the most widely-used error models was developed by Jelinski

and Moranda [3]. A similar model has been considered by Shooman [4] a

others. The assumptions about the error-detection and error-correction

processes which underlie this model are the following:

(a) The error-detection process is a Poisson process whose

detection rate is constant between error detections.

(b) The error-detection rate at the time prior to the detection

of the ith error is a function of i; it is denoted by zi .

It is commonly assumed that zi is proportional to the number

of errors in the program at detection time. This can be

written as:

=Z (N - i +1) (1)

where N is the initial number of errors and is a positive

constant. An alternative assumption is that the detection

rate forms a geometric progression

z, = Xai (1.2)

with both X and a being positive constants. It should be

noted that the main justification for (1.2) is the improved

- 1.2-



convergence of the resulting estimator equations [5].

(c) Error detection is followed by an immediate correction.

th
Consequently, upon detection of the i error, the number

of remaining errors drops to (N - i).

(d) The debugging process is perfect and no new errors are

generated by the correction process.

These assumptions, although restrictive, were initially adopted

by most of the researchers in the field. The estimation of the reli-

ability parameters was based on the above assumptions, and employed the

maximum likelihood (ML, criterion to derive the best estimates.

It is realized now that the assumptions given above are quite

restrictive and unrealistic in most cases, and steps have been taken to

make the model more realistic. The model assumptions have been changed

to comply more closely with the real process.

Goel [6] has considered a nonideal debugging process in which

the probability of correcting an error is p. Based on this assumption,

an analysis of the resulting model is performed. Further generalization

is suggested by Shooman [7], who modified both assumptions c and d above

concerning the error-correction process. According to the modified

model of Shooman, the correction process does not necessarily proceed

identically to the detection process, and new errors may be introduced.

Denote by r d(t), r c(t), and r (t) the rates of error detection, correc-

tion, and new error generation, respectively. The models suggested by

Shooman assume different relationships between these rates. The main

models are:

-1.3-
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Model I

rc(t) rd(t) (1.3)

r (t) a rc (t) (1.4)

and

Model 2

r c(t) = b rd(t) (1.5)

r (t) = a n(t) rd(t) (1.6)

where n(t) represents the number of errors in the program.

These models and others have been studied by Shooman, and the re-

sults are described [7].

Another generalization of the original model concerns the assump-

tion that the corrections are implemented continuously. This is not-

consistent with actual practice in which a program is replaced by a

newer version at discrete times. Between the replacement times, the

program undergoing the test is the same and the number of errors in it

is constant. A possible solution for this discrepancy is that redis-

covery of errors should not be counted. However, this requires the

analysis of the source of errors in order to determine whether the er-

ror sources are the same, and this is not always practical. A modified

model in which this generalization was implemented was discussed by

- 1.4-



Tal [5] and by Sukert [2], and estimator equations for use with this

model were developed.

These generalizations, along with some additional ones, will be

incorporated into a new model. The new model, we believe, more ac-

curately describes an actual testing environment. We will first dis-

cuss the behavior of this model as a function of its parameters under

the simplifying assumption that the error processes are deterministic

rather than random.

After presenting certain results for deterministic processes, we

will then show results using simulated random error data. We have

developed a least-squares search procedure for estimating the model

parameters, and will discuss its convergence behavior. Recommendations

are made toward increased utility, and toward closer coupling of the

algorithm to information in real test data.

The true test of the usefulness of the model will lie in its

ability to describe real software tests. Thus, there remains for sub-

sequent work the application of the model to enough real cases to draw

conclusions concerning validity.

One of the difficulties encountered by researchers in the past

has been the inadequacy, incompleteness, and ambiguity of available test

data. We found some of these same problems with the data available to

us during this work. Hence, we include comments regarding data require-

ments.

-1.5-
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2.0 Development and Analysis of the Model

2.1 Assumptions

In order to develop a generalized model to describe the error

detection and correction processes, we make the following assumptions:

(a) The error detection process is a Poisson process whose aver-

age rate of occurrence is proportional at any time to the

number of errors present in the software package. Denoting

the number of errors present at time t by N(t) and the aver-

age error occurrence rate by rd(t), we have

rd (t) = N(t) (2.1)

where is a fixed constant of proportionality.

(b) No attempt is made to correct detected errors at the time

of detection. Instead, a new and corrected version of the

program is provided to the testing group at discrete ("tape

replacement") times tI , t2, ..., tj. .... Thus, the number

of errors present in the program at time t, tj < t < tj+l

is constant and equal to N(tj). This is illustrated in Fig. 1.

(c) Of the detected errors reported to the correcting group, some are

corrected and some are not. In addition, new errors are

generated. Denote the cumulative number of errors corrected

to time t in the program being tested by Nc(t), and the

cumulative number of newly-generated errors by N gt). Both

Nc and N are piecewise constant because of the assumption

-2.1 -
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N
0

ti 0o t 2  t 3 ..

Fig. 1. Number of errors in program as a function of time.
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that a new version of the program is provided only at the

discrete times t1 , t2 , . .. . A key feature of our model is

that many errors may be detected, corrected, and generated

between update times. At any time t during testing, we

have

N(t) = N - N C(t) + N (t) (2.2)o c g

where N is the initial number of errors in the program.0

(d) The error correction rate r C(t) depends on both the errorc

detection rate rd(t) and the error backlog Nb(t), where

Nb(t) = Nd(t) - NC(t). (2.3)

For simplicity, we assume a linear relationship

rc (t) = ard(t) + Nb(t). (2.4)

The addition of the second term in (2.4) represents a

generalization of the model of Shooman [7].

(e) The rate of generation of new errors is proportional to the

error-correction rate:

rg (t) = Yr C(t). (2.5)

(f) The error-detection process Nd(t) is precisely known, but

the error-correction process N c(t) is unknown. This ap-

pears to be a realistic assumption in view of the way

-2.3-
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error correction is actually performed. The error

generation process is also unknown.

In the above we tacitly equate software "failure" to coding

"faults". In effect, we include in a and 0 the proportionality be-

tween the two, and call them both "errors".

2.2 The Model

The model which we develop is actually a deterministic model

which relates the expected values of the various random processes in-

volved. The required connection between the observed sample functions

of the random processes involved and the deterministic model is estab-

lished by means of an estimation algorithm which operates on the ob-

served data to estimate model parameters. The deterministic model

will be described first, followed by a discussion of the estimation

procedure.

Taking expected values of (2.1)-(2.4) yields the equations

rd (t) = On(t), (2.6)

rc (t) - ctrd(t) + nb(t), (2.7)

n(t) - N - n C(t) + n (t), (2.8)

nb(t) - nd(t) - no(t), (2.9)

n (t) - ync(t), (2.10)

- 2.4-
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where a lower-case n denotes the expected value of the process repre-

sented by the corresponding upper-case N.

It follows from the relationship between rd(t) and nd (t) that

nd(t) J r (t)du. (2.11)d od

Similarly,

rt

n C(t) = J rc(u)du. (2.12)

The model represented by the above equations can be viewed as a

linear system with sampling and feedback as shown in Fig. 2. Our

problem is now one of system identification: Given Nd(t), estimate

the parameters of the system shown in Fig. 2. Revisions to the soft-

ware are applied at time instants tk, between which times n(t) remains

constant. The system therefore is treated as a discrete-time system.

We employ the usual notation k in place of the argument tk*

The four system equations (2.6-2.9) can be reduced to two:

rd(k) - L'o - (1 - ) nc(k)] (2.13)

r (k) - ao N (1 -y) n(k)] + a [nd(k) n (k) (2.14)

-2.5-
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n d

Sample l r e o ci r r-

and the nedfprmtrsrdcdt or

holdnb

+ + tj++

r (.

Fig. 2. Block diagram representation of the proposed
model for the error-detection and the error-
correction processes.

and the number of parameters reduced to four:

r d(k) =f a [N a -nc(k)] (2.15)

rc(k) - 0 a [N - nc(k)] + a [nd(k) - nc (k)] (2.16)

where

Oa (1 -y)O, Na - NO/(l -y). (2.17)

The application of Laplace transform techniques and some algebraic

manipulation similarly lead to the equivalent block diagram shown in

- 2.6-
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Sample
and
hold

Na na d 1 d as + c
a 7

+ t.

Fig. 3. Simplified model.

Fig. 3. The identification problem reduces to the estimation of the

four parameters Na, Oat a, and 8. Note that N is the sum of the~a

initial errors N and all errors which are subsequently generated0

during the correction process. Note further that the ultimately

sought reliability factor, mean-time-to-failure, is:

MTTF 1 (2.18)
rd (k) *ana (k) a [Na nc((k2

Defining the discrete state

It is noted that the dynamics of the system can be studied using
the even simpler nondimensionalized three-parameter system, us-
ing (OT), (OT), and (n/Na)' with unit step input.

-2.7-
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nid (k) /

n (k) ( 2.19)

\ n c(k)/)

and using the usual approximation, which in our case is exact,

(k -i(k + 1)- (kT(k) - T(k (k) T(k) - t(k+l) - t(k) (2.20)

the model becomes

n(k+l) = Ln(k) + Na aB (2.21)

where

/1 - (k) Tk

L - , B - (2.22)
T(k) 1 - T(k) [a + # a)a ( ))

When tape replacement occurs at uniform time intervals, T is constant

over k and the system is seen to be stationary, and the equations can be

solved immediately by successive evaluation:

n(l) - NaaB, n(O) - 0

n(2) " Na~a (L + 1)B

n(3) Na* a (L 2 + L + 1) B

k-i

n(kW Na#a I L- B
J- 0

- 2.8-
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and applying the familiar procedure for the geometric sum,

Ln(k) - n(k) - Na a (LkB - B)

which gives for the state at the kth tape replacement time,

n(k) = Na a (L - 1)- ELk - B (2.23)

The increment I(k) = '(k) - '(k-l) at the kth tape replacement time is

given by:

I(k) = Na a (L - ) - I (Lk - Lk - l) B

Na0 Lk -l B (2.24)

2.3 Model Behavior

Note from the discrete state equations above that the parameter

Na is simply a scale factor on the state n. Recall also that the

initial slope of nd(k) is Na~a, and that of n c(k) is aN aa, regardless

of the value of 8. Furthermore, for 8 - 0, nd(k) and nc(k) maintain

the constant ratio nc (k)/nd(k) - a < 1, and, of course, coincide as

The effect of 8 > 0 is to increase the error correction rate,

and therefore increase n (k), especially for the larger differences
c

nd(k) - nc(k) (backlog) which tend to occur later in the test program.

The resulting decrease in remaining errors N - n (k) causes the detecteda c

- 2.9-
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error curve nd(k) to be bent downward. Thus the effect of 8 is to draw

the two curves together. Figures 4 and 5 display this effect for 0 < 8

< 0.5. The "bending" of the curves due to 8, together with the effects

of the discrete nature of the model, are expected to occur in real data.

2.4 The Data Simulator

RELY I contains a data simulator for the purposes of study and

experimentation. The simulator is an optional source of input data to

the estimator (see Appendix C). The simulator reads from input cards

the nominal parameter values, a, 8, 0 a' Na, the time interval T, the

number of test intervals K, and an input initial random number (RRR),

and computes the associated software test history Ad(k). The random

number RRR is changed by the investigator when he wishes a different

sample of the random data set Ad(k) (see Appendix A, RNDTA, RANDEX).

- 2.10 -
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3.0 The Estimation Algorithm

3.1 The Estimation Problem and Method

Having described the model, we turn to the parameter estimation

algorithm which estimates the values of the model parameters correspond-

ing to a given set of real test data. The resulting parameter estimates

provide the reliability information sought regarding the tested software

package.

Though the model is linear in the sense that the equations are

linear in the state n, the model equations are nevertheless nonlinear

in the parameters (i.e., in a, a, , Na ). Determining the parameter

values corresponding to a given set of real test data L(k) is then

a nonlinear estimation problem.

Nonlinear parameter estimation methods, in general, are iterative

procedures in which the estimate is approached from some initial guess

for the parameter values, in steps which successively decrease a cost

functional J. Since our purpose is to determine the parameter values e

for which the solution 6d(k) of the model equations approximates

the measured function (or sequence) Ad(k), we choose the cost functional

J to be the sum of the squares of the residuals, 6d(k) - Ad(k), viz.,

1 [6d(k) - Ad(k)]2 (3.1)

k-1

Minimizing this cost functional, then, minimizes the difference between

the observed function A d(k) and its expected value 6d(k) in the least

squares sense.

- 3.1-
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Of the numerous methods described in the literature, both direct

search methods (Fletcher [9]) and gradient methods (Bard [8]), the

gradient methods are generally preferred when the computation of the

derivatives of J is not prohibitive. Gradient methods, in principle,

step from one point 8 in parameter space to the next i+i according

to

8i+l . i R ig. (3.2)

where gi is the gradient of J evaluated at el, Ri is some matrix which

th
operates on the gradient to define the i step direction Rigi, and Ti

is a scalar which determines the step size. The methods differ in what

each employs for Ri, i.e., in the step direction each takes relative to

the gradient. The method of steepest descent, for example,uses the

identity matrix for R i, so that the step direction is opposite to that

of the gradient. This is "the steepest way down" locally but tends to be

less efficient and therefore less desirable than methods which use second

order information about the surface J().

The Newton-Raphson method uses for Ri the inverse of the Hessian,

the matrix of the second partial derivatives,

2

H - , (3.3)
m n

of the cost functional.

Notice that the Taylor series expansion of J to second order terms,

- 3.2-



J j + gi - i) + (e -i)T Hi (6 6i

has an extremum,

+J = = 0,

at

= i - H igi (Hi nonsingular)

so if Ri. H i ' P= 1, and J is quadratic, then Oi+ coincides with the

extremum. The Newton-Raphson method in this case converges in a single

iteration. This method is quite efficient even for nonquadratic J, but

only if Ii is positive definite. This latter condition is the principal

weakness of the method. The Marquardt method meets this weakness by guarantee-

ing positive definiteness in Ri by adding to Hi (or to some convenient
i2

approximation of H a variable amount of a positive definite matrix Ci:

Ri = Hi + lic 1  (3.4)

2
and suggests C be a matrix of the diagonal elements of Hi, viz.,

i

2
C = I 1. (3.5)i,ss is s

For sufficiently large Ais Ri then is positive definite, even when Hi

is not. The Marquardt method behaves as the Newton-Raphson for small

-3.3-



Ai, but where larger Xi is necessary it steps nevertheless in some accept-

able (downward) direction. A step is said to be acceptable if it de-

creases J. If X. is large and H. has low condition number (eigenvalues1 1

of near-equal magnitude), the method approximates that of steepest

descent. The Marquardt method varies from step to step according to Xi,

between the behavior of the Newton-Raphson method and that of steepest

descent.

3.2 Description of the Search Algorithm

The program, RELY I, uses the above Marquardt R., i.e.,

6 +1 =  i - Ti(Hi + XiC 1  (3.6)

and selects ri or Ai from step to step according to the procedure

described below. Essentially the program progresses in one or the other of

two modes. In mode A, Ai is fixed while the largest T (0.0001 < Ti < I)

is sought which results in an acceptable step size. If the sought Ti is

found, the program continues in mode A preferring smaller and smaller

values of A (more nearly Newton-Raphson). If at any point insufficient

progress is being made in mode A, the routine moves to mode B, in which

Ti is initially fixed, and Xi is successively increased until an accept-

able step direction is reached. In mode B, when a sufficiently large Xi

is reached, then the program steps in that direction until J begins to

increase, or until, for large J, J has decreased more than 10 percent,

at which point the routine returns to mode A. In short, when progress

is slow in mode A, the program resorts to mode B to move to a different

-3.4-
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"locality". "Progress" in mode B is deliberately restricted for large

J due to experience which indicates that mode B for large J tends to

settle into local minima. The program terminates when J becomes less

than a predetermined value (ERR), or upon a time limit for machine

computation.

More specifically, the estimator proceeds as follows: Given

initial guess ei and Xi = 1, i - 0:

Mode A

1. Compute cost J'. and step direction Rig i.

2. If Ji < ERR terminate, otherwise determine an acceptable

step size in the following way:

a. Compute a Ti such that twice the associated step

causes a = 5; i.e.,

" (5 - i)[21RigiIl

b. If such a step causes a > 0.2, choose instead
a

c. If the resulting Ti > 1, set Ti 
= 1.

d. If the resulting Ti < .0001, jump to mode B.

e. Limit 0 < 8 < 10. Compute Ji+l

f. If J i+l Ji, jump to item 4 below.

3. Accept e1+1 and reduce X; i.e.,

a. Set ei  e , X /10.

i i+l £

-3.5 -

-7- 5-" V -..W ~, ~ . - - - - - -



b. If J has decreased less than 1 percent in more than

five iterations (reductions of X in item 3.a) since

passing through mode B, jump to mode B. Otherwise

continue in mode A (jump to item 1 above).

4. Reduce T i by a factor of 10. If the resulting Ji+l < J ijump

to item 3 above, otherwise repeat item 4 above up to five

times (according to counter INDEX). If J does not decrease

with five reductions of TV1 Jump to mode B. If Ji+l < ERR,

terminate.

Mode B

5. Fix T = 0.1, set X - 0.01.

6. Increase X by a factor of 10, increment the count ICLAM,

determine the corresponding step direction 
H + X C 2

parameter set 8i+I , and Ji+l. If Ji+l > Ji, repeat item 6.

7. Accept 8 i+1 (i.e., set e i = 8i+I ) and set JA W J

8. Increase Ti by a factor of 5 , £ ICLAM.

9. Try e%+1 = - Ti Ai + AiC) gi if Ji+1 > Ji or if Ji >

50 and J i+i/J < 0.9, accept i and return to item 1 above,

otherwise accept + 1 -+ ei and repeat item 8.

The algorithm is depicted in the flow diagram of Fig. 6.
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Experience during development of RELY I proved a to be insuffi-

ciently independent of the other parameters to warrant a fourth degree

of freedom in the search process. The computer program therefore was

modified to accept a priori the estimate of a, and to search in three

dimensions for the values of 8, #a' and Na . From these the estimated

number of remaining errors,

na = na (k) = N - n c(K), k = 1, 2, 3, ... Ka a a c

and mean time to failure

1

ana

are computed. The latter two computed quantities, the sought software

reliability factors, were found to be essentially insensitive to reason-

able a priori estimates of a. Results below include cases of correct

and incorrect fixed a.

3.3 Estimation Results

Results are tabulated and displayed in histograms below for

several simulated random data examples. Examples I and II differ in

the selection of K and T to vary the number of errors, NR, remaining in

the software. Example I uses test interval length T - 1.5 and 60 inter-

vals which leaves about 30 remaining of the initial 200 software errors.

Example II uses longer test intervals, T = 8, and fewer intervals, K -

20, to leave about 5 errors remaining. Example III corresponds to a

- 3.8-
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larger software system having a considerably larger number of initial

errors (N = 1000), smaller error detection rate (4a = 0.01), but a

better correction rate (a - 0.8), and the longer test intervals (T =

8.0). Finally, the fourth example demonstrates the insensitivity to the

fixed value of a. Example IV essentially is Example I with a fixed at

0.5 instead of the "true" value, 0.7.

Before examining the results, we anticipate the nature of the

distributions by analytically determining the mean and variance for

the simple single interval (K = 1) case. Let the observed number of

detected errors Nd be Poisson with mean and variance pN a, where p = 4T.

We minimize the squared error J,

J = Na - Nd 2

aJ 2p (pN- Nd)0
a

to obtain an estimate

Nd

a p

which has mean

E NE aJ p a

and variance

- -3.9-
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E N{@Ia - N E { -2 E{N} + E{N

E Nd 2N E )!N +N 2

2 a
p

PN a + p 2 N
2  p p2 N2

a a a
2
p

N
a
p

The number of remaining errors,

NR - Na - Nd

is estimated

N- - - CN-

R a a a

with unbiased mean

E " E a N d " N - N

and with root mean squared difference from its true value,
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E I'[Nd ( - (N. - Nd )] 2 }1/ = E (N N- )2  1/

, 2 2 2 11/2

N2 2Na  }+EfN 2p N]a + [DN a Na
2 3a p

Notice that the value of the latter quantity corresponding to:

a. Example I: Let N = N - pN a, or (p 1 1 - 31/200 f .845) is

200
.84 15

b. Example II: (p - 1 - 5/200 - 0.975) is

200- = 14
.975

c. Example III: (P 1 1 - 185/1000 = 0.815) is

---i-g = 35

One would expect these values to approximate the standard deviations

a (NR) for the respective multiple-interval cases (though perhaps with

less validity when NR/Na is small). The a(NR) indicated below for the

four examples then are of the magnitude to be expected. Table 1 lists

numerical information from the four examples. Examination of results

from the four simulated examples indicates that the estimator produces

reasonable estimates of the reliability parameters NR and MTTF.

- 3.11 -

W 
-

4
i i I i I IN O W



Table 1. Estimation results.

Item Example: I II III IV

"True" Values

.700 .700 .800 .700

B .100 .100 .100 .100

Pa .020 .020 .010 .020

N 200 200 1000 200
a

NR 31.0 4.93 185 30.6

MTTF 1.61 10.1 0.538 1.64

Time Interval

T 1.5 8.0 8.0 1.5

Number of Intervals

K 60, 20.0 20.0 60.0

A Priori a

at' .700 .700 .800 .500

Initial Guess

a .300 .300 0 0

Oa .010 .010 .02 .010

N 300 300 1500 300
a

Estimated Values

N R 26.3 5.03 195 29.7

a (NR) 11.2 3.07 40.4 10.8

MTTF 2.19 12.6 .543 1.75

oa(TTF) .65 7.43 .093 .33
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Fig. 7. Histograms of reliability parameters for Example 1.
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4.0 Conclusions and Recommendations

4.1 RELY I

We have developed and displayed a model which we believe more

accurately describes an actual testing environment of a large software

package. This new generalized model has been incorporated in an estima-

tion algorithm for the purpose of discerning reliability of the software

from its test data. The first version of the algorithm RELY I described

here converges in a given region of interest of the model parameters.

RELY I is applicable to software test cases where tape replacement (soft-

ware revision) occurs at uniform intervals of time, and where sufficiently

reliable information is available concerning the number of errors detected

during each of the successive intervals.

4.2 Data Requirements

Data required for RELY I are simple, viz., the time interval T

between software revisions (tape replacements), and the sequence Ad(k)

during each of the K successive versions of the software, where k = 1,

2, ..., K. Secondly, the data must be from a process of the type upon

which the assumptions of the model were based, viz., the testing of

large-scale software packages such as that in the F-16 control system.

There must be an identifiable single continuous line of soft-

ware package identity throughout the test process. The package passes

successively through a sequence of versions k, k - 1, 2, ..., K. At

any given time during test, the software is in only one of the versions,

- 4.1-
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"all" of which software version is being tested.' Each version, k, is

identical to the preceding version, k - 1, and succeeding version, k + 1,

except for thE software corrections "counted" in A (k) and A (k + 1),C C

respectively. Figure 11 indicates the time relationship of the several se-

quential quantities. The requirement is that Ad(k) be precisely known

for each version k, where all versions are identified and satisfy this

single and continuous identity as described. This requirement is

violated if a major untested version is suddenly introduced midstream,

or if an alternate part of the software package simultaneously being

tested suddenly is adopted. The generated error feature can accommodate

a minor amount of this kind of violation, but generated errors are

modeled as occurring as a constant proportion of the correction rate.

Errors are usually classified into certain arbitrary categories,

ranging from those obviously to be counted, to those of doubtful

pertinence (obviously "repeated" errors, errors associated purely with

erroneous test conduct, etc.). Suffice it here to suggest that the

criterion for counting a given error or not will be related to its

likelihood of occurrence, and its interpretation as a "failure", under

operational conditions.

4.3 Recommendations

Recommendations toward improved interfacing with information in a

real test process (thus taking greater advantage of inherent features

1 That is, all the parts of the software package are being exercised in

a manner representing that for which the reliability factors, e.g.,
MTTF, are to be applied later.
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Errors, cumulative: 0 NM N(2) NM

Errors, incremental: (i) A(2) A(3)

Version: (initial) (1) (2) (3)

Error rate: r(0) r(l) r(2) r(3)

Test time: 0 T 2T 3T

k: 0 1 2 3

Fig. 11. Tested software in only one version at a time,
identical to neighbor .ng versions except for the
changes counted in A at the respective boundaries.

C

C
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of the underlying new model) include the following further work:

1. Revise the KOST subroutine to accommodate nonuniform test

intervals T(k), by using a finite difference technique for

the solution of Z(k, ). The increased utility is expected

to far outweigh the lesser analytic tractability of the

resulting system and the possible increase in required

computation time.

2. Apply the algorithm to real data. Available data should be

gathered, studied, and adapted, by interpretation and

transformations, to the requirements of RELY. Residual

functions over a variety of cases will indicate how well

the model represents the real test process. Experience

will lead to further recommendations concerning data re-

quirements, and to-possible improvements in RELY such as

provisions for using information in real data concerning

error correction and error generation.

For example, the quantity n a(k),

N - n c(k) + n (k)

na(k) - Na nc(k) - o g n(k)

is the augmented number of errors remaining in the tested

software. That is, n a(k) is the number of errors which would

be detected henceforth if the testing process were to

continue indefinitely, including those generated after time

k. The number of errors remaining in the software, exluding

-4.4-
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those yet to be generated in the correction process, is

n(k) = (1 - y) na (k)

The parameter y is assumed not observable in the present

implementation of the model. If, however, among the

detected errors, generated errors are distinguishable from

original errors, then the additional quantity ngd(k), the

number of generated errors detected, is available. The model

state is easily augmented to include ngd(k). The model re-

mains unchanged but, to the extent that the additional

information is available in test data, the model parameter

y becomes observable.

Experience in the development of RELY I suggests further

investigation of the nature of the J(G) surface. Such investigation

should include also the surface associated with the alternative cost

functional using cumulative functions N(k), rather than the incremental

number of errors A(k). Convergence properties in certain regions of

parameter space may be significantly improved using N(k) rather than

their derivatives A(k). Indeed, parallel computation using each,

respectively, may prove both feasible and advantageous. Another

gradient type parameter estimation method, such as the Fletcher-Powell

deflected gradient method, may also prove more efficient with the

alternative functional.
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APPENDIX A

MAIN AND SUBROUTINE DESCRIPTIONS

1. MAIN and Subroutine Diagram

The subroutines of RELY I are indicated in Fig. A.l. Internal

S RNDTA POISS

MtAIN

KOST RANDEX

EIGMIN TRIDMX
--i E IGVAL

MARQ)._ EIGVEC

Fig. A.l. RELY I subroutine diagram.

subroutines EIGMIN and MARQ are shown, as well as the UNIVAC MATH-PACK

library subroutines RANDEX, TRIDMX, EIGVAL, and EIGVEC. A brief

description of MAIN and its subroutines follows.
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2. MAIN

MAIN reads input data, executes the estimation algorithm (see

Sec. 3.2), and prints output. It also computes simulated random data

1d(k) under the ISIM 1 option (see Appendix C).
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3. Subroutine RNDTA (A. B, P. NA, T, V. RR, JJJ)

From a, B, 0 a' Nat T, the input initial random numbers and L

(corresponding to RNDTA variables A, B, P, NA, T, RR, JJJ, respectively,

and corresponding to the MAIN variables ALPH, BETA, PHI, NA, TD, RRR,

NN, respectively), RNDTA computes the sequence Ad(k), k - 1, 2, ... L

(the RNDTA variable V, and MAIN variable S). The resulting sequence

Ad(k) is used as simulated data, the (incremental) number of errors

detected successively in each software test interval. The initial

random number RRR is passed through POISS to RANDEX.

RNDTA, at each interval k, integrates the system equations:

nd(k) = Nd(k - 1) + 0aT (Na -nc (k - 1))

" W- nc(k - 1 +a 0T (Na -o n(- ( 1)) + BT[Nd(k - 1) - n(k- 1)

Nd( 0 ) - nc (0) = 0

using the cumulative (random) number of errors detected Nd(k - 1), to

obtain n c(k) for use in POISS. Subroutine POISS generates the random

integer Ad(k) according to the mean detection rate rd(k) a[Na -nc(k)].
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4. Subroutine POISS (DD, ZZ. PP, TT, RRRR, KKK)

From na (-Na - nc), a' T, the input initial random number RRR,

and k(POISS variables DD, PP, TT, RRRR, and KKK, respectively, cor-

responding to RNDTA variables D, RP, RT, RQ, and K), POISS computes

the value Ad(k), according to

m
C(i) < T, Ad(k) = m

i=l

The random sequence C(i), i = 1, 2, ... 100, with exponential distribu-
rdC

tion function 1 - e , rd =O( a - nc) , is generated by RANDEX. The

starting random number required by RAND&X in C(l) is the input initial

random number RRR for k = 1, and is the preceding random number R(225)

for k > 1, where R is the value C(100) previously computed for the

(k - i)th pass.
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5. Subroutine RANDEX (C, 100, U)

Reference: UNIVAC Large Scale System MATH-PACK, Programmer's

Reference, UP-7542, Rev. 1.

RANDEX produces a set of 100 pseudo-random numbers C with exponen-

tial distribution

1 - C
U C

by operating on a uniformly distributed variate X, according to the

inverse transform method

C = -ln(l - X)
U

RANDEX uses two other UNIVAC MATH-PACK subroutines RANDU and RANDN. RANDU

generates X, 0 < X < 1, for which computation it calls RANDN for random

35 35
integers 0 < I < 2 . RANDEX requires an initial value, 0 < C(l) < 2

different integer parts of which produce different output sequences.
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6. Subroutine KOST (AA. BB, PP, NNA. SS, NJJ. TT,
NMN, DT, H, GJ. DND. COST, DNC. RMTTF, ZNC, RERR)

Given values of the parameters , time interval T, number of

intervals K, test data Ad(k), KOST computes the incremental error

sequences (see Sec. 2.2)

6d(k) = N a~al O)Lk - I B

(k) = Naa (0 1)L k- I B

where (1 0) and (0 1) are the transposes of the vectors 1I ) and 0),

respectively, and

'1T 1 - T(B + a~a)\ T

KOST further computes the cost scalar (see Sec. 3.1)

K2

i [ 6 d (k) A ~d(k)1k=i

the gradient vector components

K a d(k)
-0J = 2 6d(k) 3d

m kai m

and the Hessian matrix elements

2 K 6d(k) 3d(k) a6d(k)

3 aee 2 1 6d(k)Doae + D 3
k-i n m n m
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KOST also computes the associated estimate of total errors corrected

K
nc 1 6 c (k)

k=l

the number of errors remaining

n R=N a-nnR Na c

and the mean time to failure

MTTF = 1anR

The first derivatives above are given by:

6 d N a a( 1 0)L k - 2  (k- l ) -B + L B

Ne a a (1 O)L
m d a

+6k) 1 I'a 1 aN
+6d (k D N ae a

a m a m

where

ae i  Jl i-rnm

ae Mem 0 i~m

and
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(L 0 a o\

a a(0 0 a) ( T n

+L L0-  (k0 B2 e e

aL (0 -TA.8 
9

3L. 0 B (0\
aN \0 0/) a 0/

The second derivatives are.

a 26 d (k) N (1 0) J(k-2)Lk-3 aL a(-l L B

+ea L Na2 [(k-1) B + L2L fe

f~ ~ a 2 n +La " aL aBL~~lKea +-m ni m

+ L a 2B +i f 6. (~k) a-+ 1 !-a I
BeaBe jj n Bt~e N aemf
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7. Subroutine EIGMIN (HH, CORR, GGJ,. DDAI, EH. EV)

Given the Hessian HH(4, 4) and the gradient GGJ(4) of the cost

functional J(9), and the current Marquardt parameter (X) DDAM, EIGMIN

computes the eigenvalues EV(4) and eigenvectors EGV(4, 4), and the outer

product EH(4, 4, 4), for J. EIGMIN then computes X such that the

Marquardt matrix (Hi + X iC ) s positive definite, and the correspond-

ing parameter correction factors CORR(4) H i + XiC i -1
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8. Subroutine TRIDMX (N, NM, A. D. BI

Reference: UNIVAC Large-Scale System MATH-PACK, Programmer's

Reference, UP-7542, Rev. 1, Sec. 9, p. 1.

TRIDMX transforms a real symmetric matrix, B(4, 4), to tri-

diagonal form using Householder's method, where D(4) are the resulting

diagonal elements and B(4) are the off-diagonal elements. Input

integers N and NM are equal to the order, 4, of B.
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9. Subroutine EIGVAL (LP, E, A, B, W, F)

Reference: UNIVAC Large-Scale Systems MATH-PACK, Programmer's

Reference, UP-7542, Rev. 1, Sec. 9, p. 8.

EIGVAL evaluates the eigenvalues of a symmetric tridiagonal

matrix, using Sturm sequences. A(4) are the diagonal elements and B(4)

are the off-diagonal elements of the matrix. The eigenvalues E(4) are

stored in descending order of absolute value.
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10. Subroutine EIGVEC (LP, NM. R, A. B, E, V. P, Q)

Reference: UNIVAC Large-Scale Systems MATH-PACK, Programmer's

Reference, UP-7542, Rev. 1, Sec. 9, p. 15.

EIGVEC evaluates the eigenvectors of a real symmetric tridiagonal

matrix using Wilkinson's method. A(4) are the diagonal elements and

B(4) are the off-diagonal elements of the matrix. E(4) are the eigen-

values, and V(4,-4) are the eigenvectors.
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11. Siubroutine MARQ (EEH. EEV. DDLAM. CCORR. GGGJ, HHH)

Given the outer products EEH(4, 4, 4) of the eigenvectors of the

Hessian, the eigenvalues EEV(4), the gradient GGGJ(4), and Marquardt

parameter (X) DDLAM, IIARQ computes the step CCORR(4), (Hi +x

in parameter space.
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APPENDIX B

RELY I GLOSSARY AND INDEX

(Library subroutines RANDEX, RANDU, RANDN, TRIDMX, EIGVAL, EIGVEC
are not included here. See UNIVAC MATH-PACK references given in
Appendix A for detailed information.)

MAIN (including internal subroutines EIGMIN and MARQ)

Variable Description Line Number

ALPH 18, 22, 25, 30
Value for a in simulation mode

B(4, 4) 162, 167, 170, 172
Normalized Hessian matrix in EIGMIN

BETA 18, 22, 25, 30
Value for a in simulation mode

CNC 24, 33, 34
Cumulative values for n in simulation mode

c

CND 23, 32, 34
Cumulative values for nd in simulation mode

CORR(4) 3, 48, 57, 58, 61-63, 72, 78, 86-88,
95, 114, 115-117, 127, 137, 160, 163,
201

Vector of corrections to parameters
(MARQ: CCORR) 205, 207, 209, 229

COST 25, 30, 43, 46, 49, 50, 56, 65, 67,
69, 70, 73, 76, 91, 93, 94, 100, 120,
122, 124-127, 129, 130, 135, 145, 147

Most recently computed value for the mean-squared error

COSTI 46, 130, 145
CoEt for currently accepted parameter values used in mode B
to determine whether the new estimate for the parameters
reduces the cost

DDD 194, 195 -1
Denominator used to normalize the matrix (H + XI) in
EIGMIX
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Variable Description Line Number

DDDD 223, 224 -1
Denominator used to normalize the matrix (H + XI) in
MARQ

DIA(4) 162, 170-172
Diagonal entries of the tridiagonalized Hessian matrix
used in EIGMIN to compute eigenvalues

DLAM 45, 48, 72, 74, 78, 95, 103, 111,
114, 128, 137

Value for A
(in EIGMIN: DDAM 160, i88, 205, 217)
(in MARQ: DDLAM 182)

DND(300) 4, 25, 32, 43, 67, 76, 91, 120, 135
Incremental values in nd

EGV(4, 4) 162, 172, 176
Eigenvectors for the Hessian matrix

EH(4, 4, 4) 3, 48, 72, 78, 95, 114, 128, 137,
160, 162, 176, 188

Outer products of the eigenvectors for the Hessian matrix
used to compute (H + AI)-l

(in MARQ: EEH 205, 207, 217)

ENC(300) 4, 25, 33, 43, 67, 76, 91, 120, 135
Incremental values for nc

ERR 5, 7, 56, 93, 126
Value for termination criterion

EV(4) 3, 48, 72, 78, 95, 114, 128, 137,
160, 162, 172, 181, 182, 185, 188

Eigenvalues for the Hessian matrix
(in MARQ: EEV 205, 207, 217)

GJ(4) 3, 25, 43, 48, 67, 72, 76, 91, 95,
114, 120, 127, 135, 137

Gradient vector for the cost functional
(in EIGMIN: GGJ 160, 163, 201)
(in MARQ: GGGJ 205, 207, 229)

H(4, 4) 3, 25, 43, 48, 67, 72, 76, 78, 91,
95, 114, 120, 127, 135, 137

Hessian matrix for the cost functional
(in EIGMIN: HH 160, 162, 167, 194)
(in MARQ: HHH 205, 207, 223)
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Variable Description Line Number

I
Index for various loops

ICLAM 104, 113, 144
Index which counts the number of times that X is increased
in mode B

IFLAG 47, 70, 71, 106
Index that counts the number of times that an iteration of
mode A reduces the cost by less than 1 percent

INDEX 51, 80, 81
Index that counts the number of times that the step size
has been reduced

ISIM 15, 17
Indicates whether the run is a simulation (ISIM = 1) or an
estimation with real data

J

Index for various loops

JDEX 105, 143, 144
JDEX = 1 indicates the first time that changing X has been
successful in a given iteration of mode B

KK
Index used for DO loop in EIGMIN for computing outer
products of eigenvectors

KL 184, 185, 188, 214, 217
Index used for DO loop in EIGMIN and MARQ for computing
(H + xi) - I

LMBEX 112, 122, 123
LMBEX -1 indicates that X was changed in mode B

NA 2, 18, 22, 25, 30
Value for N in simulation mode

a

NJ 10, 25, 43, 67, 76, 91, 120, 135
Number of test intervals

NN 5, 7, 10, 11, 22, 25, 31, 43, 67, 76,
91, 120, 135

Number of tape versions
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Variable Description Line Number

OFDI(4) 162, 170-172
Off-diagonal entries in tridiagonalized Hessian matrix

PCOST 50, 69, 70, 73, 94, 124, 127, 129
Current minimum value for the cost functional

PHI 18, 22, 25, 30
Value of 0a in simulation mode

R(4, 4) -1 163, 166, 188, 195, 201
Matrix (H + XI) computed in EIGMIN

RR(4, 4) -1 207, 211, 217, 224, 229
Matrix (H + XI) computed in MARQ

REFF 26, 30, 44, 49, 68, 77, 92, 100,

121, 122, 125, 136, 147
Estimated number of errors remaining at the end of test
period

RMTTF 25, 30, 43, 49, 67, 76, 91, 100,

120, 122, 125, 135, 147
Estimated mean time to failure

RRR 18, 19, 22
Randomization value in simulation mode

S(300) 3, 12, 22, 25, 38, 43, 67, 76, 91,
120, 135

Error data

T(300) 3, 13, 25, 43, 67, 76, 91, 120, 135
Tape version replacement times

TAU 57-63, 79, 86-88, 102, 115-117, 144
Step size

TD 5, 7, 13, 22, 25, 43, 67, 76, 91,
120, 135

Length of each test interval

TEMPI(4) 163, 171, 172
TEMP2(4) 163, 171, 172

Vectors which are used temporarily in the computation of
the eigenvalues and eigenvectors of Hessian matrix
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Variable Description Line Number

ZA 40, 43, 49, 52, 67, 82, 91, 96, 100,
107, 120, 122, 125, 131, 135, 139,
147

Value for a in simulation and estimation mode

ZB 40, 43, 49, 53, 57, 61, 64, 66-67,
83, 86, 89-91, 97, 100, 108, 115,
118-120, 122, 125, 132, 135, 140,
147

Value for a in simulation and estimation mode

ZN 40, 43, 49, 55, 63, 67, 85, 88, 91,
99, 100, 110, 117, 120, 122, 125, 134,

135, 142, 147
Value for N in simulation and estimation mode

a

ZNC 26, 30, 44, 49, 68, 77, 92, 100, 121,
122, 125, 136, 147

Estimated value for n at the end of the test period

ZP 40, 43, 49, 54, 58, 62, 67, 84, 87,
91, 98, 100, 109, 116, 120, 122,
125, 133, 135, 141, 147

Value for 4a in simulation and estimation mode

ZZA 52, 76, 82, 96, 107, 137, 139
Currently accepted value for a

ZZB 53, 76, 83, 97, 108, 115, 132, 140
Currently accepted value for a

ZZN 55, 76, 85, 99, 110, 117, 134, 142
Currently accepted value for Na

ZZP 54, 76, 84, 98, 109, 116, 133, 141
Currently accepted value for aa

Subroutine RNDTA

A (dbl) 1, 7, 19
Correction rate parameter a

B (dbl) 1, 8, 19
Correction rate parameter 8

D 4, 21, 18
Estimated number of remaining errors na
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Variable Description Line Number

E (dbl) 17, 18

D

JJJ 1, 15
Number L of intervals (software versions)

K 15, 21, 27
Index corresponding to kth interval

NA (dbl) 1, 3, 10, 16, 17, 19
Initial number N (y-augmented) of software errorsa

P (dbl) 1, 9, 16, 19
Detection rate parameter 'a

RA 4, 7
A

RB 4, 8
B

RNA 4, 10
NA

RP 4, 9, 21
P

RQ 5, 6, 21
RR

RR 1, 6
Storage place for MAIN input initial random number for
RANDN. Contains first exponential random number from

RANDEX upon return.

RT 4, 11, 21
T

RZ 4, 21, 22, 27
Poisson random Ad(k) returned by POISS

T (dbl) 1, 11, 16, 19
Time interval T

V(300) (dbl) 1, 12, 27
RZ, Poisson random sequence Ad(k) returned by RNDTA
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Variable Description Line Number

X(2) (dbl) 12-14, 16, 17, 19, 20, 22 25
Temporary memory for current cumulative random

Y(2) (dbl) 12, 16, 19, 20
Temporary memory for current cumulative estimate M

Subroutine POISS

C(lO0) 2, 4, 6, 8, 11
Set of uniformly distributed random numbers generaged by

RANDEX to be used by POISS as the sequence of times
between successive detected errors

DD 1, 7
Number of remaining errors n a

K 10, 11, 13
Counter of successive detected errors

KKK 1, 3
Number L of test intervals

PP 1, 7
Parameter value a

Q 9, 11, 12
Cumulative time EiCi during the test interval, accumulated
until it exceeds T

RRRR 1, 4
Initial random number for starting RANDN. Its value for
k = 1 is input by MAIN. Subsequent values are set by POISS,
RRRR = 225 C(100).

TT 1, 12
Test interval T

U 7, 8
Mean frequency Oana of the error detection rd

ZZ 1, 13, 16
Poisson random number of detections Ad(k) generated by
POISS for the kth interval. It is Ad such that:

Si < T d  1 00

i--
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APPENDIX C

PROCEDURE FOR OPERATION OF RELY I

The program listing (FORTRAN V, Appendix D) accompanying this

report consists of MAIN with internal subroutines EIGHIN and MARQ, and

external double-precision subroutines RNDTA, POISS, KOST, TRIDMX,

EIGVAL, and EIGVEC. The subroutines which call single-precision library

functions have the necessary coding for converting between double- and

single-precision variables. Certain double-precision library functions

are used, viz., DABS, DEXP, and DSQRT.

The input deck depends on whether data are to be simulated or

are to be read from input cards.

INPUT DECK (to simulate data and estimate)

Card 1: TD, NN, ERR, [F5.2, 2X, 14, 2X, F8.6]

Card 2: ISIM [12] (must be unity)

Card 3: ALPH, BETA, PHI, NA [4(G14.6, 2X)]

Card 4: RRR [16X, G14.1] (input initial random number)

Card 5: ZA, ZB, ZP, ZN [4(G14.6, 2X)]

INPUT DECK (to estimate using punched card data)

Card 1: TD, NN, ERR, [F5.2, 2X, 14, 2X, F8.6]

Card 2: ISIM [121 (must be zero)

Card 3: ZA, ZB, ZP, ZN [4(G14.6, 2X)]

Card 4-(K+ 3 ): S(i), 1 1, 2, ... K [G10.1]

The integer part of any real number RRR, 0 < RRR < 235

- C.1 -
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determines a unique repeatable random sequence Ad(k) from the simulator.

Initial guesses 0 for the model parameters are recommended asO

follows:

0 < ZA < 1. (typically 0.8)

0 < ZB < 1. (typically 0.0)

0 < ZP < 0.2

0 < ZN

To produce different simulated random data, the operator must

35change the input initial random number RRR, 0 < RRR < 2

Though J < ERR is the internal stopping criterion, experience in

random cases proved maximum pages of printed output (say, 10) to be as

practical a stopping criterion as any.

The program prints out the current accepted parameter estimates

6 a, , Na  together with running estimates of the reliability

parameters NR and MTTF, and selected auxiliary quantities, at each

step i. However, the label "CHANGING LAMBDA" indicates only tentative

parameter values produced in mode B (see Sec. 3.2). Therefore, these

tentative values must not be taken as values which minimize the cost

functional J. The final estimates of the reliability parameters are

those associated with the last accepted iteration i.
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APPENDIX D

RELY I PROGRAM LISTING AND SAMPLE OUTPUT

I hi-PLICII REAL*8(A-H#eZ)

3 LI1MErSSIW. T(300) PS(.300) ph(4e4) .b JC4) eCORR (b) .EH44.4,4) eEV (4)
4 ulftS1..4 0fiL3Uv mLC(3w)

HLAu(5vo7)..,NiA#LRR
but7 F(,mAT(b.2#Xp14@2A#F8.o)

7 k1T(6#bca6)T~vi0.,EkR
0 cj6 fwwR?,AT(JA.'INqTE4VAL LENTr =f#2A#F5.2#2Xo@NUMPER OF INTERVALS '

9 ilJe1o4,!A.TEkfrZWIN CRIrEKION =IoFA.6)
It) No=144f

14 14 C014T rUL

.to K-AUCbeob8)ALPHuLTApFHI ,(hA
i9 ,CAj(5#oo9)I1HR
C.U *hTk.C6tb89)kRi~

ki uo9 FvAU'ATClbXpG14.4)
,d2 (.ALL RtjTA(ALPHetLTAPHIP,,AeTWSr-ePQRIN)

k5 LALL K0b1 (ALP~1,bLTAPPNIeivp~,tJTv!JNPTD.HAJprlJPjCOSTeEN4C.OMTTF.

e7 hkITE (6. 489)
;.a 10 IFORk,AT(7,'MLPHA',vIXp9 ei.TA 'e4Xp' PI! to5Xo' NA '.5X.
i91' CQ5T'.3Xp'15T.N(',4Xo' IATTF '#4Xe'NA-NC')
3u ANITE(6,170VMLPnouETAPHI .NAPC0 )T.7NCeR9iTTF.PERR

J1 LQ 69 IZIPN
ag ~C,.CCCLND ( I)
33 (4 4C:CHC+LNC (I)

J4 a.t1L (6tb90) Ct0#9LNC
.)5 o90 fOR -AT(.&uX. &NE='cXFIO.3.2Ae 'NC' .2XtFI0.3)

4b 09 LV14TiI Wt
47 %2v TO It

49 151 FUR(MAT(t10.1)
40 11 'LAU(5#otSBZArZb,#PZN

4dd amITE(6#169)
4.5 LALL K0br(ZAPZB#ZPZNSN.oerI1NeTDeNGJDfIc).COST.L NCRMTTFP
44 IZ~vCPRERh)
45 uLAF,=1
4b LOST1Cv6T
a47 IFLAG:0
%b CALL EIL,41N(HpCOkHpGJ.DLAM#EHpEV)
41A 72 WRITE(6,171IZA$ibZPPZNPCUST.ZNCRMTTFeRERP

bo 75 PCOST=CG.6T
bi IIJLX=O

bid 2ZZZJ

bb IF(CQST*LTsEKR)GD To 73
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17 TAU=(5-..b)/(2*OAb,(CORR(2)))
5d iF(IAU.,j1.(.k-ZP)/(2*OABStCvRR(i))))TAU=(.2-ZP3/(2*DABS(COPR(3)))

bly iV(TAU.wT.1)TAU1l
bO IF(TAU.L7..OOO1)bo To 74

02 4P=P-ChR (3) *TAU
63 4i4,ZN-CKH () *TAU

05 IFCCOST.(GT.1OIOLAI.

u7 4,AL IKO 1 (ZAp2B~sI.ZN,1iSI4-jei.olNTDPHG.JDNID.COSTEFICRt4TTF.
00 i~iCPREftK)

i69 LF(COST.GE.PCOJST)GO TO 76
7u IF(COST/PCOST.GT..99) IFLA.,=1FLAG.1
71 IF(IFLA%7.GT.4) Ou TO 74
7,e CALL EIloMIN(HpCutmkpG.jpLAr:,tEMEV)

7.5 eCOST=C ,$T
74. GLAM=ULAN,/1O
75 O O7

7t) ~ 76 CALL KOb] (ZZAeZZbZZPeZZASN.JTi.~Tlht.JOt4OCODSTPENCRMTTF,

7a ~CALL EIv.IC(HCu*ke6JPOLA,LiHeEV)
79 71 TAU=TAU/10
00 li.Ctx1..uEX+1

61 lF(L'.[EA.GT.b)Gu TO 74

ob Z14iZN

b7 kP=ZP-C6xRC3)*TAU

01CALL KOST(ZAPZBZFeZti.SNlj.1 erNTDeHPGJPD~iDeCOST.ENC#f4NTTFo

vs IF(COST.LT.LRR)OU TO 73
It% IF (COSI.6PE.PCOS1)GO TO 71
v!)CALL EI~jINI-ICOkk#~GJP0LAmpLH#EV)

96 i:ZAZ

99 z.4Z
Iu~j akTE(6e172)ZAPiueZPPZN.COSTeZNCRP'TTFPRERP

11u1 %O 70 7j
Ina 7'. TAU=#l
IL3 QLAM:.o1
10's ICLAM=0

166 IFLA6=O
1u7 ZA=ZZA
100 Zb=ZZB

149zpzzzp
IL#UCZZF
111 77 LLAMZIOOLAM
112 LbYUX1

113 CLAM=16~LAM,1
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11,4 CALL MA(EH.EVuLAMCORkt3..jH)
1,0) 76 ZoZZb-CRR(2)*TAU

lit ZP=&ZP-..URR(3)*TA,
117 q=ZLOR4*A
lid lF(4o.GT.I0)ZB=Iu.

leu CALL I'(6T (ZA.LB:iP.ZtjeSNAjTe4N.TC.NGJ.DNO.COSTPENC.RMTTFv
ial liC~kE4m)

I" IF(LMEEA.EQ.1)WKTE(6.190)ZA.ZBPZP.ZNCOST.ZNC.RMTTF.RERR
I e3 L'.t3XO

1214LF(I.OST.GT.PC(,SH(.Q TO 77
leto *1Tt(6.19lVZA#ib.ZPpZNCdSTeZNC.RMTTF.kERP

lea IF(CUST.LT.Ekk)" TO~ 73
L&7 IF(COS7/COST.LT..9.A!O.P6.OST.GT.5O)CALL EIGPIfI(HpCORk.GJ#

140I~tAMteEMtV )
l1a9 LFCOST/-COST.LT..9.ASO.PL;OST.GT.5)Gn TO 72
IJO IFCCOSTi.GT.C(JST)(,O TO 91
1')1 4.A = z. A
132 Z4=/LZo

1.55 L.LL KO PT ZAtZi t-ZrJeSPN~..TtNNTDHGJD~lCST.LNCPRMTTFt
130 ~ l~.CXERK)
Ij7 CALL EI%;PIN(HtC~k6JDLA..EMEV)
i.k3 ,.i To) 74

L69 91 ZIA.ZA
143 zzb2ZB
141 ILZP=ZP

144 LF (.OLX.LQ.1)YAU:TAVs50*I(.LAM
145 CoSilCvbT

14.o GO TO 7b
147? 73 oRT(t7)~~#VZNCTZCRTFRR
1.0 170 ?QmAT(APS~f.,ULATI0N VALLJE4 ARE 9f2xp3(F8.5,2X3,

1~jO 171 FORiAT(j#XpfN~Ek% PAKAMETER vALUES'e8X.3(F8*5v2X)v
161 1.J(F8.2p&A~pFI09*@2X#F8#2)
lb~z 172 FoRmlATCbXPIAFTER REDUCING STEP 5IZF'.4Xp3(F8.5p2Xjv
1b4 I3(Fab.2v&A)vF10.evi.F8.2)

Ib4 3 FC.RMAT(W2POFINAL VALUES AiEv.2X,3(F8.5e2X)#
1bb IJ(Fd.2F4A)vFlO.6vkX#F8*2)
1*0 190 FvRMAT(bX##ChiAN~aaNG LAMBCA 9.2Xp3(F8*5p2X)*
1b7 IJ(F*.2p~x)*F10e6#2XpF8.2)
158 191 FORMAT(bX#'STEEPEST DESCENT VALUES '.2X,3(F8*5vZX),
Ib9 I3(F8*2p4X)pF10e6p2XvFS.2)
icaU SUBkOUT&NE EIGMIN(HHvCRRp3GJ#DOAMpEeEV) r
IbI IMPLICIT REAL.S(A-4e0-Z)

102 DIMEIISIVN HMC49'IeBC44)eL V()eEGV(e4)EH(4e'.4)eIA(4.OFI(4)t
IF2311MP1(41. TEMP2 (41 R(4 4)eLORR(41 .6J (4)
164 DO 700 I:1.4

lbb LeO 701 %02Z10I

Ito Ilpjz
167 as(IJ)sliE(IJ)/CIRT(DABS(HH(Iol)**(J#J)3)
lbb 701 CONTINU.
1c9 700 LoeNTINU.
170 CALL TRALMX(4.4#btDIAeOFD1I
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171 L.ALL ElIaVAL('..EVPLIA0FCITMPlTE'P2)
17.e CALL EIvEC44bOIAOFOLVEGVTEMP,TEMP2)
17. &uQ 70e L:1.'4
174 ~ DO 709 w=1.4
175 uGc 710 KKlt

177 710 C0jT It
176 7u~9 COf.TII.U
17 'i /U8 LOfNT1INUL

1tb1 IF(LV(I).GT.O)GO 10 713
1be. IF(DDAM.LT.-L V(1))DOAF':DAuS(EV(i))+.I

La.) 713 COT114UL
1o4 LOi 70Z Is&.1e4

lbb ±F~uABSLLV(IKL)).LT..0001)LV(KL)=I
loo wu 70 A1*4

166 i%(I IJ)=gdX ,.JJ EH(KLe I J)/(EV CKL)+tCDAM)
1b9 7U4 CIJNTLNLA.
19U Iu3 LiAdTIIJUL
11 7U2 CONT INUL

19,2 LU 706 j=IP4

19b kHIIJ)hlpj/DL
190 IU6 CUN TIf.UL
.L97 I05 COtJTIfJUr

199 (,RR(X)zu
.?(#U O 712 .=1.4

4d(ja 712 CNTIN'UL
2u 7.1 II UNT INUL

ku5 ~ bwHOUTi4E MAHQtLLHPEEV,~iLMCCOR~oGG.JeNH
duo I.PLICIT FkEAL*8(A-HPO-Z)
a07 L,1MLNSAON LEH(4,4e4).EEV(4IeCC0RR(e)6iGj(.)RI(4o4)HHH(4e4i

id~b 00 714 A=1@4
2U9 CLOKH*uz=o
Z2t) uO 725 4=1#4
211 HIk(&@J)z'J
212 7k5 CONT114UL
21I3 714 COtJTINUL
214 h.0 71b &L=1P4
215 UO 717 A=1,4
21c UJ0 716 wzIZ14

218 718 CONTIPIUL
219 717 CONTINUL
220 716 CONTINUL

aldl U0 719 1=1@4
24d 0Q 720 .e:1e4
aiiuDU=CS~inT COABS h(l*4 I ) sriM(JJ)I)
ife.4 MHR(I @%))=R (I P.JUL/D0

2gb 720 CONTIIJUL
2ica 719 WAT 11I4UL

ug 721 &=1@4
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Lu 722 w.:1,4
ze9 LCORR(1 )ZCCO(LV.I)RH( I.J).GGGJ(.J)

2i'd ET uRt.

<**> 1
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.S IMPLICIT REAL*S(A%-4O-Z)
'4 ktAL~kb v'.iA

UIME(,SlvN TT(J3gjJSS(3O)Gj(4)PH.(4,'4)
o U1Mti4SIVN OU.Es(4)eDNO(30oiutICC(f3OIZ'TTF(3OOI

7 LIMLNSZUN OL('4.'.
0 CUST=O
9 ZLL11-

10 LLLak~1

14.
1 )L~ t i .1.4.Ilo

10 Lrwlz

I~Lj 12 J1&4
A.i LeJ) =

Liltijz
12 L.,JT IrUL

ke 1i3 LuNr riu&

&.J ZL=:-A*-*tfUA*v

e7 A=F*))*
e.4 A9ZAA*Ab

. A Alg~:P*(AA*L;T)*.a~

.)4 UNtJ (4)=PP*DT
J5 os, i0 KZ±.lNMN

do wio(K):rI*NNA*Dr*(ZLL11.AA.ZLL1a3
J7 &a14CIK)Z*'aNNA*DT*(ZLL214A^s&LL223
.;, ts ra&=ZfiO4ND (K)

159 Z:iC=ZfvC*LNC (K)3
%v /;.ITTF K I ZI(PPOr(uNA-ZHC 1

41 IF(K.EQ.NN)STTFZMTTF(hJ
%.d If- (K . EQ oroMN) RERR=NNtA-ZNC
.43 IF (K.L41.i'MN)ZZNA:IJNA-ZNC
'44 f (.STCOaT*(SS(K)-LlaU(K3).a.2
44b &i 441 1=1e'4

47 u '42 L=19'4

449 '42 CONTINUL
50 41 CONT114U.
bi ZLK11:Z4.LI1.2LLlk.8b.OT
U ZLKj2=ZLLIIO I-PgF.LTI ZLLId*ZL
54 4LK21:ZLL21+LLZ2a.8.OT
*44LKa2:Z6L21. I-PPSI)T)*ZLL2a*2L
35 uUNiO( 1)PPeNNA.D1.(K.A1.ZLL±2.ZLt12,

bbuIwtft2)P*NNA*DT* (K.A2*ZLLA±2

-D.6-

LI



Lio3=iNA*f-T* C LLK I + AA. L12) +FP *NN A *DT sK* (-AA) *rT*
bo 1(&LL1+AA*ZLL12)
t19 6,1r4O()tPLT*(LLK11,AA*ZLK12)
ou IF(K.t.E.1)GO TO 3u

o~~i L)l(3p3)=-2*AA*N~iAsDT

uh ~ a ul3.1)Zj1(le3)

00(4 ~ TaIZ I(#4

U9 ~30 LI(1e1)ZPN'A*01eK*C(K-1)ed.V12*A9-2*ZLL12*A7)
7u J11 1#2rP*Ni4A*6a.I K*( (K-1) *M12*A 12-DT*ZLL12)
71 Ll Lo3)=4.14A*L)T*(I*ZLL12 (A II) *2LKl2)+PP*PINA*DT*K*( (K-1)*
7.d IC.. 1 *AAi*DT+Zi12*AIO)- *LLL12*AA*r)T-ZLL11.DTl
71 LI1C114)=Zs~aT*(se.LL12*(-All)+ZLKI?)

77 jCev4)=PP*UT*K*4LLI2*81
10~ .l.(3eZ=zCsr44A*DTsI.*(AA)*aiT(ZLII+AA*ZLL12).PP.N1JA*

III (AA.4a) *(uT**3)*si*(K..1 )*sCtM1IAA*Z"112)
L.I Cl(e4)ZT* CZLK11*ZLK1ZeMM ,PP.UT.K. (-AA)*.(T* CZL.LII+AA*ZLL12)

ol wlC4e4)=U

02 LIj(2pl)=L4C1D3)
ca Ll (301) -;1, 1( 1.3)

0 ) .1C3p2)zuI(2p3)
00ulI(4v2)=la(2*4)

cs h 1d (4 p3) =L 1(3 v4)

od il b. i=ZLL1 1

91

9.5 ZLL12=ZLl12
94 d.LL21ZLKi21

;j L) zLLki2ZLK22
9o 10 LuNTINUL

97 METURN
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I ,u~t(OUTLiNE H.TA(ABPeNA.T#VvRRPJJJ)

.5 mEAL*b toA
'4 HLAL kAeX~oHP#RNiAtR7#DPRZ

thEAL RO
a Ia$GL(hiR)

Kb=SNGL(b)

10 Hi-A=NG6(INA )

12 *KITE(6#b7)

114 A(1)=O.
lb X(2)=O.

1.7 ft2)=X(L)+P*T*(.UA-X(?) )
lb L=NA-X(4)

4u YTC2)=6.1.X(l),LL-rsc+A.H )*X(2)4A*P*T*N4A
41 A(2)=Y(g)
dela iALL P0SS(UpkZe-.T#RGj,A)
gjA II) C .) DLLh&

.a v(K)=U8LL(CRi )
C.7 uO W41~ Lit-
ki 7 f-j AT(zoApfRMANDup. VALUES rOl ND AC T) NC GENFRATED FOR~ SIMULATION.
e9 KLTujHN
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RLLY*hti.Y(&).iwL
I SWbNOUTkisE PwSS(LDtZZ#PPPTT#RRRRPKKK)

UiMl NSIVJI. C(IUO)
IF (KKKI.GT.1)GO TO 595

'4 CCI)RRKH4
WOTu 6oc

3 55 C(l)=CC&UO)*i..kb
7 cob U=D0.PP

CALL FRA..&6E(CC.IUuU)

10 LOQ 100 i.IoluO
'L I (iG.C(K)
id IFCO.LT.rTGU TO IOU
13 Sl:ZFL0A ilK-I)

1'. uQ TO 2'vu
1 ) ~iuO (LONT I ULr

A (b 4cd:1uo
17 4.L, uiLTUt.
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1 ubRUTlr.6 TmIOMA (N.NA.ADvf) TR Gio
2 1PINLICII kEAL*8(A-flO-Z)

C TRIwIA60tJAL1ATION OF REAL SYMMETRIC MATRIX.
b C---- -------------------------------------------------- -----
b UIMgESlui AtwMil4m)}D(NM)pufNM) TRID0020
7 C--- ---------------------------------------------------------
a C $AVL ONIGINAL rAGON/LS IN ARPAY 0.
9 C-- - - - - - - - - - - - - - - - - - - - - - - - -

lu UO 10 I.ziN TRInoo0O
Al 14, U(j)=A(I) TRI0050
L2 C--------------------------------------------------
13 C FOR N-2 RETURN WITmoUT COMPUTING.
14* C--------------------------- - - -- ---------------
lb lF~i-2)*U.55.15 TRID0050
16 C-- - - - - - - - - - - - - - - - - - - - - - - - -
17 C --------------------------------------------------
1 1 (U b K-PN TRID0060

116 KZI%-lTRIOT0

dl C %UM CONTAINS THE SUM nF THL SGUARE ELEMENTS
22 C OF A COLUMN4, EXCEPT THE FIRST K-2 ILtMENTS.
23 C ...........................................
40 SM=A(-loK-2)*AIK-lK-2) 7T4100080

UQ 20 JZ-FN TAIO0090
26 2o SUM=SUM*A(J.K-2)*A(JPK-2) TRIO0100
27 C --------------------------------------------------
e o c b ARRAY 6OiiAINS THE BETA VALUES.
29 c (I.L.v 8ETAZSUM*S(1/2))
30 C-- - - - - - - - - - - - - - - - - - - - - - - - - -
41 OK-2)10|G((DSOM TSUM)-A(K-IPK-2))
a C------------------------------------------------

33 C IF bLTA:O NO THANSFORMATION IS INITIATEO.
.16 IF(B(A-&)) 24#4*24 71410120
3b C - - - - - - - - - - - - - - - - - - - - - - - - - - -

30 C T04L COMPONENTS OF THE COLU04N VECTOR W ARE
37 C SU T D IN T.PvSIT IONS OF TH. ANNIHILATED
id C UEEMENTS OF A (I.E.# LOWER HALF OF A)
39 C -------------------------- ------

#40 ill A(K-.Kg) ORTlu.beCAdS(A(N.1K-2)/a(K-2) +.O5)
1, V..NUM=-4.AtK-lvk-2)*BtK-2) T1 10O

62 UO 40 IZK#N TkID0160

.3 JU A(llK-2)ZA(1.A-2/UkNOM TRID017O
414 SCALZU. TRIDOL75
,4 47 u( 36 .JiKeN TRIDO0I0
46 C -------------- -------- --------
67 f; THI, iTAS Akr. FORMED ONE BY ONE.
%* C vHEN R OF Th!W HAVL OFEN FORMED.
49 C P AtI.4 4 CONT4.I. ONLY (N-R) ELFMENYT.
bu C 1H. t ARRAY iS UtLD TO STORL SUCCFSbIvE

T %# 45 to T R I C 0 1 9 1
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57 4LC o 35 L=Z.N TRIO0200ba 4 b{J)=El( )A(L,J)*A(L,K-2) TRIr0210
h9 c ........... ........... ..... ...... -- ............--- .....

OU C SCAL=*(TRANSeObE)*P
al 0:J TRIO0215
be 3o SCA=SCmL+B(J)SA(JpK-2) TRID0220
bi '.0 =rKXN TRIO023C44 4u d{J)=b( )-5C^L*A( ,K-2) TRIC0240

00 TRANSFORM ALL ELEM0'TS OF A
t7 c EXQPT PIVOTAL ROW ANC COLUM'N.

29 UG 45 J; A:N TRI250
70 4t Lz-;N TRIC02fO
71 L A(L,=T.tL.J)-2.*.A(L.K- } (j)+A(JK-2)*P(L)) TRIDO270

74 L RES1.RL ORIGINAL DLAGOWJALS OF A. STOtr CIA(,OANL
75 C OF IHANSFOR', WATmIX IN ARAY 0.

71 u !u I=AN TRIO0280
78 ZA(I.IJ THIr29C7's ACII)Zwtl) TRIr'0300

bu J N -I T R I O 3 O 0
al uTRID0302

TRIVn310

04 ba 0 (N) =A (,.. N- TkIC032o
4 ou o(1)=O.. TRIro330

: L.TuR! TRIC034o
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RLLYe.VAUSbIE.I (1) .SUB7
I SUBROUT ,iE EIGVAL(LP,EvA.,vw.F) EVAL

IMPLICIT REAL*STA-H.O-Z)
S C --- - - - - - - - - - - - - - - - - - - - - - - - -

' c LP IS THE SIZE OF APPAY A. EVAL
b L E IS A VECTvrm OF LP ELEMENTS WHICH WILL HOLD EVAL

b C THL LIGENVALuES IN DESCENDING ABSOLUTE ORDER. EVAL
7 C A IS A VECIOG OF LP ELEMENTS GIVING THE DIAGONAL EVAL

a C ELE0ENTS OF THE TRIDIAGONAL MATRIX. FVAL
9 C 8 lb A VECTUF uF LP ELEMENTS. THE LAST LP - I EVAL

IV L W IS A VECTON OF LP ELEMENTS USED FOk TEMPORARY EVAL
11 C STOKAGE. EVAL
Id! C A A. A VECTOrK OF LP ELEMENTS USED FOk TEMPORARY EVAL
1 C STOKAGL. EVAL
14 C-- - - - - - - - - - - - - - - - - - - - - - - - - -
IL UIMLNSIJN E(LP),A(LP)BC(LP) w(LP) EVAL
10 u ~p fS, I v , F(LP)

,t5 C p1'1., AbSOLUIL 6UON.4 FOR THE EIGElVALrS EVAL

.u A,.,=LAr S (A( ) )

LI=U. 9-VAL
. uL I 1=..LP EVAL

c1 bi .-UhAXA0M, L, B;,(L(I)))
et) bU=AM*b

"
r,. EVAL

20 " 0 1.4LP rVAL
.:7 C-- - - - - - - I-- - - - - - - - - - - - - - - - - -

cu C THIS L(,OP FOaCv.S TME EIGr..JVALIJES TO LIE E'FTWEEN EVAL
4 9 PLUS AIZ MI.IS Ci.E. THE E AtN!' .4 VECTu

P
S AR. EVAL

,u C kE b-LCIIVELY Lw, A.4r HIGH ESTIMATES 70' ALL EVAL
a& , T7L f TuEfNVAL,E,., EYAL

------------- -------------------

A(I)=:.(.)/uL EVAL
74 b(1)=L(i)/0, EVAL
.b L(I)=-I.U EVAL
Jb 6 .(E)V1, E vAL
J7 LA, bO K=ALP EVAL

.) C FIiu THE K-Tr EIGE,-VALUE. ALSO LOW AiP HIGH EVAL
u L LSTIMAILS Fom IHE iy+I-ST TO LP-TH EIrfNVALUES FVAL

4i A ARL IMPRCVLo. THE EICENVALUES APF FuINL 114 EVAL
42 L ASLhDING OhiEr(. r-VAL
43 1. THL iA-1H EI0LNVALUrL IS CONSIr)FRED FOUND &F TuE EVAL
4-4 C THL hbH Aria. LOW PLACTS AGREF TO SEVLN UECIMAL EVAL

.,; L. I-LA.LS. EVAL

%71 IF(( (i).J-E(K))/u'AXI(DA"(W(K)+DAiARS(E(K)) 1.'-d9)-5. E-I)5050 10
loo IV A:=((V4)L(K))*O.b EVAL

4u L, X lS A GUESS FUR THE K-TH EIGFNVALUE. COPtPuTL EVAL
zi C NUbtbLR OF EIGENVALUES EQUAL OR EXCEEuItI X PY EVAL
toe C USII.e STURM SEwuENCE (OPTEGA.* METiOL). EVAL

bgzl~uEVAL
P )ZA(A)-X EVAL

24, IPFFI)) 102,104,104 EVAL
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D7 u
.  

SI=-I.o EVAL
bo NO EVAL
Z9 GO TO lub EVAL
oU IU4 b1--1.0 EVAL
,. NI,= EVAL

-" 1i)a I0 120 [=2.LP EVAL
u3 IF(U|I)1 106-113010t) EvAL
b* A.Uu IF (l6(-1,)) 107-114, 107 EVAL
oa) 1J7 IF (UAbSiF (I-)) Lj6BS(F (1-')I 1 11e12

07 C IF iE PREVIJUS TWO TERk S OF THE STUr%' SLOuFrjCE -VAL
at) . bEL VERY SMALL' THEY APE FORCED TO U

. 
CLOSER EVAL

u C TO OJE IN MA. NITUDE TO AVOID UNDERFLOW PkOBLEVS. EVAL

7L ILI F(I-1)=rtlI-l)l.L15 EVAL
7e TU ,' - EVAL

74j lie S~s EVAL

7'% 'u 1O 1,az FvAL.

7L.) S F () =(Ai)-X),51 EVAL
7u il Tu la.b EVAL

7o i,.a SN=T:Jl EVAL
/11 IF(F (I) )116 17tll6 EVAL

.,I IF ($1+S.) 117t 12t;.117 EVAL

,4 117 1 FVAL
b.) llu LUNT I:JUr- FVAL

. C NO , LET P: tLC TmE '4 FFR OF EVAL

bo c LILI.VALUES bM.LLE, T1A0: X. EVAL

u I=LP-r. V AL
9. 1 (N .LTr.K) (jO TV k 0 E~VAL

Iu L- ...............--- ..............- ----------------------

,I L X OLLOWES A.. uPPER COIJNC FUR THE FVAL
g , I. l-1, TO N-11, EIGLN VALES. FVAL

I4 14 Uu 15 .K.t EVAL
Vi It , V.,J).X EVAL
Vwa gu 1.=14+ EVAL

Vo 9 IF ALL THE EIGENVALUES ARE SMALLER Tr-Ar: A, EVAL

vv ,EbI AHETHLI, WL HAVE CONVEHGr TO THL EVAL
u . K- t EIGENVALUL. FVAL

luA IF(LP.L1.r) I0 TVb EVAL

lU.) .4 A -o JW-h.LP EVAL

A C IF A It LARULR THAN PREVIOUS LoWrP EVAL
Ii.u C. bOUIL. IPJCHLASL THL LOWER BOU11D. EVAL

Auo (k - L(J)JI (e -b
IVY 9 .L(,)=" EVAL
liu (,TO 6 FVAL

li1 k. HES1,PL PU1 ANOl SCALE FX6ENVALlE
-
. rVAL
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11'. C --- - - - - - - - - - - - - - - - - - - - - - - - -11b L.0 60 1J.LP FVAL
11c Afl)=A(1)*eD EVAL
117 B(I1)BC±)SBU EVAL

lieu C $0Hl E16ENVAI6ULS IN ASSOLUTE DESCENDIN6 ORDER EVAL
lk. c ------------------------------------
122 J=LP EVAL

123 KE FVAL
U4 O 80 1zIL- FVAL

1ieb IF(DAkBS~hCK))-DAb(W(J)))03e63e65

"27 )J-i EVAL
12b, Gi 70 au EVAL
1e9 b* L I P=% 0 rVAL
130 ~ KK1 EVAL
13A do CvJNT1I.UL EVAL
132 HiTINN EV AL

.)3 N
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RLLY~toAUSi.NE.1 (1) .%U8
1 SuBHOUTiNE EIGVLL(LP.NMPRPA*t3,E,VP.0) EvEC

IMPLIC11 HEAL*B(A-H,0-2)

C R 15 THE GIVLN MATRIX. FvEC
5 C LP IS DIMENSION. OF THF MATRIX R. rvEC

0 c NM IS THE 14AAIKUP' 0I4EFSIOi OF R At~r V. F'VEC
7 C A AKt. THE DIAGONAL ELEMENJTS OF THE TK4DIAGONALIZEO R.rVEC

a C b AF.L THE OFi--UIAGOiVJAL ELEMENTS OF TRIDIAGONALIZED P.FVEC
c L AKE THE EIGENVECTORS OF R. FvEC

Iv C V MILL HOLD THE EIGENVECTORSSTOPO COLUMN*ISV. FvEC
1I C P A14L Q~ ARE vELTORb FOR TEMPORARY STORAGE 70 E6EC
I'd C HULL CuEFFICIE"TS OF THI! LINEAR FQUA1IOJS WHICH PvEC
13 C LEhTYiIl.E THii EIGEivVECTORS. FvEC
14 C-- - - - - - - - - - - - - - - - - - - - - - - - - -

lu LP1LP-a IVEC
17 UU 50 IAZ1,LP EvEC
10 XA(1)-L(1X) EVE C
Ili T=8(2) FVEC

k C EIAE C OEFFICIENTS TO COMPUTE TE!THEVEC
C.LltoLIVLCTOR. FIRST PICK !9EST PIVET ELrWENT. EVEC

Uv 10 IzI.LPI EvEC
5 l1F(UAoS(A)-UAVS(b)(I+l)fl4,6pA

4 I(~(4)EvEC
W(I)A(11)-LIx)EVEC

V(Ip, i)=ut+2)
4v i=-A/(A)EVEC

.0xz.0(I)+y FVEC
.) IlW(L*1.1,L.I) Y.(IX)EvEC

Je iv TO lu EVE C
J1 0 IF(X) 8tioe FVEC
J4 AZ1.UL-U FvEC

B5 b PIl)X EvEC

EvEC

Yz~tl~zjEvEC
40 IV CU4T I NUL EvEC
41 L - - - - - - -- - --.- - - -- - - - - - - -49 . .:-OLYE TnL AF30VE EQUATIONS FOP THt. EIGENiVECTOR. EVEC
4.5 c TEbl LAST PIvOT ELt.FEtT. EvEC

':j du 0F(A)21.kd,21 EVEC
4c al V(LP.IX)=1.O/X P2VEC

'~ i~LM1EvEC
S. vi(Ix1.(1.-wi(I)*V4LPtIX) i/P(I EvEC

X=V(Lk#IAP**2+V(IsIX)S** EvEC
lZ1:-1 EVE C

54 I~i)6,.,,2~EvEC

5.. AZ+vtIeiA)**2 EvEC
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b? 60 TO 2D
b a 2 VCLP#1XP=1.ULIO EVEC
b9Go TO 24 FvEC

bu .50 XZOSQRIIX)

UIDO 311=:.LP FvEC

u4 c 1R..NSFORM. LIGE,dVECTOR FOR THE TRlrllAuO.AL rvec
W; c ATnIX TO AN EIGENVECTOR OF TI&. OPiGPNAL OATR1X. rvEC

ba C-

bo I-t.P.Ew.2) GO IV bO EVEC
LJC. U(,2 kft=Z.LIJI EvEC

74, K =LP -K
71 V=U.u t ver

Ileit 35 !:zs'Lv I'(

7
u .9'. 4-0 1:.U& EvLc

77 bu ((Jlijl 1IJUL. EVEC
70 kLTUFk,. ve
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The above sample output listing is given here only to illustrate

the format as programmed in RELY I at the time of delivery. The values

shown are of no significance relative to the content of the report

(though they are those of a sample from Example IV, Sec. 3.3), nor are

they expected to be repeatable exactly with implementation of RELY I at

a different computer lacility. The sample is offered as an aid to

users, showing format and exemplary behavior in a given random case.

If
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