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Preface

This report is the result of my investigation

into numerical solutions of differential equations,

expressed in both differential and integral form.

The method of finite differences was utilized for

solutions of the equations in differential form. A

Fredholm integral representation was developed and

numerically evaluated to compare with the finite

difference method. The purpose of this thesis was

to examine the solutions obtained to the differen-

tial equation using both above methods and report on

the advantages and disadvantages of each. A secondary

purpose of this thesis was to strengthen my own mathe-

matical background on numerical methods and their

ability to solve differential equations. I have

attempted to include sufficient detail to provide the

reader with a step by step account of the development.

I want to thank Dr. Bernard Kaplan, my advisor,

for his guidance and assistance throughout this study.

I would also like to thank Dr. John Jones for his

many helpful discussions pertaining to spline theory

and also to Dr. Wilhelm Ericksen for his patience in

helping correct many of my computer programs. I also

wish to thank Dr. W. Kessler of the Air Force Materials

Laboratory for sponsoring this study. Finally, I
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would like to thank my wife, Carolyn, for her pa-

tience, understanding and typing.
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Abstract

A study of several numerical methods for the

solution of boundary value problems, in both one and

two-dimensions, was conducted using the CDC 6600 com-

puter. The method of finite differences was employed

for solution of the equations in differential form.

These numerical solutions were compared to those ob-

tained by transforming the original differential equa-

tion into integral form and approximating their solu-

tion using numerical integration via the trapezoid

rule. All numerical experiments were conducted using

Dirichlet boundary conditions.

In the one-dimensional cases studied it was found

that both methods are equivalent, i.e., yield identi-

cal solutions whea the integral representation had a

linear weighted Green's function kernel. In addition,

the integral approach was found to be as accurate in

all one-dimensional cases as the method of finite

differences. The finite differefice method proved

quicker than the numerical integration techniques in

all but one test case where the Green's integral rep-

r entation was examined.

$For the two-dimensional investigation the steady-

state heat conduction equation was analyzed. Again,

the method of finite differences in two-dimensions

x



---:L was compared to the integral approach, using cubic

splines. The method of finite differences was found

to be superior in calculating the internal temper-

ature, at all nodal points, as compared to the inte-

gral-spline solution.
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I. Introduction

Background

A majority of problems encountered in techni-

cal research by engineers and physicists can be ex-

pressed in mathematical form as a differential or par-

tial differential equation. Solutions of these equa-

tions are dependent upon initial conditions and/or

boundary values. (If the values of the function are

specified on the boundary, the equation is said to

contain Dirichlet boundary conditions. If the normal

derivatives (gradients) of the function are specified

on the boundary then Neumann boundary conditions are

said to exist. The boundary conditions are referred

to as mixed if the initial conditions describing the

differential or partial differential equation contain

both Dirichlet and Neumann conditions.) Because the

equations possess unique solutions it does not nece-

ssarily follow that these solutions are easy to ob-

tain. In many cases the exact closed-form solutions

are not attainable; and as a result, approximation

techniques must be used to generate analytical values.

For this reason, most of all important problems re-

quire application of some numerical method.

Numerical Techniques

Though there are a variety of techniques available

(
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to handle specific boundary value problems, this

thesis will be concerned with three specific methods3

(1) The method of finite differences

(2) Fredholm integral equations and their numeri-

cal approximations

(3) Utilization of cubic splines

One-Dimensional Cases

The method of finite differences is based upon a

scheme of numerical differentiation. The original

differential equation is replaced by a finite number

of algebraic expressions defined over the interval;

this set of equations is easily solved using the com-

puter. In the one-dimensional cases methods (1) and

(2) are compared for both accuracy and speed of com-

putations.

The second method transforms the original differ-

ential expression into an equivalent integral equation,

usually a Fredholm integral equation of the second or

third kind (Ref 1: 381-382). The advantages of this

technique is that in many cases a weighted symmetric

Green's function kernel results and can be evaluated

using standard numerical integration techniques, such

as the trapezoid rule.

2
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Two-Dimensional Cases

In the two-dimensional analysis the steady-state

heat conduction problem, with an inhomogeneous boun-

dary condition of To along one edge, was investigated.

The analytical solution was calculated and compared

at 16 interior nodal points with the method of finite

differences.

The third method investigated in the two-dimen-

sional case was again one of converting the original

partial differential equation into integral form by a

method proposed by Hajdin and Krajcinovic (Ref 2. 523-

539). The unknowns appearing within the integrals

are approximated by cubic splines and numerically

integrated. Again methods (1) and (3) were compared

for both accuracy and ease of computation.

Purpose

There are several important for investigating

numerical integration techniques two methods bases upon

numerical differentiation. Computer utilization costs

are normally are direct function of utilization time.

Thus it becomes of prime importance to use the most

cost effective method in solving a particular problem.

Hajdin and Krajcinovic contend that numerical inte-

gration is many times more accurate than numerical

differentiation and that results through numerical

3
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integration should be superior to those based upon

the method of finite differences. For the same accu-

racy one should be able to significantly reduce the

number of points (i.e. number of algebraic equations)

with numerical integration (Ref 3: 509-510). The

purpose of this study is therefore to determine whe-

ther or not numerical integration is advantageous or

comparable to the method of finite differences, a

method of numerical differentiation.

Plan of Development

Due to time restrictions placed on this study,

four types of problems were considered. In the one-

dimensional analysis the problems and boundary con-

ditions were the following:

(1) + 0, 0J()I

(2) + =I , 3(O)2 0, J(0) } (1)
(3) X X4 1V

Equation (1), equivalent to the one-dimensional Helm-

holtz equation, is introduced to illustrate the pro-

cedures used in transforming differential equations

into their equivalent integral representation. In

addition, equation (1) is also used to demonstrate

the numerical methods employed to evaluate the Fredholm

integral representations of equations (2) and (3).

4



All equations had closed-form analytical solu-

tions that were used for comparison to the numerically

generated values. Numerical computation was carried

out on the CDC 6600 computer using identical numeri-

cal techniques in all cases. Also, the number of

iterations per interval was kept the same so that an

accurate comparison of both methods could be made.

Solutions were first obtained for 1-10 iterations

over the boundary, and increased to 50 iterations/in-

terval for the final analysis. All computation was

carried to six significant decimal places.

In two-dimensional analysis, Poisson's equation

was investigated. The problem chosen was the steady-

state heat conduction over a square plate with an

inhomogeneous Dirichlet boundary condition at one edge.

The known analytical solutions were developed using

the method of separation of variables. Over 10,000

independent series summations were required at each

interior node point to yield six decimal place conver-

gence. The method of finite differences was compared

with the analytical results at 16 and 81 interior

points. For integral conversion, the method of cubic

splines was used and numerically integrated. The cal-

culated solution was compared with the known analytic

solution.

5
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II. Theory

Integral Equations

An integral equation is one in which the function

to be determined appears under an integral sign.

Linear integral equations, that is, equations in

which the unknown function f appears to no higher

power than one, are conventionally divided into two

classifications. An equation of the form

o< x)j~c Rx + xS(,4fm 4 (2)

where v(, and K are given functions and oL and

b are constants is known as a Fredholm equation.
The function K(xS) is known as the kernel of the

integral equation and is frequently a weighted Green's

function. If the upper limit of the integral is not

a constant the equation takes the form

C'((X)f(x) = F'c) + ft1-.S) (3)

and is known as a Volterra equation.

When XO 0 , equation (2) involves the unknown

function f both inside and outside the integral. If

O"'O, the unknown function appears only under the in-

tegral and the equation is known as an integral equa-

tion of the first kind. If PC =1 the equation is

said to be of the second kind. In the more general

case when o( is not a constant the equation is

.. . . n - _u .. . I ~ l I I II I I II~ p .. . . I
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called an integral equation of the third kind (Ref Is

382).

Multiple Integrations

Certain integral equations can be deduced from

or reduced to differential equations. In order to

accomplish the reduction it is frequently necessary

to make use of the formulas

ff () SAST(''J" q)AS(4)
Ah 0C

Equation (4) is obtained by integrating the left-hand

side by parts, that is

ES j1 J4Y4. Jf XPa = f~n) x Jfnjifc) J~ f (5)

More generally, by a repeated application of this

procedure, the results of integratingcx) n times

over the same limits is

n~ 4iwmes
SX

fX)X.... IX -(6)

Expression (6) will be useful in manipulating multiple

integrations in the work which follows (Ref 4s 722).

Differential Conversion to Integral Form

To illustrate the mechanics for converting a

differential equation into integral form, consider

7I
?A_
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the boundary value problem

44 (7)

with boundary conditions

y/(o) b oL, y(& b (8)

First integrate both sides of (7) with respect to

X over the interval (OX)

xd - (9)

0
or

V - ) (10)

1.,O 0

Therefore (7) is equivalent to the expression

.;9 = C - 3i(xh x (11)

where C represents the unknown value of

A second integration over (OX) leads to

Cf Ox -Sf fcX) AxAx (12)
0 0

or

3 d 1, = - JX- f(x)JxJX (13)
@

This becomes

W (14)

Using equation ( 6) for the right-hand integral and

8
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simplifying, equation (14) becomes

j(x)= J(o) + Cx - f-"(J)J6 (15)
0

or
X

(X)= Cx -5(x-)fc)c. (16)

The constant C can be evaluated by applying the sec-

ond boundary condition, namely

o4 Cj - g)()j (17)

Solving forC gives

C: = 1 ,, CI (18)

Substituting C above, equation (16) becomes

a'~ ~ J P,(±~ + -rf '' f )f )cA (19)
o 0

This last expression can be rewritten by expanding

the first integral, i.e., J +J . Equation (19) then

becomes 0 X

0

- - -" -(20)

0

9
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Collecting terms under the same integral limits, (20)

becomes

0 X
With the abbreviation

(X (22)

equation (21) becomes

(X) ( z.)X + Ck (23)

Thus, the integral equation corresponding to the

boundary value problem (7) is a Fredholm equation of

the second kind.

Kernel Properties

Note that the kernel, K(xr) given by equation
(22), has different analytical expressions in the

two regions, )C<5 and X >5 , but that the expressions

are equivalent when X • Observe also that in each

region K is a linear function of X and that K van-

ishes at the end points. j((xO) can be thought of as a

function of X for a fixed value of

10
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0 a

Fig. 1 The Integral Kernel, K(x,f)

Finally, K(x,j) is unchanged if X and g are inter-

changed; that is, K((N ) = Wf, X) * Kernels having

this last property are said to be symmetric and obey

the Reciprocity principle. Many of the kernels gen-

erated in converting boundary value problems into in-

tegral equations have this property and are commonly

identified as Green's functions.

The Green's Function

Green's functions are extremely important mathe-

matical quantities in physics. Mathematically, they

allow the solution of differential equations to be ex-

pressed in integral form. The solution of some inhomo-

geneous differential equation

t (24)

with homogeneous boundary conditions

11



J()O) (25)

and where L is the self-adjoint differential op-

erator,

L=J( (xA.L)e+c x (26)

can be expressed in the integral form

W S G (x, of(q) c(27)
where G(xg) is called the Green's function (Ref 6: 599-

600). The advantages of the Green's function are:

(1) The homogeneous boundary conditions are in-

corporated in the integral representation (27).

(2) Equation (27) enables the differential rep-

resentation, (24), to be solved via the inte-

grating process.

(3) The Green's function method also allows solu-

tions of (24) with inhomogeneous boundary

conditions (Ref 5: 12-14).

Determining the Green's Function

The Green's function satisfies the differential

operator of a homogeneous boundary value problem,

everywhere except at one point. In addition, it

12
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vanishes at the end points and has a discontinuous

first derivative at X= . For a boundary value prob-

lem of the form

L '-Jx) (x) (28)

the Green's function, G(X,g) , is defined as the solu-

tion of the equation

L G(x,4) = z (Xj (29)

where is known as the Dirac delta function

having the properties

S(Y~) = - (30)f o x =

The Green's function satisfies the homogeneous diff-

erential operator, L , at all other points other than

X= 5 . At X-- a singularity exists and is governed by

the properties of the delta function (Ref 15: 7).

Over the interval (0,2) it is possible to obtain a

convenient form of a solution for G(Xs)by assuming

that the Green's function can be represented by G(%)

whenX<c, and by G,(Y) when )>. In the one-dimen-

sional case the Green's function has the following

properties:

13
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(1) 6(xm) , and the functions G,(x) and

Giuc) each satisfy equation (29) in their in-

tervals of definition, i.e.,

LGx)= 0, o.nd L G2 (x)= 0 (-For x{f) (31)

(2) The function G(x, ) satisfies homogeneous con-

ditions at the interval end points X= 0 and X=I .

G,(o) 0, (32)

(3) G(xg) is continuous at X=q • This requires

that

G,( ) = (33)
(4) The derivative of G(Xf)has a discontinuity

of magnitude -Y ()at X=g , that is,

-G.xl A - 1(34)

Using these four conditions, it is possible to deter-

mine G(m4) and represent the solution of the'differ-

ential equation in integral form.

Example

As an example of determining the Green's function

for a differential operator, consider the boundary

value problem

14
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fix) (35)

with inhomogeneous boundary conditions

()-=C, JU)~ = (36)

The Green's function is determined as the solution of

L G(x~o (37)

where LzL in this case. Equation (37 ) becomes

4!G(xg) -(38)

Assuming that G6N,f) can be expressed by G,(x) and G(X)

over the interval (Oj), the Green's function will be

of the form
SG,(x) x < (

G (m,) = Gz.x) X>f (39

For X.4 " ,e,(x) and GNx) satisfy the homogeneous

equation (31)"

L Go() L Gcx) = 0 (40)

The simplest form of solution, satisfying equation

(40), is to assume that G(V)takes the form

15

mo
-,



GA(xX ) 
(41)

+ +D x>

From the previcks properties (2), (3) and (4) for the

Green's function, all of the constants in (41 ) can

be evaluated. From property (2), G(x,) must vanish at

the ends, therefore

G,(o) 0 (42)

and

0 -2 D . D= -C (43)

Substituting these values for B and D back into (41)

the Green's function becomes

G(m) = (44)

Using the fact that GNc)is continuous at X=S, pro-

perty (3), namely

= (45)

the constant C can be expressed in terms of A a

A =c(q-x) (46)

C (47)

16
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Substituting expression (47 ) back into (44), the

Green's function takes the form

G (xif): - (48)G (, ) (x-.2) x >

Using property (4), the fi2 :ivative of G(X,f)must

be discontinuous at X=f fically,

G (X)I - GoWj (49)
CiX X,§ CX X-cLX

Doing the differentiation yields

,P1  - .,' -/ (50)

or

-(51)

and equation (48) becomes

G (xf) = (52)

Equation (52 ) represents the final expression for

rO(X,) for the operator L- Jz" Notice that this is ex-

actly the form of the kernel for the integral expansion

of this boundary value problem, given by equation (22).

The Green's Integral Equation

Many different boundary value problems, upon

17



integral conversion, have symmetric kernels equivalent

to weighted Green's functions. Therefore, two pro-

cedures to generate the Green's function can be used:

(I) Through integral conversion or

(2) Finding Gx,f) from the differential operator, L.

It ohould also be mentioned that not all integral

conversions yield symmetric Green's functions. In

particular, if the differential equation is of the form

.Px (53)

with homogeneous boundary conditions

j(o) = 0, 0(I)= o (54)

then the resulting kernel of the integral equation is

both nonsymmetric and discontinuous at Xwf , unless

0- 0 (Appendix A).

Both methods (1) and (2) should be equivalent,

however different expressions for G(A)can occur. As

an example consider the one-dimensional Helmholtz

boundary value problem

with boundary conditions

J(o)= o, J(I): o (56)

Upon integral conversion, page 68, it was found that

j Cxwas of the form

18
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where the kernel is defined by the expression

[x(I-:) = (58)

Expression (58) represents the equivalent weighted

Green's function for the integral conversion method.

Next, consider the problem in operator form, where L

represents the one-dimensional Helmholtz operator

X (59)

The Green's function must obey the differential equa-

tion

A z,() + (6o)+X G .g (x -)

From the method outlined using the differential operator,

L , the Green's function was found to be (Appendix C)s

G(xi) A M (61)

and j(v)is given byI

co - - (62)

where G(ig)is defined by equation (61) and f(f)=-I from

19



(5 5). Clearly, Sj() is represented equivalently by two

completely independent forms of the Green's function;

that is, equations (57) and (62), each with distinct,

different kernels, must be equivalent expressions.

Equivalency of the Integral Equation

and the Green's Integral

It will now be shown that equations (57) and (62)

are identical expressions and that they both satisfy

the one-dimensional Helmholtz differential equation.

Equation (57) can be written in the form

yjX) (I-~Xj()) 5+ j (-f[ W(63)

where the kernel, defined by equation (58) has been

substituted over the appropriate limits. According

to Leibnitz's rule for differentiation under an integral,

(Ref 11 383), the first derivative of (63) becomes

X x

The second derivative of J(X) is found by differentiating

(64) with respect to X , and is

V() -X(0'jx-I) - -IX(*JX- (65)

Substituting the equation for j'J, equation (65), back

into the original differential equation, expression (55),

it is found that

20
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(jX) +Xj 1 (66)

Hence, the integral representation given by (57)

satisfies differential equation (55) and therefore

must be equivalent due to the uniqueness of solution

guaranteed through the given boundary conditions.

Equation (62) can likewise be written in the form
XI

~j~x) 5I X(I-X)StnX SI nW)( SInX*) cif (67)
a x

where againG(%;)has been substituted over its defined

limits. Using Leibnitz's rule the first derivative

of V(x)becomes

~)- Af~o U-SI') 5A%- X [cos ) s',)(- ) 68

The second derivative, differentiating expression (68),

becomes the quantity

+ \cos )X(J-4),Ox t Xco5XxzniX{(-X) (69)

Substituting the integral expression for and j(x)

back into the original differential equation, it is

found that

sil (70)

21
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After simplifying, the right-hand side of equation (70)

becomes

A"I AX(ss-nx RcoSSbx) = ) (71)

Therefore, the Green's integral representation also

satisfies differential equation (55) and both integral

forms, equations (57) and (62) must be equivalent ex-

pressions.

Integral Representation

One last procedure will be introduced to demon-

strate how equation (62) originates. Consider the two

equations

J ?_I)~ = 4(X) (72)

and

PG~xg) _S (X(73)

Equation (73) represents the Green's function solution

for the differential operator L . Multiply equa-

tion (72) by G(xi.) and equation (73) by (x) , subtract

and integrate over the interval ( ) to obtain

o

- .*- f(-4% 4-(74)
0
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Rewriting the left-hand derivatives in equation (74)

and using the integral properties of the Dirac delta

function (Ref 5j 6), equation (74) becomes

0

- N x + 4 75)

Integrating the left side by parts, using the fact that

S JV= -a CIJC U u-5SV iu_ x (76)

The left-hand side of equation (75) becomes

"- -- / -,&: dX A (77)

Evaluating at the limits, (77) becomes

G~.) ) ei, ut~ - JIGm)+ :110)jGf) (78)

Because the Green's function is zero at end points the

first two quantities on the left drop out. The only

expressions left to evaluate are the derivatives of

dr-*Cx on the appropriate intervals. Differentiating

equation (52), which is the knownG(rg)for the operator

,gives
.(x~(f -*(. )  X < (9

Using Lr(14f) above, equation (78) becomes
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WA +

- + ~-fGXFfXd +4~ (80)
0

Solving for (|), and substituting the boundary con-

ditions at Tjo) and V) , equation (80) becomes the

expression

~ 7()= 5cx,)(x)Jx + 6S . (81)
0

Interchanging the labels A and 5 from the Reciprocity

principle (Ref 6s 328) and using the symmetry of G(xr),

equation (81) is transformed into

(X) G(w.;)F F c) + X. + Q("-x) (82)
fA It

This equation is the Green's integral solution of

differential equation (72), with inhomogeneo~us Dirichlet

boundary conditions. Note the similarity of this rep-

resentation versus the integral equation expression

given by equation (23).

Numerical Integration

An integral of the form ,f(x)dx stands for the

area represented by 1(x) over the interval (ab). This

area can be approximated by several methods; the tra-

pezoid rule is based on linear interpolation, the

integral is expressed as a sum of N trapezoidal areas;

Simpson's rule for numerical integration is based upon
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quadratic interpolation, parabolas or polynominals of

degree 2 or less are used to approximate fCx) between

three successive points; the Newton-Cotes method is

based upon polynominal interpolation of degree 3 or

more. In this thesis the trapezoid rule is used to

numerically integrate all one-dimensional cases.

Trapezoid Rule

The area of a typical trapezoid with base length

and sides fixi.,)and f(yi) is

4Pe =~f~x + e~ (83)

The combined area of all trapezoids, over the interval

C-x=X to 6-xqis

To~aI arecL U(J)f~ W] r+
~3JJ +*** +(84)

2*f(c)

AX

Fig. 2 Trapezoid Partition
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Therefore, for the trapezoid rule equation (84) becomes

S4,~~~[f(x.) +2 .Av..' + +2f (XOi..) +f (XN (85)

where X, 2, ... ,X are equally spaced points dividing

the interval from Mix, to b- dW into (N-i) equal parts,

of length =V(N-'). The trapezoid rule can be made

as accurate as desired by choosing h very small, i.e.,

N very large. In addition, there are several advantages

in using trapezoid interpolation versus the Simpson's

rule.

Trapezoid vs. Simpson's Rule

It was shown earlier that all differential equa-

tions of the form

LX (86)

with homogeneous end conditions have linear Green's

kernels when expressed in integral form (Ref 1: 461-

462). The linear kernel of equation (86 ) is shown in

Fig. 1 and given by equation (22). Due to the linearity

of K(xm ) and the presence of a 'corner' at X =, Simpson's

rule for numerical integration will be less accurate

than the trapezoid rule (Ref 7: 217, Problem #4-25).

Trapezoids furnish better approximations to linear

kernels than parabolas. Parabolas always exceed the

actual area bounded by three consecutive points across
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the discontinuity, atX=§, for a linear kernel. In

addition, Simpson's rule can only be used if N, the

number of points in the interval (Ob), is odd. By

using Simpson's rule with N even the computed integral

will exceed the true value because of the multiple

contributions from trapezoids adjacent to the dis-

continuity. As an example to illustrate what happens

by using Simpson's rule when N is even, consider the

area bounded by the linear kernel given by equation

(22) over the interval (0,1). The linear kernel is

R~C X( = L x~g
g 

(87)

Divide the interval (0,1) into three regions defined

by the four equally spaced points

= 0 2 '3 X3 Iv / I

Fixing = 3 and applying Simpson's rule to the area

defined by Wm), one extra contribution from the

region defined over (x2,x,) is added into the total area.

X,O 0 % V Xu' 3t1u1

Fig. 3 The Linear Kernel, K(x,%)
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The first contribution comes from applying quadratic

interpolation over the first three points (X 2, 3 ).

Recall that in quadratic interpolation a polynominal

of degree 2 or less is used to represent a function fc(x

over two successive intervals (X,,K~,, 3). Mathematically,

if the value of f(x) is known at three locations, a

polynominal, ?(X) , can be determined of the form

A(x)- A x t-C. (88)

where A, 5, and C are all constants to be determined

from the three points

(xIjT'')) (?-fX. > (X,

Once determinedf(x)is then substituted for {(x) over

the interval (s. x2, x3 ) and integrated by expression

(85). Over the points X,, X,, and X3 given above, and

using the value of K(x,$) on the interval Xq, f ()can be

found and is

I(X) = X (89)

3

Therefore, Simpson's method applied to the first three

points in Fig. 3 is the area represented under the line

To calculate the remaining area under K((0) for X)f,

three additional points and the values off{()must be

known. Now however, only two points remain for the in-
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terval %>I , X., and X,. If x. is used again, in con-

junction with X3 , and X,,, a parabola can be constructed

to pass through all three points. The polynominal over

the 'corner' of l(I) defined on the interval (x,, Itt, X3)

can be and is

f (X)= -,X" + A x-t (90)

Hence, the area under the interval from )( to )(,is

added onto that already calculated from the first inter-

val, adding in the area (y2,y) twice. Not only is

Fig. 4 Quadratic Interpolation Across
the Discontinuity 5= V3 .

the area via Simpson's rule in error but note that by

using parabolas a larger area is actually obtained

since F()encompasses the linear boundaries of K(u).
Even for N odd, parabolas still overestimate the desired

area, and not until K()is represented by a non-linear

function does the Simpson's technique yield a more
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accurate result compared to the trapezoid method.

Finite Difference Method

The method of finite differences is a process

of numerical differentiation; the original differential

equation is replaced by finite difference approximations.

This technique converts the original differential equa-

tion into a system of linear algebraic expressions

which can be solved simultaneously to give solutions

at a finite number of points.

The differential operator by definition is ex-

pressed quantitatively as

lin (X~thx) - ~J(X)AX-9,0 AX(91)

However, because the computer cannot take the limit

one must approximate by using a small AX, that is

- 4(92)

This quanity is known as the first forward difference

quotient. Expression (2) represents the change in

some function by incrementing X a positive amount AX.

The general procedure to obtain difference ap-

proximations for derivatives is to express several

values of J at adjacent points in a Taylor series

expansion, it is then possible to solve for the needed

derivative through algebraic manipulation.
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To derive the numerical analogy for the first

and second derivatives, expand in a Taylor series

about the two points X~h and X-h

:fr h)= J,(x) i. ,X) + +. 0aI 4 VO). (93)

oil o;) (94)

Adding equations (93) and (94), the sum becomes

jff+h)+ +x-h) P xy) + . + oWh") (95)

where O(h) refers to terms containing fourth and high-

er powers of h. By assuming the higher ordered terms

are negligible compared to the lower powers of h I
for small values of ho equation (95) can be solved

for and is

I "cx) : _ ~X + h) W +x ,___x __
0 - o(h') (96)

As h becomes small the remainder terms can be neglected
and (96) reduces to

The above expression is known as the central finite

difference (CFD) approximation to the second derivative

of x) and has an associated error of order h2 .

To approximate the first derivative, subtract

equation (94) from (93) and obtain the quanity

(jCK44') - JO-h) + OM t (98)
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or, solving for j'(X)

~~ o) -1(9

The central difference approximation for the first

derivative is also of order h2. For small values of

h , 1 becomes

xh .4- (100)

eh

In addition to the central difference scheme it

is also possible to approximate the derivative from

two adjacent points, a distance h and ZV from X , the

technique is known as the first forward difference (FFD)

method. To find the first forward difference ex-

pression for the first derivative solve (93) for '(x)

(X) J(X i -~(X) + N(101)

Likewise, for the second derivative

=,. i) j (xt-h)-2(x! )_ + - + o(I) (102)

Note in the FFD methods the errors associated with

equations (101) and (104 are of order h. For the CFD

methods however, the errors are of order h1. There-

fore, it can be concluded that using paints symmetrically

located with respect to X give more accurate results,

by a factor of h , than those based on the FFD tech-

niques (Ref 8s 63).
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Matrix Methods: The Integral Form of Solution

A definite integral of the form can be

written exactly as

where the interval (o) is divided into N subintervals

of lengths 6,X, .... ,AX,3 and XK is a point of the Ktb

subinterval (Ref 11 444). An approximation to (10)

can be obtained by expressing r) as a weighted sum

of the ordinates f(Xk) at N conveniently chosen points

X 1 , XP, .... ,XN on the interval (Qb), that is

= Rx fx: + ffYx,) + +.. (14)
K- I

where is a weighing coefficient associated with

the point XK. The coefficient DK, when the points

X,, XZ , .... ,Xd are equally spaced, can be chosen in

accordance with formulas for numerical integration,

such as the trapezoid rule. Recall that use of the

trapezoid rule for an integral gives

where (b- Identifying the 'weighing' coeffi-

cients, DK , with the trapezoid rule it is found that

.. (106)
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In the same way integral equations such as

a.

can be approximated in the form

~j(x) + ~ .D (DKjK (108)

where, again the points XXare chosen at N locations

in the interval (a0,). The OK values correspond to

weighing coefficients based upon the approximation

method used, i.e., Simpson's or trapezoid rule. By

requiring that both sides of equation (10 be equal

at each of the N chosen points, N linear equations

results

j(xi) = FRxi) * ID K~fIK~(K . (109)

where the unknowns P,.... , x)correspond to the

values of the unknown function jat N locations.

Introducing the abbreviations

=L Exj J(L, F =FX (110)

where K; is the value of K(x,;) when XvX and =

expression (109) becomes

'al

The kernel ( can be written in the form of a matrix

34
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I (112)

Also, DK can take the form of a diagonal matrix by
defining t=

o D, (113)

Equation (111) can be expressed in matrix form as

where I is the unit matrix of order N. The single

bar denotes a column vector and the double bar a matrix

quanity. Consequently the integral form of solution

is expressed, for computer analysis, as a problem of

matrix multiplication.

Matrix Methodst The Method of Finite Differences

Just as was the case with the integral conversion,

it is also possible to transform the method of finite

differences into a problem of matrix multiplication.
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Consider the general second order differential equa-

tion

+X j + (x) r (x) (115)

with boundary conditions

J(Xi) = A)JiN) (116)

Using central finite differences, the first and

second derivatives of p)can be approximated by equa-

tions (92) and (97). Substituting these quantities

and combining terms, equation (115) becomes

z ) + (X)V (x)-Z}

+LJ(X+I) r+ Qhx (117)

Once again introduce the notation

Equation (117) becomes equivalent to the system of

linear equations

j.-I, + iG.* ,E.,-z Ro. (i.z ..3; P-1) (119)

If the end conditions, -A and I: B , are substituted

(119 ) can be expressed as the system of equations

defined from L'2,3,...,t-Is
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F,2 4 ~Gat+EZ Rz

i-3 S 3  R,.

iS4 S (120)

~ F- + + B11 1.E R

and rewritten in matrix form as

F3  G3  E, R3

o Fj G-i Ef R4 (121)

0 0

LG Fri ., -

The left-hand matrix in equation (121) is known as a

tridiagonal matrix. The elements on the principle

diagonal, super-diagonal, and sub-diagonal, are non-

zero, with zero elements everywhere else (Ref 9: 104).

Expression (121) can be written in the more concise

matrix form

(122)

where B corresponds to the tridiagonal coefficient
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matrix, and and R are the perspective matrix

vectors. Again, the differential form of solution is

expressed, for computer analysis, as a problem of

matrix multiplication.

Simultaneous Solution of Linear Equations

The solution for a system of equations, AxI,
is most efficiently solved by eliminating the unknowns,

and the most commonly employed method is the Gauss

elimination process. Consider as an example the follow-

ing set of four equations:

C11 C.. C-.1 C 1, X,
C, Cc' C1, C24  X1 - (123)

C 31 C32. C33  (123)( f

C41 - 4C43 C44  Xq P

The solution vector, X , is the desired quanity and

will be obtained through algebraic manipulation of

the coefficient matrix in (123). During the process

of this matrix manipulation it should be remembered

that the solution of 5i remains unchanged if any of

the following operations are preformed:

(1) Multiplication or division of any equation
by a constant.

(2) Replacement of any equation by the sum or
difference of that equation and any other
equation.

Gauss elimination is simply a sequential app-

lication of the row operations (1) and (2) above. In
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the algorithm, the top equation is first divided by C_11

IC, s C,3  ;, X,

Cs (124)

C31 C,. C 3 4 C,, X3  r3

where the primes denote elements whose values have

been changed. The first equation is now multiplied by

Cz2 and subtracted from the second to eliminate element

Ca, . Likewise the first equation can also be multi-

plied by C 31 and subtracted from the third equation,

then multiplied by C,, and subtracted from the fourth.

In this manner the entire first column below C,, has

been cleared to zero and the set appears as

I I I

C- ' C,3 C %
0 C, Cz C',. 'zII e

o- ,(125)

I - Io 1 C C33  C'4 '-C3r3
0 C Cx4 l r.'

During the column manipulation, the first row is

termed the pivot row and C11 the pivot element. The L

second row now becomes the pivot row and C1 the pivot

element. The second equation is divided by C/Zto

make the main diagonal element 1. Multiplication of

the second equation by C" and subtraction from the

third, and then multiplication by and subtraction

39



from the fourth, clears the second column below the

main diagonal to zero. Similar operations with the

third and fourth rows as pivot rows finally yield

o i cg C X =CA (126)

0 0 1 C 34 X,0 o I g x&Ir;

where the stars indicate elements which have been

modified several times from their original values.

Gauss elimination is sometimes called triangular-

ization because the coefficient matrix is upper tri-

angular, i.e., elements above the main diagonal are

non-zero while those below equal zero. The bottom

equation in (126) now directly gives the value of X4

as

X4 = r* (127)

The third equation is

X 3  C* X = r* (128)

Because X4 is known, )X3 can be solved to yield

V-CV ' Ir (129)X3 r 34- 3 31 4

Repeated back substitutions will evaluate one new

unknown from each new equation. The unknown vector X

will have been completely determined when the top equa-
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tion is solved for X 1 .

It should be mentioned that one computational

difficulty can arise with the Gauss elimination tech-

nique. The pivot element in each row is the element

on the main diagonal. By the time any given row be-

comes the pivot row, the main diagonal element in that

row, i.e., the pivot element, will have been modified

from its original value several times over. Under

certain circumstances, the diagonal element can be-

come very small in magnitude compared to the rest of

the elements in that row, as well as inaccurate.

This can result in an erroneous solution vector. The

problem can be effectively treated by interchanging

the columns of the matrix to shift the largest ele-

ments (in magnitude) in the pivot row into the diag-

onal position. The largest element then becomes the

pivot element. With each new pivot row the operation

is repeated. This scheme is known as partial pivot-

ing and minimizes the roundoff errors.

In addition, it is important to note the two

different types of coefficient matrices which can

be encountered. For the integral solution the system

of N algebraic equations will have a 'dense' NxN co-

efficient matrix, few zero off diagonal elements.

The solution of algebraic equations for the

finite difference technique yields a banded coefficient

matrix and is 'sparse', many zero off diagonal ele-

4.1
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ments. These sets commonly arise in the numerical

solution of partial differential equations and in the

use of finite differences. Solutions of banded systems

are considerably easier than those for full, dense

coefficient matrices.

As an example, consider this set having a tri-

diagonal coefficient matrix:

Ibc,o • -*
i r*

Q3 b, c, 0 •0 a, c,0 X3 _ 3(130)

OL* 6N_1X

XN L

where the main diagonal elements are denoted as ), and

the diagonal elements below and above the main diagonal

are Q and C respectively.

Applying Gauss elimination to @30 ) only one

element (one of the QV) will be eliminated in each

column because all remaining entries below the main

diagonal are zero. Also, no entries outside the tri-

diagonal band are changed from zero in the course of

the elimination process. After the bottom row has

been reached (130) becomes
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I

0 0 X

C1 0

01 CN

1 XNr1

From the bottom row, XN= l and back substitutions

yield the remaining unknowns.

What is important to note about the solution of

this tridiagonal set is that the number of basic

arithmetic operations is of order N, in contrast to

the N 3operations required for a full matrix. Not only

does this small set of operations result in short

computation times, but it also tends to minimize round-

off errors. It is also much easier to store the entire

coefficient matrix since only the three diagonal

vectors L, b, and C are required (Ref 10: 90-98).
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III. .One-Dimensional Problems

Computer Programs

The computer programs written for all one-dimen-

sional cases were very similar; the programs used

common expressions, symbols, and followed parallel

sequences so that minimum alterations were necessary

to adapt each routine to new cases. The flow diagrams

for both numerical integration and differentiation

appears in Figure 5.

ead N, number of data points

BC1, boundary condition 1
BC2, boundary condition 2

Fill X array, XI,, 29....,X N
Generate W(x,;) or
Fill t.

Perform matrix multiplication and all
other operations to generate the
coefficient matrix

CALL LEQT1F Subroutine
International Mathematics Science Library
(IMSL) - Solves a linear system of equations

Print out solution
ve ctor

Fig. (5 Flow Diagram for Computer Programs
Using Numerical Integration/Differentiation

44

" -w..pm.....



Because the system of matrix equations are very

similar, i.e., expressions (114) and (122), the only

modification between the two programs were in the

coefficient matrices. For numerical integration, the

coefficient array was computed from matrix multi-

plication with the Green's kernel, 4), and the

weighing coefficient, DK. In the finite difference

method however, the coefficient array was filled

directly because of the simple band structure simply

by noting the sequential arrangement of internal

terms.

LEQT1F - IMSL Subroutine

The International Mathematics Science Library

(IMSL) routine LEQT1F was used to solve all linear

algebraic equations generated in the matrix form-

ulations. LEQT1F solves the set of linear equations

,qX= B for X, given the NxN matrix land Nxl

matrix B . The solution X will be the exact solution

without any roundoff error. If such a solution can-

not be obtained a warning is given. LEQT1F performs

Gauss elimination and uses partial pivoting of the

array elements.

Case I

The first problem addressed in this thesis, ex-

pressed mathematically is
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where VgX) is the inhomogeneous term, with boundary

conditions

(o)=0) I(133)

Analytical Solution

Equation (132) is equivalent to

M c x (X) )=O (134)

and can be solved in a straightforward manner by

assuming J(x)to be a linear combination of the ex-

ponential function, that is

(X) C Dx (135)

Substituting (135) into (134) and dividing by eDX

yields

+I= O = :i (136)

Using the two roots for ID , the solution to (134) be-

comes

Tx)= Ae+'x Be' = A':_os . B'sinx (137)

By applying the boundary conditions, (O)-Oand (I= I,

the constants 9 fand B' are evaluated. The complete
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solution is found to be

u sirx (138)

SinI

and is graphed in Figure 6.

Integral Solution

To convert differential equation (132) into

integral form, first integrate both sides of (132)

with respect to X over the interval (cX)

LMY x W JCxlX (139)

0
or

where - ()j (140)

where the constant C is from the lower limit, SWo).

A second integration over the same interval and using

equation (6) for the right-hand side, equation (140)

becomes x

(X) Cx - (141)

0

The constant C can be evaluated from the boundary

condition J(O'I-and equation (141 ) takes the form

J'C= + S (s)j5 S(142)
0

where the kernel is defined as the function
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(143)

Rearranging terms, (132) becomes equivalent to the

expression

Ij(x) - =X (144)
0

Now, use the approximation for trapezoid integration

for the integra, and (144) becomes

-Y. Dt K (Y.,XK>6) =x (145)

Expressing and K(xxx) as matrices, equation (145 ) is

transformed into the system of equations

K (146)

or

(147)

For the case where the interval (0,1) is divided into

four equal partitions, N=5, at

X O I= 0 XzAI, 3  1'2j X 4=3 q, XS: I

the matrix equation 147 ) takes the form
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10000 0 00 4O000
0 1 0 00 otlt('KO ohooo I a
0I100 - OKtI 0 o hoo
0 00 1l0 OKK M ooo ho V-
0 000 1 00000 0000 V

0

(148)

and the five linear equations from (148) are

164it -3Z 4 4f

Solution of this set, rounded to six decimals, is

9= , I&= .294274, 3= .570156, V4= .810403, = 1

The true values obtained from the analytical solution,

equation (138), are

0, j .294o14, ,= .569747, := .810056,

Finite Differences

In a similar manner as was done to the integral

equation, the method of finite differences is now

applied to the original differential equation. By

substituting the second derivative CFD quotient, equa-

( tion (97), back into the original differential equation
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for Y'w), and collecting terms, equation (132) takes

the form

. - 0 -. 3, .... -. (150)

where N is the number of points over the interval (0,1)

and 1, the interval spacing. A set of linear equa-

tions can be generated from (150) by letting i run

through its sequence up to the value N-1. For N=5 and

using the same five points as before, the central

finite difference method will give the following set

of linear equations:

~IZ~I3 ~ = 0(151)

31+ 5  0
or in matrix form

00 0

0 I- I 0 0 (152)

0 0 1 0

Using the initial boundary conditions, V,:O and . I

the following values, correct to six decimal places,

are obtained for (I

0, ,,-.294274, = .570156, .810403, S= 1
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Note that the same values were obtained using the

trapezoid rule for numerical integration.

First Forward Difference

Besides the method of central finite differences,

the first forward difference expression, equation (104,

was substituted into (132 ) for a comparison of the

two difference methods. Equation (132) now becomes

j~(1Z+) -tji r 0 . ,Lx .... N-2 (153)

Again, for the same five points, (153 ) generates the

linear equations

1  J = o3

A_ (154)

or the equivalent banded matrix

0 - (155)I0 0b 12L
This set of equations, correct to six decimal places,

has the solution

= 0 .266667, .533333, (,=.783333,Is 1

For a comparison of the relative errors associated with

52

lo



each of the two difference methods see Figure 7. The

relative error data is displayed in Table I.

Error Analysis

It will be assumed that the major sources of

error in all computed solutions is strictly associated

Table I. Relative Error (%) - Computer Solution
for y"+y=0, x=.5

Number of Iterations Integral CFD FFD
per Interval Method Method Method

2 -.291500 -.291500 12.241744

4 -.071775 -.071775 6.391493
6 -.031741 -.031741 4.263721

8 -.017823 -.017823 3.109384

50 -.000455 -.000455 -

with the particular method being employed. All other

error sources, such as truncation and internal round-

off, due to the arithmetic process, are insignificant

when compared to the errors created by a specific

routine. By neglecting these other errors it will be

possible to predict how large an error should occur and

compare this to that actually observed.

Integral Equations

The error bound using the trapezoid rule (Ref 12s

405-408) is given by the expression

(k ) h' >~ (156)
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where is the required integral

T - number calculated via trapezoid rule

- the boundary interval

S- increment size

- upper bound satisfying the condition

MV >tJ W (157)

To predict how accurate the trapezoid rule is,

the upper bound M must first be found. Again, it will

be assumed that the only error in the integral solu-

tion of equation (144) is that due to numerically

approximating the integral:
I

5so (158)

which, inserting the appropriate limits, becomes equiv-

alent to two integrals:
X

+ 5x - jc~(159)

0 X
The error will be computed at the point X-ygsince a

number of values from Table I exist for comparison.

Substituting X-'4 expression (159) becomes

S (16o)

The function1( ) , from expression (156), can be

taken as the sum of both integrands above; that is

1



where

Taking the second derivative of fCS)and substituting

this quanity back into (157 ) will yield the bound M.

It is found that

)(163)

The boundMA is therefore

(164)

The function I has its maximum value atf-l and V()

has the value of 1, from Figure 6. Therefore, A

will be the upper bound

/%A = a (165)

The total error at the point X-Y, using trapezoid rule,

becomes

Total error = -(166)

As h is decreased the associated error should also

decrease by a factor of 12. This trend is indeed ob-

served in the integral solution values shown in

Table II.

Simpson's Comparison

In addition to use of the trapezoid rule, Simpson's

56
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Table II. Error Trends Using Trapezoid Rule, x=.5

Increment Size y(x) y(x) Actual Calculated
h Exact Calculated Error Error

1/2 .569747 .571429 -.001682 .0104167

1/4 .569747 .570156 -.000409 .0026042

1/6 .569747 .569928 -.000181 .0011574

1/8 .569747 .569849 -.000102 .0006510
1/50 .569747 .569750 -.000003 .0000167

rule for numerical integration was also used on (134).

An interesting though not unpredictable trend was noticed

in the data, Figure 8.

For h= 4o, the computed array elements corres-

ponding to the even intervals, i.e., odd array numbers

were Simpson's method can be used, showed much smaller

error values as compared to the even array elements.

Also, as the array elements increased the relative

error values decreased over both odd and even elements.

The relative error is high at the even array elements

due to the additional sum from an extra partition near

the 'corner' in the quadratic interpolation scheme.

The effect is to change the true area by an amount of

the previous partitions area. The relative error

values decrease because the partition areas decrease

after the middle value, . For the lower points on

Figure 8, where Simpson's rule is legal, the parabolas

tend to approximate the kernel closer and have less

overlap across the 'corner' sections of j((). The
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relative errors for the same array elements using

the trapezoid rule is shown in Figure 9.

Finite Differences

The major errors associated with the finite

difference methods are from truncations in the Taylor

series expansions used for (). These errors can be

reduced by taking more terms in the series expansion,

however doing so does not necessarily guarantee

numerical stability. Because of these facts it is

extremely difficult to predict the relative size of

error which should result from using the finite differ-

ence method. The error is carried in all linear

equations generated by the recurrsion expression; when

the number of equations becomes large, the resulting

error combinations become exceedingly complicated.

It is possible however to note the error trends in

both the CFD and FFD methods.

Recall that the CFD method was of order 0), terms

of order and higher were neglected in the central

difference quotient, the second derivative became

4X-h)-Z4 )+J X+h) + C g K-h)-ZSJx() (167)

It is reasonable to assume that errors associated with

this method are as a direct result from neglecting

the truncated terms of order ht and higher; there-

fore, the trend of error should be of order Ii. The

(
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error trends using the central and first forward

difference quotient are compared in Table III.

Table III. Error Trends Using Finite Difference
Methods for y"+y=O, x=.5

Increment Size y(x) y(x) Error y(x) Error

h Exact CFD FFD

1/2 .569747 .571429 -. 001682 .500000 .069747

1/4 .569747 .570156 -.000409 .533333 .036414

1/6 .569747 .569928 -.000181 .545455 .024292

1/8 .569747 .569849 -. 000102 .551576 .018171

1/50 .569747 .569750 -.000003 - -

Note from Table III, that as the interval spacing is

halved, from hoaItoa.ki, the error for the CFD method

decreases on the order of V4 or as ht . For the FFD

method, the error decreases on the order of h or

approximately by '/t.

Times of Solution

The method of central finite differences was

compared to the integral equation method for speed.

The data from this analysis is contained in Table IV.

Table IV. Computer Time - y"+y=O

Method Compilation Time Execution Time Usage
(sec) (sec) (Kilo-word)

Integral 0.735 1.178 199.410
Equation

CFD 0.531 0.546 166.875
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The results of this comparison revealed that the CFD

method required 53.6% less execution time, was com-

piled 27.8% faster, and used less storage than the

integral equation method. The time savings can be

attributed to the different coefficient matrices gen-

erated by each method. The CFD method gave a tridiag-

onal, sparse, 49 x 49 coefficient matrix. The integral

method however resulted in a full, 50 x 50 coefficient

matrix, which required more time and more manipulations

to solve for the solution vector L(X)

Accuracy

The central finite difference method was com-

pared to the integral method for accuracy. Both

methods were found to be equivalent; that is, the ex-

act same solutions were obtained from both procedures,

identical to 12 decimal places. Equivalency of the two

methods was verified through matrix multiplication of

equations (142) and (150). This was accomplished by

rewriting, in corresponding matrix form, equation

(147) and (152). The integral equation was expressed

symbolically as

- (168)

where A represents the coefficient matrix, 1 the

solution vector, and F some function vector. The

unknown K , can be solved and is
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/t Air (169)

where A is the matrix inverse of A . In a similar

manner the CFD method, equation (150), was expressed

symbolically as

R (170)

where %, represents the coefficient matrix associated

with (121). The unknown can be solved by matrix

inversion and found to be

1' (171)

Since both methods yield identical solutions, that is

K~j (172)

the expressions on the right side of equations (169)

and (171) should also be equivalent, therefore

F B1- (173)

The necessary condition for equivalency is

-F i B &(174)

Equation (174) is easy to verify since F and T are

already known and the coefficient matrices, 4 and B
are internally generated. Using 7 iterations, equa-
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tion (174) was verified by substituting the known
4 -

quantities , 5, and A ,the calculated F was

found to be

.142857

.285713
f.42857 1 (175)

.571428

.714285
L_857143

The true value of F , from the integral equation

computer program, was

.142857

.285714

.428571 (176)

.571429

.714286

.857143

The reason for the discrepancy in the sixth decimal

place pertains to a rounding error in the multipli-

cation. The original computer program uses all 14

decimal places for internal computations. In this

example only six significant figures were used and a

rounding error results in the sixth decimal.

Conclusions

It was unforseen that both the CFD and integral

approach would be identical. Though the two methods

were solved using the methods of linear algebra each

was characterized by a distinct different coefficient

matrix, one being sparse for the CFD method, and the

other being full for the integral approach. Both

methods were shown to be of the same order of error,
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h ~ It is not possible to generalize at this point

any other conclusions except that both methods are

equivalent. The CFD solutions were noted to be com-

puted faster in all circumstances but only because of

the tridiagonal coefficient matrix. All computer solu-

tions proved to be accurate with no significant round-

off errors.

Case II

The second problem investigated was the one-dimen-

sional inhomogeneous Helmholtz equation with homogeneous

Dirichlet boundary conditions. Expressed mathematically,

the problem is

+ =1(177)
SXL

where X= '..L ,with boundary conditions

0) o (178)

Analytical Solution

As with all inhomogeneous 2nd order differential

equations the solution can be expressed as a linear

combination of solutions homogeneous + particular.

The complete general solution tb (177) is

?x)z 4cosAx + bsnx t (179)

Using boundary conditions (178), the constants A and B
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are evaluated, the unique solution is

cos=4 n 03 T X( + I(180)

and is graphed in Figure 10.

Integral Solution

The differential equation can be converted to

integral form by first rearranging terms and solving

for the second derivative. Equation (177) becomes

& = I j()(181)
JX-

Integrate each side over the interval (o,x) to obtain

C+ (182)

0
where the constant C corresponds to 2o. Integrate

a second time over the same interval, equation (182)

becomes

CX -t " (I- ',(x Jx (183)

0 0

Using (6) on the double integration gives

x

C x -t (I-(184J)
0

The constant C can now be evaluated by using the second

boundary condition, (I)= 0 1

JO= (185)

6

(
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Solving for C
I

C = P )9 )-(186)
0

Substituting the expression for C into equation (184)

yields

ycX W"m~,)Np ¢) -) 0 (187)

0

with the kernel defined by the expression

(188)

Equation (187) represents the equivalent integral form

for the one-dimensional Helmholtz equation.

Equation (187) can be rearranged by multiplying

through by W(u,) and separating the integral. The in-

tegral equation containing y becomes
I!

~j~i) J (a A~j~)ch= (189)

The integral on the right simplifies by replacing k(T)

with its defined values over the appropriate limits

of integration, that is

TjX) -JP;Y)Xf0) A
0

II

+ (190)

X
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Integrating out the 5 variable on the right side,

equation (190) becomes
1

00 -hl-XL ) (191)

The trapezoid approximation can now be used for the

integral and equation (191) becomes equivalent to

N
- If K6xak) IL (192)

Expressing PD and ((Xlyk) as matrices, equation (192)

transforms into the system of linear equations

(193)

and is solved by the method of Gaussian elimination.

Green's Integral

In addition to the integral representation of

equation (177) it is also possible to express the

solution of 1() by the Green's integral, equation (27).

From Appendix B , the Green's function for the Helm-

holtz operator was found to be

A Sin )9

MI-K) 51r (194)sm. AdI-x) sin NS

Therefore the equivalent expression for the Green's

integral solution for JN) is

(
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(Y.b) G (195)

0

Using the trapezoid rule equation (195) becomes

.- " ~ lkG6C'A,) (196)

or, expressed in matrix notation

- DG (197)

where D is the column vector of dimension Nx1 and

G the Green's matrix, defined by expression (194),

of dimension NxN

Finite Differences

The method of CFD was used to numerically

differentiate equation (177). Substituting the central

difference quotient, equation (97 ), for the second

derivative and collecting common terms, equation (177)

becomes

(). +- t..w.3,..., ,-I (198)

The equivalent matrix expression has the tridiagonal

form

70



o -(t-) k) I 2.

I - (i-Rhl') 0 .,.
o I f-'d

h 1.

I hL I

• (199)
I ) t

hz

Using the boundary conditions, 0 C and ; 0

expression (199) can be written in the form

(200)

71

IAL-



The dimensions of all three matrices have been re-

duced to N-2 . In more concise form equation (200)

becomes

R (201)

where ' corresponds to the band coefficient matrix

and R the function vector defined by the constant .

Relative Error

For a comparison of the relative errors asso-

ciated with the three numerical methods based on the

Helmholtz equation, see Figure 11. The relative error

of the three numerical methods is shown in Table V.

Once again identical results were obtained using the

integral equation and CFD method

Table V. Relative Error (%) - Computer Solutions
for y"+yr=1, x=.5

Number of Iterations Integral-CFD Green's Integral
per Interval Method Method

2 35.253527 51.201617

4 7.609482 11.842646

6 3.472912 5.194057

8 1.971673 2.908348

50 0.051070 0.074035

Error Analysis

The same assumptions will be used for the error
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analysis as were presumed in the first case study,

all errors are strictly due to the method used and

errors generated in the computational process could

be neglected.

Integral Equation Errors

The integral equation, equation (187) and the

Green's integral equation, equation (195), have both

been shown to be equivalent; therefore, they should

have associated with them the same order of error

because the trapezoid rule is used to evaluate each

integral. To predict the order of error the upper

bound M must first be found. The Green's integral

equation will be used for this analysis. Equation

(195) can be written
X I

J =X Si N )4WA Af + 5 SAX(-Q~X J9 (202)a

where the expression for G(XF) has been used over its

defined limits. The error will again be computed at

the point X2 YZ, using the values X: Lw and R .

Equation (202) becomes

f. A3 -2 5sn'1i (203)

The total error of using expression (203) will be no

greater than the sum of errors from each integral

---- -Sin - -'"n"('-j (204)
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Taking the first two derivatives of (204) and using

the expression for the error bound, /M is found to be

frV 31 Wn) =U + !V4 Cos 3r} (205)

The maximum value for SW occurs when

therefore the bound for M is

M= 15) 11-'( 137 3) = .S?,',- (206)

And the associated error is of the order

~ ~ fqM ~ h 2 ' (207)

As I is decreased the associated error also decreases

as a factor of hz . This is observed in Table VI.

I

Table VI. Error Trends - Computer Solutions
for y"+)qy=1, x=.5

Increment y(x) y(x) Cal Error y(x) Cal Error
Size, h Exact Int-CFD Green's

1/2 .108716 .070390 .038326 .053052 .055664

1/4 .108716 .100443 .008273 .095841 .012875

1/6 .108716 .104940 .003776 .103069 .005647

1/8 .108716 .106572 .002144 .105554 .003162

1/50 .108716 .108660 .000056 .108635 .000081

In addition to the above table the relative error was

examined at each array element when the interval (0,1)

was subdivided into 50 partitions. Because the integral

(
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and CFD methods gave identical results their errors

both appear in Figure 12. The Green's integral was

also analyzed at each array element and appears in

Figure 13. It can be seen from both sets of dats that

the errors are symmetric and largest in the neighbor-

hoods of the end points. This is attributed to the

functional form of both y(X) and the Green's function.

At the end points the two functions have their steep-

est incline therefore larger errors are introduced

over the same size increments across these regions.

At those points along the center of the interval,

where the functions change more slowly, less error in

the increment is introduced. Note that the Green's

integral method is more accurate at the outer elements

(1) - (10) and (40) - (49). The integral - CFD method

is more accurate at the inner elements (11) - (39).

Also the error trend in the Green's method is averaged

out to almost a constant .075% while the CFD - integral

method appears parabolic across the region.

Finite Differences Errors

No additional error analysis was carried out for

the method of finite differences. It was noted that

errors associated with the CFD method once again were

of order hi due to the second order truncation in the

Taylor series expansion for jX).
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Tims nf Solution

The two numerical untegration routines were com-

pared to the CFD method for speed and storage. The

interval (0,1) was divided into 50 partitions, re-

sulting in a set of 49 linear equations for the CFD

method and a set of 51 linear equations for the inte-

gral method. Using the Green's integral expression

the solution was obtained by matrix multiplication.

The data for these three methods are contained in

Table VII.

Table VII. Computer Time - y"+*Xy=l

Method Compilation Time Execution Time Usage
(sec) (sec) (Kilo-word)

Integral .784 1.177 194.460
Equation

Green's .600 0.441 116.319
Integral

CFD .548 0.558 170.556

The CFD method was 2.1 times faster than the integral

equation method. In addition, it was compiled in 30.1%

less time and used 12.3% less central storage. The

Green's integral method was found to be quickest and

used the least amount of storage.

Conclusions

The CFD and integral equation methods both proved
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to be identical. Though the two were again charcter-

ized by distinct coefficient matrices, they were found

to be equivalent. A second integral approach was ana-

lyzed by solving for the exact Green's function based

upon the Helmholtz operator. Solutions of this in-

tegral equation proved to be, on the average, of the

same order of magnitude as the CFD - integral methods

but resulted in a smoother error curve over the calcu-

lated values. Also the Green's integral calculations

proved quicker than either the integral equation method

or using the CFD quotient.

Case III

The third and final problem investigated in one-

dimension was the inhomogeneous Cauchy-equation with

homogeneous Dirichlet boundary conditions. Expressed

mathematically, the problem is

x Ott _ = X (208)

with boundary conditions

. () -(209)

Both previous results, that is, converting the

differential equation into integral form and approx-

imating the solution through numerical integration

and using the method of finite differences have proven

to be equivalent. One possible reason for this could
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be due to the linear kernel which has resulted in both

integral conversions. Equation (208) was found not

to have a linear kernel upon integral conversion.

The properties of this equation are now investigated.

Analytical Solution

The complete general solution to (208) is found

to be

A BX +_ (210)60x) X IO

Using boundary conditions (209), the constants and

B are evaluated. The unique solution is

(x) = / __ _ _ t _ .' x t X 4
30I 

(211)

and is graphed in Figure 14. Note that the solution

is asymmetric.

Integral Solution

The Cauchy differential equation can be expressed

in integral form by first rearranging terms and solving

for the second derivative. Equation (208) becomes

w- = -zX(212)

Now, integrate both sides with respect to x over the

interval (1,x). Equation (212) becomes

(,-
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where the constant C represents 4IV) . Integrating

a second time over the same limits makes (213) equi-

valent to

I iX

By using the results of (6) for the multiple integral

and performing the integration of the first integral,

equation (214) becomes

VjX)- Cx-C + S _0,)ftf I +J (215)

The constant C can be evaluated by using the boundary

condition 0( -0.

(.)=0 (3 (216)

Solving for C yields:

3
£g( 32M iJ (217)

Using this expression for C, the complete solution

for V30 , given by equation (215) becomes

+ ~ (218)
I S

Equation (218) can be put in the simplified form

3

j(X)= (Y~.~)~. 0'5~? c (219)

by using the abbreviation
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(X, -(220)

(C -3)(f - t)

Equation (219) represents the equivalent integral form

of the one-dimensional Cauchy equation. The integral

equation can be rearranged by multiplying through by

and seperating tne integral. Combining terms, equa-

tion (219) is also equivalent to the expression

3 3

-xs U§ ____ C_ = ~ (221)

The integral on the right simplifies by replacing the

kernel with its values over the appropriate limits.

The integral becomes

______At- (222)

• X

Integrating both integrals over , equation (222)

becomes

lOX t- 13 (223)

12 4

Equation (221) then becomes
$

- _____LV rAs -LOC X 13 (224)

It is now possible to use the trapezoid approximation

for the left side integral and equation (224) becomes
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-J~/ X ~. (225)
/--2 3

where the points = YK have been chosen over the in-

terval (1,3). In matrix notation expression (225)

transforms into the system of linear equations

§~V 5F-V (226)

where t corresponds to the weighing coefficients

used in the numerical integration, ; i is the modified

kernel 1<(XNV4) with Y(2 denominator, and X corresponds

to the function vector defined by (223). Equation (226)

can now be solved using Gaussian elimination.

Green's Integral

In addition to the integral representation it is

also possible to express the solution of N) by the

Green's integral equation. From Appendix C, the Green's

function for the one-dimensional Cauchy operator was

found to be

T-2 17 5A - <

Gx7. (227)

Therefore the equivalent expression for (X)can be

expressed as
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pX) f3(xj§2CIS (228)

where 60vil) is as defined above. Using the trapezoid

rule, equation (228) becomes equivalent to the quantity

(x) g - D. GCxxk, x (229)

or in matrix notation (w) appears as

(x - b G 5c' (230)

where D and are both matrix vectors of dimension

N X N and is the column vector of dimension N X 1.

Finite Differences

The method of finite differences was used to com-

pare numerical differentiation with the integral and

Green's methods outlined above. Again, the derived

central finite difference quotient, equation (97), was

substituted into the one-dimensional Cauchy equation.

After collecting terms, equation (208) became equiva-

lent to the expression

'j~--(a+~~L I =(231)

The matrix has the tridiagonal form

(
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0 -I44) 1 0L

S +

0 4 D a l

×/h

xih

(232)

L

Using the boundary conditions, ,-0 and = 0 , ex-

pression (232) can be rewrd.tten in the form

I t- t I

-(( g.+gK).

Illl

-- 9 (233) :
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The dimensions of all three matrices have been re-

duced to N - 2. In concise matrix form expression

(233) can be written

B~~ R (234)

where S corresponds to the given band coefficient

matrix and k represents the column function vector

defined by the right-hand quantity in (233).

Relative Error

For a comparison of the relative errors asso-

ciated with the three numerical methods see Figure 15.

The relative error percentages are tabulated in Table VIII.

Table VIII. Relative Error' (%) - Computer Solution
for x y"-2y=x ,x= 2:

Number of Iterations Integral Green's Integral CFD
per Interval Equation Method Method

2 2.402402 .150144 6.306306

4 .732556 .009369 1.718748

6 .344530 .001815 .784274

8 .198287 .000586 .445971

50 .005241 .000000 .011593

Error Analysis

Because both the integral and Green's representa-

tions are equivalent either expression can be used to

predict an error bound using the trapezoid rule. The
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Green's integral representation is used once again

because it does not involve the function (), making

the error calculations easier to work with. The Green's

integral, equation (228), can be written

!

where GcTw, ) has been substituted oe h prpit

limits. The error will be computed at the point M2=

and expression (235) simplifies to

[ I

The maximum error for both integrals is the sum of

errors associated from each. To find the upper bound

on the errors all errors are assumed to be additive.

The upper bound / can now be associated with f ),
where ih) corresponds to the sum of the two tite-

grands above:

X) =  2 A(37)

To calculate Al? the second derivative of is ) i
needed. This is given by. +h- /*4/f, , ,Sg IL kz (238)

The value of fbmat the point ftZ is found to be
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i~1 ~(p( =(239)

and the associated error is of the order

=I o (240)

This error represents only a crude approximation to

those errors associated using trapezoid integration

and can be misleading. All errors in arriving at

(240) were assumed to be additive. Because many of

these errors cancel the predicted values will always

be larger than observed, as seen in Table IX.

The relative error was also examined at each array

element when the interval (1,3) was divided into 50

partitions. The errors associated with the integral

solution are graphed in Figure 16. The Green's

integral solution converged to the exact solution at

every array point, to six decimal place accuracy and

was not graphed. The relative error associated with

the CFD method was also examined at each array element

and is graphed in Figure 17. Note that both sets of

data display similar trends; the higher numbered array

elements have lower errors as compared to the lower

numbered array elements. This trend can be explained

by examining the method of solution. Both methods

require the simultaneous solution of a set of N alge-

(braic equations, 49 equations for the CFD method and
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51 for the integral approach. Both sets are solved by

Gaussian elimination. As was covered earlier the last

array elements are evaluated first and therefore have

the smallest round-off errors. As the elements above

are computed from the know elements below there is an

accumulation of air with each new row evaluated. This

accounts for the trend in increasing error as the last

elements are calculated, corresponding to the lower

numbered array elements.

Simpson's Comparison

The trapezoid rule was compared to the Simpson's

rule for the same array elements as above, see Figures

18 and 19. Note the downward trend for the relative

error values at the higher indexed array elements in

both figures. Also, the same sinusoidal character is

exhibited over the odd - even partitions as was observed

in Figure 8. In addition, Simpson's rule gives a better

approximation to the calculated values at the odd

numbered intervals than the trapezoid rule. This

results because the kernel associated with the integral

equation is no longer a linear function, but rather

can be expressed as the modified kernel

x3(- =
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Quadratic interpolation, i.e., parabolas, provide a

more accurate estimate of the non-linear kernel than

using trapezoids.

Times of Solution

The two numerical integration routines were com-

pared to the CFD method for speed. The results of

this comparison are given in Table X.

Table X. Computer Time - x yy"-2y=x

Method Compilation Time Execution Time Usage
(sec) (sec) (Kilo-word sec)

Integral 0.799 1.186 194.087
Equation

Green's 0.662 0.847 117.473
Integral

CFD 0.566 0.557 169.940

The CFD method was executed 2.1 times faster than

the integral equation method and 1.5 times as fast as

the Green's integral approach. In addition, the CFD

method was compiled 29.2% faster and used 12.4% less

central storage than the integral method. Also, the

CFD method was complied 14.5% faster and used 30.8%

more central storage compared to the Green's integral

equation.

Conclusions

The one significant feature about the one-dimen-

98

row.



sional Cauchy-type equation is the fact that its so-

lution is asymmetric. Converting the original differ-

ential equation into integral form still results in a

linear weighted Green's kernel but multiplied by a

non-linear function of g . Also the Green's integral

equation, for the differential operator, has a non-sy-

mmetric Green's kernel. Results by the Green's integral

equation proved superior to the other two methods.

The integral equation method also gave more accurate

solutions as compared to the CFD method.
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IV. Two Dimensional Numerical Methods

The Steady-State Heat Conduction Problem

The last case investigated in this thesis will be

the two-dimensional steady-state heat conduction prob-

lem with inhomogeneous Dirichlet boundary conditions.

The internal temperature within the rectangular plate,

shown in Figure 20, staisfies the partial differential

equation

=(,) = - x) (242)

where T( ,o) is the temperature at the point (zmj)

and F(lj) represents the internal heat generation.

gb 0

0 -

0 KwT

Fig. 20 Two-Dimensional Steady-State
Heat Conduction Problem

The boundary conditions, from Figure 20 are

T(xo) = Tco,) =T(xb) o, T(c,.)z To (243)
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where TO represents some constant temperature along

the edge Xz a. For all problems considered, F(x) is

assumed constant over the plate and has the value

Rx I (244)

Analytical Solution

The analytical closed-form solution of equation

(242), Poisson's equation, can be expressed as the sum

of the two harmonic functions; the first satisfies

equation (242) with homogeneous Dirichlet boundary

conditions, and the second function satisfies the

Laplacian of (242) with the inhomogeneous boundary

condition at T(Ck,1 ) . The complete solution, using

condition (243) and satisfying the given boundary

conditions, is derived in Appendix D and found to be

T(X. 1 ) m II55~ sinLZL~ SlTl sinuY_ n~ man .v?

(T (245)

Note that the solution is a double Fourier series,

a summation process which, if slowly convergent will

take considerable time. For the problem under inves-

tigation the temperature at 16 interior nodal points

wad examined. Also, instead of using the rectangular

area the analytical model was altered into a square
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of unit dimension. From equation (245) the internal

temperature was computed at 81 interior grid points,

a computation requiring 70.9 seconds for six place

decimal accuracy.

Finite Differences

The solution to the two-dimensional steady-state

heat conduction problem by finite difference methods

is simply an extension of the technique used in the

one-dimensional cases. The first step is to set up a

grid system of interior points within the plate, shown

in Figure 21.

hh-

Fig. 21 Interior Grid Network

The Laplacian of equation (242) can be approximated

by expressing the two second derivatives of the temp-

erature as a difference equation. The second deriva-

tives, using equation (97) and the interior nodal

system in Figure 21 become
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T(- ) - aT(x 3 ) ,-T(4v,) (246)

and
aT(Xb T(x,.-) - 2T(xj/) T(x,+I) (217)

Substituting these approximations back into the heat

equation,(242), and the combining terms gives the

expression o

T(x- , ) + T( x 4- ) tT(,)

+T(xj-) T = -g(, ) " (248)

Once again the finite difference.method results in a

set of linear algebraic equations.

v. , Tqj T ,

01 - - -- I
TA V. I. T.

Fig. 22 Interior Nodal Arrangement
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Using the nodal point coordinate system, shown in

Figure 22, and the boundary conditions given by ex-

pression (243), the following matrix representation

of equation (248) is obtained

-4 1 001 00 00 00 00 0 00 Tz1  ah
1-4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 T,,, -F. h"
0 1-4 1 0 0 1 0 0 0 0 0 0 0 0 0 T14 oF.h
0 0 1-4 0 0 1 0 0 0 0 0 0 00 T4 -Fu h%
1 00 0-4 1 0 0 1 0 0 0 0 0 0 0 T4 -Ft. hL
0 1 0 0 1-4 1 0 0 1 0 0 0 0 00 T44 -FV h'
0 0 1 0 0 1-4 1 0 0 1 0 0 0 00 TS -FW h-0 001 0 01-40 0 0 10 000 TS F% h

0 0 0 0 1 0 0 0-4 1 0 0 1 0 0 0 T.11  -Fah' (249)
0 0 0 0 0 1 0 0 1-4 1 0 0 1 0 0 Tis -Fg,hs
0000001 001-4 1 0 0 1 0 TM -Fjh-
0 0 0 0 0 0 0 1 0 0 1-4 0 0 0 1 Tq,0 oFh
0 0 0 0 0 0 0 0 1 0 0 0-4 1 0 0 Tt, -F h- - T
0 0 0 0 0 0 0 0 0 1 0 0 1-4 1 0 Trs -F- h - _T
0 0 0 0 0 0 0 0 0 0 1 0 0 1-4 1 T%. - 1h - To
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1-4 Tgl -Fg5 h'- To

where Tt,pq corresponds to the nodal temperatures

shown in Figure 22, and I. corresponds to the heat

generation function at the nodal points (n,m).

81 Interior Nodes

In addition to the 4x4 grid system for the 16

interior nodal points, the finite difference method

was used to examine the results when the spacing

between adjacent nodes decreased. The original 4x4

grid was subdivided in half, and the temperature at

81 nodes was in a new 9x9 grid network. Instead of

generating 81 algebraic equations note that there is

a pattern in the diagonal vectors appearing in the
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coefficient matrix of expression (249). If the sequen-

tial location of the zero elements along any diagonal

is known then it is a relative easy manner to generate

the entire diagonal vector. Also because there are at

most five row elements, from equation (248), in any

row of the coefficient matrix only five diagonal vec-

tors have to be stored. A comparison of the two re-

sults follow.

Results

The solution of (249) by Gaussian elimination,

using the method of finite differences is compared to

the exact analytical solution in Table XI. Due to the

symmetry in the original problem only half the nodes

are tabulated.

Table XI. Finite Difference Solution for
Square, with Heat Generation

Node Exact Finite Diff Error Finite Diff Error

Solution 16 Interior 81 Interior

2,2 4.331240 4.578788 -.247548 4.446669 -.115429

2,3 6.969133 7.243636 -.247503 7.115880 -.146747

3,2 10.555374 11.031515 -.476141 10.755899 -.200525

3,3 16.772428 17.112121 -.339693 16.969429 -.197001

4,2 21.727495 22.395152 -.667657 22.012913 -.285418

4,3 33.090082 33.021212 -.068870 33.166982 -.076900

5,2 45.599465 45.487879 +.111586 45.621920 -.022455
5,3 60.555373 59.516364 +1.039009 60.306397 +.248976

(
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Comment - Finite Differences

The method of finite differences in two-dimen-

sions can be viewed as an averaging process, using

the known boundary conditions to generate values

at other interior points. The best results are ob-

tained when all nodal points are symmetrical then

the boundary values at the edges are 'weighed' more

evenly at the interior points. To demonstrate this

consider the heat conduction problem as before; the

internal temperatures at the point (.5,.5) will be

computed by two seperate schemes. The first pro-

cedure, shown in Figure 23, is to use three adjacent

points located parallel to the x-axis and spaced

= 1 14 apart. The temperature, T, , calculated by

the difference equation (248) is

T, = .I 5s? (250)

TTO

T~o ! ' TO

Tv0

Fig. 23 Finite Difference Scheme
Using Three Points Parallel
to the X-Axis
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The procedure shown in Figure 24, is to use three ad-

jacent points again, but located parallel to the y-axis,

spaced =:V4 apart. T, calculated by the difference

equation (248) is now found to be

T .$3f7f5 (251)

From the analytical solution, summed over 10,000 sep-

arate iterations, the value is 24.926328. The temper-

ature is observed to be greater where the boundary

condition T is used three times. It is interesting

to note that using only one interior node and equation

(248), 1 is

T 2S,0 S (252)

This value is only .55% in error from analytical value

at (.5,.5).

TuO }To

Fig. 24 Finite Difference Scheme
Using Three Points Parallel
to the y-Axis
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Introduction - Splines

The last method to be presented in two-dimen-

sions is the integral solution to the steady-state

heat conduction problem using the method of cubic

splines.

The integral solution for heat conduction over

a rectangular region, with homogeneous Dirichlet

boundary conditions, can be expressed in the form
CLb

T j)= Pf(x,,) Rsm) J§Jq (253)

where G(X,§;, ,n) is the two-dimensional Green's

function for Laplacian (Ref 13: 520-523). If the

exact Green's function is known, and Rf,'R) is sep-

erable, equation (253) can be evaluated using the

one-dimensional techniques already considered. Many

times though, for problems other than rectangular

symmetry, the Green's function is extremely diffi-

cult to compute; the Green's function depends upon

the boundary symmetry, for complicated regions G(%;5jn)

can be exceedingly complex. An alternate integral

form of solution can be expressed for T(x.j) using splines.

The method to be presented was first proposed by

Hadjin and Krajcinovic using cubic splines in integral

form for solving elliptical partial differential

equations (Ref 2l 513-539).
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Spline Functions

Because the proposed method uses cubic splines

a brief introduction into spline theory is necessary.

Spline functions are simply polynominals used to

approximate a given function, f(A) , over an interval

(a,b). However, instead of using a single polynominal

over the entire domain the interval (a,b) is divided

into subintervals,

. *• X <..XN L (254)

with a different polynominal representing T(X) over

each subdivision. By definition, a cubic spline is a

continuous piecewise function having continuous first

and second derivatives everywhere on the interval (a,b)

and is represented by a polynominal of degree three or

less. Hence, the spline SW3) consists of cubic poly-

nominals, one in each of the subintervals (Xw-t,K )

The cubic spline S (x) , which approximates F(K) in

each interval (X,.XK) can be uniquely determined by in-

sisting that the value of the spline and its first

derivatives are equal to the value of ((K) and its first

derivatives at each node, Xft:

S(X0)= fc) NO J 0.4 fj1  (i(X0 ) 25

In addition, to insure a smooth fit of the spline

function across the interval (a,b), the values of the
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first and second derivatives, on either side of the

nodal points XK will be assumed equal, that is
! I

= + k) (256)

and

P kS x - -- S ,× + (257)

Using the conditions required by expressions (255),

(256), and (257), the cubic spline representing S(x)

can be shown, Appendix E, to be equivalent to

S M(x) = V,,( -w' + M IC (X- 3.
" 'hW -h it

t Xj1K1 (MICjr1 -Mk..)(htL,)J ~1 'X Jo) -(XkMk.,- X (258)

hir hic
where the symbols are

hie - X - .t-
M k o S I/ r"

- f (x)
(Ref 141 296-298)

By using the continuity requirements for the

spline, from equation (255), the values of/AK can be

determined, namely it is required that

-1 - k- (259)

Expression (259) represents a system of N-1 linear

(algebraic equations with unknowns , M,... ,MN. By
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assigning the values of zero to Aieand Mg, because

the physical sline can be assumed to be straight

outside the interval (a,b), i.e.,-( )-0 for X <

or X) , the other values M1,M2 ,...,M,. 1 can be de-

termined. Using the spline representation, equation

(258), and the continuity requirements, expression

(259), the method of splines in the solution of integral

equations can now be introduced.

Integral Method of Solution

The steady-state heat conduction problem has

the form

. t YTNb4' ) - - Fhc, (260)

)KL

In the method proposed by Hajdin and Krajcinovic the

highest derivatives of the function T w)are chosen as
the unknown, that is let

A-- T(X.) (261)

Substituting equations (261) back into equation (260)

yields

F(4) =tIivoi (262)

Differential equations can now be written 1-- equations

(261) for a fixed value of X2 Xj and/or is ,

__.~s ,j.) =-€ , , , , .- %(,,, (263)
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Equations (263) can now be converted into integral

form using the Green's function for the differential

operators in equations (263). The equivalent integral

representation of equations (263) are
0.

T(x.jn): rG(&f)F(s,Ja)I _ 0A (264)

0

and

-G(jI-) vk 1'Q Al (265)

where GUM and G(}% ) are the one-dimensional Green's

functions for the second order differential operators

appearing in equations (263). Note that the partial

differential problem has been converted, along a con-

stant line K= Xk and/or Vw , into two one-dimen-

sional integral equations. The unknowns p(FMI.)and

(Xk,vt) are now approximated using cubic splines, given

by equation (258 ) and integrated in equations (264)

and (265 ).

Spline Integration

Using the spline representation, equation (264)

becomes

Y-K 9 -x , -( 3 M-9 a -(ct-Kxj +(a-Xkmr*)?c. t 266)(

and equation (265) becomes
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4L+ h -J (267)

where 0. = length of a side of the square plate

Ykvj = location within region

A1g,%. = value of the second derivative of the
spline at ('K.cj.)

Two expressions for the temperature now exist at the

point (Xkjo) given by expressions (266) and ( 267).

Because the temperatures must be equivalent at these

locations, equations (266) and (267) can be equated.

Using the continuity requirements for the second

derivatives of the spline functions, given by ex-

pression (259), both MK and 1-h can be replaced by a

multiple of k and In addition, a second condi-

tion exists between . and % given by equation (262).

Therefore, using the two algebraic equations, (266)

and (267), and equation (259), the unknowns Fk and %.

can be evaluated. Substituting these values for F
or 1. back into equations (266) or (267), along with

the substituted values of Mk or C, will yield the

temperature at the point(, )).

Results

The computed values at the same interior nodes

( used in the method of finite differences is given in

11.3
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Table XII. Observe how the error values increase

as the node points move away from the center

Table XII. Cubic Spline Solution for
Square, with Heat Generation

Node Exact Cubic Spline Error
Solution 16 Interior

2,2 4.33124o 10.040000 -5.708760

2,4 6.969133 10.617943 -3.648810

3,2 10.555374 18.903657 -8.348283

3,3 16.772428 20.049333 -3.276905

4,2 21.727495 28.332229 -6.604734

4,3 33.090082 30.049333 +3.040749

5,2 45.599465 40.044000 +5.555465

5,3 60.555373 42.332229 +18.223144

Besides the 16 interior points, the grid spacing was

halved to observe the effects. Instead of changing

the computed values at the node points the exact

same values as before were calculated, demonstrating

that unlike the finite difference method, the method

of cubic splines does not improve by reducing the

grid spacing. It is interesting to note that for the

most symmetrically located point, (.5,.5), the cal-

culated temperature is within .50% of the actual

analytical solution.

Conclusions

The method of finite differences in two-dimen-

sions gives excellent results, the largest relative
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error was 5.72% at the node 2,2. Halving the interval

spacing resulted in a decrease of this error to

2.67%.

The integral method using cubic splines appears

to work well, but only at the most symmetrically lo-

cated point. The major fault with this method comes

when converting the two-dimensional problem into one-

dimensional form. Much of the physical significance,

the edge effects from the boundaries and the inhomo-

geneous boundary conditions, have been almost com-

pletely neglected. For the particular part of the

solution, given by equation (266), no account for the

value is used though in reality the particular

solution is both a function of two variables, X and J.

Also there does not appear sufficient coupling to

assume that the two seperate splines and condition

(262) should result in the same temperature at the

point (Xk, j,); equation (267) is based upon homogeneous

boundary conditions and equation (266), for the same

point, incorporates two distinctly different boundary

conditions. In contrast to what the authors Hajdin

and Krajcinovic claim, i.e., that problems of potential

theory may be easily and conveniently solved employ-

ing the method of cubic splines and integral con-

version, the results that were found do not justify,

for the reasons cited, the authors claims.
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V. Conclusions and Recommendations

Conclusions One-Dimensional Cases

The purpose of this thesis has been to inves-

tigate and compare numerical integration techniques

with methods based upon numerical differentiation,

the finite difference method. In one-dimension the

results of this study have been somewhat inconclusive;

in the three examples investigated the first two

have proven to yield equivalent solutions for both

the integral equation approach and the method of

central finite differences. This is due to the simi-

larity of the two examples, the Helmholtz equation in

Case II was but a modified version of the particular

equation for Case I. In addition, the Green's inte-

gral approach for Case II was found to yield solutions

on the same order of error as the integral and CFD

methods. In contrast however, using the particular

Cauchy-type equation for Case III, three entirely diff-

erent results for each method was observed. The Green's

integral approach proved to be the most accurate, for

only one iteration over the interval (1,3) the com-

puted value was found in error by only .156%. The

integral method however for the same equation gen-

erated approximately 15 times the error of the Green's

integral but for a single iteration the error was

still less than 3%. The CFD method had more than
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twice the error of the integral method, 6.3%.

Another similarity between Case I and Case II

was the fact that brth, upon integral conversion, had

linear kernels. This can be attributed to the second

order differential operator, , appearing in

both differential equations. Case III however, had

a non-symmetrical kernel and asymmetric solution, in

contrast to the first two cases.

Conclusions Two-Dimensional Cases

The method of finite differences in two-dimen-

sions gives excellent results, at all points, compared

to the analytical solution of the steady-state heat

conduction problem. In contrast, the integral approach

using cubic splines falls short of its expectations at

all interior points except the center. The major

drawback of the spline technique occurs when the

original two-dimensional problem is expressed as two

separate one-dimensional cases. The coupling scheme

between the splines is no longer valid due to diff-

erent Dirichlet boundary conditions existing at the

plate edges. Another serious drawback to the spline

method is that it does not improve as the grid net-

work is decreased. In contrast, the finite difference

solutions improve as the grid spacing is reduced.
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Recommendations

More study needs be given to a wider variety of

one-dimensional problems, using both linear and non-

linear kernels. Higher order approximations to the

derived difference quotients should also be included

to reduce truncation errors in the finite difference

technique. In addition, other integration schemes

could also be used to see how well specific integral

techniques compare to the numerical differentiation

techniques. For the two-dimensional analysis a two-

dimensional spline function could be tried. The

disadvantage of working in two-dimensions though is

that the exact form of the Green's function must be

known, for complicated geometries this could prove

extremely difficult.

In conclusion, there are many areas in which

further studies may lead to more fruitful results.

This thesis has but presented a brief analysis of

several numerical methods for the solution of diff-

erential equations in both one and two-dimensions.
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Appendix A

Kernel Properties of the Equation,. + tB 0for 6 ;0 .

A differential equation of the form

t B 0 (268)

with homogeneous Dirichlet boundary conditions

0 (269)

will have a non-symmetrical kernel when expressed in

integral form if I/O. In order to demonstrate

this, rewrite equation (268) in the form

S= -Al -B (270)

and integrate both sides over the interval (Oix).

Equation (270) now becomesox
X X

or
X

)N' x x)-B5j X (272)

Let C donote the constant Age) and integrate equation

(272) a second time over the same limits as before.

Expression (272) becomes

x
x - A BJx JxJx (273)
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Now, using the results of equation (6) and changing

the dummy variable of integration in the second in-

tegral on the right-hand side of equation (273) it is

found that

= C - fyq 8(X-) Y (274)
0 a

Applying the boundary conditions at JLQ) evaluates

the constant C, that is

1)--- = - AJ¢c,,1 -f.S-O,.3cJ, (275)

and equation (274), using C above becomes

Lj(~ ~J .e-8k)~q)J~~~j -~(277)

Expressing the first integral as - jof becomes

1~ 0 X
'.;" , .(A-8s)jC,), -. A (' -9)) ,,) ck (278)

The kernel in the above integral equation expression

can be identified by making the substitution

I
= (xK (279)
0

where the abbreviation for the kernel is

X (280)
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Note that the kernel is both non-symmetric and dis-

continuous at Xz5, unless 1- 0
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Appendix B

Determining the Green's Function for the
One-Dimensional Helmholtz Equation

The differential equation for the one-dimensional

Helmholtz equation is

+~ii (281)

The Green's function for the differential operator,

i.e., the left side of expression (281), must sat-

isfy the following differential equation

+ XGxx,) 1L (282)

Because GUMc1 ) can be thought of as a function of only

one variable for a constant f , assume that the Green's

function can be expressed by G,(x) and G(x) over some

interval (OR). The Green's function will be of the form

G,x) (283)

for X9 G,(x)and GC(x) will each satisfy the homogeneous

equation of expression (282), that is
SNx) . ,() (284)

and

4L + X 0 o (285)

The solution of the homogeneous equatior (284) and (285)
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yield, for Gcx) and Gzx) the Green's function

4CSX -V Bo x, s,. )x -X <. S

G(m) (286)

sin*

The Green's function has the property of being zero

at the end points and therefore two of the constants

in expression (286) can be evaluated. Using the boun-

dary values for G(M) at the end points it is found that

G,( 0 o= A (287)

G2.(0Y 0 b cos)j4,. (288)

Substituting the above values back into equation (286)

G(&) becomes

(289)

Because the Green's function is continuous across the

entire interval G()- Ga(f) • Using this condition in

equation (289) above will further reduce the unknown

constants

3" 1 - Dcos X§ - b Ssn (290)

t) ____ - CZO.Ds (291)
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and expression (289) becomes

'N COS COS)Q in x

z~ (292)

The last property of the Green's function is that at

the discontinuity Xr,the derivative of G(Xf) has the

magnitude Y) or-I by expressing equation (282) in

self-adjoint form. The discontinuity becomes

,_ _ -_ 1 (293)

Using the terms of expression (292) and substituting

into equation (293) the constant P is found to be

_ Sn M (294)

This value of D can now be substituted back into equa-

tion (292) and after several algebraic manipulations

becomes

sin XX 5n

GXxsi) N (295)

Si s,,, ,X ,
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Appendix C

Determining the Green's Function
for Case III

The differential equation for the one-dimensional

Cauchy-type equation is

X2 n -? = X (296)

In order to determine the Green's function for a

differential operator the operator must first be

expressed in self-adjoint form, that is, it must ap-

pear as

Q ( (297)

Equation (296) is not expressed in self-adjoint form

but can be by dividing through by X(. The Green's

function must satisfy the differential equation

1IG(xf) -iLG(m) (298)

Because G(4) can be considered as two separate functions,

7,(X) and G,(x) , the Green's function will be of the

form

{) G (299)

For Xi# Glx) and will each satisfy the homo-

geneous equation of expression (298), that is
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0 _ (x = o (300)

and

- - I G(.X) = 0 (301)

The solution of equations (300) and (301) can be ob-

tained by substituting

(302)

from which m=-i,, can be found. Therefore the Green's

function takes the form

Gt:) = f:i' X2 (303)

Utilizing the fact that Ge-g,) is always zero at the end

points over the interval (1,3) two of the constants in

expression (303) can be evaluated, it is found that
G,( %) = 0 A -t' .'. I- -A (304)

GP ) S- -t ,q .. D- -' (305)

Substituting the values for and D into equation (303)

the Green's function becomes

G =ijo (306)

Next, using the continuity property of the Green's

( function, namely
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G,{f) -G= f) (307)

it is found that,(-_J_ (-- ' (308)

.A C g (309)

Substituting expression (309) back into equation (306)

for G(xj will give

I C xi ) (310)

c ( )- X2

The constant C can be evaluated by using the discon-

tinuity property in the first derivative of the Green's

function, i.e.,

- (311)

Differentiating both terms in expression (310) and sub-

stituting into equation (311) gives

C = () (312)

The value of C can now be substituted back into ex-

pression (310) for the Green's function, which after

simplifying becomes
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--7 -x ) (313)
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Appendix D

Analytic Solution for the Two-Dimensional
Steady-State Heat Conduction Problem

The two-dimensional Poisson equation representing

the internal temperature within some enclosed region

is given explicitly by the partial differential equation

V 2 T(x = - F, (314)

where T j)is the temperature at the point (Y j) and

FRYY) represents the internal heat generation from

some source. The solution of equation (314) will be

derived over a square plate with the Dirichlet boundary

values

T(XD) =T(o,1 ) =T(x,V = o = T. (315)

where T. is a constant temperature along the edge X= .

Applying the superposition principle the problem

can be simplified by assuming that the complete solu-

tion for *v) can be represented by two independent

harmonic functions. The first of these satisfies equa-

tion (314) but with homogeneous Dirichlet boundary con-

ditions. The second harmonic function satisfies the

Laplacian of (314) using the inhomogeneous boundary

condition at X=CL. The complete solution is then

.given by the superposition of both harmonic functions,

see Figure 25, that is
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0 rL0

T *= TI *T.

0 17~...C, 0 0VT 2 20 '*"=

0 X=OL 0 x~cL

Fig. 25 Method of Harmonic Solutions for the Poisson
Equation

T* T, (316)

or

IV . (317)

and thereforeTK satisfies the original Poisson

equation but is composed of the two harmonic functions

Tj and -Tz

Poisson's equation, with the homogeneous boundary

conditions, can be solved by assuming that R(, ) can

be represented as an eign-function of T , that is

- F(X' ) = XT I  
(318)

Substituting this value for FRxs,) will give the par-

tial differential equation

)!-Tl To T,(319)

By using the method of separation of variables for TI,

i.e., TI X-Y , the two eign-functions are obtained

(
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Xc=A Q, LA Ytj) si v.- (320)

with

-?(321)

Therefore T it is found

T Si nl s 6 (322)

Because of linear superposition an infinite series

of equation (322) will also satisfy the original diff-

erential equation, therefore T, is of the form

75= #f X'~ As.,siv May (323)

Substituting expression (323) for r/ into equation

(318) the following expression results

* -F~y)= ) 2L.A,,, S i n 1m s~ i %wr (324)

Solving for the coefficient Akm it is found that

4L

AV%,V% = fJF y. ) si apsi n (325)
@ 0

For F(i,,j}-I , the coefficient becomes

" - I. '9- (326)

and T , from expression (323), becomes
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sin nnuL Sin) a. (327)

The second harmonic function, Tz- , satisfies the

Laplacian of equation (314) and has the inhomogeneous

boundary condition of T at x=. The Laplacian of

TZ is

V T. + TTz = 0 (328)

Again, using the method of separation of variables for

, the two eignfunctions are obtained

X~x)A sn h T-Zx ant st) f TY(329)

Therefore 4 becomes

X x-y Sit) h,, Mtx St qLy? (330)
T 7

Using the linear superposition principle equation (330)

becomes

T&. . B,,~ sln r~ sinv wj (331)

The inhomogeneous boundary condition at X--..can now

be applied to evaluate B, , that is

Tz 9- T. -- IF Bn.. si n T ,. in (332)

and is found to be
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+7o- (333)

-

Substituting this value for Bn into equation (331), T&

is found to be

T. : T or sinh "IYX
T- -sinW w (334)

6

The complete solution for T* is now given by equations

(327) and (334)

4 qTo S~n nnx

b .n6s n (335)
Vn$Aln'1 nff b

6
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Appendix E

Derivation of the Cubic Spline Function

The spline function, (SK() , is a polynominal of

degree three or less on the subinterval

I k : ) XI ] (336)

and will satisfy the conditions that

S(XI) f(y) anl ('x.-X;) ( k-,, k) (337)

Equation (337) imposes the conditions that the spline

function have the same values as f(X) and its first

derivative at each node location. This will allow

SC to be substituted for f(X) on each interval, I
To insure a smooth fit of adjacent splines across the

entire interval ( it will be required that

S~(x-) 5ki ~ k*)(338)
and

SK(xk-) = (339)

Expressions (338) and (339) assure a smoth fit of ad-

joining splines at each interior node, / . Since

S,(x) is a cubic polynominal, $() is a linear func-

tion of X on the interval Xt . The second deriva--

tive of the spline will appear as
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K x)= Mk-, (XIC.-X) + M K(X - Xk,) (30)

where
'I

mK = SK(Xk) (341)

Expression (340) can be obtained, from Figure 26, by

solving for MO4(x) using the linear slope, I-Mk.a,

across the interval ( X . XK - XWk,

Fig. 26 Derivative of Cubic
Spline Function, SK(x)

Integrate equation (340) to find:

5- 1, (_x, - -- ._ X. (342)

where C, is a constant from the integration and X.

Integrating again, the spline function is found,

- (343)
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Let and using condition (337),

Therefore

and

Ik~ SK( XV) M1k 1k +~ C * C (345)

Solving for C, and C2

C i~) 1  (MV. (346)

and

CL ('ka--(KkI xcM)Q )L) (347)

Substituting expressions (346) and (347) back into

equation (343) the cubic spline becomes

and X k )+x-)

4 k

ubt ui 7pA (348)
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Appendix F

Integration, Using the Cubic Spline Function

The integral representation for the temperature

along the line !-in is given by equation (264) as

To I T - (349)

The one-dimensional Green's function, G(Xf) is given

by the expression

(350)

Substituting in G(Voj) , over the appropriate limits,

(349) becomes

.o (-X)

'C~a.+ Ox) ~ (351)
The value of the temperature at the node XK is found

by substituting X=K, into (351) above and is expressed

as
XIC

0
+

(0- A-'TO~k(352)

X C
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Since OL and YN are constant, and because P(fjn) is

only a function of the variable for constant ' ,

equation (352) simplifies to

Xt

IC lIo l + T, (353)

Xk C

Now, pit) will approximated by the cubic spline rep-

resentation given by equation (258), substituted back

into the integral, equation (353), and integrated. The

results after much algebraic manipulation yield

45- -Mk t" X ?W (354)
@3

rK. (, _) - - (0.-XQ3 (355)
Xk 2't

(OAISVM k a.~k~i&~~ (356)

IkZY 3 K z

Replacing the integrals, given in equation (353) by

their equivalent quantities above, equation (353) be-

comes
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'4T=k (S,-Xk K Ic Mk

+ (9::k ~- t (C-x

X11 (CL - XK Mk C- a IXk)A'k4.q ('Z -Xk) 4L__ _

7- 3 ka-

6 1 ~k(37
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