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Preface

l
|
t This report is the result of my investigation
into numerical solutions of differential equations,
expressed in both differential and integral form.
F The method of finite differences was utilized for
solutions of the equations in differential form. A
Fredholm integral representation was developed and
numerically evaluated to compare with the finite
difference method. The purpose of this thesis was
to examine the solutions obtained to the differen-
tial equation using both above methods and report on
the advantages and disadvantages of each. A secondary
purpose of this thesis was to strengthen my own mathe-
matical background on numerical methods and their
ability to solve differential equations. I have
attempted to include sufficient detail to provide the
reader with a step by step account of the development.
I want to thank Dr. Bernard Kaplan, my advisor,
for his guidance and assistance throughout this study.
I would also like to thank Dr. John Jones for his
many helpful discussions pertaining to spline theory
and also to Dr. Wilhelm Ericksen for his patience in
helping correct many of my computer programs. I also

wish to thank Dr. wL Kessler of the Air Force Materials

Laboratory for sponsoring this study. Finally, I




would like to thank my wife, Carolyn, for her pa-

tience, understanding and typing.
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i Abstract

A study of several numerical methods for the
solution of boundary value problems, in both one and

two-dimensions, was conducted using the CDC 6600 com-

puter. The method of finite differences was employed
for solution of the equations in differential form. {
These numerical solutions were compared to those ob- J
tained by transforming the original differential equa-
tion into integral form and approximating their solu-
tion using numerical integration via the trapezoid
rule. All numerical experiments were conducted using
‘ Dirichlet boundary conditions.:D
¥ ~>In the oné;dimeﬁgiéﬁéiﬂggses studied it was found
that both methods are equivalent, i.e., yield identi-
cal solutions when the integral representation had a
linear weighted Green's function kernel. In addition,
the integral approach was found to be as/accurate in
all one-dimensional cases as the method of finite
differences. The finite di{fgreﬁgé method proved
gquicker than the numericaiﬁintegration techniques in
all but one'feét case where the Green's integral rep-
rtffhtation was examined.
;XFor the two-~dimensional investigation the steady-
state heat conduction equation was analyzed. Again,

. the method of finite differences in two-dimensions_;;,foiiw?c

b e -




eent s
—>, was compared to the integral approach, using cubic

splines. The method of finite differences was found
to be superior in calculating the internal temper-

ature, at all nodal points, as compared to the inte-

gral-spline solution.
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I. Introduction

Background

A majority of problems encountered in techni-
cal research by engineers and physicists can be ex-
pressed in mathematical form as a differential or par-
tial differential equation. Solutions of these equa-
tions are dependent upon initial conditions and/or
boundary values. (If the values of the function are
specified on the boundary, the equation is said to
contain Dirichlet boundary conditions. If the normal
derivatives (gradients) of the function are specified
on the boundary then Neumann boundary conditions are
said to exist. The boundary conditions are referred
f to as mixed if the initial conditions describing the
differential or partial differential equation contain
both Dirichlet and Neumann conditions.) Because the
equations possess unique solutions it does not nece-
ssarily follow that these solutions are easy to ob-
tain. In many cases the exact closed-form solutions
are not attainable; and as a result, approximation
techniques must be used to generate analytical values.
For this reason, most of all important problems re-

quire application of some numerical method.

Numerical Techhiques

Though there are a variety of techniques available




to handle specific boundary value problems, this
thesis will be concerned with three specific methods:
(1) The method of finite differences
(2) Fredholm integral equations and their numeri-
cal approximations

(3) Ctilization of cubic splines

One-Dimensional Cases

The method of finite differences is based upon a
scheme of numerical differentiation. The original
differential equation is replaced by a finite number
of algebraic expressions defined over the interval;
this set of equations is easily solved using the com-
puter. In the one-dimensional cases methods (1) and
(2) are compared for both accuracy and speed of com-
putations.

The second method transforms the original differ-
ential expression into an equivalent integral equation,
usually a Fredholm integral equation of the second or

third kind (Ref 1: 381-382). The advantages of this

technique is that in many cases a weighted symmetric

Green's function kernel results and can be evaluated

e —

using standard numerical integration techniques, such

as the trapezoid rule.
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Two-Dimensional Cases

In the two-dimensional analysis the steady-state
heat conduction problem, with an inhomogeneous boun-
dary condition of T, along one edge, was investigated.
The analytical solution was calculated and compared
at 16 interior nodal points with the method of finite
differences.

The third method investigated in the two-dimen-
sional case was again one of converting the original
partial differential equation into integral form by a
method proposed by Hajdin and Krajcinovic (Ref 2: 523-
539). The unknowns appearing within the integrals
are approximated by cubic splines and numerically
integrated. Again methods (1) and (3) were compared

for both accuracy and ease of computation.

Purpose

There are several important for investigating
numerical integration techniques two methods bases upon
numerical differentiation. Computer utilization costs
are normally are direct function of utilization time.
Thus it becomes of prime importance to use the most
cost effective method in solving a particular problem.
Hajdin and Krajcinovic contend that numerical inte-

gration is many times more accurate than numerical

differentiation and that results through numerical




integration should be superior to those based upon
the method of finite differences. For the same accu-
racy one should be able to significantly reduce the
number of points (i.e. number of algebraic equations)
with numerical integration (Ref 3: 509-510). The
purpose of this study is therefore to determine whe-
ther or not numerical integration is advantageous or
comparable to the method of finite differences, a

method of numerical differentiation.

Plan of Development

Due to time restrictions placed on this study,
four types of problems were considered. In the one-
dimensional analysis the problems and boundary con-

ditions were the following:

(1) y'+y =0, (o) = 0, y(1)= |
(2) y +Xy:=1, Yloy= 0,y =0 (1)
(3) x‘u’-z:j = x1 410, y3=0

Equation (1), equivalent to the one-dimensional Helm-
holtz equation, is introduced to illustrate the pro-

cedures used in transforming differential equations i
into their equivalent integral representation. 1In
addition, equation (1) is also used to demonstrate

the numerical methods employed to evaluate the Fredholm

integral representations of equations (2) and (3).




All equations had closed-form analytical solu-
tions that were used for comparison to the numerically
generated values. Numerical computation was carried
out on the CDC 6600 computer using identical numeri-
cal techniques in all cases. Also, the number of
iterations per interval was kept the same so that an
accurate comparison of both methods could be made.
Solutions were first obtained for 1-10 iterations
over the boundary, and increased to 50 iterations/in-
terval for the final analysis. All computation was
carried to six significant decimal places.

In two-dimensional analysis, Poisson's equation
was investigated. The problem chosen was the steady-
state heat conduction over a square plate with an
inhomogeneous Dirichlet boundary condition at one edge.
The known analytical solutions were developed using
the method of separation of variables. Over 10,000
independent series summations were required at each
interior node point to yield six decimal place conver-
gence. The method of finite differences was compared
with the analytical results at 16 and 81 interior
points. For integral conversion, the method of cubic
splines was used and numerically integrated. The cal-

culated solution was compared with the known analytic

solution.




II. Theory

Integral Equations

An integral equation is one in which the function
to be determined appears under an integral sign.
Linear integral equations, that is, equations in
which the unknown function f appears to no higher
power than one, are conventionally divided into two

classifications. An equation of the form
b
X)) = Flx) + )\jK(x.s)ﬂg) dg (2)
a

where &, F, and [ are given functions and A a, and
b are constants is known as a Fredholm equation.

The function K(x,§) is known as the kernel of the
integral equation and is frequently a weighted Green's
function. If the upper 1limit of the integral is not

a constant the equation takes the form

K(x)f(x) = Fw) + )\fK(x.s)-F«)cls (3)
Q

and is known as a Volterra equation.

When & # 0 , equation (2) involves the unknown
function ‘F both inside and outside the integral. If
& =0, the unknown function appears only under the in-
tegral and the equation is known as an integral equa-
tion of the first kind. If & =1l the equation is

said to be of the second kind. In the more general

case when &(X) is not a constant the equation is




called an integral equation of the third kind (Ref 1:
382).

Multiple Integrations

Certain integral equations can be deduced from *
or reduced to differential equations. In order to
accomplish the reduction it is frequently necessary

to make use of the formula:

fle(X)dxdx = Sz‘ixjj‘(n)dn = ‘S:(x-g)f(g)as (1)

Equation (4) is obtained by integrating the left-hand
side by parts, that is

[gﬁ’md] J‘ ;{ ;i j.f(n)dn dg = xjfcn)eln fif(;}dg (5)

More generally, by a repeated application of this
procedure, the results of integrating fx) n times

over the same limits is

ﬂ times

n times |
....ﬁ(x,dx.... X = gx £)" -F(g)Jg (6)

a

Expression (6) will be useful in manipulating multiple
integrations in the work which follows (Ref 4: 722).

Differential Conversion to Integral Form

To illustrate the mechanics for converting a

differential equation into integral form, consider




the boundary value problem

2
1;; = - fx) (7)

with boundary conditions

Y(e)=a, ydf)= b (8)
First integrate both sides of (7 ) with respect to
X over the interval (0,X)

j‘dx(dx)dx = J"-(F(x) dx (9)

X X
.A—i = - x J (10)
1 S,F() X

o

or

Therefore ( 7 ) is equivalent to the expression

i:j.(x) = C - f\f(x)dx (11)
dx 5

where C represents the unknown value of %i“) .

A second integration over (0,X) leads to

xJ X X x
J;J—x(’)dx = CL-AX 'i[{(}d dxdx (12)
Sxdy = Cx -J‘x ‘{(X)Jx JX (13)
© ° o

This becomes
X X X
j(x)l = Cx —fiftx)clxdx (14)
o 0

Using equation ( 6 ) for the right-hand integral and

o ———— 41 A




simplifying, equation (14) becomes

(x)= Ylo) +C jx M) d (15)
x)= Ylo) + Cx = |(x-§)1(§)d§ 5
Jo0= f
or
X fey d
(x) = a + Cx — \(x-§)1(¢§) 4d¢ (16)
v 50

The constant C can be evaluated by applying the sec-

ond boundary condition, namely
|
)= b= asch - fir-gfds (17)
[-]
Solving for C gives

c= b2 —-jw -§)fu5) ds (18)

Substituting € above, equation (16) becomes

g X
yoo=a +(b=)x + —"-f(!l-f)fm ds - f(x—f){rs)o\s (19)

This last expression can be rewrltten by expanding
the first integral, i.e. ,J—f I Equation (19) then

becomes

(x)= a +[b- X
J (-T“-)x t 1) (ﬂ -§)4(5) ds

X {
—_ j(x'f)“lfkk + _’SJ'(Q-;){(,—)A; (20)
7. 4 :




D e s w e

Collecting terms under the same integral limits, (20)
becomes
X 9
‘J"‘”I‘(M)\‘G)Js +f1(9-f)¥«s>o\ +[b=2)y 4+ a (21)
OT 7 § ( q )X +
3
With the abbreviation
7 (1-5)  x<s
K(xs) = . (22)
i‘(ﬂ"") x>§

equation (21) becomes

{
yix) = i K(x.){cs)ds + (*lir“-)x + a (23)

Thus, the integral equation corresponding to the
boundary value problem (7) is a Fredholm equation of

the second kind.

Kernel Properties

Note that the kernel, K(x,g‘) given by equation
(22), has different analytical expressions in the
two regions, X{§ and X 3§ , but that the expressions
are equivalent when X=§ . Observe also that in each

region [ is a linear function of X and that [ van-

Y ————————

ishes at the end points. K(x§) can be thought of as a

function of X for a fixed value of ¢ .

10
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[

[K(x,¢)
SN
2 "=
+/$’ v
[~] — ng x a

Fig. 1 The Integral Kernel, K(x)

Finally, f((x,g) is unchanged if X and § are inter-
changed; that is, K(x,¢) = K(s,x) - ¥ernels having
this last property are said to be symmetric and obey
the Reciprocity principle. Many of the kernels gen-
erated in converting boundary value problems into in-
tegral equations have this property and are commonly

identified as Green's functions.

The Green's Function

Green's functions are extremely important mathe-~
matical quantities in physics. Mathematically, they
allow the solution of differential equations to be ex-
pressed in integral form. The solution of some inhomo-
geneous differential equation

Ly + £ = o (24)

e
-

with homogeneous Youndary conditions

11




\*j(o)zO, j(,Q):: Q (25)

and wherel_ is the self-adjoint differential op-

erator,

L = %;(P(X)%_;) + c15(x) - (26)

can be expressed in the integral form

2
J = SG(X@)\C\(g) dg (27)

where G(x,g) is called the Green's function (Ref 6: 599-

600). The advantages of the Green's function are:

(1) The homogeneous boundary conditions are in-
corporated in the integral representation (27).
(2) Equation (27) enables the differential rep-

resentation, (24), to be solved via the inte-

grating process.
(3) The Green's function method also allows solu-
tions of (24) with inhomogeneous boundary

conditions (Ref 5: 12-14),

Determining the Green's Function
The Green's function satisfies the differential
operator of a homogeneous boundary value problem,

everywhere except at one point. In addition, it

12

h
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vanishes at the end points and has a discontinuous
first derivative at X=§ . For a boundary value prob-

lem of the form

L Yix) = L) (28)

the Green's function, G(x,g) y 1s defined as the solu-

tion of the equation

L G(x.g) = = S(x-9) (29)

where SYX-;) is known as the Dirac delta function

having the properties

o X#s

S(X'g) = 0 ‘se (30)

The Green's function satisfies the homogeneous diff-
erential operator, L. y at all other points other than
X==§ . At X=§ a singularity exists and is governed by
the properties of the delta function (Ref 15: 7).

Over the interval (0,Q) it is possible to obtain a
convenient form of a solution for G(X.§)by assuming
that the Green's function can be represented by G,(x)

when X<§, and by G,(x) when X>§ . In the one-dimen-

-

sional case the Green's function has the following

properties:

~
.

13
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6,0 x<§

(1) G(x,)= , and the functions (,(x) and
G, Xx>§

G,(x) each satisfy equation (29) in their in-

tervals of definition, i.e.,

LG (=0, and L G,(x)= 0 (for x25) (31) ‘

(2) The function G(x.f) satisfies homogeneous con- |

ditions at the interval end points X= 0O and X=R .

G,(0)= 0, G,(8) =0 (32)

(3) G(x,ﬁ) is continuous at X=%€ . This requires
that

G,(§) = G,(s5) (33)

(4) The derivative of G(x,f) has a discontinuity i
of magnitude -yp(g) at X=§ , that is, J

AGL(X) JG(X)] |/
—t -~ N = - ( (34)
dX y.¢ dX xos Pg)

Using these four conditions, it is possible to deter-
mine G(x,€) and represent the solution of the differ-

ential equation in integral form.

Example

As an example of determining the Green's function

for a differential operator, consider the boundary ‘

value problem

14 Y




clz
—*\1 = --F(x) (33)
dx?

with inhomogeneous boundary conditions

y(o)=a, Y(2) = b (36)

The Green's function is determined as the solution of

L Gixg = - S("‘g) (37)

2
where l_:é_. in this case. Equation (37 ) becomes

dxt
AZ_G_(xlg) =z - S(x-g) (38)

dx?
Assuming that G(x.,§) can be expressed by (,(x) and Gu(x)
over the interval (0,{), the Green's function will be

of the form

G,(x) Xx<§

Gx,s) = (39)
G,x) Xx>§

For X;f § ,6,x) and G,(x) satisfy the homogeneous

equation (31 ):

LGt =LGwx =0 (40)

The simplest form of solution, satisfying equation

(40 ), is to assume that O(xf)takes the form

15
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Ax+ B X<§

Gx,9= (41)

CX+D x>§

From the previcus properties (2), (3) and (4) for the
Green's function, all of the constants in (41 ) can
be evaluated. From property (2), G(x.g) must vanish at

the ends, therefore

G,()=0:=8 (42)

and

G,(8) = 0 =CR+D, .. D=-C& (43)

Substituting these values for B and D back into (41 )

the Green's function becomesg

A X <
Glxg)= ¢ ; (4h)
C(X-f) X>€

Using the fact that G(xg)is continuous at X=§, pro-
perty (3), namely

G, (5) = G,(g) (45)

the constantc_ can be expressed in terms of ,4 :
C(s-4) (46)
A5/(5-4) (¥7)
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Substituting expression (47 ) back into (44 ), the

Green's function takes the form

A x X<
G(x,¢)= 4s s (48)
-2 (x-¢
Using property (4), the fi: civative of G(x,g§)must
be discontinuous at X=§ fically,
(x '
4—6‘ ), - é_G_'(“H : I (49)
d x X§ dX x-=f
Doing the differentiation yields
As _ » = -y (50)

or

A = -5) (51)

and equation (48 ) becomes

X-5)X x<g

G(x,€) = 2 (52)
d (/—X):ei X>§

Equation (52 ) represents the final expression for

2
G(Xﬁ) for the operator |= %)T" Notice that this is ex-
actly the form of the kernel for the integral expansion

of this boundary value problem, given by equation (22 ),

The Green's Integral Equation
Many different boundary value problems, upon

17




integral conversion, have symmetric kernels equivalent
to weighted Green's functions. Therefore, two pro-
cedures to generate the Green's function can be used:
(1) Through integral conversion or
(2) Finding G(x,§) from the differential operator, L.
It vhould also be mentioned that not all integral
conversions yield symmetric Green's functions. 1In

particular, if the differential equation is of the form
Az
34 + Ady + By=0 (53)
dx? dx J

with homogeneous boundary conditions
Y(e)= 0, y)=0 (54)

then the resulting kernel of the integral eguation is
both nonsymmetric and discontinuous at X=&, unless
A= o0 (Appendix A). '

Both methods (1) and (2) should be equivalent,
however different expressions for Glxg§)can occur. As
an example consider the one-dimensional Helmholtz
boundary value problem

cﬁ_j_ + x.j = | (55)

dx?

with boundary conditions
j(o): O, \d(\)=0 (56)

Upon integral conversion, page68, it was found that

j(x) was of the form




9o+ | Kixs) (- 1) de (57

where the kernel is defined by the expression

X(1-§) X<§
k(x,g).-. (58)
§(\ —X) X>§

Expression ( 58) represents the equivalent weighted
Green's function for the integral conversion method.
Next, consider the problem in operator form, where L

represents the one-dimensional Helmholtz operator

t 2
L = & + A (59)
dx?
The Green's function must obey the differential equa-
tion
[
(x 2
X

From the method outlined using the differential operator,

l. , the Green's function was found to be (Appendix C):

sin Ml-f)
S\ A X
Gexg)= 4 "> x<5 (61)

Sin A(1-x) s\
)a\)l 5 X>§
and v(x) is given by
i

:j(x) 56(:& g§)dg (62)

where G(xg§) is deﬁned by equation (61) and ‘F(ﬁ)=-| from




(55). Clearly,su)is represented equivalently by two
completely independent forms of the Green's function;
that is, equations (57) and (62), each with distinct,
different kernels, must be equivalent expressions.

Equivalency of the Integral Equation
and the Green's Integral

It will now be shown that equations (57) and (62)
are identical expressions and that they both satisfy
the one-dimensional Helmholtz differential equation.

Equation (57) can be written in the form

'
Yoo = ﬁ(l-x){,\"y(g)-n} ds + ‘Sx(\-f)[,\"(;)-\} ds (63)
s X

where the kernel, defined by equation (58) has been
substituted over the appropriate limits. According
to Leibnitz's rule for differentiation under an integral,

(Ref 1t 383), the first derivative of (63) becomes
X

, '
Y= = 5(Xyg)-1)ds  + j(t-f)()‘ju)-\)cls (64)
[ X

The second derivative of vcﬂ is found by differentiating

(64) with respect to X, and is

v.ix): -X()f‘lj(x)-l) - (\—X)(Xuog)-.) = \- )‘7(:) (65)

Substituting the equation for ”%0, equation (65), back

into the original differential equation, expression (55),

it is found that




sk [ e

Hence, the integral representation given by (57)
satisfies differential equation (55) and therefore
must be equivalent due to the uniqueness of solution
guaranteed through the given boundary conditions.

Equation (62) can likewise be written in the form

/
s - swu\(l-) )\ _ |5 A(2-6) smrx

where again G(x.s) has been substituted over its defined

limits. Using Leibnitz's rule the first derivative

of \d(x) becomes
|

i} Cos MA=x)SIN G Jf — X\ lcos Ax sin \(1-£) c\g (68)
j(x’ A Asindf dsin 2%
X

The second derivative, differentiating expression (68),

becomes the quantity

:1"(x)= 3 ‘S’sm Mi-x)sinkg dg  + x-ism)xsm)(g.;) ds
(]

Asin 2f AsmAd
4+ Acos AMI-x)siwdx + X oS Ax s A (L-x) (69)
Asia \R

Substituting the integral expression for \J'('x) and :,(x)
back into the original differential equation, it is

found that

(70)

e + Myt = )cos)(l-x)snn)x+)w)\xsm)\(ﬁ-x)
J o+ Xy sm 2k
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After simplifying, the right-Land side of equation (70)
becomes

" 2 = /\sm)«!(sm")‘x +<OS'AX) -
Y+ Xy Py =

(71)

Therefore, the Green's integral representation also
satisfies differential equation (55) and both integral
forms, equations (57) and (62) must be equivalent ex-

pressions.

Integral Representation

One last procedure will be introduced to demon-
strate how equation (62) originates. Consider the two

equations

3—31 = - , ‘J‘°)"“» Y= b (72)

and

26¢

d26exg) _

= 0 ° § (x-¢) (73)

Equation (73 ) represents the Green's function solution
a

for the differential operator L='%; . Multiply equa-

tion (72) by G(u§) and equation (73) by Ytx) , subtract

and integrate over the interval (Qf) to obtain

~2
)i@(x,f) é:uw.. jm{%x")} dx =
°

Q

dx?
|
°
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Rewriting the left-hand derivatives in equation (74)
and using the integral properties of the Dirac delta

function (Ref 5: 6), equation (74) becomes

4

5{5«,;)& )Ax - :’d‘ JG(M))} dx

iG(x.E) ‘F(x)c\x + vlg) (75)

Integrating the left side by parts, using the fact that

Suc‘v =S\M§;“£dx = U‘V"SV%“LJX (76)

The left-hand side of equation (75) becomes
G(x,g') Jﬂ d G(xs‘){ f 2JG J d6 o'"
! X 1+ | 99, (77)
dx ‘ dr’J,}z dx

Evaluating at the limits, (77) becomes

Gu.c);;um Go5) g;u) yw)AGuﬂ\ + g 46 txg)| (78)
x»o
Because the Green's function is zero at end points the

first two quantities on the left drop out. The only
expressions left to evaluate are the derivatives of
g—g-“‘g) on the appropriate intervals. Differentiating

equation (52), which is the known G(xg) for the operator

2
%-;,_ s glves

(-5
46t T) xS (79)
dx §
o X>§

Using d6xg) above, equation (78) becomes
dax
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f)s (0)(0-§) !
j_x + = ‘fox.S)f(x)Jx * Y06 (80)
(o]

Solving for 3‘5)' and substituting the boundary con-

ditions at \J(o) and \3(1) » equation (80) becomes the

expression 0
(€)= SG(X.E)‘F(x)Jx X bg e a (9-§) (81)
g5 ) T T

Interchanging the labels x and § from the Reciprocity
principle (Ref 6: 328) and using the symmetry of G(x§)

equation (81) is transformed into

1
Yt = fG(Y:E)'FG)Js + bx L all-x) (82)
) S

This equation is the Green's integral solution of
differential equation (72), with inhomogeneous Dirichlet
boundary conditions. Note the similarity of this rep-
resentation versus the integral equation expression

given by equation (23).

Numerical Integration

b
An integral of the form foodx stands for the

area represented by 'ﬁx) over the interval (a,b). This
érea can be approximated by several methods; the tra-
pezoid rule is based on linear interpolation, the

integral is expressed as a sum of N trapezoidal areas;

Simpson's rule for numerical integration is based upon

24
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quadratic interpolation, parabolas or polynominals of
degree 2 or less are used to approximate {00 between
three successive points; the Newton-Cotes method is
based upon pelynominal interpolation of degree 3 or
more., In this thesis the trapezoid rule is used to

numerically integrate all one-dimensional cases.

Trapezoid Rule

The area of a typical trapezoid with base length ;
\'\ and sides ‘F(x;.,) - and ‘F(x;) is

Area = _g_[{(x‘,_‘, N, (83)

The combined area of all trapezoids, over the interval

Q=% to bzxyis

Total area = 1
ol area= Ilftgafe) + Mo - -+ B [Foeminy] (89)

\\‘r y=f(x)
f(x;.,) o) |
X;.y —ax IR —rX . 1

Fig. 2 Trapezoid Partition

[ 3
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Therefore, for the trapezoid rule equation (84) becomes

b
J((x)t\xg %[-th.)-a- 2f(k )+ - - -+ 2F (X)) + ﬂxuﬂ (85)

where x,,xz,...,x“ are equally spaced points dividing
the interval from a= X, to b= ¥, into (N-1) equal parts,
of length h:(\""‘)/(u-l). The trapezoid rule can be made

as accurate as desired by choosing h very small, i.e.,

N very large. 1In addition, there are several advantages
in using trapezoid interpolation versus the Simpson's

rule.

Trapezoid vs. Simpson's Rule

It was shown earlier that all differential equa-

tions of the form
2 .
{x)
% = - (86)

with homogeneous end conditions have linear Green's

kernels when expressed in integral form (Ref 1: 461-

462). The linear kernel of equation (86 ) is shown in

Fig. 1 and given by equation (22). Due to the linearity

of K(x,g) and the presence of a 'corner' at X=§, Simpson's
rule for numerical integration will be less accurate

than the trapezoid rule (Ref 7: 217, Problem #4-25).
Trapezoids furnish better approximations to linear

kernels than parabolas. Parabolas always exceed the

actual area bounded by three consecutive points across
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the discontinuity, at X=§, for a linear kernel. 1In
addition, Simpson's rule can only be used if N, the
number of points in the interval (a,b), is odd. By
using Simpson's rule with N even the computed integral
will exceed the true value because of the multiple
contributions from trapezoids adjacent to the dis-
continuity. As an example to illustrate what happens
by using Simpson's rule when N is even, consider the
area bounded by the linear kernel given by equation
(22) over the interval (0,1). The linear kernel is
X(\-8) x<g
Kix,5) = (87)
§(1-x) X>g
Divide the interval (0,1) into three regions defined

by the four equally spaced points

- )
x\- o, Xa= ,3, X3= 2, X= |

Fixing $§=%; and applying Simpson's rule to the area
defined by K(x.;), one extra contribution from the

region defined over (xz,XJ) is added into the total ares.

Kixg) s

N\ |
""r'

% Y,

X20 Xzl X,'i} Xqz/
Fig. 3 The Linear Kernel, K(x,§)
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The first contribution comes from applying quadratic
interpolation over the first three points (X,,X,, X3 ).
Recall that in quadratic interpolation a polynominal

of degree 2 or less is used to represent a function {tx)
over two successive intervals (x,,x,,x,). Mathematically,
if the value of ‘((x) is known at three locaticns, a

polynominal, P(x) y can be determined of the form

px) = Ax: 4+ Bx + C (88)

where A, B, and C are all constants to be determined

from the three points

(X., {(X.)), (xe, ‘F(x,))) (3, fexy))

Once determined, P(x) is then substituted for {fx) over
the interval (X, x,, xy ) and integrated by expression
(85). Over the points X,, X;» and X3 given above, and
using the value of K{x.;) on the interval X<g, P¢(x)can be

found and is

F(x) = _)_(__ (89)
3

Therefore, Simpson's method applied to the first three
points in Fig. 3 is the area represented under the line
Koug)= %3 .

To calculate the remaining area under K(X,;)for X)g ’
three additional points and the values of f(x) must be

known. Now however, only two points remain for the in-
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terval ®>§ , X3 and X... If Xs is used again, in con-

junction with Xy and X4+ a parabola can be constructed
to pass through all three points. The polynominal over
the 'corner' of K4§) defined on the interval (x,,¥., X5 )

can be and is

P(x)_

Hence, the area under the interval from X, to Xq is

+%x_.‘ (90)

N|.o

added onto that already calculated from the first inter-

val, adding in the area (X;, )l,) twice. Not only is

poos ‘-;-xz * f_,_‘-x -

7/

/ .

Xz0 Xgx% Xy=%4 Xq=l

Fig. 4 Quadratic Interpolation Across
the Discontinuity §= %.
the area via Simpson's rule in error but note that by
using parabolas a larger area is actually obtained
since r(x) encompasses the linear boundaries of K(x,g).
Even for N odd, parabolas still overestimate the desired
area, and not until K(x,g)is represented by a non-linear

function does the Simpson's technique yield a more
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accurate result compared to the trapezoid method.

Finite Difference Method

The method of finite differences is a process
of numerical differentiation; the original differential
equation is replaced by finite difference approximations.
This technique converts the original differential equa-
tion into a system of linear algebraic expressions
which can be solved simultaneously to give solutions
at a finite number of points.

The differential operator by definition is ex-

pressed quantitatively as

A_‘J_ - lim  Yxrax) — Y(x)

dx  Mx»o AX (91)

However, because the computer cannot take the limit

one must approximate ;E- by using a small 4x, that is

%% o Yxe29 - Y0 (92)

This quanity is known as the first forward difference
quotient. Expression 02 ) represents the change in
some function by incrementing X a positive amount AX.
The general procedure to obtain difference ap-
proximations for derivatives is to express several
values of u at adjacent points in a Taylor series
expansion, it is then possible to solve for the needed

derivative through algebraic manipulation.
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To derive the numerical analogy for the first
and second derivatives, expand \d in a Taylor series
about the two points X+h and X-h:
' LI 3 w 4
x+h) = x) + x) + x) + -+ O(hY)
Yorh)= Yoo + hyw %3x) My (93)

y L 3w
yex-h) = Yy = hyo) + %5%"’ - %3(,,,, Y1) (94)
Adding equations (93 ) and (94), the sum becomes

Ylx+h) + Y(x-h) = 2 yex) + hzy'fx)-r .o+ + O(hY) (95)

where O(h') refers to terms containing fourth and high-
er powers of h . By assuming the higher ordered terms
are negligible compared to the lower powers of h ’
for small values of h, equation (95) can be solved

for “J"“‘)' and is

oo YR ZBYW YN L o) (56)

As h becomes small the remainder terms can be neglected

and (96 ) reduces to

(97)

1] — -
Y'on = y(x+h) :‘E(x) + Y(x-h)
The above expression is known as the central finite
difference (CFD) approximation to the second derivative
of \Jlx) and has an associated error of order h" . |
To approximate the first derivative, subtract

equation (94 ) from (93 ) and obtain the quanity

U(x-o-h)—- j(x-h) =2h \j"x) + O(R) (98)

3




or, solving for 3?x)

v'(x)= ‘j(x*;)l;‘ ‘j(x"h) + O( \.\z) (99)

The central difference approximation for the first
derivative is also of order hz. For small values of

h ’ 3&) becomes

! Y(x+h) = y(x-h)
30:)9_’ 2T (100)

In addition to the central difference scheme it

is also possible to approximate the derivative from

two adjacent points, a distance}iand 2h from X , the
technique is known as the first forward difference (FFD)
method. To find the first forward difference ex-

pression for the first derivative solve (93 ) for jYx)
[}
= X - X
Y (x) ‘:Ii_“_‘\“)_ﬂﬁ + O(h) (101)
Likewise, for the second derivative

Yt = ﬂ(”zh)—ié(“h“'mx—’ + OCh)  (102)

Note in the FFD methods the errors associated with

equations (10) and (109 are of order h . For the CFD
methods however, the errors are of order hz. There-
fore, it can be concluded that using points symmetrically
located with respect to X give more accurate results,

by a factor of h » than those based on the FFD tech-

niques (Ref 8: 63).




Matrix Methods: The Integral Form of Solution

A definite integral of the form j: 5}?‘““ can be

written exactly as *
N
Yix = i, E“P(x\d(bx“) (103)

where the interval (a,b) is divided into N subintervals
of lengths 4X,,....,8X,, and Xy, is a point of the Kib
subinterval (Ref 1: 444). An approximation to (10)
can be obtained by expressing \J(x) as a weighted sum
of the ordinates ‘F(XK) at N conveniently chosen points

X,s Xasee:.s Xy On the interval (a,b), that is

N
Yo =2 Kz Dy f(xe) = Dftx)+ Dftxys -+ D fxe)  (10)
2)

where DK is a weighing coefficient associated with
the point Xgx. The coefficient Dk, when the points
Xys XareeeeyXy are equally spaced, can be chosen in
accordance with formulas for numerical integration,
such as the trapezoid rule. Recall that use of the

trapezoid rule for an integral gives

» .
j{uﬂx o %{ fix) + 2f0e) 4 .-« + 2f(x,.) + F(x,.)} (105)
Q

where hz(b"“)/‘u.’. Identifying the 'weighing' coeffi- ;

cients, DK , with the trapezoid rule it is found that !

{D. ,Da, D, Du-z.)DN-\; DN}

= h
= .2.{“2.2,...,2,2‘\} (106)
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In the same way integral equations such as
b
‘:j"" = Foy + SK(Xli)j(f)Jf (107)
a

can be approximated in the form

N
‘J(X) X F(X) + %\ DKK(XIXK):’(XK) (108)

where, again the points xkare chosen at N locations
in the interval (a,b). The DK values correspond to
weighing coefficients based upon the approximation
method used, i.e., Simpson's or trapezoid rule. By
requiring that both sides of equation (10§ be equal
at each of the N chosen points, N linear equations

results
N
yix) = Fexo + KZDKle;,xK)a(xK) te b2,e- s N (109)
)

where the unknowns 70(.).....,3()(.‘) correspond to the
values of the unknown function ya)at N locations.

Introducing the abbreviations

yi = j(xi)) F‘ = F(Xi)) Kij s K(xi.,x.") (110)

where K,J is the value of [{(x§) when X=X and §= X; ,

expression (109) becomes

= R+ i K;; Dy Yx (111)

K2y

The kernel K'J can be written in the form of a matrix
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w

o

_
Koy K02 ¢ - - W(\LN)
K@)

=l
1]

(112)
LKLM KINN)
Also, Dr‘ can take the form of a diagonal matrix by
defining Dy = @KS-‘_“
— —_—
Dl O - » + =
oD (113)

ol
1]

' D
| - ~
o Equation (111) can be expressed in matrix form as
I-%%]g-F (114) |

where J is the unit matrix of order N. The single

bar denotes a column vector and the double bar a matrix
quanity. Consequently the integral form of solution
is expressed, for computer analysis, as a problem of

matrix multiplication.

} Matrix Methods: The Method of Finite Differences

Just as was the case with the integral conversion,
it is also possible to transform the method of finite

differences into a problem of matrix multiplication.
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Consider the general second order differential equa-

tion

Y | fogdy +qM)Yy = Yx) (115)
dx

d x2

with boundary conditions
yix)= A, y(xn)= B (116)

Using central finite differences, the first and
second derivatives of 3()() can be approximated by equa-
tions (92) and (97 ). Substituting these quantities

and combining terms, equation (115) becomes

U(X-h)g\—f_(_)_tzlh} + \J(x)z‘: hzam-?.}

+\3(x+h){\+{%m} - vl (117)

Once again introduce the notation

\ji= \J(X;_)) E = \- F(xz_f___.)\'\ > G;_—‘ hzj(x.:)‘z.,

t.- ‘*‘Eﬁ"_z“?.\_“_, Ri= rix) W (118)

Equation (117 ) becomes equivalent to the system of

linear equations

vi-lﬁ ¥ :'i.Gi. + j‘ulE\_ = Ry (i=2,3,---, N“") (119)

If the end conditions, :"-.-ﬂ and ynz B ; are substituted
(119 ) can be expressed as the system of equations

defined from 122,3,...,N-ls
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=2 ”FZ + 3263 + ;FZ = RZ

i=3

w5 :beg * 4 = R;
i=q j,ﬁ' * 3‘6\. * Y Ey, = Ry
s N-1 YoFur * 4, 6 *BE, = R

and rewritten in matrix form as

rGa— Ez o - ’—_1 F-Hz_

El Gs Es O 33 R;
o R G F

: B Gu

el | T N B

The left-hand matrix in equation (121) is known as a

-l
]

o ]

oL

sc
>
2
o
!
4
m
7

tridiagonal matrix. The elements on the principle
diagonal, super-diagonal, and sub-diagonal, are non-
zero, with zero elements everywhere else (Ref 9: 104).
Expression (121) can be written in the more concise

matrix form

- ' ,
where B corresponds to the tridiagonal coefficient

(120)

(121)

(122)




matrix, and 9 and R are the perspective matrix
vectors. Again, the differential form of solution is
expressed, for computer analysis, as a problem of

matrix multiplication.

Simultaneous Solution of Linear Equations

The solution for a system of equations, A §= \D
is most efficiently solved by eliminating the unknowns,
and the most commonly employed method is the Gauss
elimination process. Consider as an example the follow-

ing set of four equations:

E. Cw Cis Cu ’—x'— F n—
Ca Ce Cas Cay X, - n (123)
Cy Cha Ciz Cyy X; r
Cu Che Cue C ;

L9, Sue Cyqn Cyy) | Xy |

—-—

The solution vector, X , is the desired quanity and
will be obtained through algebraic manipulation of
the coefficient matrix in (123). During the process
of this matrix manipulation it should be remembered
that the solution of -)i remains unchanged if any of
the following operations are preformed:

(1) Multiplication or division of any equation
by a constant.

(2) Replacement of any equation by the sum or
difference of that equation and any other
equation.

Gauss elimination is simply a sequential app-

lication of the row operations (1) and (2) above. In
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the algorithm, the top equation is first divided by Cy

’ . 7 ] = 7
] C, Gy Gy rx. rh
Ca Cnn Cos Cay || X n
= (124)
Cy G S Cyy || X3 n
Cy Cq € X
[ G SR el I Y

where the primes denote elements whose values have

been changed. The first equation is now multiplied by
€2\ and subtracted from the second to eliminate element
Ca1 . Likewise the first equation can also be multi-
plied by C3; and subtracted from the third equation,
then multiplied by Cy; and subtracted from the fourth.
In this manner the entire first column below C, has

been cleared to zero and the set appears as

. . v Y T rri_
| Cu C|3 cm X| !
¢ ’ ! !

0 Cun Cy Cu X2 | _ 2 (125)
— !
O Cn Cj Cawv | X3 n
’ ’ ’ i
0 clecy cwf x| |n

During the column manipulation, the first row is
termed the pivot row and C, the pivot element. The
second row now becomes the pivot row and C;zthe pivot
element. The second equation is divided by Cézto
make the main diagonal element 1. Multiplication of
the second equation by C;, and subtraction from the

third, and then multiplication by'q;'and subtraction
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from the fourth, clears the second column below the
main diagonal to zero. Similar operations with the
third and fourth rows as pivot rows finally yield
% % ¥ [y | F rs—“
Cp c;3 cH* Xy !
» ot %
| CHX Cz: Xa | = | ¥ (126)
(0] \ Ca|| X3 r
3

0 © \ L KiJ - ﬁ:j

where the stars indicate elements which have been

o oo -]

modified several times from their original values..
Gauss elimination is sometimes called triangular-
ization because the coefficient matrix is upper tri-
angular, i.e., elements above the main diagonal are
non-zero while those below equal zero. The bottom

equation in (126) now directly gives the value of X,_|

as
Xy = Y‘q* (127) '
The third equation is
X3 & Co Xy = 0 (128)

Because Xy is known, X; can be solved to yield
* ¥ - pn¥_ ke
)(3: rs -C.“ Xy = Y‘.’ C..” £ (129)

Repeated back substitutions will evaluate one new
unknown from each new equation. The unknown vector 'f

will have been completely determined when the top equa-

4o
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tion is solved for X,.

It should be mentioned that one computational
difficulty can arise with the Gauss elimination tech-
nique. The pivot element in each row is the element
on the main diagonal. By the time any given row be-
comes the pivot row, the main diagonal element in that
row, i.e., the pivot element, will have been modified
from its original value several times over., Under
certain circumstances, the diagonal element can be-
come very small in magnitude compared to the rest of
the elements in that row, as well as inaccurate.

This can result in an erroneous solution vector. The
provlem can be effectively treated by interchanging

the columns ofrfﬁé“matxixﬁto shift the largest ele-

\\

ments (in magnitude) in the piQBfﬁrow into the diag-
onal position. The largest element then becomes ihe
pivot element. With each new pivot row the operation
is repeated. This scheme is known as partial pivot-
ing and minimizes the roundoff errors.

In addition, it is important to note the two
different types of coefficient matrices which can
be encountered. For the integral solution.the system
of N algebraic equations will have a ‘'dense' NxN co-
efficient matrix, few zero off diagonal elements.

The solution of algebraic equations for the
finite difference technique yields a banded coefficient

matrix and is 'sparse', many zero off diagonal ele-
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ments., These sets commonly arise in the numerical
solution of partial differential equations and in the
use of finite differences. Solutions of banded systems
are considerably easier than those for full, dense
coefficient matrices.
As an example, consider this set having a tri-
diagonal coefficient matrix:
?
— — r}~-—
L‘ C,0O * = X ' ,L
a: bc,0 o Xz 2
0 a b GO ¥3 || (130)
, ) A bn.n CN-I X -1 TN
r | CIS_EELJ P.x" _.VEiA_

where the main diagonal elements are denoted as E:, and
the diagonal elements below and above the main diagonal
are Q and C respectively.

Applying Gauss elimination to (30 ) only one

element (one of the Q's) will be eliminated in each

column because all remaining entries below the main
diagonal are zero. Also, no entries outside the tri-
diagonal band are changed from zero in the course of

the elimination process. After the bottom row has

been reached (130 ) becomes

L2

o e e i G

e e e .




‘ C: o o . o rx._ "—Y“;—

o 1¢0O Xz v

. O l CI x ]

. . 2 S L PPV

Y-

\CN-I X n-1

From the bottom row, XN==Pﬁ and back substitutions

yield the remaining unknowns.

What is important to note about the solution of
this tridiagonal set is that the number of basic
arithmetic operations is of order N, in contrast to
the Nsoperations required for a full matrix. Not only
does this small set of operations result in short
computation times, but it also tends to minimize round-
off errors. It is also much easier to store the entire
coefficient matrix since only the three diagonal

vectors Q, b, and C are required (Ref 10: 90-98).
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III. .One-Dimensional Problems

Computer Programs

The computer programs written for all one-dimen-
sional cases were very similar; the programs used
{ common expressions, symbols, and followed parallel
sequences so that minimum alterations were necessary
to adapt each routine to new cases. The flow diagrams
for both numerical integration and differentiation

appears in Figure 5.

Read N, number of data points
BC1, boundary condition 1
BC2, boundary condition 2

] ¥
Flll X array. X.p XI| -;oo’xN

Generate or G(x,
Fill p- bﬁ;"“) 2

Perform matrix multiplication and all
other operations to generate the '
coefficient matrix

P
CALL LEQT1F Subroutine
International Mathematics Science Library
(IMSL) - Solves a linear system of equations

&

Print out solution
vector

X

Fig. § Flow Diagram for Computer Programs
Using Numerical Integration/Differentiation

Ly

PR

L




Because the system of matrix equations are very
similar, i.e., expressions (114) and (122 ), the only
modification between the two programs were in the
coefficient matrices. For numerical integration, the
coefficient array was computed from matrix multi-
plication with the Green's kernel, K(%§), and the
weighing coefficient, DK‘ In the finite difference
method however, the coefficient array was filled
directly because of the simple band structure simply
by noting the sequential arrangement of internal

terms.

LEQT1F - IMSL Subroutine

The International Mathematics Science Library
(IMSL) routine LEQT1F was used to solve all linear
algebraic equations generated in the matrix form-
ulations. LEQT1F ‘solves the set of linear equations
if: B for X , given the NxN matrix iand Nx1
matrix B . The solution X will be the exact solution
without any roundoff error. If such a solution can-
not be obtained a warning is given. LEQT1F performs

Gauss elimination and uses partial pivoting of the

array elements.

Case 1

The first problem addressed in this thesis, ex-

pressed mathematically is




%4
3}{- = - 300 (132)

where 30() is the inhomogeneous term, with boundary

conditions

‘j(o): o, ym= | (133)

Analytical Solution

Equation (132) is equivalent to
t
Y™ 4 ym = O (134)
cixl .
and can be solved in a straightforward manner by

assuming ”lX)to be a linear combination of the ex-

ponential function, that is

Y(x) = e Dx (135)
. . .. Dx
Substituting (135) into (134 ) and dividing by €
yields
F+l= O, s D==%1 (136)

Using the two roots for D , the solution to (134) be-

comes

tj(x)= Ae*.‘xa- e = A’cosx + B'sinx (137)

By applying the boundary conditions, 3(°)=0and \J(‘\:l .

/
the constants A’ and B’ are evaluated. The complete
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solution is found to be

Yo = SinX (138)

and is graphed in Figure 6.

Integral Solution

To convert differential equation (132) into
integral form, first integrate both sides of (132)

with respect to X over the interval (0,x)

X
4 (d = - d
f w5 i JOT )

[-]
or

X
;-’%‘f‘_" = C - Sj(x)dx (140)
()

where the constant C is from the lower 1limit, %;so).
A second integration over the same interval and using
equation (6) for the right-hand side, equation (140)

becomes
X
y(x) = Cx - j(x-g)y(g)dg (141)
o

The constant C can be evaluated from the boundary

condition Y(=land equation 41 ) takes the form

1
Joa= x + jK(x.g)jcg)dg (142)
(-]

where the kernel is defined as the function
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X(i-%) X <€
K(x'g): (143)
§(\"‘X) x>§

Rearranging terms, (132 ) becomes equivalent to the

expression
| o
‘j(x) - jK(x,g)a(;)’a\; = X (1hk)
3 )

Now, use the approximation for trapezoid integration

for the integral and (144 ) becomes
N
g = Z D Rlxq ylx) = x (145)

Expressing DK and K(x,xk) as matrices, equation (145) is

transformed into the system of equations

—-— —=

g - KT)g.: X (146)

or

(T_"R'—ﬁ)'ﬁ: X (147)

For the case where the interval (0,1) is divided into

four equal partitions, N=5, at

x".". o) x:"’q, x,-‘-’ l/z’ x“:’/l.') Xs='

the matrix equation (147 ) takes the form




10000 r-.ooooc_;”"!goooo [y,
ol1ooo OKKKOllohooo Y.
. poloo| _|OKKKOf] oo hoo Ys
0001 © OKKKoOl]ooohe Yy
ool 00000 0o
00°t]  [Peec2foecel] | %)
"
4
L

and the five linear equations from (148) are

wo L. 470
[ 32 32 H;"hﬂq: 'y
R R TRRC (149)
T de I Uit Yy W
. %!

| Solution of this set, rounded to six decimals, is

3. = 0, Y= 294274, Ys= .570156, 3..= .810403, 3s= 1

The true values obtained from the analytical solution,

equation (138), are
t’,= 0, 3&= 294014, lj;= « 569747, vf .810056, :’S= 1

Finite Differences

In a similar manner as was done to the integral

equation, the method of finite differences is now p
applied to the original differential equation. By

substituting the second derivative CFD quotient, equa-

( tion (97), back into the original differential equation

50 i
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for 3'(:), and collecting terms, equation (132) takes
the form

Yor + (F-2)y 4 gz 0 te2gemna (150)

where N is the number of points over the interval (0,1)
and h y» the interval spacing. A set of linear equa-
tions can be generated from (150) by letting L run
through its sequence up to the value N-1. For N=5 and
- using the same five points as before, the central
finite difference method will give the following set

of linear equations:

-3
Yt Y =9
YRy vy, =0 (151)
—3 -
s "R T Y = ©
or in matrix form
— —ryl [o]
]‘-}% ! O O %2 O
- — O 1
° 1 % 1 o g: (152)
(o 'Ry LY

Using the initial boundary conditions, 5.:0 and 35_-_ I
the following values, correct to six decimal places,

are obtained for 3(:):

Y= 0 Yp= .204274, Yy= 570156, Y= .BLO4O3, 4= 1
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Note that the same values were obtained using the

trapezoid rule for numerical integration.

First Forward Difference

Besides the method of central finite differences,
the first forward difference expression, equation (103,
was substituted into (132 ) for a comparison of the

two difference methods. Equation (132 ) now becomes
Ui(‘*h) -—23“\ F Yipa = O L=l N-2  (153)

Again, for the same five points, (153 ) generates the

linear equations

-llg‘jl —232+33 =0
i - } = 154
%; , Ebua * Y, o (154)

R 8y * Y =°

or the equivalent banded matrix

E ‘2 \ (o) (o) ’—3:— O
da
o 4 -2 1| o 3;= o (155)
0l
0 o 2 -2 1]yl (9]

This set of equations, correct to six decimal places,

has the solution

Yy = 00 Y= 266667, Y= .533333, Y= .783333, Y= 1

For a comparison of the relative errors associated with
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each of the two difference methods see Figure 7. The

relative error data is displayed in Table I.

Error Analysis

It will be assumed that the major sources of

error in all computed solutions is strictly associated

Table I. Relative Error (%) - Computer Solution
for y"+y=0, x=.5

Number of Iterations Integral CFD FFD
per Interval Method Method Method
2 -.291500 -.291500 12.241744
L -.071775 -.071775 6.391493
6 -.031741 -.031741 4,263721
8 -.017823 -.017823 3.109384
50 -.000455 -.000455 —_

with the particular method being employed. All other
error sources, such as truncation and internal round-
off, due to the arithmetic process, are insignificant
when compared to the errors created by a specific
routine. By neglecting these other errors it will be
possible to predict how large an error should occur and

compare this to that actually observed.

Integral Equations

The error bound using the trapezoid rule (Ref 12:

405-408) is given by the expression

b
b2ttt | [y - T’ (156

e -
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where §%ﬁ)a§ is the required integral

1- - number calculated via trapezoid rule
(b'“)- the boundary interval

h - increment size

M - upper bound satisfying the condition

M2 | fls)

To predict how accurate the trapezoid rule is,

(157)

the upper bound M must first be found. Again, it will
be assumed that the only error in the integral solu-
tion of equation (144 ) is that due to numerically

approximating the integral:

SK(x.e) Yes) ds (158)

which, inserting the appropriate limits, becomes equiv-

alent to two integrals:

X |
(-X) utg)de + YX(1-§)u(s)ds (159)
§§ Y5 ds § Y

The error will be computed at the point X=) since a
number of values from Table I exist for comparison.

Substituting X=% expression (159 ) becomes

Va '
Ss__u) I+ §u0-9ymds (160)
o © Y2

v e e

The function 'F(i) , from expression (156 ), can be

taken as the sum of both integrands above; that is

fioy= £ + fa (1e1)
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where
% F‘(§)= 5_3_5-2() and ﬁ(g): (\;-§2:’(§) (162)

Taking the second derivative of f(;) and substituting
this quanity back into (157 ) will yield the bound M.
It is found that

fio = Y8 (16)

The bound M is therefore
M2 ol = 3 (164)

The function Y6 has its maximum value at §=1 and 3(;)
has the value of 1, from Figure 6. Therefore, M
will be the upper bound

/V\ = ‘/a . (165)

The total error at the point x:‘/,_, using trapezoid rule,
becomes

(_‘2:_.“_‘é)_/\_'\_\ﬁ‘_z = Z\";— (166)

Total error =

As h is decreased the associated error should also |

2
decrease by a factor of \1 . This trend is indeed ob-
served in the integral solution values shown in ;

Table II.

Simpson's Comparison

In addition to use of the trapezoid rule, Simpson's

56
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Table II. Error Trends Using Trapezoid Rule, x=.5

Increment Size y(x) y(x) Actual Calculated
h Exact Calculated Error Error
1/2 .569747  ,571429  -,001682  .0104167
1/4 « 569747 .570156 -.000409  ,0026042
1/6 < 569747  ,569928  -.000181 .0011574
1/8 569747  .569849  -,000102  .0006510
1/50 .569747  ,569750 -.000003 .0000167

rule for numerical integration was also used on (134).

An interesting though not unpredictable trend was noticed
in the data, Figure 8.

For h=‘go, the computed array elements corres-
ponding to the even intervals, i.e., odd array numbers
were Simpson's method can be used, showed much smaller
error values as compared to the even array elements.
Also, as the array elements increased the relative
error values decreased over both odd and even elements.
The relative error is high at the even array elements
due to the additional sum from an extra partition near
the 'corner' in the quadratic interpolation scheme.

The effect is to change the true area by an amount of
the previous partitions area. The relative error
values decrease because the partition areas decrease
after the middle value,§=!é. For the lower points on
Figure 8, where Simpson's rule is legal, the parabolas
tend to approximate the kernel closer and have less

overlap across the 'corner' sections of K(x,g). The
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relative errors for the same array elements using

the trapezoid rule is shown in Figure 9.

Finite Differences

The major errors associated with the finite
difference methods ére from truncations in the Taylor
series expansions used for 3()(). These errors can be
reduced by taking more terms in the series expansion,
however doing so does not necessarily guarantee
numerical stability. Because of these facts it is
extremely difficult to predict the relative size of
error which should result from using the finite differ-
ence method. The error is carried in all linear
equations generated by the recurrsion expression; when
the number of equations becomes large, the resulting
error combinations become exceedingly complicated.
It is possible however to note the error trends in
both the CFD and FFD methods.

Recall that the CFD method was of order O), terms
of order ht and higher were neglected in the central

difference quotient, the second derivative became

= YN -2ym +yxeh) + O(K) o yx-h)-2yx) +Yxeh)  (167)
3 B‘- hd hl

It is reasonable to assume that errors associated with
this method are as a direct result from neglecting
the truncated terms of order hland higher; there-

fore, the trend of error should be of order h}. The

|
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error trends using the central and first forward

difference quotient are compared in Table III.

Table III. Error Trends Using Finite Difference
Methods for y"+y=0, x=.5

Increment Size  y(x) y(x) Error y(x) Error
h Exact CFD FFD
1/2 «569747  ,571429 -,001682 .500000 .069747
1/4 .569747 ,570156 -.000409 .533333 .036414
1/6 «569747 ,569928 -.,000181 ,545455 024292

1/8 .569747  ,569849 -,000102 .551576 ,018171
1/50 . 569747 569750 -.000003

Note from Table III, that as the interval spacing is
halved, from h-% to \1=5‘|, the error for the CFD method
decreases on the order of M* or as Vf. For the FFD
method, the error decreases on the order of h or

approximately by Y.

Times of Solution

The method of central finite differences was
compared to the integral equation method for speed.

The data from this analysis is contained in Table IV.

Table IV. Computer Time - y"+y=0

Method Compilation Time Execution Time Usage
(sec) (sec) (Kilo-word)

Integral 0.735 1.178 199.410
Equation

CFD 0.531 0.546 166.875




The results of this comparison revealed that the CFD
method required 53.6% less execution time, was com-
piled 27.8% faster, and used less storage than the
integral equation method. The time savings can be
attributed to the different coefficient matrices gen-
erated by each method. The CFD method gave a tridiag-
onal, sparse, 49 x 49 coefficient matrix. The integral
method however resulted in a full, 50 x 50 coefficient
matrix, which required more time and more manipulations

to solve for the solution vector v(X).

Accuracy

The central finite difference method was com- .
pared to the integral method for accuracy. Both
methods were found to be equivalent; that is, the ex-
act same solutions were obtained from both procedures,
identical to 12 decimal places. Equivalency of the two
methods was verified through matrix multiplication of
equations (142) and (150). This was accomplished by
rewriting, in corresponding matrix form, equation
(147) and (152). The integral equation was expressed
symbolically as

TY = F_ (168)

where A represents the coefficient matrix, X the

solution vector, and F some function vector. The

unknown X » can be solved and is
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=)
Tl

X = (169)

L —3
where A is the matrix inverse of A .« In a similar

manner the CFD method, equation (150), was expressed

symbolically as

%3 = R (170)

where D represents the coefficient matrix associated

with (121). The unknown U » can be solved by matrix
inversion and found to be

9= B K (171)

Since both methods yield identical solutions, that is
X = 5 : (172)

the expressions on the right side of equations (169)

an@ (171) should also be equivalent, therefore

- TR e

A'F = BR (173)

The necessary condition for equivalency is
F = AB (174)

Equation (174) is easy to verify since f and R are

- [—
already known and the coefficient matrices, A and 8,

are internally generated. Using 7 iterations, equa-




tion (174) was verified by substituting the known
- J

quantities 4 ’

=.I -— —

B s, and R » the calculated F was
found to be

(142857
‘ﬁ8§71f
42857 1
.571428 (175)
"714285

| 1857143

The true value of [ y» from the integral equation

-l
n

computer program, was

[ 142857]
'ﬁ8§71§
42857

. 571429 (176)
714286
| -857143)

The reason for the discrepancy in the sixth decimal

-l
]

place pertains to a rounding error in the multipli-
cation. The original computer program uses all 14
decimal places for internal computations. In this
example only six significant figures were used and a

rounding error results in the sixth decimal.

Conclusions

It was unforseen that both the CFD and integral
approach would be identical. Though the two methods
were solved using the methods of linear algebra each
was characterized by a distinct different coefficient
matrix, one being sparse for the CFD method, and the
other being full for the integral approach. Both

methods were shown to be of the same order of error,

6l

S ey

————




hZ . It is not possible to generalize at this point
any other conclusions except that both methods are
equivalent. The CFD solutions were noted to be com-
puted faster in all circumstances but only because of
the tridiagonal coefficient matrix. All computer solu-
tions proved to be accurate with no significant round-

off errors.

Case II

The second problem investigated was the one-dimen-
sional inhomogeneous Helmholtz equation with homogeneous
Dirichlet boundary conditions. Expressed mathematically,

the problem is

%;‘.1;‘_"’ + )\‘jm = | (177)

where X: ‘l%t » with boundary conditions

j(o)r- O, \J(u)z @) (178)

Analytical Solution

As with all inhomogeneous 2nd order differential
equations the solution can be expressed as a linear
combination of solutions: homogeneous + particular.

The complete general solution to (177) is :

yix)= AcosAx + Bsin)x + -I)-,_ (179) : |

Using boundary conditions (178), the constants A and B
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are evaluated, the unique solution is
d(x)= it sSin 3__fo ~co3 3W x «4 |) (180)
m 2 2
and is graphed in Figure 10.

Integral Solution

The differential equation can be converted to
integral form by first rearranging terms and solving
for the second derivative. Equation (177) becomes

&Y .- Xy (181)
dx*

Integrate each side over the interval (o,x) to obtain

dx
where the constant C corresponds to %i¥°). Integrate

X
= ¢+ [01-Fyon) dx (182)

a second time over the same interval, eguation ( 182)

becomes

X X
yw = CX -er(\— X yod)dx dx (183)
00 ’
Using (6) on the double integration gives

x
ylx) = CX + J(x—s)(l-fym)JE (184)
(-]

The constant C can now be evaluated by using the second

boundary condition, j(l)= 0

j(l):o =C 4 S’(:-g)(\— ‘th))c\g (185)
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Solving for C

[
C = f(l-&')(ﬁm-')é; (186)
o
Substituting the expression for C into equation ( 184)
yields
!
Y= [ KOk yy-1) ds (187)
o
with the kernel defined by the expression
\( X(\-%) X< §
(x,8)= (188)
g(‘ "'X) X >§

Equation (187) represents the equivalent integral form
for the one-dimensional Helmholtz equation.

Equation (187) can be rearranged by multiplying
through by klx,g) and separating the integral. The in-

tegral equation containing y becomes

) i
) - | Kg)Xyis)ds = = | Kixg)ds (189)
00 [Mokyonds - - |

The integral on the right simplifies by replacing k(x,g)
with its defined values over the appropriate limits

of integration, that is

Yo - j K09 X o(5) ds = |

! .
_ZJ?("")Jg +fxl |"§) J; (190)

° X
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Integrating out the § variable on the right side,

equation (190) becomes

\
y) -il«x.g) )\‘sJ(g)cl; = %(x—l) (191)

The trapezoid approximation can now be used for the

integral and equation (191) becomes equivalent to
N 2
j(x) - é DK K(X,xk))\ 3()(,‘) = -é-(x-l) (192)

Expressing DK and K(x,xk) as matrices, equation (192)

transforms into the system of linear equations

= =T o\ — _ ; —

(I-DRX)G = $x-) (193)
and is solved by the method of Gaussian elimination.

Green's Integral

In addition to the integral representation of
equation (177) it is also possible to express the .
solution of ,00 by the Green's integral, equation (27).
From Appendix B , the Green's function for the Helm-

holtz operator was found to be

(sin M{-8) sin A x x<§ ,
Asin AL !
G(“tf): 4 (19%4)
sin A(f-x) sin \§ x>
i Asin )\ {

Therefore the equivalent expression for the Green's

integral solution for vhg is
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Yix) = ~ f G(x5)ds (195)
(o]

Using the trapezoid rule equation (195) becomes
N
Y= -~ 2 D 6x,) (196)
Ks)

or, expressed in matrix notation

5: -DG6 (197)

where D is the column vector of dimension Nx1 and

-

G  the Green's matrix, defined by expression ( 194),

of dimension NxN .

Finite Differences

The method of CFD was used to numerically
differentiate equation (177). Substituting the central
difference quotient, equation (97 ), for the second
derivative and collecting common terms, equation (177)
becomes

Ji-1 “(Z‘Xhz)ja t Jiy S ™ 2z 8)

The equivalent matrix expression has the tridiagonal

form




| -2-2F) | O o] r’y'—“
0 I =(RK) | Y
I -@R¥) 1 O Yu
o) Vo =(=R)
| —J L In__
7 )
h,
= . (199)
hl
hz
! Using the boundary conditions, Y= O and Y= o,
expression (199) can be written in the form
[—(2-¥) \ © RIS
I =(~Nh*) s
| —(2-X%K) | .
L | —(-%R) || I
— L%
)
rt"
- . (200)

A




The dimensions of all three matrices have been re-

duced to N-2 . 1In more concise form equation (200)

becomes
B g - R (201)

where © corresponds to the band coefficient matrix

2
and R the function vector defined by the constant }\ .

Relative Error

For a comparison of the relative errors asso-
ciated with the three numerical methods based on the
Helmholtz equation,'see Figure 11. The relative error
of the three numerical methods is shown in Table V.
Once again idehtical results were obtained using the

integral equation and CFD method

Table V, Relativ%.Error (%) - Computer Solutions
for y"+hy=1, x=.5

Number of Iterations Integral-CFD Green's Integral
per Interval Method Method
2 35.253527 51.201617
L 7.609482 11.842646
6 3.472912 . 5.194057
8 1.971673 2.908348 !
50 0.051070 0.074035 |

Error Analysis

The same assumptions will be used for the error
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analysis as were presumed in the first case study,
all errors are strictly due to the method used and
errors generated in the computational process could

be neglected.

Integral Egquation Errors

The integral equation, equation (187) and the
Green's integral equation, equation (195), have both
been shown to be equivalent; therefore, they should
have associated with them the same order of error
because the trapezoid rule is used to evaluate each
integral. To predict the order of error the upper
bound M must first be found. The Green's integral
equation will be used for this analysis. Equation
(195) can be written

'
x
- AL-x)sinhg § sin AM(§-8)sin Ax dg
rich js‘; 75V EEnRN B PV

(202)
o
where the expression for G(Xof) has been used over its

defined limits. The error will again be computed at
the point X2 “2 , using the values \s 3_31" and =1 .

Equation (202) becomes

'/Z 1
Yoo -.nsiJ‘sm%" sds + L:'" FO-9ds } (203)
©

The total error of using expression (203) will be no

greater than the sum of errors from each integral

fee)= —.us{\sms_é-.rsl + | z_g_(.-gu} (204)
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Taking the first two derivatives of (204) and using

the expression for the error bound, M is found to be

M2 \{}g)’ = .IS{%‘."sm«_?s + iqfcos.?zq'gj (205)

The maximum value for {S\n 3g§+ cos 3?‘7‘5'} occurs when

§=‘1:'[ y therefore the bound for M is
M= (\5)90*(1.3783) = 4.5 (206)
L’
And the associated error is of the order
2 2
E rror &2 (L"Q)M\i = ,382lol'l (207)
12

As h is decreased the associated error also decreases

2
as a factor of h . This is observed in Table VI.

Table VI. Error Trends - Computer Solutions
for y"+ Ny=1, x=.5

Increment y(x) y(x) Cal Error y(x) Cal Error

Size, h Exact Int-CFD Green's

1/2 .108716  .070390 ,038326 .053052 .055664
1/4 .108716  .100443 .008273 .095841 .012875
1/6 .108716  .104940 ,003776  .103069 .005647
1/8 .108716  ,106572 .002144  ,105554 .003162

i
1/50 .108716  .108660 .,000056 .108635 .000081 |
i

In addition to the above table the relative error was

examined at each array element when the interval (0,1)

was subdivided into 50 partitions. Because the integral
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and CFD methods gave identical results their errors
both appear in Figure 12. The Green's integral was
also analyzed at each array element and appears in
Figure 13. It can be seen from both sets of dats that
the errors are symmetric and largest in the neighbor-
hoods of the end points. This is attributed to the
functional form of both 3(X) and the Green's function.
At the end points the two functions have their steep-
est incline therefore larger errors are introduced
over the same size increments across these regions.
At those points along the center of the interval,
where the functions change more slowly, less error in
the increment is introduced. Note that the Green's
! ' integral method is more accurate at the outer elements
(1) - (10) and (40) —.(49). The integral - CFD method
is more accurate at the inner elements (11) - (39).
Also the error trend in the Green's method is averaged
out to almost a constant .075% while the CFD -~ integral

method appears parabolic across the region.

Finite Differences Errors

No additional error analysis was carried out for
the method of finite differences., It was noted that
errors associated with the CFD method once again were
of order }f'due to the second order truncation in the

Taylor series expansion for 3(X).
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Times of Solution

The two numerical untegration routines were com-
pared to the CFD method for speed and storage. The
interval (0,1) was divided into 50 partitions, re-
sulting in a set of 49 linear equations for the CFD
method and a set of 51 linear equations for the inte-
gral method. Using the Green's integral expression
the solution was obtained by matrix multiplication.
The data for these three methods are contained in

Table VII.

3
Table VII. Computer Time - y"+ >\y=1

Method ~ Compilation Time Execution Time Usage
(sec) : (sec) (Kilo-word)

Integral .784 1.177 194 .460

Equation

Green's .600 0.441 116.319

Integral

CFD .548 0.558 170.556

The CFD method was 2.1 times faster than the integral
equation method. In addition, it was compiled in 30.1%
less time and used 12.3% less central storage. The
Green's integral method was found to be quickest and

used the least amount of storage.

Conclusions

The CFD and integral equation methods both proved

i
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to be identical. Though the two were again charcter-
ized by distinct coefficient matrices, they were found
to be equivalent. A second integral approach was ana-
lyzed by solving for the exact Green's function based
upon the Helmholtz oﬁerator. Solutions of this in-
tegral equation proved to be, on the average, of the
same order of magnitude as the CFD - integral methods
but resulted in a smoother error curve over the calcu-
lated values. Also the Green's integral calculations
proved quicker than either the integral equation method

or using the CFD quotient.

Case TII

The third and final problem investigated in one-
dimension was the inhomogeneous éauchy—equation with
homogeneous Dirichlet boundary conditions. Expressed

mathematically, the problem is
x*d%y _ 2y = x* (208)
X

with boundary conditions

y(n=0o, Y(3)=0 (209)

Both previous results, that is, converting the
differential equation into integral form and approx-
imating the solution through numerical integration

and using the method of finite differences have proven

to be equivalent. One possible reason for this could

A




be due to the linear kernel which has resulted in both
integral conversions. Equation (208) was found not
to have a linear kernel upon integral conversion.

The properties of this equation are now investigated.

Analytical Solution

The complete general solution to (208) is found

to be o
A xt + X (210)
yom= 5 7 B 10

Using boundary conditions (209), the constants /7 and

B are evaluated. The unique solution is

= floB\ 1 _ fi2l\ .2 x4
Yy = (\30 X (lso X* * <5 (211)

and is graphed in Figure 14. Note that the solution

is asymmetric.

Integral Solution

The Cauchy differential equation can be expressed
in integral form by first rearranging terms and solving

for the second derivative. Equation (208) becomes
e
iy _ y2_ 2ym 212

Now, integrate both sides with respect to x over the

interval (1,x). Equation (212) becomes

dy o X
T2 c - J(x -2y ) dx (213)
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where the constant C represents f§3197 . Integrating
X
a second time over the same limits makes (213) equi-

valent to
x X X
Yix) = dex + Sy(xz-%.:jg))dx (214)
| ()

By using the results of (6) for the multiple integral
and performing the integration of the first integral,

equation (214) becomes
x
(x)= Cx~C +fx~ ){s"fia(_f_) d (215)
Yox) jox-s 10} ds

The constant C can be evaluated by using the boundary

condition 4(¥=0-
3
(3)=0=2¢C + I(a-g) §"+ %_:Lti_).}dg (216)
g -f s 2y
Solving for C yields:
3
2
C-= %5(5-3)(% + é?f_‘zﬂ} ds (217)
i

Using this expression for C, the complete solution

for le), given by equation (215) becomes

3 3
s - i X~ ) - b é L‘_) J
ne 1((: nshapls + G0 fenfieegpds @
Equation (218) can be put in the simplified form
3
yoo= Ko fsts 20} ds (219)
|

by using the abbreviation
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(X-1X5-3)
K (x,§)= 2 (220)
(X =3)(s 1)
2

Equation (Z219) represents the equivalent integral form
of the one-dimensional Cauchy equation. The integral
equation can be rearranged by multiplying through by
and seperating tne integral. Combining terms, equa-~

tion (219) is also equivalent to the expression

3 3
(x) - 2 SK(x.&;z (5 ds - SKtx.s)g‘e\g (221)
v 1 § v '
The integral on the right simplifies by replacing the
kernel with its values over the appropriate limits.

The integral becomes
X 3 L
\S(x-:)és—n) gtds S(x--)és—s) §* ds (222)

x
Integrating both integrals over § , equation (222)

becomes

x* _ 1ox y ) (223)

12 3 q

Equation (221) then becomes
S
q
-2 [Kutymds = X - loX+ 13 (224)

:’ §1 2

)
It is now possible to use the trapezoid approximation

for the left side integral and equation ( 224) becomes
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N
i Yoo - 2 2 DeKluxayying . o

0
X2 1z * 3-"*-;-;1 (225)

where the points §= ¥, have been chosen over the in-
terval (1,3). In matrix notation expression (225)

transforms into the system of linear equations
{T_'ﬁ'ﬁ'}ﬁ = X (226)
==

where ) corresponds to the weighing coefficients

used in the numerical integration,i%' is the modified
kernel Ki(x X ) with Xg denominator, and X corresponds
to the function vector defined by (223). Equation ( 226)

can now be solved using Gaussian elimination.

N Green's Integral

In addition to the integral representation it is
also possible to express the solution of :709 by the
Green's integral equation. From Appendix C, the Green's
function for the one-dimensional Cauchy operator was

found to be
RE-DE-9) xes
%(gt";!)("i 'f‘-,z X>§

Therefore the equivalent expression for 7()() can be

Gix,¢)= (227)

expressed as




P

2
J(x) = - fG<"a§)§zJ§ (228)

where G(’Qf) is as defined above. Using the trapezoid
rule, equation (228) becomes equivalent to the quantity
N

Yoy o - KZ| D¢ Glx,x ) XK (229)

or in matrix notation u(x) appears as
= = =2
yoy= — D G x (230)

— -
where D and %) are both matrix vectors of dimension

N X N and ;e is the column vector of dimension N X 1.

Finite Differences

The method of finite differences was used to com-
pare numerical differentiation with the integral and
Green's methods outlined above. Again, the derived ;
central finite difference quotient, equation (97), was
substituted into the one-dimensional Cauchy equation.
After collecting terms, equation (208) became equiva-

lent to the expression

i ‘(3*%\3; + Y = xth' (231)

The matrix has the tridiagonal form

R TSRS
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| —(a-r!-\-:) I O J
| o | -(Z+%) | ‘:1:.
" A [] ) .
L ] b‘
‘ -(z+%§-;) ;.'.l'.'o 3»-:.
o 1 "(z’x;.') ] 3"_‘
——xzzh—
X; h
= (232)
Xn-2 h
_x:~lL

Using the boundary conditions, Y= 0 and vuzo ) eX-
l pression (232) can be rewritten in the form
; - R r— S
-+%) 1O g’z
2
2k 3
| l —(2*—;;) | ‘

|-(2%,) Y

2h
I -(e+ x;_,) dna2

L
L_-——. —
[ X2k
Xy
= . (233)
Xgsh
( RELS
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The dimensions of all three matrices have been re-
. duced to N - 2. In concise matrix form expression !

(233) can be written

83 = R (234) |
= 1
where B corresponds to the given band coefficient

—

matrix and R represents the column function vector

defined by the right-hand quantity in (233).

Relative Error

For a comparison of the relative errors asso-
ciated with the three numerical methods see Figure 15.

The relative error percentages are tabulated in Table VIII.

! . Table VIII. Relatjve Error (%) - Computer Solution
for xty»-2y=x¥,x=2’

Number of Iterations Integral Green's Integral CFD

| per Interval Equation Method Method
) 2 2.402402 .150144 6.306306
| L .732556 .009369 1.718748
\ 6 344530 .001815 784274
8 .198287 .000586 JAls5971
50 .005241 .000000 .011593 '

Error Analysis
Because both the integral and Green's representa-
tions are equivalent either expression can be used to

predict an error bound using the trapezoid rule. The

88 f
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Green's integral representation is used once again
because it does not involve the function 5(;). making
the error calculations easier to work with. The Green's

integral, equation (228), can be written
x .
tx»—-{fgz SERVATRV A
3 [ 605 -5)5"ds

3 t
S LICR TS S

where G(x,g) has been substituted over the appropriate
limits. The error will be computed at the point X=2

and expression (235) simplifies to

- '
5(,( = - {.\zmj(gﬂ_ndg-\_z\\sﬁ%-i)ds} (236)
[] 2 :

The maximum error for both integrals is the sum of
errors associated from each. To find the upper bound
on the errors all errors are assumed to be additive.
The upper bound M can now be associated with {;f),
where 4?§) corresponds to the sum of the two inte-

grands above:
- g lens(§Y (237)
ftsy=  uig(sts) + (£ -¢)

To calculate M the second derivative of fli) is

needed. This is given by

Lsys h4Lib g4 SHEISE = 28T (238)

"
The value of f[f) at the point £22 is found to be
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M3 \_r‘}g)‘ = 4 (239)

and the associated error is of the order

Ervor ¥ f_"_"_\_;)M_h_z = Lt hz (240)

This error represents only a crude approximation to
those errors associated using trapezoid integration
and can be misleading. All errors in arriving at
(240) were assumed to be additive. Because many of
these errors cancel the predicted values will always
be larger than observed, as seen in Table IX.

The relative error was also examined at each array
element when the interval (1,3) was divided into 50
partitions. The errors associated with the integral
solution are graphed in Figure 16. The Green's
integral solution converged to the exact solution at
- every array point, to six decimal place accuracy and
was not graphed. The relative error associated with
the CFD method was also examined at each array element
and is graphed in Figure 17. Note that both sets of
data display similar trends; the higher numbered array
elements have lower errors as compared to the lower
numbered array elements. This trend can be explained
by examining the method of solution. Both methods
require the simultaﬁeous solution of a set of N alge-

braic equations, 49 equations for the CFD method and
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51 for the integral approach. Both sets are solved by
Gaussian elimination. As was covered earlier the last
array elements are evaluated first and therefore have
the smallest round-off errors. As the elements above
are computed from the know elements below there is an 1
accumulation of alr with each new row evaluated. This
accounts for the trend in increasing error as the last
elements are calculated, corresponding to the lower

numbered array elements.

Simpson's Comparison

The trapezoid rule was compared to the Simpson's
rule for the same array elements as above, see Figures
18 and 19. Note the downward trend for the relative
error values at the higher indexéd array elements in
both figures. Also, the same sinusoidal character is

exhibited over the odd - even partitions as was observed

in Figure 8. In addition, Simpson's rule gives a better
approximation to the calculated values at the odd
numbered intervals than the trapezoid rule. This
results because the kernel associated with the integral
equation is no longer a linear function, but rather

can be expressed as the modified kernel

(X-1)(§-3) X<§ .

K(xs)={ 2% (241)

- -3)(§-")
(5—2—){{_ X>§
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Quadratic interpolation, i.e., parabolas, provide a
more accurate estimate of the non-linear kernel than

using trapezoids.

Times of Solution

The two numerical integration routines were com-
pared to the CFD method for speed, The results of

this comparison are given in Table X.

Table X. Computer Time - x?y"—2y=xq

Method Compilation Time Execution Time Usage

(sec) (sec) (Kilo-word sec)
Integral 0.799 1.186 194,087
Equation
Green's 0.662 0.847 117.473
Integral
CFD 0.566 0.557 169.940

The CFD method was executed 2.1 times faster than
the integral equation method and 1.5 times as fast as
the Green's integral approach. In addition, the CFD
method was compiled 29.2% faster and used 12.4% less
central storage than the integral method. Also, the
CFD method was complied 14.5% faster and used 30,8%
more central storage compared to the Green's integral

equation.

Conclusions

The one significant feature about the one-dimen-

98 )




sional Cauchy-type equation is the fact that its so-
lution is asymmetric. Converting the original differ-
ential equation into integral form still results in a
linear weighted Green's kernel but multiplied by a
non-linear function of § . Also the Green's integral
equation, for the differential operator, has a non-sy-
mmetric Green's keénel. Results by the Green's integral
equation proved superior to the other two methods.

The integral equation method also gave more accurate

solutions as compared to the CFD method.
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IV. Two Dimensional Numerical Methods

The Steady-State Heat Conduction Problem

The last case investigated in this thesis will be
the two-dimensional steady-state heat conduction prob-
lem with inhomogeneous Dirichlet boundary conditions.
The internal temperature within the rectangular plate,
shown in Figure 20, staisfies the partial differential

equation

VIT‘xlj) = -’F(x:j) (21"’2)

where T(x,;’) is the temperature at the point (X.lj)

and F("'_‘}) represents the internal heat generation.

ys= b o
o T - Fexy) T
o Xz Q

Fig. 20 Two-Dimensional Steady-State
Heat Conduction Problem

The boundary conditions, from Figure 20 are

T(x,o) = T(O,j) = T(x,l,) = 0O, T(a.:.,): To (243)
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where T; represents some constant temperature along
the edge Xz & . For all problems considered, F(X.y) is

assumed constant over the plate and has the value

Fixy) = | (244)

Analytical Soclution

The analytical closed-form solution of equation
(242), Poisson's equation, can be expressed as the sum
of the two harmonic functions; the first satisfies
equation (242) with homogeneous Dirichlet boundary
conditions, and the second function satisfies the
Laplacian of (242) with the inhomogeneous boundary
condition at -rzqqg) . The complete solution, using
condition (243) and satisfying the given boundary

conditions, is derived in Appendix D and found to be

i o oo \
T(X: 7)3 - J__%ﬁ%‘_é z Z nm(atm’s bBn') sin %T.X sinmuy

Nnat mz) .—b'
+ M 5 0
T 2 (b o "‘E‘I’)/(s'"" 'ms"‘) (245)

Note that the solution is a double Fourier series,

a summation process which, if slowly convergent will
take considerable time. For the problem under inves-
tigation the temperature at 16 interior nodal points
was examined. Also, instead of using the rectangular

area the analytical model was altered into a square

101




of unit dimension. From equation (245) the internal
temperature was computed at 81 interior grid points,
a computation requiring 70.9 seconds for six place

decimal accuracy.

Finite Differences

The solution to the two~dimensional steady-state
heat conduction problem by finite difference methods
is simply an extension of the technique used in the
one-dimensional cases. The first step is to set up a
grid system of interior points within the plate, shown

in Figure 21.

1 x,3+h'
h
x-h,y l x-;{f th,j
b—h—
jx,4-h

Fig. 21 Interior Grid Network

The Laplacian of equation (242) can be approximated
by expressing the two second derivatives of the temp-
erature as a difference equation. The second deriva-

tives, using equation (97) and the interior nodal

system in Figure 21 become




c\_?'_T__(x.g) = Tx-hy) - 2Tlxy) + T(xan,y) (246)
dx? b

and
STy _ Txy-h) ~2T(xy) + T(x,y+h) (247)
sz - ht.

Substituting these approximations back into the heat

equation, (242), and the combining terms gives the

expression

T(x-h.j) +T(x+h,_\,) - 4T (uy)

+T(y-h) 4 Tx,yrh) = — Py 249

Once again the finite difference.method results in a

set of linear algebraic equations.

J1 125 125 Tae 1;5

T;.s Tu Th's
Tay

T Tow

'l".’ Tzl’ 13.3 TQ.S T’,, -[-‘3

T Juz Tos
Tw B Ty T X

Fig. 22 Interior Nodal Arrangement




Using the nodal point coordinate system, shown in
Figure 22, and the boundary conditions given by ex-
pression (243), the following matrix representation

of equation (248) is obtained

4 10010000000000O0|[Taa] [Foan®
1-41 001000000000 O[] Tas ~Fas h*
01-4 100100000000 O} Tpu Few h*
001-4 00010000000 0}/ Tus “Fog h*
1000-410010000000]]| Ty ~Fsz h* }
010011-41 00100000 O0]] Tss -Fy3 h*®
001001-410010000O0|]| Tay -Fyy h*
0001001-40001000O0(]| Ty Fys h*
00001000-41001000{|Tyl=]|Fah* (249)
000001001-4100100]|]| Tys -Fas h*
0000001001-410010]]| Tey Fey 0*
0000000100 1-40001]|{ Tus Fye h*
000000001 000-4100|]| Tsa -Fgo h¥- To
000000000100 1-41 Of] Tys Fgg h* - T
0000000000100 1-4 1} Tgy By h* - To
0000000000010 0 1-4f][ Tge -Fgg h- To

— | e -

where Tam corresponds to the nodal temperatures

shown in Figure 22, and Fam corresponds to the heat

generation function at the nodal points (n,m).

81 Interior Nodes

In addition to the 4x4 grid system for the 16
interior nodal points, the finite difference method
was used to examine the results when the spacing
between adjacent nodes decreased. The original u4xi
grid was subdivided in half, and the temperature at
81 nodes was in a new 9x9 grid network., Instead of
generating 81 algebraic equations note that there is

a pattern in the diagonal vectors appearing in the
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coefficient matrix of expression (249). If the sequen-
tial location of the zero elements along any diagonal
is known then it is a relative easy manner to generate
the entire diagonal vector. Also because there are at
most five row elements, from equation (248), in any
row of the coefficient matrix only five diagonal vec-
tors have to be stored. A comparison of the two re-

sults follow.

Results

The solution of (249) by Gaussian elimination,
using the method of finite differences is compared to
the exact analytical solution in Table XI. Due to the
symmetry in the original problem only half the nodes

are tabulated.

Table XI. PFinite Difference Solution for
Square, with Heat Generation

2
(o]
Q.
o

Exact Finite Diff Error Finite Diff Error
Solution 16 Interior 81 Interior

wwon F FWwWw i
W W NN Wb wN
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4,331240 L.,578788 -.,247548 L4, 446669 -.115429
6.969133 7.243636 -.247503 7.115880 -.146747
10.555374 11.031515 -.476141 10.755899 -.200525
16.772428 17.112121 -.339693 16.969429 -,197001
21,727495 22.,395152 -.667657 22.012913 -.285418
33.090082 33.021212 -.068870 33.166982 -.076900

L5,599465 L4s5,487879 +,111586 U45.621920 -.022455
60.555373 59.516364 +1.039009 60.306397 +,248976
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Comment - Finite Differences

The method of finite differences in two-dimen-
sions can be viewed as an averaging process, using
the known boundary conditions to generate values
at other interior points. The best results are ob-
tained when all nodal points are symmetrical then
the boundary values at the edges are 'weighed' more
evenly at the interior points. To demonstrate this
consider the heat conduction problem as before; the
internal temperatures at the point (.5,.5) will be
computed by two seperate schemes, The first pro-
cedure, shown in Figure 23, is to use three adjacent
points located parallel to the x-axis and spaced
h- "4 apart. The temperature, T, , calculated by

the difference equation (248) is

T = 23.5955¢%¢9 (250)

T:0 * ﬁ* To

Fig. 23 Finite Difference Scheme
Using Three Points Parallel
to the X-Axis
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The procedure shown in Figure 24, is to use three ad-
jacent points again, but located parallel to the y-axis,
spaced h=% apart. T, calculated by the difference

equation (248) is now found to be
T, = 2653745 (251)

From the analytical solution, summed over 10,000 sep-
arate iterations, the value is 24.926328. The temper-
ature is observed to be greater where the boundary
condition 7; is used three times. It is interesting

to note that using only one interior node and equation
(248), T, is

T,' = 25.0625 (252)

This value is only .55% in error from analytical value

at (-5:-5)-

Y Teo

PR N P |
]

T=0 x

Fig. 24 Finite Difference Scheme
Using Three Points Parallel
to the Y-Axis
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Introduction - Splines

The last method to be presented in two-dimen-
sions 1s the integral solution to the steady-state
heat conduction problem using the method of cubic
splines. 1

The integral solution for heat conduction over
a rectangular region, with homogeneous Dirichlet

boundary conditions, can be expressed in the form

A

a b
T(x.,)-- ij‘e(x&'ym) Ftsm) dsdw (253)

where G(mi;ynﬂ is the two-dimensional Green's
function for Laplacian (Ref 13: 520-523). If the
exact Green's function is known, and fqhn) is sep-
erable, equatioﬁ (253) can be evaluated using the
one-dimensional techniques already considered. Many

times though, for problems other than rectangular

symnetry, the Green's function is extremely diffi-

cult to compute; the Green's function depends upon

the boundary symmetry, for complicated regions G(xs;ym)

can be exceedingly complex. An alternate integral

form of solution can be expressed for Tlx.:,) using splines.

The method to be presented was first proposed by

Had jin and Krajcinovic using cubic splines in integral

form for solving elliptical partial differential ‘

equations (Ref 23 513-539).
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Spline Functions

Because the proposed method uses cubic splines
a brief introduction into spline theory is necessary.
Spline functions are simply polynominals used to
approximate a given function, f}x) , over an interval
(a,b). However, instead of using a single polynominal
over the entire domain the interval (a,b) is divided

into subintervals,
Q= X' < Xz e - XN"\< x~= B (254)

with a different polynominal representing {}x) over
each subdivision. By definition, a cubic spline is a
continuous piecewise function having continuous first
and second derivatives everywhere on the interval (a,b)
and is represented by a polynominal of degree three or
less. Hence, the spline Skao consists of cubic poly-
nominals, one in each of the subintervals (XK-UX\‘) .
The cubic spline Sk(x) » which approximates'((x) in
each interval(x&“xx) can be uniquely determined by in-
sisting that the value of the spline and its first
derivatives are equal to the value of'ﬁx\ and its first

derivatives at each node, Xg:
S(x:)=Fix) and S(X)= flx)  (i= k-4 ¥) (255)

In addition, to insure a smooth fit of the spline

function across the interval (a,b), the values of the
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first and second derivatives, on either side of the

nodal points Xk will be assumed equal, that is

] ]
S, (X} = Sieas (X&) (256)
and }
vy = <" (257)
Sk(xk ) SK#\ (Xk-t)

Using the conditions required by expressions (255),

A

(256), and (257), the cubic spline representing Skoo A

can be shown, Appendix E, to be equivalent to

S (%) = My, (- x) o+ MK(X-M-.Y

‘hk hu
+ x{(sn i) ;(MK'Mkd)(h;/L)} +{(X53“_.- Xx1Y) -(ka'_‘-X“-‘MkXI,:[‘) (258)
{ " h
where the symbols are y
hk = Xk" Xg-1
Mk =2 S"(’(x“)
3]( s 'F (Xk)

(Ref 14: 296-298)
By using the continuity requirements for the
spline, from equation (255), the values of MK can be

determined, namely it is required that

‘_\EMk-; % hx*‘\mMg + \ﬂ_g Min

K+ hk

{h (s - Y) - 1 ('JK“.‘hm)} (259) ‘

Expression (259) represents a system of N-1 linear

( algebraic equations with unknowns M,, /ﬂ, cee ’MN' By
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assigning the values of zero to M,and M',, because
the physical sline can be assumed to be straight
outside the interval (a,b), i.e.,-frx)zo for X<Qa

or X>b, the other values M,M,,... 'MN-I can be de-
termined. Using the spline representation, equation
(258), and the continuity requirements, expression

(259), the method of splines in the solution of integral

equations can now be introduced.

Integral Method of Solution

The steady-state heat conduction problem has

the form
JTlxy) + STy = = Flxy) (260)
It )J" ’

In the method proposed by Hajdin and Krajcinovic the
highest derivatives of the function Tlx.:,) are chosen as

the unknown, that is let

T ?
;;.l;ﬂm - plxy) and 3_;;(&:) = = Gxy) (261)

Substituting equations (261) back into equation (2¢0)
yields

piuy) + gluy) = Fluy) (262)

Differential equations can now be written °':- equations

(261) for a fixed value of X=Xy and/or Y* Ya

%%(Xn':)n) = -pluy) aed %r{(x,,-,s s - qla,y)  (263)




Equations (263) can now be converted into integral
form using the Green's function for the differential
operators in equations (263). The equivalent integral

representation of equations (263) are

: T(xya) = f G(xg)P(s.ya) ds + Tox (264)
and °
b
T-(Xg,y)= fG(jnﬁ)%(xK,h) dn (265)
(o

where O04§) and G(ym) are the one-dimensional Green's
functions for the second order differential operators
appearing in equations (263 ). Note that the partial
differential problem has been converted, along a con-
stant line X= Xk and/or Y Yn , into two one-dimen-
sional integral equations. The unknowns F(&yn)and
%(’(k.n) are now approximated using cubic splines, given
by equation (258 ) and integrated in equations (264 )

and (265).

Spline Integration

Using the spline representation, equation (264 )

becomes

T(Xx,g..)= a- xn){-— Xie Mk -r_’f_f_fx} + xk{ﬁg Q;XK) -%(a—xk?}

Q 45

- X o= % )My ~(a- -(a- -
T“{@.,,“) " <az:~)’mn (asx-JrK +o g"*)?k“} + ToXk (266)

and equation ( 265 becomes '
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'l{("ﬂn)mn -(“‘3&3?1:.&-(“-3“)’%,. +(°-:1n)1;,,°.} (267)
45 24 3 2

where &
x":,"l

My,N, = value of the second derivative of the
spline at(xk,yn).

l’;fb‘.ﬁ f(x")‘j")l %‘xhyﬂ)

Two expressions for the temperature now exist at the

length of a side of the square plate
location within region

point (Xxyq) given by expressions (266) and (267).
Because the temperatures must be equivalent at these
locations, equations (266) and (267) can be equated.
Using the continuity requirements for the second
derivatives of the spline functions, given by ex-
pression (259), both Mg and Nq can be replaced by a
multiple of Pk and *\' In addition, a second condi-
tion exists between P and %h given by equation (262).
Therefore, using the two algebraic equations, (266)
and (267), and equation (259), the unknowns P and %
can be evaluated. Substituting these values for P
or %h back into equations (266) or (267), along with
the substituted values of Mg or Ny will yield the

temperature at the point(xh’o.

Results
The computed values at the same interior nodes

( used in the method of finite differences is given in
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Table XII. Observe how the error values increase

as the node points move away from the center

Table XII. Cubic Spline Solution for
Square, with Heat Generation
Node Exact Cubic Spline Error
Solution 16 Interior
2,2 4.,331240 10.040000 -5.708760
2,4 6.969133  10.617943 -3.648810
3,2 10.555374 18.903657 -8.348283
3,3 16.772428 20.049333 -3.276905
4,2 21.727495 28.332229 -6.604734
4,3 33.090082 30.049333 +3,040749
5,2 L5,599465 4O.044O00 +5,.555465
543 60.555373  42.,332229 +18.223144

Besides the 16 interior points, the grid spacing was
halved to observe the effects. Instead of changing
the computed values at the node points the exact
same values as before were calculated, demonstrating
that unlike the finite difference method, the method
of cubic splines does not improve by reducing the
grid spacing. It is interesting to note that for the
most symmetrically located point, (.5,.5), the cal~
culated temperature is within .50% of the actual

analytical solution.

Conclusions
The method of finite differences in two-dimen-

sions gives excellent results, the largest relative
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error was 5.72% at the node 2,2. Halving the interval

spacing resulted in a decrease of this error to

2.67%.

f The integral method using cubic splines appears
to work well, but only at the most symmetrically lo-
cated point. The major fault with this method comes
when converting the two-dimensional problem into one-
dimensional form. Much of the physical significance,
the edge effects from the boundaries and the inhomo-
geneous boundary conditions, have been almost com-
pletely neglected., For the particular part of the

solution, given by equation (266), no account for the

value 3=jn is used though in reality the particular
solution is both a function of two variables, X and:j.
Also there does not appear sufficient coupling to
assume that the two seperate splines and condition
(262) should result in the same temperature at the
point (Xg,un); equation (267) is based upon homogeneous
boundary conditions and equation (266), for the same
point, incorporates two distinctly different boundary
conditions. In contrast to what the authors Hajdin
and Krajcinovic claim, i.e., that problems of potential
theory may be easily and conveniently solved employ-
ing the method of cubic splines and integral con-
version, the results that were found do not justify,

for the reasons cited, the authors claims,
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V. Conclusions and Recommendations

Conclusions One-Dimensional Cases

The purpose of this thesis has been to inves-
tigate and compare numerical integration techniques
with methods based upon numerical differentiation,
the finite difference method. In one-dimension the
results of this study have been somewhat inconclusive;
in the three examples investigated the first two
have proven to yield equivalent solutions for both
the integral equation approach and the method of
central finite differences. This is due to the simi-
larity of the two examples, the Helmholtz equation in
Case II was but a modified version of the particular
equation for Case I. In addition, the Green's inte-
gral approach for Case II was found to yield solutions
on the same order of error as the integral and CFD
methods. In contrast however, using the particular
Cauchy-type equation for Case III, three entirely diff-
erent results for each method was observed. The Green's
integral approach proved to be the most accurate, for
only one iteration over the interval (1,3) the com-
puted value was found in error by only .156%. The
integral method however for the same equation gen-
erated approximately 15 times the error of the Green's
integral but for a single iteration the error was

still less than 3%. The CFD method had more than
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twice the error of the integral method, 6.3%.

Another similarity between Case I and Case II
was the fact that beth, upon integral conversion, had
linear kernels. This can be attributed to the second
order differential operator, ;:, » appearing in
both differential equations. Case III however, had

a non-symmetrical kernel and asymmetric solution, in

contrast to the first two cases.

Conclusions Two-Dimensional Cases

The method of finite differences in two-dimen-
sions gives excellent results, at all points, compared
to the analytical solution of the steady-state heat
conduction problem. In contrast, the integral approach
using cubic splines fglls short of its expectations at
all interior points except the center. The major
drawback of the spline technique occurs when the
original two-dimensional problem is expressed as two
separate one-dimensional cases. The coupling scheme
between the splines is no longer valid due to diff-
erent Dirichlet boundary conditions existing at the
pPlate edges. Another serious drawback to the spline
method is that it does not improve as the gfid net-
work is decreased. In contrast, the finite difference

solutions improve as the grid spacing is reduced.
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Recommendations

More study needs be given to a wider variety of
one-dimensional problems, using both linear and non-
linear kernels. Higher order approximations to the
derived difference quotients should also be included
to reduce truncation errors in the finite difference
technique. In addition, other integration schemes
could also be used to see how well specific integral
techniques compare to the numerical differentiation
techniques. For the two-dimensional analysis a two-
dimensional spline function could be tried. The
disadvantage of working in two-dimensions though is
that the exact form of the Green's function must be
known, for complicated geometries this could prove
extremely difficult.

In conclusion, there are many areas in which
further studies may lead to more fruitful results.
This thesis has but presented a brief analysis of

several numerical methods for the solution of diff-

erential equations in both one and two-dimensions.,
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Appendix A

for

A differential equation of the form

& d -
I;‘zjfﬂjg+8]_0

with homogeneous Dirichlet boundary conditions

ylo)=0, j(l) = O

will have a non-symmetrical kernel when expressed in

integral form if A#O . 1In order to demonstrate

this, rewrite equation (268) in the form

&y _ _pdy
T - Ag_} Bj

and integrate both sides over the interval (O, %).

Equation (270) now becomes

e A by

X
dyx) _ duco
TV -9 = - Ay -—Bj;gc'x

or

Let C donote the constant,%¥d and integrate equation

(272) a second time over the same limits as before.

Expression (272) becomes

. . g:;-+ Ady + By= O
Kernel Properties of the Equation dx 44&3 J

(268)

(269)

(270)

(271)

(272)

X
| bj% dx = C‘[jx - Af;(x)éx - 3;)1";4"4* (273)
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Now, using the results of equation (6) and changing
the dummy variable of integration in the second in-
tegral on the right-hand side of equation (273) it is
found that

X X
o9 = Cx = Af ytsxds - 8 fix-5) y(5)ds

Applying the boundary conditions at J(ﬂ) evaluates

the constant C, that is

{ 0
9i8) = 0 = €& - Afyords - Bf<t-) yryds

0
C = i' S.,{n + B(l-g)}y(f) d¢

and equation (274), using C above becomes

X

1
‘J(X) = i—J’{ﬂ-r B(!"{)} \J(g) J\f - i{A < B(x-g)} \‘.l(g)dg
. b x
Expressigg the first integral as j'= g Q.I becomes
°

o )

q
Y= ﬁ"_}} (A- Bs)y(ﬂc\f + J} (A+ BO-5))yirdg

The kernel in the above integral equation expression

can be identified by making the substitution

9
Yy = Jles) 3(&)45

where the abbreviation for the kernel is

(274)

(275)

(276)

(277)

(278)

(279)

(280)




Note that the kernel is both non-symmetric and dis-

continuous at x=§, unless A= 0

a

—a .
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Appendix B

Determining the Green's Function for the
One-Dimensional Helmholtz Equation

The differential equation for the one-dimensional

Helmholtz equation is

j_z% + )fj = - fix) (281)

The Green's function for the differential operator,
i.e., the left side of expression (281), must sat-

isfy the following differential equation
2

dGixs) v

J_;; + A Gixg) = - g(x-—g) (282)
Because qug) can be thought of as a function of only
one variable for a constant § , assume that the Green's
function can be expressed by G,(x) and Gz(x) over some
interval (0,1). The Green's function will be of the form

G
Glxg) = () X<s (283)

G (%) X>¢€
for X#§ G.(x)and G,_(x) will each satisfy the homogeneous

equation of expression (282), that is

2
%—S‘-JX) + )szG.(x) = O (284)

and

c}iﬁ;(x) + ):62.(‘&) = O (285)
dx*

The solution of the homogeneous equations (284 ) and (285)
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yield, for G‘(x) and G:.(") » the Green's function

Acos Ax + Bsin )y X<§
G(X,S) = (286)

DCOS)X r ES\“);@ X>§

The Green's function has the property of being zero
at the end points and therefore two of the constants
in expression (286) can be evaluated. Using the boun-

dary values for ((x§) at the end points it is found that

G(o)= O = A (287)
Gol)= O = Deos M 4 E s\ (288)

Substituting the above values back into equation (286)
6(xs) bvecomes
Bsin)x : X< §
Glxs) = (289)
Sin )\
Because the Green's function is continuous across the
entire interval G,(§)= G,(s) . Using this condition in

equation (289) above will further reduce the unknown

constants
Bsin g = Dcos g - D cos (290)
" A o2 A8 :\n)\ﬁ S\nlg
S B = Dcosig - D cos M (291)
3\'1)\5 s\n )I
{
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and expression (289 ) becomes

D{cos M cos )\ s\ A X X<§

S0 As swad .
&(x8)= (292)
D{C.os Xx-:‘oiiﬂ 50 \x} X >§

The last property of the Green's function is that at
the discontinuity x=%,the derivative of G(x,§) has the
magnitude -}§G) or -1 by expressing equation (282) in
self-ad joint form. The discontinuity becomes
-J_Ez_(x) ~ 46,
dx Ix

Using the terms of expression (292) and substituting

-\ (293)

into equation (293) the constant P is found to be

D= S\ Y (294)
A

This value of P can now be substituted back into equa-

tion (292) and after several algebraic manipulations

becomes

Sin AX 51 ML-¢) X<¢§

Glxs) Asin M (295)

LD
A s A4

sm A(4-x) X>§
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Appendix C

Determining the Green's Function
for Case IIT

The differential equation for the one-dimensional

Cauchy-type equation is
& _2y = xt (296)
e

In order to determine the Green's function for a
differential operator the operator must first be
expressed in self-adjoint form, that is, it must ap-

pear as

4 4
I (?"0 —&—) a1 (297)

Equation (296) is not expressed in self-adjoint form
but can be by dividing through by X% The Green's

function must satisfy the differential equation

£6¢ -
_&?x.s) - 2,600 = - §(x-5) (298)

Because G(x.g) can be considered as twe separate functions,
6,(x) and G;(x) , the Green's function will be of the

form

Gxs) = Suw 1< (299)
Goatx) x>

For X#§ G.IX) and G._tx) will each satisfy the homo-

geneous equation of expression (298), that is
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[4
él%“’-— 2 C%(X) =

ax2 (300)
and
2
‘Lg.fm - % Gy = O (301)
The solution of equations (300) and (301) can be ob-
tained by substituting
6= x"M (302)

from which m=-42 can be found. Therefore the Green's

function takes the form

c Ax' + Bx2 X<s
(x) = (303)
) cxX' + Dx? X>§

Utilizing the fact that G(x$) is always zero at the end
points over the interval (1,3) two of the constants in

expression (303) can be evaluated, it is found that

G(W=0= A+B .. B=-A (304)
62(3) = O = % +9D . D= ’EC'T-’ (305)

Substituting the values for B and D into equation (303)
the Green's function becomes
1 2
A% - x ) X <3
Gxs) = (306)

C(—':) X>§

Next, using the continuity property of the Green's

function, namely
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G,(s) = G.(§) (307)
it is found that

A(s"-5%) = ¢ (g"-_g) (308)

- (5§ )/(§ %) (309)

Substituting expression (309) back into equation (306)
for G,(x) will give

{5 E) s} (- ) X<§

Gixg)= (310)

(‘_(x“'-_usi')

r X>g

The constant C can be evaluated by using the discon-
tinuity property in the first derivative of the Green's

function, i.e.,

A__G_z(s) ~ d6(®

= =1 (311)
dx dx

Differentiating both terms in expression (310) and sub-

stituting into equation (311) gives
= 202y 12
= 5 (s-%) (312)

The value of C can now be substituted back into ex-
pression (310) for the Green's function, which after

simplifying becomes
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§ _ N 3
Gxgy=< 825 "& (X -x) X<§
%$) 27 §) (313)
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Appendix D

Analytic Solution for the Two-Dimensional
Steady-State Heat Conduction Problem

The two-dimensional Poisson equation representing
the internal temperature within some enclosed region

is given explicitly by the partial differential equation

VT y) = - Fxy) (314)

where 1d?n5)is the temperature at the point (Y,j) and
F{x,y) represents the internal heat generation from
some source., The solution of equation (314) will be
derived over a square plate with the Dirichlet boundary

values
T(uo) = T(o,y) =T(x,b) = 0, Tlay) =T, (315)

where Ig is a constant temperature along the edge X= Q ,
Applying the superposition principle the problem

can be simplified by assuming that the complete solu-

tion for T’%x.g) can be represented by two independent

harmonic functions. The first of these satisfies equa-

tion (314) but with homogeneous Dirichlet boundary con-

ditions. The second harmonic function satisfies the

Laplacian of (314) using the inhomogeneous boundary

condition at X=& . The complete solution is then

. given by the superposition of both harmonic functions,

see Figure 25, that is
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T*= T"\‘Tz

ol ¥ T=-Fuy) 0 O VT, = 0 [T
) J 2 0 Vx_r-x_ _ Flmj)

o X=a o X=a
Fig. 25 Method of Harmonic Solutions for the Poisson
Equation
A
¥
T =T +7T, (316)
or
2
vTY - - Fly,cj) (317)
and therefore T® satisfies the original Poisson
equation but is composed of the two harmonic functions
T, and T2 .
Poisson's equation, with the homogeneous boundary
conditions, can be solved by assuming that Fxy) can
be represented as an eign-function of T‘ , that is
Substituting this value for Flty) will give the par-
tial differential equation
2 2
L";u + 2T = AT, (319)
2x Au*
J
By using the method of separation of variables for T; ’
i.e., T"‘ XY , the two eign-functions are obtained !
3
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Xx) = Asin nany nd  Yiy)= B sin mea (320)
sne T 5

with
y ,
) = Q&-“,—_- 1 m__l:"') (321)

Therefore 'I"l it is found

‘TI = Am“ Sin L‘%" S\ n_l_vrv (322)

Because of linear superposition an infinite series
of equation (322) will also satisfy the original diff-

erential equation, therefore 7, is of the form
T = 335 A sinngx s (323)
/ n m nm a sin %2.7

Substituting expression (323) for 7 into equation

(318) the following expression results

=~ Ftyg) = ) g%\ Anng SN RILY s Y (324)

Solving for the coefficient M it is found that

a b
Anm = —QT) I jF(x.y) Sin r%x $mw_\_su_'3 Jij (325)
°

For F‘!uj):l , the coefficient becomes

o = —Jbdb (326)
m nmY(atw+ bnt)

and T. , from expression (323), becomes
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a S
jba L s\n NRX sin wY 3 (327)

T= - %é nm (ot m tnt) Q ay

The second harmonic function, VY, , satisfies the
Laplacian of equation (314) and has the inhomogeneous

boundary condition of T at X=a . The Laplacian of

T, is
2 3 a
VT, = 2T 4 - o (328)
ax" 2:’1
Again, using the method of separation of variables for
7; y the two eignfunctions are obtained
X(x) = A Slnh nTx and (y)= Bsin n 2
3 JY _B!Ty (329)
Therefore /; becomes
7, = Xy = Bn snh AT X sin niT Yy : (330)
b T
Using the linear superposition principle equation (330)
becomes
L= 2 B, snh MTX SinnLy (331)

The inhomogeneous boundary condition at X=a_can now

be applied to evaluate 3.., , that is

Tz‘apj)a T‘ 3 2" B'\ 5\“\'\ '_\_“ég- s\ "%j (332)

and 3,.‘ is found to be

134

ek )
a

Cppbyl ¥ o P
mAgT LT . X

B —
TR

.
ES

—a -



4T

(333)
Nt sinkh nra

By =

Substituting this value for Bn into equation (331), 1}

is found to be

T=3 YT sinh “_‘El‘.

" N sin|h nw o
b

. s\ Q_ng_; (334)

The complete solution for.r* is now given by equations

(327) and (334)

T*= T,+7, = -0@F 55 snamx s mny
”.l' n w o b

nm(q"“”+ LGz)

4To sinh nux
T 2 . Sin ATY (335)

n
nsinh neya b
b
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Appendix E

Derivation of the Cubic Spline Function

The spline function, Sk(x) y is a polynominal of

degree three or less on the subinterval
I, = L %, x) (336)

and will satisfy the conditions that

S(x) = {'(x;), and S'(x;)--f('x;) (= k-1, k) (337)

Equation (337) imposes the conditions that the spline
function have the same values as f}x) and its first
derivative at each node location. This will allow
S(x) to be substituted for f(x) on each interval, Ik .
To insure a smooth fit of adjacent splines across the

entire interval (a,b) it will be required that

Sy (X,) = S, (X,+) (338)
and
S:(Xk-) 2 S;'(xk+) (339)

Expressions (338) and (339) assure a smoth fit of ad-
joining splines at each interior node, Xk . Since

n
Sk(x) is a cubic polynominal, SKﬁX) is a linear func-

tion of X on the interval T x - The second deriva-

tive of the spline will appear as
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S0 = My (X -X)  + Mi(x-xy.,) (340)
(XK-Xk-I) (XK - Xk —/)
where
MK = SK(xk) (341)

Expression (340) can be obtained, from Figure 26, by
solving for MK(x) using the linear slope, My -My,,

e i XK = X,
across the interval (xK.. , xK)'

MK-M?

MKOQ= 5’: (x)

X“¢| xK xK’"

Fig. 26 Derivative of Cubic
Spline Function, S, (x)

Integrate equation (340) to find:

!
SK(X)= —MK-l(xk"X)l ¥ MK(x"XK_;)z ¥+ C.. (3“’2)
zhk 2\1)(

where C, is a constant from the integration and hn"&”f‘
-t

Integrating again, the spline function is found:

SKIX)= MK"(xK"&)z ¥ MK(x"xk-o)s* C;K + c’l (343)
‘ hx ‘hk
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Let Y= flx), and using condition (337), Y= S )

Therefore

Fea % S Xea) = M—.—_“"\""; + CX ot Cy (344
b
and
L
Yk = Seixd = Mehe . cixgox ., (345)
Solving for €, and C, :
C, = (Uk’f}k_,) - (MK“MK*')(h:/L) (346)

and hk

C, = kYo = %, ‘jz)"(XKMK-I'XK—\MR)(\\:'L) (347)

f Substituting expressions (346) and (347) back into

equation (343) the cubic spline becomes

Sy = My (X -x) + My (x—x, )

C P ¢ i
‘*;('M‘ih--) - (MK =M )(h:/é?} X
K

+[ﬁK fjk—: B x|<~l“']k) - (XKMK_, - xk-'MK)(t\:/ ) (348)
» 2
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Appendix F

Integration, Using the Cubic Spline Function

The integral representation for the temperature

along the line Y=Yn is given by equation (264) as

Q
T (% yp)= jG(x,g)?(g,vn)Jg " Tax (349)
[}

The one-dimensional Green's function, G(x,s) is given

by the expression

X(a-§) X <$
G(xs) = “ (350)
~ ) §(a-x)
Y X>§
Substituting in G(Y.g) y» over the appropriate limits,
(349 ) becomes '
T( g
X - -
030) J; §(Q-°h)() ?(f.y,,)o\§
Qa
+ 5 X(a-§) i
) == PGiy.)ds + \:ai (351)

The value of the temperature at the node Xk is found
by substituting X=X, into (351) above and is expressed

as

XK
T(xc,y,) = I §£EjT"k)_ P(e.Yn)ds
0

Q

Xk (a-£)
J‘ kT. P(gavn)dg + -r__o__x_K (352)
Xk a
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Since @ and Xk are constant, and because PU§iYs) is
only a function of the variable § for constant Yn »

equation (352) simplifies to

T(xknﬁn) = (Q J-?‘g)dg
- X Xx
,.szg pE)s Txx (353)

Now, ng) will approx1mated by the cubic spline rep-
resentation given by equation (258), substituted back
into the integral, equation (353), and integrated. The

results after much algebraic manipulation yield

XK
§pdds = X Mg + X§ P (354)
o 45 3
Q
5§P(§)A§ = K(a-%) - Mk (o-y ¥ (355)
X 2 ) W(a Xe)
Q
ypff)dg = ("L x.‘) My - a xkzmxa "(a""‘k)P x (.- YK)PQ, (356)
Y
K

Replacing the integrals, given in equation (353) by
their equivalent quantities above, equation (353) be-

comes
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Tl = (s ~xim s i3

- - 3
RO - a(aen]

_ &({ @-%) M - @-x,)Ma _ @R + @-x)p Q}
a 45 24 3 >k

+ To Xk (357)
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