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THE AM3ERS0N-DARLING STATISTIC 

1.  Introduction. 

The Anderson Darling Statistic is a member of the group of 

Goodness-of-Fit statistics which has come to be known as EDF statistics 

(Stephens, 1974) because they are based on a comparison of the empirical 

distribution function of a given sample with the theoretical distribution 

to be tested.  It is designed to test that random variable X has a continuous 

cumulative distribution F(x;6);    8    is a vector of one or more parameters 

entering into the distribution function.  Thus for the normal distribution, 

the vector 9  = (u^cr ). 

The empirical distribution function (EDF) is defined as 

F (   )      number of sample values <, x 
n^ ' n ' 

where the n values x,,  xp, ..., x  are assumed to be a random sample 

of X.  From the x.  let x/n \, X/„s, .... x,   N be the order statistics, l     (iy    \2y (ja.) 

in ascending order. F (x) is then defined by 

F (x) = 0 , x < x 
n (1) 

F (x) = i/n       , x .  5 x < x    , i = l,...,(n-l) 
n (i)        (i+l) 

F (x) = 1 , x   < X . 
n (n) 

Since F (x) gives the proportion of a random sample < x ,  one might expect 
n 

it to give a good estimate of F(x;ö), which is the probability of X less 

than x,  and Fn(x) is in fact a consistent estimator.  It is therefore 

natural to test whether the sample appears to come from F(xje) by using 

a statistic based on the discrepancy between F (x) and F(x$e). 



Many statistics of this type have been proposed, the most famous, and 

one of the oldest, being the Kolmogorov statistic D.  This statistic 

is based on the largest vertical discrepancy between the two functions. 

An alternative measure is the Cramer-von Mises family, based on the 

squared integral of the difference between the EDF and the distribution 

tested: 

W = J  {PM(x)-P(xj0)) \|r(x) dx 5 (l) 
J-c 

n 

the function    i|r(x)    gives a weighting to the squared difference.     One 

member of    W      is the Cramer-von Mises statistic itself,    W      with 

\|r(x) = 1. 

The Anderson Darling statistic,   the subject of this article, is 

W     with 

\|r(x) = [{F(xje)}{l-F(x)e)}]_1 

This weight function counteracts the fact that the discrepancy 

between Fn(x) and F(xj0) is necessarily becoming smaller in the tails, 

since both approach 0 and 1 at the extremes.  The weight function 

given weights the discrepancy by a factor inversely proportional to its 

variance, and has the effect of giving greater importance to observations 

in the tail than do most of the EDF statistics.  Since tests of fit are often 

needed implicitly or explicitly to guard against wayward observations in the 

tails, the statistic is a recommended one, with, as we shall see, generally 



good power properties over a wide range of alternative distributions when 

F(x;0) is not the true distribution. 

2.  Computing Formula, 

For practical purposes, the definition of the Anderson-Darling 

statistic given above needs to be turned to a computational formula. 

This is done in the following sequence of steps: 

(a) Calculate z. = F(x,. \',B),    i = l,...,n . 

(b) The Anderson-Darling statistic is given by 

p     n 
£  = -{ £ (2i-l)[ln z1 + ln(l-zn+1_i)]}/n-n .      (2) 

i=l 

Note that since the x,. v are in ascending order, the z. will 

also be in ascending order, though the usual notation of order statistics 

has been omitted. 

3•  Goodness-of-fit test for a completely specified continuous distribution. 

The formula for z.  above assumes that the tested distribution F(x;0) 

is completely specified, i.e., the parameters in 9    must be known. When 

2 
this is the case we describe the situation as Case 0. The statistic A 

was introduced by Anderson and Darling (1952, 195*0* and for Case 0 they 

gave the asymptotic distribution and tables of percentage points. For 

2 
testxng purposes the upper tail of A  will be used; large discrepancies 

between the EDF and the tested distribution will indicate a bad fit. 

Later, Lewis (1961) demonstrated that the distribution of A  for a finite 

sample approaches the asymptotic distribution extremely quickly, so that 

for practical purposes only the asymyptotic distribution is required for 



sample sizes greater than 5«  A table of percentage points is given in 

2 
Table 1. To make the goodness of fit test, A  is calculated as in 

Equation (2) above, and compared with these percentage points; 

the null hypotheses that random variable X has the distribution F(x;0) 

2 
is rejected at level a if A  exceeds the appropriate percentage 

point at this level. 

k.       Asymptotic theory of the Anderson-Darling statistic. 

2 
The distribution of A  for Case 0 is the same for all distributions 

tested.  This is because the probability integral transformation is made 

at step (a) and the values of z.  are ordered values from a uniform distri- 

2 
bution with limits 0 and 1.  A  is therefore a function of ordered 

uniform random variables.  The asymptotic distribution theory for this 

special case can be found from the asymptotic theory of the EDF, or more 

specifically of the function 

yn(z) =./n(Fn(z)-z) , 

where F (z) is the EDF of n uniform random variables as above.  For a 

modern treatment of the empirical process given by y (z) aee Durbin (1973a, 

1973b). When 0 contains unknown components, the z. given by the transfor- 

A 
nation (a) above, when an estimate 0 replaces 0, will not be ordered uniform 

2 
random variables and the distribution theory of A ,  as for all other 

EDF statistics, becomes substantially more difficult.  In general, the 

2 
distribution of A ,  and of other EDF statistics, will depend on n and 

also on the values of the unknown parameters. 



Fortunately, an important simplification occurs if unknown components 

of 0 are location and scale parameters only; then the distribution of 

each EDF statistic, with an appropriate estimate for 0, will depend on 

the distribution tested, but not on the specific values of the unknown 

parameters.  Thus for the test for the normal distribution, for example, 

2 
with unknown \x    and cr , only one set of tables would be needed, of 

percentage points for each n.  This simplification makes it worthwhile 

2 
to calculate the asymptotic theory for A  and other EDF statistics, 

and this has been done for the normal case and the exponential case by 

Stephens (197^ 1976) and Durbin, Knott and Taylor (1975).  Stephens, 

from Monte Carlo studies to find the distributions of EDF statistics 

for finite n, has calculated modifications of the basic statistics; 

these are functions of the statistic and of n which can be used with 

only the asymptotic percentage points. Thus only one line of percent- 

age points is needed to make the test.  The technique is set out 

below.  Stephens (1977.? 1978) has also done similar distribution theory 

to provide tests for the extreme value distribution (these can be used 

for the Weibull distribution also) and for the logistic distribution. 

Pettitt and Stephens (1976) have given tests for the Gamma distribution 

with unknown scale parameter but known shape parameter. From all these 

results, we set out the technique for goodness-of-fit testing as it 

applies to A • 

5-  General procedure for any distribution with unknown location or 

scale parameter. 

The first step in testing goodness-of-fit for any of these distribu- 

tions is to estimate the unknown parameters.  This should be done by 

5 



maximum likelihood, for the modifications and asymptotic theory to hold. 

Suppose that 0 is the vector of parameters, with any unknown parameters 

estimated as above.  The steps continue as follows: 
A . 

(a) Calculate z. = F(x,. y,d),    i = l,...,n . 

2 
(b) Calculate A  from the formula (2) above. 

2 
(c) Modify A  by the formula in the appropriate table below, and 

compare with the line of percentage points given. 

6.  Tests for different distributions. 

It is worthwhile to set forth the practical details of these calcula- 

tions, for each distribution separately. 

6.1.  Tests for the normal distribution. We here distinguish three cases: 

_        2 
Case 1; The mean p. is unknown and is estimated by x, but  cr  is knownj 

2 2     2 
Case 2: The mean \i    is known, and cr  is estimated by Z. (x.-p.) /n(= s,, say); 

Case 3'-    Both parameters are unknown and are estimated by x and 

2        — 2 
s = L. (x. -x) /(n-l). 

For these cases the calculation of z.  is done in two stages. First 

w.  is found from 
l 

X / . \ —X X / . \ —p. X /. \ —X 

w. = _iii— (CaSe i). w. = -A2J— (case 2): w. = -^d— (Case 3); 
1      cr   v      /?   1     S^    v       "        1      S   v      " 

then z.  is the cumulative probability of a standard normal distribution, 

to the value w.,  found from tables or computer routines. The value of 

2 
A  is then calculated as described in Section 2.  To make the test use the 

modification and percentage points given in Table 2, for the appropriate case. 



Illustration.     The following value of men's weights in pounds,   first 

given by Snedecor,  were used by Shapiro and Wilk [17]  as an illustration 

of a test for normality:  lk6,  15k,  158,  l60,  l6l,  162,  166,  170,  182, 

195^  236.     The mean is 172 and the standard deviation 21K 95«     For a test 

for normality  (Case 3),  the values of    w.     begin    w    =   (1^+8-172)/2^. 95 = 

-O.962,     and the corresponding    z..     is,  from tables,    0.168.    When all 
2 

the    z.     have been found,  the formula in Section 2 gives    A    = 0.9^7- 

Now to make the test,  the modification in Table 2 first gives 

A* = A2 (1.0+0.75/11.0 + 2.25/121.0)  =   A2 (1.0868') = 1.029 ; 

when this value is compared with the percentage points in Table 2, for Case 3> 

the sample is seen to be significant at approximately the 1 percent level. 

6.2.  Tests for the exponential distribution.  The distribution tested 

is F(x) = l-exp(l-x/ß), x > 0, discribed as Exp(x,ß), with ß an 
A      

unknown positive constant. Maximum likelihood gives ß = x, so that z. 
  o 

are found from z. = l-exp(-X/. \/x), i = l,...,n.  A  is calculated as 

in Section 2, modified to give A  by the formula in Table 3, and A 

is compared with the percentage points in Table 3. 

For the more general exponential distribution given by 

F(x) = l-exp(-(x-Qi)/ß), x > OL}    when both a and ß are unknown, a 

convenient property of the distribution may be used to return the test 

situation to the case just described above. The distribution 

y,. \ = x(-+-i \~x(-> )    is made, for i = 1,... ,n-lj the n-1 values 

of Y(• \    are then used to test that they come from Exp(yjß)  as 

just described.  The substitution to Y/-\    reduces the sample size 

by one, but eliminates a.    very straightforwardly. 

7 



6.3.  Tests for the extreme value distribution.  The distribution tested 

is here F(x;0) = exp[-exp{-(x-oi)/ß)) ], (-00 < x < 00), with 0 = (a,ß); 

a.    and ß are constants, ß positive.  As for the normal distribution 

we distinguish three cases: 

Case 1: ß is known and oc is estimated; 

Case 2: oc is known and ß is estimated; 

Case 3: a and ß are both unknown, and must be estimated. 

Maximum likelihood estimates of oc    and ß are given by solving 

equations: 

ß = L.x /n-fex exp(-x Vß)}/{Z.exp(-x /$)), a =  -ß log{E exp(-x,/ß)/h}. 
ü d        •*•    d        d d        d d        d 

The first equation is solved iteratively, and then a can be found.  In 

A A 
Case 1,    ß    is known;  then    ß    replaced    ß    in   a.     In case 2,    oc    is 

known;  suppose then that    y = x.-C£,ß    is given by solving 

ß = {£ y   -Z y exp(-y /ß)}/n . 
d     d J     J d 

2 
These are then used in F(x;0) to give z.  and hence A . The 

modifications and percentage points for the different Cases are 

given in Table k. 

6.h.     Tests for the Weibull distribution.  The distribution tested, in its 

most general form, is 



F(xje) = l-exp[-C(x^)/ß}7],  (x>a), (3) 

with 9  = (a,ß,7)i    ß and 7 must be positive. Mien cc    is known, 

the substitution Y = -ln(X-a) gives, for the distribution function 

for Y, F(y) = exp[-exp{-(y-cc1 )/ß*}],  (y > a» ), where  ß' =1/7 

and cc' = -in ß, so that Y has the extreme value distribution 

considered above.  A test for the Weibull distribution, with GC    known 

but ß, 7 unknown therefore can be made as follows: 

(a) Find y,±.  = ~ln(x(n+l-l)~a^  '     i = 1>-->>n- 

(b) Test that Jr- \    is a sample (now placed is ascending order by 

step (a)) from the extreme value distribution with two unknown parameters, 

as described in Section 6.3, Case 3« 

Note also that if, in addition to OL}    7 is known in (3), the 

substitution Y = -ln(X-QJ) gives an extreme-value distribution for Y 

with scale parameter ß'  now known (Case 1 of Section 6.3); i'f Q! and 

ß are both known in  (3), the substitution gives an extreme-value 

distribution for Y with location parameter ö'  known (Case 2 of 

Section 6.3) 

6.5»  Tests for the logistic distribution.  The distribution tested is 

F(x;e) - [l + exp(-(x^)/ß}]_1, (x>a), with 0 = (a,ß)j a,ß are 

constants, with ß positive.  Again t hree cases are distinguished 

(Stephens, 1979): 

ß is known, and cc    must be estimated; 

a is known, and ß must be estimated; 

Both ex    and ß are unknown and must be estimated. 

9 

Case 1: 

Case 2: 

Case 3: 



Maximum likelihood estimates are given for Case 3 by the equations: 

Z. [l + exp{(x. -oO/ß}]-1 = n/2 ; 

x.-a 1 - exp{ (x.-a)/ß) 
Ei(^")( T7J^?s) = "n ß  l + exp{(Xi-a)/ß} 

These may be solved iteratively, using, for example, x and s-/3 /# 

as starting estimates of oc    and ß.  In Case 1, only the first equation 

A 
is needed, with ß replacing ß,  and in Case 2 only the second 

equation is used, with a    replacing oc.     In the transformation 

.A. A A A 

z. = F[x,.y6)t    the estimates a and ß are used in 0 as necessary, 

2 
and A  is calculated from the formula (2).  The modification to 

A ,  and the percentage points of A are given in Table 5. 

6.6.     Tests for the Gamma distribution with known shape parameter. 

The density under test is f(xjö) ={r(m)ß }" x   e~ ' , x > 0, 

and the distribution is F(x$e) = j      f(tje)dt.  The parameter vector 

0 = (m,ß) contains m as shape parameter and ß as scale parameter; 

note that the test involving an unknown location parameter is not 

considered.  In the test which follow, we assume m is known; ß is 

A.     _ _ 

then estimated by ß = m/x, where x is the sample mean. Estimated 

,  A A A. 
density    f(mje)    is    f(mje)    above with    ß    replaceing    ß,     and    F(x;0) 

is defined in a similar way.     Then for the goodness-of-fit test,  values 

zi are calculated from    z.   = F(x/. y6),    and    A    calculated as in Section 2. 

The modified form    A ,     and tables of percentage points for    A ,     are given 

for various m    in Table 6. 
10 



7.  Power of the Anderson-Darling Statistic. 

As was described in the introduction, the Anderson-Darling 

2 
statistic A  gives weight to observations in the tails of the 

distribution tested, whereas other statistics sometimes have the 

2 
effect of giving less importance to these observations. A  can 

therefore be expected to be powerful in detecting alternatives which 

have high probability of giving observations in the tails. Several- 

studies have been made, for example, on tests for the uniform distri- 

bution with limits at 0 and 1. This is the distribution of the z. 
l 

in Section 2, in the Case 0 situation where the tested distribution 

is completely specified.  The type of alternative to uniformity generally 

k k 
considered has distribution function F(x) = x  or F(x) = l-(l-x) , 

0 < x < 1 with k > 0. These distributions produce points which are 

close to 1 or close to 0 respectively.  Simple modifications of 

the distributions will produce densities with a peak at 0.5> or with 

the minimum valueat 0.5 and high values in either tail.  There is 

generally a clear difference in behavior of EDF statistics in detecting 

these alternatives. (Stephens, 197^j Queseriberry and Miller, 1977i 

Locke and Spurrier, 1978).  The statistic A  will detect alternatives 

which produce observations towards 0 or 1, but other statistics of 

the EDF class are more suitable for alternatives which produce a cluster 

near 0.5 (Stephens, 197U). 

In the important situations where parameters must be estimated, the 

differences in powers of the EDF statistic appear to level outj the 

opportunity to estimate parameters means that F(xj0; is brought close 

11 



to the EDF of the sample, and the z.  values of Section 2 are super- 

uniform i.e., more regular than a genuine uniform sample. Even with an 

alternative distribution to the null, the z.  do not take very extreme 

departures from uniformity.  In these circumstances the powers of the 

various EDF statistics are not so different among themselves as they 

are for the Case 0 situation) see, e.g., tests for normality reported 

in Stephens (197*0•  Nevertheless, because of the importance it gives 

2 
observations in the tails,  A  appears overall to be an effective EDF 

statistics in these situations.  It compares very favorably with 

statistics also devised for testing for special distributions, e.g. the 

Shapiro-Wilk statistics for testing normality, or exponentiality 

(Shapiro and Wilk, 1965, 1972; Stephens, 197*+^ 1978). The statistic 

2 
A  has the merit of being easy to calculate, and, using the modifica- 

tions, easy to apply with only one line of percentage points for each 

test situation. 

8.  Related Topics. 

This article has been concerned with the use of A  for testing 

goodness-of-fit of one sample, for a variety of distributions.  There 

occur problems in which several samples, usually of small size, are 

available, and one wishes to combine the information in those samples 

to make an overall goodness-of-fit test.  Pettitt (1977) has provided 

tables from which one can obtain the significance level p., i = l,...,k, 

of k such tests, in the Case 3 situation of a test for the normal 

distribution (Section 6.1 above).  The values p.  are then combined 

using Fisher's well known method. 



Pettitt (1976) has also given a two sample version of the Anderson- 

Darling statistic; like the two sample versions of other EBF statistics, 

it is essentially a rank test.  Pettitt adds some asymptotic power 

comparisons with other two sample rank tests, which show that A 

compares very favorably. 

13 



REFERENCES 

Anderson, T. W. and Darling, D. A. (1952).  Asymptotic theory of certain 

'goodness of fit' criteria based on stochastic processes.  Ann. Math. 

Statist. 23, 193-212. 

Anderson, T. Wo and Darling D. A. (195*0.  A test of goodness of fit. 

J. Am. Statist. Assoc. V9, 765-769. 

Durbin, J. (1973a). Weak convergence of the sample distribution functions 

when parameters are estimated.  Ann. Statist. 1, 279-290. 

Durbin, J. (1973b).  Distribution theory for tests based on the sample 

distribution function.  Biiladelphiaj SIAM. 

Durbin, J., Knott, M. and Taylor, C. C. (1975)-  Components of Cramer- 

von Mises statistics. II. J. E. Statist. Soc. B, 37, 216-237« 

Lewis, Peter A.W. (1961). Distribution of the Anderson-Darling 

statistic.  Ann. Math. Statist. 32, 1118-112^. 

Locke, C. and Spurrier, J. D. (1978).  On tests for uniformity.  Commun, 

Statist.-Theor. Meth. A 7(3), 2^1-258. 

Pettitt, A. N. (1976).  A two sample Anderson-Darling rank statistic. 

Biometrika, 63, l6l-l68. 

Pettitt, A. N. (1977). Testing the normality of several independent 

samples using the Anderson-Darling statistic.  J. Royal Statist. 

Soc. A, 156-161. 

Pettitt, A. W. and Stephens, M. A. (1976). EDF statistics for testing 

for the Gamma distribution with applications to testing for equal 

variances. Unpublished. 

Ik 



Quesenberry, C. P. and Miller, F. L. (1977)-  Power studies of some 

tests for uniformity.  J. Statist. Comput. SimuL. 5, 109-191. 

Shapiro, S. S. and Wilk, M. B. (1965).  An analysis-of-variance test 

for normality (Complete Samples).  Biometrika, 52, 591-611. 

Shapiro, S. S. and Wilk, M. B. (1972).  An analysis of variance test 

for the exponential distribution.  Technometrieg, 1^, 355-370. 

Stephens, M. A. (197^ )• EDF statistics for goodness-of-fit and some 

comparisons. J. Am. Statist. Assoc. 69, 730-737« 

Stephens, M. A. (1976).  Asymptotic results for goodness-of-fit 

statistics with unknown parameters. Ann. Statist. k,  357-369- 

Stephens, M. A. (1977)«  Goodness-of-fit for the extreme value 

distribution. Biometrika, 6k,  583-588. 

Stephens, M. A. (1979). EDF tests of fit for the logistic distribution. 

To appear Biometrika, December 1979' 

15 



<H 

roj 

a 
o • 

•H OJ 
-p • 
CJ VD 

c CU 
CQ m ß 
£ O 
O •\ •H 
H ''~*N -P 
H o Ü 
O CU 

CH cu 
CQ 

CQ 

CQ nj •\ 
CO O ß 
CQ o 

-P ß ß 
ca 
CU 

G 1 
-P -P 

?! 
pi 

fH fH 
O •H CU 

<H ?H 
-P 

-p 
<u 

CQ CQ Ö 
-P 
ß 
•H 

3 ä 
a cu 

• 
H ft 

•H • CU 

KA 

CD 
•H 
Ü ß 

•a 
Ü 

-P CD o CQ 
•Ö ß ft •H 
ß cu CQ -P «\ 
CO Ü Ü !» fc >? CU -p 

CM cu H CQ •H 

•N 
ft a) 

-p »\ •d 
H H cu >> •H 

•a H •P -P 
CQ & •H ß 

3 -p a o •d CU 

5 (1) 
Ü g o ft 

EH ft t>3 Q XI 
& Clf a CU 
pi a 

fH u 
•Ö fH o o o <H =H a <H 

CQ CQ 
+3 -P -P 

* CQ CQ CQ 
< CU CU CU 

EH EH EH 

CQ 

cS 
H OJ ro 
CU CU cu 
H H H 

-Ö rQ ,g •9 
0) CO CO CO 
•H EH EH EH 

Ö 
H 

cu 
H 

P 
cu 
o 
!H 
CU ft 

•d 

cu 

UA 
CM 
O o 

o o 

H 
O 

OJ 
O 

LOi o 

o 
H 

H 

O 
OJ 

J- -=j- r^i -=t" 
v.o ir\ CO IOJ o\ ON OJ LT\ 

-H- 

LT\ 
CO 

O 
C- 
O 

OJ 

OJ 

ON 

H 

CO 
CM 

0 

H 

CO" 
O 

ON 
CO 

OJ o 
c— 

CO 

CO 

OJ 

CO o 
9 

OJ 

5> 

H 

O 

00 

OJ 
IfN 

H 

o 
H 

OJ 
CO 

H 

O 

5> 
H 
LT\ 

O 

CM 

vo ^t ON -=fr 
ir\ CM Lf\ -=f 
C— l-O, H CM 

OJ 

o\ 
ON 

5* 

H 
OJ 
KN 

OJ 

O 

H 

VO 

H 
CO 

_H/ OJ CM vo 
Lf\ -=J- t~- c- KN 
OJ MD o -* t- • • 

H 

^—s 

OJ_ 
Ö 

ir\ 
OJ 

CM * + 
< Ö ^ 
•tf IT\ "^-^_ 
(U t~ KA 
•H LT\ m 

•rl Al ? ? 
TJ o O 

£ ß 

O O 
rA, 

« 
r4 

H H H w. ^J^-. 

•d CU cu < 
II 

< 
II 

fH CU cu 
O CU cu *-. *- fe CQ CQ <ci < 

H OJ K> 

0 CU CU 

cu 
CQ a CQ 

co 8 
H ü o o 
-9    • a o a • • 
EH a H OJ ir\ 

cu <; 
ce 

cu 
CQ  .H 

° r! 
as a 
CJ    K 

•Ö  P 
Q »H a ? 
o ti 
a cu 

CQ 

CU   cu 
-P ,a 
CQ 
cu  ü -P a 

CJ 
Ö 
o 

•rl 
-P 

P3 
^2 
•H 
?H    CQ 

CQ Ö 
•H 
O ft 

Ö 
CU 
f> 
•H 

•d 
O 4J 
Ö   Ö 

CU 
•» o 

OJ    ?H 
cu 

•tf ft 

a cu 

CQ 
CU      . 
CQ   "Ö 
CO    CU 
O P 

CO • 
CM  ^ o 

Ol 
CU   u 

^ a A 
CO   o ß 

EH 
fi 

U   0) ?H 
O   CU o 

pti  ,£! <*H 

CU 
•P 
o s 

16 



•ö 

-4- 

CQ 

Ei 

O 
<4H 

tQ 
CÖ 

CQ 

P 
03 
0> 

-P 

?H 
O 

<fH 

CQ 
-P 
Ö 

•H 

a 
CD 

SP 
-p 
a 
a> 
CJ 
PH 
CD 
PH 

H 
•H 
cö 

-P 

U 
Cü 
P4 

^ 

cö 

CQ 

o 

0) 
•H 
4H 
•H 

5 

NA 

VD 

a 
o 

•ri 
-p 
O 
CD 

CO 

Ö 
o 

•H 
•P 

•H 

-P 
CQ 

•H 

2 

CD 
a 
0) 

P 

CD 

-P 

fn 
O 

<H 

CQ 
-P 

CQ 
CU 

EH 

-4 
0) 
H 
•§ 
EH 

VD 

Ö o 
•H 
-P 
CJ 
0) 
co 

Ö o 
•H 
-P 

.o 
•H 

PH 

•P 
CQ 

•H 
T3 

CJ 
•H 
•P 
CQ 

O 
H 

CD 

.0 
-P 

?H 
O 

•+H 

CQ 
•P 
CQ 
CD 

EH 

CU 
H 

•3 
EH 

ö 

CU 
> 
CU 

-p 
Ö 
CD 
CJ 
fH 
CD 
Pn 

H 
•rl 

CÖ 
•P 

PH 
0) 
PH 

LTN -4 
CJ NA 
O UA 
o • 

• 0J 

u~\ -4 O co o o -4 H O H o OJ C- NA o • • * • • 
OJ H -4 H 

OA O 00 UA UA MD 
H LT\ -4 NA O co 

&A o OA VD O LTN MD 

H NA H H NA 

UA H -4 t- H O OA 
CJ OA LTN >- -4 co MD 
o UA CO CO OJ co t— • a • • • • • 

H OJ O H OJ 

H t- t- MD o O 
UA OJ t- UA -4 CDA MD o NA OJ t— O OJ MD 

H 0J O H OJ 

OJ UA c- N- LTN NA o O OJ NA UA OJ MD 
H O t— MD C0 D- UA • • B * • • • 

H H o H 

MD 
UA H 
H OA 

MD o H 
CJ CO 

MD O -4 ÜA NA MD 
UA NA MD C— H -4" 0J 
OJ t— O -4 MD O -4 • • 

H d H 

^ 
O 

H 

a 
MD 

*< 
"cT ^ 

's" 
d 

"ö 
CD ""--^ ÜA 00 ITA 

•<d fO OJ H 
H 

OJ 

•H ? ¥ ? 1 ? 
£ o • o o 1 O • 

^rH rH H^ MD _H 

OJ 0J _ OJ d OJ _ < < <d < 
II CD 

Ö 
O 

II II II II 

* * * *^ *-. <! s < < < «J 

H OJ NA H OJ NA 

CU tu CD CU CD CD 
M CQ CQ CQ CQ CQ 
CÖ CÖ CÖ cö cö CÖ 
O o O o o O 

• -4 
• 

UA 

s 

17 



CD 
-P 
0) 

VQ 

o 

0) 
•H 

ä 
ft 
0) 

•d 
o 
ra 

0 
3= 
o 

Ö 
pi 

ö 
CO 

d> 
-P 
tu 

ft 
0) 

& 
w 

Ö 

g 

•H 
£ 
Ö 
O 

•H 
-P 
Pi 

X> 
•H 
^ 
CO 

•H 

VO 

VO 

Ö 
O 

•H 
-P 
O 
d> 

CO 

KN 

0) 
H 

•s 
EH 

0> 
0) 
W 

-p 
•H 

•d 
•H 

-£ 
0) 
Ö 
o 
ft 
X 
Q) 

JH 
O 

<iH 

-P 
W 
0) 
-p 

H 

fH 
o 

d) 
•p 

Ö 
H KN CO C- OJ LTN KN CO o OJ H 

H H LTN CO -4" OJ H o\ CO t— >- r-; LTN 
<L) 
> O D— VO VO VO VO LfA LTN LTN LTN LTN LTN 

d) 
H 

H rH H H H H H H H H H 

0) 
M LT\ H Ox OJ VO LTV OJ J- O -Jr CO H 
CO OJ -=± CO VO -=*• KN OJ rH H O ON CO 

•s O -=t KN KN KN NA KN KN KN KN OJ OJ 
• 9 • « 

d) 
o 

ft 

H H H H H H H H H rH H 

KN OJ H ON O O KN O VO H ON 
LTN H £— LT\ KN KN OJ H H O O co 

H 

•d 
-p 

O OJ H H H H H H H H H o 

H H H H H H H H H H H 

?H 
0) ON ON -H- LT\ CO ON LTN H CO LTN SO ft o 

H 
CO 
ON 

LT\ 
ON ON ON 

OJ 
0\ &N 

H 
ON ON & SN 

ON 
CO 

0) 
•H 

•H 

OJ KN -=3- vo CO o 
H 

OJ 
H 

O 
OJ 

OJ 

Al 
a 
H 

3 

KN 

O 

OJ 

o 

+ 
OJ .. 

I    o 

18 



UNCLASSIFIED 
SECURITY CLASSIFICATION OP THIS PAGE (Whan Data Entered) 

REPORT DOCUMENTATION PAGE                  ~~T            READ INSTRUCTIONS rccrure i wuv-umcn i A nun r«uc                                 BEFORE COMPLETING FORM 
1.   REPORT NUMBER 

39 
2. GOVT ACCESSION NO. 3.   RECIPIENT'S CATALOG NUMBER 

4.   TITLE (and Subtitle) 

THE ANDERSON-DARLING STATISTIC 

5-   TYPE OF REPORT ft PERIOD COVERED 

TECHNICAL REPORT 
6.   PERFORMING ORG. REPORT NUMBER 

7.   AUTHORS 

MICHAEL A.   STEPHENS 

9.   CONTRACT OR GRANT NUMSERf«) 

DAAG29-77-G-0031 

9-   PERFORM!»a 2SG.4NIZAT10N NAME AND ADDRESS 

Department of Statistics 
Stanford University 
Stanford, CA 9!+3Q5 

10.   PROGRAM ELEMENT. PROJECT, TASK 
AREA 0. WORK UNIT NUMBERS 

P-IMJ:35_M 

11.   CONTROLLiNÜ omCZ NAME AND ADDRESS 

U.  S.  Army Research Office 
Post Office Box 12211 
Research Triansle Park.  NC 2770Q 

«2.   REPORT DATE 

OCTOBER 31,  1979 
13.   NUMBER OF PACES 

18 
1*.   MONITC??>-*G A-3SNCY NAME a AOORESSfi< dl tier eat tram Conteolllnt Otltce) IS.   SECURITY CLASS, (ot thla report) 

UNCLASSIFIED 

IS«.   OECLASSIFICATION/DOWNGRADING 
SCHEDULE 

16.   DISTRI3U~Cf* STATEMENT fof OttrSepori) 

APPROVED FOR PUBLIC RELEASE:    DISTRIBUTION UNLIMITED. 

17.   0ISTR13U~!0* STATEMENT (ot the abstract entered In Block 20, It dtlterent from Report) 

18.    SUPPLEMENTARY MOTES 

The findings in this report are not to be construed as an official Department 
of the Army position, unless so designated by other authorized documents. 
This report partially supported under Office of Naval Research Contract 
N0001^-76-C-Ol+75   (NR-0U2-267) and issued as Technical Report No. 278. 

19.   KEY WORDS (Ccntbxie on tarerae alia it neceeaary and Identity by block number) 

Anderson-Darling Statistic,     Tests of Fit, 

Goodness-of-Fit. 

20.    ABSTRACT (Continue on reverse aide it naceeemry and identity by block number) 

PLEASE SEE REVERSE SIDE 

DD   , JAN 73   1473 EDITION OF 1 NOV S5 IS OBSOLETE 

S/N 0102- LF-054-660! UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bntarad) 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bntared) 

THE ANDERSOBf-DABLIKG STATISTIC 

BY 

Michael A. Stephens 

ABSTRACT 

2 
The Anderson-Darling statistic A  is a goodness-of-fit statistic, 

based on the empirical distribution function. Its asymptotic distribution 

can be found for testing many important distributions -when unknown 

2 
parameters must be estimated from the data. Furthermore, A  can be 

easily adapted so that only the asymptotic points are needed for testing 

2 
purposes. A  also is easy to calculate, and has overall good power 

2 
properties. The report gives a review of A  and tables for testing 

the following distributions — normal, exponential, gamma, extreme-value 

and Weibull, and logisticj points are given also for testing any completely 

specified continuous distribution. 

#278/#.39 

S/N 0102- LF-014-6601 
UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGEfWften Data Enlerad) 


