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SOME PROPERTIES OF BEST LINEAR
UNBIASED PREDICTORS AND RELATED
PREDICTORS

by

André Cabannes
Massachusetts Institute of Technology ? | f— i

ABSTRACT

The variation of temperature or of pollutanf'concentrations
over a geographic area are adequately represented by random fields.
Given a real-valued random field {2z (x),x eIRZ} a basic problem
is to interpolate Z over an area A from measurements taken
at n stations Xl’x2”"’xn , when the distribution of 2 1is
only partially specified. This is the motivation of the present
paper.

It is shown that if the joint distributions are Gaussian the
best linear unbiased predictor is (among other properties) admis-
sible when used to predict 2Z at a single point, but inadmissible
in general when used to predict the values of the field at sev-
eral points. A Stein-like predictor is produced which is uniformly
better than the B.L.U.E. in the latter case. A nonlinear predictor,
based on relaxing the unbiasedness condition on the B.L.U.E., is
also proposed and shown to be in some cases preferable.

Key words: Best linear unbiased predictor, multivariate normal

distribution, admissibility, James-Stein estimaticn.




1. Introduction and summary:

The questions considered in this paper arise naturally
when trying to interpolate a realization of a random field
{2(x),x Eimz} from observations Z(xl),Z(xz),...,Z(xn) made
at n points, for example interpolation of air pollu;ant
concentration field from fixed monitoring stations. The
first step is to study how to interpolate at a single point
X ; and then, to study how to interpolate simultaneously at
N points forming a fine grid, say, over an area of interest.

However in the present paper we study the abstract pre-
diction problem, independently of the geometry of the under-
lying set of the random field. So consider n+l real valued
random variables zl’ZZ”"Zn and Z with a joint distribu-
tion whose covariance matrix is specified and whose mean
vector is the product of a specified matrix by an unspecified
p-dimensional vector parameter a.

First of all, in Section 2, we are interested in the
properties of the best linear unbiased predictor Z of 2
based on the observed values of zl,zz,...,zn , when the
risk function is R(a,%) = E(Q-Z)z. We show that if the
joint distribution of zl,zz,...,zn and 2 is normal, then
Z is extended Bayes, minimax, admissible and uniformly mini-

mum variance unbiased.

Then in Section 3 we consider the problem of predicting




simultaneously N random variables 2 ' 2

n+l ’'“n+2 ARERLFwEY
(instead of a single Z) on the basis of the observed values

of Zl ,22 ,...,Zn. Under the risk function -

i=1
we show that the pointwise use of the best linear unbiased

predictor of Section 2 for each Zi r 1 =n+l,...,n+N 1is

not an admissible procedure in general under normality assump-

tion. This is done by constructing a Stein-like predictor

-~

(Z 2 for (2 SEER .y K

n+l "“n+2 "“'zn+N) n+l ’zn+2 n+N

necessary and sufficient condition for the Stein-like pre-
dictor to be uniformly better than the simultaneous point-

wise best linear unbiased predictor (Zn+l ,Zn+2 'zn+N

given. It is derived as a consequence of the following result

). is

(proved in Section 3): If X is a p-dimensional normal random
vector with distribution N(G,Ip) and C is a fixed N x p

matrix then 3Jn >0 such that V6

(1) Ell cx<1-ﬁ2) - co]|® < gllcx - cs])?

if and only if

(2) max eigenvalue of CC”< + trcC'

This theorem extends the basic result of James and
Stein (196l1) which says tha* in the case C===Ip the N.S.C.

for (1) to hold is p> 3.

L?w ",.____ﬁ________..._._—nnuunununhun—;ﬂhﬂ““



Finally, in Section 4, going back to the problem of

predicting a single Z , we present a biased non-linear
predictor 2Z* obtained as a modification of 2 when the
unbiasedness condition is relaxed. We compute the risk func-
tion of 2* and conclude that 2Z* should be preferred to

Z in some cases when the unspecified vector parameter a

can be bounded.

|
|
!




2. The best linear unbiased predictor of a single random

variable and its properties in the normal case:

Preliminaries:

i Let 2 denote the column vector formed by the observed
: values (Zl ,Z2 ,...,Zn). Then the assumptions described in

Section 1 can be written as follows:

EZ = F'a , Cov i =K |
EnZ = e varz=02
Cov(2,Z) = k

F (pxn matrix), £ (pxl), K (nxn), k (nxl) ,
and 02 (séalar) are specified quantities.

a (pxl vector) is an unspecified vector-parameter.

The best linear unbiased predictor

o0
(/]
>

lzl + Azzz 4 cew * A2 (that we write in short

w A
o nn

N>

= Ao + A'2) of 2 is obtained by solving the following

system

{E(ﬁ-z)2 minimum 2.1.a

EZ = f'a for all a 2.1.b

The minimization, in 2.l.a , a priori depends on a , but

T IR e A s
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condition 2.1.b. implies Ko =0, FA = f , and E(i-Z)2

independent of a. The solution, which is classical, is

1 1

A=K "k - K'lF'(FK'lF')' FR™ 1k + x‘lF'(FK'IF')'lf 2.2

and the mean square error of the best 2 is

E(2-2)% = var(3-z) =

0% - k'x" Ik + (rx"k - £) ' (rx~irY) "LFr~lk - £) 2.3

For subsequent use of these unwieldy formulas we introduce

the following notation: G = FK ™+

1

P (we assume it is non

singular), and ¢ = FK "k ~ f.

Z can be given a simple interpretation (Goldberger, 1962):

since Z = F'a + ¢ where Et¢ =0 and Cov € = K. The gen-
eralized least square estimator of a based on Z is

1 X 1

a = (rx"lr) "ler” 2 = G 'FK “Z and the best linear unbiased

predictor of Z «can be rewritten

2 = £'4 + k'K L[2-F'a] 2.4
Formula 2.4, in view of the best linear predictor

8= f'a + k'K 1[2-F'a] 2.5

of 2 when a is specified, shows the natural origin of 2.

I okt
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Finally let us observe that E(ﬁ-Z)2 = 02-k'K‘lk-b¢'G'l¢

2 lk. Therefore ¢'G-l¢ represents

and E(3-2)2 = o% - k'K”
the price we pay for not knowing a , while requiring unbias-
edness of 2. In Section 3 and Section 4 we show how this

added term in the mean square error may be reduced.

Properties of 2 in the normal case:

In addition to the assumptions laid out at the beginning
of this Section, we now assume that 2 and Z are jointly
multivariate normal.

First of all suppose that the vector parameter a has

the multivariate normal prior distribution ©N(a,Tl)

Lemma 2.1: Let ﬁu r be the Bayes rule using mean squared
’

error to predict 2 , when we observe 2 , and when a~N(«,l).

It has the form

Zy 1 = k'K"1z - g'E(a|2) 2.6
and its Bayes risk is
(3, )= 0% - k'Kl + praHrTh Tla(erTh Tl 2.7
Proof: The Bayes rule ﬁa,F is the mean of the posterior
distribution of 2 given 2 , after averaging of over a




2, p = E(E(z]Z,2) |2}

= £'E(al2) + k'K'l{g - F'E(al2)}
= k'k"'z - g'E(al2)
This establishes formula 2.6. The proof of formula 2.7 is

omitted because the calculations are straightforward and

tedious, using the fact that E(a{z)==(g+y‘l)‘1r'1a + (G+F'l)'lFK'lg

Theorem 2.1l: The best linear unbiased predictor Z of

Z 1is extended Bayes and minimax.

Proof: The risk of 2 as a function of a is R(a,Z) =

az - k'K'lk + ¢'G-l¢. This expression does not depend on a ,

therefore 2 is an equalizer. Secondly, when all the eigen

values of T tend to +« , the risk of Z

&,
2.7, tends to R(a,2). Therefore 2 is extended Bayes, and

, given by

since it is an equalizer it must be minimax. ®

The next two problems are to show that Z is admissible
and UMVUE. So now .we abandon the assumption that a has
a prior distribution and return to the case when it is a free

unspecified vector-parameter.

Lemma 2.2: For any predictor 2* of 2 based on Z we have

2 1

E(z%-2)2 = ¢% - k'x" 1k + B{z*-E(zig)}2 2.8

Proof: 2Z - 2* can be written as the sum of 2 - E(Z{2Z) and

E(2|2) - 2*. Next, 2 - E(2|2) 4is uncorrelated with 2

.
’
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hence, by normality it is independent of 2 , and independent
also of E(2|Z) - 2* because this is a function of 2.

Formula 2.8 follows. [

3 1

Lemma 2.3: a =G "FK ~Z is a sufficient estimator for a ,
among the estimators based on 2.

This is a standard result in generalized regression.
We may just mention for completeness that 3(513) = F'a and
Cov(z|a) = K - F'G™'F . Hence 2 given 4 , which is normally

distributed, has a distribution which does not depend on a .

Theorem 2.2: Z is an admissible predictor of 2.

Proof: Suppose that Z is not admissible and that 2* = g(2)

is such that
£(2*-2) % < B(3-2)° 2.9

for all a with strict inequality for at least one a .

Then from lemma 2.2 we deduce that
2 A 2
E{2*-E(2]2)}° < E{2-E(2]2)} 2.10

for all a , with strict inequality for at least one a.

1

E(2|2) = k'K "Z - g'a , and

5 = kgL

Z - @'a




Therefore, pursuing our argument, we have.

dar o Lt

B{k'K t2-g(2)-g'a}? < E{g'3-g'a}? 2.11
for all a , with strict inequality for at least one a
Then by lemma 2.3 and the Rao-Blackwell theorem, the

quantity E{k'K T

Z-g(2) |a} which is a function of a and
does not depend on a , is a better estimator of @'a than
@'a. Or, in other words, @'a is not an admissible esti-
mator of @g'a.

But this is a contradiction because 3"N(a,G-l) and
therefore it is elementary to see that @'a is admissible for
@'a among the class of estimators function of a . (See also

Cohen (1965).)

Theorem 2.3: 2 is the uniformly minimum variance un-

biased predictor of 2.

Proof: From lemma 2.2 we see that it is sufficient to show
that the term E{E(Zlg)—ﬁ}z is uniformly minimum in a ,
among unbiased predictors of 2.

An unbiased predictor g(2Z) of 2Z must satisfy
Eg(2) = EZ2 = E{E(Z]2)} ; then E{f'a+k'x'l[_z_-r'a] -g(2)} = 0.

1

Therefore it is such that k'K "2-g(2) is a unbiased estimator

of @'a.

By the generalized version of Cramer-Rao inequality any




unbiased estimator of @'a has its variance bounded from

below by @'I(a) Y@ where I(a) is the Fisher information

matrix of Z on a . It turns out that I(a) = G . Hence

the Cramer-Rao lower bound is ¢'G_l¢ . This is attained by

@'a , because EQ'A = @'a, and E{¢'3-—¢'a}2 = @'Cov(a)g = ¢‘G-l¢.
In conclusion for any unbiased predictor g(Z) of 2 we

have E{E(2]2) - g(2)} = E{k'K 1z-g(2) -p'a}? > g'c g =

E(@'a-g'a)® = E(E(2]2) -2}% for all a .




3. A Stein like predictor for predicting simultaneously

several random variables:

Suppose now that we want to predict N random variables

z 'Z

bl from the observations of 2

1 ,Z2 go ool e

PO AL n

The assumptions that we make here are

Z ~ N(F'a,K)

2 ”
< ]
Zn+i N(fi a,oi ) i

1,2,...,N

-
|

Cov(z,2 ;) =k = LaZsseesB

i
and all the Zi's (the observations and the values to be
predicted) are jointly normal. As before all the parameters
appearing in the distributions are specified, except for the
free vector-parameter a .

The object of this section is to exhibit a predictor
Z of the type introduced by Jas : and Stein (1961) to esti-
mate the mean of a multivariate normal random vector, such

that

N o, 2 N % 2
e B8 Ceugt ¢ X BlEpu =Ty
i=1 i=1

for all values of a .
In Section 2 we saw that the admissibility of 2 wultimately
reduced to the admissibility of @'a to estimate @'a when

1

a ~ N(a,G ") . So it is natural that in the present section




-1%a

! the key result will be the inadmissibility of & to

estimate ¢a where ¢ 1is a Nxp matrix satisfying certain
1 conditions. This is stated in a general form in the following

theorem.

: Theorem 3.1: Consider X ~ N(e,Ip) , a p-dimensional

normal random vector; let C be an Nxp matrix then 3n>0

such that for all § GRP

E|| CX(l- i _)) -cel|?2 < E|lcx - col}? 5.1
Il %Il
if and only if
' max eigenvalue of CC' < % tr CC' 3.2

Remark: Condition (2) implies rank C > 2. In particular

if C is the identity, condition (2) is satisfied if and
only if p > 3, which is a classical fact in Stein-estimation
| (see James and Stein (1961)).
Theorem 3.1 will be proved after the following two

lemmas.

Lemma 3.1: If X ~ N(G,Ip), for any row vector C and any
function g such that the following expectations exist, we

have

2 2
E(cXg ([l X[[T)) = c8Eg(XT, ox,p)

o ey




=13

and also

2 s
B{xx'g(lIXII)} = T Bg(X  op,p) +

2
88'Eg(X] oxsq)  3+4

-
. e|l">
where K ~ Poisson I .
( 2
For a proof the reader is referred to Stein (1966) where
the essential technique is shown in order to prove formula 3.3;

the same technique can be used to prove formula 3.4.

Lemma 3.2: Under the condition of theorem 3.1, we have

Ellcx(l-“—”-l-l-r> - ga i tr CC'[l-ZnE 5_{7? +
X

an 1 ,] +
(p+2K) (p=-2+2K)
| 2
ijce || (4n+n°)E 2K 3.5
lall 2 (p+2K) (p=2+2K)

where K ~ Poisson <H6|I2>
2 .
2

Proof of Lemma 3.2: We start from

GRS, T 3 - S cX 2
z[lcx(l ||xu2) ce||® = E|jc(x-8) nWl

] | ]
= E(X-8)' C'C(X-8) - 2 E(X-8)' c'C —x—“i- e gl = 4 .

i I
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Since for two vectors in RP X'y = tr yx', expression

(3.6) can be rewritten

tr C E(X-8)(X-6)' C' = 2n¢tr C E _:g(x_-ez)_' C'+n’erCE ——"""4 c 3.7
fIx[| lIx{l
4 . 1 1 1 2 1
] By Lemma 3.1 and using E i ) and E = et
Xn n-= Xn (n=2) (n-4)

expression 3.7 is equal to

trCC'-ZntrC{IpE —+00' £t — - g0t g 1 }°'+
_‘ Xo+2K+2 Xp+2Kk+4 Xprax+2
E: 2
2
nztrC{IpE[zl ] + 86! E[-Zl ]}C'
Xp+2K+2 Xp+2K+4
& € e a2 1 1
tr CC' - 2n ex CC' E 5w - 2n [jcg|” & pr2Kez ~ prak| t
2 ' 1 2 I 2 1
L T Ty I o R e~y Yooy
| s ik 1 2 1
| FeEC [1 MEpx*" Egm (p+21(-2)] E:
leef? an + n®) £ -

(p+2K+2) (p+2K) °

Finally, to get expression 3.5 given in the statement of




|
i

SR

Lemma 3.2 we have to show

= 1 e TEe 2K
(p+2K+2) (p+2K) “euz (p+2K) (p+2K=2) °*

This is done as follows:

2 \k
: = erz, (1°0°,)
= k!

E o) (e o=

2 e’ 2 k+1
2 - -" ell /2 Q ll /2) k+1
Z " (k+1)! (p+2(k+1)) (p+2(k+1)-2)

2 k
2. 8 lei?, (b))

k! (p+2k) (p+2k=2)

(p+2k+2) (p+2k)

- —1L @ 2K

which completes the proof of Lemma 3.2. Now we can turn to

the proof of Theorem 3.1.

Proof of Theorem 3.1: The key to the proof is to observe that

2
max ﬂgggf-- max eigenvalue of CC' .,
o 8]

i et
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First if

max eigenvalue of CC' < (%) tr CC* , 3.8

then EHCX(]. - []xLuz) - CS]]Z is bounded by

o Cr 1
tr cC' {l - 2n E == pr2k * N F R (p-2ezR) T
b 2K T K
2d-ein E e a0 T 9" E GEn Gtrin =

In turn to bound expression 3.9 we need p > 3 ; but, as
observed in the remark on page 12, this is implied by 3.8.

Then expression 3.9 is bounded by

+n22

tr CC"I - 2en E

1
p+2K p+2K}'

Therefore if we pick n=e , we get

s[[cx(l - N) - ceu % tr CC* (1 -t p+12K) <trcc' = Eﬁcx-ceﬁz .

Conversely if max eigenvalue of CC' > + trCC' we

can choose the direction of 6 such that

llesy?
= max eigenvalue of CC'

ik




P T T PV T

T ———— e e
r
l L

and therefore such that

zﬂcx(l - —) - cSﬂ > tr cC' [ -n-lzx +
)2
2n 2K e K+1
(p+21() (p-2+2K) T (p+2K) (p=2+2K)
= shy o p-2 2 K+1
. Ry [1 M E G0 -2ron T N E R (p—2+2K)] .

Now, for any n > 0, there exists 6 large enough such that
the above quantity is strictly greater than trCC', because

when |[[8]] » +e

~ p=2 K+1 )
(p+2K)(P‘2+2\) (p+2K)(p-2+2K) .

This completes the proof of Theorem 3.1.

Application of Theorem 3.1 to the prediction of zn+l ’
Zn+2 ,...,Zn+N using Zl ,Z2 ,...,Zn :
Parallel to the notation @ = FK'lk-f, let us-define
-1 ;
¢i = FK ki-fi l=l'2'alo,N.
From the results of Section 2, we know that the individ-
ual best linear unbiased predictors of each 2_,. , i=1,2,...,N,

n+i
based on Z , are




And we know that they are individually admissible. The fact
that it is not the case, in general, when they are used simul-

taneously, is the object of the following theorem:

Theorem 3.2: For 1i=1,2,...,N , define

~ -l R n
2 ,.=k.,'K 2 -¢g.afl- 3.10
n+i i - i ( 3'Ga>
then 3n >0 such that, for all a ;
. 2 8 2
2y Bt neg) < iz AL PR 3.11
if and only if
=1 & -l
max eigenvalue of [@.'G "@.] < 2 9.'G ~@. 3.12
1 J i=l 1 1
where [¢i:G-l¢j] is the NxN matrix whose (i,j) element |
. -1
is ¢£G ¢j .

—

1
Proof: Since 2 ~ N(F'a,K) we have K 22z ~ N(K * F'a,I) .

H

Consider an orthogonal matrix H=(H1> such that
2




v(Hl') = v(K-%E”) where v(Hl') stands for the vector

space generated by the columns of Hl'. Then
-k
1 2 (]
-~ HlK F'a
HK z S N ’ I .
-t
let M = H.K >F' ; it is of size pxp and non singular since

‘!

we assumed that FK'lF' is of full rank. Let & = Ma and

& =M , then & ~ NiMa, MG “M'). Let us show that MG IR’ is
actually Ip : we start from
- )
M'M = FK ‘H,'H.,K > F'
1 M
-% L
= FK (I-H,'H,K ‘e
X 1
ik g 5
= FK F'-FK%H '"H.K 2 F'
2 23
ok _1 i
But H,K *F' = 0 ; therefore M'M =G . Then G ‘vmg ? =1
This means that MG > is orthogonal, hence MG™Im' = Ip.

In conclusion, we have a ~ N(a,Ip).

From lemma 2.2 we can write

N . 5 & 5
i.lzla(zn-ri'zmi) = 2E(2.,, -B(2,,[2)° +

EORRT e




the first term of the right hand side of 3.13 is

N
2 (6.2-k:K-lk-). On the other hand, since
51 % i i
| ' -l 1 =
E(Z2,,;12) =k; K72 - g, a the second term of the right hand

side of 3.13 can be rewritten

)- g.' a)? 3.14
Note that ||a @ =a'MMa =2a'Gd ; and let C be the

Nxp matrix whose ith row is ¢i'M . Then expression 3.14 becomes

i=1l

N
L) n ' 2 1. A % n i 2
b} E(¢iMa<l-W2> - g, Ma)® = El|C u(l —”&”2> goll™ -

Since a ~ N(a,Ip) , by Theorem 3.1 we know that 3In >0 such

that for all a

EHc&(l-

> - cal|?< Ellca-call?
1&1]2
if and only if maxeigenvalue of cC' < 3 trce' .
To finish the proof let us observe on the one hand that ;
!

cC = [¢i'G-l¢j] , and on the other hand (by going backward

in the computation) that

BlE(s ., |2) - & ,1}°

~ 2
E[[Ca - Caf|® = -t sl

1

N2

1

this, after another application of lemma 2.2, completes the

proof of Theorem 3.2.




oy
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4. A non linear predictor of a single random variable 2,

based on zl,zz,...zn.

Coming back to the problem of predicting a single 2z from
the observations 2, we show in this section another way to
reduce the extra-term ¢'G'1¢, in the mean squared error of
the estimator 2, that we have already discussed in Section 2.

The idea is to try to dispense with unbiasedness. This

leads to a predictor ﬁa  which depends on the unspecified

vector parameter a . It is therefore of no use itself but

the predictor denoted symbolically z , obtained by substitu-

a
ting a for a in ﬁa , turns out to be interesting; we will

denote it 2%,

Preliminary calculations show that the predictor
A . ey A 2 .
Za = Xlzl S oG i knzn which minimizes E(Za—Z) , with no
unbiasedness restriction with respect to a , is

]
B, = k'Elg - L2 a'exlp 4.1
l+a Ga
and its risk is
5 2009 R (7'
E(Z,-2)" = 0% = k'K "k + —— 4.2
l+a Ga

Fovi2
Note that sup 12_%1_. = 3'6"lg which is the third term in
a 1l+a Ga

P
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the risk of 2.

| AR LR e i R

& So the predictor we want to study in this section is

1A
* vl g a ~ -1
] - 1+a'Ga

as derived from formula 4.1 by substitution of a for a .

In the sequel we assume that 2 and 2 are jointly norm-

ally distributed.

*
Theorem 4.1: The predictor 2 can be reexpressed as

' % A L
i g =B 4.4
l1+a G a

and its risk is

.

[ Ea | A
B(2 <212 = 6% < 'Kk + Var<¢—-a——s;7‘a> &
a

' To prove Theorem 4.1 we need two lemmas.

i Lemma 4.1: Consider X ~ N(u,2) of size nxl; suppose 3 is

|
% positive definite. Let M be a pxn matrix (p<n) of full
* rank, and v a pxl vector. Then

1

E(X[MX=v) = u - 3" (MsM") “imp + sm'usm') iy

S(I - M' (msm') "t

Cov(X|MX = V)

M3)




——————

2%

For a proof of Lemma 4.1 the reader is referred to Cabannes

(1979).

Lemma 4.2: E(2|3) = F'a and E(z]3) =-g'a + k'K"1F'a
Lemma 4.2 can be proved as an application of Lemma 4.1.

Again we skip the calculations.

Proof of Theorem 4.1: To prove 4.4 we write

1A Ay -l
* L = @ aaFK "2 N
2t - 22 - kg . —— = - 22,
l+a'Ga 1+a Ga l+a Ga
A Ay A 1A
- k'K-lZ ¢ Al Gl\a ?laA o k'K-lg o ¢'a o 2
l+a Ga l+a Ga
1A
Hence 2" =% + 23
l+a Ga
Next the risk of 2* is
A
E(z"-2)? = E(Z-Z + 22 A>2
l+a Ga
"A 2
= E(z-2)°% + E[( £a. ) } N
l+a Ga
g'a
2E | (%-2) (‘757> 4.6
l+a Ga
To compute the cross-product term in 4.6 we condition on a
A
/ 'S A Vs A~ ~
E (2-2)(—%3—A>|a - —£2 _ g(3-z]a)
l+a Ga l+a Ga
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and from Lemma 4.2 we have

E(2-2]2a)

A'E(zla) - E(z]a)

x'kl-g'clrk lyr'a - (k'k"IF'a-g¢'3)

@' (a-a)

Therefore

E[(i-ﬂ(;%)}
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Then

. e
E(z*-2)% = ¢? - k'K 'k + g'c7lp + E [(ﬂ; ) J -

Formula 4.5 follows after some more manipulation, noting that

g'c7lg = var (g'3). m
The next problem is to compare the risks R(a,z*) = E:(z*—Z)2

and R(a,2) = E(2-2)%. Let R(%) 2 R(a,2) because it does not

depend on a . Since we showed in Section 2 the admissibility

of 2 . z* cannot be uniformly better than Z when a varies.
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However, we have the following result

Theorem 4.2: R(0,2%) < R(Z) and 1im R(a,2z*) = R(Z)
llajl>+e

Proof: When a = 0 , we have E(-—%7577> = 0 because the
l+va Ga

|I\
l) and Ba has a dis-

1+a'Ga
tribution symmetric about zero. Therefore R(0,2%) =

distribution of a then is N(0,G”

-1

2 ) and again since a ~ N(0,G %)

A PN
0% - k'x"1k + Var(;a'a 268

A

1+a'ca
a'ca

we have Var({l'a : —
1+a'Ga

>< Var(g'a) = ¢'G—l¢ hence
* A
R(0,Z ) < R(Z).
g3

1+4a Ga ‘
to zero in probability, and therefore also in distribution. 4

Next note that when |[|a]l| ~+> the term tends

And since there exists a constant c such that VbeRP ’

]
I—szg—— | < ¢ we deduce by a classical convergence theorem
1+b Gb

that all the moments of

g'a

o)

1+a Ga
varg'a = ¢.G-l¢ we have

tend to zero. Then because

A

A Vi 2 | -
lim Var<¢'a - -—%7i77> + E[<—-%7277> } =@ G l¢
Ha[l-»+°° l+a G a l+a G a

This completes the proof of Theorem 4.2. ®
We state briefly some final results without proving them,
referring the interested reader to the report of the author (1979).

The risk of 2" can be reexpressed as follows




R(a,z*) = R(Z) + £(a) where

el H e ]
xp+2K

s i 1 L
I+Xpror+2

a'Ga
2
approximation (Stein 1966)

and K ~ Poisson ( > . And this, combined with the following

PR, TP ML -
xg;zx p-2+t (p=2+t)

where t=a'Ga , can be used to compute approximate values of

the risk function of 2z*.

Illustration of the preceding method in the estimation of the

mean of i.i.d. normal random variables with known wvariance:

Suppose that Z,Zl,Zz,...Zn - o R 15, A - 8 N(m,cz) then

of course the predictors 2 and z" truly estimate the mean
~ *
m, so let's denote them m and m . Note that

2

E(f-m)? « E(R=2)° - ¢

2

and E(m*-m)2 E(m*-Z)2 -0

let R(m,M) = E(m-m)> and

R(m,n") = E(n"~m) >

=26- ™

i
|
1




i o e

then if we define so(m) by

< X 2 X
g.(m) = E - 2 cov(X, )
0 [<l+x2 ) ] < 1+x2

where X ~ N(m,1l), it is easy to see that

m/n

i A 02(
R(m,m*) = R(m,m) + ; 50 =y

In the case n = 3 the figure below representing R(m,m*)
and R(m,m) shows that if we know a priori that
m e[mo'-.ac,m0-+.801 for some known constant m, we should

subtract the constant m0 from all our observations and use

m* instead of m.




R(m,m)

t t + +
-0 0 o] 20 30
Figure: Comparison of the risk functions of m and m*.
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UNCLASSIFIED

The variation of temperature or of pollutant concentrations
over a geographic area are adequately represented by random
fields. Given a real-valued random field (Z(x),x(jB}b a basic
problem is to interpolate 2Z over an area A from measurements

" )

taken at n stations XI'XZ""’Xn
is only partially specified. This is the motivation of the present

, when the distribution of 2

paper,

It is shown that if the joingagﬁfgxibutions are Gaussian
the best linear unbiased predictor,is (among other properties)
admissible when used to predict Z at a single point, but in-
admissible in general when used to predict the values of the
field at several points. A Stein-like predictor is produced which
is uniformly better than the B.L.U.E. in the latter case. A non-
linear predictor, based on relaxing the unbiasedness condition
on the B.L.U.E., is also proposed and shown to be in some cases

preferable.r
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