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SOME PROPERTIES OF BEST LINEAR
UNBIASED PREDICTORS AND RELATED

PREDICTORS

by

André Cabannes

Massachusetts Institute of Technology 
-

ABSTRACT ,Li1~~

The variation of temperature or of pollutant concentrations

over a geographic area are adequately represented by random fields.

Given a real—valued random field {Z(x),x E~~~~
2

} a basic problem

is to interpolate Z over an area A from measurements taken

at n stations x1,x21 ... ,x~ , when the distribution of Z is

only partially specified . This is the motivation of the present

paper.

It is shown that if the joint distributions are Gaussian the

best linear unbiased predictor is (among other properties) admis-

sible when used to predict Z at a single point, but inadmissible
in general when used to predict the values of the field at sev-
eral points. A Stein-like predictor is produced which is uniformly

better than the B.L.U.E. in the latter case. A nonlinear predictor ,

based on relaxing the unbiasedness condition on the B.L.U.E., is

also proposed and shown to be in some cases preferable.

Key words: Best linear unbiased predictor , multivariate normal

distribution , admissibility, James—Stein estimation.
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1. Introduction and summary:

The questions considered in this paper arise naturally

when trying to interpolate a realization of a random field

~Z(x) ,x ~ 
} from observations Z(x1),Z(x2),...,Z(x ) made

at n points, for example interpolation of air pollutant

concentration field from fixed monitoring stations. The

first step is to study how to interpolate at a single point

x ; and then , to study how to interpolate simultaneously at

N po~ints forming a fine grid , say , over an area of interest.

However in the present paper we study the abstract pre-

diction problem , independently of the geometry of the under-

lying set of the random field. So consider n+l real valued

random variables Z1, Z21...Z~ and Z with a joint distribu-

tion whose covariance matrix is specified and whose mean

vector is the product of a specified matrix by an unspecified

p—dimensional vector parameter a.

First of all, in Section 2, we are interested in the

- 
- properties of the best linear unbiased predictor ~ of Z

based on the observed values of Z1, Z2,...,Z~ , when the

risk function is R(a,Z) = E(Z—Z)2. We show that if the

joint distribution of Z1, Z2,...,Z .~ 
and Z is normal , then

Z is extended Bayes , minimax , admissible and uniformly mini—

mum variance unbiased .

Then in Section 3 we consider the problem of predicting

_ _ _ _ _ _ _ _
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simultaneously N random variables Z~~1 ,Z11~2 ~~~~~~~~

(instead of a single Z) on the basis of the observed values

of Z1 ,Z2 ~~~~~~~ Under the risk function

N 2
•E ~~~~~~~~~~~~~

we show that the pointwise use of the best linear unbiased

predictor of Section 2 for each Z~ , i = n+l,...,n+N is

not an admissible procedure in general under normality assump-

tion. This is done by constructing a Stein—like predictor

~~n+l 
1~ n+2 ‘ • • • ‘

~~~+& 
for (Z

~+i 
,Z~42 l_ .,Zn+N). A

necessary and sufficient condition for the Stein—like pre—

dictor to be uniformly better than the simultaneous point-

wise best linear unbiased predictor (Zn+l l Zn+2 l Zn+N) is

given. It is derived as a consequence of the following result

(proved in Section 3): If X is a p—dimensional normal random

vector with distribution N (e~ I~) and C is a fixed N x p

matrix then 3r~ > 0 such that ye

(1) E II CX /1 — T~ \ _  ce fl 2 < EflCX — C el l

2
\ ux u 2 )

if and only if

(2) max eigenvalue of CC~ < f tr CC ’

This theorem extends the basic result of James and

Stein (1961) which says that in the case C = I~ the N.S.C.

for (1) to hold is p 3 .  



3

Finally, in Section 4, going back to the problem of

predicting a single Z , we present a biased non—linear

predictor Z* obtained as a modification of ~ when the
unbiasedness condition is relaxed. We compute the risk fun c—

tion of Z* and conclude that Z* should be preferred to
Z in some cases when the unspecified vector pa~..aineter a

can be bounded.

— 

- 
- ~~~~~~~~~•
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2. The best linear unbiased predictor of a single random

variable and its properties in the normal case:

Preliminaries:

Let Z denote the column vector formed by the observed

values (Z1 ,Z2 ~~~~~~~~ Then the assumptions described in

Section 1 can be written as follows:

E Z =  F’a , C0vZ K
2EZ = Va , v a r Z = a

Cov (Z,Z) = k

F (pxn matrix) , f ( px l)  , K (nxn) , k (nxl)

and cr2 (scalar ) are speci~ied quantities.

a (px l vector) is an unspecified vector-parame~~~

The best linear unbiased predictor

Z = + X~ Z1 + 12Z2 + ... + X~ Z~ (that we write in short

Z = 10 + X’Z) of Z is obtained by solving the following

system

minimum 2.l.a

1E~ = Va for all a 2.l.b

The minimization , in 2.1.a , a priori depends on a , but

A 
_ _ _  

_ _

— ,— .— 
I 

-~~~—— -



A 2condition 2.1.b. implies X
~ 

= 0 , Fl = f , and E (Z—Z)

independent of a. The solution, which is classical , is

I = K 1 k - K F (FK~~F ’)~~~FK~~k + K F’(FK~~F’)~~~f 2.2

and the mean square error of the best I is

A 2 A

E(Z—Z) = Var(Z—Z) =

a2 — k’ K~~ k + (FIC
1
k - f) ‘ (FK F’)~~~(FK~~k - f) 2.3

For subsequent use of these unwieldy formulas we introduce

the following notation: G = FK 1F’ (we assume it is non

singular), and ~ = FK~~k - f.

I can be given a simple interpretation (Goldberger , 1962):

since Z = F’a + c where Ec = 0 and Coy c = K. The gen-

eralized least square estimator of a based on Z is

= (FK 1F’) 1F1C1Z = G~~F1C
1Z and the best linear unbiased

predictor of Z can be rewritten

I = f’~ + k’K~~ (Z-F ’~~] 2.4

Formula 2.4, in view of the best linear predictor

2 = Va + k’K~~ (Z—F ’a] 2.5

of Z when a is specif ied, shows the natural origin of I .  

- -- -.-- -- - - --~~~~~~~ 
-—.

~~~~
-- - -

~~~~~
-- - - - - -
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Finally let us observe that E(I-Z)2 = a2 —k ’K~~k +Ø ’G 1
Ø

and E(~-Z)
2 c2 - k’K~~k. Therefore Ø’G 1

0 represents

the price we pay for not knowing a , while requiring unbias-

edness of I. In Section 3 and Section 4 we show how this

added term in the mean square error may be reduced.

Properties of I in the normal case:

In addition to the assumptions laid out at the beginning

of this Section, we now assume that Z and Z are jointly

multivariate normal.

First of all suppose that the vector parameter a has

the multivariate normal prior distribution N (c~,r)

Lemma 2.1: Let be the Bayes rule using mean squared

error to predict Z , when we observe Z , and when a - N(c ~, :’) .

It has the form

Z r = k’K 1Z — Ø’E(aIZ) 2.6

and its Bayes risk is

a2 -k ’K~~k + Ø ’ (G +r )G (G +r~~ )~~ Ø 2.7

Proof: The Bayes rule ~~~ is the mean of the posterior

distribution of Z given Z , after averaging of over a

- 

~ 

~~~~~~~ --~~~~~~~~~~ - _ _ _  - _ _  ~~— - - -
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= EC E (ZIZ ,a) [~}
= f’E(a(Z) + k’K~~(Z - F’E(a (Z) }

= k ’K~~ Z - Ø’E (alZ)

This establishes formula 2.6. The proof of formula 2.7 is

omitted because the calculations are straightforward and

tedious, using the fact that E(alz) = (G+r l).1 r 1c~ + (G+r )~~FK~~z I

Theorem 2.1: The best linear unbiased predictor Z of

Z is extended Bayes and minirnax.

Proof: The risk of I as a function of a is R(a,I) =

- k’K~~k + Ø’G~~Ø. This expression does not depend on a

therefore Z is an equalizer. Secondly, when al]. the eigen

values of r tend to ~~~~~~~ , the risk of , given by

2.7, tends to R(a,I). Therefore I is extended Bayes, and

since it is an equalizer it must be minimax. •

The next two problems are to show that Z is admissible

and UMVUE. So now .we abandon the assumption that a has

a prior distribution and return to the case when it is a free

unspecified vector-parameter.

Lemma 2.2: For any predictor Z* of Z based on Z we have

E(Z*_Z)2 = a2 — k ’ K~~k + E{Z*_E(ZIZ)}2 2.8

Proof: Z — Z~ can be written as the sum of 2 - E(ZIZ) and

E (ZjZ) — Z* . Next, Z — E (ZlZ) is uncorrelated with Z ;

- 

. - -  ~~ -~~- - -- -.- 
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hence , by normality it is independent of I , and independent

also of E(ZlZ) - Z* because this is a function of I.

Formula 2.8 follows. U

Lemma 2.3: a = G 1FK 1Z is a sufficient estimator for a ,

among the estimators based on I.

This is a standard result in generalized regression.

We may just mention for completeness that E(Z~a) = F’~ and

Cov(Zl~~) = K - F’G 1F . Hence Z given ~ , which is normally

distributed , has a distribution which does not depend on a

Theorem 2.2: 1 is an admissible predictor of Z.

Proof: Suppose that I is not admissible and that Z* = g(Z)

is such that

E(Z*_Z)2 < E(Z—Z)2 2.9

for all a with strict inequality for at least one a

Then from lemma 2.2 we deduce that

E{Z*_ E (Zl Z ) }
2 

< E{Z—E(Z lZ)} 2 2.10

for all a , with strict inequal ity for at least one a.

E(Z (Z ) = k’K~~ Z - Ø’a , and

I = k ’ K~~ Z -
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TFierefore, pursuing our argument, we have .

E(k’K~~Z—g (Z)—Ø ’a}2 < E(Ø’~ —Ø ’a}2 2.11

for all a , with strict inequality for at least one a

Then by lemma 2.3 and the Rao—Blackwell theorem, the

quantity ECk’K 1Z-g(Z) [&} which is a function of ~ and

does not depend on a , is a better estimator of Ø’a than

Ø’~ . Or , in other words , Ø’~ is not an admissible esti-

mator of Ø’a.

But this is a contradiction because ~ N (a,G~~) and

therefore it is elementary to see that ~~ is admissible for

Øt a among the class of estimators function of ~ . (See also

Cohen (1965).)

Theorem 2.3: 1 is the uniformly minimum variance un-

biased predictor of Z.

Proof: From lemma 2.2 we see that it is sufficient tr~ show

that the term ECE (ZIZ)-I}2 is uniformly minimum in a ,

among unbiased predictors of Z.

An unbiased predictor g(Z) of Z must satisfy

Eg(Z) = EZ = E{E(ZJZ)} ; then ECf’a+k’K 1[Z—F ’al —g (Z)} = 0.

Therefore it is such that k’K~~Z-g(Z) is a unbiased estimator

of Ø’a.

By the generalized version of Crazner-Rao inequality any

t 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~



unbiased estimator of ø’a has its variance bounded from

below by Ø ’I (a)~~~Ø where 1(a ) is the Fisher information

matrix of I on a . It turns out that 1(a) = G . Hence

the Cramer-Rao lower bound is Ø’G~~Ø . This is attained by

Ø’a , because EØ ’a = Ø’a , and ECØ ’a-Ø ’a}2 = Ø’Cov(&)Ø = Ø’G 1Ø

In conclusion for any unbiased predictor g(Z) of Z we

have E~ E (Z IZ) - g(Z)} 2 = ECk’K~~Z-g(Z) -Ø’a}
2 > Ø’G~~Ø =

E CØ ’a— Ø ’ a)2 = E C E ( Z I Z )  _ I } 2 for all a

_  _ _  _

L ~~~~~~~~~~ ~~~~
. = ~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
~~~

- .—
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3. A Stein like predictor for predicting simultaneously

several random variables:

Suppose now that we want to predict N random variables

Zn+l ,Z +2 s...~
Z +N from the observations of Z1 ,Z2 ,...Z~ .

The assumptions that we make here are

I - N (F’a,K)

~~~~ - N (f~
’a,a

~
2) i =

Cov(Z,Z
~+~

) = k1 i =

and all the Z~~’s (the observations and the values to be

predicted) are jointly normal. As before all the parameters

appearing in the distributions are specified , except for the

free vector-parameter a

— The object of this section is to exhibit a predictor

~ of the type introduced by Ja: and Stein (1961) to esti-

mate the mean of a multivariate normal random vector, such

that

i— l 
~~~~~~~~~~~~ < 

~~ 

E(In+i
_Z
n+i)

2

for all values of a

In Section 2 we saw that the admissibility of I ultimately

reduced to the admissibility of Ø’~ to estimate Ø’a when

- N(a,G~~) . So it is natural that in the present section 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ........ . ~~~~~~~ 
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the key result will be the inadmissibility of ~~ to

estimate ~a where ~ is a Nxp matrix satisfying certain

conditions. This is stated in a general form in the following

theorem.

Theorem 3.1: Consider X - N(8 ,I~~) , a p—dimensional

normal random vector; let C be an Nxp matrix then 3n>0

such that for all e

E li CX (l— 
,

‘

~ —C 8 I J~ < E II CX — C3~~~ 3.1
\ lxi i—!

if and only if

max eigenvalue of CC’ < tr CC’ 3.2

Remark: Condition (2) implies rank C > 2. In particular

if C is the identity, condition (2) is satisfied if and

only if p > 3, which is a classical fact in Stein—estimation

(see James and Stein (1961)).

Theorem 3.1 will be proved after the following two

lemmas.

Lemma 3.1: If X - N(e~ I~). for any row vector C and any

function g such that the following expectations exist, we

have

E(cXg(i~ X 11 2 
) )  = ceEg (X~~2~~2) 3.3
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and also

E{XX ’g (JJX~l
2)} = ~~~~~~~~~~~~ +

ee ’Eg(x~~2~~4) 3.4

where K - Poisson (M~~
2

For a proof the reader is referred to Stein (1966) where

the essential technique is shown in order to prove formula 3.3;

the same technique can be used to prove formula 3.4.

Lemma 3.2: Under the condition of theorem 3.1, we have

EJiCX (l
_

11~~,1
2)_ ce ll 2 = tr CC ’[1—2nE p+2K

n2E 1 . 1 +
(p+2K) (p—2+2K)J

i IC8 lI  (4~+~
2)E 2K 3•5

e 2 (p+2K) (p—2+2K)

where K - Poi3son _____

\ 2

Proof of Lemma 3.2: We start from

Ellcx — 
2~ 

— — Ei1c(x—e) — 
~~ 211

lixil / lixil

____ 
2 X ’C’CX

— E(x—e)’ C’C(X—8) — 2 E(x—8)’ c’c ‘
2 
+ 

~ . 3.6

11x11

- - A
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1~~

Since for two vectors in ~~ x’y = tr yx ’, expression

(3.6) can be rewritten

tr C E(x—e)(x—e)’ C’ — 2~ Cr C E X (X— 8) ’ c’ + ~2 tr C £ ‘~~~~ C’ 3 . 7

1 1 1 2 1By Lemma 3.1 and using E —~~~ = — and E —~~~ = ________

x~ 
n-2 X~ (n-2) (n-4)

- 

- 

expression 3.7 is equal to

tr CC’ — 2~ tr 2 + 08’ E 
2 

— 08’ E ~~~ c’ +
41-2ic+2 Xp+2K+4 Xp+2K+2

• tr C 
fi E [2 1 ]  + 80’ £12 1 ]  } ~~t 

-

— tr CC’ — 2fl Cr CC’ £ — 2n l~cel12 
E (+~~+Z — 

p+2K} +

Cr cc’ E (p+2K)(p+2K—2) + ~2 
~1cell E (~~2K+2)(p+2K)

— Cr cc’ — 2fl E + E (p+2K)(p+2K_2 )] +

11C8112 (4t~ + n2) E (p+2K+2)(p+2K)

Finally, to get expression 3.5 given in the statement of

L.~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :±_ _ .
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Lemma 3.2 we have to show

E (p+2K+2)(p+2K) 110112 E (p+2K)(p+ZK—2)

This is done as follows:

f 2 \ k
1 —110112,2 (jI ll i

~ 1E (p+2K+2)(p+2K) k—O 
e — 

p+2k+2)(p+2k)

f 2 k+1

2 ‘~~ _ll 0{! /2 ~ ‘2) k+].

iioii~ k~O 
e (k+l)! (p+2(k+1))(p+2(k+l)—2)

• 2 ~ ~(( 8(t 2
,2 (11811

2
,2)k k

— 

118112 ~~l 
e k! (p+2k~~p +2 k—2)

— 

11~
2

jj2 
E (p+2K ) (p+2K —2)

which completes the proof of Lemma 3.2. Now we can turn to

the proof of Theorem 3 . 1 .

Proof of Theorem 3.1: The key to the proof is to observe that

2
~~ ItCOJI — max eigenva 1u~ of CC’e 11811

_________ _ _ _ _
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F irst if

m sigenvalue of CC’ < (.!~!~
) 

Cr C C 1 , 3 . 8

then £LIcX (l — 11~~~2) 
— c0JJ 2 is bounded by

tr CC ’ 
t i 

— 2~ E p+2X + ~2 E (p+2K) (p-2+ZK) +

2 (1—€) n £ (p+ZK) (p—2+2K ) + (1-c) ~2 E (~~•~2K) (p—2+2 K)

In turn to bound express ion 3 . 9  we need p > 3 ; but, as

observed in the remark on page 12 , thi s is implied by 3 . 8 .

Then expression 3 .9  is bounded by

tr CC~ ( l _ 2 c 1~~~~~ lK + f l 2 E~~~ 2K 1 .

Therefore if we p ick ri=c , we get

EIICX - 

11x11
2) - cell2 < tr cc’ (i - ~2 £ 

~~2K) < Cr cc’ - EllCX-C6 112

Conversely if max eigenvalue of CC’ > tr CC ’ W~

can choose the direction of e such that

11c0112 max eigenva lue of CC’
11011 2

- •  -~~~-~~~~~~~~~~~~~~ --— - -- - ..--—.-m -- ~~ - —- - -  - - -~~ 
. - - .- —— - -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~



_ _ _ _ _  

~~:~~~~~~ -~ - ~~~~~~~~~~~~~~~
•-

~~~

-

~~~~

-

~~

and therefore such. that

EIIcX (1 — 11x112) — Cell
2 

> Cr CC, [1 — 2n E ~~~~~~~~~~ +

2 E —  2K 
+ 

2
E 

K+1
~ (p+2K) (p—2+2K) ~ (p+2K) (p—2+2K )

— Cr CC’ - 2n E p+2K ~~~~ 2+2K) + ~ E (p+2K) (p—2+2K )J

Now, for any n > 0, there exists e large enough such that

the above quantity is strictly greater than tr CC ’ , because

when J e l l -
~~ ~~~

E p—2 K+1
(p+2K) (p—2+2K) 

~ 
(p+2K) (p—2+2K)

This completes the proof of Theorem 3.1.

Application of Theorem 3.1 to the prediction of Z~41
Z
~ f.2 l...,Zfl+N using Z1 ,Z2 ,...,Z~ :

Parallel to the notation 0 = FK~~~k—f , let us~define

= FK
~~
k
~
—f
~ 

i=1,2,...,N.

From the results of Section 2, we know that the individ-

ua]. best linear unbiased predictors of each ~~~~ , i=l,2,...,N,

based on I , are

L - -,
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In+i = f~’~ + k~~K~~~[Z-F ’~~]

= k~~K~~~Z - i=l,2,...,N

And we know that they are individually admissible. The fact

that it is not the case, in general, when they are used simul-

taneously, is the object of the following theorem:

Theorem 3.2: For i=l,2,...,N , define

= k 1’ K 1Z — Ø~’ &(i_~~~~~
) 

3.10

then 3ri > 0 such that, for all a

i~l 
E(Zn+i

_ Z
n+i)

2 
< 
i~i

E n+j
_ 2

n+j)
2 3.11

if and only if

—1 N —lmax eigenvalue of (0.’G 0.]  < I 0.’G 0. 3.121 ) i=1 1 1

where (Ø~’G
1
Ø~] is the NXN matrix whose (i, j )  element

is 0~’G~~0~
- I

Proof: Since Z - N (F’ a , K) we have K 2
~~ - N (K 2 F’a~I~)

Consider an orthogonal matrix R=(Hl
’
\ such that

\H 21

~~~~~~~~ - -- -—-- - - - - -~~~—~~-— .-~~~~~~ — - .— -  :~~. ~~~~~~ -— - -~~ -- -~~~~~ ,-.--~~~~~~~ —~~~~~~~~ - —-.-rn -——  —~~~~ ~~— - —- ~~~~~~~~
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v(H 1
1 ) = v (K 4 F ’)  where v (H 1

1 ) stands for the vector

space generated by the columns of H1
1
. Then

-+  (H1K
T
F’a

EK 2 - N I  1 1
— p

let M = H1K 
2 F’ ; it is of size pxp and non singular since

we assumed that FK 1F’ is of full rank. Let a = Ma and
‘S ‘S A —1a = Ma , then a - N (Ma,MG M ). Let us show that MG M is

actually I~ : we start from

M’M = FK 2
H1’H11(

2 F’

= FK (I-H2 ‘H2)K F’

= FK~~ F’ _ FI(+H2
IH
2K

Z F*

~1But H K 2 F ’ = 0 ; therefore M ’M = G . Then G 
2
M’MG = I

This means that MG 2 is orthogonal, hence MG 1M ’ = I~ .

In conclusion, we have & N (ct~I~ ).

From lemma 2 . 2  we can write

.~~1
E ri+i~~ Z i.~+~~

) 2 
= ~~~~~~~~~~~~~~~~~~~~ +

N
3.13
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the first term of the right hand side of 3.13 is
N 2 1
~ 

(a~ - k~ K k
~
). On the other hand, since

i—i

E(Z~~~ JZ) k~~~K 1Z - O~
’
~a the second term of the right hand

side of 3.13 can be rewritten

~~~~~~~~~ ~~~~~~~ 
—

~~~~ ) — 0~’ a) 2 3.14
i=1 \ aGa

Note that J1 & 2 11 = &~& = & ‘M ’M& = a’G~ ; and let C be the

Nxp matrix whose ith row is 
~~1

’ M . Then expression 3.14 becomes

~~1
0i

’
M& (l 11a 112 ) 

- Ø~
’ Ma )2 = EIIC& (1 - l l & 11 2 )  - c a ll 2

Since & - N(a 1 I~~) , by Theorem 3.1 we know that Bn > 0 such

that for all a

E{lC~~(1- 
n 

- c a l l 2 < E ll c& -c a 11 2

‘\ l l & i l~ /

if and only if maxeigenvalue of CC ’ < 
f 

tr CC ’ .

To finish the proof let us observe on the one hand that

CC ’ = [Ø~’ G~~Ø~ 3 , and on the other hand (by going backward

in the computation) that

N
E ItC~ 

- C c & 1 1 2 
= ZE~E(z~+~ l~~ 

- 1 } 2

this , after another application of lemma 2.2, completes the

proof of Theorem 3.2 .
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4. A non linear predictor of a single random variable 2,

based on Z1,Z2,...Z.

Coming back to the problem of predicting a single z from

the observations I, we show in this section another way to

reduce the extra-term Ø ’G~~Ø, in the mean squared error of

the estimator Z, that we have already discussed in Section 2.

The idea is to try to dispense with unbiasedness. This

leads to a predictor 1a ~ which depends on the unspecified

vector parameter a . It is therefore of rio use itself but

the predictor denoted symbolically 1~ , obtained by substitu-

ting & for a in 2a ~ turns out to be interesting; we will

denote it Z~ .

Preliminary calculations show that the predictor
‘S 2

= X1z~ + ... + X Z  which minimizes E(Za
_Z) , with no

unbiasedness restriction with respect to a , is

I = k ’ K~~~Z - Ø ’a a ’FK~~Z 4.1a l+a ’Ga —

and its risk is

2 2 — l (Ø ’ a) 2
E(Z —Z) = a — k ’ K k + 4.2a 1+a’Ga

Note that sup (Ø
1~~ 2 

= Ø ’G~~Ø which is the third term in
a l+a Ga

L.
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the risk of 1.

So the predictor we want to study in this section is

Z~ = k ’K~~ Z — 
‘S 

. a’FK~~Z 4.3
— 

].+a ’G a  —

as derived from formula 4.1 by substitution of ~ for a

In the sequel we assume that Z and I are jointly norm-

ally distributed.

*Theorem 4.1: The predictor Z can be reexpressed as

* A

Z = 2 +  ~ 4.4
l+a ’ G a

and its risk is

E(Z -Z)2 = a2 - k ’K~~k + var(O
’a 

~~~ + E( ø~~ 2

\1+a’Ga I \l+a ’Ga/

To prove Theorem 4.1 we need two lemmas.

Lemma 4 .1:  Consider X - N (j.i ,~~) of size axi; suppose ~ is

positive definite. Let M be a pxn matrix (p < n) of full

rank , and V a pxl vector . Then

E(X IMX=u ) = U — 1M ’ (M~.M ’ )~~~M~ +

Cov (X IMX= v ) = ~(I -
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For a proof of Lemma 4.1 the reader is referred to Cabannes

(1979)

Lemma 4 . 2 :  E ( Z J a )  = F’a and E ( Z J ~~) = -Ø ’a + k ’K~~F ’a

Lemma 4 . 2  can be proved as an application of Lemma 4.1.

Again we skip the calculations.

Proof of Theorem 4.1: To prove 4.4 we write
I ’ S ’ S~~ —l

Z - _ _ _ _ _  = k ’K~~ Z - 
0 aa FK Z 

- _ _ _ _ _

l+a’Ga 
— 

l+&’G~ 
1+a Ga

= k ’K~~ Z — 
~~~~~~ ‘ S ’ S T A 

— ~~~~~~~~ = k’K~~Z - ~‘a = I
— 1+aGa l+aGa

Hence = Z +
l+a G a

Next the risk of Z~ is

* 2 IA ~~~~~~~~ \2
E(Z —Z ) = E ( Z — Z  +

1+a ’G&

= E(Z-Z)
2 

+ E[( ~ 
)2] +

l+aGa J

2E 1( 1— 2 ) ( A~1 4 . 6
L l+aGa /J

To compute the cross-product term in 4.6 we condition on

E[(I~z)( ~~~~~~~~ ) i~~~~1 = E(i-Z J~~)l+a Ga J l+a Ga

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~- .~~~~~~--~~~~--- --- - --, - .-- -
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and from Lemma 4.2 we have

= X ’
E ( Zl a )  — E(zla)

= (k ’K —Ø ’G~~FK~~ )F ’
~ — (k ’ K~~F ’a — Ø ’a)

Therefore

EI(I_Z)( A~~A ) 1  
= E[0

’ (a_
~) ~~ ]

L l+aGa J l+aGa

= Ø ’a E( ~‘a 
~ 

- E F 
(Ø

l~~~)
2

Ll+a ’G-~

Ø a=—C o v t O a , 
A ,

l+aGa

Then

E ( Z *_ Z ) 2 
= a2 — k ’K~~k + Ø ’ G~~~Ø + E 

[( ~~ )
2 ] -

l+a G a

2 Cov (o’a
l+aGa I

Formula 4.5 follows after some more manipulation , noting that

—1Ø G  Ø =V a r (Ø a). I

The next problem is to compare the risks R (a ,Z*) = E ( Z *_ Z ) 2

A 
~~ 2 ‘S A

and R ( a , Z )  = E ( Z - Z )  . Let R(Z) = R (a,Z) because it does not

depend on a . Since we showed in Section 2 the admissibility
A * ‘S

of Z , Z cannot be uniformly better than 2 when a varies .
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However , we have the following result

Theorem 4.2: R(0,Z*) < R(I) and lim R(a,Z*) = R (Z)
ll a ll -~+~

Proof: When a = 0 , we have E( 
0~~ ..) = 0 because the

l+a Ga
distribution of ~ then is N (0,G~~) and has a dis-

1+a G~
tribution synunetric about zero. Therefore R(0,Z*) =

a2 - k ’
K~~~k + var(o

’a 
,~~~~~ and again since a N (O,G~~)l+a G a I

we have var (~ ’a a’ G a  
~ Var(O’a) = Ø ’G~~Ø hence

\ l+a ’Ga I
* A

R(0,Z ) < R(Z).

Next note that when f l a J i  -~~+~~~ the term tends
l+aGa

to zero in probability, and therefore also in distribution.

And since there exists a constant c such that Vb€~~~

0 b < c we deduce by a classical convergence theorem
1+b Gb

that all the moments of 0 a tend to zero. Then because
1+a ‘G &

var~~’a = Ø ’G 1
Ø we have

u r n  var(o’a - + EI( ~‘a ~2] =

H a l l  ~~~~~~ 1+a Ga / L 1+a Ga l

This completes the proof of Theorem 4.2. I

We state briefly some final results without proving them,

referring the interested reader to the report of the author (1979).

The risk of Z~ can be reexpressed as follows



_ _

* ‘S

R(a,Z ) R(Z) + ~(a) where

~(a) = 
~
- Ø ’G~

1
Ø El ~ - E 2 1 +

L l~ X p+2K l
~ Xp+2K+2 i

~ ‘ 2 1 1
j- (O a) I E  2 — E  2

L l+~~~.2~÷2 1+X +2K+4

and K - Poisson (a ’G a ~~ . And this, combined with the following
\ 2 1

approximation (Stein 1966)

1 1 2tE 
X~+2K 

p-2~ t 
- 

(p—2+t) 2

where t = a ’G a  , can be used to compute approximate values of

the risk function of Z~ .

Illustration of the preceding method in the estimation of the

mean of i.i.d. norma]. random variables with known variance:

Suppose that Z I Z 1~ Z 2~~...Z~ are i.i.d. N(m,a2) then

of course the predictors I and Z~ truly estimate the mean
‘S *m, so let’s denote them m and m . Note that

E (iI~—xn ) 2 
= E(~ —Z)

2 
— a2

and E (m*_m )2 = E(m*_Z)2 - a2

A 
~ 2let R(m,m) = E (m—m) and

R ( m , zn*) = E (m*_m )2

S — ~~~ —- —- ————- -- -— ---— ~~~~- ~~~~~~ - - - -  - - - --- — - -—



then if we def ine ~0(m) by

~0(m) = E 
[(l~X2 

)2] 
- 2 cov(x~ i+X 2)

where X - N(m,l), it is easy to see that

R(m,m*) = R (rn , rn) +

In the case n = 3 the figure below representing R(m,m*)

and R (m ,iit) shows that if we know a priori that

m ~ [m0 - .8a ,ni0 + .8c] for some known constant m0 we should

subtract the constant from all our observations and use

m* instead of i~.

/ ,
~~~~~~~. ~~~~~~~~~ ~~

-
•~~~~~~~~~& ~~~~~~~~~~~~~~

_  _ _ _ _
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0.5a2-

R(m,m*)

0.la -

I I 
~~

‘-

— 

—a 0 a 2a 3c m

Figure: Comparison of the risk functions of &~t and m*.
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UWCLASS IF lED

The variation of temperature or of pollutant concentrations

over a geographic area are adequately represented by random

fields. Given a real-valued random field (Z(x),x~~~~) a basic

problem is to interpolate Z over an area A from measurements
taken at n stations ~~~~~~~~~~ , when the distribution of Z
is only partially specified. This is the motivation of the present

paper ,

It is shown that if the joint distributions are Gaus~ ian
the best linear unbiased predictor~is (among other properties)

admissible when used to predict Z at a single point, but in-
admissible in general when used to predict the values of the

field at several points. A Stein-like predictor is produced which

is uniformly better than the B.L.U.E. in the latter case. A non-

linear predictor, based on relaxing the unbiasedness condition

on the 3.L.L7.E., is also proposed and shown to be in some cases

preferable.
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