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\ SUMMARY

' The notion of "dominance" in multiattribute utility decision
contexts leads to a change in the considered alternative set.
The implications of this st change are discussed in relation to
the conditions of Wainer's (Wainer, 1976) 'equal weights theorem"
and the resulting sensitivity to weighting of importance dimen-
sions demonstrated. Data from three multiattribute decision making
studies are examined using four rank weighting techniques as well
as equal weights. Rank weighting of importance dimensions demon-
strate marked improvement of approximation as reflected in both
Pearson and rank order correlations for measures of overall
utility across alternatives within the nondominated subset.

Implications for multiattribute utility application are discussed.
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A number of recent articles have compared equal weighting to
various statistical weighting schemes for linear prediction and de-
cision models (Dawes and Corrigan, 1974; Newman, 1977; Newman, Seaver,
and Edwards, 1976). Dawes and Corrigan's (1974) seminal article pro-
vided evidence that simplified weighting procedures are strikingly
robust. Both equal and random weighting procedures provided excellent
approximations to a defined optimal set of weights in such diverse
settings as graduate admissions, psychiatric diagnosis, and an ab-
stract decision task.

Expanding this notion, Einhorn and Hogarth (1975) derived the
minimum correlation between standard linear regression and unit weight-
ing composites as a measure of the degree of similarity of those com- i
posites and in conclusion stated ''The minimum is high for most applied |
situations." They contend that unit weighting is a viable alternative
to standard regression methods 'because unit weights: (1) are not esti-
mated from the data and therefore do not consume degrees of freedom; (2)
are estimated without error; and (3) cannot reverse the true relative
weights of the variables."” In addition, of course, equal weights require
no elicitation.

Wainer (1976) took this argument one step further. In defense of his
"Equal weights theorem'' Wainer showed that under ''very general circum-
stances' equal weights can replace the least squares weights for the sam-
ple from which the regression weights were derived with little or no loss

in accuracy. He also showed that equal weights will hold up better than
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weights derived from multiple regression when new samples are examined.
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Although Wainer made some errors in the estimation of loss of ex-
plained variance (Laughlin, 1978) given his conditions, the conclusions
reached were both tenable and important. In fact, in many real prediction
situations equal weights provide remarkably good approximations to dif-
ferential weights, again measured by correlations between predictions.
Wainer's conditions are the following. (a) All predictor variables (at-
tributes) should be oriented properly; that is, for all of them, either
more should be better than less or less should be better than more. (b)
Predictor variables (attributes) should be positively intercorrelated.

The former condition is easy to ensure; an appropriate rescaling
will always solve the problem. Even peaked (nonmonotonic) functions be-
come monotonic when the nonmonotonic measure is rescaled into utility
or some other monotonic measure of desirability.

Condition B is the heart of the matter. Considered as a requirement
for prediction -- which, after all, is what correlations are intended to
do -- it is not a problem. GRE scores will correlate positively with
GPAs over a population of applicants to most graduate departments. The
same comment can be made about many, perhaps most, of the simple descrip-
tive measures that are typically used in examples by proponents of equal
weights.

But description, by itself, is not usually the point of any real-
world application of these ideas. Description is typically intended to
be useful. A description can, it seems to us, be useful only if it serves
as a basis for one or more decision. And indeed the examples used by the
proponents of equal weights are decision examples: admission to graduate
school, assignment to a psychiatric classification (with differential im-

plications for treatment), and so on.

—— m——
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Once we conclude that decision, rather than mere description, is our
goal, a set of considerations quite different from those relevant to des- )
cription alone become relevant -- even crucial. This paper examines some
of those considerations and their consequences; we are looking into others.
Some of the ideas of the riskless part of multiattribute utility measure-
ment (MAUM) are very similar to those that enter into the equal-weights
discussion and will be discussed briefly in this paper as they apply.
(For expositions of various approaches to and applications of MAUM, see
Keenéy and Raiffa, (1976); Edwards, (1971; 1973; 1978).

Newman, in work done earlier but published in 1977, showed that in
at least some multiattribute decision contexts equal weighting of attri-
butes could lead to substantial changes inthe resulting evaluations.
Following up Newman's earlier work, Newman, Seaver and Edwards (1976),
in a simulation study, found that equal weighting led to poor selection
ordering in most situations that have substantial negative correlations
among pairs of dimensions. Keren and Newman (1978) demonstrated addi-

tionally that the presence of suppressor variables (defined by Conger,

=
C

1974) among dimensions could lead to marked inferiority of equal weighting
to regression weighting, even for pure prediction sitﬁations.

The key factor that makes decision situations different from pre-
diction situations is the idea of irrelevance, or domination. If a single
option is to be chosen in a multiattributed contest, then only options
on the Pareto frontier are admissible candidates. Dr. David Seaver, while
a graduate student in this laboratory, first saw the point. Unpublished
work he performed in 1973 (Note 1) demonstrated that while correlations

between aggregate measures of overall utility were insensitive to model
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changes (additive, multiplicative, and quasi-additive) for either an
entire set of 1000 options or the nondominated subset of 100 options,
within the nondominated subset these correlations were extremely sensi-
tive to dimension weights. Specifically, equal weights were found to
produce measures of overall utility which markedly differed from those
produced by the defined set of optimal weights.

Table 1 gives the results of this analysis. Of particular interest

are the correlations of weighting procedure 1 (the defined optimal weight

set) with weighting procedure 2 (differential and correctly rank ordered
but non-optimal) and weighting procedure 1 with weighting procedure 3
(equal weights). The explicit implication of this analysis is that weights
do matter when nondominated options are being considered, but are not
crucial as long as they are correctly rank ordered and to some extent
differential. Implicit in the analysis is that negative correlations
exist between dimensions within the nondominated set of alternatives. Al-
though his paper did not report this analysis, Seaver looked at the cor-
relations between dimensions within the non-dominated set of alternatives
and found that indeed many were negative. In fact 9 out of a possible 10
of these correlations for the 5 dimensions were negative. And it is these
negative correlations between dimensions that are responsible for the poor
performance of equal weights.

Following up on the insight of Seaver and the implications of his

study, the importance of which is only now beginning to be understood,
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TABLE 1 ’
Correlations between overall utilities for !
Different models and weighting schemes. \
all admissible ’
alternatives alternatives
# alternatives 1000 100 ;1
# dimensions 5 5
. F1 .980 .995 ¥ 1
3E F 690 878 A
é_: F3 .825 .867
6.5 F .660 .504
4
O &
# dimensions 5 5
(70}
£ Txa .970 .959
= 1x3 S 2 .514
S 1x4 .335 -.157
£ 1x5 .164 -.274
e ¥ .870 .692
= 2ad .511 .053
pe Zaxos . 324 -.109
% S .869 757
i3 3x 5 <743 .630
S SR .968 .971

R b

1: (81, 49, 25, 9, 1) [optimal]
2: 48, 7,5, 3, 1)

TR s R O N

v o5 5, 7.9

§: {1, 9, 25, 48, 81)

models

Fl(x) - Z X3 + I lexj
et

F2(x) = X, +9X;

F3(x) + (Xl-X2 + X3-X4)-X5
F4(x) = (X1 + X2)~X3 + X4-XS

NOTE from '"Corre-
Tation Analyses of
Approximations and
Sensitivity for Multi-
attribute Utility."

By D.A. Seaver, unpub-
lished manuscript,
Mathematical Psychology
Program, University

of Michigan, 1973.
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McClelland (1978) demonstrated the ubiquity of significant negative corre-
lations among dimensions in multiattribute utility applications. In ad-
dition he examined the problems that accrue from the use of equal weight-
ing of dimensions in those applications.

The argument for negative correlations among dimensions relevant
to decision is extremely straightforward. Good sense and formal argument
alike would require that, in any decision situation, the chosen alterna-
tive should not“be clearly inferior to some other alternative. Option B
is clearly inferior to, or, in more technical language, is dominated by
option A if A is at least as good as B on every relevant dimension, and
definitely better on at least one. In such a situation, no reasonable
person would bother to consider option B; he would simply eliminate it
from the option set. The Pareto frontier mentioned above is simply the
highly reduced set of options that remain for consideration after domi-
nated options are eliminated.

But elimination of options inevitably changes the correlations
among all pairs of dimensions. Dimensions that may have been positively
correlated in the original option set almost inevitably become negatively
correlated in the reduced one. This means, of course, that within the
reduced option set condition B of Wainer's Equal Weights theorem is al-
most inevitably violated.

Consider the following simple example. You have decided to buy a

new car. Your options are:

1
¥
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: TABLE 2
Alternative Set
!
!
‘ Car 1 10 22 24 42
f Car 2 37 77 99 96
3 Car 3 89 85 28 63
Car 4 9 10 7 51
Car 5 2 1 52 7
Car 6 36 54 32 29
. Car 7 2 81 29 0
h Car 8 5 91 0 0
? Y Note: Entries for this table randomly generated
Table 3 shows the correlations between dimensions for the eight cars.
TABLE 3
Attribute correlations: complete choice set
B Ay Ay Ag A,
a0
E A, .42 1.0

.20 .06 1.0
Ay A7 07 .51 WA

A1l correlations are slightly to moderately positive. But several

cars are dominated. For instance, car 1 has values (10, 22, 24, 42)

while car 2 has values (37, 77, 99, 96). No rational person would
choose car 1 when he/she could choose car 2, no matter what the

weighting of the attributes.
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Similarly car 3 dominates car 4, and 2 dominates 5 and 6. Cars 2, 3, 7,
and 8 are the remaining options upon which a decision analysis would
have some bearing. Table 4 shows the intercorrelations for this reduced
choice set. Attribute A2 has a high negative correlation with both A3

and A4 in violation of Wainer's condition B.

TABLE 4

Attribute correlations: reduced choice set

A, A, Ay A,
G
A2 ‘-]O ]-0
Aq 20 -89 1.0
Ay &1 =82 M LD

What does this violation mean? In practice it means that if equal
weights were used in multiattribute utility measurement of either additive

or multiplicative types, the two negatively correlated dimensions would,

ks

to some extent, cancel each other. The magnitude of the cancellation
effect would depend on the size of the correlation and on the weights

of the dimensions. In the car example, assume an individual's true

;
| i weights to be the following: _
| ; A'I A2 A3 A4 g
§ S e g G




A linear multiattribute utility analysis of the alternative cars would
yield these results:

b Total Utility Rank

:
Car 2 65.10 2
Car 3 78.70 1
Car 7 36.10 4
Car 8 38.40 3

The same analysis using equal weights produces the following conflicting

results:
Total Utility Rank
Car 2 77.25 1
* Car 3 66.25 2
' Car 7 28.00 3
‘ Car 8 24.00 <

The correlation between these two sets of utilities is .90. But equal
weights would lead to selection of car 2 while the decision maker's
true weights would lead to the selection of car 3. The potential loss
in utility calculated from the decision maker's own weights is a strik-
ing 17.3%. This paper presents a set of simplified weighting procedures
: f that avoid the problems of equal weights and at the same time simplify
the assessment task.

I1I1. Rank Weights

Weighting procedures are usually compared on two criteria, ease
of elicitation (for both subject and analyst) and numerical quality.
The extremes of these dimensions are represented by equal and ratio

weights. Equal weights present no elicitation problem, but the numbers
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give no information for discrimination between non-dominated alternatives.
Weights that have appropriate ratio properties are the most difficult

to assess by any procedure, but provide the maximum discrimination power.
These ratio properties, essential to multiattribute utility measurement,
are implicit in the elicitation procedures reviewed and invented in the
Keeney-Raiffa book (1976), and are explicitly the basis of Edwards'
procedure (Edwards, 1973; 1977; Edwards, Guttentag and Snapper, 1975).
Newman (1977) and Newman, Seaver and Edwards (1976) discuss equal versus
ratio weights thoroughly but leave unanswered the question: How simple
can elicitation be and still give adequate representation for a good

decision?

Obviously equal weights are the simplest to assess, and in a number
of prediction contexts they have been shown to be of sufficient quality
to justify their use (Newman, Seaver, and Edwards, 1976; Dawes and Corrigan,
1974). The concern of this paper is those situations in which some level
of differential weighting is necessary, yet the difficulty of eliciting
ratio weights demands some intermediate procedure. Rank weighting provides -
a simplified assessment procedure and a method of assigning weights that
does not have the limitations of equal weighting.

This paper examines four rank weighting procedures. A1l four fall
between equal and ratio weights both in assessment ease and in number
quality. Each derives information from the rank ordering of the attributes
in the attribute set. This information determines the weight given the
attribute in the subsequent MAUM. We have named the weighting techniques

rank sum, rank reciprocal, decision rule rank and rank exponent.
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Rank sum weights are the standard rank weighting technique
considered in the literature. N attributes are ranked and each attri-
bute is weighted (N-Ri+]) where Ri is the rank position of the

N
attribute. Each weight is then normalized by I (N-Ri +1) so that

the weights sum to 1.0. Table 5 shows rank su;.;eights as well as rank
reciprocal and rank exponent weights for 5 dimensions. Equal weights
would, of course, assign a weight of .2 to each dimension. The problem
of tied ranks among dimensions will be dicussed later.

TABLE 5

Rank weights for 5 dimensions

Dimension Rank Sum Rank Reciprocal Rank Exponent
Rank Weight Weignt Weight (Z=1.5)
1 .333 .438 .396
2 .267 .219 .284
3 .200 .146 .184
4 .067 .088 .035

For rank reciprocal weights, the reciprocal of an attribute's rank
is taken as that attribute's weight. That is, the weights before normali-
zation are 1, 1/2, 1/3, 1/4, and 1/5. Each weight is then normalized,
as in other rank weight procedures. Decision rule rank weights require
one more piece of information from the decision maker. Once he has
rank ordered the attributes, he must judge the weight of the most important
dimension. Then equal, rank sum, or rank reciprocal weights are used; the
method of choice is that which most closely approximates the weight

elicited for the first dimension.
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Rank exponent weights require the same information from the
subject as decision rule rank weights. The weight given the most

important dimension (W) is entered into the following formula:

(N - Ry +1)¢ (1)

which is then solved for Z via an iterative process. N is the number
of dimensions in the ranking and R, is the rank of the ith dimension.
Once Z is known, weights for the rest of the dimensions are determined.

For instance the weight for the dimension ranked third would be:

Wy (N -3+ 1)¢
7

N
Lo SN~ Ri + 1)
i=]

Table 5 shows rank exponent weights calculated for 5 dimensions using
an arhitrary Z value of 1.5.
The first step in any of these methods is to delete from the list

of dimensions any dimension to which the respondent wishes to assign

zero weight. Ties are permitted in all four methods. For instance,
i the ranks in a five-dimensional problem might be 5, 4, 2.5, 2.5, and 1.
Each of these methods is easy to apply to hierarchical multi-
attribute utility structures (Value Trees). Each branch of the tree

is weighted separately. We have seen no published discussion of the

WEa L0 L IELT LSO NI *;.*;~ —

rather trivial arithmetic by which such separately obtained branch

weights can be aggregated into final weights, combined with single-

dimension utilities, and thereafter be appropriately disaggregated
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to produce useful profiles showing how each option stands on each major
value within the tree. Such a discussion, with a real world example,
appears in Edwards (Note 2).

Rank exponent weights exhibit several interesting characteristics.
2=0 defines the equal weights case and Z = 1 defines rank sum weights.
As Z increases, the set of normalized weights gets steeper and steeper.
One great advantage of the procedure, considered as an approximation,
is that 1t always gives exactly the same weight to the most important
dimension that the decision maker does. This ensures that the procedure
will yield a highly satisfactory approximation to the ultimate utilities
from a multiattribute utility analysis.

111. Three Examples

In this section we reanalyze the data from two decision problems
to which MAUM has been applied. In addition we briefly review a third
reanalysis, performed by Newman in this laboratory. Each raises an
interesting issues about the use of rank weighting procedures. For detailed
reports of the thyee problems see Edwards (Note 2), where MAUM was
used to evaluate the desegregation plans for the Los Angeles Unified
School District, Otway and Edwards (1977), a study of siting decisions
for nuclear waste disposal, and Newman (1976) where automobile selection
was at issue.

II1. A. Desegregation

In July, 1977, the Los Angeles Unified School District asked
Edwards to design a method of analysis of various desegregation plans
submitted to the Los Angeles School Board as a near-final step in the

prolonged Crawford desegregation case.

§
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Seven plans were chosen for evaluation. Unfortunately, the plan finally )

14

adopted by the board could not be among them, since it was prepared too
late for evaluation.
Prolonged discussions with senior District officers, School Board
members, plaintiffs and intervenors in the Crawford case, and others led
to a very complex Value Tree. The tree had four levels and a total of
f 144 twigs. (A twig is the lowest level of a downward-branching tree; /
measures of performance, i.e. single-dimension utilities, must be collected
for each twig). The techniques Edwards used to elicit value dimension,
importance weights, and location measures (single dimension utilities),
were those of SMART (Edwards 1973; 1977), suitably modified to meet the
{ size and political requirements of the problem and the lack of
decision-theoretical expertise of the numerous respondents. The most
important politically necessary compromise was the use of so complex a
tree. 144 twigs is far too many! But none could be eliminated without
offending one or another of the very numerous stakeholders.
£ ‘ Eight individuals and one group judged weights, using the standard
SMART ratio judgment technique. Of the eight individuals, five were
members of the Board; their weights were averaged to preserve individual

anonymity. The other three were desegregation experts.

The hierarchical structure of the Value Tree made such judgments
possible. Judgments were made separately for each branch; the smallest
branch had only two values and the largest had 14. Several techniques

were used to cut down excessive judgmental labor in the lower branches

3
of the tree. i
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We reanalyze only the averaged weights of the five Board members
here. Each of the four rank weighting techniques, as well as equal
weights, were used to calculate the overall value of each plan. In the
case of rank reciprocal and rank sum weights, the number of dimensions
determined the weight given to each dimension in the analysis. For
decision rule rank and rank exponent weights, the weight given the most
important dimension for averaged ratio weights was used to determine the
complete set of individual dimension weights.

The entire analysis was conducted for each set of weights. Raw

data for plan values is, of course, that used in the original analysis.

The plans were examined for admissibility and none found to be dominated.

Values of overall benefit were calculated for each weighting technique
for both the 1978-79 and 1981-82 fiscal years. Overall benefit shows
strong correspondence between results for each of the rank weighting
techniques as well as equal weights. To look at the exact strength of
this relationship we calculated Pearson correlation coefficients,
correlating aggregate benefits of each of the seven plans as evaluated
by each approximation and with actual Board weights. No correlation
not involving equal weights was Jless than .98; no correlation involving
equal weights was higher than .92.

For decision making purposes a second criterion is change in the
rank ordering of alternatives by the various techniques. To examine
this criterion plans were rank ordered by each weighting technique and
a Kendall tau coefficient calculated. A Kendall tau coefficient repre-

sents a difference between two proportions: the pfoportion of pairs
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of measurements having the same relative order in a pair of rankings
minus the proportion of pairs showing different relative order in two
rankings (Hays, 1973). Thus it gives us a measure of the proportion
of changes in the rank ordering in a pair of rank ordered sets. Table
6 shows the results of this analysis for the first and second levels

of the MAUM structure.

To avoid over-interpreting Table 6 it is important to know that
all weighting procedures led to the same plan being identified as best.
Still we hope to be able to generalize to other decision problems where
a k out of N selection rather than a 1 out of N is to be made. For the
most general case the rank ordering of all alternatives is important.
If 7 graduate applicants are to be chosen out of 8 who meet the minimum
standards of selection, reversal of the rank ordering of the 7th and
8th applicants would lead to a suboptimal decision while reversal of
% the 1st and 2nd ranked applicants would make no difference.
: The rank order correlations in Table 6 demonstrate the clear
superiority of all rank weighting techniques to equal weights. For the
1978-79 data a loss in tau for overall utility of 23.8% (.929-.691)
results from the use of equal weights rather than the next poorest
simplifiration. The resultant loss for 1981-82 is 31.1% (.929-.618).
Thus, a much larger proportion of rank reversals occur with equal weights

than with any of the rank weighting techniques.
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TABLE 6 \
Kendall tau coefficients between plan values based on ratio weights ]
and plan values produced by approximations. ,
; . 1978-79
Decision Rank \
Equal Rank Sum Rank Reciprocal Rule Rank Exponent
Overall
Utility .691 .982 .929 1.000 1.000
| Branch A 1.000 .982 .964 .982 1.000
| Branch B .890 .944 .815 1.000 1.000
Branch C .929 .982 .929 1.000 .982
Branch D .643 .982 .909 1.000 .982
Branch E .857 .857 .929 .857 .909
; _ Branch F .905 1.000 1.000 1.000 1.000
1 1981-82
Overall
: Utility .618 .929 .929 1.000 .982
é Branch A 1.000 .929 .929 1.000 1.000 |
E Branch B .982 982 1963 1963 982
| f Branch C .764 982 889 1.000 .963 |
z ? Branch D .714 .982 .982 .982 .982
] Branch E .837 889 .909 889 1909
Branch F .804 .972 1.000 .972 1.000
e ——— E
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point that is anchored to the correct ratio weight. It is interesting
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An additional test of weighting approximation is to compare sets
of weights directly. The primary difference among the various approxima-
tions is the peakedness of the weight set. Equal weights, of course,
have no peak. Rank sum weights are less peaked than rank reciprocal }
weights. Decision rule rank and rank exponent weights are determined
by the judged weight of the most important dimension. Only the rank
exponent procedure (among those considered here) can produce weights
more peaked than rank reciprocal.

In order to examine the relative peakness of the approximation
techniques relative to the judged ratio weights, regression analyses
were performed using the ratio weights as predictors of weights from
each approximation technique. Slopes of the regression lines indicate
the peakedness of the weights of the approximation technique relative
to ratio weights. A weight set that perfectly approximates the ratio
weights would result in a slope of 1.0. Table 7 shows the results of

this analysis. This analysis was conducted for the highest level of

the tree as well as each second level set of weights. Equal weights have
no variance and therefore the slope would equal 0.0.
Intercepts for the analyses were all virtually zero and thus are

not included in this table. For the three comparisons that are possible

rank exponent weights always produce slopes that rank first or second
in terms of absolute distance from 1.0. This is not surprising. Rank
exponent weights guarantee that the weight to the most important dimension

will be correct and thus the regression analysis will have an upper end

to note that in each comparison between rank reciprocal and rank sum
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to note that in each comparison between rank reciprocal and rank sum




b DR i A e

R LA

e

MR POV T R W oy

19
TABLE 7

Slopes based on regression of approximate weights on ratio weights.

Rank Sum Rank Reciprocal Rank Exponent

1st_Level 641 955+ 1.101
2nd Level

A Branch 1.551 2.279 1.005
B Branch 1.078" 1.815 1.159
C Branch .861% 1.214 .996
D Branch 1.136" 1.244 944
E Branch 1.002" 1.367 1.165
F Branch 806" 1. 376 1.208

*Weighting procedure selected by the decision rule rank procedure.

(For branch A the decision rule rank procedure led to the selection

of equal weights.)
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weights, the decision rule procedure would have chosen the weighting
technique whose slope was closest to 1.0. In addition, for the case
in which the decision rule procedure indicated equal weights, both
rank sum and rank reciprocal weights were much too peaked (indicated
by slopes much higher than 1.0).

IIT. B. Nuclear waste disposal site selection

Otway and Edwards (1977) presents Multi-Attribute Utility Measure-
ment (MAUM) as a method of evaluating proposed nuclear waste disposal
sites. The paper demonstrates the usefulness of MAUM in combining
technical information with the corresponding social attitudes. Although
aware of the importance of these attitudes,technical experts typically
have been unable either to measure them or to agaoregate them with
technical data. In the past, either or both of these problems have
led the experts to make recommendations that overweight the importance
of the engineering aspects of the problem. Of special interest is the
recent development of methodologies for the measurement of social
attitude toward technologies (Otway and Fishbein, 1976), hopefully
solving the measurement problem. MAUM, of course, provides a means
of aggregation.

The experts whose information was used for the analysis were ten
high ranking specialists from eight countries with advanced nuclear
energy programs. They were assembled for an international meeting
concerned with nuclear waste disposal. The experts were very much
concerned with the problems of disposal and the risks involved and

were thus highly co-operative.
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TABLE 8

Value Dimension, Range and
Scaling
Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

D1. Public attitude. 0 =
: extremely negative; 40 20 10 40 60 70
100 = extremely positive

D2. Remoteness from popu-

lation center, km. 40 12 12 120 40 120
(O km = 0; 160 km
= 100

D3. Geospheric path length,
km (0 km = 0; 40 12 12 4 4 40
160 km = 100)

D4. Proximity to natural
resources, km. (0 km = 50 150 50 50 15 15
0; 160 km = 100)

D5. Geologic disturbance
probability per year 10-4 o
(1 = 05 1076 = 100:
linear in exponent)

(G2

s 10-0 10-5 10-0

D6. Relative migration rate .
of critical nuclide 10-3 10-3 10-2 10-! 10-2 107!
(1 = 0; 10°5 = 100;
Tinear in exponent)

07. Trancortation distance

km. (1600 km = 0; 1500 500 500 1500 150 150
0 ki = 100)

Note: From "Application of a simple multiattribute rating technique to
evaluation of nuclear waste disposal sites: A demonstration." by
k.J. Otway and W. Edwards, International Institute for Applied Systems

Analysis Research Memorandum, 1977.
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For the purposes of the analysis six hypothetical sites were invented.

One of the experts at the conference volunteered to perform this task.

He did so by thinking of real sites that, in the pasts, had been suggested

for the purpose. The relevant physical parameters were approximate
figures. Public attitudes toward the hypothetical waste disposal
sites were assigned on a random basis. Table 8 provides a numerical

description of sites.

As in the previous problem the SMART procedure was used in each
stage of the analysis. The experts described above provided the inputs.

In addition, the authors provided suggestions for dimensions, which the

experts accepted. These suggestions dealt primarily with public attitude.

Scaling of the location measures was also provided by the authors, but
in conjunction with the technical experts.

The final decision structure was not hierarchical. Each proposed
waste disposal site was evaluated on seven dimensions. They were:
public attitude toward the site remoteness form population center,
distance from the nearest point used by the public (called geospheric
patH length by these nuclear specialists), proximity to natural resources,
geologic disturbance probability, relative migration rate of critical
nuclide, and the transportation distance between the site and the nuclear
plant it serves. A1l other dimensions were assumed equal for all sites

(for a discussion of nuclear waste disposal see Burkholder, 1976).

e e .

—ar—
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Importance weights of the value dimensions were judged twice. Thus,

test-retest reliability of these judgments could be calculated. The
authors perform these calculations and report a mean correlation of .93
with a standard deviation of .11. The lowest is .65. The second set

of weights was used in the original analysis and will be used for the
analyses in this paper. Correlations were also calculated between weights

judged by all possible pairs of respondents for the second set of judgments.

These were reported to range from .97 to -.27 with a mean of .39 and
standard deviation of.35. Normalized averaged weights were then calculated
across respondents and these means used in the utility analysis.

In order to examine the strength of Wainer's assertion that high
negative correlations between dimensions occur rarely (Wainer, 1976),
correlations were calculated for the values in this analysis. In seeming
conflict with Wainer, some extremely high negative correlations occur.
Over half (11 out of 21) interdimensional correlations are negative
with several less then -.6 (see table 4, Otway and Edwards, 1977).
Obviously some serious questions can be raised about the applicability
of Wainer's result, at least for MAUM decision making contexts.

As originally scaled, the alternatives to be evaluated did not
cover the full range of value on some attributes(see table 8). This
is most striking for the third dimension, geospheric path length, where
the range of the alternatives on that attribute covers only 22.5° of
the range assigned to it. When a set of alternatives cover only a
portion of the total range of an attribute the importance of that
attribute is diminished proportionately ( for linear utilities) to the
part of the range not covered. That decrease is not represented in the

original importance weight.
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This problem can only be fully solved by judgmental methods; that
is, reassessment of weights with attention to the range of values on
alternatives. While a reassessment was not possible for this analysis,
a transformation procedure was undertaken on the original weights in
order to place all of the scaling value on the importance weighting.
This placement is, of course, required for the use of rank weights. The

transformation was as follows:

u 5 = ]OO(uij'Mi)/Ri
W' = wiRj/S
where S = “W.R..
' Ri is the range of “13 in dimension i over the set of entities to be

evaluated, and Mi is the minimum value of uij over those entities in

will have a minimum value of 0 and a maximum of

iJ
100 on each dimension, over the set of entities to be evaluated.

{ dimension i. So u

Table 9 shows the transformed weights as well as the rank weight

from each of the three rank weighting procedures. Equal weights would

give a weight of .143 to each of the seven dimensions. The decision
rule weight selection procedure would lead to the use of rank sum weights.
This constitutes all the information necessary for the analysis.

Each alternative was evaluated using each set of rank weights as well

3
i
¥
3
1
'

as equal weights and the original ratio weights elicited from the experts.
As in the LASD analysis, Pearsan correlations were calculated on values
of overall utility between weighting techniques across potential sites.
Overall utility calculated from ratio weighting correlated .86, .99,

.72, and .97 with overall utility calculated {from equal, rank sum,

=9
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TABLE 9 !
Weights elicited from experts and those from rank weighting procedures

for Otway and Edwards (1977).

Transformed Rank Sum* Rank Reciprocal Rank Exponent !

Value dimension Ratio Weights Weights Weights z= 1.62
Weights |
} Public Attitude .246 .214 .193 .223
1 Distance from , }
| City .087 .071 .064 .062
| Geospheric Path
Length .088 .107 .077 . .100
Proximity to
Natural Resources .267 250 . 386 .267
Earthquake Probability.103 .143 .096 .139
' Migration of
‘ ¥ Critical Nuclide .153 .179 .129 .181
‘ Transportation

» Distance .055 .036 .055 .028

&
5
%

*Decision Rule Rank Weights would be the same as Rank Sum Weights

(((((
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rank reciprocal and rank exponent weights respectively. For this
analysis both rank sum and rank exponent are markedly superior to equal
weights. It is especially interesting to note that the decision rule
procedure led to the selection of rank sum weights, clearly the optimal
choice from among the approximation procedures.

Kendall tau coefficients were calculated as in the previous
analysis. Tau was .733, .867, .333 and .733 between overall utilities
calculated from ratio weights and those calculated from equal, rank sum,
rank reciprocal and rank exponent weights respectively. Slopes were cal-
culated between ratio weights and each approximation weight set. Slopes
were .874, 1.27, and .990 between ratio weights and rank sum, rank reci-
procal and rank exponent weights respectively.

It seems apparent from a comparison of the correlations and slopes
that while rank sum weights prove superior for the alternatives in this
problem, it is quite likely that rank expoﬁent weight would prove
superior generally. That is, for this analysis rank sum weighting
resulted in higher correlations between measures of overall utility
but rank exponent weights have slopes much closer to 1.0 and therefore
for a different set of alternatives would prove the superior procedure.

III. C. Automobile Selection.

A third brief example comes from work performed by J.R. Newman in
his reanalysis of a study of optimal automobile design. The Automobile
Club of Southern California developed a target program in which it sought
to evaluate the contribution of various factors or attributes to an
automobile's overall value to a cross section of the driving public.

The club's members and other experts provided the Tist of attributes.
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Eleven attributes were identified consisting of fuel economy, interior
size, passing/acceleration ability, interior noise, exterior size,
crashworthiness, luggage capacity, handling, ride quality, ease of entry
and exit and maneuverability.. Expert staff of the Auto Club itself
provided location measures on each dimension. 31 non-dominated 1978
automobiles were used as alternatives for the anlaysis.

Interdimensional correlations were calculated. Correlations
between attributes cover almost the full range from -1 to +1. Almost
half (27 of 55) of the correlations are negative with 6 lower than -.6.

As previously stated, these high negative correlations imply severe
problems when equal weights are used for the analysis. This implied
problem is illustrated by the comparison of the results from the various
weighting schemes. Again Pearson correlations were calculated between
weighting technﬁques, across alternatives. The correlations of ratio
weighting with equal, rank sum, rank reciprocal, and rank exponent are
.726, .800, .925, and .820 respectively. Equal weights clearly provide
the worst approximation to the ratio weights. Rank sum and rank exponent
are similar and rahk reciprocal is by far the best approximation to

ratio weights. As in the nuclear disposal site selection reanalysis

the decision rule selection procedure results in é choice of the weighting
technique that has the highest correlation with ratio weights.

Kendall tau coefficients between overall utilities were calculated
along with slopes between weight sets. Tau was .588, .632, .788, and .600
between the results from ratio weights and those from equal, rank sum, rank
reciprocal and rank exponent weights respectively. Slopes between ratio

and rank sum, rank reciprocal and rank exponent were .685, 1.397 and 1.231.
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The information provided by these two indices seems to be in conflict. !
While the slopes suggest that for the more general situation rank exponent
weights would provide the best approximation, the correlations between
measures of overall utility point to rank reciprocal (for this set of al-
ternatives at least). Still, all of the rank weighf procedures result in
higher correlation than do equal weights, lending evidence for the use of
some rank weighting procedure.
Discussion

The use of rank weighting techniques as approximations to ratio
weights in this study provided remarkably good results. In each of the
three reanalyses at least one of the rank weighting approximafions
resulted in a Pearson correlation coefficient between ratio and rank
weignts for aggregate overall utilities above .9. Also, in each of the
re-analyses equal weighting of attributes led to a sizable loss in
correlation for measures of overall value. Thus, rank weighting of
attributes can be said to provide good approximations to the "true"
ratio weights. Within the conditions of this study and for the
purposes of multiattribute decision making, rank weights seem to be
sufficient improvements over equal weights to warrant the extra effort
involved in their elicitation.

Our ability to validate an approximation technique is obviously

bounded by the quality of the judgment or value that is being approxi- i

f

mated. Because this study depends so heavily on the ratio weights elicited i
from the subjects, some rationale should be developed for their use as 3
a criterion. The use of ratio weights as a criterion rests on at least

two assumptions. First, we are assuming that an individual knows his/her
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own mind; that is, that he/she is able to determine the rank ordering of ?
dimension importance, the relative strengths of the dimension weighting )
and a true zero point. Secondly, we are assuming that an individual
can express this information in quantitative, orderly fashion.

Support for both of these assumptions comes from three studies.
Each study examines weighting in the context of the multiple cue
learning paradigm (Hammond and Summers, 1972). Cook and Stewart (1975), !
in a task where subjects were asked to evaluate graduate student 'A
profiles, found that: 1) various methods for elicitation of subjective
weights (the weights that the subjects say they are using) result in
roughly equivalent judgments, i.e., consensual validation, and 2) these

subjective weights correspond fairly closely to objective weights

derived from the best fit linear model (i.e., linear regression). Both

of these conclusions suggest that subjects can express their decision

policies in an orderly quantitative fashion.

Two other studies which lend support to the notion that subjects
can accurately describe their decision policies are those of Schmitt
(1978) and John and Edwards (Note 3). In each of these studies subjects
were trained in a weighting model using the multiple cue learning
paradigm (Hammond and Summers, 1972) and then asked to describe their
subjective judgment as to the weighting of dimensions. Each study

used a number of elicitation techniques for the report of these weights.

In both of these studies the method of eliciting the subjective weight
mattered little. More important, though, for the purposes of this
discussion is the fact that both studies found a very strong relationship

between predictions derived from the statistical model (regression model)
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and those derived from subjects' subjective policy statements. Schmitt
sums up the findings of both studies when he says "The results also b
suggest that weights in policy-capturing studies (e.g., Borman and
Dunnette, 1974) would not need to be statistical weights. The rational
judgments of cue weights are equally as good as the least-squares weights
derived from régressing subjects' judgments on the cues in the sense of
producing predicted values that correlate highly with optimal predic-

tions of the criterion of interest.”

An additional point supporting the use of rank weighting approximations
involves the problems suggested for the use of equal weighting. The
correlations between attributes found in Otway and Edwards (1977) and
Newman (1978) raise serious doubts as to the stated generality of
conditions for the "equal weights theorem" detailed in Wainer (1976)
and expanded in Wainer (1978). Correlations were not calculated between
attributes for the LASD analysis. This was due to the complexity imposed
by the hierarchical MAUM structure. Values at any level of the hierarchy
were dependent on both weights and values from lower levels. In each of
the other two analyses, however, several dimensions correlated negatively
in excess of -.6. As previously stated, the frequency of the occurrence
of the high negative correlations in the two studies where examination was
possible suggest that Wainer's conclusions are not justified in view of the

severe and common violations of his condition.

In addition to the rank ordering of attributes, an additional bit
of information is required for two of the rank weighting techniques.
For rank exponent and decision rule rank weights, the proportion of the

total weight given to the most important dimension must be elicited from
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the decision maker. For the purposes of these re-analyses it was assumed
that the weight given to the first dimension by ratio weights was the a
correct weight for that dimension. Clearly, whether subjects can provide
estimates of this quantity is an empirical question.

Work in progress will seek to test this question. Using an
external criterion of utility weighting, this work will test rank
weighting procedures against both the established "true" weight and
the weights derived from subjects' judgments of those "true" weights.
If in fact subjects can provide estimates of the most important dimension’'s
weight which are both reliable and congruent with the established
“true" weights, the results of the current study indicate that a simple

i . decision rule strategy for selection of weight approximation procedure
is remarkably effective for decision purposes. In each of the two

{ ’ analyses where one level of attributes was involved, the simple decision
rule procedure for selection between equal, rank sum, rank reciprocal

and ratio weighting led to selection of the technique which correlated

highest with the results of ratio weighting. For the LASD analysis, the

use of the decision rule strategy on each level of the hierarchy led to

a remarkably good approximation of the analysis using the entire set of

| elicited ratio weights. The quality of this approximation (Pearson r = .996)
is so good as to indicate that the effort involved in the elicitation of
over 150 ratio weights was unnecessary and the decision rule rank weighting

procedure a more than adequate approximation. In addition, rank exponent

Ay WP YRR et
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t : weights seem to consistently provide estimates of the ratio weights which
have near the same level of peakedness. Looking at the regression analyses

between the set of ratio weights and rank exponent weights for each

it ; S




e

32

m— W

problem we found that slopes were generally near the correct 1.0. )
This finding suggests that rank exponent weights will provide good é
approximations to ratio weights in most instances.

The other possibility is that judges will not be able to reliably
provide the weight to the most improtant dimension. In this case we
still find that the rank sum procedure provides an approximation that
is better than equal weights. In sum, we have a situation where rank
weighting has been shown to be superior to equal weights throughout }/
the reanalyses conducted in this paper. This is true whether or not
the more stringent assumptions necessary for the use of the decision
rule and the rank exponent weighting procedures are justified. Certainly,

the moderate increase in effort necessary for the elicitation of rank

ordering of dimensions is justified.
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