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SUMMARY. The numerical results of a class of problems of linear 
elastic stability problems subjected to nonconservative forces and 
under various support conditions are presented here. A single solu- 
tion formulation by which these results have been obtained is descri- 
bed. Accuracy of these results compared with those reported in the 
literature is discussed.     , 

I.  INTRODUCTION. Any particular subject of investigation in 
applied sciences is always motivated by the desire to understand some 
natural phenomena and hopefully to utilize the results of such an 
investigation for the benefit of human activities. The study of 
structural behavior under nonconservative loads is of no exception. 
Since follower forces are a special class of nonconservative forces [1], 
one IS surprised to encounter frequently the question as to the relation 
between such a study and a real engineering problem. Physically, a / 
follower force is simply one whose direction follows the structural i 
deformation as in comparison with a dead load which acts in a fixed ■ 
direction independent of deformation. Some obvious examples of 
follower forces are:  thrust at the tail of a flexible rocket, jet 
engine thrust of an airplane, thrust on the propeller shaft of a ship, 
etc. Other examples such as the pressure-and-curvature induced forces 
included in the gun dynamic studies are less obvious [2]. 

Since the problems of follower forces are non-self-adjoint their 
treatment is more difficult than that for the self-adjoint problems. 
In the classical paper by Beck [3], it was demonstrated that the 
stability nature of a nonconservative problem can be quite different 
than that of a conservative one. For these reasons, a systematic 
approach to this class of problems and an understanding of some of the 
basic problems involving follower forces are desirable. 

The purpose of this paper is to present a single solution approach 
to a class of problems of follower forces, including several classical 
examples, to present the numerical results so obtained, and to discuss 
the accuracy compared with those already published in literature. 



In Section II, the class of problems will be defined by a general 
form of a differential equation and a set of boundary conditions. The 
solution formulation and its basis are given in Section III, Numerical 
results of some specific problems are given in Section IV together with 
a discussion and comparisons with data available in literature. 

II.  A CLASS OF PROBLEMS SUBJECTED TO FOLLOWER LOADS.     The class of 
problems considered in this paper can be described by the differential 

equation 

y"" + P(x)y" + X^y =0 (1) 

where y(x) denotes the lateral disturbance of a beam, as a function of 
the abscissa x, P(x) is the axial force always tangent to the deformed 
axis, and X  is the eigenvalue. As usual, a prime denotes differentiation 

with respect to x. 

Eq. (1) is a non-self-adjoint differential equation (thus noncon- 
servative problem) except for P(x) = constant.  If the axial force P(x) 
remains fixed in the direction of the undeformed axis, the problem would 
be of conservative nature and the differential equation a self-adjoint 

one. 

y"" +.[P(x)y']' + XV = 0 (^'^ 

Both Eqs. (1) and (1') are well known and the derivations are simple and 
they follow the procedures given in such textbooks as that by Timoshenko 
and Gere [4],  Boundary conditions considered will be in the following 

form: 

y"' (0) + P(0)y'(0) + k^(0) = 0 (2a) 

-y"(0) + k2y'(0) =0 (2b) 

- y'" (1) - (l-k5)P(l)y'(l) + k3y(l) = 0            (2c) 

y"(l) + k^y'(l) = 0 (2d) 

where k^, k2 are the deflection and rotation spring constants at x = 0 
and kj, k4 are the same at x = 1. The constant k^  is related to a 
"constant of tangency" KQ by equation 

Kg  = kg  -  1 C3) 



so that Eq. (2c) becomes 

-y"'(l) + KgP(l)y'(l) + kjxCl) = 0 (2c') 

where now, if P(l) ^ 0,  9 = Kgy'(1) denotes the angle that P(l) is to be 
rotated with respect to the tangent of the beam at x = 1 (Figure 1). 

Eqs. (2) simply state that the total shear force and moment at 
X = 0 and x = 1 must be zero. As k^^ approaches infinity, Eq. (2a) 
requires that y(0) = 0.  Thus a zero deflection boundary condition is 
arrived at. Similar options are provided for by other spring constants 
k2, k3 and k4. 

Three different P(x) will be considered in this paper:  (1) P(x) = 
P, a constant, (2) P(x) = q(l-x), and (3) P(x) = qo/2(l-x)^ where P 
represents a concentrated force at x = 0, q is a uniformly distributed 
follower force density and q^  denotes the maximum of a linearly varied 
follower force density. With the special boundary conditions of a 
cantilever, case (1), (2), and (3) become the classical problems first 
solved by Beck [3], Leipholz [5], and Hanger [6], respectively. 

III. SOLUTION FORMULATIONSo The solution method used here is the 
finite element unconstrained variational formulation which has proved 
to be efficient and simple to use for solutions of non-self-adjoint 
problems [7,8].  Finite elements are used in the usual sense that the 
unknown function is approximated by piecewise cubic splines. An uncon- 
strained variational statement is established and used so that none of 
the boundary conditions need to be satisfied a priori. An outline of 
the formulation will be given here. 

Introducing an adjoint field variable y*(x), it is a simple matter 
to see that the following variational statement will lead to the differ- 
ential equation (1) and boundary conditions (2): 

6l(y,y*) =0 (4a) 
-- - ■■ ■:>  ■■    ■:■. 1 

I = / (y"y*"-P(x)y'y*'-P'(x)y'y*+^Vy*)dx 
0 

+ k^y(0)y*(0) + k2y'(0)y*'(0) + k3y(l)y*(l) + k^y'(l)y*'(1) 

+ k5P(l)y'(l)y*(l) . (4b) 

The fact that Eqs. (4) lead to the given differential equation and 
boundary conditions for y(x) independent of y*(x) implies that one can 
take the variation of I at y*(x) E 0 and (6l)y*=Q = 0 still leads to 
the original problem. Hence our formulation begins with 

(61) 
y*so 

= 0 (5a) 



or, 1 
/ [y"6y*" - P(x)y'6y*' - P(x)y'(Sy* + XV<5y*]dx 
0 

■+ k^y(0)6y*(0) + k2y'(0)6y*'(0) + k3yCl)6y*(l) + k4y'(l)6y*'(1) 

• + k y'(l)6y*(l) = 0 (5b) 

Finite element discretization enters when the beam is divided into 
L equal elements and Eq. (5b) is written as  . 

■  I    nLV^'^"6y*^'^"-LP^i^(?)y^i^'6y*^i^' 
i=l 0 .  ' 

2 
- Lp(i)'y(i^'6y*(i) . Al/Dfiy* (i)]d^ 

L 

V'     - + kjy'^^^(0)6y**^^^(0) + k2LV*-^'''(0)6y**-^-''(0)       / . 

+ k5y(L)(l)6y*fL)(l) + k^L^^^^' (l)5y*f'^^ * (1) 

+ k5y'^^^'(l)6y*'^^^(l) =0 (6) 

In obtaining Eq. (6) from (5b), one has effected a change of coordinates . 
from X (global) to ^ (local) such that 

^ = ^Ci) = Lx-i+1 

d? = Ldx 

(i) ^'^ y(x) = y^^hQ 

y'(X) = ~ y(x) = L -^ yf^^(?) = Ly^^^'(?) 
dx        d? 

etc. 

Introducing generalized coordinates vector Y*-''"-' and shape function vector 
a(?) such that 

yfi)(?) = a'r(?)Y(i) : .     (8a) 

with 
yCi^T ^ ^^^H)        Y^(i)   Y^(i)   Y^(i)^ ^g^^ 



a(C) = 1 0 -3 2 n \ 
0 1 -2 1 

^ 

0 0 3 -2 r 
0 0 -1 1 \K\ 

(8c) 

where a superscript T denotes the transpose of a matrix. One observes that 

(i) - M) 

Y (i) 
3 

= y^-^(O) ^2^'^ -y^'^'w 

(i) = y(i)' (1) (8d) 

The counterparts for y*(C) can be similarly defined^ 

In terms of Y'•■'■-', Y*^-"--*, a, Eq. (6) can be written as: 

L     .     1 1 ri, 
I    6Y*(^)'r{L^J a"(C)a"'^(5)d^ - L/ pf^^(C)a'(C)a''^(Qd? 

' ■  .    i=0 0"   ~ 0      ~   ~ 

- L/ pf'-^'(C)a(?)a''^(Qd? + Ai / a(C)a'^(5)d5}Y^^) 
0      r      ". L 0"  ~ 

+ 6Y*'--^^'^{k.a(0)a'^(0) + k-L^a'(Oa'^^CO) }Y^^^  " 

+ 6Y*f^^'^{k_a(l)a'^(l) + k.L^a'(l)a''^(l) + k^a(l)a''''(l) lY^^^ = 0 

It will be convenient to define the following matrices: 

(9) 

A, = J a(Qa^(Qd? . A2 = / a'COa'V^d^ 
~   0 "0 

A^ = / a"(Qa"'^(Qd5 ' 64 = / aCaa''^(?)d? 
0 

A5 = / ^a'(C)a'T(5)dS 
-   0 

1 

Ag = / a(?)a'T(^)d^ 

A7 ^ / ?'a'(?)a' (5)dC 
0 

(10) 

B = a(0)a'(0) ?2 a'(0)a'(0) 

B = a(l)a'r(l)  , B = a'(l)a''^(l) 

B = a(l)a''^(l) 



In terms of the matrices defined in (10), Eq. (9) is written as: 

+ 6Y*(^^'^{k^B^ + k2L'B2}Y(^5 

+ 6Y*'^^^'^{1^383 + k^L^B^ + k^B^lY'^^^ =0 (11) 

where the matrix NL is defined as . 
1  . 1  . 

M = / p'^^^a'a-'^d? + / p'^^^'aa-'^d^ . (12) 
~P   Q   ~ ~      0    ~"' 

To proceed further, it is necessary to know the specific form of P(x). 
As we have mentioned earlier, three different forms of P(x) will be 
considered. 

CASE I.  P(x) = P, a Constant,  In this case, one has 

P(x) = p'^^hK) = P 

P'(x) = LP'^^^'(5) = 0 

Thus 
1 

'"'   CASE li.  P(x) = q(l-x), 

Thus, 

P(x) = P^^^(0 = ^ (L-i+1-0 

*     1    T       1     T 
M = f {[L - (i-1)]/ a'a'^dS - / Sa'a'^d? 
-PL Q~~      O"" 

or 

(13) 

M = Pj a'a'dS = PA  . , •     (14) 
~P   0~ ~ 

(IS) 

M = f {[L - (i-DJA, - A } (16) 



CASE IIIo  P(x) = qo/2(l-x)' 

Thus, 

or. 

>(i) 
dm  Vt 

M. qo 
-p 

{CL-i+l)2j a'a''^d5 - 2(1-1+1]/ 5a'a''^d5 

1 
2L2        O~ ~ 0 

      1     T 
+ / C^a'a' d^} 

0 

5° {(L-i+1)/ a'a''^dC - / 5a'a»"d?} 

^ 

qo 
2L2 

{(L-i+l)2A2 - 2(L-i+l)A5 + A^} 

(17) 

- 4 {(L-i+l)A - A } (18) 

With NL defined for all three cases in Eqs. (14), (16), and (18) respec- 
tively, one can now assemble Eq. (11) into a global matrix equation. 
Introducing the global generalized coordinate vectors Y and Y* as:   i 

YT _ . Y (1) V (1) Y fl^ Y (1) Y f2) Y 1^2) 
I ~ ^ h    ^^2    ''S     4     3     4 

(L) (L) } 

Y*T - ry *(1) Y *(1) Y *C1) Y *fl^ Y *f2) Y *f2)     Y *fL^ Y *'^^h 
I  ~ ^'^l    ^^2     3     4     3     4     3     4   ^ 

(19) 

Eq. (11) now can be written in terms of Y and 6Y* as 

:..^:  <SY*'^{K - X=^M}Y = 0 ;  ' (20) 

where the global matrices K and M are formed by properly placing the 
local matrices defined in EqSo (10) according to the correspondence 
between the local and global generalized coordinates indicated in Eqs. 
(19). Now since 6Y* are not subject to any constraint conditions, Eq. 
(18) reduces to 

I ■■ ■ ■.■•  ■ ■ ' 
(K - A^M)Y = 0 (21) 

which is solved for the eigenvalue \  and the eigenvector Y. 



IV.  NUMERICAL RESULTS AND DISCUSSION.  It is yvell known that the 
eigenvalue X  dictates the stability of the column:  a pure imaginary 
X  is associated with a stable vibration, a real X  with instability of 
divergence, and a complex X  with instability of flut^ter [10]. 

Only cantilevered columns will be considered here.  It will be seen 
that in all three loading cases, the cantilevered columns reaches an 
instability condition of flutter„ 

CASE I. P(x) = P = Constant. The characteristic equation in close 
form was obtained by Beck [3] as 

2X^ + Q^ + 2A^coshacos6 + QXsinhasinB =0 (22) 

where , 

./ Q 
2 

a^ =n. , . , ^ 

(25) 

,^ J^TTf. Q 
For a given Q, the eigenvalue X  can be calculated from Eq. (22) and there 
are an infinite number of X  solutions for each Q.  Eq. (22) is solved for 
two lowest branches of X using an iterative procedure. The results are 
given in Table I. The critical load thus obtained is 

Q^j^ = 2.03187r^ = 20.053 

which agrees well with the value obtained originally by Beck as QQJ^ = 
20.,05. The results for four lowest eigenvalues presently obtained using 
our finite element-unconstrained variational formulations are also shown 
in Table I. The first two branches obviously agree well with those from 
the exact characteristic equation.  It should be pointed out that the 
numerical solutions to the Beck problem given in Reference [4] appear 
to be inaccurate. A plot of the eigenvalue curve showing the coalescense 
of the two lowest branches is given in Figure 2. The data from Reference 
[4] are indicated by small circles^ The fact that these data points do 
not fall on a smooth curve further add to the doubt about their accuracy. 



CASE II.  P(x) = q(l-x). The numerical values of the four lowest 
eigenvalues up to the first critical load are giyen in Table II which 
the critical load is shown to be 

KR 4.0591iT^ 

compared with data given by Leipholz as 4.1238Tr^ = 40.7 [11] and again 
as 4.205877^ = 41,51 [12]. The coalescence of the first two branches 
of eigenvalues is again shown in Figure 2, 

CASE III.  P(x) = qo/2(l-x)^. Similar data for this case are 

presented in Table III and in Figure 3. The critical load of flutter 
is obtained as 

%CR  "" 15.2687'ff^ 

In comparison, the value obtained by Hauger was qgCR ~ 
[6] and that by Leipholz, q^^^  = 150.80 = 15,279iT^ [12] 

158.2 = 16.09?7T' 

$ 
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Figure 1. Boundary Condition Associated with a Follower Force: 
Constant of Tangency K^o 
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