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PREFACE
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Engine Group located at Evendale, Ohio. The work was conducted under Contract
No. F33615-77=C=2043, Program sponsorship and guidance was provided by the
Air Force Aero Propulsion Laboratory (AFAPL), Air Force Wright Aeronautical
Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio
under Project 3048, Task 05, and Work Unit 84. Thomas A. Jackson was the
government project engineer.

Supplemental funding and technical guidance were provided in the area of
gaseous emissions and smoke, measurement and analysis by the Environmental Sciences
Branch of the Environics Division in the Research and Development Directorate of
HQ Air Force Engineering and Services Center located at Tyndall Air Force Base,
Florida. This organization has been formerly referred to as CEEDO or the Civil
Engineering Center.

Test fuel analysis was provided by AFAPL, the Munsanto Research Laboratory
(under contract to AFAPL), and the Air Force Logistics Command Aerospace Fuels
Laboratory (SFQLA). The cooperation of these organizations is appreciated.

An addendum to the text of this report is presented after the List of Tables

evaluations discussed in section I1I.C.2., 1t has been prepared by T. A, Jackson
from Monsanto Research Company data.
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ADDENDUM - FUEL THERMAL STABILITY
—

In an effort to resolve the differences of opinion as to the
breakpoint of JP8 (Reference, section II1I1.C.2.), the fuel sampling
procedures of General Electric and AFAPL wore reviewed. . The only
apparent difference in the techniques is the nature of the container
used to obtain the fuel sample, General Electric uses an unlined fuel
can, properly ringed with a small quantity of the fuel to be sampled,
The AFAPL uges epoxy-lined fuel cans, also properly rinsed.

Three test fuels (two blends and the baseline JP8) were ldentified
as exhiblting peculiar behavior in the Jet Fuel Thermal Oxidation Tester
(JFTOT) when samples of these fuels from each of the two types of containers
were evaluated. Typlcally, the fuel samples contained in the GE veasels
exhibited unusually high pressure dron and falled the test at relatively
low fuel temperstures due to the pressure drop criteria. On the other hand,
fuels from the epoxy-lined containers passed at higher temperatures and
pressure drop was not their failure mode. Results of the JFTIOT runs on
these six fuels are presented in Table A.

Residue fuel from eazh of the six fuel containers (three unlined,
three lined) was evaluated by Monsanto Research Company for any differences
that may exist between the same fuels from different containers, The fuels
were analyzed as follows (extracted from the Monsanto test report):

Emission spectrographic analyses of the fuels were
condicted to determine any difference in metals content,
For semi-quantitative results, the fuels were extracted
with dilute Ultrar matale~free hydrochloric acid
(Hopkin and Williams Co., Essex, England). This
approach allows metals to be concentrated in the acid
layer, a portion of which 1s then evaporated in the

cup of a spectrographic electrode., Most metals are
efficlently extracted in this manner. However, a few,
such as sllicon and aluminum, are not. Any significant
amount of these metals tend to form a scum at the fuel/
acid interface, In conducting the analyses, therefore,
a specimen taken from the fuel/acid boundary was also
analyzed,

The results of this analysis are presented in Table B.

From Table B it can be seen that fuel samples from the unlined vessels
contained higher trace quantities of several elements, most notably lead,
tin, and zinc, These elements would be expected in unlined vessels with
soldered joints, similar to the GE containers. Bince these trace contaminants
are in very smull quantities this evaluation is not conclusive in explaining
the differences in JFTOT readings between AFAPL and GE samples of the same
fuels., The influence of the containment vessel on a fuel's thermal stability
is, however, offered as a possible explanation based on this informution,

Xv
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SECTION 1

SUMMARY

The purpose of this program was to determine by combustor rig test and
data analysea, the effects of fuel property variations on the performance,
exhaust emission and durability characteristics of the General Electric F101
augmented turbofan engine combustion/turbine system, Thirteen refined and
blended fuels which incorporated systematic variationa in hydrogen content
(12.0 to 14.5 weight percent), aromatic type (monocyclic or bicyclic),
initial boiling point (285 to 393 K by gas chromatograph), final boiling
point (532 to 679 K also by gas chromatograph), and viscosity (0.83 to
3.25 mm?/s at 300 K) were evaluated in (a) 13 high pressure/temparature full
annular combustor performance/emmissions/durability tests; (b) 13 atmospheric
pressure/high temperature full-annular combustor pattern factor performance
tests; (c) 13 high pressure/temperature single fuel nozzle/swirl cup carbon
deposition tests; (d) 14 low pressure/temperature 54~degree sector combustor
cold day ground start/altitude relight tests; (e) 15 high tempcrature short
duration fuel nozzle fouling tests; and, (f) 8 high temperature longer
cyclic fuel nozzle valve gumming tests.

At high engine power operating conditions (takeoff, high altitude
cruise, and low altitude penetration), fuel hydrogen content was found to
be a very significant fuel property with respect to liner temperature, smoke,
and oxides of nitrogen (NO_ ) levals. Each of these parameters decreased
with increasing fuel hydrogen content, but no discernible effect of any of
the other fuel properties was found. Carbon monoxide (CO) and urburned
hydrocarbon (HC) emission levels were so low at these operating conditions
that no trend with fuel properties could be detected. While smoke levels
were found to decrease with increasing fuel hydrogen content, the levels
were still very low with all fuels.

At engine idle operating conditions, the same stroung elfect of [uel
hydrogen content on smoke level was evident. However, CO and HC emission
levels were found to correlate with fuel atomization/volatility parameters
with no hydrogen content dependency.

Cold day ground start and altitude relight capabilities were also
found to correlate with the fuel atomization/volatility parameters and
exhibit no hydrogen content dependency. Capabilities with JP-8 fucl blends
were generally reduced relative to those with JP-4 fuel blends,

Pattern factor (in atmospheric pressure tests) was found to be fucl
dependent and to correlate with the fuel atomization paramecter. This
finding was a surprise and had not been observed in any other combustion
systema. Verification data are therefore needed, but there is considcrable
evidence to indicate that (1) this is not a general eltect and (2) at true
engine operating preasure levels in the F1l0l engine, pattern factors are
not fuel-type dependent. TF39, CF6, J79, T700, and TF34 combustor rip
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pattern factor tests have been run in which no fuel effects were detected.
Further, all of these engines, including the F101, have been run with JP-4
and JP-5 (or Jet A) fuels and no fuel effects on turbine condition have
been detected,

Combustor liner life analyses based on these test data were conducted.
These analyses resulted in relative life predictions of 1.00, 0.72, 0.52,
and 0.47 for fuel hydrogen contents of 14.5, 14.0, 13.0, and 12.0 percent,
respectively, due to incressed liner temperatures. Turbine stator leading
edge temperatures are also predicted to increase with decreasing fuel hydro-
gen content, but stator life is currently limiced by trailing edge cracking,
so no fuel effect on life is predicted.

A series of short but severe fuel nozzle fouling tests did not reveal
any major problems with the fuels in this matrix. However, a series of
longer cyclic JP-4 and JP-B8 fuel nozzle valve gumming tests did reveal
significant effects of fuel type and temperature on useful fuel nozzle
life. These results were correlated by the temperature difference between
the breakpoint by visual tube rating (JFINT) and the test fuel operating
temperatures.
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SECTION 11

INTRODUCTION

For more than 25 yeare, the primary fuel for USAF gas turbine powerced
aircraft has been JP-4, a wide~cut distillate with excellent combustion
characteristics and low-temperature capability. Typically, its heating
value has been over 43.5 MJ'kg (18,700 Btu/1lb), its freezing point below
219 K (=650 F), and its aromatic content quite low, around 1l percent by
volume, A prime consideration in the definition of JP-4 was that during
wartime, a large percentage of domestic crude oil could be converted into
this product with minimum delay and minimum impact or other major users of.
petroleum products.

Conversion from high volatility JP-4 to lower volatility JP-8, which
i similar to commercial Jet A~1l, as the primary USAF airgraft turbine
fuel has been under consideration since 1968. The strong revasons for the
change are NATO standardizaticn and reduced combat vulnerability,

Domestic crude oil production peaked in 1971 and has been steadily
declining since that time, while demand has continued to increase. Thus,
particularly since 1973, the cost and availability of high=-grade airecraft
turbine fuels has drastically changed. These considerations have spurred
afforts to determine the extent to which current USAF fuel specifications
can be broadened to increase the yield from available petroleum crudes and,
ultimately, permit production from other sources such as coal, oll shale
and tar sands.

As a result of the current and projected fuel situation, the USAF has
established an aviation turbine fuel technology program to identify JP-4
and/or JP=8 fuel specifications which:

1) Allow usage of key worldwide resources to assure availability.

2) Minimize the total cost of ailrcraft system operation.

3) Avoid sacrifices of engine performance, flight safety, or environ-

mental impact.

Engine, airframe, logistic, and fuel processing data are beinp acquired to

establish these specifications. This report contributes to the needed data

base by describing the effects of fuel property variations on the General
Electric F101 englne main combustion system with respect to performance,
exhaust emissions, and durability., Slwllar programs based on the General
Electric J79 engine (Reference 1) and the Detroit Diesel Allison TF41 and
High Mach engines are also being conducted. Collectively, these programs
will provide representative data for the engine classes which are expectoed
to be in substantial use by the USAF in the 1980's.
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This report summarizes the results of a 13-month, three-task program
which was conducted to clearly identify which fuel properties are important
to F101 engine combustor operation, and quantitatively relate fuel property
variations to combustor performance, emission, and durability characteristics.
Thirteen test fuels provided by the USAF were utilized. Descriptions and
properties of these fuels are presented in Section III, 1In Task I of the
program, test planning and preparations were made, based on use of the F101
engine combustion system components and operating characteristics described
in Section IV and the three test rige and procedures described in Section V.
In Task Il of the program, full-annular combustor performance/emissions/
durability tests, low pressure/temperature sector combustor cold day ground
tests, and high temperature fuel nozzle fouling/gumming tests were conducted
and are summarized in Section VI.A. In Task 111 of the program, these tests
were analyzed to establish the fuel property correlations also presented in
Section VI.A and to establish the engine system life predictions presented
in Section VI.B.
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SECTION 111
L£ST FUEL DESCRIPTION

A. Ceneral Description

Thirteen test fuels were supplied by the USAF for combustion system
evaluation in thie program, These fuels included a current JP-4, a current
JP-8 (which was out of specification on freeze point), five blends of the
JP=4, five blends of the JP-8, and a No. 2 diesel. The blends were made
up by the USAF to achieve three different levels of hydrogen content:

12, 13, and about 14 percent by welght. Two different types of aromatics
were used to reduce the hydrogen content of the base fuels: a monocyelic
aromatic (xylene bottoms), and a bicyeclic aromatic described by the sup-
plier as a "2040 solvent" (a naphthalene concentrate). A thlrd blend com-
ponent, used to increase the final boiling point and the viscosity of two
blends is described as a Mineral Seal 0il, a predominately (90 percent)
paraffinic white oil,

The rationale for the selection of this test fuel matrix was to span
systematlically the possible future variations in key properties that might
be dictated by availability, cost, and the change from JP-4 to JP-8 as the
prime USAF aviation turbine fuel, and the use of nonpetroleum sources for
jet fuel production. The No. 2 diesel was selected to approximate the
Experimental Referee Broad Specification (ERBS) aviation turbine fuel that
evelved in the NASA-Lewis workshop on Jet Aircraft Hydrocarbon Fuel Tech-
nology (Reference 2},

B, Physical and Chemical Properties

Fuel properties shown in Tables 1, 2, and 3 were determined for the
most part by Monsanto Research Corporation under contract to the USAF,
Table 4 presents conventional fuel inspection data determined by the Aero-
space Fuels Laboratory, WPAFB. These data may be useful for assessing the
accuracy of test methods and comparing these fuels to those usad in other
investigations.

In Table 1, density, viscosity, surface tension, and vapor pressure
are presented at a common temperature together with temperature coeffl-
cients which were calculated by GE from Monsanto 3-point data., Also shown
in Table 1 are the fuel components, hydrugen content determined by the USAI
using ASTM Method D3701 (Nuclear Magnetic Resonance), and heating valuc
determined by Monsanto using ASTM Method D240«64, Heating value of theso
fuels (Qnet' MI/kg) is very nearly a unique function of hydrogen content
(H, percent) which can be closely approximated by:

Surface tension is virtually the same for all of the fuels. The other pro-
perties are, in general, quite dependent upon fuel componments as well as
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hydrogen content,

TAF=FeT

Table 2 shows hydrocarbon type analysea by mass spectroscopvy (ASTM

2 Method D2789) and Figure 1 shows a comparison of total aromatics determined
by mass spectroscopy {(from Table 2) and by fluorescent indicator adsorption
(ASTM Method D1319 from Table 4)., It is apparent that there is a consis-
tent blas between the resulte of the two methods, with the mass spectro-
meter yielding the mcre favorable (lower aromatic) results, particularly
with the JP-8 based fuels, Aromatic type (monocyclic or bieyelic) does

not appear to affect this bias.

Figure 2 shows the variation in fuel aromatic content (by mass spectros-
copy) with hydrogen content for these fuels, There is, of course, strong
negative correlation, but both base fuel type uand aromatic component struc-
ture affect this relationship,.

Table 3 lists the Gas Chromatographic Simulated Distillation (ASTM
Me*hod D2887) data for each of the reat fuels, Among the blended fuels,
those contalning the Mineral Seal 0il (Fuels 3 and 12) had the highest
final boiling points., Figure 3 shows the complete simulated distillation
curves for the three basic fuels and the variation in initial and end
points for all of the blends. Points worthy of note are:

1) All of the JP-4 blends had initial boiling points (IBP's) es-
sentially identical to that of the base JP-4 fuel (about 300 K).

2) All of the JP-8 blends and the diesel fuel had 1BP's essentially
identical to that of the base JP-B rfuel (about 385 K).

3) All of the JP-8 blends had final boiling points (FBP's) not
greatly different from that of the base JP-8 fuel (about 590 K),.

2 : 4) The JP-4 blends had a broad range of FBP's, spanning those of
. the JP-8 blends (about 585 + 35 K).

5) The diesel fuel had a significantly higher FBP (about 680 K).

E Figure 4 compares fuel volatility characteristics as measured by gas

3 chromatography and conventional distillation (ASTM Method D86). It 1is

i apparent that gas chromatography significantly extends the apparent boiling
range in both directions; the IBF and 10 percent recovery temperatures are
lowered while the 90 percent recovery and FBP temperatures are raised.
Temperature differences of up to about 70 K arc obtained by the two
procedures.

C. Thermal Stability Characterigtics

The thermal stability of test fuels was determined by the Jet Fuel
Therinal Oxidation Tester (JFTOT) described in ASTM Method D3241, The
; actual thermal stability is given in terms of the breakpoint which is
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defined as the highest (wetal) temperature at which the fuel "passea" by
both filter pressure drop and tube rating. A fail on pressure drop is

25 wm Hg pressure drop or wmore in less than 150 minutes. A "fail" on the
tube is a color code of 3 or darker as described in the ASTM procedure.
In practice, the fuel is tested first at the estimated breakpoint, then
depending upon vhather it fails or passes, it is rerun at a temperature
10 K lower or higher until the breakpoint is established.

1. Original Test Fusls

Table 5 shows the JFTOT data that were provided by the USAF for the
original fuela., Occasionally, anomalous or indeterminate results were
obtained, and sometimes the fuel sample (one gallon) was expended before
the breskpoint was determined. For these reasons, breakpoints sre not
shown for all of the test fuels. Anomalous results are those in which
two or more tests of the same fugel at the same temperature showed both a
"pass" and a "fail™. Indeterminate results are those n which a fuel
passes or fails by both tube color and pressure drop, Lut no additional
tests were run at higher or lower temperature to determine by which
criterion it would fail firat. Generally, it appears that the repeatabil-
ity and reproducibility of the breakpoint is greater than the difference
in thermal stability of the base fuels and their blends.

Table 6 is an attempt to assign ratings to the fusls, despite some
apparent lack of precision in the test results. The JP-8 base fuel appears
to be significantly sbre stable than the JP-4 base fuel in these tests.
However, later cooperative tests described in the following section in-
dicated less difference. The addition of Mineral Seal Oil has no apparent
effect on the thermal stability. This would be expected, since it is a
high purity wvhite oil, suitable for madicinal and food applications. The
addition of both types of aromatics appears to have little or no adverse
effect on thermal stability.

2. Long Time Cyclic Test Fuels

Because the originally planned fuel nozzle fouling tests did not yield
definitive results, the scope of the program was increased to include a
gseries of long-time cyclic tests using current JP-4 and JP-8 fuels., In
order to establish more precisely the thermal stability breakpoint ratinga
of the two test fuels used in these long-time tests, a cooperative program
vas established to test the fuels in other laboratories. The following
organizations participated in this work:

Texaco, Inc.
Port Arthur, Texas

Exxon Research and Engineering Co.
Linden, New Jersey
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; :
Table 5. Fuel S8ample Thermal Stability Test Results (ASTM ]
Method D3241). ;
i ' Mode of §
; Fuel No. Breakpoint, K Failure A
1 <518, 518 Tube ¥
' 1 533 _ . Tube :
f 1 528 Tube
i 1 538, 543 Tube
4 2 <563 AP
k 2 548, 553 Tube
f 2 558 Tube
i 2 563 Tube
i 2 593, 603 Tube
i 2 603 . Tube 2
: 2 553 Tube
’ 2 573 Tube :
£ 3 568 Tube and AP ]
: 3 583 Tube
. 3 373 Tube
e 4 - <573 Indeterminate ¥
i 4 >333, <573 Indeterminate ;
: 4 573 Tube
_ 5 <533 Indetarminate
5 <533 Tube
3 5 >583 Indetarminate
F 6 513 AP
B 6 >583 Indeterminate !
6 >553, <583 Tube :
3 7 >573 Indeterminate :
k. 8 <523 AP
8 553 Tube
b 9 >513, <533 Tube
& 9 533 Tube j
10 533 Tube I
B 11 543, 553 Tube and AP
3 12 543 Tube
P
!
|
!
16 :
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3 Table 6. Estimated Therma) Btability Ratings of E

il Test Fuels (ASTM Method D3341),

Breakpoint ‘ Estimated
Fuel No. - Range, K . Rating, K

s s it

—

<518~548 533 + 15
548-603 . 576 4 28

FHFAATRET 0 e

566-581 576 + 8
>533-<573 553 + 20
<§33~>583 558 + 25

= # W

513-583 548 + 35 _
>573 573 P

<523-553 338 £ 5 4ii

O 0 N 0w N

»513-533 523 + 10

-
o

553 553

11 543-553 548 % 3
12 543 543
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Alecor, Inc.
San Antonio, Texas

The Dupont Co.
Tulsa, Oklahoma

Naval Ressarch Laboratory
Washington, D.C.

. Ashland Petroleum Co,
! Catlettsburg, Kentucky

Aero Propulsion Laboratory
Wright-Patterson Air Force Base, Ohio

Representative samples of the fuels were taken from the line supplying
the rig, while testing was in progress, using well-rinsed metal sample cans.
At about the same time, Air Force personnel took samples of their retain
fuels, for testing by the same laboratories.

The data secured from the cooperative program on thermal stability
testing of the JP-4 and JP-8 base fuels are shown in Table 7. The data
are surprising in that they indicate the JP-8 samples from GE are much
lover quality than the JP-8 samples from the Air Force, although they all
represent the same fuel., This might imply that the JP-8 degraded in
storage at GE, or the samples were contaminated. However, both theories
appear invalid since the JP-4 samples from both sources showed excellent
agreement, and the JP-4 at GE was stored and sampled in the same manner as
the JP-8.

Based on the above program, the JP-8 would be rated lower than the
JP-4, and the fuel nozzle valve tests would show a reverse correlation
with the laboratory results. However, the D3241 data appear abnormal in i
that they all showed failure by pressure drop on the samples from GE. A |
review of all of the original data submitted by the cooperative labora-
tories showed that if pressure drop failures were ignored, all of the JP-8B
samples from GE would show breakpoints in the range of 553 to 593 K based
on the visual tube ratings only (Table 8), and the JP-8 would rate better
. than the JP-4. This would then correlate quite well with the fuel nozzle
! valve test results which are described in Section VI.A.10.

In view of these findings, it appears that the development of pressure
drop in the JFTOT has no relaticnship to the performance of hot fuels in
close~-fitting valves, and it is suggested that thermal stability ratings
based on JFTOT tube deposits alone may correlate better with the perfor-
mance of engine hardware with hot fuels.

VR AT SRR
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i

D. Computed Combustion Parameters

Table 9 shows several fuel parameters which were computed from the i
physical and chemical properties for use in conducting the combustion !
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Table 8,

Tests of JP=8 Fuel.

Results of Cooperative D3241 Thermal Stability

Laboratory

Texaco
Exxon
Alcor
du Pont
NRL
Ashland

WPAFR

Breakpoint by Visual Tube Rating Only, K

Samples
From GE

Samplas
From WPAFB

>573
»533, <568
»563, <583

>593
»513, <563
»553, <573

573

<583
563
583
543, <558
368
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tests and analyses of the results.
Fuel hydrogen-to-carbon atom ratio (n) was used in the exhaust gas

sample calculation. It was calculated directly from the hydrogen weight
percent (H) by the relationship:

11.915 H
" 00 - u (2

and ranged from 1.625 to 2.021 as hydrogen content increased.

AIE

Stoichiometric fuel-air ratio (fg¢) was used to calculate comparative
adiabatic flame temperatures. It was calculated froa the fuel hydrogen~to-
carbon ratio (n) by the relationship:

£, = 0.0072324 (1.008 n + 12.01 (3
st (1 +0.25 n)

which assumes that the fuel is CH,, the air is 20.9495 volume percemt
oxygen, and the air has a molecular weight of 28.9666. For the test fuels
the stoichiometric fuel-air ratio ranged from 67.50 to 70.19 g fuel/kg air
as hydrogen content decreased.

e
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Stoichiometric flame temperature was used in analyses of NO_  emissfions.
It was calculated at takeoff operating conditions (T3 = 829 K, 53 -
2.718 MPa) using a standard equilibrium-thermodynamics computer program i
{(Reference 3) and ranged from 2592 to 2613 K as hydrogen content decreased. N

Relative required fuel flow rate was used in all combustion tests to
adjuat the JP-4 fueled engine cycle operating fuel flow rates for the
reduced heating values of the other fuels. The factor is merely the ratio
(Qp-4/Q) and ranged from 1.000 to 1.0395.

Relative fuel spray droplet size was used in analyses of the low
power emigsions and relight performance. The F10l combustion system
employs airblast atomizing fuel nozzlesa, so Rizkalla and Lefebvre's cor-
relation parameter for this type atomizer (Reference 4) was used to esti-
mate the relative fuel spray droplet Sauter Mean Diameter (SMD) at idle
conditions from the test fuel density (p), surface tension (u) and
viscosity (v) by the empirical relationship:

' L4, /W
s = {521 o°> 00'7’5; 3—-‘;‘——5$+30.037 v/p] 0'85[""]1.2“““1/”42 (4)
a

In this relationship, W,/W_ 15 the ratio of fuel flow to airflow in the
atomizer and V_ is the air velocity in the atomizer. For the F101 com-
bustor at idle operation conditions, these two values were approximately




o

0.5 and 100 m/s8, respectively, for all fuels. As shown in Table 9, none of
the blending agents appreciably changed the predicted relative droplet size
of the base fuel. However, the JP-8 bused fuels are predicted to produce
mean droplet sizes about 20~30 percent larger than those of the JP=4 fuel,
Further, the diesel fuel is axpected to produce mean droplet aizes about

40 percent larger than those of the JP-4 fuel.
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SECTION IV
F101 ENGINE COMBUSTION SYSTEM DESCRIPTION

A. Overall Engine Description

The F101 engine is an advanced, light-weight, fully-augmented turbofan
engine. A cross-sectional view is shown in Figure 5. This engine com~
pleted product verification (PV) testing in 1976, The F101 has a two-stage
fan and a nine-stage compressor. The fan/compressor pressure ratio is ap-
proximately 26,.8:1 at standard day sea lavel takeoff conditions., The com-
bustion system employs a very short annular liner. The turbine has a
single stage air cooled high pressure turbine, coupled directly to the
compressor and a two-stage low pressure turbine which drives the fan. The
engine has a fully modulating mixed flow augmentor.

Mixing of the core and fan air streams is accomplished with a 28 lobed
daisy mixer. The augmentor has 2 circumferential V gutters at the hub and
tip connected by 28 radial (sloped) V gutters. The radial V gutters are
located in the mixer chutes which define the hot core stream flowpath.

At lightoff conditions, only the inner ring gutter is fueled. At higher
power conditions, the entire core stream (entire flameholder) is fueled.
At maximum augmentation, the fan stream is also fueled., The tailpipe has
a convectively cooled liner and the engine has a variable area converging-
diverging exhaust nozzle.

B. Combustion System Description

The F10l main combustor is a short length annular design which features
machined ring liners, a step diffuser and two-stage counter rotating
swirlers which permit the use of a low pressure fuel injection system. A
photograph of the combustor assembly is shown in Figure 6 and the flowpath
showing the major components of the combustion system is illustrated in
Figure 7. Compressor discharge air is delivered to the combustor through
the compressor outlet gulde vanes (OGV's) which are part of the one-plece
diffuser - OGV casting, The OGV's provide structural support, so that
there are no compressor rear frame struts in the flowpath. After passing
through the vanes, the velocity of the flow is reduced in the diffuser.

At the end of the diffuser, the flow is essentially dumped and divides
in:o three streams, to supply the dome and the two combustor passages.

A portion of the flow enters the combustion zone through two-stage
counter rotating swirlerv (twenty total) which provide fuel atomization as
well as flow recirculatiun and flame stabilization in the primary zonme.
Additional dome air entcers through perforations in the structure to provide
impingement cooling of the splash plates. The splash plates serve as
transitions from the circular swirler exits to the annular dome. The
splash plate impingement cooling air also provides for hot gide film cool-

ing for the dome structure, Figure 8 1s a view looking forward into a
dome,

24
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Approximately half of the airflow delivered to the liners is used for
film cooling. The remainder is introduced through primary and secondary
dilution holes. The primary flow enters the reaction zone and serves to
stabilize and complete the combustion process., The secondary air mixes
with the hot gases from the primary zone to provide the desired turbine
temperature profile.

The combustor liners are each machined from individual forgings of
Hastelloy X. A series of slots are machined into the walls to provide
film cooling. The slots are fed with cooling air through a series of
perforations in the upstream side of the slots. Figure 9 illustrates
the cooling scheme. The combustor contains a bolted joint which secures
the dome to the inner cowl and the inner liner. The dome, outer liner,
and outer cowl are a single welded assembly., Provisions for differential
expansion between the fuel injectors and the combustor are provided by
allowing the primary swirler to move in both the radial and circumferential
directions with respect to the secondary swirler.

The combustor is mounted at the downstream end of each liner. The
liner is bolted to the inner combustion casing through a structure which
also provides support for turbine nozzle cooling air filtering screens,
The outer liner is mounted through a similar screen structure which is
trapped in the casing assembly by a bolted flange. Leaf seals prevent
leakage of air between the combustor and high pressure turbine nozzle.

The combustor casing has provisions for two externally removable igniters,
borescope inspection ports and bosses for the 20 fuel injectors.

The fuel system consists of 20 individual injectors and a fuel manifold.
Each fuel injector has a valve mounted externally to the combustor casing,
a dual wall stem and tip with four ports which epray fuel radially outward
from the swirl cup centerline. A photograph of the nozzle and a cross-
sectional drawing are shown in Figure 10, The double wall minimizes heat
transfer to prevent fuel coking and to reduce thermal gradients in the
outer structural elements. The smallest fluid passages in the injector tip
are the four ports which are 0,140 cm diameter each., A fuel flow schedule
versus pressura drop for a eingle injector is shown in Figure 11.

C. Combustor Operating Conditions

The combustor must operate over a wide range of fuel flow, inlec air-
flow, temperature and pressure. Table 10 presents the combuator operating
parameters at several important steady state operating conditions as well
ag for the ground starting conditions. At these conditions, fuel effects
on combustor performance, emissions and combustor and turbine life are of
particular interest.

The combustion system must also provide for starting over a wide range
of altitude conditions., Figures 12 and 13 present altitude relight wind-
milling flow conditions (W and P3) for both an open exhaust nozzle and o
closed nozzle. For the purposes of this program, the open nozzle condl-
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tions which are more severe relative to coﬁbultor relight were used. Dur-
ing actual altitude starting, the control commands the nozzle to the closed
stop position,

D. Combustor Life Experisnce

The mechanical durability of the combustor (using current JP-4 fuel) has
! been determined during an extensive factory engine test program. Following
; are brief descriptions of several types of engine tests that are conducted
with the test hours and cycles that have been accumulated on individual com-
bustors. '

PV Endurance Testing

Each standard endurance test consists of 1./ operating hours, including
operation at the low altitude-high Mach penetration condition. One PV com~
bustor accumulated the following operating time and cvcles during 2 such
back-to=~back endurance tests:

Total Time 373 hours
Time at Max T@ 145 hours
(Over Approx. 1672 K)
Thermal Cycles 2153

;_ Starts . 292

% PV Low Cycle Fatigue (LCF)

: The LCF test consists of a 13-minute sea level cyclic test. Fach cycle

N R R N T e S - T TE U AR S R Ty ¥ DRSS SO T .
s T e e vy - e e Aok L aimbryuinag chrrhbiwiiiceball S askh) TSR g it ahai: _ ” ¢
e R i = R R ; L Y 2 " s

4 has 2 rapid throttle movements (bursts) to maximum tempsrature conditions 4
; from idle and 5 minutes at maximum power. A shutdown and motoring is in- %
: cluded batween each cycle. An example of the time accumulated on a single ! 5
Q PV combustor is: ' E
i i
y Total Time 350 hours %
] Time at Max Ty 72 hours ;
; , 4
1 Thermal Cycles 3330 3
: Starts 1685 %
Q

; LCF Cycles 1634

PV Life Cycle Testing

it e Tk wd awme

The life cycle test consists of a 30-minute sea level cyeclic test which
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includes 2 idle-to-maximum power bursts. Twenty~two minutes of each cycle
is spent at maximum T4 conditions to evaluate the effects of long hold

time on the hot section. One PV combustor accumulated the following exper-
ience in this type of testing:

Total Time 643 hours
Time at Max Ty 375 hours
Thermal Cycles 2155
Starts 1621
Life Cycles 929

Status

The various PV combustors evaluated to date exhibited :distress in the
same general regions regardless of whi-h of the abuve tests were cunducted.
Figure 14 indicates the location and type of distress typically observed.

In the dome region, erosion was experienced on the edges of the splash plate
and in the dome structure between cups. The cooling slots adjacent to the
liners between cups also were eroded.

The lact panel of the inner liner suffered from local hot spot= which
eventually become holes typically 0,13 to 0.25 cm in diawneter., These holes
are located axially downstream of the corners of the splash plate.

The outer liner distress is also experienced at the downstream end of
the last two panels. Axial cracks of approximately 2.5 cm in length were
observed locally after endurance testing.

At the completion of 2 back-to-back engine PV endurance tests (approxi-
mately 370 hours), the 20 fuel injectors typically meet the new {low cali-
bration characteristics and there is no plugging or blocking of the flow
passages or exit ports.
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SECTION V
APPARATUS AND PROCEDURES

et e 1B T T T
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All combustor and fuel nozzle testing in this program was conducted in
specialized facilities at the General Electric, Evendale, Ohio, Plant, using
apparatus and procedures which are described in the following sections. Com-
bustor performance/emissions/durability tests were conducted in a high pres-
sure/temperature full-annular combustor rig which is described in Section
V.A. Atmospheric pressure tests ware also conducted in this facility, chiefly
to determine combustor discharge tempervature distribution. In parallel, car-
bon deposition tests were conducted in a single-cup facility described in
Section V.B, and combustor cold day ground start/altitude relight tests were
- conducted in a low pressure/temperature 54-degree sector rig which is des-

{ cribed in Section V.C. Also in parallel, high temperature fuel noztle

v fouling tests were conducted in a small specialised test rig described in
: Section V.D. Special fuel handling procedures used in all of these tests
- . are described in Section V.E. Finally, procedures employed in analyses of
§ these data are described in Section V.F.

A. Performance/Emissions/Durability Tests

High pressure/temperature combustor rig tests were conducted at simu- i
lated F101 engine idle, cruise, takeoff, and dash operating conditions with 1%
cach of the fuels to determine the following characteristices:

T e 8 I

1) Gaseous emissions (CO, HC, and NO ).

2) Smoke emissions.

3) Liner temperatures.

1 Combustion exit temperature profile and pattern factor were also determined

~4 in this rig, but with atmospheric discharge pressure. Thus, & large part

] of the total data was obtained in these tests using apparatus and procedures
described in the following sectiouns.

.?I 1. Full Annular Combustor Test Rig Description

E: These tests were conducted in Cell A3, located in Building 303 of the
E: Evendale Plant. This test cell is equipped with all of the ducting, fuel
b and eiv supplies, controls, and instrumentation required for conducting

% combustor high pressure/temperature tests. High pressure air is obtained
- g from a central air supply system, and a gas-fired indirect air heater is
y located adjacent to the test cell. For the full-annu.ar combustor rig,
F101 engine idle and cruise operating conditions were exactly duplicated.
Takeoff and dash operating conditions were exactly duplicated with respect
to temperature, velocity, and fuel-air ratio, but pressure and flow rates

39
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were reduced to 46 percent and 36 percent, respectively, of the true
engine conditions to be within the facility airflow capability,

The High Pressure Combustor Teat Rig, ehown in Figures 15 and 16,
simulates the engine flow path from the compressor outlet guide vane (OGV)
to the first-stage turbine stator vanes. Since turbine bleed air is not
included in the rig simulation, its effect on liner airflow or backside
cooling is not presant in this rig. As shown in Figure 15, the test rig
inlet flange bolts up to a plenum chamber in the test cell., Figure 16 shows
the discharge instrumentation for the higher pressure tests. Figure 17
shows the exit instrumentation for atmospharic testing. In this testing, a
rotating rake with four instrumentation stations is traversed arcund the
annulus to obtain a detailed exit tamparature profile.

2, High Pressure Test Instrumentation

A summary of the important combustor oparating, performance and emission
parameters which were measured or calculated in these tests 1s shown in
Table 11. Airflow rates were measured with standard ASME orifices. Fuel
flow rates were measured with calibrated turbine flowmeters corrected for
the density and viscosity of each test fuel at the measured supply temper-

ature. Combustor inlet temperature and pressure were measured with plenum
chamber probes.

Combustor outlet gas samples were measured as shown in Figure 18 and
19. Each rake contained five impact pressure/gas sample probes located on
radial centers of area. As shown in Figure 19, the impact probe elements
were manifolded to three heated gas sample transfer lines leading out of the
test cell to the gas composition measurement instruments. Rakes A and B
were connected through selector valves to a smoke measurement console
(Figure 20) and rakes D, E, I, and H were connected to a gas analysis con-
sole (Figure 21). Rakes B and G were connected to record exit pressure.

The General Electric smoke measurement console shown in Figure 20 :
contains standard test equipment which fully conforms to SAE ARP 1179 ;
(Reference 5). Smoke spot samples are collected on standard filter paper
at the prescribed gas flow rate and at four soiling rates spanning the
specified quoted soiling rate. The spot samples are later delivered to the
data processing area, where the reflectances are measured and the SAE Smoke .
Number is calculated. ]

The gaseous emissions measurement console shown in Figure 21 is one
of several assembled to General Electric specifications for CAROL systems
(Contaminants Analyzed and Recorded On-Line) that conform to SAE ARP 1256
(Reference 6). This system consists of four basic instruments: a flame
ionization detector (Beckman Model 402) to measure total hydrocarbon (HC)
concentrations, two nondispersive infrared analyzers (Beckman Models 865
and 864) for measuring carbon monoxide (CO) and carbon dioxide (CO3) con-
centrations, and a heated chemiluminescent analyzer (Beckman Model 951) )
for measuring oxides of nitrogen (NO or NO, = NO + Noz) concentrations.

40
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Each of the instruments are fully calibrated with certified gases before
and after each test run, and periodically during test, zero and span checks
are made. Readings from the instruments are continuously rezorded on strip
charts and hand-logged on test and calibration points for later calculation
of concentration, fuel-air ratio, and emission indices using a computer
program which incorporates the equations contained in ARP 1256.

Combustor liner temperaturé was meusured by an array of 33 thermo=
couples located on the inner and outer liner as shown in Figure 22. This
instrumentation pattern was selected to provide detailed data in the vicinity

of the known hottest regions of the combustor, Table 12 presents the specific

thermocouple locations. Figures 23, 24, and 25 show the actual liner thermo-
couple installations on the liners.

3, High Pressure Test Procedures

A total of 13 high pressure rig tests were run, one for each test fuel.
Each test was conducted to the elght-point test schedule shown in lable 13,
steady-state operating, performance and emissions measurements were obtained
at simulated engine idle, cruise, takeoff, and dash operating conditions. At
each of these simulated engine operating conditions, data were recorded at two
nominil fuesl-air ratios; 80 and 100 percent of the engine cycle value corrected
for the test fuel heating value,

4. Atmospheric Discharge Test Ihagrumentaticn

For atmospheric discharge tests, the test rig was installed in the
west stand of Test Cell A3 and an external traverse ring wus attached to the
combustor housing exit flange. An array of five-element thermocouple rakes
was attached to the ring, which was remotely actuated, %o obtain a detailed
survey of the combustor exit temperature distribution. Four rakes mounted
90 degrees apart were used, and a survey consisted of rotating the ring in
a clockwise divection, aft looking forward, through an angle of 90 degrees.
However, the ring was also rotated in the counterclockwise direction on one
test point in a run, so in each quadrant readings from two different rakes
were available, These readings could then be compared to insure that each
rake was reading correctly.

5. Atmospheric Discharge Teat Procedure

Thirteen atmospheric pressure rig tests wete run, one for each fuel.
Each fuel was tested according to the six point test ochedule as shown in
Table 14, except in order to avold exceeding the temperature capability of
the exit thermocouple rakes, it was necessary to limit fuel-air ratio at
takeoff and dash. Point 6, which is the same as point 5, except for the
direction of rotation of the traversc, was taken only on selected fuels
since no significant differences were noticed,
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B. Carbon Daposition Tests

1. High Pressure, Single-Cup Test Rig Description

The tests were performed in Test Cell A5, located in Building 304 at
the Evendale Plant. This cell has all the necessary ducting, controls,
instrumentation, fuel supplies, and high pressure and temperature alr
supplies required for the testing, The rig shown in Figure 26 is a single
8-inch diameter pipe in which is mounted a J79 low=-smoke combustor inner
liner, All dilution holes of this liner were closed, leaving only cooling
slots open, The F1l0l swirler and splash plate assembly was mounted on the
dome of this liner,

s iis bac Tl 0 s el L B et v L

The test rig was instrumented with static pressure taps located in the
alr passage both upstream and downstream of the J79 dome, and in the fuel

% line near the fuel nozzle inlet.
%? Approximately six skin thermocouples were attached to the liner,
3 splash plate, and swirler, in locations sealected from previous test experi-

enca. Combustor inlet airflow was measured by a thin plate orifice flow-
meter constructed according to ASME standards, Fuel flow was measured by
turbine~type flowmeters.

r ke R

2. Carbon Deposition Test Proceduyre

All 13 fuels were tested in the carbon deposition test rig. The
achadule of test conditions shown in Table 15 was derived from actual F101
engine operating conditions, except that it was made intentionally severe
with respect to both dome pressure drop (25 percent low) and fuel tempetrature
(at least 14 K higher than the usual 436 X) in order to accentuate carbon
deposition tendencies in the short test (5-1/4 hr).

The test point schedule shown in Table 15 consists of seven test
conditions with a hold time of 45 minutes at each condition. At each point,
the airflow wes set to obtain the prescribed dome pressure drop. Data
readings were taken upon establishing each point, and at 15-minute intervals
thereafter,

Prior to each test, the wirler assembly and fuel nozrle was cleaned
and flow-calibrated., Instrumentation was refurbished as required.

After the test, the awirler-dome assembly and the fuel nozzle were
removed from the rig, inapected visually, photographed, and recalibrated
in the appropriate flow laboratories,

C. Cold Day Ground Start/Altitude Relight Tests

Low pressure/temperature S4-degree sector combustor rig tests were
conducted at simulated F101 engine ground cranking and altitude windmilling
operating conditions to determine the cold-day ground start and altitude
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relight characteristics of each of the test fuels. Apparatus and procedures
which were utilized are described in the following sectionns,

1. 34-Degree Sector Test Rig Description

Theses tests were conducted in the Building 301 Combustion Laboratory
at the Evendale Plant. This facility has capabilities for testing small
combuator rige over a wide range of simulated ground start and altitude re-
light conditiona, Liquid nitrogen heat exchangers are usad to obtain low
fusl and air temperatures, and steam ejectors in the exhaust ducting are
used to obtain low combustor inlet pressures,

The low pressure Fl0l S54~degree sector combustor rig used in these tests
is shown in Figures 27 and 28, The combustor housing simulates a 5S4-degree
segment of the engine combustion system flowpath. Combustor inlet temperature
and pressure are measured with probes in the plenum chamber. The combustor
assembly is installed from the rear of the combustor housing which bolts up
to a flange simulating the turbine inlet. An array of thermocouples 1is
locatsd in the primary zone to sense ignition and blowout. 'This rig has no
provisions for turbine cooling air extraction,

Alr obtained from the central supply system was dried at the facility
to a dew point of about 240 K and metered with a standard ASME orifice.
Fuel flow rates were measured with calibrated turbine meters corrected for
the density and viscosity of each test fuel at the measured supply temper-
ature., All temperature, pressure, and flow data were read on direct indica-
ting instruments (manometers, potentiometers, etc,) and hand logged bty the
test operator.

2, 54-Degree Sector Test Procedure

The first part of the test with each fuel was structured to evaluate
cold-day ground starting characteristics., The test point schedule is shown
in Table 16. The airflow rate (1.15 kg/s) and combustnr inlet pressure
(101 kPa) wera sat to simulate typical engine ground starting conditfons
(2500 rpm), Fuel and air temperature were lowered from ambient to 239 K
ninimum (JP-8 freeze point) in steps to simulate progressively colder days.
At each temperature step, minimum ignition and lean blowout fuel flow rates
were determined. The test sequence was as follows:

1) With inlet conditions set, energize the ignitor and slowly open
the fuel control valve until 1lightoff is obtalned. Record light-
off fuel flow rate. Deenergize ignitor.

2) Slowly decrease fuel flow rate to blowout., Record lean blowout
fuel flow rate.

3) Decrease fuel and air inlet temperatures in 5 to 8 K increments
and repeat Steps 1 and 2.

When the minimum temperature limit was established, the second portion of
the test, altitude relight, was begun.
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Figure 27, Gd-Degree Scector Combustor Test Rig,
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Sector Combustor Test Rip, Rear View,
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The second portion of the test with each fuel was structured to
evaluate altitude relight and stability characteristica. The test schedule
is also shown in Table 16, Investigations were carried out at four airflow
ratee (0.91, 1.36, 2.27 and 3.18 kg/a) selected to span the Fl0l engine
altitude relight requirement map (Figures 13 and 14). Air temperature wacs
selected from the windmiiling data and ranged from 250 K to ambicnt. Fuel
temperature was matched to the air temperature. The test sequence was
structured to determine:

1) The maximum relight and blowout pressure altitudes with current
engine minimum fuel flow rates (37.8 g/s - engine = 5.67 g/s -
sector).

2) The minimum relight and lean blowout fuel flow rates at the relight
altitudus determined Jn (1).

The test sequence was as follows:

1) With altitude conditions set, unergize the igniter, set fuel flow
rate at 5.67 g/s, then increase combustor inlet pressure (decreasing
altitude and fliglit Mach number) until ignit‘sn occurs. Deenergize
the 1gnitor and record maximum relight altitude conditionc.

2) wWith fuel flow rate at 5.67 g/s, slowly reduce combusior inlet pres-
sure until blowout occurs. Record maximum pressurs: altitude blowout
conditions.

3) Reestablish conditions of sequence #l. Energize ignitor and increase
fuel flow until lightoff. Deenergi.2 ignitor and record minimum
lightoff fuel flow rate at maximum relight altitude.

4) Slowly decrease fuel flow rate until blowout, record lean blowout
fuel flow rate at maximum relight altitude conditions.

5) Repeat Steps 1 through 4 at each airflow setting.

D. Fuel Nozzle Fouling Tests

1. Short-Time Fuel Nozzle Fouling Tests

Tests with each of the fuels were conducted tu determine the relative
tendenty to cause fuel nozzle malfunction. Previous experience with the
¥101 fucol nozzle operating with hot fuel has shown that the part most
affected by fuel deposits is the flow metering valve, which has extremely
small clearances. Deposits that form in these clearances can increase
the hysteresis of the valve action after some period of operatlon with hot
fuel. Since operation of the nozzle in actual service has not revealed
significant problems, it was anticipated that fuecl temperatures would neced
to be higher than those encountered In actual service to produce signilleant
fouling in the short test cimes planned.
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The tests were conducted in the Building 304--1/2 Combustion Laboratory
using the test rig shown in Figure 29, 1In this setup, hot fuel is pumped
through the fuel nozzle which is immersed in a high velocity hot gas stream.
Initially selected test conditions were:

Gas Temperature 811 K
GCas Valocity at Fuel Nozzle Stem 304 m/s
Gas Pressure Drop Across Fuel Nozzle Air Shroud 13.8 -« 20,7 kPa
Fuel Flow Rate 5.04 g/s
Fuel Temperature 436 K
Run Time
Between Calibrations 100 minutes
. Total 300 minutes

After each 100 minutes of operation, the rig was shut down, allowed
to cool, and the nozzle removed for recalibration in the Nozzle Lab.

The fuel temperature was increased to 478 K after the second test
because no significant fouling had been observed after the runs with fuel
temperature of 436 K.

2. Long-Time Fuel Valve Gumming Tests

Since the short term fouling tests did not show significant nozzle
malfunction even at the abnormal high fuel temperature of 478 K, it was
suggested that meaningful results might require up to 100 hours of test time,
This was based on the results of many General Electric tests with F101 fuel
injectors wherein partial seizure of the valves usually occurred somewhere
between 60 and 120 hours, using fuel at around 419 to 436 K.

The scope of the program was, therefore, increased to include a series
of long-time cyclic tests of F101 fuel metering valves. Since these valves
are the most susceptible part of the nozzles to fuel gumming, this was
consldered wmore economical, and just as meaningful, as tests of complete

nozzles.

Each test was scheduled to run 100 hours unless complete seizure
occurred earlier, The test cycle consisted of

20 minutes at 63 g/s
90 minutes at 18.9 g/s
10 minutes at 10.7 g/s

This cycle is in accordance with most recent practice. The test schematic
is shown in Figure 30. One significant change to the test setup was that
two F101 fuel nozzle metering valves were installed in series, and tested
simultaneously. This had never been done befcre, and might yield duplicate
data at virtually no extra cost. If the concept did not prove valid, no
loss in validity of the single nozzle data would result,

65

. ﬂ;ak«Mk-m




-dnjag 3s3] Surynog 2[ZzZON

a1zZoON 1531
e

1eng -6z 21nd14

Jyo3xeld
ol

-

[ P

emoQ JI01SNQWOD
paremuIg—

i ]
aa1esy {

ary 3

68




-~

S e

vy

—o— o~

yae] [N ISP

<

awyo0) 1ani |

9.5

aayeay 1ong

saatey Sutadiam
ety 1end soud

1exuc)
daniezddeal
a5 ¢

©.1300%
oLy
- 1ang

| Lot o1
6°81 [

— 1ae1SEHO) L1 > ] (-4

! =4 Sejmmix

_ amiviaduay E3T-]

_ 1204 mo(3 tang  amrp

! arasy 1S9t

B o b L ™ i R ORI W R T b et

TN R BTN N T £ ST TIE ST 0P R e e Ree,aTpmgge T

el
L1dedne [ong

P R &

-dnyag 1sal Surmmnd aafeA 212ZON [2nd  "Of 3and1d




The three tests were scheduled at the following conditions:

Test Fuel Fuel
Number Type Temperature, K
1 JP=4 436
2 JP=8 436
3 JP-8 494

The first two tests were intended to provide a direct comparison of
the JP=4 with the JP-8 fuel. The third test was intended to provide a
direct comparison of the performance of JP-8 at two temperatures differing
by 58 K. This temperature difference was selected to approximate the dif-
ference in braakpoint temperature batween the JP-4 and the JP-8 by the labo-
ratory fuel thermal stability tests.

In an attempt to achieve meaningful results, eight tests were actually
run, since the three originally scheduled did not reach definitive end points,
and since fuel was available. This series demonstrated the difficulty of
attempting to estimate component performance at fuel temperatures beyond
those normally encountered in engine use.

E. Test Fuel Handling Procedures

Special procedures were followed in all of the tests to insure that the
test fuels were not contaminated or mistakenly identified. Hand valves were
installed in the fuel lines near each of the test rigs for obtaining fuel
samples while a test was in progress.

The fuels were delivered in tank trailers, as needed, and transferred
into three isolated, underground storage tanks of 40 n3 capacity each. These
tanks had previously contained only clean, light distillates. Nevertheless,
to assure their suitability for this program, they were first emptied as far
as possible, using the permanently-installed unloading pumps. The manhole
covers were then removed, and the few inches of remaining liquid were pumped
out, using a portable pump. The tanks were then inspected and found to be
in good condition, with only a light, adherent coating of rust on all inter-
ior surfaces. These surfaces were washed down with a small quantity of the
next test fuel, and this was then removed with the portable pump. After
replacing each manhole cover, the test fuel was transferred into the tank,
and a aign identifying the test fuel was placed on the switch controlling
the tank unloading pump, This procedure was fépented for each of the first
12 test fuela. The thirteenth test fuel, the diemel, was handled in a
similar manner except that it was stored in a tank trailer parked near the
underground storage tanks. For the full=-annular combustor tests, fuels
were pumped directly from these tanks to the teat rig.

As fuel was needed for the other tests, it was transferred from the
appropriate tank, using a 4 m” stainless steel tank trailer. This tank also
was drained and flushed with the next test fuel before being loaded. After
fi1lling, it was marked with the proper fuel number, hauled to the test site,
and parked adjacent to the test cell. The tank drain valve was connected
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directly to the cell system by a flexible hose, after flushing the hose with
a suitable volume of test fuel.

In each of the tests, the fuel sampling procedure consisted of drawing
a sample just before the first data point was taken and again after the last
data point was taken. In each case, the sample container was rinsed twice
with a small portion of the fuel being sampled, before actually taking the
sample,

Similar sampling procedures were followed in both the altitude relight
and the fuel nozzle fouling tests., For both of these tests, fuel was trans-
ferred from the trailler to clean drums which were clearly marked and moved
to the test sites. These drums were in good condition and had previously
contained only clean materials, such as calibrating fluid. Before filling,
they were drained, inspected, and rinsed with the next test fuel.

Pre-test samples taken at the test sites were returned to Wright-
Patterson Air Force Base for verification of significant characteristics,
to determine whether fuel quality had been compromiged during storage or
handling at the several test sites. Analyses included density, viscosity,
surface tension, and vapor pressure. These analysea were performed by
Monsanto Research Corporation.

A compilation of these data is shown on Table 17. From a comparison
of the propertlies of the original samples with those of samples returned
from the several test sites, it is apparent that no significant change in
fuel properties occurred. Therefore, it was concluded that fuel handling
procedures were satisfactory, and analysis of samples of the remaining
test fuels was considered unwarranted.

F. Data Analysis Procedures

Generally standard data reduction and presentation techniques were
employed. Key parameters and calculation procedures are indicated in
Table 11 and Appendix A. Some additional special procedures are deecribed
in the following sectiona.

1, Fuel Property Correlation Procedures

Analyses of the experimental test results were conducted to: (1)
correlate the performance and emission parameters with combustor operating
conditions; (2) as appropriate, correct the measured rig data to truc
standard day engine conditions; and, (3) correlate thec corrected data with
the appropriate fuel properties from Section III. To 11lustrate the proce-
dure, the NOx emission data procedure is outlined below,

Inspection of the NO_ emiesion data for the first high pressure test
(JP-4 fuel, Figure 39) showed that as in Reference 6 the data were of the
form:
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vhere the combustor operating parameters (V., P3, T3 and h) have been
normalized to stendard day operating conditions at takeoff. A very good
correlation was obtainad (Figure 39) using values for Ky» kz and [¢(f)]
determined from previous F101 rig and engine tests to be!

ky = 0.37 (6)

ky = 191.7 K N

$(f) = 0.325 + 0.945 (£/14.0) when f S 14.0 g/kg (8a)
= 1,648 - 0.648 (£/14.0) when 14.0 < £ < 24.0 g/kg (8b)
= 1,00 vhen £ 2 24.0 (8c)

Additional analyses then showed that ko was fuel dependent but ki, kg and

¢(f) were not fuel dependent. The NOy smeverity operating parameter was then
taken to be:

g (3 (cts)"” o)) + ()] | o

which is tabulated in Table A-2, and was used to calculate NOx emission
levels at true standard day engine operating conditions (Table A-5a), using
multiple regreseion curve-fit techniques, as illustrated in Figure 39.

Engine emission levels were then tabulated (Table 20, for example) and
plotted against appropriate fuel properties (Figures 40 and 41, for example).
Equations for the effect of fuel hydrogen content on NO_ emissions showm in
Figure 40 are the result of regression analyses (Table X-Sb), and show, for
example, that

-0.86
i ) g/kg (10)

E1 cruise = 8.9 (———-

NO,, 16.5

Smoke emission data were correlated in a similar manner. The data
for fuel Number 2 (JP-B) correlates well with engine test data using very
similar JP-5 fuel, see Figure 42, for example, when the appropriate severity

parameter was used., This parameter has been derived from engine tests, In
this case:!

Sg * [(fT%%ﬁ)(ig%ﬁ)(gzgjl)] e (%g{%%). MPa, g/kg, K, kg/a (11)

Use of this parameter thus enables the takeoff and dash rig data to be
corrected to engine conditions (Table A=6).

2, Combustor Life Prediction Procedures

The F101 combustor liner is 1ife-limited by low cycle fatigue from
thermal gradients where the coolest regions are on the cold side of the (ilm
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cooling slots and the hottest region is just upstream of the cooling slot
structure. The liner has been life optimized both in its cooling flow
distribution and in the metal thickness distribution,

In its initial design and throughout its development, the liner temper-
atures, stresses, and life have been calculated with detailed computer
analyses, with adjustments to the heat transfer inputs as teast data identified
the magnitude of spacific contributors to the liner heating. Referring to
Figure 31, the combustor is heated by convection and radiation from the hot
combustion gases. These gases are hotteat in the upstream end of the burner
and drop toward the exit temperature as the air entering through the dilution
holes mixes and cools the gas. The local gas velocities and temperatures
are calculated by computer program based on the air distribution, and these
values are then modified as indicated by subsequent combustor test data. The
combustor liner is protected by the film air introduced through the film
cooling slot. The rate at which the hot combustor gases mix through this
protective film has been established from laboratory test data and combustor
experience for the various specific film slots throughout the liner. Ad-
ditional inputs to the heat transfer calculation include the flame radiation
heating, metal radiation cooling, the convective cooling rates on the cold
slde of the liner, and the impingement cooling rate on the cooling slot over=
hang. The flame radiation being the least well-defined from other data can
be determined by back calculation from measured metal temperatures. With
the aid of a computer program to calculate the thermal conduction through
the metal structure, the above heat transfer Inputs or correlations are used
to calculate the detailed temperature distribution within the combustor liner.
These temperatures are then used as input to a stress analysis program to-
gether with inputs for mechanical and aerodynamic loads, which then calculates
the elastic stresses throughout the structure. These stresses are then used
together with low cycle fatigue material properties (Figure 32) to predict
life to first cracking, with an appropriate multiplier from experience to
determine total life.

3, Turbine Life Prediction Procedures

If alternate fuels created substantial changes in temperature pattern
factor or temperature profile in the combustor exit gases, changes in turbine
component life would be predicted. However, previous experience has not
identified changes in these combustor exit temperature patterns at the full
power conditions where combustor life is limited. As discussed in Section
VI.A.3., the temperature pattern changes that were measured in the combustor
exit gases at one-atmosphere pressure apparently deo not exist at true engine
pressure conditions.

However, in addition to the effects of combustor exit gas temperature,
the same luminous flame radiation that affects the combustor liner can also
radiate downstream into the turbine components. The leading edge of the
stator vanes it the turbine diaphragm receives the most radiation. The
turbine blades are shielded from direct radiation from the flame and are,
therefore, not affected; the combustor exit gas radiation and gases passing
through the turbine are not believed to have the luminous componant in their
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§ radiation that exists in the dome region.

i & From previous data in combustors other than the F10l1 including the

: 3 J79 and the CF6, it has been observed that fuel changes that create metal
§ temperature changes from flame luminosity in the front end of the combuator
: do not also result in metal temperature changes at the aft end of the com=
é bustor. The intense luminosity exists in the regions where the combustion
@ of the fuel is taking place, resulting in intermediate combustion products,
* but not in the downstream regions where tha combustion is complete and only
{ dilution and mixing are taking place.
4! Liner metal temperatures can respond to luminosity even in the pertion
£ of the liner downstream of the end of the luminous region because the matal

b : still has a partial view upstraam into the dome. The cooler intervening

i 4 gases do not completely shield the liner from the upstream luminous radiation,

These intervening gases absorb heavily in the nonluminous wavelength bands

for water vapor and carbon dioxide and essentially shield the downstream parts
from upstream radiation in these wavelength bands. The luminous components

of the dome radiation, however, include radiation in wavelength regions that
are not easily absorbed by the intervening gases. It is largely this latter
component of the radiation that reaches the aft liner and vane leading edge.

ey g 408

B st

Ty -

However, far downstream on the liner the view factor to the luminous
region (the fractlon of the effective radiating space to the metal surface
that is coming from the luminous region) gets quite small and the effects
of the luminous reglon become negligible at the aft end of the J79 and CF6
combugtors, The F10l combustor is, however, a very short combustor and the
luminous region i1s close to the end of the combustor. Not only might the
aft liner panels be affected but also the vane leading edge.

R RN
.

bl

g SR B R

: : The view factor from the F101 vane leading edge to the luminous fire
o is higher than in, for example a J79 combustor, both because the combustor
1s shorter and because the combustor is annular. A much wider view around

the circumference is present because it is not interrupted by the sides of i3
can liners,

In addition to this direct radiation effect from the luminous region
to the vane, a leas direct effect of dome luminous flame radiation also
exists., If the combustor liner metal temperatures at the end of the
combustor are affected by this luminosity, they in turn will radiate at 13
a different rate to the vane leading edge. This effect 1s, however, much
smaller than the direct radiation effect, generally less than 10 percent
of the direct radiation effect,

et B
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At the present state of develupment, the F10l1 stator vane {8 1{fo-~
limited primarily by low cycle fatigue cracking of the tralling ond of the
vane. This region 1s not affected by combustor luminasity radiation., How-
ever, as this region ias improved through further development, cracking at
the leading edge could become life-limiting, and hence, affected by fuel
type. The vane could then be reoptimized in development for the specific b
: fuel type expected in cperation with some increase in cooling flow or f
v cooling complexity needed for the most difficult fuel type,
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Even though the leading edge is not the primary life~limiting region
of the stator vane, the effect of fuel type on low cycle fatigue of the
laading edge was calculated., This was done to illustrate the potential life
offects for future vanes with improved trailing edge deaigns where the
leading edge life becomes a significant contributor to the overall vane lifae.

The same steps used in calculating combustor liner life are used in
calculating vane life. First a detailed metal temperature distribution is
calculated by computer program using appropriate heat transfer inputs. Then,
stresseas are calculated from this temperature distribution. Cycles to low
cycle fatigue cracking are then calculated from these stresses.

Figure 33 shows the node model used for the latest design of the F101
turbine stator vanes.
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SECTION VI

RESULTS AND DISCUSSION

All planned test series (76 total) were completed and no major problems were
encountered. In general, results were well ordered and consistent with prior data
insofar as comparisons could be made. Detailed test results, which are listed in
Appendices A through E, are summarized and discussed in Section VI.A, Engine
system life prediction analyses based on these results are then presented in Section

VI.B. Further, an overall assessment of these tests and analyses is presented in
Seetion VI.C

A. Experimental Test Results

Twenty-six full-annular rig tests were conducted to obtain the performance
emissions/durability data which are listed in Appendix A and summarized in Sections
Vi.A.l through VI.A.5. Thirteen carbon deposition tests were also conducted and
results are listed in Appendix B and discussed in Scction VI.A.6. Fourteen low-
pressure rig tests were conducted in parallel to obtain the ground start and
altitude relight data which are listed in Appendix C and summarized in Sections
VI.4.7 and VI.A. 8., Also in parallel, 15 short-term fuel nozzle fouling tests and
8 long~term fuel nozzle valve gumming tests were conducted to obtain the data
listed in Appendix D and summarized in Section VI.A.9 and VI.A.10.

1. €0 and HC Emissions

Carbon monoxide (CO) and unburned hydrocarbons (HC) are both products of
incomplete combustion, and are, therefore, generally highest at low power operat-
ing conditions (idle). Figure 34 shows the strong effect of combustor operating
conditions (fuel-air ratio) on CO emission levels with three fuels at idle. At
the true engine idle fuel-air ratio, the CO emission index is 28.7 g/kg with JP-4

fuel in these tests which is in good agreement with previous rig and engine
measurements.

Idle CO emission results very similar to those shown in Figure 34 were obtained
with each of the other fuels, and the results corrected to true idle fuel-air ratio
are listed in Table 18 and A-3.

Table 18 also summarizes cruise, takeoff, and dash results. True engine take-
of f and dash CO emissions have been corrected for pressure as shown in Table A-~4

using an exponent (1.5) estimated from previous tig and engine test data comparisons.

At cruise, takeoff and dash operating conditions, the (O emission levels are
approximately 7, 2, and 1 percent, respectively, of the idle CO emission level,
which indicates the strong effect of combustor inlet temperature and pressure on
combustion reaction rates and, hence, combustion efficiency and CO emission levels.
These CO levels are very low and virtually independent of any fuel property.

Figure 35 shows idle CO data plotted against relative spray droplet size (from

Table 9) or fuel 10 percent recovery temperature (from Table 3), which 18 one of
the more commonly used indicators of fuel volatility. It appears thai either of
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Table 18, Summary of CO Emission Test Results.

N\l::le:gr CO Emission Index, g/kg (W
& Idle Cruise Takeoff Dash 3?
B 3
%b 1 28.7 2.0 0.5 0.3
2 29.9 2.3 0.7 0.4
3 30.6 2.2 0.5 0.4
34.6 2.4 0.5 0.3 E
5 31.8 2,6 0.5 0.4 §
6 32.9 2.3 0.5 0.3 j'f'
7 3.1 2.3 0.7 0.4 %
3 8 29.1 2,5 0.6 0.4
;?’ 9 25.2 2.4 0.6 0.4 .
% 10 30.1 2.3 0.6 0.3
11 28.9 2.2 0.5 0.3
E 12 26.5 2.1 0.4 0.3
{ 13 36.3 2.2 0.5 0.3

(1) Corrected to true engine operating coaditions.
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these parameters correlates the idle CO data quite well. Both of these properties
can be expected to affect idle emissions, but for these tests, it is difficult to
judge which property is most important since, for these fuels at least, they turn
out to be highly interrelated. There is some indication in Figure 35 that for the
JP-8 based fuels, the drop size parameter better correlates the results than does
the volatility parameter.

Hydrocarbon emisgion levels generally have been found to follow the same
trends aa do CO emissions, but to be more sensitive to combustor operating conditions
and exhibit more variability. Both of these trends were observed in the present
tests and are illustrated in Figure 36, where HC emission levels are plotted
against CO emission levels for the two idle test points and all fuels.

Figure 37 presents the idle HC emission versus fuel-air ratio for the three
base fuels, As with the CO emismion, a strong fuel-air ratio effect is evident.
Idle HC emission was therefore adjusted to the true engine fuel-aiv ratio as shown
in Table A-3. These results are summarized in Table 19. For all fuels, HC
emissions at cruise, takeoff and dash were essentially zero and touo low to measure,

Figure 38 presents the idle HC emission plotted against the spray drop size
and volatility parameteras. As with the CO emissions, a good correlation is
evident for both parameters. These plots show a 150 percent increase in HC emissions
for the worst fuel (No. 2 diesel) compared to the JP-4 fuel.

2. NOy Emissions

Oxides of nitrogen (NOx) may form from oxidation of nitrogen which originated
either in the air or in the fuel. Current jet engine fuels and all of the fuels
used in this program contained negligible amounts of bound nitrogen, but in the
future, alternate sources and/or processing economics may result in significant
quantities of bound nitrogen in aircraft fuels. The following discussion is,
therefore, applicable only to the "thermal' NOx production characteristics of
current and advanced fuels. Fuels containing significant quantities of bound
nitrogen have been investigated in other programs, and typical results are
contained in References 8, 9 and 10.

In contrast to CO and HC which are products of incomplete combustion and are,
therefore, generally significant only at low power conditions, "thermal" NO, is
an equilibrium product of high temperature combustion and 1is therefore highest
at high power operating conditions. Figure 39 shows the strong effect of combustor
operating conditions on NO, emission levels with JP-4 and JP-B fuels. The data
for both fuels correlates very well with a combustor operating parameter (Syo.)
developed for several General Electric "rich-dome'" combustors, and shows the
significant effects of inlet pressure, temperature, humidity, velocity and fuel~
air ratio. At takeoff conditions, the NO, emisaion index 1s about 26 g/kg which
is in very pood agreement with previous engine and rip test results., At dash,
cruise and idle operating conditions, the NOx levels are approximately 117, 35,
and 12 percent, respectively, of the takeoff NOy level.

NO,, results very similar to those shown in Figure 39 were obtained in each
of the tests and results are summarized in Table 20. The effect of fuel properties
are 1llustrated in Figure 40. At each of the operating conditions, NOy levels
correlate very well with fuel hydrogen content, and appear to be independent of

o . e
e

oW o e o,
oy Sudahs
R e

e ST

P

™ AT 30 vy AT

L Nr T TERe

R

I

W ESUSIATN et

i,

e




W

H 102
pm
1 - ™"
£ Ly =86.0 (_x)238
¥ | 100
é B Eg Symbol
a
i 0 O
1 % 0
: w0 i o
S a
:F o
2 - 8 a
8 L 0
. g a
i T o5 ©
i & o
PR o 0
: 3 !
g @]
?’!‘_‘10O - 0
= o S T, = 468 X
K B Py = 0.390 1pa
- // Vr = 18.3 m/s
" £ =10 to 17
B/kg
-1
10 11 L
10} 102

CO Emission Index, g/kg

Figure 38, Variation of HC Emission lLevels
With CO Emission Levels at Idle
Operating Conditions,

83

T S T YL O E STITN b e I DR A AL MR

Fuel
No.

© @ 2 ;M O b W N

I I
N = O

et



20.0

10.0

8.0

8.0

? &
® 40
;
- [
g
1y 2
% 2.0
[
=]
2
1.0
’ 0.5

Engine Idle,
JP-4

Pa = 0.390 MPu
Ta = 468 K
Vr = 18.3 /s

— Fuel No, 13

y=2.6 X
14,30

— Fuel No. 1

y=1,7 X
14.00

[ Fuel No. 2

y=1.86 X
14,13

Figure 37,

30

fs, Sample Fuel-Air Ratio, g/kg

Effect of Fuel-Air Ratio on

Idle HC Emission Levels,

T E——

84

A AT R B L R T e AW W il

Idle Operating Condit: .3

o
o

>-6 .3

e gL L L. AT

"y Nt

vy




& -
- i
i
1
. 1
4
e i

Table 19, Summary of HC Emigsion Test Results,
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Number HC Emission Index, g/kg
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1 1.68 0.1
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2 1.59 0
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4 1.85
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5 2,23

6 1.82
7 2.73
8 1.03
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9 0.88
10 1.11

11 0.96

o 0o o o o o o o

12 0.90
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o
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13 2.65

(1) Corrected to true engine operating conditions.
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Table 20. Summary of NO, Emission Test Results.

grusl NOx Zmission Index, g/kg W Aé

Idle Cruise _ Takeof f Dash ‘é

1 2,89 8.88 25.94 | 30.55 %

2 3.36 9.38 26.52 31.15 %

3 3.33 9.15 25.71 30.17 gg

4 4,52 10.85 28.87 33.73 %

5 4.3 10.33 27,40 32.00 %

6 3.83 10.38 29,02 34,05 Aé

7 3,51 9.68 27.24 31.98 |

8 4,19 10.41 28.11 32,88 f

9 3.54 | ~9.4(2) -27.1) | -31,9(2) 3
10 3.65 10.26 29.09 14.17
11 3.51 9.5 26.73 31.37
12 3.50 9.07 24.93 29.21
13 3,62 9.50 26.25 30.77

(1)

Corrected to ambient humidity of 6.3 g/kg
and true standard day engine conditions.

(2) Egrimated (Span calibration drifted
approximately 10%).
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oiner fuel effects. This dependence on fuel hydrogen content can be predicted
qualitatively at leaat, from the flame temperatures dependence on fuel hydrogen
content and, in turn, the effecr of flame tempevature on NOy formatiocn rates in
diffusion flame processes. Figure 41 shows tha effect of flame temperature (from
Table 9) on the NOy emission levels at takeoft.

3. Smoke Emissions

Smoke, like CO and I'C, {s & product of Incomplete combustion. Combustors with
virtually 100 percent combustion efficiency can produce highly visitle exhaust
plumes, becausc the soot particle sizes are of the same order of magnitude as the
visible Jight wavelengths. As described in Section IV, the F101 engine combustion
system has been designed to produce very low smoke levels, and these tests provide
further verification that the design intent has been achieved.

Combustor exit plane smoke meassurements were obtained ii: each of the high
pressure combustor rig tests with each of the fuels and operating conditions.
These data were then processed as described in Section V.F.] to correct the data
from rig to full density/mixed-flow turbofan engine exhaust plane conditions.
Figure 42 illustrates the effects of combustor operating conditions on smoke levels,
and also the good correlation between test rig and engine smoke data for this
combustion system. At true Fl0l1 engine mixed flow exhaust nozzle conditions,
smoxe levels with JP-5 or JP-8 fuel at idle, cruise, takeoff and dash conditions
are approximately 0.4, 1.7, 2.9, and 3.2, respectively, which are on the threshold
of smoke measurement system accuracy.

Rig smoke results very similar to that included in Figure 42 were obtained
with each of the fuzls in this program, and are listed in Appendix A. A sumnmary
of smoke levels corrected to true engine conditions are presented in Table 21.
Also included in Table 21 are smoke emission indices (grams carbon/kilogram of
fuel) computed from the smoke numbers according to the procedure described in
Appendix E.

Effects of fuel pruperties are illustrated in Figure 43. At each engine
combustor operating condition, smoke levels decrease with fuel hydrogen content,
but no effect of fuel volatility or aromatic type (mono or bieyclic) is evident.
The F10l1l engine exhaust smoke levels would be expected to be well below the
viyible threshold with any of these fuels.

4, Liner Temperature

Liner temperature measurements were obtained in the high pressure combustor
tests at the locations described in Section V,A.2, and detailed data are listed
in Appendix A. Figure 44 shows typical variations in measured liner temperature
rise (Ty, - T,). Peuak temperatures always occurred on the outer liner third panel
and either at the 18-degree or 36-degree CWALF thermocouple location. Figure 45
shows typical test data for panel 3 outer along with a computer estimate of the
temperature profile along the panel. Good correlation is evident. The effect of
combustor fuel-air ratio on peak inner liner temperatures with fuels 1 to 4 is
shown in Figure 46. Very good correlations were obtained with all 13 fuels
(Table A-9), and results are summarized in Table 22.
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Figure 43, Effect of Fuel Hydrogen Content on Smoke

Emission Levels,
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Table 22. Summary of Liner Temperature Results.

(TLmax - T3)
Peak Liner Temperature Rise, K
NS:;:!‘ fgi; & Cruise Q) Takeoff @ Dash (3
Engine) Rig Engine Rig Engine Rig Engine

; 1 167 286 270 348 383 333 385

3 2 164 298 282 370 405 352 402

B 3 164 299 283 372 407 354 404

3 4 160 322 | 306 s | us0 91 | 6

3 5 150 290 274 358 403 348 398

3 6 142 314 298 418 453 391 441

4 7 136 282 | 266 38 | 403 6 | 39

i 8 150 296 280 179 414 358 408

; 9 144 276 260 349 384 330 380

4 10 168 293 277 358 393 342 392 '
1 11 166 283 | 267 343 378 328 378 ]
1 12 174 278 262 330 165 317 367 :
1 13 159 295 279 368 403 350 400 ;
3 iy
b :
(1) TEngine = A TRig - 16, K due to backeside cooling. ;
‘ (2) A TEngine w A TRig + 35, K due to backside cooling and pressure. i

(3 -
A TEngine A TRig + 50, K due to backeide cooling and pressure.

13 sl ot o N o
s i e N St O




Table 22 summarizes both rig and predicted engine liner temperatures.
Engine liner temperature rises at cruise were adjusted by 16 K due to backside
cooling differences batween the rig and engine. In the engina turbine cooling
air provides additional backside cooling. The adjustment is based on computer
estimates discussed further in Section VI.B. At takeoff and dash, adjustments
of 35 K and 50 K were made to the rig data. These corrections included both
backeide cooling and preasure effects and were again estimated using the computer
analysis. Peak rig liner temperature rise as a function of fuel hydrogon content
and engine power level is shown in Figure 47. At takeoff and dash conditions,
strong effects of hydrogen content are shown, but at cruise the effect is less,
and at idle slightly reversed.

Shown in Reference 9 is the dimenerionless liner temperature parameter
[(TL, max = TL, max, JP=4)1/(TL, max, JP-4 - T3) which correlates a wide
variety of data involving rich combustion systems with pressure atomizing
fuel injection systems designed by three different engine manufacturers,
As shown in Figure 48, rhe current data indicate less sensitivity to fuel
hydrogen content than do the data for the older, richer dome combustors,

5. Combustor Exit Profile and Pattern Factor

Combustor exit temperature distributions were measured in atmospheric dis-
charge combustor rig tests as described in Section V.A.5. This atmospheric
pressure test technique has been employed extensively at General Electric to
develop the excellent temperature profile and pattern factor characteristics of
large full annular combustion systems. In general, the effects of combustor inlet
pressure level or fuel type on exit temperature distributions have been thought to
be small, particularly for newer, large combustors. However, this program produced
some surprises in that atmospheric pressure tests clearly showed a fuel effect.

Typical combustor exit temperature profiles from these tests are shown in
Figure 49. Data for two fuels (JP-4 and JP-8) are included, and for each fuel
repeat traverse data are included to show data consistency. The average profile
i8 very repeatable, and no discernable fuel effect 1s evident, which is expected.
The peak profiles, however, are less repeatable and a fuel effect is evident,
which was unexpected. In this example, the pattern factor is about 0.09 higher
with JP-8 fuel than with JP=4 fuel, Figure 50 shows that approximately this same
pattern factor difference was measured at all test conditions. Results very
similar to those shown in Figures 49 and 50 were obtained with all of the fuels,
which are summarized in Table 23. As shown in Figure 51, pattern factor levels
correlate quite well with the fuel atomization parameter.

This test series was the first time that fuel variations had been investigated
in the F101 combustor atmospheric pressure pattern factor test rig, but fuael
variations had been pattern factor tested many times in other combustor rige
including:

1) TF39/CF6 full-annular combustor rig at atmospheric preasure.

2) J79 single can high pressure test rig (Reference 1).

3) T700 full-annular combustor rig at high pressure.
(Combustor design similar to F101)
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4) TF34 full-annular combustor rig at high pressure.
(Combustor design similar to F101)

No fuel effects were detected in any of these other pattern factor rig tests.
Further, all of these engines, including the F10l, have been run with JP-4 and
JP=-5 (Jet A) fuel and no fuel effects on turbine stator vane condition have been
detected. Therefore, it is concluded that the apparent effect of fuel properties
on F101 pattern factor must be an atmospheric test phenomenon only which is
evident because of the high loading in this design (high space rate and very low
length-to-height ratio).

A posasible explanation for the apparent effect of fuel atomization om pattern
factor only in atmospheric pressure tests may be an effect of air density on spray
droplet size in addition to the parametsrs contained in Equation 4. This
correlation (from Reference 4) presumably does not contain an air density term
because all of the experiments were conducted at atmospheric preasure, as have
most atomization studies. However, it is generally concluded that droplet sizes
decrease with increasing air density. In Reference 10, several droplet size
correlations are presented which include air density with exponents ranging
from ~-0.35 to ~1.00. At full density F10l engine conditions droplet sizes may
be small enough with both JP~4 and JP~5 fuels that pattern factor is controlled
by other parameters.

6. Carbon Deposition

As discussed in Section V.B, high pressure combustor tests were run with
procedures established to provide information as to the relative carbon deposition
tendencies of each fuel. Each test began with a clean swirler and combustor dome,
and was run the same total time (5.25 hours). At the completion of each test,
airflow calibrationas of the swirlers and total assembly were made which are
presented in Table B-1 and summarized in Table 24. Photographs, which are included
in Appendix B, were also made to document the carbon deposition tendencies. No
massive deposits were found in any of the tests, and as shown in Figure 52, no
significant flow area reduction was measured with any of the fuels. The only
distress noted in thie teat series was a tendency for burning of the trailing edge
of the flared dome extension insert with low hydrogen content fuels. The need
for additional cooling in this region had previously been identified and has been
incorporated into newer F10l combustor dome designs. These tests suggest that
with reduced hydrogen content fuels some additional cooling may be required.

7. Cold Day Ground Starting and Idle Stability

Fifteen cold day ground start tests were conducted in the 54-degree sector
combustor rig using procedures deacribed in Section V.C.2. Detailad test results
are listed in Appendix C, and typical results are illustrated in Figure 53, In
each test, 2500 rpm engine motoring conditions were simulated, and lean lightoff
and lean blowout limits were determined as a function of ambient (fuel and air)
temperature in steps from test cell ambient down to the limit or to 239 K (~30° F),
As shown in Figure 53, lightoffs were obtained down to 239 K with JP=4 fuel, but
the required fuel-air ratio increased significantly, With the less volatile/more
viscous fuelg, cold day 1limits were encountered above 239 K. Results for all fuels
are summarized in Table 25, and effects of fuel atomization and volatility on the
cold day limits are illustrated in Figure 54. For this group of fuels, these two
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Table 24,

Summary of Carbon Deposition Test Results.

Ae, Pogttest
Ae, clean
Effactive Airflow
Area Ratio
Splash Flared Dome
Fuel Primary Total Plate Extension Insert
Number Swirler Assembly Burns Burns
1 0.953 0.970 No No
2 0.955 0.955 No No
3 0.973 0.965 No No
4 0.980 0.976 No Yes
5 1.063 0.981 No No
6 1.002 0.977 No Yes
7 0¢968 00934 No No
8 0.900 0.972 No No
9 0.946 0,980 No No
10 1.000 0.994 No No
11 0.971 1.003 No No
12 0.968 0.978 No No
13 0.989 0.960 No No
Avg, 0.975 0.973
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Table 25. Summary of Ground Start Test Results.

L TR T

'i:l

5 Standard Day

L (2882 K)

£ Fuel-Air Ratio

) Fuel Lean Lean Cold Day Limit(?

g Number Light=0ff Blowout Amblent Temperature, X

. 1 27 19 <239

§ ! 1R 25 16 <239

é 2 34 20 266

3 3 35 20 279

; 4 40 24 272

&y

£ 5 34 22 267

E 6 37 27 268

L 7 19 33 278
E 8 38 26 260
9 41 26 256 4

1 10 43 23 273 1

11 36 28 244 4
L 12 29 24 <239 2
] 13 44 30 278 3
1KR n27 ~20 - 1
0 1
; (1) simulated 2500 rpm Cranking Conditions _'
v Py = 101 kPa, We = 1.15 kg/s - engine.
E @ 7, . - 1
| )Ty = Tyuer = To
We < 50.4 g/s - engine =+ f, < 44 g/kg. %
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300

- @™ A
. o ~— 0

@ | B |
: 280 O Arrows: Starting Temperature e
Limits Below Test Limits (238K)
QO Jr-4 Based Fuels
- ? ) Jp-8 Based Fuels

) No, 2 Diesel Fuel

220 1 | ] |
0.9 1.1 1.3 1.8 1.7

(sm)/(sm)”-q. Relative Spray Droplet Size

300

inimum Ambient Temperature, K
for Normal Ground Start

260

/CD 2800 rpm Cranking Conditions
0 Pa ~ 101 kPa
= wc = 1,18 kg/s = Engine
ﬁ wf 3 50.4 g/s ~ Engine
|

220 1 l | !
340 380 420 480 500

Fuel 10 Percent Recovery Temperature, K
g (Gas Chromatograph Simulated Distillation)

. Figure 84, Effect of Fuel Atomization and Veclatility on Cold Day Ground
: Starting Capability.
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limits are illustrated in Figure 54. For this group of fuels, these two properties
are highly correlated, but it appears that the cold day limit correlates somewhat
better with the atomization parameter. No effect of fuel hydrogen content o1
aromatic type ig evident.

In addition to the cold day ground start tests, altitude rolight tests were
conducted which are described in the following section, and lightoff/stability at
simulated i1dle operating conditions were measured in the full-annular combustor
tests. These idle stability data are summarized in Table 26. 1In contrast to the
cold day start data, these idle data show hardly any effects of fuel properties,
and the variations are attributed merely to data scatter,

8, Altitude Relight

Fourteen altitude relight tests were conducted in the 54~-degrea sector
combustor rig using procedures described in Section V.C.2. Detailed results are
listed in Appendix C, and trends are illustrated in Figures 55 and 56. Resulta
are summarized in Figure 57 and Table 27.

Overall, as expected, very good altitude relight characteristics were found,
and fuel effects were moderate. In Figure 55, measured minimum combustor inlet
pressure limits for relight in the Si4-degres sector rig are compared to the engine
requirements corresponding to both open and closed exhaust nozrle windmilling
conditions, Open nozzle conditions were generally utilized to increase the test
severity, but the normal angine relight mode is with the exhaust noxzle closed,
which increases the combustor inlet prassure making conditions more favorable for
relight,  As shown in Figure 55, the ssctor rig pressure limit line generally lies
between the two engine requirement lines. With a highly volatile/low viscosity
fuel (JP-4), the closed nozzle requirement is met with considerable margin at the
higher airflow rates (flight Mach numbers). This sector rig tends to be pessimistic,
relative to actual engine experience, but the difficulty in meeting even the
closed nozzle requirement at low airflows (low flight Mach numbers) without starter
assilst is clearly indicated., With a less volatile/more viscous fuel (JP~8)
relight at low airflows becomes even more difficult, which is also illustrated in
Figure 55, but at high airflows, fuel type has little effect.

Relight maps, based on open exhaust nozzle windmilling conditions, for each
of the test fuels are shown in Figure 56, The individual plots have baen positioned
in order of decreasing fuel hydrogen and decreasing fuel volatility (or increasing
viscosity). The experimental limit curves always tend to be S~shaped with a
maximum and a minimum at flight Mach numbers of about 0.75 and 1.00, respectively.
There is virtually no effect of fuel hydrogen content, but fuel volatility/
atomization effects are evident at low flight Mach numberas, which are sutmarized
in Table 27 and Figure 57, 'The relative spray droplet size parameter (from Table
9) correlates the altitude relight limits at 0.50 and 0.75 flight Mach number quite
well, but at flight Mach numbers of 1,00 and 1,25, the limite are virtually the
same with all of the fuels.

9., Fuel Nozzle Fouling

Since the F101 engine combustion system incorporates low preasure drop air-
blast fuel injection atomization, fuel norzle fouling phenomena affect fuel flow

matering characteriatics rather than fuel spray quality or atomization characteristics.

112

e T 4 N0 8 e e o

i w9t e 2




4 Table 26, Summary of Idle Stability Test Results,
§
* b 14
; é 3 & R Lightoff Lean Blowout
SR I T BT
H 9 w o ‘g " 0 -~ ) - o~ ' &
: & S B S B - g oo, g o | o
¢ ¥ cl - - B e 3o (I 5 0
e e - 0 & N g [ZYEe] 3 fa o
: 33 o~ Y 2 &% - . R - -1
%‘ R a & > 9 (a1 X I - s ™ w &
: 1 0.106 | 2.25 | 458 | 33.3 | 14.8 | 147 | 6.5
5 2 0.106 2,25 452 31.2 13,9 11,7 5,2
; 3 0.107 | 2.24 | 473 | 30.1 | 13.4 | 12,7 | 5.7
i 4 0.207 | 2.39 | 472 | 30.7 | 12.8 | 4.5% | 1.9%
. 5 0.107 2,41 466 33.9 14.1 14.0 5.8
5 6 0.107 2.42 468 8.4 15.9 12.5 5.2
% 7 0.108 2,41 469 27,1 11.2 13.6 5.6
4 8 0.108 2,41 466 27.6 11,5 13.4 5.6
: 9 0.107 2,37 473 35,4 14.9 13.1 5.5
10 0.108 2.43 462 32,6 13.4 17.1 7.0
11 0.108 2.41 453 38,3 15.9 15,7 6.5
12 0.107 2.23 460 31.0 13.9 13.9 6.2
13 0.107 2,40 427 29,5 12.3 12.0 5.0
Average 32.2 13.7 13.7 5.8
3 std. Deviation 1,58 | 1.49 | 1.55 | o0.61
- Normalized Deviation 0.111| 0.109| 0.114| 0.105
g% _ * Suspect; excluded from statistical analysis,
:
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® Hatched Area: Lightoff
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tions from Figure 12,
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)
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Figure 56,
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Flight Mach No, = 1.25 i
10 A f
8 giy = 7,62 + 1.48 (x - 1) —
(r = +0,14) 3
0 | L L ’
k. 18 T . |
A -~ Flight Mach No. = 1,00 |
i *
g 10 Y™ 8.78 = 1,92 (X = 1) moeee |
2 : 2 (r = «0,22) A
f ) ctos lé 3
; _55 s O P-4 F Fueln Cp OO ) DD 0 -
f O JP=-8 Fuels
; - [\ No. 2 Diescl Fuel
é I | 4 I
-k
i:
- B 15 1 ';.
P 0 Flight Mach No, = 0,78 | ‘
” ‘:"g* 10 y = 8,81 - 11,38 (x = 1) "
=i w-o~odmm,_ O 4
, 58 s w ;
- <} Q 4
? r 0 L | | E
o
5?‘ é‘ i
i !
: 15 T 3
Flight Mach No. = 0,50 i
-’: !
3 10 ¥ = 4.81 = 10,23 (x - 1) Ve
_ (r = -0.79) ‘4
3 I
| b —oo0 |
] o O—OCLHpn O |
0 1 | o I — A
: 0.9 1.1 1.3 1.6
T SMD/SMDJP_4, Relative Spray Droplet Size
: Figure 67, Effect of Fuel Atomization on Altitude Relight Limits (Open
4 Exhaust Nozzle Windmilling Conditions),
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Table 27. Summary of Altitude Relight Test Results

Relight Altitude Limit, km

f 5 At Open Exhaust Nozzle

L ﬁ Windmilling Conditions

- z and Flight Mach Number =

; vy

g 0.50 0,75 1.00 1.25

1 5.0 9.4 7.6 8.2

f 2 3.2 7.7 6.6 7.6

3 2.6 5.8 6.3 7.9

4 2.9 7.5 5.8 8.2
5 2.9 7.5 6.5 8.2
6 3.2 7.5 5.0 6.4
/ 0 2.7 5.2 7.4
8 3.3 7.7 5.9 7.2
9 2.7 7.7 6.9 8.8
10 3.3 7.7 5.9 5.8 ’
11 4.5 7.3 6.3 6.8
12 4.0 8.7 8.4 10.0
13 0 4.0 7.8 9.5
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Figure 58 illustrates the types of flow characteristics deterioration which may
occur. A fuel nozzle in good condition (pretest symbols) meets very close flow
tolerances and exhibits virtually no flow hysteresis. After long engine service
or hot fuel cycllic rig teating, gum deposits form which affect the metering valve
action. For the poat cyclic rig test flow calibration example shown, the valve
cracking pressure has increased from 0.75 to 1.25 MPa, flow rates at 2.2 and 3.0
MPa have decreased about 4 percent, and descending pressure flow rates have in-
creased about 8 and 103 percent at 1.2 and 0.8 MPa (hysteresis). Deterioration
can therefore be characterized by either flow rate reduction or flow-hysteresis
increase at selectad nominal fuel nozzle pressure drop conditions. Two different
metering deterioration parameters were calculated for analyses of the fuel nozz.e
fouling data:

(Pretest Flow Rate)-(Test Flow Rate)
Flow Rate Reduction = (Pretest Flow Rate)

Astonding Pressure  (12)
Calibration

and:

Ascending Flow Rate Ascending Flow Rate (13)
Flow Hysteresis Tncrease = \Demcending Flow Rate = \Desconding Flow Rate
Pretest " Test

The first type of deterioration indicator (ascending pressure flow rate reduction)
could probably be related to relight sbility (insufficient fuel in the vicinity

of the ignitor). The second type of deterioration indicator (flow rate
hysteresis) is probebly more important in that variations in hysteresis of the
twenty fuel nozzles can result in hot streaks and turbine distress at higher power
operating conditions.

The extent of deteriovation should be dependent upon fuel injector design
features (clearances, finishes, spring forces, and manufacturing tolerances) as
well as fuel properties (thermal stability rating), operating conditions (fuel
temperatur2 and flow rates, alr temperature, and velocity, etc.) and exposure time.

Under normal engine operating conditions, the types of fuel nozzle fouling
described above usually occur only after long use, which would require long tesis
and large fuel quantities to duplicate, which were beyond the original scope of
this program. Therefore, short but severe tests described in Section V.D.1l were
conducted in an effort t7 define the relative fouling tendencies of these 13 fuels.
A total of 15 tests were conducted, and results are listed in Appendix D. After
inconclusive tests with Fuels 1 and 2 (no significant flow calibration detecrioration),
the fuel temperature was increased from (436 to 478 K) to accelerate the fouling
tendency. A summary of these later results is shown in Table 28, With the
increased fuel temperature, noticeable deterioration at the first calibration
point (0.83 MPa) occurred, by eithe+ definition, within this short (5-hour) test.
Howevcr at the second calibration point (1,2 MPa), virtually no deterioration was
detected.

Figure 59 is an attempt to relate the fuel nozzle fouling tendency in these
tests to the laboratory fuel thermal stabllity rating of the fuels from Table 6.
The expectod trend would be more fouling with lower JFTOT breakpnint temperature.

118

Bt e e e B ke Pmaf
i Bl gt s afad
) i i i

e
;S gt e
s e g

S Eies ag ik

S A A oy

prg

FORD PN
M B e i (ot




ol i

v
. 100 T
' O Pretest (Ascending and O
Descending) Q
- ) Post Cyclic Test No. 3 E
(18 hrs,, JP-8, 494 K) ;
O Ascending |
80 - ¢\ Descending :
£ /
3
- O
60 /
k. ® /
s [ 8 |
& ;]
. @
3 : &
) I -] 40 P—
. - H
3 ) w
. 2 g
- b 2.
" o
3 = Eﬂ f
" - ;
B -
8 / / |
20 |- J —
] p/
0 10 I | '
0.5 1.5 2.5 3.5
_ Fuel Nozzle Valve Pressure Drop, Mpa !
,A Figure 88, Effect of Hot Fuel Cyclic Toating on Fl01
3 Fuel Nozzle Metering Valve Flow Character~
-3 imtics,
",
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Table 28, Summary of Short Time Fuel Nozzle
Fouling Test Results

(5-Hour Test at Tf = 478 K)

Flow Rate W Flow Hyucereoil(Z)
b Reduction, % Increase, %
% 4P, MPa 4B, MPa
I E 0.827 1,241 0.827 1,241
% 1 22,2 3.3 20,2 4,0
§ 2 2.7 2.1 25,2 7.0
? 3 36.4 2.1 45.2 1.6
| 7.1 -2.1 1.2 -1.0
5 29.5 3.6 2.9 -0.5
‘ 6 14.7 0 1.7 1.6
%; , 7 17.3 2.6 14.5 0
8 25.4 0.1 12.9 0
9 24,7 3.0 19.6 0
10 -6,2 0 =3.1 -1.1
11 =5.2 -0.3 -h.7 -0.5 g
12 3.9 2.3 13.2 2.6 %
13 28.0 0 18.8 -2,1 %
Avg. 15,2 1.3 12.7 0.9 é

(1) Defined by Equation 12
) Defined by Equation 13
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However, the three fuels with the highest breakpoint temperature (Fuels 2, 3, and
7) do not fit the trend indicated by the other fuels. It was therefore concluded
that the thermal stability variations in this set of fuels were probably not large
enough to relate reliably to fuel nozzle fouling tendencies by these short tests.

The program scope was then increased to include longer tests with selected fuels,
which are described in the following section.

10, Fuel Nozzle Valve Cumming

As described above, it was concluded *ti»at longer tests were needed to
characterize fuel nozzle fouling tendencies, so the program scope was revised to
include u series of longer cyclic tests using the apparatus and procedurs described
in Section V,D.2. PEight tests were run using JP-4 and JP-8 fuels to determine the
relative effects of fuel temperature and cyclic test time on fuel nozele flow
characteristics, Detailed data are listed in Appendix D, which are summarized in
Table 29, Typical trends are illustrated in Figures 58 and 60, and summarized in
Figure 61. As noted, the results gummarized are for the upstream fuel nozzle
valve in the test rig.

As shown in Table 29, each of the tests was run until significant flow
calibration deterioration in the upstream fuel nozzle valve had occurred.
Ganerally, the downstream valve flow calibration deterioration was less. At the
lowest fuel temperature tested (436 K), deterioration was not great until near
the end of the 100=hour test with either fuel. In all of the higher temperature
tests, significant deterioration occurred quite soon (30 hours or less) and strong
fuel temperature/fuel type effects wure evident, as shown in Figure 60. In the
higher temperature tests, the time between shutdowns for flow calibration was
therefore reduced from 8 to 4 or 6 hours to determine more accurately the cyclic
time required to produce a significant degree of flow calibration deterioration.
However, as shown in Table 29, significant degrees of detarioration still often
occurred before the first flow calibration. Therefore, life curves such as that
shown in Figure 61 are difficult to construct with precision from these few tests.
It is, however, evident from Figure 61 that life (time to produce a selected level
of flow deterioration) tends to correlate with the temperature difference between
the breakpoint by visual tube rating (JFTOT) and test fuel operating temperature
of both fuels, A 20 K change in this parameter causes life to change by
approximately a factor of 5. Thus, this correlation could be used to estimate
the effect of either a change in fuel thermal stability rating or a change in
engine operating conditions on life of this fuel system component.

B. Engine Systems Life Predictions

1. Combustion System Life Predictions

The analysis as described in Section V.F,2 was conducted assuming a nonluminous
flame radiation level for Fuel 1 (current JP-4) and adjusting the film effective-
ness level to achieve a match between the measured and calculated temperatures on
the panels., Typical data match curves for Panel 3 outer liner are
shown in Figure 62. Similar dats match curves were prepared for each of the other
fuels by maintaining a constant film effectiveness level and by adjusting the f{lame
radiation to achieve the data match. This detailed approach permits the metal
temperature distribution throughout the structure to be calculated with high
accuracy providing the desired accurate input for the stress calculations.
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Table 29. Summary of Long Time Fuel Valve Gumming
Test Results (1)

; i
3 Test Time to Indicated Levels |
§ v B of Flow Metering Deterioration(l), Hours
& ;
! . ¢ é Flow Rate'? Flow Hysteresis'® 3
] b 3 . Reduction, ¥ Increase, % i
$ ( z £ at APg = 0,83 MPa at APg = 1,24 MPa |
¥ =z o . !
! o [~] -~ |
s | LB E| § gl 2 g
f & 3 g FR § y :
; o - - o ~ g w3 . h TR ™ z
0 7] "~ 9 7] !
g & |2 | & |8 | 3|88 |nd | 28 | =4
% 1 JP=4 436 100 88-96 88-956 | »100 16-24 88=96 88-96 ;
: 2 JP-8 436 100 <8 »>100 »100 86-96 88-96 88-96 ;
: 3 | Jp-8 | 494 | 18 | <6 <6 <6 <6 <6 <6 |

o 4 | gr-s | 4e4 | 44 | <6 < | 18-24 | 6 | 24-30 | 32-38 {

L 5 | Jp-4 | 464 | 32 | <8 <8 8-16 | <8 <8 16-24 E

% 6 JP-4 450 28 <h 12-20 | 12-20 <d 4-12 4-12

r 7 | Jp-4 | 456 | 26 | <4 <h 8-12 | «4 <4 4-8

i 8 | ap-4 | was | 229522 22 | 22 |16-22 | 16-22 | 16-22

3

5 (l)Upatream test valve results only. Downstream valve results are similar ﬂ

¢ but less deterioration, i

; (2) pefined by Equation 12,

i (3) pefined by Lquation 13.

§ (“)Tes: terminated because fuel supply exhausted.
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The temperature profiles were used as input to the CLASS/MASS Computer
Program and effective stress levels were calculated for the various fuels. The
stress and temperature distributions were combined with available material property
data (Figure 32) to predict cyclea to craeck initiation. The relative cyclic life
for the various fuels ies shown in Figure 63, The predicted cyclic life for fuels
containing 12 weight percent hydrogen is less than half of the life predicted for
the fuel containing 14.5 weight percent hydrogen. This decrease in life is due to
two effects, The first and smaller effect is due to increases in effective stress
levels because of increases in temperature gradients between the panel and the
cooling slot. The second and more significant effect is due to the rapid decay in
material properties in the predicted liner temperature range of 1200 to 1295 K,

The following table summarizes the life results!

Fuel Hydrogen Content, Relative F101
Weight Percent  _ Combustor Life

14.5 (Current JP=-4) 1.00

14.0 (Curcent JP=-8) 0.72

13.0 (ERBS Fuel, Ref. 2) 0.52

12.0 (Minimum, This Program) 0.47

2, Turbine System Life Predictions

The turbine vane heat load is made up of both convection and radiation and
the relative levele vary around the perimeter of the vane, The leading edge of
the vane has a view of the dome region and thus, a larger part of its heat load
is dependent on radiation as compared to the trailing edge which receives radiation
heating only from the gas path enclosed between the vanes. The radiation heating
of the leading edge accounts for about 20 percent of the total heat load. This
percentage decreases around the perimeter of the vane as a result of smaller dome
view factors reaching a value of only about 8 - 10 percent of the total heat load
for the trailing edge.

As discussed in Section V.F.3, the cooler combustion gases between the high
temperature dome and the vane absorb in the wavelength bands for carbon dioxide
and water and, thus, shield the vanes from upstream radiation in these bands.
The luminous radiation from the dome regions of the spectrum, however, is not
easily absorbed and increases the total heat load on the vane. Estimates were
made of the increase in the total heat load and the corresponding increase in
metal temperature. The temperature distributions were used to calculate stress
levels which in turn were used to calculate the cycles to low cycle fatigue crack-
ing. The predicted metal temperature increases for operation with fuels containing
12 woight percent hydrogen are shown in Figure 64,

It is predicted that the low cycle fatigue life at the leading edge is
reduced by a factor of two when the fuel hydrogen content is reduced from 14.5
to 12 percent., This is approximately the same 1ife factor found previously for
the combustor liner. However, at its present stage of development the life of
the turbine vane ls limited primarily by cracking at the trailing edge, which is
not affected at all by the flame luminosity. Until the life of the trailing edge
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Figure 683, Predicted Effect of Fuel Hydrogen Content
on Combustor Life,
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is improved to within 50 percent of the life of the leading edge, flame luminosity
will not significantly alter the overall 1ife of Fl0l1 turbine vanes.

. C, Asgsegsment of Results

The data and analyses presented in the previous section provide a summary of
the effects of fuel property variations on the performance, emission and durability
characteristics of the F101 combustion system, based on full-annular, sector and
single-cup rig tests. The data are generally well ordered and in good agreement
with previous data where comparisons could be made, Therefore, these data are
thought to be a valuable addition to the USAF data bank. Howevaer, since these
are all rig results, some direct verification by engine tests is recommended.

These data show that fual hydrogen content is a key fuel property, with
respect to high power performance/emissions and durability. In particular, smoke,
1iner temperature (and hence, combustor life) and NOy emissions are predominantly
fuel hydrogen content dependent. On the other hand, low power emissions and
performance, such as idle CO and HC emissions, and ground start and altitude
telight appear more dependent on fuel volatility and viscosity as they affect fuel
atomization and evaporation characteristics. The F101 combustion system has
excellent cold day ground start and altitude relight characteristics, but these
data indicate that conversion from JP~4 to JP=8 as the primary USAF fuel will
result in noticeable reductions in these starting capabilities.

The F101 fuel nozzle appears to be quite tolerant to fuel property changes
with respect to short time fuel nozzle fouling, The short but harsh tests
conducted in this program, however, were not very conclusive. The longer time
fuel nozzle valve gumming tests suggest that JP=-8 fuel may provide significantly
longer life than JP-4. It appears that some of the concerns regarding future
fuel characteristics are: to what extent the thermal stability ratinge will change,
how significant are current procedures for rating fuel thermal stability, and
how much engine fuel supply/injection system performance will he affected.
Additional studies in these areas are therefore needed,
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Section VII

CONCLUSIONS AND RECOMMENDATIONS

Based on the F101 conbustion system experiments and analyses

conducted in this program, the following conclusions and recommendations
are made:

A, Conclusions

1) Tuel hydrogen content strongly affects smoke emissions, liner
temperature and NO_, emismsions. Hydrogen content is, therefore,
probably the single moat important fuel property, particularly
with reapect to high power performance and emission characteria-
tica and combustor durability (1life).

2) Fual volatility (as indicated by initial boiling range) and
viscosity effects became evident at low power operating condi-
tions. Cold day starting and altitude relight capability are
highly dependent upon these properties.

3) Within the range tested, neither aromatic type (monocyclic or
bleyclic) nor final boiling range produced any significant
effect on combustion characteristics.

4) Combustor axit temperature discributions in the atmospheric
discharge tests conducted in this program showed a gtrong
effect of fuel viscosity (droplet size) on exit pattern factor.
This effect, however, 1is probably not present in the high
pressure engine envirvonment.

5) None of the fuel properties produced any measureable harmful
carbon deposition within the short but sevcre tests which were
conducted.

e s clismie i e
ot e AN W B e o I

B. Recommendations

1) F101 engine tests with selected fuels are recommended to verify
the trends established in these rig tests,

PRSI RICE Sy

2) Although the current testing showed no adverse fuel effecta on
fuel system components at normal operating temperatures, more
sophisticated long term tests are needed to determine the effects
of fuel thermul stability on fuel supply/injection system compo-
nents and to establish quantitative correlatfons with thermal :
stability ratings. ;
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APPENDIX A

FULL-ANNULAR TEST DATA

Table A-1 presents a summary of the key reduced data from the high
3 pressure perforuance and emission tests, Additional compuiz2d parameters
are listed in Table A-2.

Tably: A-3 presents the analyses of the idl: CO and HC emission data.
A logarithmic curve fit of the test data for each fuel was performed (see
: Figures 34 and 37) from which the quoted engine idle emission indices were
N calculated., At higher engine power test conditicns, CO emission levels
! were very low, particularly after corrections from rig to engine pressure
; levels wers made (Table A-4). Hydrocarbon emission levels at all higher
:, power rig conditions were essentinlly zero.

" The NO, emiasions data were correlated 48 shown in Table A-5. A linear
A regression curve fit of the test data for each fuel was performed (see
.. - Figure 39) from rich the quoted engine emission indices were calculated.

3 . The engine exit smoke data were correlated as shown in Table A-6,
. T Again, a linear regression curve fit of the test data for each fuel was
E : performad (Bee Figures 42 and 43) from which the quoted smoke levels were
’ calculated,

W,
N . - adi i T3 R I e e -<-": £oM3l e pc] cmrre IS 1;‘ " ‘__'l P :I‘ .
o SRR S et SRR o TR B S i L S A AR R e S R | i ABERE
. B T PR B v itaedBe widial. amft Grebemadd ) S8 thaaith P N . ;5

i - Detatled liner temperature data are listed in Table A-7 (inner liner)

ﬁ and Table A-8 (outer liner). The data are presented as liner temperature
| ' rise (Ty=T4). The thermocouple locations indicated correspond to those
- : showr; in Table 12 and Figures 22-25, The peak liner temperatures always
b occurred on the third panel of the outer liner and were correlated (see
. Figures /6 and 47) as shown in Table A-9,

H

Detailed dota trom the atmospheric pressure pattern factor tests isg
& listed in Table A-10. The pattern factor data wvere correlated (see
b Figures 50 and 51) as shown in Table A-11.
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Table A-2. Additional Performance Data,

et {8y

o 2
: % &
o ¥ 5 et bt
! g . E? ol 23
] . | # 4q § 5
{ " 8 - o I ’ &’a
s | 1] EL | B3 . s
: i 'gé gF | 9% 8 g8
L i | 4| I 2
¥ - G .ﬁ 8 3 ﬂ " ™
s 3| £ 13 e ¥ 21
A o & P> W 8 v %
¥ 1 2 0. 17.8 0.965 0.0413 0.1170
P 3 0. 18.3 0,993 0.0578 0.1307
£ 4 0.9 20,1 1.011 0.1678 0.4370
f 5 0.9 20.9 1.026 0.2364 0.3849
g 6 1.8 23.3 0.991 0.2162 0.7818
o 7 1.6 22,4 0,955 0.2919 0.7726
) 8 1.3 22,9 0.996 0.2887 0.7629
; 9 1.8 23,1 0.995 0.2045 0.8160
2 10 1.6 23.1 0.977 0.2008 0.8199
11 2.1 22,7 0.986 0.2910 0.7814
12 1.5 22,7 0.997 0.3159 0.7797
13 1.2 23.0 1,039 0.2395 0.7923
14 1.5 20.3 1,025 0.2436 0.13851
15 1.7 20.4 1,031 0.1789 0.4269
16 0.3 18,1 1,154 0.0765 0.1301
17 0 18.1 1,095 0.0521 0.1149
3 18 0 18.0 1.176 0.0769 0.1334
19 0 18.1 1,092 0. 0466 0.1187
20 2,0 20,5 1.010 0.1695 0.4486
21 1.2 20.6 1,013 0.2393 0.3836
22 2.4 23,3 0,974 0.2134 0.8036
23 2.2 23.4 1,067 0.3043 0.7973
24 1.7 23,2 1.050 0.2179 0.8513
25 2.7 23,3 1.047 0.3097 0.8019
4 35 2.2 23.8 0.973 0.2007 0.8983
34 3,7 24,0 0.971 0,2775 0.8525
36 4.1 23.4 1,009 0.3269 0.7965
37 2.1 23.1 0.977 0,2231 0.8325
38 3.6 20,6 0.967 0,2326 0.3785
19 1.7 21.3 0.971 0.1615 0.4312
40 1.0 18.6 0.961 0.0550 0.1302
41 1.6 18.8 0.978 0.0411 0.1096
I
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‘ Table A-2. Additional Performance Data, E
e (Continued) 1
E T
g | 3 :
H W
& LE 58 ¥ 4
o > e T T 8
5 E o © % g 4 3
‘- b g O fis N o
M ] o A A (§ & v
SEEERRIE 1N N R
Pl g | || i
3 3 E %% - & 2 b g I3
g | 3 | £ S gg A& £
3 5 44 2,0 24,2 0.966 0.1918 0.9328 X
i 43 1.9 23,4 0,972 0,3042 0.8172 E
. 45 1.8 2444 0.979 0.2732 0.8842 1
ﬁ 46 2.0 20.6 0.964 0.2225 0.3818 4
( 47 1.8 2°|6 00940 051581 0l 427“ 'r
48 0.7 18.7 0.969 0.0567 0.1257 s
49 0.8 18,7 0.971 0.0418 0.1077 3
b _ 6 26 1.1 18.0 0.812 0.0319 0.1145% {3
i} 27 0.9 18.0 0.870 0.0499 0.1328 g
P 28 3.1 20.2 0.996 0.1734 0.4399 E
"y 29 2.6 22,9 0.977 0.2162 0.3946
3 30 2.7 23,4 0.992 0.2283 0.8206 ‘
3 31 4,0 23,6 1.004 0.3189 0.8614 4
i 32 2.8 24,2 0.979 0.2003 0.8958 13
: 33 2,5 24,4 0.964 0.2719 0.8365 ;f
LI
. 7 50 1.0 18,9 0,963 0.0394 0.1023 i
9 51 1.1 18.8 0,956 0.0559 0.1207 s 3
b 52 0.7 20,7 0.947 0.1580 0.4106 |
. 53 2.1 21,3 0.980 0.2283 0.3592 3
E 54 2.9 23.7 0.933 0.2010 0.8210 1
i 55 3.9 23.7 0.934 0,2814 0.7938 4
57 2,2 24,0 0.921 0.2521 0.8841 4
:
8 58 2.9 24,3 0.939 0.2535 0.8719 4
59 3,0 24,5 0.921 0.1765 0.9211 12
60 3.5 23,5 0.921 0.2766 0.8021 'Y
61 1.7 23,4 0.904 0.1917 0.8746 1 3
62 2.5 20,6 0.943 0.2271 0.3763 k:
63 1.3 20,7 0.938 0.1590 0.4247 4
64 0.8 18.6 0.941 0.0566 0.1266 ]
65 1.1 18.9 0,961 0.0418 0.1064 3
f
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Table A=2. Additional Performance Data,

p {Continued)
;
o &
It ]
i “ I3 | 58 | g
g, o e E o
[VI] og QH wH
J " ] [T Q gﬂ 5(:
: %i 5! ‘3_8 v A v A
] * VI [T}
115 | 22| 85| 41 | g | 4
3 E 2y | 4% & . 5 hE
: g B8 | N3 LE S o
; 9 66 1.4 23.9 0.934 0.,2003 0.8327
- 67 2.4 23.5 0.932 0.2800 0.8244
& 3 2.1 23.9 0.941 0.2593 0.8589
i 69 1.2 24.1 0.917 0.1777 0.9177
5 70 2.1 20.6 0.917 0.2009 0.4205
' 71 0.7 21.0 0.931 0.1522 0.4276
: 72 0.5 18.5 0.923 0.0530 0,1282
: 73 0.7 18.6 0.943 0.0398 0.1073
‘ 10 99 0.6 13.4 0.953 0.0564 0.,1.226
& 100 0.7 18,2 0.965 0.0405 0.1067
103 2.3 23,0 0.912 0.1961 0.8224
104 2.8 23,5 0.980 0.2797 0.7762
105 1.3 24.0 0.905 0.1742 0.8903
106 1.2 23.5 0.900 0.2402 0.8514
101 1.2 20.7 0.929 0.1534 0.4175
- 102 1.8 21.2 0,933 0.2110 0.3616
L e —— [, 3
11 91 3.2 23.4 0.930 0.1950 0.8044 ,
, 92 2.5 22.5 0.916 0.2742 0,7864 A
A 93 2.1 2.6 0,907 0.1713 0.8795 4
A 94 1.7 24.1 0.932 0,2476 0.8265 k
] 95 1.3 20.1 0.907 0.2044 0.3711
A 96 0.9 20,7 0.939 0.1514 0.4145 i
! 97 0.6 18.6 0.950 0.0552 0.1220 :
1 98 0.7 18.4 0.953 0.0393 0.1053
& 12 83 2.8 24,0 0.930 0.2432 0.8589 %
- 84 1.5 23.5 0.895 0.1654 0.8762
] 85 2,0 22.7 0.905 0.2616 0.7834
86 2.0 23.4 0,923 0.1880 0.8073
87 1.5 20.5 0.931 0.2035 0.3721
88 1.6 20.6 0.937 0.1498 0.4119 |
B9 0.5 18, 0.963 0.0558 0.1009 :
90 0.4 18,1 0.982 0.0412 0.1058 é
k]
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Table A-2., Additional Performance Data,

{Concluded)

e

! L5} -

| ) g-:g ¥ ¥

| - ' e g T E !

* g3 o 5 § 8

; " j i i3 o g 38
X d oA (] M
- 1 é 38 | 46 5: v
. 'a‘ o [+ <] - - -~ ,N 8"‘
: g8 | 88| S f 5 58
5' 13 74 0.5 18.1 0.998 0.0439 0.1055
; 75 0.5 18.3 0.930 0.0580 0.1219
1 76 1.9 20.4 0.926 0.1475 0.4004
? 77 1.5 20.8 0.947 0.2123 0.3711
; 78 2.6 23.4 0.924 0.1943 0.7913
: 79 2.8 23.6 0.932 0.2708 0.7702
; 80 2.3 24,0 0.920 0.1728 0.8709
: 81 1.8 24,0 0.321 0.2441 0.8215
5 82 1.7 24,0 0.893 0.1630 0.8730
;
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Table A-3., Idle CO and HC Emission Test Data Correlation,

1 14 m
i EL « b —2u
i 14,0
i
g
%
; CO Emission (1 HC Emission (2)
¥ Correlation Correlation
=
by $E & &2 EJ? g
:5 0° ' v Lie » % Y7} G
§ W n'é? 8 bfw‘i: 8, ?'“ £
i § ga & ¥ | 43§ ¥ | 418 :
z IH » [ 3 o] [ - =BT
i 0438 B | dp | %ai | B | 2| MES
§ L N~ R n - b sgt W au gab ]
* g &de | & | & | H88 i | 4 | 538 :
i 1 14.00 -2.36 28.70 28,70 ~-8.06 1.68 1.68
G 2 14,13 -1.25 30,20 29,85 -6,27 1,68 1.59
i 3 14,13 ~1.50 31,00 30,55 «5.74 1,93 1.83
: 4 14,55 ~1.93 37.22 34,56 =-6.26 2.36 1.85
5 14,29 -1,99 33.09 31.77 =-6,09 2.53 2,23
6 14049 '1067 34088 32594 '4-92 2-60 2-20
7 14,34 -2.06 35.82 34.09 -6.34 3.18 2,73
8 14.46 -2,60 31.68 29.13 -10.16 1.42 1.03 :
9 14,32 -2.86 26,84 25,16 -8.59 1.06 0.88 LA
10 14,47 -2,10 32.29 30,13 -9.51 1.52 1,11 i
11 14,30 =2,15 30.26 28,91 -9,41 1.17 0.96 :
12 14,08 -2.43 26,82 26,45 =10.41 0.96 0.90 .
13 14.30 -1.97 37.86 36.32 =6.67 3.05 2,65 i .
|

(L Curve-fit examples shown in Fligure 34,

- et Bttt

(2) Curve~fit examples shown in Figure 37.
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Table A-4, High Powcr CO Emission Data Corrections.

1.5
E Bl bl
Teo ’engine = Bleor ig \P3, engine)

% CO Emisaion Index, g/kg
E (1)
- gz:ize Takeof f (2) Dash (3)
é (Engina) Rig Engine Rig Engine
1 2.0 1.6 0.5 1.5 0.3
2 2.3 2.2 0.7 1.6 0.4
3 2-2 1:7 0-5 106 OJ‘
4 2.4 1.6 0.5 1.5 0.3
5 2.6 1.7 0.5 1.6 0.4
6 2.3 1.5 0.5 1.5 0.3
7 2.3 2.2 0.7 1.7 0.4
8 2.5 1.9 0.6 1.6 0.4
9 2.4 2.0 0.6 1.7 0.4
10 2.3 1.8 0.6 1.5 0.3
11 2.2 1.7 0.5 1.5 0.3
12 2.1 1.4 0.4 1.3 0.3
13 2.2 1.5 0.5 1.5 0.3
(1)

P3, rig /B3, engine * 1,000
(2)

(3

P3irig /P3rengine = 0.461

P3irig /P3rengine ™ 0.364
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Table A-5. NOy Emission Test Data Correlation,

a)

Cortelation with Combustor Operating Conditions

EINOx = mSNOx +b

where!

swox * (323)(r5)" |¢<f>|gexp[ (Gi855L) + (S8 )]}

and ¢(f) is defined in Section V. F. 1.

[EPRPENI
LR HEOWom-ounswh - ]| Fuel Number

Ky | Elyoxs 8/k8
- . g ‘§ Calculated from Operating Condi-
° 9 = ¢ 3 " tions Correlation at Syox
i §3 gg g g8 0.1205, 0.3491, 1.000, and 1 1756
‘a "’.-a ":°° © 'ﬂ;@: Idle | Cruise | Takeoff | Dash
2 ] 2 e 0.1205 | 0.3491 | 1.000 [1.1756
26.21 =-0.27 0.9999 2,89 8.88 25.94 30.55
+0.18 0.9986 3.36 9,38 26,52 31,15

25,44 +0.27 0.9997 3.3 9.15 25.71 30,17
27.68 +1.18 0.9961 4,52 |10.85 28,87 33,73
26.22 +1.18 0.9910 4.34 {10,33 27.40 32.00
28.65 +0.37 0.9929 3.83 |10,38 29,02 34.05
26.98 +0.26 0.9984 3.51 9.68 27.24 31,98
27.19 +0.92 0.9974 4,19 | 10.41 28.11 32.88
30.26 -0.11 0.9960 3.54 | 10.45% | 30.15% | 35,46%
28.93 +0.16 0.9997 3.65 110.26 29.09 34.17
26.40 +0.33 0.9992 3.51 9.54 26.73 31.37
24,37 +0.56 0.9994 2.50 9.07 24.93 29.21
25.73 +0.52 0.9959 3.62 9.50 26.25 30.77

0 0o 0o 0o 0o O3 O 0o Oo 00 00 0o O Data Points
)
Lo y]
(¥
r s

o
r

Correlation with Fuel Hydrogen Content

Elnox * b(i%73>m

Engine Power Level Idle Cruise* | Takeoff* | Dash%
b, Intercept, g8/kg 3.15 8.90 25.22 29.63
m, Slope -1, 376 -00863 "00670 -00653
r, Correlation Coefficient ~0.762 -0.925% -0.913 -0.901

*

Fuel 9 excluded from curve fit (calibration span setting suspect).
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Table A-6. Smoke Emission Test Data Correlation,

a) Correlation With Combustor Operating Conditions

SNg = b+ m [ln(S.)]

b) Correlation with Fuel Hydrogen Content

where!
S = P3 £, \ (828, Y15 /ua/Py
8 (2.718 (29.2 Ty 15.92
{ o § SNg
; b & L ‘é Calculated from Operating Condi-
: % i § '5.3 tions Correlation at S, =
A § £ E & |\0.0590, 0.2368, 1.000, and 1.2807
f '§ i 8 v 3 E die | Crulse | Takeolff| Dash
: & 8| o iy o €0.0590)/(0.2368)|(1.0000) |(1.2807)
1| 8 | 0.853 2.62 0.869 | 0.21 | 1.39 | 2.62 2.83
2 | 8 | 1.006 3.01 0.911 [ o0.16 | 1.56 | 3.01 3.26
3| 8 | 1.329 3.88 0.885 | 0.12 | 1.96 | 3.88 4,21
4| 8 | 1.179 4,69 0.789 | 1.36 | 2.99 | 4.69 4.99
. 5| 8 | 0.723 3.03 0.907 | 0.98 | 1.98 | 3.03 3,21
y 7 8 1.068 4,19 0.683 1.16 2.65 4.19 4,45
: 8| 8 | 1.144 4,30 0.804 | 1.07 | 2.66 | 4.30 4.59
: 10| 6 | 0.931 3.41 0.826 | 0.77 | 2.07 | 3.41 3,64
i 11 | 8 | 0.899 3,89 0.691 | 0.84 | 2.09 | 3.89 3.61
¢ 12 | 8 | 1.047 3.60 0.907 | 0.64 | 2.10 | 3.60 3.86
: 13| 9 |1.113 | 3.88 | 0.863| 0.73 | 2.28 | 3.88 | 4.16 {

[ETRFR-Spopape e

SNg » b + m (14.5-H)

L

L PR SRV
oz e

Engine Powetr Level Idle Cruige [Takeoff Dash
b, Intercept 0.179 1.546 2,999 3,206
m, Slope +0.4115 | +0.4382 | +0.4675 | 40,4715
t, Correlation Coefficlent | 40,833 +0.776 | +0.634 40,607
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Table A-Y.

Peak Liner Temperature Data Correlation.

‘ a) Correlation with Combustor Operating Conditions(l)
b : m
‘ ( T max = T3 )' b ('595:'2")
i; ? . g 9 (Tomax -~ T3)s K
] o ' -
¥ g E § - - Calculated from Operating
iy g Y @ -é = (Conditionn Correlation at f,/f.m -)
. H ﬁ E gs r: i-g 0.4795, 0.8219, 1.000 and 0.9555
g'ﬁ R . . 3 ey, | ldle Cruise |Takeoff Dash
: by 2 g 2 M (" x] “ t om |(0.4795)|(0.8219)1(1.000) [(0.9555)
? 1 1,003 348,1 0.998 29.20 166.6 | 286.0 348.1 332.6
% 2 1,107 366.6 0.998 29.47 164.1 298.0 370.3 352.1
g 3 | 1.118 | 368.1 | 0.998 | 29.48 | 163.6 | 298.8 | 372.0 | 353.5
| 4 1,300 394.4 0.994 30.35 159.6 321.6 415.0 391.1
! 5 1,218 358.4 0.989 29,80 150.2 289.7 367.9 348.1
6 1.469 397.7 0.990 30,22 142,1 313.6 418,13 391.2
7 1.352 356.0 0.992 29.92 136.1 282,1 367.7 345.8
3 8 1,260 363.7 0.994 30.17 150.1 296.0 379.0 357.9
1 9 | 1.205 | 339.6 | 0,990 | 29.87 | 143.9 | 275.5 | 349.0 | 330.4
; 10 1.033 346.0 0.990 30.17 167.6 292.5 358.2 341.7
E 11 0.987 335.7 0.992 29,83 166.1 282.7 343.1 328.0
; 12 0.868 327.6 0.986 29.36 174,1 277.9 329.5 316.7
-g 13 1,141 359,2 0.994 29,82 159.2 294.5 368.4 349.7
3 b) Correlation With Fuel Hydrogen Content
~§. (T ey =Ty =B+ (145 - 1)
A Engine Power Level Idle Cruise | Takeoff Dash
f b, Intercept 165.8 282.2 342.2 327.2
i m, Slope -5.89 +7.39 +17.79 +14.,99
% r, Correlation Coefficient -0.441 +0,482 +0.605 +0.591

(0 Examples shown in Figure 46,
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Table A~1ll. Pattern Factor Test Data Corrslation.

a) Correlation with Combustor Operating Conditions f
PF = b +m (Sp - 1) ;f
where:
(e By " (i) 0'3(___.__"’c "T3”3> "
pr "\ 928.9 943.3 458. 3 9
) o ~§ PF
- g g § fé Calculated from Opsrating 7
g o g 9 . -5 Conditions Correlation at S, =
: | e A & g B ( 0.979, 1.000, 1,312 and 2,181 ) F
[} .a ] 7] =] 8 [ 44
é’ i : § g o - § (01?7'9) Cruise | Takeoff Dash 3
, . (1.000) | (1.312) | (2,181) ;
- | 1 | 5 | 0.1733 | 0.2199 | 0,991 | 0.425 | 0.274 | 0,220 | 0.216 E
3 ! 2 | 5 | 0,711 | 0.3120 | 0.987 | 0,513 | 0.364 | 0.311 | 0.307 E
S 3 | 6 | 0.3065 | 0.2742 | 0.992 | 0.636 | 0.370 | 0.274 | 0.268 :
3 é 4 5 0.3819 | 0.2742 | 0,992 | 0,725 | 0.393 | 0.274 | 0.266 K
: 5 | 5 | 0.3565 | 0,2487 | 0.998 | 0.670 | 0,360 | 0.249 | 0.241 A
? 6 | 5 | 0.4697 | 0.2793 | 0.961 | 0.833 | 0.425 | 0.279 | 0.269 :
- : 7 | 5 | 0.1888 | 0.2703 | 0,995 | 0.493 | 0.329 | 0.270 | 0.266
% 8 | 5 | 0.2169 | 0.2049 | 0.990 | 0.461 | 0.273 | 0.205 | 0.200
3 9 | 6 | 0.2282 | 0.2142 | 0.993 | 0.484 | 0.285 | 0,214 | 0.209 ]
: 10 | 5 | 0.3874 | 0.1864 | 0.998 | 0.644 | 0.307 | 0.186 | 0.178 K
i; 11 | 5 | 0.2485 | 0.2148 | 0.977 | 0.508 | 0.292 | 0.215 | 0.210 é
: 12 | 5 | 0.2219 | 0.2124 | 0.990 | 0.475 | 0.282 | 0.212 | 0.208 ;
3 13 | 5 | 0.2967 | 0.2789 | 0.995 | 0.630 | 0.372 | 0.279 | 0.273
b) Correlation With Relative Fuel Spray Droplet Size §
SMD
; PF = b +m [(SMDJP-A) 1] ;
Engine Power Level ldle Cruise Takeof f Dash i
y b, Intercept 0.4881 0.2809 0.2067 0.2016 |
1 m, Slope 0.5617 0.3287 0. 2644 0.2389 :
ij r, Correlation Coefficient | 0.521 0.731 0.721 0.708
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APPENDIX B

CARBON DEPOSITION DATA

Tests to determine relative levels of carbon depomsition were con-
ducted as described in Section V.2, After each carbon deposition test,
the swirl cup was flow calibrated. Results of these flow calibrations are
presented in Table B-1, Also after each test, carbon deposition was ob-
served and photographically documented, Thesa posttest photos of the
swirl cup condition are presented in Figures B~1 through B-13.

As shown in Table B-1, none of the fuels produced enough carbon
deposition to cause any significant blockage or reduction in swirler flow
area, Figures B-1 through B-13 further show that nowhere in the dome was
there any significant deposition in any of the tests. In two of the
tests, however, some distress wae detected which is evident in Figures B-4
and B=6, In these two photos, burnout on the flared dome extension insert
pecurred. The burned region extended from the insert trailing edge
forward approximately 0.5 cm from about 2 to 4 o'clock, aft looking for=-
ward, The need for increased cooling around this flared extension has
been identified previously, and increased cooling has been incorporatsd
into newer F101l combustor dome designs,
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Fluure B-1, Posttest Photograph of Swirl Cup After Carbuon
Deposlitlon Test of Fuel 1,
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3 Figure B=20 0 Posttest Photopraph of Swieb Cap Alter Carbon g

3 Depasit Ton Test o Mool 2,
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Wlgure B=19,  Porttoest Photograph of S$wirl Cup After Carbon
Deposttion Tedt of Fuel 3.

Plyure B4, Posttost Phot opraph of Swirl Cup Alter Carbon
Deposit Ton Test of Fuel 4,
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Flgure B=5,

Poyttest Photograph of Swirl Cup After Carbon
Deposition Test of Fuel 5,

Flypure B=6,

4t s papa: e s s 5wy i Ry

Posttest Photograph of Swirvl Cap Aftoer Carbon
Deposdition Test of Puel 6,
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Flpure B=7.  Posttest Photograph of Swir]l Cup After Carbon
Dueposition Test of Fuel 7.
g}
¥
Flgnre B=8.  Posttest Photograph of Swiel GCup Al ter Cartaon
Deposlthon Test of Fuel &,
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Filgure B+9, Posttest Photograph of Swirl Cup After Carbon
Deporltion Test of Fuyel 9,

3
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i
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]
_ Flyure B=10,  Posttest Photowraph of Swirl Cup After Carbon
3 Doposition Test ob Fael [0,
T
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Flgure B=11,  Posttest Photagraph of Swirl Cap After Carbon
Deposition Test of Fuel 1.
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APPENDIX C

LOW PRESSURE TEST DATA

Two types of tests were conducted in the low pressure combustor test
rig: altitude relight tests and cold day start tests. Apparatus and pro-
cedures which were used are described in Section V.C,

Detailed.results of the altitude relight tests are presented in
Tables C-1 through C-7. Listed are the combustor oparating conditions
from which the simulated flight conditions were. determined, and in the
remarks column, the type of data point is indicated (LIGHT = maximum
altitude relight capability at normal minimum fuel flow rata, PBO =
pressure blowout, LLO = lean lightoff, LBO = laan blowout.

Detailed results of the cold day ground start tests are listed in
Tables C-8 and C-9, At each combustor operating condition shown, lean

lightoff and lean blowout fuel-air ratios were determined which are
listed.
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Altitude Relight Test Results, Fuels 2 and 3.

Table C-2.
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Table C-8, Ground Start Test Results, Fuels 1-8,

s e s = =

Fuel
No. Combustor Operating Conditions Lean Blowout Lean Lightoff
TF 13 P3 wc %g wf f wf f
(engine) (engine) (engine)
K K kpa ka/s % g/s g/lg g/8 g/ kg
1 265.4 | 267.4 | 101.3 | 1,149 |0.87 27.1 23,6 89.9 34.7
260.8 | 261.3 [ 101.3 | 1.149 10.82 29.4 25.6 40.3 35,1
250,2 | 250.1 | 101.3 | 1.149 J0.79 3.6 29,2 49,0 42.6
243,7 | 244.,5 | 101.3 | 1.149 10,76 - - >50.4 >43.9
iR 260.9 | 260.4 | 101.7 | 1.149 ]O.87 27.3 23.8 41,6 36.2
254,6 | 253.9 | 101.7 | 1.149 |0.86 29.4 25.6 £3.7 38.0
250.7 | 250,2 | 101.7 | 1.149 [0.B5 3.1 27,0 48.1 41.9
244.3 | 244.3 | 101.6 | 1,149 |0.80 33.5 29.2 50.4 43,9
2640.4 | 239.3 | 101.6 | 1.149 l0.82 34.4 30.0 50.4 43,9
1RR 264.7 | 267.3 | 100.,9 | 1.149 T10.77 32.7 28.4 39.0 33,
259.2 | 260.4 | 100.9 | 1.149 |0.66 32, 28.1 45.2 39.3
262.5 | 250.6 | 100.9 L149 10,66 36.0 31.4 49,6 43,1
2 304.7 [ 310.4 ] 101.1 | 1.149 0.98 18.3 15.9 22.3 19.4
275.9 | 278.2 | 101.0 | 1.149 |0.90 27.2 23.7 46.9 40,8
265.8 | 265.9 | 101.0 | 1.149 |0.93 - - >50.4 >43.9
3 "296,7 1 301.3 [ 101.8 | 1.149 ]0.94 23,1 20,1 39.1 34.0
278.9 278.7 101.0 | 1.149 [0.90 - - >50.4 >4%,9
4 296,5 [ 305.1 | 101.5 | 1.149 ]0.98 22.9 20.0 8.6 33.6
277.6 | 276.9 | 101.5 | 1.149 0.90 30.8 26.8 51,7 45.0
272.3 | 272.2 | 101.,5 | 1.149 [0.B9 -~ - >50.4 >43.9
5 296.7 298.0 100.8 1.149 0.94 22,7 19.7 33.6 29,2
277.3 | 277.4 | 100.8 | 1.149 |O.91 27.7 24,1 50.4 43,9
273.2 | 272,6 | 100.8 | 1,149 |O.88 30.7 26.7 51.2 44.6
266.5 | 267.4 | 100.7 | 1,149 ]0.B2 - - >50,4 43.9
6 298.1 296.2 100.0 1.149 1.00 22.3 19.4 37.6 32.7
276.5 277.6 100.0 1.149 0.93 29.0 25,2 50.4 43.9
270.4 272.6 100.0 1.149 0.88 1.1 27.0 49.6 43.1
265.1 265.9 99.9 1.149 0.83 - - >50,4 43,9
7 107.1 427.9 101.1 1.149 0.99 27.0 231.5 9.3 34,2
279.5 276.4 100.9 1.149 0.84 - - >50,4 >43.9
8 308.4 | 305.2 | 101.0 | 1.149 |0.89 26.8 23.1 38.6 33.6
275.4 | 277.7 101.0 1.149 [0.83 31.9 27.8 47.1 41,5
272.6 | 272.4 | 100.9 | }.149 (0.81 32.8 28.5 50.4 43.9
266.2 266.1 100.9 1.149 [0.79 34.9 30.1 52.3 45.5
262.% | 260.8 100.9 1.149 [0.77 - - >51.5 344,

ot e ok ARG it Sttt SR R T A e S




201 YR

e ez

i
% Table C-9, Ground Start Test Results, Fuels 9-13,
1
4 Fuel
- No. Combustor Operating Conditions Lean Blowout Lean Lightoff
¢ TF T3 P3 wc %g wf £ wf f
R (engine) (engine) (engine)
% K K kpa kg/s p4 g/s 8/kg 8/s g/kg
E ] 299.5 | 302.8 | 101.5 | 1.14% 10,90 15.9 13,8 42.0 36,5
& 274.8 | 279.8 | 101.8 § 1,149 l0.77 20.0 17.4 50.0 43,5
L 269.8 | 273,7 | 101.5 | 1,149 |0.79 26.0 22,7 51,2 44,6
; 263.7 | 267.0 | 101.5 | 1.149 10.74 30.2 26,3 50.6 44,0
&+ 260.3 | 261,2 101.5 | 1.149 |0.76 38.6 33.6 50.4 43,9
2 255,4 | 256.3 | 101.4 | 1,149 |0.78 - - >50.4 »43,9
¢ 10 302.8 | 318.8 | 100.9 [ 1.149 J0.86 13.4 11.7 39.6 34,8
277.6 | 277.6 | 100.8 | 1.149 |0.80 31.5 27.4 52.1 45,3
270.6 | 273.2 | 100.7 | 1.149 |0.75 - - >52,5 >45,7
11 302.6 [ 309.3 | 1019 T1.749 —10.86 25.2 21,9 38.6 31,6
278.1 277.4 | 101.,3 | 1,149 (0.77 37.4 32,5 43.3 37.6
270.4 (- 272.1 | 101.3 | 1.149 |o.77 36.8 32,0 42,8 37.3
267.8 | 265.6 | 101.4 | 1.149 |0.81 41,2 35.8 49,6 43.1
262,6 260.2 101.4 1.149 0.74 39.1 34.0 47.0 40.9
265.5 | 253.9 | 100.3 | 1,149 0.69 40,7 35.5 50.5 43.5
249.6 | 248.3 | 100.3 | 1.149 |0.87 43.3 37.6 51.2 44.5
2441 244,11 100.4 1,149 0.66 - - >51.4 44,7
12 298.4 116,2 100.5 | 1.149 0.85 24,4 21,2 29.4 23.6
273.7 1 277.4 | 100.4 | 1,14y 0.77 29.8 26.0 35.3 30.7
269.8 | 272,1 | 100.3 | 1,149 0.74 31.5 27.4 38.6 33.6
265.9 266.4 | 100.3 1.149 0.72 33.5 29.2 41.6 36.2
261.5 260.7 100.3 1.149 0.71 34.0 29.6 41.6 36.2
255.4 | 254.8 | 100.3 | 1.149 0.69 35.4 30.8 46,2 40.2
249.8 251.0 100.3 1,149 0.68 38.6 33,6 45,8 39.8
245,5 245.8 100.3 1.149 0.63 39.9 34,7 46,2 40,2
241.3 238.9 | 100,13 1,149 0.67 41.6 36.2 47.7 41,5
13 304.8 [ 320.6 | 101.3 11,149 |[0.87 26.7 23.2 42.0 36.5
278.7 277.3 101.2 | 1.149 0.74 - - ~52.5 45,7
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APPENDIX D

FUEL NOZZLE FOULING TEST DATA

Short term fuel nozzle fouling tests were conducted in a emall flame
tunnel rig using apparatus and procedures described in Section V.D.l.
Primary results were periodic bench flow calibrations of the fuel nozzles
to dotect metering orifice plugging and/or flow divider valve seizure.
These results were also supplemented with visual inspection of the fuel
nozzle tip and flow divider valve components. Periodic flow calibration
results and normalized flow calibration results are presented in Table D-1,

As described in Section V.D.2, long term fuel nozzle valve gumming
tests were also conducted using JP-4 and JP-B8 fuels. The flow calibration
results of this testing are presented in Table D=2, Shown in Table D=2
are the measured valve flow rates, the flow ratio normualized to pretest
flow rate and the ascending flow rate divided by the descending flow rate.
The latter quantity 18 a measure of hysteresis or valve sticking tendencies.
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Fuel Nozzle Fouling Test Results,

Table D-1.

Floawr Rate

uel

{MPa)

te}/{Pretest

ar YP_

Fuel Flow R

(¥Pa)
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APPENDIX E
SMOKE DATA CALCULATION

In this program, combustor component rig tests were conducted in which
somke emission levels were measured at the combustor exit plane by the
method epecified in Refarence 5. The result is a Smoke Number (SN) which
expresses the opacity of filter paper that has been stained by the exhaust
gases, SN is, therefore, not a true thermodynamic property of the exhaust

‘gas. A relationship between SN and carbon weight fraction (Xc)y which is a

thermodynamic property, is presented in Reference 12. This relationship 1is
reproduced in Figure E-1.

When combustor exhaust gases are diluted by turbine cooling air as in
the F101, by fan stream air, both SN and X. are reduced. Smoke emission

index (Elg)g carbon/kg fuel, however. remains constant. EIg is calculated
by the relationship:

1000 + £
1 -3
Bl = (xu) ( f: -—) (10 )

i = engine station where sample is taken

where:

f = fuel-air weight ratio (g fuel/kg air)

Therefore, engine smoke level, which would be measured at engine Plane 8,

can be calculated from combustor rig measurements, taken at simulated engine

Plane 4, by the following procedure:
1. Measure (SN4) and (f4) at simulated engine test condition

2, SN, + Xo4 (from Figure E-1)

1000 + fA -3
3. EIg = (xc‘.) f (10 )
4., Cycle data =+ f8 at simulated engine test condition
f
8 k|
5 X = (Elg) (1000+f8) ((w?)

6. ch > SN8 (from Figure E-1)

176

)
BTN T

o ik tider ks Sk bR S o i i o bl

e LB e LA e e b




s w0~ o mn

,
~

10° —~
- ]
-
I e
B
: ;
¢ .
g
& 0 -
% o
. . ot
S
)
f g 10! b
- -
& o o
z Q oo
i -
: 'S o
? v =
&)
o .
i g
¥ § g -
: :
& 8 —
L 5
:
S 40
H : e
L = — From Shaffernocker and
A I [~ Stanforth, Reference 12,
;
£
E
- 107 1020 050 5 5

Smoke Number (per SAE ARP1179)
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For the F10l1 engine, fg/f4 = 0.130 at idle and 0.246 at cruise, takeoff and
dash operating conditions, so SNg is significantly less than SN4.

8Ny, and f4, as measured in the rig tests are tabulated in Table A-1.
SNg, calculated from the measured SN4 and f4 by the above procedure, is
tabulated in Table A-2. Corrections to true engine density were then made
by the correlation scheme illustrated in Figure 42, and these data are
tabulated in Table A-6,
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Symbol

co
co
CWALF
El

FBP
HC
IBP

JFTOT

NO

SMD

SN

h

m

NOMENCLATURE

Area

Carbon Monoxide

Carbon Dioxide

Clockwise Aft Looking Forward
Pollutant Emission Index

Final Boiling Point

Fuel Hydrogan Content

Hydrocarbon

Initial Boiling Point

Jet Fuel Thermal Oxidation Tester
Total Oxidas of Nitrogen (= NO + Noz)
Heat of Combustion

Combustor Operating Severity Parameter
Sauter Mcan Diameter

Smoke Number (by ARP1256)
Temperature

Valocity

Mass Flow Rate

Lxhaust Gas Pollutant Concentration
Curve Fit Equation Intercept
Fuel=Alr Ratio

Absolute Humidity

Arbitrary Constant

Curve Fit Equation Slope
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Units

2
cm , mm

g pollutant/kg fuel
K

weight percent

K

K
m/s
g/s, kg/s
mg pollutant/kg air
g fuel/kg air
K Hzolkg air
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NOMENCLATURE (Continued)

L1 smba U ‘te
.% n Hydrogen-to~Carbon Atom Ratio -
'; r Curve Fit Correlation Coefficient -
f X Independent Variable -
;% ‘g y Dependent Variable -
;i é AP Pressure Drop MPa
: g AT Temperature Rise K
§ n Combustion Efficilency Parcent
é v Viscosity mmzla
g p Density kg/m3
é o Surface Tension mN/m
i ¢ (F) Fuel«Air Ratio Function in SNO -
‘ (Equation 8) X
Subscripts
3 Compressor Exit Station (Combustor Inlet) -
4 Combustor Exit Station
8 Engine Exit Station
c Combustor
e Lftective
£ Fuel
m Metered
r Reference
st Stoichiometric
L Liner (metal)
K GCas Sample
te Thermocouple
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NOMENCLATURE (Concluded)

Subgcripts

Sample
Average
Maximum

Imm.max Immersion Maximum
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