THE INITIAL VALUE PROBLEM FOR THE EQUATIONS OF MOTION OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS

Akitaka Matsumura
Takaaki Nishida

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

September 1979

(Received July 2, 1979)

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709
The initial value problem associated with the equations of motion for isotropic Newtonian fluids is investigated. The fluids are compressible, viscous and heat-conductive. It is proved that there exists a unique global solution in time, for the small initial data, and the solution has the decay rate of $(1 + t)^{-3/4}$ as $t \to +\infty$.

$$\frac{1}{(1 + t)^{3/4}}$$ power as t approaches positive infinity.

AMS(MOS) Subject Classification: 35B40, 35K55, 35M05, 76.35

Key Words: Initial value problem, Equation of motion, Compressible, viscous and heat-conductive fluids, Global solutions in time

Work Unit Number 1 - Applied Analysis

*Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan.

**Department of Mathematics, Kyoto University, Kyoto 606, Japan.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
The motions of compressible, viscous and heat-conductive fluids are described by a system of partial differential equations which is of hyperbolic-parabolic type and highly nonlinear. One of the first mathematical problems associated with this system is the initial value problem. We obtain the existence of a unique smooth global solution in time for the initial value problem and also the decay rate of the solution as time tends to infinity.

Since the system is quasilinear with respect to the unknowns: density, velocity and temperature, we need to assume that the initial data are close to the constant equilibrium state. The proof which is necessarily quite technical, involves a combination of the estimates for the decay rate of solutions of the linearized equations as time tends to infinity, together with energy estimates in the space of square summable functions. Our method to obtain the "small" but global solution in time for this particular nonlinear problem is rather general and can be applied to many systems of nonlinear partial differential equations, if the solution of the linearized equation has an appropriate decay rate as time tends to infinity (e.g. dissipative equations, parabolic equations and so on) and if the nonlinear equations are amenable to ordinary energy estimates.
THE INITIAL VALUE PROBLEM FOR THE EQUATIONS OF MOTION
OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS

Akitaka Matsumura* and Takaaki Nishida**

§1. Introduction and Theorem

The motion of the general isotropic Newtonian fluids is described by the five conservation laws:

\[
\begin{align*}
\rho_t + (\rho u^j)_{x_j} &= 0, \\
u^i_t + u^i u^j_{x_j} + \frac{1}{\rho} p x_j &= \frac{1}{\rho} \{ \mu (u^i u^j_{x_j}) + (u^i u^j_{x_j})_{x_j} \}, \quad i = 1, 2, 3, \\
\theta_t + u^j \theta_{x_j} + \frac{\theta p}{\rho c} u^j_{x_j} &= \frac{1}{\rho c} \{ (\kappa \theta)_{x_j} + \gamma \},
\end{align*}
\]

where \(\rho \): density, \(u = (u^1, u^2, u^3) \): velocity, \(\theta \): absolute temperature, \(p = p(\rho, \theta) \): pressure, \(\mu = \mu(\rho, \theta) \): viscosity coefficient \(\mu' = \mu'(\rho, \theta) \): second viscosity coefficient, \(\kappa = \kappa(\rho, \theta) \): coefficient of heat conduction, \(c = c(\rho, \theta) \): heat capacity at constant volume and \(\gamma = \frac{\mu}{2} (u^j u^j_{x_j})^2 + u^i' (u^j_{x_j})^2 \): dissipation function. We consider the initial value problem for (1.1) with the initial data

\[
(p, u, \theta)(0, x) = (\rho_0, u_0, \theta_0)(x), \quad x \in \mathbb{R}^3.
\]

We seek the solutions in a neighbourhood of any constant state \((\rho, u, \theta) = (\tilde{\rho}, \tilde{u}, \tilde{\theta})\), where \(\tilde{\rho}, \tilde{\theta}\) are any positive constants. Thus we assume the following natural conditions on the system (1.1) of hyperbolic-parabolic type throughout this paper:

(i) \(p, \mu, \mu' \) and \(\kappa \) are smooth functions in \(\Omega = \{(\rho, u, \theta) : |\rho - \tilde{\rho}|, |u|, |\theta - \tilde{\theta}| < \tilde{\varepsilon}\} \).

(ii) \(\partial p / \partial \rho, \partial p / \partial \theta > 0, c, u, \kappa > 0 \) and \(\mu' + \frac{2}{3} \mu \geq 0 \) in \(\Omega \).

*Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606, Japan.

**Department of Mathematics, Kyoto University, Kyoto 606, Japan.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
First rewrite the system (1.1) by the change of the unknown and known variables as follows: \(\vartheta \mapsto \tilde{\vartheta} + \varrho, \; u \mapsto u, \; \tilde{\vartheta} + \theta \mapsto \tilde{\vartheta} + \theta, \; p(\tilde{\vartheta} + \varrho, \; \tilde{\vartheta} + \theta) \mapsto p(\varrho, \theta), \; \tilde{\vartheta}(\tilde{\vartheta} + \varrho, \; u, \; \tilde{\vartheta} + \theta) \mapsto \varrho(\varrho, \theta) \) and so on.

\[
\begin{align*}
L^0(\varrho, u) &= \varrho_t + (\tilde{\vartheta} + \varrho) u_x^3 + u_x^3 \varrho_x^3 = 0 \\
(1.3) \quad L^1(u) &= u_t^i - \tilde{u} u_{x_j}^i - (\tilde{\vartheta} + \tilde{\vartheta}^i) u_{x_j}^i = \mathcal{G}^i, \quad i = 1, 2, 3 \\
L^4(\tilde{\vartheta}) &= \tilde{\vartheta} - \tilde{\vartheta} \theta x_j^4 = \mathcal{G}^4
\end{align*}
\]

where

\[
\begin{align*}
\mathcal{G}^i &= -\tilde{u} u_{x_j}^3 - \tilde{\vartheta} \theta x_j^3 + \mathcal{G}^4 \\
(1.4) \quad \mathcal{G}^i &= -u^3 u_{x_j}^3 + (\tilde{u} x_j^3 + u_{x_j}^3) + \tilde{\vartheta} (u_{x_j}^3) / (\tilde{\vartheta} + \varrho) \\
\mathcal{G}^4 &= -u^3 \theta x_j^4 + (\tilde{\vartheta} \theta x_j^4 + \varrho) / (\tilde{\vartheta} + \varrho) \theta c
\end{align*}
\]

Here we also use the abbreviations

\[
\begin{align*}
\tilde{u} &= u / (\tilde{\vartheta} + \varrho) \quad \tilde{\vartheta}^i = u^i / (\tilde{\vartheta} + \varrho) \quad \tilde{\vartheta}_x = p_x / (\tilde{\vartheta} + \varrho) \\
\tilde{\vartheta}_x &= \varrho_x / (\tilde{\vartheta} + \varrho) \quad \tilde{\vartheta}_3 = (\tilde{\vartheta} + \theta) p_{\varrho_x} / (\tilde{\vartheta} + \varrho) c \quad \text{and} \\
\tilde{\vartheta} &= \varphi / (\tilde{\vartheta} + \varrho) c
\end{align*}
\]

Let \(H^k (k = 1, 2, \cdots, 5) \) be the Sobolev space with the norm \(\| \cdot \|_k \) of the \(L_2 \)-functions having all the \(k \)th derivatives of \(L_2 \)-functions. Define \(\epsilon \) by the Sobolev's lemma so that for \(\| f \|_2 < \epsilon \) we have \(\max | f | \leq c \| f \|_2 < \bar{c} \). Denote

\[
\begin{align*}
\mathcal{G}^i &= (\tilde{\vartheta}^i \varrho_x / \tilde{\vartheta} \theta x_j^3 + a_1 \theta x_j^3 + a_2 \theta x_j^3 + a_3 \theta x_j^3 \quad \text{for all } a_1, a_2, a_3 = \xi, \; \xi = 1, \cdots, 4.
\end{align*}
\]

The initial data for (1.3) are given by

\[
(\tilde{\vartheta}, u, \theta)(0) = (\varrho_0, u_0, \theta_0) \in H^k \cap L_1 \quad \text{for } k = 3 \text{ or } 4.
\]
The solution is sought in the space of functions $X^i(0, =: E)$ for some $E < \epsilon$, $i = 3$ or 4, where for $0 \leq t_1 < t_2 \leq =$

$$X^i(t_1, t_2; E) = \{ (\varphi, u, \theta)(t) : \varphi(t, x) \in C^0(t_1, t_2; H^s) \cap C^1(t_1, t_2; H^{s-1})$$

$$u^i(t, x), \theta(t, x) \in C^0(t_1, t_2; H^s) \cap C^1(t_1, t_2; H^{s-2}) \cap$$

$$L^2(t_1, t_2; H^{x+1}), i = 1, 2, 3, \ldots, \text{ and}$$

$$\sup_{t_1 \leq t \leq t_2} \| (\varphi, u, \theta)(t) \|_t^2 + \int_{t_1}^{t_2} \| \varphi(s) \|_t^2 + \| (u, \theta)(s) \|_{t+1}^2 \, ds \leq E^2 \}.$$

Theorem

Consider the initial value problem (1.3) (1.5) and let the initial data have the norm for $i = 4$

$$E_4 = \| (\varphi, u, \theta)(0) \|_t + \| (\varphi, u, \theta)(0) \|_{t+1}^2 < \epsilon.$$

Then there exist positive constants δ_0 and $C_0 < = (C_0, \delta_0 \leq \epsilon)$ such that if $E_4 < \delta_0$, then the problem (1.3) (1.5) has the unique solution $(\varphi, u, \theta)(t)$ in large time such that

$$(\varphi, u, \theta)(t) \in X^i(0, =: C_0 E_t)$$

and it has the decay rate

$$\| (\varphi, u, \theta)(t) \|_2 \leq C_0 E_t / (1 + t)^3/4 .$$

In particular if u, u' and x do not depend on φ, then the above assertion holds for $i = 3$ also.

In [1] we obtain the same type of result in the more restricted case of a polytropic gas. We also refer the reader to [1] for the bibliography of other known results.
§2. Proof of Theorem

Theorem is proved by a combination of a local existence theorem and a priori estimates for the solution in X^i.

Theorem 2.1 (local existence)

Consider the initial value problem (1.3), $t \geq t_1$. Let the initial data

$$(\rho, u, \theta)(t_1) < \mathbf{H}^i$$

for $i = 3$ or 4.

Then there exist three constants $\delta_1 > 0$, $C_1 < \infty$, $(C_1 \delta_1 < \epsilon)$ and $\tau > 0$, which are independent of t_1, such that if $\| (\rho, u, \theta)(t_1) \| < \delta_1$, then the problem (1.3) (1.5) has the unique solution

$$(\rho, u, \theta)(t) \in X^i(t_1, t_1 + \tau; C_1 \| (\rho, u, \theta)(t_1) \|) .$$

The proof for $i = 4$ is the same as that for polytropic gas in [1]. We need an approximation of the initial data in H^4 and the L_2 energy estimate for the case $i = 3$.

Theorem 2.2 (a priori estimates)

Suppose that for the initial data having the norm $E_i < \epsilon$ for $i = 4$, there is a solution

$$(\rho, u, \theta)(t) \in X^i(0, T ; E)$$

for some $T > 0$ and some $E < \epsilon$. Then there exist positive constants $\epsilon_2(\epsilon)$, $\delta_2(\epsilon)$ such that if $E \leq \epsilon_2$ and $E_i \leq \delta_2$, then the solution has the a priori estimates

$$(\rho, u, \theta)(t) \in X^i(0, T ; C_2 E_i) ,$$

where ϵ_2, δ_2, C_2 do not depend on T. In particular in the case of (1.9) the above estimates are true for $i = 3$ also.
Proof of Theorem

Take \(\delta_0 = \min \{ \delta_1, \delta_2, \epsilon_2, \epsilon_0, \epsilon_0^2, \epsilon_0^2 \} \) and \(C_0 = C_2 \). We use the standard continuation argument of local solution on \([0, n \tau], n = 1, 2, \ldots \) to get the global solution. In fact by the local existence theorem, the definition of \(\delta_0 \) and the assumption \(E_k < \delta_0 \) we have a positive constant \(\tau \) and a local solution

\[
(\rho, u, \theta)(t) \in X_k^\delta(0, \tau : C_1 E_k).
\]

By \(C_1 E_k < C_1 \delta_0 \leq \epsilon_2 \) and \(E_k < \delta_0 \leq \delta_2 \), a priori estimates gives

\[
(\rho, u, \theta)(t) \in X_k^\delta(0, \tau : C_1 E_k).
\]

But by \(C_2 E_k < C_2 \delta_0 \leq \delta_2 \) and the local existence theorem, we have again

\[
(\rho, u, \theta)(t) \in X_k^\delta(\tau, 2\tau : C_1 C_2 E_k).
\]

Now by \(C_1 C_2 E_k < C_1 C_2 \delta_0 \leq \epsilon_2 \) and \(E_k < \delta_0 \leq \delta_2 \), a priori estimate shows

\[
(\rho, u, \theta)(t) \in X_k^\delta(0, 2\tau : C_1 C_2 E_k).
\]

Thus we can continue the same arguments on \([n \tau, (n + 1)\tau]\) and \([0, (n + 1)\tau]\) successively \(n = 2, 3, \ldots \) .
§3. A Priori Estimates

We present here a general method to obtain a priori estimates for small solutions of equations with dissipation, which is a combination of the linear spectral theory and the L_2-energy method. First we rewrite the system (1.3) so that all the nonlinear terms appear at the right-hand side of equations:

$$
\begin{align*}
\rho_t + \rho \sum_{j=1}^{3} u_j^3 x_j &= f^0, \\
u_t + \bar{p}_1 \bar{v}_{x_1} + \bar{p}_2 \bar{v}_{x_2} - \bar{u} u x_j - (\bar{\nu} + \bar{\nu}') x_j x_j &= f^i, \quad i = 1, 2, 3, \\
\theta_t + \bar{p}_3 \theta x_j - \bar{\nu} \theta x_j x_j &= f^d,
\end{align*}
$$

where $f = \{f^i, i = 0, \cdots, 4\}$ is at least quadratic functions of (ρ, u, θ) and their first and second derivatives, and \(\bar{p}_1 = \bar{f}_p(0, 0), \bar{p}_2 = \bar{f}_p(0, 0), \bar{p}_3 = \bar{f}_p(0, 0), \)
\(\bar{\nu} = \bar{\nu}(0, 0, 0), \bar{\nu}' = \bar{\nu}'(0, 0, 0), \bar{\nu} = \bar{\nu}(0, 0, 0) \) are positive constants.

Set $U = \left(\sqrt{p_1} v, u, \sqrt{\rho/c}(0, 0, 0) \right)$ and write (3.1) in the form

$$
U_t + AU = F(U).
$$

The Fourier transform $\hat{\lambda}(\xi)$ of the linear partial differential operator A is the 5×5 matrix

$$
\hat{\lambda}(\xi) =
\begin{pmatrix}
0 & -ia\xi_k & 0 \\
-ia\xi_j & -\bar{u}\xi_k & \xi_j \xi_k \\
0 & -ib\xi_j & -\bar{\nu} |\xi|^2
\end{pmatrix}
$$

where $a = \sqrt{\bar{p}_1(0, 0)}$, $b = \bar{p}_2 \sqrt{\bar{\rho}/c(0, 0, 0)}$, and j, k run from 1 to 3. The eigenvalues λ_j, $j = 1, \cdots, 4$ of $\hat{\lambda}$ and their projections P_j, $j = 1, \cdots, 4$, on the eigenspaces are analyzed by.
Lemma 3.1

(i) \(\lambda_j \) depends on \(i |\xi| \) only and \(\lambda_j = 0 \) iff \(|\xi| = 0, j = 1, \ldots, 4. \)

(ii) \(\lambda_j \neq \lambda_k, j \neq k, \) for all \(|\xi| \) except at most four points of \(|\xi| > 0. \)

(iii) There exist positive constants \(r_1 < r_2 \) such that \(\lambda_j \) has a Taylor (Laurent) series expansion for \(|\xi| < r_1 \) \((|\xi| > r_2, \) respectively). Specifically, the Taylor series has the form

\[
\begin{align*}
\lambda_1 &= \sqrt{a^2 + b^2} i |\xi| + \frac{(a^2 + b^2)(2\dd + \dd') + b^2 \dd}{2(a^2 + b^2)} (i |\xi|)^2 + \ldots \\
\lambda_2 &= \lambda_1^* \quad \text{(complex conjugate)} \\
\lambda_3 &= \frac{a^2 - \dd}{a^2 + b^2} (i |\xi|)^2 + \frac{a^2 + b^2}{a^2 + b^2} \frac{((a^2 + b^2)(2\dd + \dd') - a^2 \dd)}{a^2 + b^2} (i |\xi|)^4 + \ldots \\
\lambda_4 &= \dd (i |\xi|)^2 \\
\end{align*}
\]

(iv) \(\text{rank } (\lambda_j - \tilde{\lambda}) = 3 \) for all \(|\xi| > 0. \)

(v) The matrix exponential has the spectral resolution

\[
e^{t\tilde{\lambda}(\xi)} = \sum_{j=1}^{4} \left(e^{t\lambda_j(\xi)} \right) P_j(\xi)
\]

for all \(|\xi| \) except at most four points of \(|\xi| > 0. \)

\[
\|P_j(\xi)\| \leq C \quad \text{for } |\xi| \leq r_1.
\]

It has the estimate by the modification of the right hand side of (3.5) near the points of a multiple eigenvalue

\[
\|e^{t\tilde{\lambda}(\xi)}\| \leq C(1 + t)^3 e^{-\beta t}
\]

for \(|\xi| > r_1 \) and a positive constant \(\beta. \)
Lemma 3.2

There is a constant $C = C(\epsilon)$ such that

$$\|F(U)\|_{L^1} < \|F(U)\|_2 \leq C \|U\|_2^2$$

(3.8)

$$\|F(U)\| \leq C \|U\|_2 \|U\|_{k+2}^{k+1} \text{ for } k = 1, 2.$$

In particular in the case of (1.9)

(3.9)

$$\|D^2 F(U)\| \leq C \|U\|_2 (\|U\|_3 + \|U, \theta\|_4)$$

Proposition 3.3

There exist δ_3, ϵ_3 and C_3 such that if $E_4 < \delta_3$ and $E < \epsilon_3$, then $U(t)$ satisfying (3.2) has the estimates

$$\|U(t)\|_2 \leq C_3 E_4 (1 + t)^{-3/4}$$

$$\int_0^t \|U(t)\|_2^2 \, ds \leq C_3 E_4,$$

(3.10)

where $i = 4$ in general and $i = 3$ for the case (1.9).

The Proposition is a consequence of Lemmas 3.1 and 3.2. In fact we have

$$\|U(t)\| \leq C_0 E_4 (1 + t)^{-3/4} + C \int_0^t (1 + t - s)^{-3/4} \|U(s)\|_2^2 \, ds$$

$$\|D^k U(t)\| \leq C_0 E_4 (1 + t)^{-5/4} + C \int_0^t (1 + t - s)^{-5/4} \|U(s)\|_2 \cdot$$

$$\cdot (\|U(s)\|_2 + \|U(s)\|_4) \, ds, \quad k = 1, 2.$$

Therefore for $M(t) = \sup_{0 \leq s \leq t} (1 + s)^{3/4} \|U(s)\|_2$ we have $M(t) \leq C_0 E_4 + C M(t)^2 + O(t)$

$C E M(t)$, where E is the norm (1.6) assumed on the solution. Thus we get the conclusion of Proposition for $i = 4$.

Next we have to obtain the estimates for the higher derivatives, which is given by
Proposition 3.4

There exist δ_4', ϵ_4 and c_4 such that if $E_1 < \delta_4', E < \epsilon_4$ and the solution $U(t)$ satisfies the estimates (3.10), then the energy estimates hold

\begin{align}
\sum_{k=2}^{\ell} \|D^k (u, \theta)\|^2 + \int_0^t \|D^{k+1} (u, \theta)(s)\|^2 \, ds & \leq C_4 E_k^2 \quad \text{for} \quad 2 \leq k \leq \ell, \quad (3.11) \\
\sum_{m=3}^{\ell} \|D^m \varphi(t)\|^2 + \int_0^t \|D^m \varphi(s)\|^2 \, ds & \leq C_4 E_k^2 \quad \text{for} \quad 3 \leq m \leq \ell. \quad (3.12)
\end{align}

Since we have already obtained the necessary estimates (3.10) for the lower order derivatives of the solution, the proof of Proposition 3.4 is given successively with respect to k and m in the same way as that for polytropic gases in [1]. In fact, let us remind the operators $L^i, i = 0, \cdots, 4$ in (1.3) and note the estimates for the nonlinear terms g in the right hand side of (1.3).

Lemma 3.5

We have the estimates for $k = 0, 1, \cdots, 4$

\begin{align}
\|D^k g\| & \leq C \|p, u, \theta\|_3 \|D(\varphi, u, \theta)\|_k. \quad (3.13)
\end{align}

The estimate (3.11) for $k = 2$ is given by the integration on $x \in \mathbb{R}^3, 0 \leq t \leq T$ of the equality

\begin{align}
D^k (L^i (u) - G^i) \cdot D^k u + D^k (L^4 (\theta) - G^4) \cdot D^k \theta = 0. \quad (3.14)
\end{align}

Integrate by parts, use (3.10) and Lemma 3.5. The estimate (3.12) for $m = 3$ is obtained by the integration on $x \in \mathbb{R}^3, 0 \leq t \leq T$ of the equality

\begin{align}
D^{m-1} (L^0 (\varphi, u))_{x_1} \cdot D^{m-1} \rho_{x_1} + \\
&+ \frac{\varphi + \epsilon}{2\mu + \nu} (D^{m-1} (L^1 (u) + \rho \rho_{x_1} - (g^1 + \rho \theta_{x_1}) \cdot D^{m-1} \rho_{x_1}) = 0
\end{align}

Integrate by parts, use the equation (1.3) and (3.10), (3.11) for $k = 2$ and Lemma 3.5. We can proceed to get (3.11) for $k = 3$ by (3.14) and so on. The detailed arguments...
using the Friedrichs mollifier and the estimates for composite functions are the same as that in [1], and so we omit them here.

REFERENCE

The initial value problem associated with the equations of motion for isotropic Newtonian fluids is investigated. The fluids are compressible, viscous and heat-conductive. It is proved that there exists a unique global solution in time, for the small initial data, and the solution has the decay rate of $(1 + t)^{-3/4}$ as $t \to +\infty$.