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ABSTRACT

\$>§> A simple, yet complete and detailed description of the Fast Fourier
Transform for general N is given, with the aim of making the underlying
idea quite apparent. To help with this didactic goal, a simple twist, i.e.,
a shifting of information from rows to columns during the calculations, is
introduced which allows to give a simple meaning to intermediate results
and assures that the final results need no further reordering.
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Significance and Explanation

In the last twenty years, various forms of a fast Fourier
transform (FFT) have become popular. The various algorithms have
in common that they produce the discrete Fourier transform on N
points in about N 1ln(N) rather tt;an N2 operations. But, while
these ideas, notably through Cooley & Tukey, have found wide appli-
cation in computations, their didactic treatment has left something

to be desired.

This report is an attempt to remedy this situation.

The responsibility for the wording and views expressed In this descriptive
summary lies with MRC, and not with the author of this report.




FFT AS NESTED MULTIPLICATION, WITH A TWIST

Carl de Boor

1. Introduction. The discrete Fourier transform (DFT) 2z = FNE of an

N-vector 2z 1s given by the rule

N
(1) i Sa Z % (v-1) (n-1) N 1,...,N z
¥ n=1
with
(2) . éxp(-/:i 21/N)

a principal N-th root of unity. Thus, iv is given as the value of a polynomial

=

of degree < N at the point o and can therefore be calculated, by nested

N
multiplication, in N operations. Here, I follow Cooley & Tukey [l] in counting
a complex multiplication followed by a complex addition as one operation.

In the last twenty years, various forms of a fast Fourier transform (FFT)
have become popular. The various algorithms have in common that they produce the
DFT on N points in about N 1ln(N) rather than n2 operations. See Winograd
[10] for the latest developments. But, while these ideas, notably through Cooley
& Tukey [l1], have found wide application in computations, their didactic treatment
has left something to be desired.

In a recent article (7], H. R. Schwarz attempts, as he says, to remove the

mystical aspect which the FFT has for many people. He does this by describing the
FFT in terms of a factorization of the transformation matrix, an idea which he

ascribes to Theilheimer [9] but which occurs already in Good ([5] where a FFT

different from that of Cooley & Tukey is given. A factorization of the transforma-

tion matrix is also the basic idea on which Glassman [4) builds his FFT, and Drubin
[2] has refined this further; see Ferqusén [3] for a lucid description and a simple
Fortran program.

By contrast, I want to give here what I believe to be a simple description of
the FFT for a general N in terms of nested multiplication. Certainly, Cooley &

Tukey [l1] thought of the FFT in these terms.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 .
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2. _The case of two factors. Suppose that N = PQ for two integers P

and Q greater than 1 . Think of the N~vector z as stored Fortran fashion in

a one-dimensional array. Then we can interpret that array also Fortran fashion

as a two-dimensional array 2 , of dimension (P,Q). This means that

i (3) 20, =2 poqy ¢ P lieePr @=1i000
4 Correspondingly, factor the sum (1) for iv into a double sum,
1 2 P o = -
g . ;. - 5 % 25,9 "iﬁv 1) [p-1 + P(g-1)])

p=l g=1 :

P

= ] % Z(p,q) mév-l) i “’igv i O
p=1 [g=1

Here, we have made use of the fact that

9 °
This makes apparent the crucial fact that the inner sum in the last right hand

side is Q-periodic in v , i.e., replacing v by v+) does not change its value,

due to the fact that mg =1 . This means that we need only calculate this sum

for v=1,...,0 (and for each p). Thus, for each p =1,...,P, we calculate

from the Q-vector Z(p,*) the Q-vector whose entries are the numbers

| (4) E 2(p,q) mé\"l) (g-1) i B e
q=1
i.e., we calculate the DFT F . Z(p,*), p=1,...,P, at a total cost of P-Qz -

Q
N+Q operations.

Now, we could store the transform of 2z(p,*) over 2(p,*). But in anti-

{ cipation of further developments, we choose to store the transform FQZ (p,*) in
; 21(-,p), where z1 is a two dimensional array of size (Q,P), rather than (P,Q).
Wwith this, the calculation of iv is reduced to the evaluation of the sum
; P
% " - -
(5) z\) = Z zllvqlp) m}:\) i ‘P = v=1,...,N .
4 p=1
Here, we have used the notation VQ to indicate the integer between 1 and Q
3 >
3 for which v - Vo is divisible by Q . At this point, it becomes convenient to

think of the one~dimensional array which is to contain the N-vector 2 equivalently




as a two~dimensional array Zo , of size (Q,P). This means that

(6) = Zo(v,u) S oo VL E LSRN, R VI T DGR - B

v + Quu-1)
With this, (5) can be written equivalently as

P
fv-1 + Q(u-1)] (p=1)
Scbeul s § o ty,ph w0 T RIRUITP

p=1
o EEIREEET PO T e ISR S
Here, the right hand side is a polynomial of degree < P in the quantity
u;-l g Q(u-l). This quantity can be generated as one goes along, as in the
following convenient arrangement of the calculations:
x :=1

for uy=1,...,P , do:

(7) for v=1,...,0 , do:

4 -
Zotvw) := ]z, (v,p)5"
p=1

x:=X‘wN .
The sum in the innermost loop is, of course, to be evaluated by nested multi-
plication. The total cost of this step is then Q~P2 = N*P operations (if we
neglect the N multiplications needed to generate the various x's). In this

way, we have obtained in 2Z_ the discrete Fourier transform g of z ata

0
cost of only N(P+Q) rather than Nz operations.




3 h neral se. "It is easy to see how successive applications of
the above procedure, starting with its application to (4), give an m-step algo-
rithm requiring

e R )

T= N(P1 + P2 .

operations, where
(8) N = pl-pz-...-pm."
So say Cooley & Tukey (1] ]except for a change in symbols and equation numbers).
In effect, they point out that the first step of the calculations above consists
in forming the DFT of various Q-vectors. Hence if Q itself is the product of
two integers greater than 1 , this calculation can be carried out in fewer than
92 operations by applying the same procedure to it, etc. The actual implementa-
tion of this idea may not be immediately obvious, though. For this reason, I now
discuss a slightly different (and novel) view, according to which the entire trans-
form can be effected by m applications of a slightly enlarged version of (7).
The basic idea is to interpret the storage arrays for the various N-vectors
involved in various ways as multidimensional arrays and to shift information
appropriately from "rows to columns” as we did earlier when storing the DFT of the

row Z(p,*) of Z in the column zl(',p) of 2 For this, I need same nota-

1
tion to indicate that agiven one-dimensional array is being considered equiva-
lently as a two- or three-dimensional array.

If Z is a one-dimensional array of length N , then zA denotes the equiva-

lent two-dimensional array of dimension (A,N/A), and zMB

denotes the equivalent
three-dimensional array of dimension (A,B,N/(AB)). Thus

A,B
= 2" (a,be) = 2%(a,beBle-1)) = 2" (ava(be1) ,0)
= Z(a+A(b=-14B(c-1))) .

Let now Z be a one-dimensional array containing z , as before, and, for
k=0,...,m, let zk be a one-dimensional array satisfying
(10) Zpte,e) = £,77 (e, ), €= 1,...,89,

with




(11) Bi=B 1= PicaoB )y Pi= PR, AsmA =P c...oP

k+1
Then 2z =2, and Z  contains z = FyZ . Further, with A, P, B as given by
(11), one obtains Zk_1 from zk by the following slightly extended version of (7):
x :=1

for p=1,...,P , do:

for a=1,...,A , do:

23} for b=1,...,B, do:

D
A,P A,B =1
2, ., @p,b) := ) z,' (a,p,m - x"
m=1

X 1= X * W

Indeed, the algorithm produces
P
B -1 + A(p-1 -1
z::i(a,p,b) w3 z:' (a,b, wg; SEH (ek)
m=1
On the other hand, (10) implies that

A
z:'s(.,b,n) = FAZB'P(b,n,-) = Z ZB'P(b,ﬂ,u) m('-l)(u-l)

a=1 s ;
Therefore,
P A
Z:::(A,p,b) & Z Z zB,P(b'"'m) mi;a-l)(a 1) + [a=1+A(p~1)](m-1)
=1 a=1

But now, since ”:i =1 , we may add to the exponent on the right hand side any

integer multiple of AP , and this allows the conclusion that

P A
Z::: (a,p,b) = Z Z ZB'P(b.w,a) Q;;-1+A(p‘1)]("-1+P(“_1)]
m=1 a=1

and so proves that 2 .1+ as produced by (12), satisfies (10) (with k replaced

k
by k-1).

This shows that the DFT z is obtainable, in Z, , by m applications of
algorithm (21), starting from zm containing 2z . Since the k-th such applica-
tion costs Pknkakpk = N-Pk operations, the total number of required operations is
indeed given by (8).

In a Fortran implementation of the algorithm, one would, of course, need only

two arrays to play the role, in alternation, of the m+l arrays zm....,zo .
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SUBROUTINE FFT ( Z1, Z2, M, INZEE )

CONSTRUCTS THE DISCRETE FOURIER TRANSTORM OF Z1 (OR Z2) IN THE COOLEY-

TUKEY WAY, BUT WITH A TWIST,
INTEGER INZEE,N, AFTER, BEFORE, NEXT, NEXTMX, NOW, PRIME(12)
COMPLEX Z1(N),Z2(N)

CHERERR T N P U T #xsuns

Z1, Z2 COMPLEX N-VECTORS

N LENGTH OF Z1 AND 2Z2

INZEE INTEGER INDICATING WHETHER Z1 OR 72 IS TO BE TRANSFORMED
= 1 , TRANSFORM Z1
= 2 , TRANSFORM 2Z2

c
CHuua8® W OR K A REAS #xssns

Z1, Z2 ARE BOTH USED AS WORKARRAYS

CRunads O UT PU T #unuss

Z1 OR Z2 CONTAINS THE DESIRED TRANSFORM (IN THE CORRECT ORDER)
INZEE INTEGER INDICATING WHETHER Z1 OR Z2 CONTAINS THE TRANSFORM,
= 1 , TRANSFORM IS IN 2Z1
= 2 , TRANSFORM IS IN zZ2

CHnaus® M E TH O D #nsnus

THE INTEGER N IS DIVIDED INTO ITS PRIME FACTORS (UP TO A POINT).
FOR EACH SUCH FACTOR P , THE P-TRANSFORM OF APPROPRIATE P-SUBVECTORS
OF Z1 (OR Z2) IS CALCULATED IN F F TS T P AND STORED IN A SUIT-
ABLE WAY IN 2Z2 (OR Z1). SEE TEXT FOR DETAILS.

DATA NEXTMX,PRIME / 12, 2,3,5,7,11,13,17,19,23,29,31,37 /
AFTER = 1

BEFORE = N

NEXT = 1

10 IF ((BEFORE/PRIME(NEXT))*PRIME(NEXT) .LT. BEFORE) THEN
NEXT = NEXT + 1
IF (NEXT .LE. NEXTMX) THEN

GO TO 10
ELSE
NOW = BEFORE
BEFORE = 1
END IF
ELSE

NOW = PRIME(NEXT)
BEFORE -= BEFORE/PRIME(NEXT)
END IF

IF (INZEE .EQ., 1) THEN
CALL FFTSTP( Z1, AFTER, NOW, BEFORE, Z2 )

ELSE
CALL FFTSTP( Z2, AFTER, NOW, BEFORE, Z1 )
END IF
INZEE = 3 - INZEE
IF (BEFORE .EQ. 1) RETURN

AFTER = AFTER®NOW
GO TO 10

END




SUBROUTINE FFTSTP ( ZIN, AFTER, NOW, BEFORE, ZOUT )
CALLED IN FF T .
CARRIES OUT ONE STEP OF THE DISCRETE FAST SOURIER TRANSFORM,

INTEGER AFTER, BEFORE,NOW, IA,IB,IN,J

REAL ANGLE,RATIO,TWOPI

.COMPLEX ZIN(AFTER, BEFORE, NOW) , ZOUT (AFTER, NOW , BEFORE) , ARG, OMEGA,

VALUE

DATA TWOPI / 6.2831 85307 17958 64769 /

ANGLE = TWOPI/FLOAT(NOW®AFTER)

OMEGA = CMPLX(COS(ANGLE),-SIN(ANGLE))

ARG = CMPLX(1,,0,)

DO 100 J=1,NOW

DO 90 IA=1,AFTER

A DO 80 IB=1,BEFORE
e VALUE = ZIN(IA,IB,NOW)
- DO 70 IN=NOW-1,1,=1

70 VALUE = VALUE®ARG + ZIN(IA,IB,IN)
80 ZOUT(IA,J,IB) = VALUE
90 ARG = ARG*OMEGA

7 100 CONTINUE
- RETURN
END

There is no claim that the above program is competitive with the carefully
constructed codes such as that of Singleton [8]. 1Its virtue lies chiefly in its
simplicity and transparency. On the other hand, Eric Grosse [6] found that the

above code, modified to give special treatment in FFTSTP for the case NOW = 2,

and to avoid subroutine calls for the complex arithmetic operations, and compiled

by an optimizing compiler, needed only 1.5 to 2 times as much computing time as
did singleton's program for a variety of choices of N .

Finally, the above discussion is based on the Fortran convention whereby

SRRPERE

multidimensional arrays are stored "column by column", i.e., with the first index

running fastest. It is easy to base the discussion instead on the Algol convention

whereby arrays are stored "row by row", i.e., with the last index running fastest.
Acknowledgement. I am grateful to Warren Ferguson for several discussions

concerning fast Fourier transforms and for comments on an earlier draft. I am in-

St S = SR OO B

debted to Eric Grosse for carrying out the comparisons mentioned above and for sug-
gesting that the more leisurely discussion in an earlier draft be replaced by 1

showing directly that the 2, as generated by (12) satisfy (10). ‘ i
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