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ABSTRACT

A simple , yet complete and detailed description of the Fast Fourier

Tra nsform for general N is given, with the aim of making the underlying

idea quite apparent. To help with this didactic goal, a simple twist , i.e.,

a shifting of information from rows to columns during the calculations, is

introduced which allows to give a simple meaning to intermediate results

and assures that the final results need no further reordering.
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Significance and Explanation

In the last twenty years, various forms of a fast Fourier

- - transform (FFT) have become popular . The various algorithms have

- in common that they produce the discrete Four ier transform on N

points in about N in CH) rather than N
2 

operations. But, while
- these ideas , notably through Cooley & Tukey , have found wide appli-

cation in computations, their didactic treatment has left something

-: to be desired.

This report is an attempt to remedy this situation.

i~
Ie responsibility for the wording and views exprsss Q irt this ~~scriptive

summary lies with NRC, and not with the author of thi, report.
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FFT AS NESTED MULTIPLICATION , WITH A TWIST

Carl de Boor

1. Introduction. The discrete Fourier transform (DFT) = F~z of an

N-vector z is given by the rule
- N (v— i ) (n—i)

(1) Z 
~ 

, v 1,.. .,N
n—i

with

(2) exp(—/ 1 2w/N)

a principal N—th root of unity . Thus, ~ is given as the value of a polynomial

of degree < N at the point and can therefore be calculated , by nested

multiplication , in H operations . Here , I follow Cooley & Tukey (11 in counting

a complex multiplication followed by a complex addition as one Qperation.

In the last twenty years , various forms of a fast Fourier transform (F~r)

have become popular. The various algoritbes have in conmon that they produce the

DFT on N points in about N in(N) rather than operations. See Winograd

[10] for the latest developments. But , while these ideas , notably through Cooley

& Pulley (1) , have found wide application in computations , their didactic treatment

has left something to be desired.

In a recent article (7] , H. R. Schwarz attempts , as he says , to remove the

mystical aspect which the ~rr has for many people. He does this by describing the

L 

prr in terms of a factorization of the transformation matrix , an idea which he

ascribes to Theilheimer (9) but which occurs already in Good 15] where a vrr

different from that of Cooley & Pulley is given . A factorization of the transforma-

tion matrix is also the basic idea on which Glassman [4) builds his Frr , and Drubin

[23 has refined this further; see Ferguson (31 for a lucid description and a simple

Fortran program.

ly contrast , I want to giv, here what I believe to be a simple description of

ths FFT for a general H in terms of nested multiplication. Certainly. Cooley &

Pulley 111 thought of the F!? in these terms.

Sponsored by the United States Army under Contract No. DAAG29-75-C—0024 .
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2. The case of two factors. Suppose that N — PQ for two integers P

and Q greater than 1 . Think of the N—vector z as stored Fortran fashion in
‘p

a one—dimensional array. Then we can interpret that array also Fortran fashion

as a two—dimensional array Z of dimension (P ,Q) . This means that

( 3) Z(p ,q) — 5
p+P (q—l) p — 1,. ..,P , q = 1,.. .,Q

Correspondingly ,  factor the sun (1) for 
~ 

into a double sun ,

— Z(p ,q) (v—i ) (p—i + P(q-l) 1

p l q l -
= 

~ 

Z(p,q) ~ Cv= l) (~ —1 
(v-l) (p—l)

p i q—l

Here , we have made use of the fact that

P

This makes apparent the crucial fact that the inner sun in the last right hand

side is Q—periodic in v , i.e., replacing v by v+Q does not change its value ,

due to the fact that — 1 . This means that we need only calculate this sun

for v — i, . . . ,Q (and for each p) .  Thus , for each p — l ,...,P , we calculate -~
from the Q—vector Z(p , .) the Q—vector whose entries are the nunbers

(4) Z(p,q) ~ (v~ l) (~~ l) 
, v

q—l

i.e., we calculate the D!? FQZ(P. )~ p — l , . .. .P , at a total cost of P’Q
2 

=

N.Q operations.

Now, we could store the transform of z(p , ’) over Z(p, .) . But in anti-

cipation of further develoføents , we choose to store the transform PQZ (p, •) in

where is a two dimensional array of size (Q,P) , rather than (P ,Q) .

With this , the calculation of is reduced to the evaluation of the sun

~L Z1
(V

Q~P) 
(v— l) (p-l) 

, v l,...,N

Hera , we have used the notation V
Q 

to indicate the integer between 1 and Q

for which v — is divisible by Q . At this point , it becomes convenient to

think of the one—dimensional array which is to contain the N-vector ~ equivalently

—2—



as a two—dimensional array , of size (Q,P). This means that

(6) Z 
+ Q (p— 1)  Z0

( v , u )  , for v — 1,.. .,Q, p 1,.. .,P

With this , (5) can be written equivalently as

Z0
(v ,p) = Z~~(v ,p) ~~v—l + Q(p - 1) 1(p— l)

v — l , . .. ,Q ,  p — l , .. . ,P .

Here , the right hand side is a polynomial of degree < P in the quantity
v—i + Q(p—1 )

This quantity can be generated as one goes along , as in the

following convenient arrangement of the calculations:

x : = l

for p — l , ... ,p , do:

(7) for v = l , . . .,Q  , do:

Z0
(v , p )  : 

p~l 
z1(v ,p) x~’~~

The sun in the innermost loop is , of course , to be evaluated by nested multi-

plication. The total cost of this step is then Q.P 2 — N ’P operations (if we

neglect the N multiplications needed to generate the various x ’s) .  In this

way , we have obtained in the discrete Fourier transform of at a

2cost of only N(P+Q ) rather than N operations.

—3- .
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3. The aeneral case. “It is easy to see how successive applications of

the above procedure , starting with its application to (4 ) • give an n-step algo-

ritba requiring

P = N(P 1 + p
2 + ... + p )

operations , where

• (8) N — ~~~~~~~~~

So say Cooley & Pulley (1) (except for a change in symbols and equation nunbers) .

In effect , they point out that the first step of the calculations above consists

in forming the DFT of various Q—vectors. Hence if Q itself is the product of

two integers greater than 1 , this calculation can be carried out in fewer than -
~

operations by applying the same procedure to it , etc . The actual implementa -

tion of this idea may not be itemediately obvious , though. For this reason, I now

discuss a slightly different (and novel) view, according to which the entire trans-

form can be effected by a applications of a slightly enlarged version of (7).

The basic idea is to interpret the storage arrays for the various N—vectors

involved in various ways as multidimensional arrays and to shift information

appropriately from “rows to colunns” as we did earlier when storing the DFT of the

row Z(p,•) of z in the colunn Z1(’,p) of H1 . For this, I need some nota-

tion to indicate that a given one—dimensional array is being considered equiva-

lently as a two— or thras-dimensional array .

If H is a one-dimensional array of length N , then denotes the equiva-

lent two—dimensional array of dimension (A ,N/A) , and denotes the equivalent

thr.e—dim.n.ional array of dimension (A , B ,N/ (A3 ) ) .  Thus

(9) zA B a ,b,c) = ZA (a ,b+B (c_ 1)) —

— Z ( a+A (b— l + B ( c—l )) )

Let now H be a one-dimensional array containing z , as before , and , for

k = 0,... ,s , ~~~ “.
,~ 

be a one—dimensional array satisf ying

(10) Z~ ( ’ ,c) — t
~A?~

P (c , •) ,  c — l,...,BP ,

with
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(11) B : B
k 
:~ P1

k ... 
~k— 1’ P 

~k ’ A := Ak ~m
” ~~k+1

Then Z — Z , and Z
0 

contains z = FN
z . Further , with A , P . B as given by

(11) , one obtains Zk l  from Zk by the following slightly extended version of (7):

x~~— l

for p — l ,...,P , do:

f or a = l ,. . . ,A , do:

(12) for b 1,. ..,B, do:

[ . z~ ’~~(a ,p,b) : 

~
j  z~~’~~ a ,b ,w) . s’ 1

X : — X • w ~~,.

Indeed, the algorithm produces

Z~ ’~~(a ,p,b) — 

~~~~~ 

Z~ ’5(a, b,w) w 1a
~~ 

+ A (p—l)1(n-.l)

On the other hand , (10) implies that

— FAZ8’
~~

(b ,w , )  — 

u~l 
Z
5’

11
(b,w ,a) 

( ‘— l) (c t — l)

Therefore ,

Z~ ’~~(a ,p , b) — ~ Z3’~~(b ,w ,n) ~
P ( a— l ) ( c z — l )  + t a — l+ A (p —l ) 1(n— l )

ir.l a—i

But now, since — 1 , we may add to the exponent on the right hand side any

integer multiple of AP , and this allows the conclusion that

(a ,p,b) = ~ Z
3’~~(b,w ,oi) ~

(a_l+A(p_lfl (s_l+P(cz_l)]

w—l a”l

and so proves that Zk l  , as produced by (12) , satisfies (10) (with k replaced

by k-i) .

This shows that the DF? ~ is obtainable, in , by in applications of

algorithm (21), starting from Z containing z . Since the k-th such applica-

t ion costs PkAkBkPk — N 
~k operations, the total number of required operations is

indeed given by (8) .

In a Fortran implementation of the algorithm , one would, of course, need Only

two arrays to play the role, in alternation, of the m+1 arrays Z,. . . ,Z~
—5— 
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SUBROUTINE FF~ ( 21 , 22, fl, I N Z E E
CONSTRUCTS THE DISCRETE FOURIE R TRANS !~0RM OF 21 (OR !2) IN THE COOLEY—
C TUKE Y WAY , BUT WITH A TWIST.

— INTEGE R I N ZEE ,N , AFT E R ,B E F O R E ,N EX T ,NE XTMX ,NOW ,PR IME(12)
COM PLEX Z1OI),Z2(N)

Ce” I N P U I ~~~~~~
C 2 1 , 22 COM PLEX N—VECTOR S
C N LENGTH OF 21 AND 22
C INZEE INTEGE R INDICATING WHETHER Z i OR 22 is TO BE TRANSFORMED
C = 1 , TRANSFORM 21
C : 2 , TRANSFORM Z2
C” W 0 R K A R E A S
C 2 1 , Z2 A R E  BOTH USED AS WORKARRAYS
~~~~~~~ 0 U T P U T
C 21 OR Z2 CONTAINS THE DESIRED TRA NSFORM (IN THE CORRECT ORDER)
C INZEE INTEGE R INDICATING WHETHE R 21 OR Z2 CONTAINS THE TRANSFORM ,
C = 1 , TRANSFORM IS IN 21
C = 2 , TRANSFORM IS IN Z2
~~~~~~~ N E T H 0 D
C THE INTEGER N IS DIVIDED INTO ITS PRIME FACTOR S (UP TO A POINT ).
C FOR EACH SUCH FACTOR P , THE P—TRANSFORM OF APPROPRIATE P—SUBVECTORS
C OF 21 (OR 22) IS CALCULATED IN F F I S T P AND STORED IN A SUIT—
C ABLE WAY IN 22 (OR Zi). SEE TEXT FOR DETAILS.
C

DA TA NE XTM X ,PR IME / 1 2 , 2,3,5,7, 1 1 ,13, 17, 19, 23, 29 ,31 ,37 /
AFTER = 1
BEFORE = N
N E X T = 1

C
10 IF ((BEFORE/PRIME(NEXT))’PRIME(NEXT ) .LT. BEFORE) THEN

NEXT :NEXT + 1
IF (NEXT .LE. NEXTMX) THEN

GO TO 10
ELS E

NOW = BEFORE
BEFORE :1 H

END IF
ELSE

NOW = PRIME(NEXT )
BEFORE : BEFORE/PRIME (NEXT )

E N D  IF
C

IF (INZEE .EQ. 1) THEN
CALL. FFTSTP ( 21 , AFTER , NOW , BEFORE , Z2 )

ELSE
CALL FFTSTP( Z2, AFTER , NOW , BEFORE , 2 1 )

END IF
INZEE : 3 — INZEE
IF ( BEFORE .EQ . 1) R E T U R N
AFTER = AFTER’NOW

GO TO 10
END

L 
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SUBROUTINE FFTSTP C ZIN , AFTER , NOW , BEFORE , ZOUT )
CALLED IN F F T
CARRIES OUT ONE STEP ~F THE DISCRETE FAST COURIER TRANSFORM .

— INTEGE R AFTER ,BEFORE ,NOW , IA ,IB ,IN,J
REAL. ANGLE ,R AT I O ,TWOPI
COM PLEX ZIN (AFTER ,BE F ORE ,NOW ),ZOUT (AFTER ,NOW ,BEFORE), AR G ,OM EG A ,

* VALUE
DA TA TWOPI / 6.2831 85307 17958 6i(769 /

-
‘ ANGLE = TWOPI/FLOAT(NOW’AFTER)

OMEGA = CMPLX(COS (ANGLE),—SIN (ANGLE))
ARG = CMPLX (1.,0.)
DO 100 J= 1 ,NOW

DO 90 IA=1 ,AFTER - 
-

DO 80 IB=1 ,BEFORE
VALUE = ZIN (IA ,IB ,NOW)
DO 70 IN=NOW— 1 ,1 ,—1

70 VALUE = VALUE’ARG + ZIN (IA ,IB ,IN) —

30 ZOUT (IA ,J ,I9) : VALUE
90 ARG = AR G ’OMEGA
100 CONTINUE

RETUR N
END

There is no claim that the above program is competitive with the carefully

constructed codes such as that of Singleton (81 . Its virtue lies chiefly in its

simplicity and transparency. On the other hand, Eric Grosse (61 found that the

above code, modified to give special treatment in FFTSTP for the case NOW = 2, 1 -

and to avoid subroutine calls for the complex arithmetic operations, and compiled

by an optimizing compiler, needed only 1.5 to 2 times as much computing time as

did Singleton’s program for a variety of choices of N .
Finally, the above discussion is based on the Fortran convention whereby

multidimensional arrays are stored “column by column” , i.e., with the first index

• running fastest. It is easy to base the discussion instead on the Algol convention

whereby arrays are stored “row by row”, i.e., with the last index running fastest.

Aoknowledaement. I am grateful to Warren Ferguson for several discussions

concerning fast Fourier transforms and for cciHnents on an earlier draft. I am in-

debted to Eric Grosse for carrying out the comparisons mentioned above and for sug-

g.sting that the more leisurely discussion in an earlier draft be replaced by

showing directly that the Zk as generated by (12) satisfy (10).
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