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This paper considers a class of variable metric methods for uncon-
strained minimization. The update formulas are such that the quasi-Newton
equation is not necessarily satisfied. Under appropriate assumptions on the
function to be minimized, each algorithm in this class converges globally
and superlinearly. . , . = _&
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SIGNIFICANCE AND EXPLANATION

Many practical problems in operations research may be reduced to mini-
mizing a function with or without constraints. By means of penalty functions

and similar techniques a constrained minimization problem can be converted

into a sequence of unconstrained minimization problems. In this paper we dis-
cuss a class of algorithms for unconstrained minimizatipn“\problems which con-
verge rapidly to the solution from a starting point which is not necessarily

a good approximation to the solution of the given problem.

The responsibility for the wording and views expressed in this descriptive
e summary lies with MRC, and not with the author of this report.




GLOBAL AND SUPERLINEAR CONVERGENCE OF A CLASS OF
SCALED VARIABLE METRIC METHODS

Klaus Ritter

1. Introduction

Variable metric methods are successfully used for iteratively calcu-
lating a sequence {xj } which converges rapidly to a global minimizer of
a smooth convex function F(x) . At each point X5 the computation of the
search direction is based on a quadratic model Q(x) which interpolates the
function value and the gradient of F(x) at X as well as the gradient of
F(x) at Xj.1 In general Q(xj-l) * F(xj—l) . The matrix defining the

quadratic form in this model is updated in such a way that it satisfies the

quasi-Newton equation.

In this paper a class of modified update formulas is considered which
result in a quadratic model Q(x) which in addition to interpolating the

function value and the gradient of F(x) at X5.1 minimizes the criterion

2,

tivi s (1-t)(0x;_p) - Fixe_ 02

J J

Here v is the error in the quasi-Newton equation and t, 0 <t < 1, is

a weight factor which reflects the importance assigned to satisfying the

quasi-Newton equation as opposed to interpolating F(Xj-l)' Under the usual

assumptions it is shown that the resulting variable metric methods converge

globally and superlinearly.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




The so-called restricted Broyden methods [2] are contained in this new
class of variable metric methods. They are obtained if the weight factor t

is chosen equal to one.

In [1] Biggs describes a modification of the Broyden-Fletcher-Goldfarb-
Shanno method which results in an update formula for which the quasi-Newton
equation is also not satisfied. However, this method is not contained in our
class. Recently, Schnabel [7] has shown that Biggs' method converges super-

linearly.

2. Basic properties of scaled variable metric methods

Let x € E" and let F(x) be a real valued function. If F(x) is

twice differentiable at some point xj we denote the gradient and the Hessian

ix of F ; VF(x.) = ¢. . = G(x,
matrix o (x) at X; by F(xJ) 9; and GJ G(xJ

prime is used to denote the transpose of a vector or a matrix. For every

) » respectively. A
x € E" , 1 x Il denotes the Euclidean norm of x .

Throughout this paper we make the following

Assumption 1

F(x) 1is twice continuously differentiable and there are numbers

0 < u < n such that

X H2 < x'G(y)x <n |l xII2 for all x, y € il

[t is well-known that Assumption 1 implies that F(x) is uniformly

convex and that there is a unique z € E" such that
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F(z) <F(x) forall xeE", x#+z.

[t is the purpose of this naper to discuss a class of algorithms which

construct a sequence
(2.1 -

which converges superlinearly to z . Here sj € E" is called a search di-

rection and the scalar o5 is referred to as the step size.

We say a sequence {xj } converges superlinearly to z if and only if
” Xj+1"z”' N)o

o
leJ Il

85 g e,

Since z 1is a global minimizer of F(x) we have VF(z) =0 . Thus,
if Xj -2z as Jj > = then gj +0 as Jj - « . Furthermore, it follows from
Lemma 1, proved at the end of this section, that ¢ xj} converges superlinear-

ly to z if and only if {gj } converges superlinearly to 0 . Therefore,

it suffices to show that

(2.2) ol 2 R
g I

+0 48 J+ew

In order to derive conditions under which (2.2) holds, we assume for the

moment that the sequence (2.1) converges to z . Then it follows from Taylor's

theorem that, for every j ,

1

{Z2.9) gj+1 = gy - ‘7,j(£6(xj't"jsj)dt)sj
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where G = G(z) and

1
( . ; = , B - .
2.4) 3 éG(XJ toss;)dt - 6

Dividing (2.3) by |l gjll and using the triangle inequality we obtain

the two inequalities

H g:. 1 M g. S | :
AL L Y Y T e
I 9; H I 9; Il I 9; I t 93 Il
o s‘ g +S Il'g Il
(2.6) ‘ “ il » it ” - |lE J ]' t et ... &
Il g I gJ I llgjll b I 9; Il
Since
1
IIEj h<1l/fG (x-- ths )dt - G(x ) I+ I G(x ) -Gl
0
implies that
(2.7) Il Ejll 0 a8 J+w
and it follows from Assumption 1 that
Il 938 ; = 0(N 9; 1)

we deduce from (2.5), (2.6) and (2.7) that the sequence fgjl converges super-

linearly to zero if and only if

g. 0:S .
“—Jm - A R l-o as j + o

||gjll Ilgjll

This shows that in order to achive superlinear convergence we have to

determine the search direction s. and the step size in such a way that

J
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(2.8) ki) R e e R - a8 §
| ogg NSy

and
| Il Gs Il :

(2.9) 3 = v B a5 j
j I gjil i

If a variable metric method is used to compute the sequence (2.1)

then a matrix Hj is associated with each xj and

- o= Hoga
£2. 101 sJ J9J

The matrix H. is determined by adding a matrix of rank 1 or rank 2 to

j+l

Hj in such a way that the quasi-Newton equation,

(2.11) Hiapd; = Py s

is satisfied. Here

g.~g. S
(2.12) d; - i e L NN e
lhogs; |

This procedure can be motivated as follows. If Hj approximates G
in the sense that

(2.13) I H - Bl s 0 2 Jew,

then it is clear that S as defined by (2.10) satisfies (2.8). Furthermore,
it follows from (2.3) that

-1 " -1
(2.18) G dj = pj + G Ejpj .

Thus if Hj+1 satisfies the quasi-Newton equation (2.11) we have




/ _ - 1 2 <
||\Hj+1 G )dj Il i as 3

It should, however, be observed that the condition (2.13) is not neces-

sary. According to (2.8) we only need the property

no 6 g, H.g.
| L - _,J”l_,l 0 as
Uone T 1 Hag i

J J=d

combined with a step size )5 satisfying (2.9).

Assuming that Hj+1 is symmetric and positive definite we denote the

inverse of H; 1 by B and consider the quadratic function

gt j+l

) 1 '
(2.15) Qx) = F(xj+1) + gj+1(x- Xj+1) t s (x -xj+1) 8j+1(x- xj+1)
Obviously we have

(2.16) Q(xj+l) = Flxj,) and VQ(Xj+1) = 9541

Furthermore, if Hj+1 satisfies the quasi-Newton equation (2.11) then

(2.17) BiytPs = G

and it follows that

(2.18) F’Q(XJ) = 9j+1 " Bj+1(Xj—Xj+1) = 9j
. St o . .
With Sj+1 = Bj+19j+1 it is easy to verify that Xj+1 - 5j+1 is the
unique global minimizer of the quadratic function (2.15). Since 8311 = HJ.Jr1

we can interprete the negative search direction - s asso-

j41 = 7 H5419541 o
ciated by a variable metric method with a point xj+1 §
leads from xj+1 to the global minimizer of the quadratic function (2.15)

which has the properties (2.16) and (2.18).

as the direction which

S ks
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Since in general 0 xi) + F(xj) we could try to determine the quad-

ratic function Q(x) such that
(2.19) Q(x;) = F(x;)

by giving up one of the properties (2.16) or (2.18). Since at x the

j+1
function value F(xj+1) and the gradient 9j+1 represent the most recent
information about F(x) that is available to us, it appears reasonable to
insist on (2.16). However, then the quasi-Newton-equation (2.17) necessarily
leads to the equality (2.18). Therefore, if we want to use a quadratic func-

tion of type (2.15) that has the properties (2.16) and (2.19) we have to re-

lax the quasi-Newton equation (2.17).

Multiplying the equality (2.14) by G we obtain

Go. = s ¥ Bt
Pj j P

Thus the quasi-Newton equation (2.17) guarantees that
P =Gp. N~ ag 3 rw.,
HBJ+1pJ GpJ i ggas

However since Gpi differs in general from di there is reaily no reason
to insist on (2.17). On the contrary it might be better to relax (2.17) in

favor of a better approximation of F(xj) by Q(xj) .

In the following we will, therefore, consider a quadratic function (2.15)

where Bj+1 is symmetric positive definite and satisfies the relaxed quasi-

Newton equation

(2.20) Bj+1pj = 8. % ¥ .

We assume that vj is an optimal solution to the problem




by ?
{2.21) min { t |l vll2 + (1- t)(Q(xj) = X5))
v

Here the parameter t is restricted to the interval 0 -t - 1 . It car
interpreted as a weight factor which reflects the importance we assign !

tisfying the quasi-Newton equation as opposed to interpolation F(/j; :

Using (2.20) we obtain from (2.15)

) 1 v ic
({2.22) Q(XJ) = F(Xj+1) o+ gj+1(xj-xj+1) + 2 (Xj'xj+1’ (gj gj+1)

v

i Kl 3

1
? HXJ = XJ‘\LIH

2 1 . 1 3 s
= F(xj+1) t s (gj-+gj+1) (Xj' xj+1) g X = xgq 17 pyYy

Setting

1 .
(2.23) = F(Xj+1) - F<Xj) il (gj+gj+l) <Xj-xj+1)

v“\_j
we can therefore write (2.21) in the equivalent form

: 2 1 Bon il 5
(2.24) min { tvN" + (1- t)(vj-+?llxj- xj+1H ij)

v

Clearly vj is an optimal soltuion to (2.24) if and only if

1 € o )
(2.25) tvj + (1 t)(vj-+?|Ixj xj+1H pjvj)pj . "
If t>0 this implies v, = x.p. for some ). . In order to obtain . we
J J"J J J
substitute into (2.25) and solve for Aj . This gives
2it = L}v;
Ny J
J 2 1-t) lx; - W
B ) xj X541
Therefore,
2(t=1)v,
(2.26) vy = L P
2t + (1- t)IIxj— xj+1H




1s an optimat solution for (2.24). If t > 0 , them (2.26) i1s the unique
optimal solution. Furthermore, if t =1, then v. =0 and (2.20) reduces

to the quasi-Newton equation (2.17). On the other hand if t =0 , then

-2
G e e p

lej"xj+1“

and it follows from (2.22) and (2.23) that Q(xj) = F(xj) ]

With

20t = Dy
(2.27) §. = 8.(t) = A

) 5 2
2t + (1-t) lixg- x|

we obtain from (2.20) and (2.26) the relaxed quasi-Newton equation

B. & = . x:;. PE'Y
i+1P; G+ 358

or in terms of Hj+1 -

2.28 H. o(d; + 6.p.) = p.
(2.28) ety o+ 8D P

By Taylor's theorem there are vectors

{2.29) Z; 0 25 € {x] x= et t %(xj‘-xj+1) « Bxxs1
such that

Fixg) = Flrgyg) + @005 - x5,1) + 5 (%57 %5,7)"6(25) (x5 = x5, )
and

%(ﬁ'xyq) = %+ﬂxj—%+ﬂ +(ﬁ-xiﬂ)m(%)uj-ﬁ+ﬂ

Therefore, it follows from (2.23) that

1

J) 7 G(ZJ))(XJ & Xj+1)




which by (2.27) implies that there is a constant & such that
(2.30) JoR ) (1-t)606{z:)-8B{z. 31  D<t<]l.
J = J J
Setting
d = d.+c‘.
4 J JpJ
2 2

and choosing arbitrary parameters 4 and £, with B+ 5 0 we define

the following class of update formulas

3.(d'p. + d'H.d. 8.d.'H.d.
ghsy v ol G} & 8,0, M0 4,

(21 , . : PP
J+1 J G g Aol d e €
(Bq0s Ry Bats Mg 000y
d"H. .d.p. H.d.d.'H.
s e G v s S
e o o bl 2 i
R-d! n.+B8.d.H.d. 2 Dl R.d."H.d.
‘ldJ pJ-h,szHJdJ uldJ pJ + 2dJ JdJ

Assuming that all denominators in (2.31) are different from zero it is easy

to verify that each matrix H defined by (2.31) satisfies the equation

j+1

; : ‘ . :
(2.28). Moreover, if Hj 1s symmetric so 1is Hj+1 :

If we choose t =1, i.e. dj = dj , then (2.31) is identical with

a class of update formulas introduced by Broyden (see [2] and [3]).

In order to determine conditions on 81 and Bo which guarantee that

‘ the update formula (2.31) maintains the positive definiteness of Hj we de-
{ fine the two subspaces
S = { - A
SJ span gJ, dJ }
| Hag )" 5 5 : ! =
j % JgJ) X 0 (HJdJ) X Q

and observe that

« 30 =




~no
Ca
no
= o
>
1

Hjx for x € Tj :

Since 9 ¢ T. and dj ¢ Tj it follows that H. is completely de-

j+1

J 9}

fined if we specify it on the subspace Sj . For each update formula (2.31)

we have

: ki S ks
(2.33) 419 P
If gj and dj are linearly dependent, then Hj+1 is completely defined by

(2232 andi (2 8RRl alaa nd Hj are linearly independent let wj € Sj be

J
such that
w:].pj = 0 and ijj = qj with llqj =
Then
dJHJ+1wJ pij =R
and s
(B1ps + 2,H.d,)d%q.
Hj+1wj % My } Bl dd 4 e span { A5 Py ¥
Brdhp. + B, diHd.
1555 5%

and, for every update formula (2.31),

; B s = wele s
(2.34) J+1wJ jJuJ

where only the parameter 03 depends on the particular values of 81 and By -

Since we assume that Hj is symmetric and positive definite it is not

difficult to verify (see [6]) that Hj can be written in the form

- 11 -




PP} 49}
(2.35) Hy = B o SR A Hs
VA LS B R
-1 - . )
. 0. = H.q. . is a matrix of rank n-2 with
where j Il JgJII and HJ r Y
H. . = F{ £ = O A
i% i

Now it follows from (2.32), (2.33), (2.34) and (2.35) that

p.pt TR ’
(2.36) TERER | £ SO W P
j+l ap. 9w, 9
S J=J
Therefore, if Hj is positive definite, then HJ.+1 is positive definite if
and only if
(Z2237) d:p: >0 and w. >0 .

Because ajpj = d3pj + 8.(t) and djpj > u (see Lemma 1) we can force

J
aapj to be positive if we choose t sufficiently close to one (see (2.30)).
In order to study the dependence of w; on 84 and By we first choose

8y =1 and By = 0. If t=1 the resulting update formula (2.31) corre-

sponds to the Broyden-Fletcher-Goldfarb-Shanno-method [3], (4], [5], [8]. Then

e B T ok

Thus, setti .= d'q. / d'p.
us, setting o5 d qJ / deJ we have

2.38 R e (G o SRS - 0D
( ) uj 4 IlqJ iPj I

Since by (2.35) ,

M 1
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G S —

: gin ey

(239) Hd = p 4:].__‘],,+ q _~]__~_~l
h . DRy
X 3]

we obtain for a general choice of the parameters 84 and 9

(@.d'p. +B.d'H.d.) - 8.p.d'g. - R.H.d.
95(By0i0y + B0 de) = Bypy8iAy = B 4l

g.d'p. + B,d'H.d.
Bydyiy + Balil g

393

M1

o ~ 2
PP L 'n. o o I
B1diPy + Bpldipy)” / 0595P4

= = (q“'t,p> .
1 A'H o J 3
81djpj + BZdejdj
Thus in general
(240) (U\j = ‘{J. I qJ-‘LJpJ IS
where
o) NI >} ’I 2 [}
Lo By v Bldipe) F Ry,

(2.41) 5% — s

Bldjpj + Bzdejdj

This shows that a3pj >0 and 848, >0, By + 8, #+ 0 is a sufficient
conditicn for Wy >0, which by (2.37) implies that Hj+1 is positive de-
finite. If BBy < 0 , then ¥; could be zero or negative. In this case an
adjustment of the parameters By and B, s required in order to obtain a
positive definite matrix H

j+1 ¢

For later reference we prove the following lemma

Lemma 1

i) For every xj €t v

gy H<nll Xj-2 Il and ull Xy~ 2 (< 9; i

« 13 =
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ii) Let d. and p. be defined by (2.12). Then
J J

-;_‘iw 5 e W ds H o€
. ! J

i) By Taylor's theorem there are vectors

Z5» 25 € {x [ x= Xy \(xj- £} » 02zl
such that
p||xj - zII2 < (xj = z)'G(zj)(xj -2) = g&(xj -Z) < ||gjll ij -zl
and
2 . g = Y . . =Z [
Ilng = ng(zj)(xj 4 A llngll lli z

ii) Using Taylor's theorem again we obtain

(9:=9:,1)'P; ~
d:jpj = "'J*—"—"‘“‘*‘J‘Fl J - p'G(zj)pj ol
"R
Jd
and )
(g.—g. .
lldeZ L o a16(2;)p; < 11 6(z;)I1 18511 < n 151 -
H;ﬁsj Il

3. Convergence

Based on the discussion of the previous section we describe now an
algorithm which for any starting point Xo and any symmetric positive de-
finite matrix HO generates a sequence (xj } which either terminates with

z orconverges superlinear to z .

At the beginning of a general cycle of the algorithm, X5 95% 0

and a symmetric positive definite matrix Hj are available.

- 18 =~
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Step 1: (Computation of the search direction)

Compute

and go to Step 2.

Step 2: (Computation of the step size o)
Determine 'j such that

F(xj- 'jsj) = mfn { Fix.~a8:) 1 o>0 3} .

Set

and compute gj+1 A gj+1 = 0 stop, otherwise go to Step 3.

v : .
Step 3: (Computation of HJ+1)

Select 0<t<1, 4, and iy with .‘f + 9; » 0 and compute

1 .
o Dok F(XJ.+1) - F(XJ') e (9J+9j+1) (Xj‘xj+1)
2(t-1)v,
55(t) = J e
28 + (1-t) lIxg = x5, 1
R . SR
J o j _
Hogss I sl

Determine Hj+1 by formula (2.31). Replace j with j+1 and go to
Step 1.

Remark

In Step 2 we assume that of is the optimal step size. This assump-
tion simplifies the proof that the sequence ij& converges superlinearly to

ij} . Using an approach similar to the one in [6], it can be shown that this

- 15 =
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result remains true if 4 is an appropriate approximation of thne
step size. In Step 3 we assume that, if necessary, the parameters t ,

j i tr. = dtn. + 8.(% 0 nd
and fo o are adjusted in such a way that deJ J)J 508 a

defined by (2.41) is positive. As we have seen in the previous section this

implies that Hj+1 is positive definite.

In the following lemma we establish some properties of the sequences
(gj: and ij‘ generated by the algorithm.

Lemma 2

: 1 ; 2
i) F(Xj+1) é F(Xj) = (gjpj)

i) gipj +0 as j» =

i11) lej+1~ lel =g gs jew

Proof:

i) By Taylor's theorem we have, for every o > 0 , the inequality
1.2 2

F(x; -osj) < F(xj) - 09is; + 30 Ns;li%n .
it - SEE S R
For o5 = gjsj / Hsjll ) this implies )
F(xj -ojsj) < F(xj 'Ojsj) L F(xj) - (gjpj) / 2n

ii) Because F(x) 1is bounded from below and F(xj+1) < F(xj) for

every j , it follows from part i) that gjp + 0 as j

J
iii) By Taylor's theorem there is a vector z. such that
z; € { x| x=x; = x(x,;

and
0 = 9juapj = 9jp; = oyPiB(2y)sy -

- 16 »
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Therefore,

£3.1) “XjH“XjH:H?-S-H

In order to prove that the sequence ij} converges to z we need
some properties of the‘trace of the matrices Hj and Bj . By definition,
the trace of a matrix is the sum of its diagonal elements, which in turn is
equal to the sum of the eigenvalues of the matrix. Using the representation

(235} af Hj we obtain

£3.2) tr(Hj) = 1 + . + tr(ﬁj) ;
o it 1 B

Using (2.35) once more it is not difficult to verify that Bj = H31 can be

written in the form

L - ¢ o B.
J ! \
93P g

A

where Bj is a matrix of rank n-2 with the property

é. = A. -

iP; B59; :
Thus we have

0. llgs 12 fiw, 112 .
(3.3) tplB.y e + J + tr(B.) .

J g'p o J
3% i
Now let
05 = tr(By) + tr(Hj) .

Then it follows from (3.2), (3.3), (2.36) and

g 2
d.d. Iw, Il X
Biyg = =+ Ly oy
d'p. Wi Wil :
3*3 : B
- 17 -
: — s wcw”"“m ——
EBp— S S
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V4 g9, B° L+l dj 11 L+ liwli” Ml

"i+l 3 R i .. w'hu
j93P djp "33 j

v'.q.
e . o
Ilqj - 5P Il

. =

we can write the above equality in the form

1411, ].gjuz 1+ndjn2 1 nwjn2 la; - ,jpj”?J-
(8T Mgy ™ty = seemiillen: §iraliors B pbinly s fne el
"595P; d5P; ’ Y395 "39;

By Lemma 2, llxj+1- lel +0 as Jj » = . Therefore it follows from

(2.29) and (2.30) that, for 0 <t <1,

d.=d.
Il 4= Y 1

1"
—
—
~
v
o
[=4
%)
(=

In connection with Lemma 1 this implies that there is a constant Mo such

that
1+ 1l djll2

(3.6) e X for 3 = Balyen

dlo.

iP;

Next we infer from dj = (gj- gj+1)/ [ ”jsjll+ :jpj that
. - 5.5 Sabs . fini
9]+1 Il JSJ il JpJ il Defining
Il'jsjll‘j
{3.7) ¥g * % H‘jsjllpj - .<1;--..- dj
3P

and observing that p3(q‘ 3"

i+ = 0 we deduce from the definition of uj

and Wj that

H. : - a -
(3.8) | R i W SRR, Wby B
(9] ] J J
WH 1095, - y5) M HH (9500 - Y501
« 18 =
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Using (3.4) and .3) we obtain

2 2
Hw. |l Wg. .~y. !l
3.9) BN L caaen = (1- ”j) ERARE Ty . el
. i (95517Y5) 54109547 - Y5)
and
te=] i) NH. o (gen=ye) 119
(3.10) R T e e S ok o M k| TS T
"5 G0 (957 (950 7 Yy)
where
2
( T = Y 2 o= e . -
(3.11) 5 i Moy - ogpy

Unfortunately it does not appear to be possible to find an a priori
upper bound for the expressions on the right hand side of (3.9) and (3.10).
However, since it follows from (2.30) and (3.7) that yj = 0 if we choose
t=1, there is tj < 1 such that for every t with tj % < 1 THhe fol~
Towing condition is satisfied.

Condition 1

For every j the parameter t is determined such that 0 <t <1 and

-y, 112 2
e 195, =951 gyl S
J 1 ' -
(9541 Y3 M50 (9501 - ¥5) 955950
s R 2
j71 W (g5, - y5) 3195015

i (gj+1"yj)lHj+1(gj+1"yj) g3’+1Hj+lgj+1

where by and b, are arbitrary positive constants.

Using Condition 1 we obtain the following lemma

e aa ER—




—_
Lemma 3
Let Condition 1 be satisfied. Then there is a constant ., 0 sucr
that
J g, Il
)3 ——— < (3+1):.3 for  § = 0.1,2,
i=0 4 g
! 9P
1
Proof:
For every j we define the matrices Bj(yj) and Hj(wj) as follows ]
°395% A
£3.12) Balv:) = B; = {1~%:.4)
3] J -1 g,
g
Aagagh  WeWE
= ey adiy, 13, B »
3395 5%
p;ipt
(3.13) H(t;) = H, - (1- 1 J°3
470 J j-1 0:94P
J=d0d
PP} 9:9% . |
2 o JJ+JJ+HJ. ij
LBy SR |
1
Setting 1
\PJ- = tY‘(Bj(Yj)+tY‘(Hj(Tj)) ’

we obtain, similar to (3.5), the equality

~ 2
1+11d.: 1l
. PR e T A Tk SRS N Rl
S v Er R e L vy
i 3"
2 2
Il w.ll Il 03, 19:,4 1
+(,}j - 1) e - (1-7vy) e L AL
J W93 75419341541
Te=1
# e = {1 = }) SR N—
Y I 05419541P541
- 20 -
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Using (3.6), (3.9) and (3.10) and observing that

1
0. Rel| Pepree pl=repp i e ) 2 F e H. 1
7 g TR e
j+17j+1

we deduce from (3.14) and Condition 1 the inequality

1 1 o 2 o : ,
£3.15) Vigy S W5 “:g{d: < ,3:i + Fiei H.jgjll ) gt E
oGy
I 1 e |
R e (fji' +yi_plle 951 ) + (31 (g +up)
i y T iti %z ENlers Tt
Since (3 and j are positive, BJ(,J) and J(‘J) are positive

definite. Therefore, every ‘3 1s positive and it follows from (3.15) that

g0 N " Sy i
(3.16) T — — ¢+ (i-l“:igi” < (J+1)1.4 - Sl e R S
i=0 p.gip, \ i-1

for some constant g > (I

Because .

- = o AR
Jagi? 0 and (s.4 = (i~1|'qi—1 1Pl it 1s easy to

3
verify that

2 llg. |l
1 1 , ) 2y . i 3 -1
(=-1/] *<T]—1 +vyoq Noyg;l ) et L S AL
Moreover, for every j ,
' n dip. = dip. + 8.(t) > p + 8.(¢t
sl < n +Iéj(t)l and djpy = djp; 5 ) > 3¢ )
{ . :
i Since by (2.29), (2.30) and Lemma 2, ?j(t) »0 as J » = , we have
djpj - u/2 for j sufficiently large. Therefore, it follows that there is
- 0 such that
(3.18) Iha; - aps nlse>0 for j=0,1,2,...

-] =




The statement of the lemma follows now from (3.16), (3.17) and (3.18).

With Lemma 3 at our disposal we can now easily prove the main result

of this section

Theorem 1

Let Assumption 1 and Condition 1 be satisfied. Then the sequence - xj»
generated by the algorithm either terminates with z after a finite
number of iterations or converges to z , where z is the global mini-

mizer of F(x) .

Proof:

It follows from Lemma 3 that there is a positive constant Mg and an

infinite set J < {0,1,2,...} such that

!|gjl|

= e for j € J .

g;P

34
Since by part ii) of Lemma 2 pa.gj -0 as Jj » « this inequality shows

that

(3.19) g e A5 Jwe, JE€I,

By the continuity of VF(x) this implies that VF(x) vanishes at every
cluster point of the subsequence {xj, j € d} . Since the set

%L F(x) < F(xo)} is compact and VF(x) #+ 0 for x # z we deduce,

therefore, from (3.19) that a subsequence of ij} converges to z .

Observing that F(xj+1) < F(xj) and F(z) < F(x) for x £ z , we see
that xj »Z 85 J > .

-22_




Superlinear convergence

In order to show that the sequence X converges superlinearly to

z we need the following additional assumption.

Assumption 2

There is a positive constant L such that
G(x) - G(y) Il < Llix=-yfll , x,y€c€".

lat €Y°  denvie the square root of G = G(z) and set griki e G1/2)_1.

= |
As a first result we will show that with an approoriate modification of Condi-

tion 1 the sequence T;j R
it tr(G'l/Z =12 I

; B(+.)G

& ) + (67 Hs
is bounded, where the matrices B(yj) and Hj(yj) are defined by (3.12) and

(3.13), respectively.
Observing that by (2.28), (2.40) and (3.4)
ujGuj 2 U Gus (qj-:1.p.) G (q. - %P )

g (\‘/j - l) {l qJ = r’(JDJ I e d 4 JJ o JJ°
whiu. L o
33 B %t

o J :
J
it is not difficult to show that in analogy to (3.14) we have

1

LG ‘\Gp. +d'G "d.
(4.1) &y 1 = £, = : —(p—‘]-—{)éj— Y . lr zg'G—lg 4 w‘_,ﬁ.\]
s = D TuDey Dy i .
J I 0583P5\ Y40 g 3
; 33
A 0. e
' (i 1) e Sl T O ALl 1
o8 "59; 9541P 541
u'Gu. 0y, L Go.
#(¥s-1) g, =oup, e S - (T--Ly 38 Jad
J S i Wi e o
J7J ‘j+lgj+1‘j+1
o = O . ‘(\ (Tl 0 ¢ I.G .
. {qJ iPj) :(qJ J“J_) _ 9364y
g i AR
- 23 -
N
F ol




In deriving estimates for the terms on the right hand side of the
above equality we will use a result, derived in [6], which states that for

every X, y € " with y'x >0 the following relation holds

x'Gx + y'G_ly (y-—Gx)'G-l(y- Gx)
(4. 2) = 2 + — —_— e
y'x ¥'x
Lemma 4
_1~
pLGps + d.G “d.
1 J . b -2 = ol x, - zH2 )
d.p. J
J°J
Proof:

It follows from (2.3) and (2.4) that

g: - g.
(4.3) P e T TS RS Y
J loss . i e el
Jd
with
1
A4 o= = to.c . =
(4.4) lIEJ Il ||£G(xJ tonJ)dt G Il
1
< Ilg G(xj-tojsj)dt - Gjll+ IIGJ- G Il
< LU xj+1 = xj I+ LIl xj -z |l
=

O(IIXJ'Z”) L}

where the last relation follows from (2.5) and part i) of Lemma 1.

Since by (2.29) and (2.30)

I8 sl o ¢ 811« R .~
(4.5) |85(8)] = < S(1=t) LUz =x; 1l =0 x;=2 N)

Rl o




we infer from (4.3) and (4.4) that

i

. - Gp. e o=
(4.6) IldJ pJ f HdJ e J(t)pJ DJ Il

. - : + 180t
<l dJ GpJ I ik )

0(Mx;-2z1l)

Finally observing that by (4.5) and Lemma 1

1

(4.7) dip. = da.pj * §.08) > 5 U for j sufficiently large

¥4

we obtain the statement of the lemma from (4.2) and (4.6).

In order to obtain estimates for the remaining terms on the right hand

side of (4.1) we observe that by (3.8)

- ) yi e iv:].(;'lw. £ (9j+1‘yj)'G_1(gj+1'¥i)v‘
J WﬁQj (93+1"ijHj+1(9j+1' Yj)
and 2 i
415} -1 g - agpi1° uju; (1_%) (9541 -9 HJ..”GHJ.H(QJH-XJ_)
W3a; J (9541 = Y H541(9547 - ¥5)

Because no a priori upper bound for these terms is available we introduce the

following restriction on the choice of the parameter t .

Condition 2

For every Jj the parameter t 1is determined such that

2 2
|1 =y, e L 0 R LA i g llgs il
A o 7% il PR FURREE L PP it e
95417957 "j+1'9541 7 Y50 954175419541
2 2
R4 -1 _‘[§J+1I' il S -ijf!le-d < uellg:ll
Y5 1 (ir =¥ ) Mg (9aar = ¥s) Q4. qH e
341778 T R T N5l 5t |

- 95 «

;
i
if




oy LS 11* Il q 1)
i _*J,.>‘ ; +1
e .6||qu

“‘»’j+1'—yj> J+1“j+1_yj>

g WGy O gl s g 1)

,1,.._,. S ‘7 ‘6” gJ “ )
J (95417 ¥5) My41(9541 - ¥5)

where Ye is an arbitrary positive constant.

Since it follows from (3.7) and (2.30) that ¥y = OIS e i (R
there is t; <1 such that every tZpita 1 satisfies Condition 2.
Lemma 5

If Condition 2 is satisfied, then

=1 sl

wiG W, P99 1G Q.
(%-1)*——-—3 L - (1-yy) oL L L A 0 (lix;-z 1)
J wi9; 9i+1Pj41
and
utGu P GD:
Eres R e apo il ety i L - G, - 2] .
J 33 Sy e i
qu J+19J+1 Jj+1
Proof:
Observing that pJ+1 ’j+1sj+1 we obtain
enl . -1
(gj+1_yj) G (9j+1‘y3') A 9j+lG 9j+1 .
(95417 Y35M541(95417Y5) 95415541
gl G‘]. ' G'lg yI-G—l G
j+17 9541 07 o j% Yy~ 2] 4J+l S

(9j+1’yj)'Hj+1(9j+1'yj) 93+1Hj+19j+1 (9j+1'yj)' j+1(gj+1 YJ)

By (4.8), Condition 2 and part i) of Lemma 1 this implies the first statement

of the lemma. Similarly the second statement follows from (4.9), the relation

- 2% =




—ppp— —— e ==
|
;l !
! Bo s wh A GH . (3 -yv.) L sGh.
j+1 N 0 S L Sl L N R ) e ] g
95417 ¥3) M40 (9541 7 ¥5) §+195+1P 541
1 1 N I n — ' \
g %i*lcgjfl _______ y §j+1§§j+} : Yjﬁjj}fﬁjf}yjk,?Ejjl?ﬁjf}fﬁ
gj*l-‘yj)Hj+1“gj+1-yj) QJ+15J~+1 (9j+1'}’j) Hj+1(gj+1-yj)
Condition 2 and part i) of Lemma 1.
The next lemma shows that the sequence ¢ xj‘ converges sufficiently
fast to z to make the sum over all numbers || X = z Il finite.

Lemma 6
Let Condition 1 be satisfied. Then the sum

(4.10) 2 exs=zdl
j=0
1s finite.
Proof:

| By Taylor's theorem there is a vector

2. B x|z +,x(xj- 2}s Bcis 1}

such that

From this equality we deduce the relation

'f (4.11) u il X -2 e < 2(F(x;)=F(z)) < nlix; - 2 02
{ Furthermore, it follows from Lemma 2 that s i
Flxs,9) < Fx;) = igigii— ;
Jj+l/ — 5 2n

Subtracting F(z) on both sides of this inequality and using (4.11) and

Lemma 1 we obtain

l
i - 27 -
{ |




ag

, (gﬁpj)
(4.12) F(Xj+1) - F{2) < F(xj) - F(2) - -7;-~
/ (9:p:)° \
= (F(x.)-Fz) Pt W
: 2(F(x;) - F(2))n |
N
(9%p.) \
< (F(x ) - F(Z))(;- 5 J 3 |
o nZilx; - 21l
2
2 (9ips)
< [Fx,)-F(z)]]1-¥ i SR
g ( ¥ )< a2l gj||2’
Wi th
g.p.
(4.13) epian -(_Ji;l;l_>
nllg; i
we infer from (4.12) that
J
(4.14 Fixs,a) = Flz) < (F{x )-Flz))} H
) jo1) = F(2) < (FUxg) - Fz)) T g

For every j let j(k) denote the number of elements i in the set

f0,1,...,j} for which the inequality

HgiH
(4.15) 2g Ug
9;P;
holds. Then it follows from Lemma 3 that
G gill
2 y3ilk) < X < (3+1) uy
i=0 glp.
¥4
or
(4.16) §k) <3 (3+1) .
If we set

¥

u 2
c2 i- )
2u3n

then (4.13), (4.15) and (4.16) imply that at least one half of the numbers

Gis i =0,1,...,j , are less than or equal to t2




i

Therefore,

(4.17) [z, < g%

Combining (4.11), (4.14) and (4.17) we see that

Ix5-2 1% < 2 (F(x;) = F(2)) < 3 (Fixg) -2 2.

A

This shows that

x5 =zl 0(»Y) for some 0 < 3 <1

from which it follows that the sum (4.10) is finite.

In the next lemma we establish the boundedness of the sequences ! ijl

Bj(v;)} and  {H(vy))

Lemma 7

Let Assumptions 1 and 2 and Conditions 1 and 2 be satisfied. Then the

following statements hold
i)  The sequence {fj } is bounded.
ii)  The sequences {Bj(yj)} and {Hj(yj)} are bounded.

i) I¥;5.1P595 = Gy 1l » 0 as j o>,

i) It follows from the equality (4.1) and Lemmas 4 and 5 that there is

a constant by such that

2
a; pLGp. - 20:piGq.
r TS E Jo 5d Jidd

393

Si n: = d'q./ d\p. .6) d'p. > i
ince o JqJ/ deJ and by (3.6) deJ 0 is bounded away from zero, we

have




! LGp. - p'Gq. - J Le=dYYp. J
9 j PiGp, ]pJQWJ oy + (PJG dJ)pJ =
) i b
d.q.
Jut 2(p|G_dl)q ]~J
i L T
S

where the last equality follows from (4.6).

v

Observing that by (4.2), ij > 1 and Ej > 1,’w3qj we deduce from
(4.18) and (4.19) the inequality
X =z i

T

+

o W%, =2l + 0 J
7777 W.q.
i

| A

E5 (1 + uglixs -zl

2 £ MLl esu =20} »
0 520 8 1

where g is a suitable positive constant. Since by Lemma 6 the sum

z Hx.=2)
=1

is finite this implies that gj < g for some constant Hg and all j >0 .

) are symmetric and

ii) For each j , the matrices B (yj) and Hj(

J 4
positive definite. Hence all their eigenvalues are real and positive. Since by
‘ definition, Cj is equal to the sum of their eigenvalues it follows from

part i) of the lemma that the sequences {Bj(y.)} and {Hj(yj)1 are bounded.

J

iii) By part i) of the lemma the sequence {1/ w}qj} is bounded. There-

fore, (4.19) implies that




(q:- :p:)'G(q;: - p.)  qiGq;
4.20) S B LSk SRE 6 M W S 0 (lix;-zll) .
W3a; Wid;

Since ; 0 for all j, it follows from (4.1), (4.20) and Lemmas 4, 5
and 6 that the sum

™M

. / ' . 2 2 ] ']. ‘
(ijpf EE el 2\
i=0 Vo =P
J .J_l‘JQJDJ /
is finite. Hence,

| _\2 ||_1
P3P = ¥5-1°3938 '9;

—»2 as j~pu:,
5-17393P;

which by (4.2) implies

Using the above lemmas we can now prove the main result of this sectijon.

Theorem 2

Let Assumptions 1 and 2 and Conditions 1 and 2 be satisfied. Then

|Ixj+1- Zall

> 0 as j > OO0
X2 Z

Proof:

It follows from (3.1) that

b

93°;

(4.21) lhogs; Nl =

ijpj"’pj(G(Zj)’G)pj

i s

‘rj_1r>jgjpj+(ij--Yj_lojgj)pj**pj(G(zj)-G)pj
Since
(4.22) I G(zj)-G Il < G(zj)-GJ- I+ 1l Gj -Gll 0 as j -+

w—.?




and by part iii) of Lemma 7
2 T O e . 0 as
(4.23) W v521949; (;pJ I j
and
Yj—l“jg3pj . /2 for j sufficiently large
we infer from (4.21) that
(4-24) “ '/JSJ “ ‘!j_l-j = j]j_l 1 as J
Furthermore, Y
qg. e AT 0 S. {g.¥: 1= 1)8;
(4.25) A o i J i B & B il w5 W
: . - v, ] |
I gJ I I QJ Il 1] gJ Il j-1 Hngl §=1 | g
g. S ( Hs: U
< e = § - J Y | p—
! Il gj Il 3 1lng|I 1_1Hgj
and
Il g. S 1
. " J J i
Ny: 10:9:=6Gps Il = v, _40s 11 gl -G ,
313 J =37 " :
gyl TRLEA I
Therefore,
Il 9. 5 [ l
e e S ey - oy |

Observing that by part iii) of Lemma 7 the sequence

u}z{

{ 1
¥3051 95

sl
LT

is bounded we deduce from (4.23) through (4.26) that

9

I gjll Il 95

T:5:
- § —ald “ +0 as J+e=.
1

In conjunction with (2.5), (2.7) and part i) of Lemma 1 this completes the

proof of the theorem.




In the following lemma it is shown that the sequence £ CONVerqgs

to one.

Lemma 8
Let Assumptions 1 and 2 and Conditions 1 and 2 be satisfied. For every
choice of “ and o such that By Bo 2 0 and By * B, # 0 ‘the fol-
lowing statements hold.

i) 0 <vy;<] J = 0,1,2,..
i) 1=yl = 0 (M {om—epe ;, HRe~2071) .

Proqf:

It follows from (2.41) and (2.39) that

2
R,d.p. d'H dﬂ ;
( : ”»LJ_D‘JA:‘“Z‘( 5 JdJ ( J ) /quJ>
(84.27) '
R.d%p. R
195P5 + 8djH;d;
(d ) / wia;
% 1%, ? J J
1d p + Bszdej
Because '2(:1djpJ 2dJHJdJ) > 0 the above equality proves the first part of
the lemma. Furthermore, the relation
g 'H.d. < | B.d'p. +8,d"H.d.
Bl o 193P4 *+ Bad3H 49,

shows that it suffices to prove the second part of the lemma for the case

By = 0 and By = 1 . With this choice of parameters we obtain from (2.41)
3 the equality
g.p.diH.d. (d )2 + ;3?3?3 (dﬁq')z

| 3 1 P1911%1"1% y 3% .
: (4.28) - “5 -

Y d |. 2

J ( JDJ) (dJDJ)

,q'.p.
RN e b (d.q. 2

| widy ja5)
| JdJ
: - 3% =

o

o




Because 1/w.q. . and

1

gLp.
3235 {3-1

LGp. Y. +0:9:P: = PiGD:)
Pi6Py *+ (¥;517593P; = Pj 'J'}

it follows from (4.28) and parts i) and iii) of Lemma 7 that there 1s

constant “10 0 such that
(4.29) SR (d:].(ij)z. § Dk,
'} -1
Finally observe that
4. 'ala.. | . L I E A 4 s
£4.20) dj9; 1 < 1d5a51 + | &;(t)psa,
. ,,,(_g.j.t Ag_j_tl_)_ij_ . E. 1)
= Rogs y
J J h
‘g'. Q.
= -*a‘ltl_.g‘- + ! J(t)
Il 'jsj Il
Since by (3.1) and part ii) of Lemma 7 r
piG(Z.)p; : 1
O SRR au= L NS FREEETE e T
and by (2.30) and (2.29)
*j(t) o @Y N X541 " xj|l) = 0(1 I | )

it follows from (4.30) and part i) of Lemma 1 that

Wxsq- z |l

(4.31) diq. = 0 e +||xj “g )
¢4 N x:-2zIl
. J
' By Theorem 2, the right hand side of (4.31) converges to zero which by (4.29)
implies that the sequence { 1/ Yy} is bounded. Hence we obtain from (4.29) 1
the equality
1 | 2)
= =311 2 03 {d:0.
T ((JqJ)
J
!
- 34 -




this implies

th relation completes the proof of the lemma.

theorem it is shown that, for j sufficiently large,

between zero and one satisfies Conditions 1 and 2.

mptions 1 and 2 and Conditions 1 and 2 be satisfied and suppose

and 1+-2t0. Then

ne sequences B and ‘H.! are bounded.

There is j  such that, for Jj > j every t, G<t<l,

O k]

satisfies Conditions 1 and 2.

Because it follows from Lemma 8 that

4.32 v % 1 58 3
) j J

the first part of the theorem follows from part ii) of Lemma 7. In order to

prove the second part of the theorem we deduce from (4.21) the relation

] 4 S W - A, I Is . Y (Gl{z.)=G)Das . ‘G- v. 3.1 D
‘ ngJ + (V5.1 1)ngJ +|.SJ||DJ( (ZJ) 3)P; +HSJII(pJG ,J_I.Jgj) P;
\ which by (4.32), (4.22), part iii) of Lemma 7 and the boundedness of the se-
quence -tlsjll/ qﬁpj + implies that 'j Kok & RSl 23

Because y = d}”j’/djpj it follows from (3.11) and (4.7) that




r 1 1

Thus Lemma 8 and part i of Theorem 3 imply that every t, O
satisfies Condition 1 for j sufficiently large. Furthermore, using !

(4.7) and the fact that 93+1pj =0, it is not difficult to verify that

there is ¢ > 0 such that
(4.33) min{ H.“JJL e ‘!H 1 TR Fiae. 1002,
l|gj+1H Ilgj+1H IlyjH l|jj|
Because by (4.5)
'6j(t) b= 0l Xy 2} s O<t< i

it follows from (3.7) that

llyjll = O(lej-ZIlz) ,

vie deduce from (4.33), Lemma 1, and the first part of the theorem the relation

2 2 %
([Egrrat iHg. .l HERGE=TZ
(4.38) - ath = O ? O(min{l, J-«-}\,
(9551795 M54209540 - ¥5) 95151954 =1 |
Since by Lemma 8
2
[Ics =tz
| 1 - Yj I = 0 max { lej = z||2 > ———JLtl——~—3?— } {
llxj- Z| |

we obtain from (4.34) the equality

2 Z
‘ g, 41l g Il \
4 e G AR J+l - J+l [ = O(max {lixg - 2112, 1%

‘J l - ! = ]
(9541 750 54009501 75 9541M5419541

- |{

&

Jel

Using Lemma 1 and Theorem 2 we see that the first inequality of Condition 2 1is
satisfied for all t, 0<t<1, 1if j 1is sufficiently large. Since a com-
pletely analoguous argument shows that the remaining inequalities are also sa-

tisfied for all t, 0 <t <1, and all sufficiently large j this completes

the proof of the theorem.
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