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I. INTRODUCTION

The heat transfer occurring at the surface of a solid in contact
with a fluid at different temperature is frequently modeled by the
radiation, Newton cooling or convective heat transfer condition

aJUu
M _
K g™ - H (ug - us). (1:1)

here W is the inward normal from the surface of the solid, ug¢ and ug are
the temperatures of the fluid and solid respectively at their inter?ncc.
K is the coefficient of thermal conductivity for the metal and H is

the effective heat transfer coefficient (which might include radiation
terms). In most cases H, K and ug are not known a priori since they

may vary with existing conditions and their determination becomes a
major portion of the problem. However, to make progress and to under-
stand the role of these parameters more completely we may idealize the
problem by assuming that h = H/K is a known positive constant and ug is
a given function of time. Ultimately these are not serious restrictions
when incorporated into a larger scale fluid flow calculation since h and
ug can be reset over each sufficiently small time increment of the com-
putation.

The objective of the present report is the construction of a number
of exact solutions for the heat or diffusion equation which satisfy
boundary condition (1.1). These functions will be used subsequently in
a separate report to develop an effective numerical algorithm which
models the heat transfer occurring at the bore surface of gun barrels.
In this report however we shall not be concerned with engineering appli-
cations but formulate the problem as a purely mathematical one. Our
analysis will suppose that the temperature of the solid depends on a
single spatial coordinate x and on time t and that the solid exists in
the region x 2 0. Denoting the temperature of the solid by u(x,t) the
boundary condition (1.1) may be rewritten in the form

Lh u (0,t) = ug (t) (1.2)

where Lh is the differential operator defined by

ar
c

I

(1.3)
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with h = H/K > 0.




In Section 1l we shall define our problem precisely and introduce
the transformation Ty, which is the inverse of l,. In Section 111 we
find transformations for the functions H, and H,* which were introduced
in previous work!*4. Finally in Section IV explicit solutions of the
problem are obtained for specific choices of the boundary and initial
data. We shall make frequent use of the results in Reference 2 and shall
assume that this is available to the reader.

IT. PROBLEM STATEMENT AND THE TRANSFORMATION T

h
Consider the following problem defined in the quarter plane x 2 0,
| t & 0,
2
3 3
2.3 x>0, t>0 (2.1)
at "
ax
u (x,0) = £ (x) x >0 (2.2)
i, u (0,8) = ¢ (t) t >0 (2.3)

h
where a ~ 0 and Lh 1s defined by (1.3).

To obtain solutions for this problem we shall proceed using purely
formal derivations. That is, we shall not be concerned with mathematical
legitimacy but presume that all functions in question exist and are
sufficiently smooth to justify whatever operations are performed.
Vindication of this procedure follows a posteriori by noting that the
functions thereby obtained do in fact satisfy the desired equations.

On the other hand, the important questions of uniqueness and continuous
dependence on the data will not be considered; in fact, the solution to
problem (2.1) - (2.3) is not unique unless an additional exponential
growth restriction is stipulated. (Consider in this regard the example
given by Friedman?). Such restrictions serve mainly to rule out
physically meaningless solutions and will certainly be satisfied by the
functions constructed below which are either bounded or grow more slowly
than a polynomial in x {(as x » = with t held finite).

. F. Polk, "Asymptotic Expanasiona for the Solutioms of Parabolic
Diffearential Equations with a Small Parameter,” Ph.D diesertation,
Department of Mathematics, Imiversity of Delavare, Newark, Delaware,
June 1879.

‘John F. Polk, "Special Function Solutioms of The Diffusion Equationm,”
Technical Report, Ballietic Research Laboratory, 181

"Abner Friedmmn, "Partial Differential Equation of Parabolic Tupe,”
Prentice-Hall Corp, Englewood Preea, N.J., p. 31, 1964.
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To solve problem (2.1) - (2,3) note that the related function
v = Lhu (2.4)

satisfies the following equations

S——Ia——? x*O,t>0 (25)
t é

ax
v(x,0) = l.h f (%) x>0 (2.6)
v(0,t) = g (t) T £2..7)

Using linearity we may express the solution to this problem in the form

VeV, ey
f

where Ve and v are the solutions to (2.5) - (2.7) with g (t) = 0 and
f (x) =0 rCSpgctivcly. But these problems have the well known
solutions

Velx,t) = fm [N_1 (x-8, at) - H_l (xe+s, at)][Lh f] (s) ds (2.8)
o
and
v (x.t) = 2a [YH, (x,a (t-1)) g(r) dr (2.9)
A 2
where
H-l (x,t) = (41t)—l/' exp (-x"/4t) (2.10)
M_2 (x,t) = o= H-l (x,t) = (-x/2t) “-l (x,t}). (2.11)

The functions MY (x,t), for all y € R, were investigated in References

1 and 2 and will be briefly reviewed in the next section. The expres-
sion for v is somewhat unsatisfactory in that it requires f(x) to be
differentiable, although this was not needed in the formulation of
problem (2.1) - (2.3). We can eliminate this difficulty using integra-
tion by parts, as follows

.




v. (x,t) = [T[H . (x-s, at) - H_  (x+s, at)] f(s) ds
t 0 =X -1

1 ] S5 a2 . {
,--‘é (W, (x-s, at) - H | (x+s, at)] £7(s) ds I
< [T (x-z, at) - H | (xes, at)] £(s) ds
0 ) "
g ; fw [ . (x-s, at) «+ H . (x#s, at)] £(s) ds
o s e
(H, (x-s, at) - H_ | (xes, at)] £18) |, .

The last term vanishes because of the exponential decay of H l(x.t)
provided
5

f(x)| < const. exp [a x7]

for some a < 1/4at. The remaining terms can be recombined in the form
V.(x,t) = [© ([L H x-s, at) -~ [L, H x+s, at)
1 Py T Uy B 31 1528,
(2.12)
= H . (x+s, at)} f(s) ds.
The solution to problem (2.1) - (2.3) can now be obtained by inverting
the transformation u = v = L, u. This amounts to solving an ordinary

"h
differential equation and can be accomplished using the integrating
factor method. The appropriate transformation is denoted by Th and de-

fined for a function w = w(x) by
(Th w] (x) h ;" exp [h (x-s)] w(s) ds. {2.13)
X

This 1s well defined and finite for all w(x) in the class S, of functions
which are defined and continuous for x > o and bounded by

|w(x)| < const. exp (h x)

for some h < h and sufficiently large x, The transformed function is
differentiable and can be similarly bounded. Thus Th w € Sh whenever
wES,. Moreover we have [




Ty, w(x) | < h M) [* exp [h (x-s)] ds
X

< M(x)

where
M(x) = sup {|w(s)|: s 2 x}.

It follows that 1f w is bounded or vanishes asymptotically as some
negative power of x as x - « then Th w is also bounded or vanishes at
least as rapidly.

Applying Leibnitz's rule to (2.13) we have

hd L
[Th w]“(x) = h° f exp [h(x-s)] w(s) ds - h w(x)
X

= T. ¥ =~ ¥ [
h | h ] (x)
and consequently

l.h [Th w = w (2.14)

whenever w is of class Sh. The transformations Lh and Th are thus seen

to be inverses. If w(x) has a derivative w’ (x) which is also of class
\h then using intergration by parts we have

(T, w*] (x) = h fm exp [h(x-s)] w'(s) ds

X

h

-

= h exp [h(x-s)] w(s)

-

e h° [T exp [h(x-s)] w(s) ds

x
= h [1h W ) X)s
Thus
. - “(x). ¢ 0 3
ITh W ] {xX) [Th w] (x (2.15)

That i1s, the derivative of the transform is the transform of the
derivative; this permits us to reverse the order of the operations in

(2.14) for functions with derivatives of class Sh:

9




e S——

1 ;
T Uy ¥l =T v o v)
=T w-—l—[T N]'
h h Uk
= Ly, (T, ¥
or
L TR I (2.18)"

In general if the n-th derivative w(n)(x) exists and is of class Sh then
by repeated applications of (2.14) we obtain

(n)]

5 s (n) A
h (x) = “h w| (x) (2.16)

for p e Qo) 2.,

We can now return to the original problem. The functions v, and v,
are twice differentiable with respect to x, for t > 0, since they are
solutions of the heat equation. Furthermore they can easily be shown

to be of class S (for each fixed t 2 0) provided f is of class §; and
g 1s bounded. us their transforms are well defined and the solution
to problem (2.1} - (2.3} can be written as

u = ug . uR = Th Ve i Th vg (2.17)

where ug and ug are the solutions of the problem when g(t) = 0 and
f(x) = 0 respectively. But applying Th to the expressions (2.9) and

(2.12) and using Fubini's Theorem to interchange the order of the
integration and transformation operators yields

uglx,t) = { [H_I(x-ﬂ,a t) - H-l(x‘ﬁ.a t) = ﬁ Th H_:(X*S,a £)1 £(s) ds
] (2.18)
u (x,t) =-2a L T, H_,(x,a (t-1)) g(r) dr . (2.19)
- 2
Transformation of the functions H_, and H ] is permissible since

they are not only continuous but entire with respect to x for t > 0
and vanish exponentially as |x| + «=. We also note that the identity

10




Th [w (x+y)] = [Th W) (x+y) (2.20)
for any function w of class S, follows directly from the definition of
rh_ Thus the application of Th to H , in (2.18) is unambiguous in that

the shifting (by s) can be performed before or after the transformation
(with respect to x).

In the next two sections we shall obtain explicit expressions for
the transformations of the functions 1} (x,¥), vy € R and solutions to
problem (2.1) - (2.3) for specific choices of f(x) and g(t).

- Th TRANSFORMATIONS OF H , H * and \'n
Y Y
Let us briefly review the salient properties of the functions H_,
Y
H " and ¥ which were discussed in References 1 and 2. These were

defined by

H. (x,t) = (4wt) [* % exp (- (x-8)7/4t) ds (3.1)
' o |
for vy - 1 and recursively
H o (x,t) = — H (x,t) (3.2)
Y T ]
for y < 1. (The latter equation also holds for y » - 1). In
particular
H (x,t) = (1/2) erfc (- x/2 /1)
“l\ a
H | (x,t) = (4=t exp (- x"/4t) £3:3)
H, (x,t) = { .\.K‘H_]M,H
where
erfc (z) = (2/7/7 ) f' exp (- s7) ds
The associated functions H * were given by
Y
H* (x,x) = H\ (- x,t) (3.4)
¥

11




and for any integer n the heat polynomials were defined by

vt = Ho(x,t) e 75 o (x,t); (3.5)

for negative integers these vanished in view of the identity

K (x,0) = <™ 0 =0 (3.6)
- (x, . 3.

)

for n = -1, -2, .... . All of these functions were seen to be infinitely
differentiable in x and t for t > 0, and satisfy the formulas

) 3
— H = H —H =H 3.7
IX Y ’\»l at Y y=-2 {
. \i - -

H H — H = H 3.8)
X Y y-1 at Y Y=2 (3
Loy o=y Sy =y g (3.9)
X n n-1 ' S n-.2

Thus they are all solutions of the heat or diffusion equation

3 “u iu =
— )
5 5% (3.10)
X
tor t - 0 and satisfy the initial and boundary values
H (x,0) = h (x H (0,t) = 1 jakt) (3.11)
] ] Y & Y/ <
H (x,0) = A" (x) H* (0,t) = L n 8 (3.12)
4 1] Y - / &
. h“/, (t) n even
\" x,0) = x /n! v. (0,t) = :
- 0 n odd
{5:15)

.
where h and h_ denote the jump functions
¥ Y

Y
xSyl x>0

h (x) =
k 0 x <0



and

A (x) = b (=x).

¥ v

(The reciprocal of the factorial function is defined for all y € R by

e LIN
y! I'(y+l)

where denotes the usual Camma function.)

From the discussion in Reference 1 it 1s known that for each y € R
there exist a constant K 2 0 such that

Thus it i1s clear that the functions H (x,t), H® (x,t) and \‘n {%x,t) are
] Y

f class Sy, (with respect to x), for each fixed t 2 0, and their trans-

formations are well defined. For convenience we shall use the notation
2 =T H (5.18)
Y h Y
i ) .
= 7% H (3.16)

Note here that in contrast to the simple formulas (2.16) and (2.20) the
definition of T, (2.13) implies in general that

T, [w (-x)}] # lTh w] (-x)
1 -~ . —<. -
Thus the transformation of H is not given by I (Rsk) & £ (=%,T}:)
' v Y
Using differentiation formulas (3.7) - (3.9) and the bound (3.14) to

show uniform convergence of the defining integral we arrive at the

formilas

— 2 = 2 2 =2 3.17)
X Y yv=1 +1 Y Y=2 ( 1
3 ] ] A '
— 7 = - — 7 = I (3.18)
R Y y=1 at Ty Y-
for t ~ 0. These, in turn, imply that I and :: are solutions of the
Y

13




heat equation (3.10) for any y € R. Applying T, to the initial values
(3.11) and (3.12) we have

|
2 (x,0) = h [" N(X8) S g (3.19)
Y y £
X
and
L
:1 (x,0) = 0 (3.20)

for x » 0. The former expression can be explicitly evaluated when y 1is
an integer by

(hl)k/k! e 0. 1.2,
k=0
:n (x,0) = {3:21)

It would be useful to obtain explicit functional forms for these
transformations and for integer values of y this is possible, as we now
show. First consider y = -1, which may be regarded as a fundamental
case, since ”~l is the fundamental solution of the heat equation. The

- .
functions H 1 and H I are identical and their transformation 1s given by

* 2 2
:-l (x,t) = :-l (x,t) = ? erfc (¥:3h1) exp (hx » h"t) (3.22)
- "d-‘

or, alternatively,
-
N [(x*3ht, %)
o

(x,t) i (xe2ht, ©)

< {x;%) = H

-1 1

for t > 0. To verify this note that the former expression may be
differentiated to give

14




(-h/Vart) exp [-(xolht)z/lt] exp lhxohzt]

=
erfc [(x+2ht)/v/at) exp [hx+h“t)

(-h/v4rt) exp [—(12/4t)] +h I, (x1)

-h (W -2 ) (x,0).

the function 2_1 defined by (3.22) clearly satisfies

=R T
Note furthermore that (3.22) may be written as

b > ==
erfc (z) exp (2°) exp (-x“/4t)//a=t

: = (x+2ht)//ar.

For large z the standard asymptotic formula

2 - -1

erfc (z) exp (2 ) = {2 %)

then implies that as x » = with t > 0 fixed we have

- exp [- x"/4z]
e = (x * 2ht)

which vanishes exponentially. It follows that the expression defined
by (3.22) is of class S and must indeed be the transform of H-l'

*
We are now able to determine functional forms for :n and :n for

other integer values of n with the help of a useful recurrence relation.
Using (3.7) and the definition of l.h we have

15




1
by W, - S

But then, applying Th to both sides yields

1
Hn = Th Hn -2 Th Nn-l

or

i

4 . “n

=
b= 2

This permits us to express Zn in terms of I 1 and the functions

k between -1 and n:

ML e DT e T T A
P -1 o 1 2
7. = W% 2 oh"u « H
= “a3 o 1
% -1 5
“o h -1 = Ho
o W,
Z,*hZ -~hH,
Zy*h"2 , -h"H, -hH,
3 2
e AR L M o B e

T
'
-
L)
'
—
'
.
'
’
'
e

(3.24)

H‘ with

(3.25)




'
Similar for :n we obtain the induction formula

T “. 1 .0
“n n h “n-1l
whence
B 3 = 2 * .
P R S L P N WY N
2 -1 0 | P
_l N 2 h,l - -
“1 - 1 Ho . Hl
. o -
Z = -h : Z +« H
(] -1 (4]
5% - 5.27)
S Z (3.2
2. = hou
- 2 - - . l
= 2 3 =
-_‘=h S h" H OHM_:
9 2 hY W he hou'
1 i O X o vj
and, in general,
n "I
) L-h)k'" Hy n2o
k=0
] -n-1
R ) Z.%% 0O ne ) (3.28)
n 1 ke
. . .
- (-hlnkuknki
k=1
Comparing (3.26) and (3.28) for negative integers we have
e - )™ 2 (3.29)
n n
for n = -1, =2, -3,... . This is to be expected in view of (3.6).

Transformation of the heat polynomials can now be easily accomplished,
From (3.5), (3.26) and (.28)

17




n -
Ty v, Ty [Mn « (1) H)
n
3k RN s
' k=0
el o k . ken @
- h 3 ? (-1)" h H,

Thus,

(3.30)

A closed form expression such as (3.22) has not been obtained for
-
or 2" when y is not an integer. However an alternative series

¥ Y

2 .
representation for I can be used in =uch cases:

L . .
o1 emfu,, &,

Y kel ok

Using inequality (3.14) it is easy to show that for any y € R this series
is uniformly convergent in compact subsets of x » 0, t 2 0. Thus from
(3.7) we see that term by term differentiation is possible and that the
series satisfies formulas (3.17), the heat equation (3.10) and

for each vy € R. Along x = 0 this series takes on the values

Y = f"
2 (0,0« - B § A
N T &, G/

whereas along t = 0 it vanishes for x 2 0, as it must according to (3.20).




The analogous series for :w would seem to be

L RS
k=l Lkt
which converges and satisfies the appropriate equations. However, using (3.11)
this series can be shown to grow exponentially as x+= and thus cannot be of

class Sh' even though the individual terms ”yok belong.

in conclusion we note that although oug interest has been in the
region x 2 0, t 2 0 the functions I and ZY can be defined in the domain
A

x <0, t >0 as well, and in some cases along t = 0 also.

IV. SOLUTION OF BOUNDARY VALUE PROBLEMS

Let us now apply the results of Section Ill to problem (2.1) - (2.3).
Substituting (3.15) into (2.17) and (2.18) we have

v I y(xes.at)] f(s) ds (4.2)

,(x,a(t-r)) g(r)

.

"-l 1s given by (3.22

These formulas represent the general solution for problem (2.1) - (2.3).

Next we may \("I‘ll’l" ”I(' ‘\](\"l\ \h(’l\(" “’ "('l"ldal. a"d l""lal
\’Jf.l

f(x) = h (4.4)

g(t) /2 " (4.5)




The solutions ug and ug for these cases can be obtained more easily by
first solving for Ve © Lh uge ang vg N Lh ug and transforming by Th than

by using formulas (4.2) and (4.3) directly. These functions are required
to satisfy Equation (2.5) with

1
vf(x.O) = hy(x-xo) -F h‘-l(x-xo)

"
L=

vf(o,t)
and
v (x,0) =0
[
?‘!
v (0,t) = — -
g( ) (y/2)1
But in previous work® we have seen that these problems have the solutions

£X:%) = H (x=x . at) - B (x*x_, at)
Y Q ¥ (4]

v

f

] 1 .*
-y My (xex , at) ¢ = H

at)
v} (A‘xﬂ, at

]
and

-
v (x,t) = M (x, at).
I ¥

(These can be directly verified using (3.11) and (3.12).) By applying

the transform Th to Ve and Vg we obtain

- 1 . L 1 d
u{x.fl B (-‘ 2 - .‘.l](x-xo,at) - {.Y o - .1_11(1 Xy rat)

- [Lh Z‘](x-xo,at) - [l.h Z:](xoxo.lt\

]
4 (x+x ,at)
y-1 o

b o f

or

- 2~.
My(x-xo.at) - Hy(xoxo.at) f - .v_l(JOlo.lt) (4.6)

20




and

.
B ix.2) = 2 Z [xX,8L). (4.7)
L Y

We can 1llustrate our procedures by giving as examples the solutions
to the following two important particular choices for f(x) and g(t):

f(x) =1 y f(x) = 0
an
g(t) = 0 i ele) = 1,

From (4.6) and (4.7) these are seen to have the respective solutions

. 2
A X,% H‘ X,at H“ (X,at) * h »_lxx,ut=
.
) (X,t) w 2 T {(X,at
N 0
8 . i 53.27) to expand these vields
1 r :
P - erf x/vdat - erfc(x/»4at) » = 2 ,.(x,at)
t F . h 7-1
- . fx+2hat 2
ert (x/v4ar ¢ erf - exp(hx +« h at
vdat
Wat
. x+hat 2
X,t ert x/vdat ert exp(hx + h at
» ydat
th form thes lutions are seen to be identical with the results
t T aw and Jaeger
\ \\ \Y \“

The transformation 1 fefined by 2.13) was introduced in order to
vere lut T f the heat equation with known boundary values into
1t atisfying the nvective heat transfer condition (1.2) along

. .
X articular the functions H and H were transformed into
= ’ & = .
functions and . A general solution (4.1) - (4.3) was found for the
nvective heat transfer problem (2.1) - (2.3) and specific solutions

were found for particular choices (4.4) and (4.5) of the boundary and

v ] v 45 L N - p d s 9 5] 7 - "
ire L Rl o vaeger, et ” f Heat n Lrase )x_"or\:
Irendon Preees, 1858, 2nd Addition (pg -72).




———

The basic problem (2.1) - (2,3) studied in this report was posed
for the semi-infinite domain x 2 0, t 2 0. However all of the functions
encountered were extendable into x € 0, t 2 0 and thus can be used in a
more general context. They can also be used to develop approximate
solutions for more general equations in bounded spatial domains. In a
subsequent report we shall use these functions to construct a numerical
algorithm which models the heat transfer occuring at the bore surface
of a gun barrel.
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