AD=A076 946 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL-=ETC F/6 5/2
MANAGEMENT CYBERNETICS: AN APPLICATION TO THE DEVELOPMENT OF A ==gTC(U)
SEP 79 R E PESCHKE » M L SHERRILL

IINCL ASCTETFR AFTT=l CSR=2=70R NI

Jure
AD
AQTES46

88808686

"" | O i 22

=LER

= Iz

JlL.L
%5 I

2 s nie

(]
.
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREA F STANDARDS -1963-3

S T)

ADAOT6946

UNITED STATES AIR FORCE A
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base,Ohio

e e e —

DISTRIDUTION STATEMENT A

Approved for public Felodq
Distribution Unlimited

O

ﬂ

MANAGEMENT CYBERNETICS: AN
APPLICATION TO THE DEVELOPMENT OF A
CONCEPTUAL MODEL OF THE SOFTWARE
ACQUISITION MANAGEMENT DISCIPLINE

Richard E. Peschke, Captain, USAF
Marcus L. Sherrill, Captain, USAF

LSSR 2-79B

The contents of the document are technically accurate, and
no sensitive items, detrimental ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the document are those of the author(s) and do
not necessarily reflect the views of the School of Systems
and Logistics, the Air University, the Air Training Command,
the United States Air Force, or the Department of Defense.

e

ey o m—

e

=

S

USAF SCN 75-20B

questionnaires to:
Ohio 45433.

I
!
i 1. Did this research contribute to a current Air Force project?
!

a. Yes

a. Yes

3. The benefits of AFIT research can often be expressed by the equivalent |
value that your agency received by virtue of AFIT performing the research. |
Can you estimate what this research would have cost if it had been i
accamplished under contract or if it had been done in-house in tems of man-

power and/or dollars?

a. Man-years

The purpose of this

Questionnaire is to determine the potential for current
and future applicati

ons of AFIT thesis research.
AFIT/ LSH (Thesis Feedback), Wright-Patterson AFB,

2. Do you believe this research topic is significant enough that it would

| have been researched (or contracted) by your organization or another agency i
if AFIT had not researched it? |

AFIT Control Number -ooR 2-798

AFIT RESEARCH ASSESSMENT

Please return completed

b. No

b. No

$ (Contract).

b. Man-years

S (In-house).

4. Often it is not possible to attach equivalent dollar values to research,
although the results of the research ma

not you were able to establish an equivalent value for this research (3 above),
what is your estimate of its significance?

, in fact, be important. Whether or i

Tl a3

a. Highly b. Significant «c. Slightly d. Of No
Significant Significant Significance
S. Comments:
Name and Grade Position J
Organization Location

— I

PENALTY FQR PRIVATE USE. $300

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 73236 WASHINGTON 0.C,

POSTAGE WILL B2 PAID 8Y AQORESSEE

AFTT/LSH (Thesis Feedback)
Wrighc-Pactarson AFB OH 45433

:

NO POSTAGE H
NECESSARY H
IP MAILED f,J
IN THE I
UNITED STATES |
——— i
)
. i
[esamh s =) f
) }
SEpme——p———— W
) i
e cira i S e) f
e
[a————]
.]
=)
ORGSR i
[———— s | o
- ___] {
[= s S s |

UNCLASSIFIED
SECURITY CLASSIFICATION OF TriS PAGE (When Dute Fnl-vnutL
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE CONBLLTING FORM
. REPORT NUMBER '2. GOVT ACCESSION NO.| 3 RECIPIENT'S CATALCG NUMBER
LSSR 2-79 :
2 B | /)
4. TITLE (and Subtitle) = WE OF REPORT & PERIOD COVERED

AGEMENT YBERNETICS AN JPPLICATION \)]
O THE DREVELOPMENT OF A CONCEPTUAL MODEL | Master's Thesis - /

F THE QOFTWARE ACQUISITION MANAGEMENT | [W¥ecRroruna ova. weRoRT NOUBER
ISCIPLINE @
AUTHOR(s) 8. CONTRACY OR GRANT NUMBER(s)
: ""“'*'“'“7 . /e / 127 | i
. ,g} Richard E./Peschke Captain, USAF [4 €
{ “/l Marcus L. /Sherrill{ Captain, USAF ~_
N MIN RGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
. g - 4 AREA & WORK UNIT NUMBERS
Graduate Education Division
School of Systems and Logistics
ir Force Ins itute of Technology, WPAFg,OdK\
'1 CONTROLLING OFFICE NAME AND ADDRESS gsL . .REPORT DATE
Department of Communication and Humani Septemisenr--1979
r»'\FIT/LSH , WPAFB OH 45433 Y9~ NUMBER OF PAGES ~

118

T8, MONITORING AGENCY nAWvommmmmmnraﬁm 1S. SECURITY CLASS. (of thia tepart)
—-——-‘

| —_—

. UNCLASSIFIED

185a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repaort)

Approved for public release; distribution unlimited

JO.;EP'BJ) T & agir. S 1 0CT 1979 |

LI sTAISUPION SEAMEMWEL T ¢BY the abstract entersd in Block 20, if different from Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identily by block aumber)

SOFTWARE

MANAGEMENT CYBERNETICS
ACQUISITION MANAGEMENT
EMBEDDED COMPUTER SOFTWARE
MANAGEMENT

20. ABSTRACT (Continue on reverse side Il neceassary and identily by block number)

Thesis Chairman: Mr. Daniel E. Reynolds

FORM o N

DD | ax'7: 1473 EO0iTION OF 1 NOV 68 1S QBSOLETE UNCLASSIFIED b f’LA‘ ;
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(, 2 . 1/ _-T_j

—

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

\J

C$The underlying thesis of this research is that the management

cybernetics paradigm, developed by Stafford Beer, can be applied to
Software Acquisition Management. The authors studied the current
software acquisition process, how it is employed and controlled,
and the current problem areas, and then developed a conceptual model
that is capable of improving the process through the application of
management cybernetic principles. The conclusions of this research
are that a viable Software Acquisition Management Discipline is
needed to gain control of acquisition costs, schedules and specifi-
jcation attainment. The conceptual model presented, applying man-
agement cybernetics, provides the manager with a systems view of
what factors are affecting the acquisition process and how these
factors are interrelated. This conceptual model, useful today,
provides the framework for developing an effective management
information system through the use of a computerized management
control model that will enhance the managers' ability to effec-
tively control the Software Acgquisition Process.

?ﬁ

!

UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu'® PAGE(When Deta Entered)

e i b

(i A s

i

LSSR 2-79B
MANAGEMENT CYBERNETICS: AN APPLICATION TO THE DEVELOPMENT
OF A CONCEPTUAL MODEL OF THE SOFTWARE

ACQUISITION MANAGEMENT DISCIPLINE

A Thesis
Presented to the Faculty of the School of Systems and Logistics
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Logistics Management

By
Richard E. Peschke, BA, MSA Marcus L. Sherrill, BSME
Captain, USAF Captain, USAF

September 1979

Approved for public release;
distribution unlimited

T —

|
|

This thesis, written by

Captain Richard E. Peschke
and
Captain Marcus L. Sherrill
has been accepted by the undersigned on behalf of the
faculty of the School of Systems and Logistics in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN LOGISTICS MANAGEMENT
(CONTRACTING AND ACQUISITION MANAGEMENT MAJOR)

DATE: 7 September 1979

ACKNOWLEDGMENTS

We wish to express our sincere appreciation to our
thesis advisor, Mr. Daniel E. Reynolds, for his ceaseless
interest, guidance and understanding throughout this thesis
effort.

A very special note of appreciation is due our wives,
Jeanne and Linda, for their patience, understanding and
encouragement which made bearable a very difficult year in
our lives.

Final thanks go to Phyllis Reynolds for her patience

and competence in the final typing of this thesis.

iii b

——

|
|

B!

T

TABLE OF

ACKNOWLEDGMENTS
LIST OF FIGURES . . . « o & =
Chapter
I. INTRODBUCTION .,
Problem Statement
Justification of the
Scope of the Researc
Objectives of the Re
Research Questions

Plan of the Report .

CONTENTS

Page

R e e e e e g

L s, e e e L 8
RESEATCRNiG S o o lal » &' = 9
EL AR SO o S T T e e L LY
Segrclic A WIES DR sl B 1
ST R e s D 12

.

ST TR IR o g) e | 12

II. THE NATURE OF SYSTEMS SCIENCE RESEARCH 14

Systems Science Paradigm « «. .o = « « « » & « « 18

III. RESEARCH METHODOLOGY .
Data Collection . .
Conceptual Model . .

validation . . « « «

s of WaNTeRe e i e e @ i OB
e e N e sl G e e 29
DR O e IR R <

I R TR R e

IV. CONCEPTUAL MODEL DEVELOPMENT 39

Data Collection . .
Conceptual Model . .
Model List . . .

Supplementary List

oy e e e e e e e R

iv

A it

Chapter
Birst Bxtensjionin. o o oo e .
Second Extension
Third BEXtensSIon . o & o .« & o « s
Summary of the Model
Nl e a o e s
V. SUMMARY, CONCLUSIONS AND RECOMMENDATION
Research Objectives
Research Objective One
Research Objective Two
Research Objective Three
Research Questions . . . ¢ « o « =« o
Research Question One
Research Question Two
Research Question Three
Conelusions . « « <% 5 « % % « = % &
Recommendations
v 4242301 1o prleanis (RS S B o B) o e e oo e
A. INTRODUCING THE CORPORATE PARADIGM . .
B. LIST OF INTERVIEW QUESTIONS
Cs GLOSSARY O TERMS . . & & & o % s % s @
SELECTED BIBLIGGRAPHY . ¢ o o = 5 & & & + = =

A, REFERENCES CITED . ¢ ¢« o ¢ ¢ v « @ o »

B. RELATED SOURCES ¢ v « « o ¥ ¢ « ¢ s

Page

53
60
67
73
74
i
T
78
78
79
79
80
81
82
83
85
88
89
105
109
113
114
117

LIST OF FIGURES

Figure
1. Standard SPO Organization
2. Software Life-Cycle Phases
3. Software Acquisition Management Directives .
4. Growth 1n DOD Software . = « = = o« = =« =« « »
3. JLievels of RecursSion . i s s s o o s 5 o v &
6. Cones of RESOIUEION & v v v o & = o = o v =
7. Application of the cones of resolution
technique to the software acquisition
management Pro€ess < « « s &« s & A s = s s
8. An example of an Influence Diagram
9. An example of an influence diagram with
linking arrows and variable change
Indrcatrons, Lok SENL RNt S e e e e
10. An example of feedback loops in an influence
AEAGEAN o s Tl Bl e s s e e e e s e
11. A conceptual model of the software
acquisition management process utilizing
the influence diagramming technique . . .
12. The Model List column of the conceptual
MOAEE o o0 %0« a ke s oa s e e o e e
13. The Model List and Supplementary List
columns of the conceptual model
1l4. The First Extension and Model List columns
of the conceptual model « . .
15. The Second and First Extensions and an

excerpt from the Model List columns
of the conceptual model + .« =«

vi

Page

10
16
20

21

24

34

36

45

49

52

ai

64

SRR ot

Figure

16. The Second and Third Extension columns and
excerpts from the First Extension and
Model List columns of the conceptual model
A=1. The Corporate Paradigm « =« =« « s s s = = = &

A-2. Exploded diagram of the brain showing
classification as a five-tier hierarchy .

A SN oI T e Rl o R I S et e e (4l ikl e Lt
A-4. Activities of the Firm . . . =« o+ « « s o s
A=5H. Systems ET - 0 e e o e e e e e
A=6l" Sy SESMEEERS o e e o e L e s .

A-7. The Organization Interface of System IV . .

vii

Page

70
93

93
95
96
98
100
102

CHAPTER I
INTRODUCTION

Software is the most expensive component in the
systems procurement.

— Dr. Ruth M. Davis [10:189]

Computers and their associated software are an
ever-growing part of our technological society. They are
being marketed for personalized use and are being utilized
in an ever-growing number in our defense systems. As early
as 1975, 115 different defense systems, either operational
or in development at that time, employed embedded computer
systems1 (30:43). Software for these computers has become
the largest cost factor in total system cost. It is esti-
mated that the software development costs now consume
almost 90 percent of the total acquisition costs of a fully
operational computer system (10:18). This percentage is
significant in that, while total acquisition costs have
risen, the hardware dollars have decreased dramatically.

A microprocessor that can be purchased today for $20 has
the computational power of a $1 million computer of twenty

years ago (15).

1Certain words or phrases have been italicized,
when first used, throughout this report. This action is
intended to key the reader to the fact that these words
have been defined in a glossary in Appendix C.

1

There have been many studies, done both by govern-
ment and contractor personnel, that investigated the prob-
lems of various phases of the process used by the Depart-
ment of Defense (DOD) to acquire software. These studies
recommended various solutions to the identified problems
but did not provide one aspect that is definitely needed
in this complex arena. The aspect that is lacking was
recognized by the Air Force Systems Command (AFSC) Director
of the Computer Resource Development Policy and Planning
Office when he stated: "The remaining task is to provide
an overall perspective or architecture to the software
acquisition management discipline in the Air Force Systems
Command [19:36]."

Most software for embedded computers is purchased
as a part of a given subsystem for a new weapon system or
a major modification to an existing weapon system. The
organization used by the Department of the Air Force (DAF)
for acquisition of these major weapon systems is the sys-
tem program office (SPO). The program manager, appointed
under AFR 800-2, has overall responsibility for implementa-
tion of the Program Management Directive (PMD). The PMD
is the authorization to proceed with the weapon system
acqguisition.

The standard SPO organization is shown in Figure 1.
This organization, developed for the acquisition of major
hardware systems, is functionally organized along the

2

PROGRAM

MANAGER

CONFIGURATION

PROGRAM
MANAGEMENT CONTROL
DIVISION DIVISION
PROCUREMENT
ENGINEERING
and PRODUCTION
DIVISION
DIVISION
TEST and LOGISTICS
DEPLOYMENT SUPPORT
DIVISION DIVISION

Fig. 1. Standard SPO Organization (20)

lines of major technical and acquisition milestones to be
accomplished during the development and deployment of a new
weapon system (20). The program control division is the
office with primary responsibility for overall coordination
of the various divisions to assure proper information flow
needed by all sections. The other divisions, as their
titles indicate, are concerned with specific, separate
functions of the acquisition process (15; 20).

As Figure 1 shows, there is no specific office
identified with the development of computers or software.
These are treated as components of the various subsystems.
Software is usually managed by a team made up from the
various divisions as a special project (15).

The basic approach to the development of software
is to divide the development process into separate phases
much like the phases of the process for major systems
acquisition. These phases are shown in Figure 2. The com-
parison to the major weapon system life cycle phases is
done only to show a relationship of the functions and is
not intended to infer that they occur at the same time.

In fact, the software cycles may occur many many times
throughout the system life cycle (21:4-6). The Defense
Systems Acquisition Review Council (DSARC) has the final
approval authority for all phases of major program acquisi-
tions (21:15-20). The software development phases are not
generally controlled by DSARC decisions.

4

(r:1) soseyd a124D-93T1T @aBM31JOS 7 *‘BTg

' SASYHd ATOAD-FJIT WIALSAS

- — — — LNIWX01dad | | 1]
/NOILONaoyud | INIWdOTIAIA ATYOS T1INd I Norivariva I T¥nIdaonNod |
—:O.mm..nommu :uo._.,ma...bwmu
CO‘.HUO_J@OHQ' A:O,.nw..nowﬁ CO,.numo._..w._uum.Hv EMHDOHA:
€ OY¥vsa Z J¥vsa o¥vsa
[TYNOILVIIJO 0
NOILVIOALNI
ONILSAL
LAOMOIHD
aNv
ONIQ0D
NDISHA | NOILINIJIAQ .
SINAW m
-IHINOAA !

TYNLIIINOD

There are a multitude of directives, Figure 3,
that govern, in one way or another, the development of, and
the acquisition of computers and associated software. None
of these directives specifically addresses the problems of
managing embedded computer software acquisition programs
and, while AFR 800-14 does give scme minimal reference to
management, no real discipline is given. Also, the problem
of the SPO organization using the software life cycle pro-
cess is not addressed in detail (26).

The direction of AFR 800-14 is at best minimal. In
Section B of Volume I, the program manager is directed to
". . . provide management and technical emphasis to com-
puter equipment and computer program requirements identi-
fied in the Program Management Directive [34:3]." It does
not give real guidance as to how he will accomplish this
task. Volume II of AFR 800-14 is more technical in nature
and specifies what levels of visibility the computer hard-
ware and software should receive, but does not list any
management direction to actually accomplish this task
(32:p.8-2).

This lack of a specific management control system
has caused serious problems in software acquisition.
Typically, if the team leader has an engineering back-
ground, engineering principles are applied. If he has a
configuration management background, principles from that
discipline are applied (18). Overruns in both cost and

6

————

< DODD 5000.1 - ACQUISITION OF MAJOR DEFENSE SYSTEMS

DODD 5000.29 -
<

AFR 800-2 - PROGRAM MANAGEMENT >

MGMT OF CMPTER RESOURCES IN MAJOR DEFENSE SYSTEMS

DODI 5000.31 - INTERIM LIST OF DOD APPROVED HIGH ORDER >
LANGUAGES (HOL)
AFR 800-14 - MANAGEMENT OF COMPUTER RESOURCES IN SYSTEMS >
¢ AFSC SUPPLEMENT I
AFR 300-20 - COMPUTER PROGRAMMING LANGUAGES
<4— >
< AFSC PAMPHLET 800-3 - A GUIDE FOR PROGRAM MANAGEMENT >
DEMONSTRATION FULL SCALE
CONCEPTUAL g g PRODUCTION DEPLOYMENT
AFR 65-3 MIL-STD-483
r <+ CONFIGURATION MANAGEMENT »
MIL~STD-490-MIL-S-83490 >
< SPECIFICATION PRACTICES
SOFTWARE
MIL-STD-881A AFR 800-6
ACQUISITION <+ St >
HARSORNERT < WORK BREAKDOWN STRUCTURE
GUIDEBOOKS
AFR 80-14
< TEST AND EVALUATION >
MIL-STD-1521
<+ REVIEWS AND AUoTTs P

Fig. 3. Software Acquisition Management Directives (19:34)

7

YT IOmAC > 5. I'—_f e e

et e -

schedule estimates have reached 100 percent. In some
cases, there has been total failure to ever develop the
systems (10:19). This lack of a specified viable manage-
ment discipline, in the face of costs that are estimated
to be in the billions of dollars for command and control
software in the next decade (10:29), was recognized by
Secretary of Defense Harold Brown in his annual report to
Congress for the FY 1979 budget. He showed that initia-
tives have been taken to improve this and related areas of
management by saying:

‘The department has taken significant action to
improve the acquisition, management, and control of
computer resources, particularly software in weapons.
. . . Major initiatives in this area include: improved
management controls of our research efforts . . . ,
development of a framework for NATO cooperation in
selected aspects of software management techniques and
technology, improvement of the quality and consistency
of DSARC and similar reviews with respect to computer
resources issues, . . . [33:359].

Thus, personnel from all levels of the Department

of Defense have recognized that there needs to be a better
control system implemented in the area of software acquisi-

tion. Motivated by these concerns, the following problem

statement was developed as the focus of this research.

Problem Statement

The current system used for acquisition of soft-
ware is not being adequately controlled to insure con-
sistent satisfaction of technical performance, schedule,
and cost objectives. Therefore, a requirement exists to

8

develop a dynamic management system model that is capable
of providing control information to managers of the soft-

ware acquisition process.

Justification of the Research

For most weapon system development programs that
incorporate both hardware and software, the computer
software is a critical component relative to the over-
all operation of the system [17:13].

Figure 4 portrays dramatically the tremendous
growth in system software in the last twelve to fourteen
years. The 1977 estimated cost of software development,
testing, and maintenance for the entire federal government
is $4 billion per year, and these costs are expected to
climb to a figure ten times greater than hardware costs in
the years ahead (23).

Today, according to Lieutenant Colonel John J.
Marciniak, USAF, Director of Computer Resources Development
Policy and Planning, DSC/Development Plans, Air Force
Systems Command, "The software problem is seen as excessive
costs, schedule slippages, and reduced performance com-
pared to initial requirements [19:32-33]." What is needed
is a clearly defined software management discipline. A
discipline which, according to Lieutenant Colonel Marciniak,
". . . is not adequately described [19:34]." If the soft-

ware acgqguisition problem is to be solved it must be brought

under management control. One method of accomplishing this

VPR PGPS S

F
600 | SR Cak i A s A r T § G
[|
B-1
@ AIR FORCE
@ NAvY
E-3A
500 4 W E-A
o
F P-3C
i
E 400 4~ 4
i
ON-BOARD
SOFTWARE 300 4= -
MEMORY
y (X1000 WORDS) i
14
1 :
J 200 A _ |
100 A - ;
]
1
i
, 3 ek
~ 1965 1970 1975 1980
i
! : :
;' Fig. 4. Growth in DOD Software (23)
10

———————

re

is to clearly define the relationships of the activities

within the software acquisition process.

Scope of the Research

The scope of this research has been limited to
identifying a set of variables (activities) which are
required to adequately control software acquisition, opera-
tionally defining these variables (activities), and, ua}ng
cybernetic principles, developing a conceptual model of
the software acquisition management process that will pro-
vide control information to the manager in terms of these

variables (activities) and their interrelationships.

“w

Objectives of the Research

The objectives éf this research project wage to:

1. Investigate the current software acquisition
management process with emphasis on the elements that are
creating problems in the areas of employment and control.

2. Identify and define the variables (activities)
which must be included in a conceptual model of the soft-
ware acquisition management process.

3. Develop a conceptual model of a viable software
acquisition management process which explains the system's
behavior in terms of the activities and their interrela-

tionships.

11

Research Questions

The following research questions, compatible with
the problem statement and the research objectives, guided
this research effort:

1. What are the elements within the software
acquisition management process, as currently employed,
which are contributing to the problems that now exist?

2. What are the variables (activities) that must
be included in a model of the software acquisition manage-
ment process?

3. Can a conceptual model be developed that can
accurately portray the dynamic behavior of the software

acquisition management process?

Plan of the Report

The following chapters, using the research ques-
tions and the research objectives, presented in Chapter I,
as a guide, develop a proposed solution to the management
problem that exists within the software acquisition pro-
cess. Chapter II is devoted to a general discussion of
the systems science research methodology. This discussion
is little more than a summary statement of the techniques
used in systems science research and is presented to pro-
vide a background for understanding the results and conclu-

sions of this research project.

L2

Chapter III discusses the methodology that was
applied in this research project and introduces the concept
of influence diagramming.

Chapter IV is concerned with the development of the
conceptual model of the software acquisition management pro-

cess and Chapter V presents the specific conclusions and

recommendations for further research that resulted from
that model.

|
S g

e e e

CHAPTER II

THE NATURE OF SYSTEMS SCIENCE RESEARCH

Control can be obtained only if the variety of the
controller is at least as great as the varze*y of the
situation to be controlled.

— Ashby's Law of Requisite Variety [4:53-54]

In order to successfully apply the systems approach
to management, the organization must be viewed as a system.
A system is a "body of interrelated components." This
sequence of terms is important because the systems approach
first develops an understanding of the whole (body), then
analyzes the parts of the whole (components), and then the
interrelationships among the parts and between the parts
and the whole.

The systems apprcach discounts simplistic statements
of "principles of organization" and reflects the search
for patterns of relationships, configurations within
and among subsystems, and a contingency view [16:23].

To develop the required understanding of the whole
one could, and indeed should, start with the universe.
Clearly the universe qualifies as a "whole system;" however,
a study of the software acquisition management process at
this level is quite cumbersome. To concentrate a systems
study in a specific area of interest without violating the
requirement to study the "body of interrelated components"

14

pr

L oie

the Recursive System Theorem developed by Stafford Beer is
applied. This theorem states, "if a viable system contains
a viable system, then the organizational structure must be
recursive [4:287]." What this theorem says is that within
a viable organization there is a viable suborganization- and
within that suborganization there is another suborganiza-
tion, etc., right down to the individual worker at the low-
est level of the organization who is, himself, a viable
system, and therefore a whole system. By applying this
theorem, a detailed analysis of the software acquisition
management process can be accomplished at the appropriate
organizational level.

The application of this cybernetic principle is pre-
sented in Figure 5 which represents a portion of the recur-
sive pattern of material acquisition within the United
States Government. The niveau in level I represents one of
the many functional divisions within a system program
office (SPO) within AFSC. The level II niveau represents
one of the project functions which is an element of the
level I functional division. The level III niveau repre-
sents one of the many subproject functions which is an ele-
ment of the level II project function. The level II niveau
(referred to as the Prime Niveau) is the specific level of
recursion within the organizational structure that is

addressed by this research.

15

B

o

LEVEL I

Mverig

THE PRIME NIVEA
-

LEVEL I1I

Levels of Recursion (4:200)

5.

Fig.

16

Because of the tremendous amount of variety that
exists in the system under study a model must be developed
which represents the real world system, yet reduces the
system variety to a manageable level. "A model is simply
a means by which we attempt to represent some aspect of the
external world, in order to be able to influence, control
or understand it more effectively [9:5]."

A scientific model developed from insights into the
software acquisition management process and applied through
the use of a computer analysis tool such as @-Gert or
Dynamo provides the structure needed to assimilate informa-
tion dealing with control variety which would not otherwise
be possible. It is "when we make our models and classify
our insights in terms of variety, we perceive what manage-
ment is really about--whatever the variety sources may be
[4:290]."

To develop this scientific model a very thorough
understanding of the managerial problems that currently
exist must precede any attempts to diagnose or prescribe a
remedy.

Understanding managerial problems presupposes the

realization that (a) life in an organic system such as
a business enterprise is an ongoing process, (b) that
one gains knowledge about the whole not by observing
the parts but by observing the process of interaction
among the parts and between the parts and the whole,

and (c) that what is observed is not reality itself
but the observer's conception of what is there [29:247]

17

Systems Science Paradigm

Once an adequate understanding of the whole r&le-
vant system is developed the systems science paradigm is
used to complete basic milestones in the development of the
software acquisition management discipline.

By applying the systems science paradigm in three
phases:

Phase I--Conceptualization,

Phase II--Analysis and Measurement,

Phase III--Computerization (29:254-259),
the perceived overwhelming task of holistically investi-
gating the software acquisition management process, which
exists under constantly changing conditions, is facilitated
through the modelling process (29:254). This modelling pro-
cess begins in Phase I with a very rough conceptualization
of the system.

Conceptualization in Phase I means,

. . . understanding and organizing the interactions
among the elements making up the phenomenon under
scrutiny into a logical network of relationships in
such a way as to reveal the direction of the underlying
structure [29:249].

In an effort to develop this understanding and
organizing of interactions, a series of modelling activi-
ties is undertaken which is arranged in a thoroughness-
abstraction hierarchy. Stafford Beer calls this hierarchy

of models a "Cone of Resolution."

18

i
I

Figure 6 graphically illustrates the increase in
detailed information available to the researcher, or mana-
ger, as he or she moves down the cone of resolution.

The first step in applying the concept of "cones
of resolution" to the conceptualization of the software.
acquisition management process begins at the top of the
cone where the most abstract thinking is applied (Figure 7).
The objective at this level is to develop an understanding
of the acquisition organization, the SPO, and how it relates
to its environment in general.

The second level in the cone of resolution focuses
in greater detail on the software acquisition environment
and how the elements of the software acquisition management
process interrelate to the environment. At this point, the
elements within the SPO which work directly with the soft-
ware acquisition management process become identifiable.

Through observation and data collection at this
level the research effort develops a list of activities
and/or variables that are determined to affect the software
acquisition management proééss, and then the conceptualiza-
tion effort can move further down the cone of resolution.

At the third level in the cone of resolution
research efforts focus on developing a logical network model
of the control and information channels that exist. At this
point facts have been collected about the software acquisi-

tion management process and the activities that are required

19

R D e =

Each feature at one

Cones of Resolution.

6.
level may represent a tremendous amount of detail when

examined on a larger scale (29:2438)

Fig.

- " 4 pom— N AN i

feedback

DOD
ACQUISITION SPO
SYSTEM

feedback

—— — —— —— —— — — — — — — — — — —— — —

First Level

BUDGET

USER

NEEDS THREAT TECHNOL

CONTRACTOR
CAPABILITIES

Second
Level

CONCEPTULIZATION

SYSTEM
USER

VALIDATION

DEVELOPMENT

PRODUCTION/
DEPLOYMENT

Fig. 7. Application of the cones of resolution technique to
the software acquisition management process

21

i e

within a viable system structure have been identified even
though a complete understanding of these activities is still
not known.

The next step is to explain the interrelationships
of the activities by advancing the conceptual model of the
system into a more detailed homomorphic model of the process.

The process of homomorphic modelling is at the

least a heuristic method for inferring the existence

of structure of systems of which the complexity defeats

isomorphic modelling [6:125].
This statement implies that the first act in the process
of homomorphic modelling is to reduce the tremendous amount
of variety in the system, but to reduce it in a way that
will maintain enough detail to make it possible to deal with
the situation at hand. Also, the model must be constructed
in such a way as to allow some of the lost variety to be
replaced, if needed, at some later time during simulation.

The basic tool used to develop this homomorphic
model was the influence diagram. "The influence diagram
records the way in which the system works (9:63]." This
is accomplished by listing all of the variables (activities)
that have been identified as elements of the system at the
appropriate level of resolution and then linking each of
these variables (activities) so as to show how each affects,
or is affected by, the other variables (activities) in the
model. To simplify the linking of each of the variables

the list is written out across the page rather than in the

22

i s g

usual vertical column. Figure 8 is an example of an influ-
ence diagram of a production-inventory model that was
developed using the horizontal listing and linking tech-
nigque. What results is a structural model which very
clearly portrays the structure of the system and the manner
in which the system functions.

A detailed discussion of the influence diagramming
process is included in Chapter IV where the actual influ-
ence diagram of the software acquisition management process
has been developed.

The modelling process at this point is not a mathe-
matical model, but rather a structural model of the stochas-
tic processes that have been identified through research of
the software acquisition management process. It is within
this structural model that the capacity to replace reduced
variety has been incorporated. This structural model con-
tains four forms of suppressed variety. First, none of the
variables have any numerical data values assigned to them.

Second, the relationships between variables will differ in

quantity, such as those which represent different activi-
ties yet are all defined by the same quantifier--years of
experience, for example. Relationships which differ in
natural features are the third form of suppressed variety
present in the model. An example of this is the inter-
relationship between the timing of the development of an
operational definition and the accuracy of that definition.

23

fai oo o T R i i
(pL:6) weaberq @ouanyjurl ue jo ardwexs uy °g °*HTJ
[wT],
juaw3lsnlpy
Axojuaaur
paatsaqg
ajey Axojusaur IDA0)D
I9apao paxtsag S EEIY
uotjonpoxd
o3ey a3ey
uot3jardwo) uot3dunsuo)
uotT3lonpoid abeaxaay
KAxojusaaur potaad
abexaay Axojuaaur butbeasay
uotT3dunsuo)
a3ey
uot3dunsuo)
3IST1 uoTSsualIxXy UOTSUa3XJ
Axejuswatddng ISTT TOPOW UOTSUD3IXT 3ISIATI puooas PITYL

24

sttt

The final form of suppressed variety is the reduction of

certain complex structural entities into more simplified
structures which still allow an adegquate understanding of
the system relationships yet do not become preoccupied with
too much detail.

The reduction of variety that occurs in the develop-
ment of the structural model is not bad as long as the model
has not eliminated any of the information that the manager
will need to insure the system remains viable.

O.ce the structural model is developed, Phase I of
the systems science paradigm is complete. With this con-
ceptualized structural model the software acquisition mana-
ger will have a better understanding of the interrelation-
ships of the activities within the software acquisition
management process and from this understanding should be
better able to control the acquisition of software for major
weapon systems even though the system science paradigm has
not been completed through to a computerized simulation
model.

Although not addressed in this research effort, the
next step in the systems science paradigm is to quantify
the structural model and conduct Phase II--Analysis and
Measurement. The languages of mathematics, statistics and
logic must be applied to arrive at meaningful information
that will allow assignment of values to logical relation-

ships within the software acquisition management process,

25

t:m_.:“mufm_-unumumu-unn rrp———— —— S A@ﬁﬂ’!

analyze activities and assess those that are critical to
system viability, and determine the accuracy and control
potential of the model.

The ultimate product of Phase II of the systems
science paradigm is a mathematical model that is then trans-
lated into a computer project (29:259). This translation
comprises Phase III--Computerization of the systems science
paradigm. The computerization, whether Dynamo, Q-Gert, or
some other more appropriate method, will be a simulation
model of the homomorphic structural model that was developed
in Phase I.

The advantages gained from simulation modelling are
three-fold. First, simulation provides an artificial
experience of the real system much more quickly than could
otherwise be obtained. Second, there are no risks involved
in gaining this experience. Third, it is possible to make
changes to the present system and project possible outcomes
under the new system (6:231). Simulation allows determina-
tion of what would happen as a result of certain actions or
policy decisions.

Scientific analysis confirms what common sense
comprehends, namely that information cannot be had for
nothing, and a predictive model is only as good as the
information fed to it [6:326].

The principles and concepts of systems science

research presented in this chapter provide a brief intro-

duction to the systems approach of analyzing and managing

26

a complex organization. In the chapters that follow, this

systems approach will be applied to the identification and
definition of the variables (activities) that exist in the
software acquisition management process, and the development
of a structural model through the use of influence diagram-
ming that presents to the manager a clear picture of the
interrelationships that exist in the software acquisition

management system.

2

BVIEO VPO

s e

S A s o

CHAPTER III

RESEARCH METHODOLOGY

For the first time in the history of man, science
ean do whatever can be exactly specified. Then, also
for the first time, we do not have to be scientists to
understand what can be done. It follows that we are no
longer at the mercy of a technocracy which alone can
tell us what to do. Our job is to start specifying.

— Stafford Beer [7:56]

When stated in the very simplest of terms, the two
steps required to develop a conceptual model of any system
are to write down the names of all the activities that
impact that system and connect them with arrows to show
what effects they have on one another. A third step,
generally felt to be required of all modelling exercises,
is to, in some manner, validate the model to insure that
all the variables are present and that the proper interrela-
tionships have been identified. Unfortunately, the pro-
cedures are much more complicated when applied to a real
world, complex system. In fact, entire research efforts
could be done on only one of these steps when the ultimate
objective is to model an extremely complex system.

In that much of the theory discussed in Chapter II
is an approach to thinking about a problem, it will not be

reiterated. However, it has been applied rigorously

28

throughout the three research tasks listed below.

1. Data collection

2. Development of a conceptual model of the soft-
ware acquisition management process

3. Validation
Each of these three tasks, stated so simply in the begin-
ning, is discussed in detail in the remaining portions of

this chapter.

Data Collection

Since there is no accepted list of activities that
have a direct impact on the costs or schedule of software
acquisition, the first step in modelling the process was to
compute a list of all the activities that have an impact on
the successful acquisition of embedded computer software
programs.

In that there was no acceptable consolidated list
of these activities that could be used as a starting point,
the data had to be gathered essentially from ground zero.
The only easily accessible place this data is held is in
the minds of those personnel that are, or have been,
involved in this process during the acquisition of current
weapon systems. Thus, the only course open was to inter-
view personnel in an attempt to identify those activities

which have an impact on the acquisition process.

29

Initial research into this area provided a list of
several activities which, in the contributors' opinions
(18; 26), have had a direct impact on programs in the recent
past.

These activities included determination of central
storage core size, availability of support software to
contractors, availability of government-furnished software,
early determination of weapon system software requirements,
level of expertise in the government contract monitoring
office, and the importance of a particular computer
language.

With this list as an initial set of contributing
activities, the interview guide in Appendix B was used to
interview the Commander, Air Force Logistics Command; the
Chief, Software Support Center Branch, WR-ALC/MAIT; the
personnel of the Operational Flight Program software sup-
port office, WR-ALC/MMEC; the Chief, Embedded Computer/
Software Group, AFALD; personnel from the Simulator System
Program Office in ASD; the Chief, Computer Resources Divi-
sion, AFLC/LOEC; the Avionics Integration Engineering
Advisor, ASD/ENA; and a Software Project Manager in ASD/YYM
in an effort to develop a comprehensive set of contributing
activities. 1In addition, telephone communications were
conducted with others involved in software acquisition to

insure a cross-section of those involved in software

30

acquisition had the opportunity to make inputs to this set
of contributing activities.

These interviews were not intended to gather the
same type of data that might be gathered in behavioral
science data assimilation interviews where distinctive areas
of interest have been predetermined. Therefore, only a
small list of questions was compiled to help structure the
interviews. These questions were used to expand the
research questions listed in Chapter I. This group of gues-
tions provided adeguate guidance during the interviews to
be able to determine those activities that are significant
to the software acquisition management process.

The interviews were purposely conducted in both Air
Force Systems Command and Air Force Logistics Command in
order to determine activities that impact throughout the
life cycle of the software acquired. It does no good to
acquire software at a very low dollar value when it will

cost a small fortune to maintain it over the useful life of

the weapon system. Also, since software problems are begin-
ning to impact all levels of our organizations, these inter-
views attempted to cover various eschelons of the commands
in order to discover all of the activities that lead to
difficulties in Air Force software acquisition programs.
Once the list of activities had been compiled and
reviewed, an operational definition was proposed for each
activity and the interviews were repeated to provide

31

additional feedback on these definitions. The ultimate
intent of these interviews was to obtain some concensus as
to what the operational definitions were for the activities
identified. Again, by going across commands and levels of
the organizations, these definitions should contain the ele-

ments important to most offices involved in this process.

Conceptual Model

Once the activities influencing the software acquisi-
tion management process were identified and defined, the
next step was to develop a conceptual model, using influence
diagramming, to properly display how all the activities
interact and where they make their impacts on the overall
process.

The particular niveau of the organization investi-
gated was an element of the system program office since
most acquisition programs are controlled from that level.
The corporate paradigm, as proposed by Stafford Beer, was
used to identify just what functions, within that element,
were to be included in the model directly. Therefore, only
a portion of the SPO functions were considered in diagram-
ming the software acquisition management process.

As stated before, the first two steps in construc-
tion of a conceptual model are to write down all those
activities that impact the system and then connect them by

an arrow or influence link using the influence diagram

32

—

technique. 1In reality, the second step is not any easier
than was collection of data for the first step.

Prior to drawing any influence lines, the activi-
ties are sorted into categories including the model list,
the supplementary list, and the extension lists. Those-
limited activities at which control is aimed, are placed
in the model list. It is good to limit these, even in a
completed model, in order to have a reasonably clear and
coherent purpose for the model. Secondly, those activities
which most immediately affect the model list are placed in
the first extension. Those activities that most immediately
offset those of the first extension are placed in the second
extension and so on. Those activities that simply act as
indicators of system performance and which play no other
part in the system or its control policies are placed in the
supplementary list (9:70-73).

After each list is filled the influence lines are
drawn between activities (Figure 9). The rule is:

If the head variable [activity] changes in the same
direction as the tail variable [activity], use a +
[plus] sign, but if it changes in the opposite direction,
use a - [minus] sign; if the result is sometimes in the
same direction and sometimes in the opposite direction
use an asterisk [9:63].

After all of the influence lines are drawn between succes-
sive extension lists, the entire listing must be reviewed

to include those activities which also influence some

others not in an adjoining list, i.e., an activity in the

33

abueyo a@rqeTIRA pue SMOIIR DUTHUTIT Y3ITM

(9L:6)

SUOT}EDTPUT
wexbeTp sousnyjur ue jo artduexs uy

‘6 "b1a

S3S50D
3TuUn
% %uﬁommmo. +
butistol saAxosoygy+
39bxe
, + o3¢e [toT3onpoxg
\\ S9AI9SaY u:@Emon>wm abexaay
padotraaaq =5 + potaad
4, 4
230y - pbutbeaaay
uorjonpoxad
-v ¥ 4 + Potabg
[90Tadg4burbeaany
K3T11qe3TIOId E
saoTad
IST'1 UOTSU93Xd | UOTSuUalXd | UOTSUD]IXT | UOTSUDIXT UOTSU93IXT | uoTSUaIXd
T9PONW 3saTa puoodag PITYUL yianog yaztdg Yyaxts

34

second extension affects one in the first extension and one
in the model list to some degree (Figure 9; variable
"Developed Reserves").

Once it is felt that all connections have been com-
pleted, the diagram is tested for closure, for if a diagram
is really to be a dynamic model, it must possess the
property of closure. This means that it must have at least
one feedback loop and all activities except those determined
to be exogeneous inputs or supplementary outputs must lie
on a loop (Figure 10). The test for closure is simple:

Starting from any point in the influence diagram

[except inputs or outputs] it must be possible to return
to that point by following the influence lines in the
direction of causation, in such a way as to not cross
one's track [9:70].

Thus, with a given number of variables, one can stop when

closure is achieved. Notice in the example in Figure 10,

four feedback loops were required to achieve closure. If
closure is not present, all the influencing activities are
not present and they must be determined and added to the
model. Once closure has been attained and an additicnal
variable must be added because the model is being expanded,
closure must be retested. 1If, again, closure is no longer
present, more activities must be identified and added to
the model until closure is reattained.

When closure is attained with a sufficient number

of activities to achieve the desired detail of the model, 4

35

——

(9L:6) weaberp oouanyjyutr ue ut sdool Moeqposj jo ardwexs uy 0T ‘614
'S3S0D
JTun
Aytoede) M
butyston %
SOAI9SDY |4
39baey,
+ uoT3oNpoId poTaag
ajzey abeaoay butbeasay
soAxasayl)| jusudoTaaaq n
padotraaag =
C
aje T
UOTIDNPOIL
-p -V p-
Ayr1Iqe
-3T73Joaq _
+ potiad
4] ©beIoAY butbeiaA
s90TId
ISTT UOTSUDIXT UOTSUI3IXH UOTSUa3IXY UOTSUa31Xy UOTSUD3IXFT | UOTSUD3IXT
T2PONW I3satdg puodag PITYL yjanog UYazrtd YaxTts

36

the process is completed. The remaining task, at this

point, is the validation of the completed conceptual model.

Validation

Validation had to be a continuing effort throughout
the modelling process. It was accomplished both during and
after Phase I of the systems science paradigm application.

After the initial interviews were conducted, a list
of pertinent activities was compiled, and this list was then
returned to those available from the original group inter-
viewed to get their feedback. Since the identification of
the activities is so critical to the development of an
accurate model, this step was repeated more than once to
ensure that all the activities were adequately identified
and defined.

Once the conceptual model was developed, based on
these activities, it was also reviewed by the interviewees
to ensure that it adequately showed the interrelationships
of all the activities.

By having each step in Phase I critiqued and vali-
dated by outside parties, the final product is a conceptual
model that adequately describes the critical activities that
make up the software acquisition management process.

By using this list of critical variables, recom-
mendations for change can be made. The process compares how

the activities are treated today and how they should be

37

i
i
i
?
i
B

T T

treated to achieve the maximum management control of the
system. This may lead to significant changes in current
procedures or may simply require that a factor be monitored
in the future even though it was neglected in the past.
This chapter has presented a step-by-step applica-
tion of the systems science research theory to the develop-
ment of a conceptual model that will help in improving
management control of the software acgquisition process.
The essential importance to the manager himself of
a cybernetic control system is that it automatically
filters the vast amount of proliferating information
about the world situation that is accessible, and can
present him with that very small proportion which is
of real importance [6:342].
The model that is developed in Chapter IV addresses
this small proportion of important information and provides
the software acquisition manager the control capability

needed to insure consistent satisfaction of technical

performance, schedule and cost objectives.

38

CHAPTER IV
CONCEPTUAL MODEL DEVELOPMENT

The essential importance to the manager himself of
a cybernetic control system is that it automatically
filters the vast amount of proliferating information
about the world situation that is accessible, and can
present him with that very small proportion which is
of real importance.

— Stafford Beer [3:342]

As stated in Chapter I, most software for embedded
computers is purchased as a part of a given subsystem for
a new weapon system or a major modification to an existing
weapon system. Seldom is it ever the one and only purpose
of a major contract effort. Because of this low level of
visibility that software has received in the past, there
has never been a large push to develop an overall perspec-
tive for management of the software acgquisition process
(19:35-38) .

Many times in the past, all that was done to manage
the acquisition process was to monitor the progress of the
contractor on each of the seven functional activities that
occur in development of any software program. These seven
functions, conceptualization, requirements definition,
design, coding and checkout, testing, integration, and
maintenance, shown previously in Chapter I, Figure 2, are
the mechanical steps a developer goes through to convert

39

an idea into lines of code that will operate in some central
processing unit. Monitoring these functions only does not
really provide an overall perspective of how the software
development is proceeding except in the area of a deadline
schedule. Problems with cost factors for the life of the
software and accurate specification attainment may well be
lost in this type of management approach.

By looking at anf system in its entirety, one can
see not only the problems in certain parts of the system,
but also the ultimate output of the system and how these
outputs will interface with other systems. That is the
purpose of Systems Dynamics and the ultimate goal of the
model presented in this chapter. The variables that were
determined to have a significant impact on the system are
not necessarily tied to one specific function, but instead
are generalized activities that can impact across the entire
acquisition process. This approach insures that the entire
system is looked at whenever a problem arises. Also,
taking the systems approach to viewing the software acquisi-
tion process allows managers of the process to understand
how policy dictated from above will impact their ability
to get the software development accomplished within their
given constraints of dollars, specifications, and time.

The model presented here, when finally computer-
ized, will encompass the information now collected concern-
ing how well the contractor is meeting the milestone

40

schedule for the seven functional steps of the development.
This information will eventually be used as inputs into
the variables of this conceptual model. These variables
were not subdivided further for this conceptual model as
too much detail at this point in development would have’
defeated the purpose of attaining a proper system perspec-
tive of the acquisition process.

Thus, the conceptual model presented here was
developed to give the overall systems perspective needed
by the manager to adequately control the process and to
filter information needed by managers at higher levels.

The model, as presented, does not provide finely detailed
information that might be needed on a daily operating
basis, but instead shows the impacts certain decisions or
policies will have in the long-range stability of the soft-
ware acgquisition process.

To completely understand the model as presented, one
must be familiar with the interrelationships of all the
activities that are involved in the process. The next sec-
tions discuss the activities found by this research project,
the definitions that were used for development of the model,

and an explanation of the interrelationships of the activi-

ties within the conceptual model itself.

Data Collection

Through all of the interviews conducted in this

project, twenty-eight activities were determined to have

significant impacts on the successful acquisition of

embedded computer software. These twenty-eight could have

been broken down into a much larger list but it was felt

that sufficient detail was achieved with these activities

to meet the purpose of the model being developed. Those

activities identified are:

1.

2

Early involvement of AFLC personnel
Unique support requirements definition timing
The amount of government-furnished software (26)

The age of the software being modified (when
applicable)

Timing of the operational reguirements defini-
tion

Allowed development time*

Accuracy of operational requirements definition
Standardization of code developed

Support software available for development
Core size of the processor to be used (26)
Timing cycle (26)

Other hardware constraints¥*

Difficulty factor*

Requirement for transportability

Degree of development entropy (25)

User involvement in development

42

,,,,,

17. SPO/AFPRO expertise

18. Contractor expertise

19. External influences

20. Planning for reprogramming capability

21. Computed development time*

T T T T

22. Computer resources required for development
23. Criticality of software being developed (26)
24. Test/verification requirement timing

25. Risk analysis*

26. Timely and complete documentation

27. Verification and validation*

28. Formal reviews and audits (15)

The activities above, when appropriate, have been

footnoted to show when one individual originally was respon-
sible for their identification or if they were derived from
the literature review portion of this research project.
Those activities shown with an asterisk were derived by

the authors from experience in software development or by
subdividing an activity, identified during the interviews,
for purposes of model clarity and closure. The remaining
activities on the list were contributed and corraborated by
all of those interviewed in AFLC, AFSC, and AFALD. When-
ever a list such as this is compiled, it should contain the
% researchers' operational definitions of each activity to

ensure that all concerned are in accord as to exactly what

—_——

is meant by the titles applied to the activities. Since

43

these activities must eventually have some vehicle by which
they can be measured or judged, it is encumbent on the
initial researchers to specify, if at all possible, what the
appropriate vehicles are. The definitions used in this
research, and the measurement vehicles that were possible

to determine, are presented with each phase of the model's

development.

Conceptual Model

The conceptual model of the software acgquisition
management process developed as a result of this research
is presented in Figure 1l. This model presents a con-
ceptualization of the overall architecture that is required
to bring under control the Software Acquisition Management
Discipline. The purpose of the model is to explain the
variations in software development and to enable the mana-
ger to study the problem of devising improved control
strategies.

The influence diagramming technique builds the com-
plete model in distinct steps starting with the model list,
the supplementary list, and then each required extension
until closure is attained. The explanation of the model
follows this same building block technigue.

To aid in understanding why certain influence line
signs were used, arrows have been added to show the desired

directions of activities when the outputs of the model are

44

anbtuynssy Hutumeiberp LousnTur By3z HLUTZTITIN 1
ss@00xd juswabeuew uotjrstnboe saaem3ijos ay3z jo (epow Tenjzdeduod y *TT ‘brg :

_ [ONIWLL _ _
| | LNAWD [NOAY _ _
[SLIANY NOTILYOTATHAA | - || AdONINT | NOTLINIJAA
I] —e /1S4l | LNAWAOTAAAA A.'4L SINAWAN TOTAN |y
! SMAT AT = _ * 40 49¥OH3a _ TYNOTIVIAJO
+ | TYWNOA 1 MYMLIOS 40 . J0 AOWMNDDV
Tv. @ 1naanos _ ¢ il ALITYOILINO _ *?H.:m?moamzﬁe ;
Pl | _ HOd INIWTI 1N0TY _ AWLL
_ INAWAOTAAAA L\\r INIWAOTAAAA
| : ¥0d QN INGR _ §_Eomou = } aamory
«zo?ﬁ_wz\, | SAOMNOSIE MALNAWOD ||| ALINOTAd1d l/_/
) " NOILINIJAA
+
¥ Il | | NorZwOTATHEA " H+ +4\h+ ! _ /Z SINAWT N3N 0
INAWNT VLY || ‘ H LNAWAOTAAAA TUNOILYNEJO
+ YIWIL INIWJOTAAAD _ :
NOTL + <
WL.e - | T Ol SINIVILSNOD J40 ONIWIL
-¥O1J410ddS . * TIYMTIYH =
| _ 3 T REEH &
_LL NOILY.LNAWNDOA « ONIWVOONdad }
, 4 * AL TINOD (¥ ¥Od ONINNVTd lLquzE - _ JVMLI0S dao |
f 3 ATANIL | | -
P _ s o SHONINTANT _ —» ONIWLL
_ i L e— | | NOILINIJAA
" LS0D W W N _ [SINIWTY INOTY
o g PEL L) _ A4S TINEdXE I INAWAOTIAAA ||| ¥80dans andInn
taart __ | SISATUNY FOLOVILNOD ¥Od ATAVITVAY | 4+ 1 +4\
| { wsmw _ maumLdos sodans[®1
| = = _ *um?xmaxm _ 014Y JO
rl—’ 0d4dJv/ods & INIWIATOANT
_ NOTLYZ I YANYLS —> ADVA
= INAWIATOANL ¥asn] <
AYINAREISANS ISTT T4a0W | NOISNALXd LSMId | NOISNALXA ANOD3S | NOTSNALXA QMIHL

within acceptable limits. These are shown as horizontal
or vertical arrows in each of the activity boxes. A verti-
cal arrow upward indicates the activity should be increasing
toward a most favorable level when the model outputs are as
desired. A vertical arrow downward indicates the activity
rating scale, or measurement vehicle, should be approaching
zero when the model outputs are within the desired stable
ranges. A horizontal arrow in any activity box associated
with timing indicates that it is most desirable for that
activity to be brought into the acquisition process at the
earliest feasible time to assure stability.

To aid in grasping the extensive interrelationships
of these activities, the model was subdivided into exten-
sion lists for the purpose of discussion and explanation.

The activities in the model list extension are discussed

£irst.
Model List

The model list contains those activities which the
model is intended to control (9:72). The four activities

that comprise the model list extension and their defini-
tions as used in this research effort are presented below.
Also presented is a brief explanation of the arrows

included within each activity box in the model diagram.

1. Risk Analysis--uncertainty of management parameters

expressed in terms of manpower, dollars, and schedule.

46

(+) indicates that the smaller risk involved in the
system development the greater the probability of
completing the project successfully.

Documentation

Descriptive--the documentation that explains the inputs,
outputs, and purpose of each module (or subroutine)
being developed.
User--that documentation that will describe the applica-
tion of the software to the eventual user of the com-
puter system. It should explain the specific output
that can be expected from a specific input.

(+) More complete documentation will improve the

manager's ability to control the program, and

future program usability will be increased.

Validation/Verification--a review of available docu-

mentation to assess logic and thoroughness. After
coding is completed a review is conducted to insure
system specifications have been met and that perform-
ance is satisfactory in the mission environment.
Modules must be validated prior to integration into
the system and any time changes are made.
(+) As verification and validation efforts increase
the probability of the system performing as desired
will also increase.

Formal Reviews/Audits--audits are conducted to verify

compliance with specifications and other appropriate

47

contractual guidance. "[It] forces an orderly develop-
ment of contractor software and provides the Air Force
with a visibility of the managerial and technical activi-
ties of the contractors [3:23]."

(t) When reviews and audits become more detailed

and formal in their analysis of contractor activi-

ties, the manager's confidence of having a success-

ful program will increase.

Figure 12 has taken the model list out of the com-
plete influence diagram and focuses only on these elements
and their relationships.

The reduction of risk is a required activity if a
manager is to improve his or her control over the software
acquisition process. In the model list one sees that the
other elements act in concert with risk analysis in the
development of improved control strategies. Notice the
direct interrelationship of Documentation and Validation
and Verification. The documentation is required to effect
Validation and Verification, yet the Validation and Veri-
fication activities can result in a need for improved docu-

mentation to continue the process.

Supplementary List

Although the supplementary list is not a part of

the system, it is used in the model to indicate system

48

MODEL LIST

i

RISK ¢ i)
ANALYSIS

riMeLy !
&
COMPLETE
DOCUMENTATION

+

+

VERIFICATION’
&
VALIDATION

FORMAL f

REVIEWS
&

AUDITS

Fig. 12. The Model List column of the conceptual model
49

performance in an attempt to evaluate various proposed con-

trol policies. The three elements of the supplementary list

are:

X

Life Cycle Costs--"Those costs, including direct,

indirect, recurring, and nonrecurring costs associated
with a system's research, development, production, and
deployment (operation and support) that are incurred
as the total cost of ownership [12:110]."

(¥) A low life cycle cost is most desirable.

Specification Attainment--the extent to which the sys-

tem is able to function in the mission environment and
perform its assigned task. This can be measured as a
percentage of original design capability.

(+) The higher the percentage of specification

attainment the better.
Schedule--the schedule is a proposed rate of delivery
of modules, subassemblies, and assemblies that is to
occur throughout the life of the development program.
One method used to establish this schedule is to esti-
mate the rate of completion of the components that are
to be delivered. This rate is computed using the
expected development time and the total object code
requirements of the component (27:17).

The extent to which the program is on schedule can

be evaluated by comparing the total object code

50

developed to the proposed amount of code that should

have been developed.

() The greater the amount of object code developed,
especially if it is greater than the proposed amount
on a given date, the greater the probability that

the program will be completed on schedule.

These three variables reflect the ultimate indica-
tion of system performance by evaluating whether the pro-
ject does what it is supposed to do, when it is needed, at
the lowest possible life cycle cost.

Figure 13 shows the supplementary list and the
model list and the manner in which the variables are inter-
related. This figure shows the direct relationship between

Validation and Verification and Specification Attainment.

As the Validation and Verification effort increases the
quality of the product being produced, the probability that
that product will meet the required specifications also
increases. Note that documentation does not directly affect
whether or not a product meets specifications, but rather
through Risk Analysis and Validation and Verification docu-
mentation improves the probability of meeting specifica-
tions.

Documentation, on the other hand, does directly
impact life cycle cost through documentation articles that

reduce maintenance costs later in a system's life, and

o4

MODEL LIST

SUPPLEMENTARY LIST

= RISK

ANALYSIS

TIMELY
&

COMPLETE
DOCUMENTATION

&

VERIFICATION

SPECIFICATION|4 =
ATTAINMENT* +

ey

VALIDATION

FORMAL
REVIEWS

&
AUDITS

+

SCHEDULE jg—

+

The Model List and Supplementary List columns of

the conceptual model

52

schedule through documentation articles that provide the
manager with assessment capabilities to judge the progress
of the development program.

Risk Analysis and Formal Review and Audits affect
all three supplementary list variables by providing the
visibility necessary to reduce uncertainty and to evaluate

the activities of the contractor.

First Extension

The first extension contains those variables that
directly affect the variables in the model list. The ele-
ments of the first extension and their definitions are:

1. User Involvement in Operations Requirement Definition

(I)--the point in the DSARC cycle at which the user has
active inputs into the system (and the software sub-
systems) being acquired.
(+) The more active the user is in defining the
operational requirements, the more likely the end

product will do what it was designed to do.

2. SPO/AFPRO Expertise-~the average of the number of years'

experience of the personnel with a software background
I assigned to the SPO and/or AFPRO.
(+) SPO/AFPRO familiarity with the software develop-

ment process is directly related to gquality of out-

{ put, reliability of the system, and operation of

the development program.

93

Contractor Expertise--average of the number of years

experience of the programmers in specific applications
areas similar to the proposed type of software develop-
ment project.
(+) It is more desirable to have a contractor with
previous experience in a similar program than a new
contractor with no previous experience.

External Influences (I)--the extent to which the acquisi-

tion program is under scrutiny from outside established
acquisition channels. A highly political weapon system
may face more changes directed from outside sources
than some of the lower priority programs.
(¥) Less involvement of outside sources will lead
to a more stable development program. The ideal
situation would exist if no external pressure were
placed on the program manager.

Planning for Reprogramming Capability (I)--the degree

to which it is recognized that the software module under
development may have to be significantly modified at
some time in the future.

(+) Realization early in the development process

that a software module may need the capability to

be reprogrammed at some future time will allow this

capability to be built in, reducing costly follow-on

redevelopment efforts.

Development Time--the design time (or the time to reach

Initial Operating Capability) of a large software pro-
ject.
(*) Development times are a result of the size of
the system being developed. These times can range
from one or two months to two to five years (25:23).

Computer Resources Required for Development--determina-

tion of the availability and number of CPU/wall-time
hours, by machine type, that will be required to support
the development effort, and the accessibility of the
programmers to the problem center and the services
offered.
(v) It is desired to provide the maximum degree of
accessibility of the people to the services offered
in the problem center. This can best be accom-
plished by having the center as close as possible
(28:59) .

Criticality of the Software Being Developed (I)--recog-

nition of the ultimate use of the output of the soft-
ware module and how its relative importance will affect
other factors in the development and operations cycles;
i.e., flight control software will require more test/
verification and development time, and have more hard-

ware constraints than will a software module for mainte-

nance support of a simulator processor.

(y) The less critical the output of the software,
the more stable the development process since the
pressure for perfection is reduced. The manager
cannot control this as it is an exogenous input.

9. Test/Verification Requirement Timing--early recognition

of the total testing required to verify the validity

of the software module and ensuring that schedules
reflect adequate time to react to the results of this
process.
(«) The earliest possible realization of the need
for specific test is desirable. Early recognition
will hopefully lead to planning for complete test/
verification procedures and for an adequate time

period in which to accomplish these tests.

The " (I)" following certain variables listed above indi-
cates those activities which are exogenous inputs to the
system.

Figure 14 shows the relationship of the First Exten-
sion activities to those activities in the model list exten-
sion. The input activities are denoted in this figure by
boxes which have the upper right corner cut on a diagonal.

Early involvement of the using activity in the
development of the operational requirements of a proposed
system will greatly reduce the risk of acquiring a system

that is not capable of meeting its intended use. The
56

FIRST EXTENSION MODEL LIST

USER +
INVOLVEMENT

] SPO/AFPRO? RISK
EXPERTISE NALYSIS <

CONTRACTOR?
EXPERTISE

sy

EXTERNAL¢
INFLUENCES

TIMELY ¢
&
COMPLETE

DOCUMENTATION
PLANNING FOR)\ by 3

REPROGRAMING*

DEVELOPMENT TIME} , ¥
o l T+ VERIFICATION'
+

: |

&
= VALIDATION

COMPUTER RESOURCES +
REQUIRED FOR ’
DEVELOPMENT

CRITICALITY j
OF SOFTWARE V| :

TEST/ < ig—
- | VERIFICATION
—» REQUIREMENT
TIMING

FORMAL ¢
REVIEWS
&
AUDITS

Fig. 14. The First Extension and Model List columns of
the conceptual model

S

user must be brought into the development process at the
earliest possible time.

The risk of a poorly developed product will be
reduced if the SPO/AFPRO and contractor personnel have
experience with similar types of development projects.’
{Additionally, greater contractor expertise will reduce
required development time, all factors being equal, for
system development.]

External influences may actually cause an increase
in the risk associated with managing a software develop-
ment project. As more outside pressure is applied to
achieve faster results or alter system functions, the risk
of a poor decision, an increase in cost or a slip in the
schedule will increase because the manager may be forced
to implement actions which are outside the parameters of
stable system development. Conversely, if there is little
or no outside pressure on the program the risk of making a
poor decision based on external influences will be reduced.

The final variable that directly affects risk
analysis in the first extension is development time. A
project with a long development time, all other factors
being equal, allows the manager more time to reach certain
management decisions which may be more thoroughly analyzed
and therefore will reduce the associated risk of making an

error in judgement.

58

A factor which affects and is affected by develop-
ment time is Computer Resources Required for Development.
As development time increases, the requirement for develop-
ment computer resources also increases to meet the need for
additional programmer development activities. Additionally,
if requirement for computer resources for development
increases but cannot be met, then there will be an associ-
ated increase in development time as programmers are forced
to wait for access to the available resources.

If it is recognized early in the development pro-
cess that a software module may require modification at a
later date, additional documentation will be reguired dur-
ing the development effort to insure the future capability
to modify the module as needed.

The criticality of the software being developed
will determine the amount of Validation and Verification
and the number of Reviews and Audits that are required
during the program. For example, a software module for a
flight control system will require closer Reviews and more
Validation and Verification than a module that will be used
in a flight simulator.

Early recognition of the total amount of time
required to accomplish the Validation and Verification
will impact on development time, the degree of Validation
and Verification to be employed, and the amount of program
review that will be implemented. Additionally, the

59

estimated development time will impact on the point in the
development program that Validation and Verification activi-
ties must be identified and started. Also, the amount of
Validation and Verification that will be required to insure
successful program completion will determine when Valida-
tion and Verification activities must begin if the program
is to be accomplished on schedule.

At this point the first test for closure is accom-
plished to determine if the model is complete. The influ-
ence diagram, as presented so far, does not exhibit closure,

so attention is moved to the second extension.

Second Extension

The Second Extension contains those variables which
most directly affect the variables that are presented in
the First Extension of the influence diagram. Those eight
variables are presented below along with their respective
definitions.

1. Standardization--the extent to which the module under

development can be designed under "top-down" structural
programming rules. This can be measured as a percent-
age of the number of modules written following the
guidelines out of the total number of modules in the
software development package.

(+) The higher the percentage, the better. Stan-

dardized code is easier, and therefore cheaper, to

maintain.

60

L s atada. Lol deaiadhod db s Sl laa bl o

3.

4.

Support Software Available for Development--determine

if all the required compilers, translators, debugging
aids, assemblers, generators, etc., are currently avail-
able or if they will have to be developed along with
the operational software module.
(t+) When none of the support software is required
to be developed concurrently with the operational
software, all efforts can be focused on the object
software. Programmers can begin to debug new code
immediately.

Core Size (I)--the amount of memory available normally

measured in thousands of bytes such as 16K bytes = 12K
bits of information.
(4) Highly sophisticated code, with interwoven
routines is not necessary when core size is not a
constraint to development. Anything that removes
some constraint will lead to a more stable develop-
ment program.
Timing--the cycle time of the programs; i.e., the
length of time, in microseconds, allowed for the entire
program to execute and interface with other system
modules.
(+) The longer the timing allowed, the better.

Ideally, this number would go high enough to

actually be no constraint at all.

6

Hardware Constraints to Development--those requirements

placed on the software development effort due to weight
and volume constraints of the hardware and/or schedule
of hardware development.
(+) When there are no hardware constraints, includ-
ing core size and timing, code does not have to be
written to specifically meet these constraints.
Zero constraints is the best situation possible.

Difficulty Factor--a scaled rating of the programming

effort required to produce the software. Scale ranges
from very easy to very hard.
(¥) This factor will never reach zero since all
software requires some logical development. The
more basic the computer function to be performed,
the lower this factor will be.

Requirement for Transportability (I)--determination of

the requirement that the software module be capable of
executing in more than one CPU in sufficient time to
design this requirement into the module initially.
(¥) When it can be assured that the module will
never have to be executed on any other CPU, this
will go to zero. When it may have to execute on
more than one CPU, the design must take that fact

into account. This may indeed complicate the

design.

8. Degree of Development Entropy

Stand Alone Software--software developed for mainframe

(or mini) computers to be used for support functions.
Not normally constrained by any physical space limita-
tions.

Rebuild (Extensive Modifications)--programs already in

operation that are to be used as a basis for software
with a new function. Usually reinstalled in the
original machine.

New Software with Interface--software being developed

for new systems that will have to interface with other
processors in the overall major system.
(+) A factor that influences the amount of develop-
ment time that will be required for the program.
The various classes require different development
times. As this factor approaches zero, risk will
decrease as required development time will be

reduced.

Figure 15 displays the interrelationships of the
Validation and Verification activity from the model 1list,
the activities of the First Extension, and the activities
of the Second Extension. The validation and verification
activity was included in this figure because a feedback
loop exists between it and the timing activity in the

second extension.

63

SECOND EXTENSION FIRST EXTENSION MODEL LIST
;)tSTANDARDIZATIONf USER ’ ,
A INVOLVEMENT i
SUPPORT # 4
SOFTWARE SPO/AFPRO ¢
AVAILABLE FOR EXPERTISE

DEVELOPMENT g\\
4| CONTRACTOR¢
[coaﬁ SIZEN. EXPERTISE [T

EXTERNAL ¢
INFLUENCES

- PLANNING FOR
HARDVARE ¢ REPROGRAMING !
CONSTRAINTS TO &
DEVELOPMENT
v- ve -

TA+

DEVELOPMENT TIME*

A& ' +

P
OMPUTER RESOURCES
REQUIRED FOR ’

DIFFICULTY
FACTOR ¢

REQUIREMENT | DEVELOPMENT
FOR VERIFICATION¢
TRANSPORTABILITY &
CRITICALITY _ *p VALIDATION
DEGREE OF § OF SOFTWARE *] s
DEVELOPMENT
ENTROPY -
TEST/ <
VERIFICATION &=
REQUIREMENT
TIMING

Fig. 15. The Second and First Extensions and an excerpt
from the Model List columns of the conceptual model

64

The ability to apply standardized programming rules
in a development project will offset, to some degree, a
lack of expertise on a specific project in both the SPO/
AFPRO organization and in the contractor's organization.

Support software availability during development
may reduce the amount of expertise required of a contractor
if he does not have to develop the support software in addi- 4
tion to the operational software modules.

The core size of the computer mainframe impacts
three areas, standardization, planning for reprogramming
and development time.

If core size is not critical, a greater degree of
programming standardization may be employed; whereas if
core size is critical, the software modules may have to be
designed to conform to the sizing constraints. This will
not allow for designs that meet standardized coding struc-
tures.

Secondly, the availability of extra core space will
enhance efforts to allow for future reprogramming needs.

Finally, if the programmers have adegquate core size

to write straightforward code, the development time will be

reduced significantly by decreasing the potential for
errors as the complexity of the design can be reduced. |
This also reduces the amount of debugging time required

generally.

65

Timing interfaces directly with hardware con-
straints to development. If information is required at a
certalin rate to operate a piece of hardware, steps must be
taken to insure the software is capable of functioning
properly in the required time to interface with the associ-
? ated hardware.

Validation and Verification reviews system opera-

tion to insure the specifications have been met and that the
system operates satisfactorily in the mission environment.
This review includes an analysis of the timing criteria and
how well it accomplishes the software/hardware interface.

Hardware Constraints to Development, Difficulty
Factor, Requirement for Transportability and Degree of
Development Entropy all have a direct impact on required
development time. As any of these factors increase, they
tend to increase development time as well.

Degree of Development Entropy also impacts on stan-
dardization. As the degree of entropy increases, the abil-
ity to apply standardized programming structures becomes
less and less. For example, a program with the Rebuild
type of Development Entropy may not be able to apply a
great deal of standardized programming because new func-
tions are required to fit into old equipment. 1In this
case, core size may be limited or other constraints of the
old hardware may impose unique programming restrictions on
the software. However, Stand Alone Software can use a

66

T S —

o

great deal more standardized techniques because it is not
normally constrained as are the other types of software
programs.

Again, after all the variables have been listed in
the Second Extension, the closure test is applied. Although
one feedback loop has emerged across extensions, the model
is still not closed and, therefore, the Third Extension is

addressed.

Third Extension

Here again the process repeats itself. Those vari-
ables that directly affect the variables in the Second
Extension are listed in the Third Extension and the influ-
ence lines are drawa in. The seven activities that make up
the Third Extension are:

1. Unigue Support Reguirements Definition Timing--the

point in the DSARC cycle at which it is realized that
the hardware package under development will require
totally new dedicated support software, not currently
available, once the weapon system becomes operational.
(«) If these requirements can be identified early
in the program, more time will be available to
develop these unique requirements. There also
exists the possibility that other programs will be
able to use the same support equipment or vice

versa.

67

GFE Software--the number of computer programs supplied

by the government to assist the contractor in his soft-
ware development efforts.
(#) It is desirable to utilize as much existing
software as possible to reduce costs and aid stan-
dardization if possible.
AGE (I)--the number of years the software being modi-
fied has been in the field.
(v) Older software is more difficult to modify and
update; therefore, more acceptable results will be
realized on newer pieces of software.

Timing of Operational Requirements Definition--the

point in the DSARC cycle that it is recognized that
significant software development will be required to
meet the established mission requirements of the system
being acquired.
(+) Defining operational requirements as early as
possible in the acquisition cycle will increase the
probability of successfully completing the develop-
ment project.

Allowed Development Time (I)--the time in months

allowed for software module development prior to system
interface testing. Not necessarily equal to Develop-
ment Time.

(+) Allowed Development Time needs to be at least

equal to development time and cannot be reduced to

68

a level below development time without increasing
the difficulty of the development effort.

6. Accuracy of Operational Reguirements Definition--the

degree to which the established mission regquirements
of the system being acquired reflect, in sufficient
detail to insure adequate software development, the
actual use to which the weapon system will be employed.
(+) The more accurate the operational requirements
definition, the greater the probability the com-
pleted system will perform as the user intended.

7. Early Involvement of AFLC (I)--the point in the DSARC

cycle at which the AFLC personnel who will be respon-
sible for maintenance of the software are brought into
the development of the software being acquired.
(¢) It is desirable to involve AFLC in the acquisi-
tion cycle at the earliest possible time to insure
adequate planning for maintenance activities on a

system life cycle basis.

Figure 16 contains the third and second extensions,
the External Influences Variable from the First Extension
and the Risk Analysis and Validation and Verification vari-
ables from the model list. The three excerpted variables
are, again, added to clarify the developing feedback loops

within the model.

69

1opow 1en3deoduod dY3l JO Suwniod ISTT [OPOW PUBR UOTSUDIX]

3SITJ 9Yy3z woxy s3dIooxad pue SUUNTOD UOTSUDIXHY PIATYL PUR puodas oyl ‘9T

*brg

.

NOILYAI'TIVA
y
NOLLVOIJATYHEA

AdOYINY
LNAWdOTIAAA

NOILLINTAda
SLNAWAE 1IN0

$ a0 aminaa

ALTT1AYLMOdSNVAL,
buoa INAWTI NG

TYNOTINNAJO
{30 xownoov (€

“plAWIL INEWAOTHAIA
' AIMOTTY

[frozova xainoraarale J
Y 3 NOTLINIJAA
SINAWTE 1NOTA
INAWAOTAAIA TYNOTIVEAAO |
OL SINIVMLSNOD 30 oNIWiL [
} auvmauvn

- A +*ﬂ

SHONANTANI

\“amum_

‘y
SISATYNY
» NSIA

$Tariasxa

=¥ yauvmsLios dao)

7 |

LNEWJOTIAFA
¥O4 JTAVTIVAY
AYYMLAOS L¥O0ddNS

70

ONIWIJL NOILINIJAd
— SLNIAWD INOTH
INOddnNs AndINN

)

[- o1av 40
INAWAATOANI ATNVA

LSIT TAA0OW

NOISNALXH LSATJA

NOISNALXH ANODHAS

NOISNIILXHd (M IHL

Early determination of unigue support requirements
will impact on the number of standardized programming rules
that can be employed during development activities. Also,
any hardware constraints that are placed on the develop-
ment project will determine how early unique support soft-
ware will be required.

If government furnished software modules are avail-
able for the development program, the degree of standardiza-
tion within the project may be increased if the software
modules fit directly into the project. However, if these
modules must be modified in order to work in the project,
the degree of standardization may actually decline.

Also, if the government can furnish additional
support software to the project, the total amount of soft-
ware available will increase. However, if there is an
adequate amount of contractor supplied support software then
the amount of GFE software needed will be reduced.

Age places an additional constraint on this soft-
ware/hardware interface in a development project. The
older a module is, the more there is a chance of inaccurate
or inadequate documentation being available that describes
the module. The module may also have been written in an
early version of a language that is no longer widely used,
or known, and it may no longer have the development support

software available that was around when it was written.

ik

i

Early operational requirements definitions reduce
the difficulty factor by allowing more time for complete
development. By determining early in the acquisition cycle
what the component is to do, risk of system failure is
reduced because less pressure is felt by all parties in
their efforts to complete development. This early opera-
tional requirements definition will improve the accuracy
of the definition if the needs of the user are sufficiently
detailed to allow for a realistic assessment of mission
requirements; however, if the timing is too early and all
the mission details have not been worked out, the accuracy
of the definition will suffer as changes will be required
to correct deficiencies and oversights.

The accuracy of the operational regqguirements defini-
tion will have an impact on the Degree of Development
Entropy insofar as the type of software development pro-
gram will be determined by the operational requirements
imposed by the user. Those modules whose functioas do not
change many times, do not suffer from the inefficiency that
the design and redesign cycle can promote.

Allowed development time is most directly affected
by external influences. For example, pressure may be
directly applied to get a new weapon system operational by
a specific date. If this allowed development time is less

than the actual development time needed to complete the

72

project, the difficulty factor is increased and a ripple

effect rolls through the entire model.

By involving AFLC in the development process very
early, unigue support requirements may be addressed from a
complete life cycle approach and total system procurement
packages may be developed more effectively. Their inputs
concerning the maintainability of the software model flow
through the First and Second Extensions and hopefully will
aid in reducing the life cycle cost of the software.

After all the variables have been entered and
linked, closure is again attempted. This time, closure is
attained and the influence diagram, which is now also a

model, is complete.

Summary of the Model

There are two basic objectives to a System Dynamics
analysis no matter which dynamic system it is applied to.
The first objective is to explain the system's behavior in
terms of its structure and policies. The second objective
is to suggest changes that will lead to improved behavior
of the system or, alternatively, suggest changes to struc-
ture and policy in a small system which will enable it to
survive, or even take advantage of what the larger system
does to it (9:19).

The model just discussed was the first step in

achieving the first objective of influence diagramming.

73

e o

It shows, not too surprisingly, that the activities that
impact the software acquisition management process are
extensively interwoven. It does not show, at this stage

of development, the technical relationships of the £five
functional steps in development of software as the model
has maintained the systems view of the process. This view-
point cannot be ignored by the manager of a system if he 1is
to maintain proper control of his process (29:238-243).

To meet the second objective of influence diagram-
ming, the final computerized model must be developed and
implemented. This facet of the model development is dis-
cussed further in the Recommendations section of Chapter V.

The final step in development of the conceptual
model is validation. The remaining portion of this chapter

will cover this critical phase.

Validation

Validation of a model, one of the most difficult
tasks in systems science research, is "the process by which
we establish sufficient confidence in a model to be pre-
pared to use it for some particular purpose [9:181]."

The validation effort for the conceptual model of
the software acquisition management process that is pre-
sented in this chapter began with repeated interviews dur-
ing each phase of variable identification and definition,

and model building. Two principle questions were addressed

74

N R T T N T

during the validation process to insure the highest degree
of confidence in the validity of the proposed model. The
first question asked during model evaluation was, "Does the
model include the necessary elements of the software acquisi-
tion process to enable it to effect the system's behavior?"
Initial interviews and literature reviews provided the
first set of variables that were to be included in the
model. Through the process of return interviews with AFLC,
AFSC and AFALD personnel, reevaluation, more interviews,
and further reevaluation of the variable list, sufficient
confidence was developed in the list containing the final
twenty-eight variables to permit development of the con-
ceptual model itself.

Once the model was developed, the second gquestion
that was asked to further strengthen the validity of the
model was, "Is there a correspondence between the proposed
model of the software acquisition management process and
the system itself?" The final test of this guestion will
come at a time when inputs, which have been made to improve
system behavior, have had time to act and their results can
be analyzed. However, until such time as actual data is
available for analysis, "we feel the best test of confidence
[validity] is the knowledge that the model has been care-
fully built up in conjunction with management [9:184]."
Because of this relationship with the management people
of AFSC, AFLC, and AFALD, the researchers are confident

i

e o e i it

that there is indeed a correspondence between the model and

the system it represents.

. Additional validation guestions will have to be
addressed as the conceptual model is further developed into
the recommended computerized simulation model.

The conceptual model that is presented in this

research effort was developed in order for the manager to

know what management changes to make to the software acquisi-
tion process to improve its behavior, and for that manager

to gain an understanding of the complex interrelationships
that exist throughout the software acquisition system.

This model meets these purposes and toward these purposes

the model is valid.

T TP T | [PR PRI TNy eapramerTw g~

—

T T Y T A T T g

CHAPTER V
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

We are at our human finest, dancing with our minds,
when there are more choices than two. Sometimes there
are ten, even twenty different ways to go, all but one
bound to be wrong, and the richness of selection in
such sttuations can lift us onto totally new ground.
This process 18 called exploration and its based on human
fallzbility.

— Lewis Thomas [31:383]

This chapter summarizes the research objectives
and the research guestions, and presents the conclusions

and recommendations of this research effort.

Research Objectives

The research objectives established for this
research project were to:

1. Investigate the current software acquisition
management process with emphasis on the elements that are
creating problems in the areas of employment and control.

2. Identify and define the variables (activities)
which must be included in a conceptual model of the software
acquisition management process.

3. Develop a conceptual model of a viable software
acquisition management process which explains the system's
behavior in terms of the activities and their interrela-

tionships.

Research Objective One

As a result of this research effort, this research
team now has a much better appreciation for the complexity
of the current Air Force software acquisition process.
This research objective was established to analyze that
complexity through an in-depth literature review and a
series of personal interviews with the people in AFSC,
AFLC, and AFALD that are directly involved in the software
acquisition management process. This research objective
provided the base from which the remainder of the research

project was built.

Research Obiective Two

The intention of research objective two was to
use the information collected as a result of the literature
reviews and interviews to identify and define the variables
that were to be included in the final conceptual model of
the software acguisition management process. The final
list of variables and their definitions are a culmination
of the information gathered, the researchers' own inputs
and numerous return trips to those interviewed for addi-
tional feedback as the list was being developed. This
research objective was accomplished in Chapter IV under

the heading Conceptual Model.

78

T

e ke oo e

Research Objective Three

The results of objectives one and two were combined
and applied to research objective three. Once an under-
standing of the current software acquisition management
process was developed and the necessary variables needed
for the conceptual model were identified and defined, the
research team felt confident that a conceptual model--the
first step toward a computerized simulation model--of the
process could be developed. This objective was achieved
in Chapter IV--Development of a Conceptual Model of the

Software Acquisition Management Process.

Research Questions

This research effort was conducted to apply the
principles of management cybernetics to the software acgquisi-
tion management process. The research was initiated with
the awareness that these principles are not being applied
either conceptually or practically. It is hoped that by
presenting a working example of these principles, they will
be applied to management problems to a great extent in the

future.

The research questions that guided this research
effort were:

1. What are the elements within the software
acquisition management process, as currently employed,

which are contributing to the problems that now exist?

79

|
|
|
|
J

2. What are the variables (activities) that must
be included in a model of the software acquisition manage-
ment process?

3. Can a conceptual model be developed that can
accurately portray the dynamic behavior of the software

acquisition management process?

Research Question One

One of the key elements within the software acquisi-
tion management process that is contributing to the current
problems is the sharing of information among the various
sections of the acquisition system. This element was
found repeatedly in literature and personal interviews.

One ESD technical report summarized the problem this way:

Management "lessons learned" are not captured and

disseminated regularly enough to benefit many new soft-
ware acquisitions . . . , so that innovation for a new
program may really be a repeat of the mistakes of a
prior program [11:10].

Another element that is contributing to the current
problems is the fact that AFLC is not brought into the
acquisition cycle early enough to have an impact on reducing
the life cycle cost of a system (26). The software acquisi-
tion manager in the SPO needs to know what resources the
AFLC units will need to support the software once it is put
in the field. ™hese needs must be addressed and planned

for early even though adequate funds may not be immediately

available for their acquisition.

80

A third element that is contributing to the current
problems is a lack of careful planning for future reprogram-
ming needs. If the future need for reprogramming is not
addressed, inadequate core size, insufficient documenta-
tion and excess life cycle costs will result which will
greatly increase the problems of reprogramming in the

future when the need occurs.

Research Question Two

The variables that were included in the conceptual
model in response to the second research gquestion are iden-
tified in Chapter IV under the heading Conceptual Model,
and will not be reiterated here. These variables were
selected as a result of the combined efforts of this
research team, the personal interviews that were conducted,
and the many volumes of literature that were reviewed in
the early stages of this research effort.

The final list of elements was not the result of
setting a goal to identify and define a predetermined
number of variables, but rather was the result of a great
deal of in-depth analysis and study of the software acquisi-
tion management process. The initial list contained twenty
elements, some of which were combined into a single ele-
ment; one was eliminated as being irrelevant and four
others were added for the first time. Additional reviews

were conducted before the list was finalized.

81

The importance of this method of building the list
of elements to be included in the conceptual model is that
a synergism took place between numerous people each with a

special insight into the process.

Research Question Three

The answer to the third research question is, "Yes,
a conceptual model can be developed that accurately por-
trays the dynamic behavior of the software acquisition
management process." This model was developed in Chapter
IV under the heading Conceptual Model.

This conceptual model portrays the relationships
that exist within the software acqguisition management pro-
cess. It provides the manager with a tool to develop an
understanding of the nature of the system and ways to
develop stability within the process. This model can, and
should be, applied during all phases of a system's life
cycle.

The relationships portrayed in the model provide
a mechanism that the manager can use to evaluate actual
achievements and relate to the overall acquisition strategy.

The importance of this research is that it presents
a conceptual model of the relationships of those elements
that are necessary to achieve management control of the
software acquisition management process, and it provides
the conceptual base that is fundamental to the development

of a mathematical control model of the process.

82

AD=A076 946 AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOOL==ETC F/6 5/2
MANAGEMENT CYBERNETICS: AN APPLICATION TO THE DEVELOPMENT OF A ==gTC(U)
SEP 79 R E PESCHKE ¢+ M L SHERRILL

LINCL l‘:ﬁ'FTPﬂ AETT=l CAR=2=TOR

END

DATE

FILMED
#2—79

""l |0 =2 g2

B gz

PR
=y,

22 g e

¢

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 19631

e e — chindtia . 5 G s P— " T i A i 565 i LA — & e

Conclusions

The conclusions reached by this research are:

1. That the principles of management cybernetics
can be applied to a complex process such as software acquisi-
tion management within the United States Air Force. %

2. That the application of management cybernetics
is a significant step toward the development of an overall
perspective or architecture to the software acquisition
management discipline. }

3. That life cycle cost technology is not being
adequately applied to software acquisition. Many instances
were discovered, in discussions with AFLC and AFALD per-
sonnel, that affirmed this conclusion. Their general feel-
ing is that if a program is fairly easily maintained during
its operational life, it is more in the nature of luck
than detailed planning.

Granted, life cycle cost techniques, as used in
the acquisition of aircraft tires, do not directly transfer
to embedded computer software. However, the theory and
main objectives of life cycle costing could be applied more
than they are now. The conceptual model presented here has
purposely included those activities that should help to
reduce, or at least identify, areas where costs can be

reduced for the life of a software program.

83

4. That the existing mathematical knowledge and
computer technology is adequate to develop the mathematical
model necessary for complete program implementation.

5. That the final computerized model must possess
the capability to produce specific outputs dependent upon
the type of software being acquired. This does not mean
that there needs to be a model for each of the five basic
types of embedded computer software (i.e., Automatic Test
Equipment (ATE), Operational Flight Programs (OFP), Air-
crew Training Devices (ATD), Electronic Warfare (EW), and
Communication, Electronics, and Meteorology (CEM)) (26).
Rather the basic model, conceptually presented here, must
be able to be modified very easily to present the output
required by those managers involved in acguisition of any
of the five categories. This is foreseen, at this time,
as possibly involving changing the scaling factors of cer-
tain variables to relate to their importance to a specific
category. It also may entail breaking these activities
down further into their contributing Qariables in order
to accurately represent their relationship to one of the
five categories.

In any case, one model will not accurately reflect
the variations found in the acquisition of the various types
of embedded computer software programs, nor are five

separate models necessary since the acquisition processes

84

~ > ~—p

.' ———re

are not significantly different enough to require five

separate models.

6. That the inclusion of AFLC software personnel
earlier in the acquisition cycle will help to reduce total
life cycle costs. The personnel at WR-ALC concludedﬂthat
this could be accomplished by as little as one systems
analyst for each Air Logistics Center that will eventually
be involved in maintenance of the software acquired.

Life cycle costs will be reduced even if the soft-
ware is not developed with maintainability as a priority
since problem solving and implementing changes is easier
when some person in the maintenance operation is aware of
the logic involved in the design of the program. It is also
very helpful to have someone familiar with the modifica-
tions a program has gone through when a new change is
required. It will be incumbent upon AFLC to adequately

compensate these personnel to insure they remain with the

program as long as feasibly possible.

Recommendations

The recommendations of this research study are:

1. That a study be conducted to establish quanti-
tative parameters for the variables that were identified
and defined. This effort should be applied toward the
goal of developing a mathematical model based on the con-

ceptualization developed in this research study.

85

2. That a study be conducted to develop and vali-
date the computer programs necessary to implement a control
model of the software acquisition management process. This
model must, however, be easy to use, be credible within
the management discipline, and be able to produce useful,
timely information.

3. That any efforts to develop a mathematical con-
trol model involve the inputs of the AFSC/AFLC/AFALD per-
sonnel who will use the model once it has been developed.

4. That a study be conducted to investigate the

approval process of the Data Automation Requests (DARs).

One of the problems discussed by many of those
interviewed was the trouble they have in getting approval
of a DAR. Although the DAR is generally used for hardware
acquisition approval, it can have an eventual impact on
software development in that the hardware to be used will
dictate the software requirements. Besides the specific
technical requirements the hardware generates, the delay
in its acquisition, brought on by the lengthy DAR process,
can delay development of the software (15).

This also should be investigated from the stand-
point of an overall view of data processing within the Air
Force and DOD. One example was found in AFLC that points
out the overall problem. The managers of the automated
test equipment at Warner-Robins ALC can purchase exotic
electronics equipment without any external approval. But

86

LS MaR O i . Lan AL alhe el oot

to replace or add a microprocessor, which costs as little
as 25 percent of some other equipment in the same test bed,
they must submit a DAR that has to be approved by the AFLC
Comptroller organization. This approval route does not
make sense. In other cases outside of AFLC, the General
Accounting Office and the General Services Administration
can get involved and even have the power to veto. Since
the cost of hardware is becoming less and less of the total
program cost for data processing, this type of approval
route needs to be researched thoroughly to determine its
impact on the costs of software development.

The conclusions and recommendations, and the entire
research effort represented by this thesis can be summed up
by this quote from Stafford Beer,

The identification of mechanisms led to concepts

of law; and we have just seen how the laws of cyber-

netics govern our view of modelling. But models are

useless unless they are applied; we go into action in
a managerial situation armed with a model which--

hopefully--embodies the laws and applies the mechanisms
[8:115-116].

87

APPENDICES

APPENDIX A

INTRODUCING THE CORPORATE PARADIGM

e — - e

The Five-Tier Hierarchy of Control

The cybernetic paradigm, as proposed by Stafford
Beer, is shown in Figure A-1. This figure is for the
entire firm or organization and does not show that this
firm is also a division of a higher niveau such as the
industry to which it belongs. Each one of the divisions
shown in this figure is equivalent to the board level of
the firm, but for the systems below (4:199-212). This is
the law of recursiveness that is discussed in Chapter II.
In that each niveau of an organization is cybernetically
the same as those above and below, the niveau that contains
the specific problem at hand can be identified and modeled
or researched fairly easily. The paradigm in Figure A-1
was derived by Beer through an analogy of the control func-
tions of any viable organization and the control physiology
of the human nervous system.

Through the process of homomorphic modelling, as
discussed in Chapter II, Beer used the five levels of con-
trol in the human nervous system to map onto the control
functions needed in managing an organization (4:117-134).
By studying the information flow to and from the brain,

through these five physiological levels, the five systems

of the corporate paradigm were developed.

——— I 5
eah : 4 5 BOARD LEVEL &)

] 4 ! N ! %
(& P 5 ,

l \ / O
e ! g |

N

— f \ | | DEVELOPMENT ¥ B i
— | | DIRECTORATE @ !

| -~ N + ~ 3

) / 4 \ ! §

| o

| { 4 J &

: % v 7 | OPERATIONS &

Sawel B + — -~/ DIRECTORATE J
/
!
CORPORATE j
k_ % REGULATORY ‘FD i
CENTRE

I
DIZ/.S IONS /\

| —4-C w5 75 5 LY
i ———d
! —egq-
I Y i AV
'[AevtsTonst, /\
DIRECTORASE
T nmws o AN
E >— |
| v
4 Y DIVISIONAL
REGULATORY |
:(j* ENTRE
’,
f

Fig. A-1l. The Corporate Paradigm (4:199)

91

:
;
3
E.
é‘
|

Figure A-2 shows an exploded view of the brain and
how it can be divided into five control echelons. Although
five echelons is an arbitrary choice, that number of levels
identifies the major functional differences involved and
still keeps the classifications from being too complex "
(4:129). The horizontal axis from the nerve endings
through to the spinal vertebral level is the same as the
horizontal axis shown in Figure A-1. Here is where the pro-
duction of an organization is done and is where each organ
in the body performs its unique function. The information
flow through the synapse and the spinal vertebral levels is
collected in the spinal column. System II of the corporate
paradigm performs the same function. This information is
sent to the lowest portion of the brain, shown in Figure A-2
as Control Echelon III, which regulates the autonomous
internal functions of the body and yet it acts as an infor-
mation source to the rest of the brain as well. System III
serves the same dual function within the corporation. The
portion of the brain in Control Echelon IV is connected
directly to the environment through the sensors of the eyes
and ears. System IV, the staff level function of the
corporation, performs the same functions in that organiza-
tion. Finally, in the human body there is the cerebral
cortex, the portion of the brain that handles foresight,
recall, pattern-making, the powers of association, and the

thinking process in general. The cerebral cortex is not

92

TNPRUISIS

T —

P T L e T

' e - ke
sk e e ol s s A

E
:
E
|

St R Sl e o el o oty S b ol L b SRl L Ll

Control Echelon V

Cerebral Cortex

INPUT

Control Echelon IV
P > % Diencephalon

Basal ganglia
3rd Ventricle

Control Echelon III

r)
? cranial nerves e & < Mesencephalon
ns

Cer Pons
ed ha 8 Medulla
Cerebellum

Control Echelon II

Spinal cord

Synapse

I Control Echelon I
\—
AN >~ : Spinal vertebral
level

Node of Ravier

Input: Affective (sensory)
Output: Effective (motor)

VERTICAL

«§——)> LATERAL AXIS AXIS

Fig. A-2. Exploded diagram of the brain showing
classification as a five-tier hierarchy (4:129)

93

R G T P, P S] WP

gk = B e . e Ce——G ———————
4 " .

directly connected to the outside world. The same type of

e e

functions within the corporation are performed by the board
of directors at the System V level. While they are not
physically separated from the world, as is the cortex of
the brain, they do provide the insight and intellect for

the rest of the organization (4:117-134).

System I: Divisional Control

Figure A-3 shows the basic elements of the division
level components. The relevant external world (REW) has an
impact on the business operation (0) which uses a System
One controller to maintain control (5:36). This level of

the organization is looked on as almost totally autonomous

by the firm's upper level management, but it is a complex
day-to-day operation for the people involved.

This operation is normally where the output of the
firm is produced. The System I manager is concerned with
allocation of various resources among a range of reguired
tasks and the calculation of the risk of some event happen-
ing. What is critical is the determination of what informa-
tion is needed by the controller, which many times happens
to be a computer, to effectively solve the problems of his

division (5:34-36; 4:201-203).

System II: Integral Control

The division of Figure A-3 was shown to have inputs

from its environment and its controller. Figure A-4 shows

94

e *t““*ninndﬂ-‘-I...--ﬁﬂ!-HhHl-—uﬁ-ﬂunﬂu.u.ﬁ!..ﬂl.iﬂﬁﬂﬂlﬂl‘

SYSTEM 1
CONTROLLER

SYSTEM I
OPERATIONS

SENIOR
MANAGEMENT
INSTRUCTIONS

SYSTEM I

&

Fig. A-3. System I (5:36)
95

MANAGER

SYSTEM I
MANAGERS

Fig. A-4. Activities of the Firm (5:36)

96

that the business operation (0) also is concerned with
inputs from other divisions (A & Z). 1In that each business
operation is in itself trying to optimize the solutions to
its own problems, there is a conflict in what is perceived
to be done from the basic inputs of the controller and REW,
and the inputs from the other divisions. Every division
cannot optimize its own problem solutions without some
impact on the other divisions. These impacts tend to cause
the other divisions to compensate and change their solutions
and soon the system is out of balance in trying to cope
with the constantly changing solutions.

Clearly, a higher level control function is needed
to integrate the solutions for all divisions to return the
divisions to stability. That function is System II, shown
in Figure A-5 (5:36-38; 4:203-204).

Along with the intradivisional control function,
System II also has a regulatory center for use as a manage-
ment tool. This center functions to monitor and filter
information for use in both upward and downward directions
of data flow. These regulatory centers are shown as tri-

angles in Figure A-5.

System III: Internal Homeostasis

The title for the System III position or function
is that of operations directorate. This is the first level

that is really involved with all levels of the firm.

97

SYSTEM II
CORPORATE
REGULATORY
CENTER

FN\\N$

A

T

N

A

N

b

F AN

/\

‘i

L X

Figo A—s.

S

SYSTEM II MANAGEMENT

System II (5:36)
98

System III has the job of maintaining stability in the
lower divisions while attempting to attain the overall
objectives of the firm as specified by Systems IV and V.
This system has the task of allocating total resources
throughout the divisions, not to maintain balance because
that is a System II function, but to meet the higher objec-
tives of the firm as a whole. System III also is the level
where information is collected from all the divisions to
be forwarded to the higher systems and where directions
from above are translated into objectives that have mean-
ing and substance to the lower divisions (5:38-40; 4:
204-212).

At this level, the techniques required are those
related to solving sets of relevant equations to obtain,
from the large number of possible solutions, those solu-
tions which best meet the organization's overall goals
(5:39). From these solutions, a strategy should emerge
that is capable of adapting to unexpected perturbations.
This relates the internal homeostat to the organization's
environment, through its distinctive policies (5:39).
Figure A-6 shows how System III interrelates with Systems
I and II below and the connection upwards toward Systems

IV and V.

99

Y4

OPERATIONS

DIRECTORATE

CORPORATE
REGULATORY /

Y A CENTER

2]

Fig. A-6. System III (5:40)
100

T

System IV: Development Directorate

System IV, normally thought of as the advisory
staff function in most organizations, sits squarely on the
control command axis of the firm (5:42). It is much more
than advisory in almost every case, since it acts as one
large filter of information between the board level (Sys-
tem V) and the corporate operations (4:230-252). System
IV also has the important role of interfacing between the
corporate environment and the institution. Here again, it
acts as a filter between the firm and the world for both
input and output data.

In that System IV is the link between the corporate
levels of System III and System V, as shown in Figure A-7,
it also acts as the coordinator and implementor of organi-
zational policy and long-range planning. It also, in many
cases, actually develops and implements policies and pro-
cedures, based on general guidance from System V, without

direct orders from above (5:40-43; 4:230-252).

System V: The Board Level

If there is one word for System V, it is "fore-
sight." For it is at this level that future strategies are
mapped out. The Board must consider policies which are
almost philosophies, or at least superior to the practical
strategies that are considered by System IV (5:43). To

accomplish this consideration, System V has direct inputs

101

BOARD OF

TSR

-
DIRECTORS
DEVELOPMENT
4
DIRECTORATE

OPERATIONS

r-———-i

DIRECTOR

l\’I’L ——

REW

The Organizational Interface of System IV (5:41)

Fig. A-7.

102

fram System IV and some inputs from System III. It also
must have some sort of total model of the corporation.

This model must include the cost-effectiveness models of
System III, and the corporate marketing and finance models
of System IV with every other feature of the company in its
environment that appears relevant to a possible sequence

of events in the future. It must be capable of reflecting
on totally new departures in policy. The purpose is not to
foresee events, but to map out viable strategies to use in

the future, no matter what the situation may be (5:43).

The Total System

The Corporate Paradigm presented here is in actu-
ality a real-time model of the organization, much as the
nervous system of the human body. Normally, operations
research uses synthetic or historical data to activate its
models (those mentioned in System V), but in this cyber-~
netic firm, the information flow is continuous and real-
time, so that the model is constantly updating the latest
information. That is the purpose of the paradigm (5:44-46;
4:199-252).

An analogy to the human body may make the structure
of the paradigm more clear. System I's are the major
organs of the body with their respective control glands.
System II is the spinal cord. System III located in the

rear, lower portion of the brain is the autonomic nervous

103

system with its associated input and output systems of

responses. System IV is the central portion of the brain
that consolidates all the information from the rest of the
body. System V is the cerebral cortex, the thinking center
of the brain (5:44).

The argument, as stated by Stafford Beer, is then
that, "Viable systems are organized like this whether they

are physical, social, or economic [5:44-45]."

104

APPENDIX B

LIST OF INTERVIEW QUESTIONS

105

RO (o b =1 T 0 PR Lo oy N 3

-

Do you agree that the spiraling cost of ECS is a major

acquisition problem?

Which of the following would you say is the most

pressing, urgent and significant when considering éCS

acquisitions?

a. Contracting methods

b. Management techniques

c. The state of the technical art

d. Accurate statement of software requirements

When considering management techniques and methodolo-

gies, which of the following are problematic?

a. Tracking the system's progress

b. Defining the hardware and software requirements

c. Understanding the hardware and software relation-
ships at each phase of the system's acquisition
cycle

d. Defining the software product

e. Validating and verifying the final product

f. Defining and then implementing milestones for the
ECS acquisition

Do you agree that if the problem of cost and manage-

ment of ECS are to be solved a good place to start is

with a clear understanding of the ECS acgquisition pro-

cess?

106

10.

Would you characterize the preparation and training for
ECS acquisition managers as extensive, or is it more of
a learn-while-doing process? ¢

Do you believe that life cycle considerations are
normally included in the,process of defining software
reguirements?

Meaningful management information is often unavailable
when needed, because of a lack of consistent practices
for feedback of software management information. Do
you feel we could do better in this area if we required
more exact reporting by the contractors?

Is hardware development and construction initiated so
early in the program -that software is often forced to
accept changes (because of hardware problems) without
appropriate engineef;ng and design?

Do you believe that, in most cases, since software is
uniquely different from hardware, the management
schemes and procedures set up for hardware will not
work for software?

It has been asserted that software as opposed to hard-
ware lies on the critical path of most Embedded Com-
puter Systems procurements. Do you believe it would

be desirable toqhave the software analysis and design
start earlier im the acquisition process than it does

now?

107

b 1)

22

13

Do you see the acquisition of an embedded computer
system using a total system approach or is it generally
treated separately?

Are the specifications normally drawn up so that a
software package can be maintained organically without
the help of a senior systems analyst intimately familiar
with the program?

What variables do you see impacting on the costs and

schedules of embedded computer software?

108

APPENDIX C

GLOSSARY OF TERMS

o e ——

BIT--binary digits (BITs), the smallest unit of information
understood by the computer, are the elements that
reflect the states of the binary number system. Bits
are organized into groups to represent symbols in the
same fashion as dots and dashes in Morse Code (14:4).

CPU Time--the amount of time the Central Processing Unit
(CPU) uses to complete each set of instructions. For
example, it may take the machine only two seconds to
execute a program, but, due to other operations the com-
puter may be accomplishing at the same time, it takes
it one minute to go from an input until the operator
gets the required output (see Wall Time).

Cybernetics--"the science of communication and control in
the animal and the machine. That is to say that cyber-
netics studies the flow of information round a system,
and the way in which the information is used by the sys-
tem as a means of controlling itself; it does this for
animate and inanimate systems differently (6:254]1."

Embedded Computer System--"An embedded computer system is a
computer system that is integral to an electro-mechanical
system such as a combat weapons system, aircraft, . . . ,
and the like. Embedded computer systems are considered
different than Automatic Data Processing Systems (ADPS)
primarily in the context of how they are developed,
acquired and operated in a using system [22:4-8]."

Entropy--"the measure of a system's inexorable tendency to
move from a less to a more probable state [4:306]." For

living organisms entropy equates to death; for organiza-
tions maximum entropy equates to total disorder and a
lack of all required information.

Homomorphic Model--a scientific model which involves a many-
to-one correspondence onto which two different situa-
tions are mapped which defines the extent of structural
identity within the situation without destroying neces-
sary operational characteristics of the component ele-
ments.

Module--the smallest computer program unit that can be com-
piled or assembled (12:58).

110

Niveau--the term used to distinguish between levels of
recursion within the organization structure in order to
avoid possible confusion with the particular concept of
"level" within a given niveau (5:82).

Paradigm--"An exemplar or pattern; a basic way of doing some-
thing recognizable beneath many superficial variations
[4:307]."

PMRT--Program Management Responsibility Transfer. "The
transfer of program management responsibility for a
system (by series), or equipment (by designation) from
the implementing command to the supporting command
[13:58]."

Q-GERT--a method for graphically modelling systems in a
manner that permits computer analysis. G-GERT augments
GERT (Graphical Evaluation and Review Technique) with
the addition of queueing and decision capabilities
(24:vii).

Scientific Model--"a homomorphism onto which two different
situations are mapped, and which actually defines the
extent to which they are structurally identical ([6:113]."

Software--"Software is the sum total of all programs, data,
and routines. Frequently, software is defined to also
include associated documentation, such as specifica-
tions, ICDs, manuals, etc. [2:105]." For the purposes
of this research, the definition does include the
development of associated documentation as well as the
executable program instructions.

Support Software--"Support Sofware is any software designated
to support the development and testing of other software.
Thus, it is comprised of developmental software and test
software [3:82]."

Top-Down Development-~-this development methodology starts at
the level of the whole program to be developed and,
through a series of decompositions of available speci-
fications, ultimately arrives at the machine or pro-
gramming language that will be employed.

Variety--"the total number of possible states of a system,
or of an element of a system [4:307]."

Viable System--a viable system or discipline is one that has
the capability to survive and grow harmonically in a
dynamic environment (6:84).

111

Wall Time--the number of hours that the computer resources
will be required to complete the software development
effort. It is measured as the sum total from input to
required output for all runs required.

e T TR Bl S S e AR T T R R R T e R i e T e R S

O
| O
-
3 3
- ~
m ~
[a]
S
&
Q
53]
-
(5]
1))]

A. REFERENCES CITED

1. Aeronautical Systems Division, Air Force Systems Com-
mand. Management Guide to Avionics Software Acqui-
sition. Volume I: An Overview of Software Develop-
ment and Management. ASD-TR-76-11, Volume 1I.
Washington: Government Printing Office, June 1976.

2. - Management Guide to Avionics Software Acquisi-
tion. Volume II: Software Acquisition Process.
ASD-TR-76-11, Volume II. Washington: Government
Printing Office, June 1976.

5

- Management Guide to Avionics Software Acquisi-
tion. Volume IV: Technical Aspects Relative to
Software Acquisition. ASD-TR-76-11, Volume 1V.
Washington: Government Printing Office, June 1976.

4. Beer, Stafford. Brain of the Firm. New York: Herdes
and Herdes, 1972.

5. . "Concerning the Cybernetic Paradigm for
Organizing the Firm." Unpublished research paper,
undated.

6. - Decision and Control: The Meaning of Opera-
tional Research and Management Cybernetics. New
York: John Wiley and Sons, 1978.

pr . Designing Freedom. London: John Wiley and
Sons, 1974.

8. - Platform for Change. New York: John Wiley

and Sons, 1975.

9. Coyle, R. G. Management System Dynamics. New York:
John Wiley and Sons, 1977.

10. Davis, Ruth M. "Reducing Software Management Risks,"
Defense Systems Management Review, Vol. 1, No. 6.
Washington: Government Printing Office, 1978.

1l1. Electronic Systems Division, Air Force Systems Command.
A Review of Software Cost Estimation Methods.
S—=— St T° DO TwaIt ~OST Sstimation Methods

ESD-TR-76-271. Washington: Government Printing
Office, August 1976.

114

12,

235

14.

5.

16.

17.

18.

19,

20.

21,

22,

. Software Acquisition Management Guidebook:
Cost Estimation and Measurement. ESD-TR-78-140.
Washington: Government Printing Office, March 1978.

. Software Acquisition Management Guidebook:
Software Maintenance. ESD-TR-77-327. Washington:
Government Printing Office, October 1977.

Friedman, Jehosua, Philip Greenberg, and Alan Hoffberg.
Fortran IV. New York: John Wiley and Sons, Inc.,
1975.

Jarrell, Lieutenant Colonel Thomas H., USAF. Software
Project Manager, ASD/YYM, Wright-Patterson AFB OH.
Personal interviews conducted intermittently from
1 September 1978 to 10 August 1979.

Johnson, Richard A., Fremont E, Kast, and James F.
Rosenzweig. The Theory and Management of Systems.
New York: McGraw-Hill Book Company, 1973.

Mangold, Eldon R. "Software Visibility and Management,"
Proceedings, TRW Symposium on Reliable, Cost-
Effective, Security Software, March 1974, p. 13.

Marciniak, Lieutenant Colonel John J., USAF. Director,
Computer Resource Development Policy and Planning,
HQ AFSC, DSC/Development Plans, Andrews AFB MD.
Telephone interview. 16 January 1979.

. "Software Acquisition Within Air Force Sys-
tems Command--A Management Approach," Defense
Systems Management Review, Vol. 1, No. 6, Washing-
ton: Government Printing Office, 1978, pp. 32-39.

McChesney, Lieutenant Colonel Jack L., USAF. Assistant
Professor of Logistics Management, AFIT/SL, Wright-
Patterson AFB OH. AFIT Course FM 5.23, "Contracting
and Acquisition Management," Class 79B. Lectures.

3 October 1978 through 15 December 1978.

Office of Management and Budget. A Discussion of the
Application of OMB Circular No. A-109. Washington:
Government Printing Office, 1975.

Oklahoma City Air Logistics Center. Embedded Computer
System Integrated Support Plan. Volume I: Executive
Summary. Tinker AFB OK, January 1979.

115

P et

23,

24.

25,

26.

27

28.

29.

30.

31.

32.

33.

34.

Poe, General Bryce, II, USAF, Commander, Air Force
Logistics Command. Address to the Army Logistics
Executive Development Course students, Fort Lee,
Virginia, 3 April 1979.

Pritsker, A. Alan B. Modeling and Analysis Using
Q-GERT Networks. New York: John Wiley and Sons,
1977.

Putnam, Lawrence H., and Ray W. Wolverton. Quantita-
tive Management: Software Cost Estimating. New
York: Institute of Electrical and Electronics
Engineers, Inc., 1977.

Riley, Major James M., USAF. Chief, Embedded Com-
puter/Software Group, AFALD, Wright-Patterson AFB
OH. Personal interviews conducted intermittently
from 16 January 1979 to 15 August 1979.

Rome Air Development Center. Software Cost Estimation
Study. Volume II: Guidelines for Improved Software

Cost Estimation. RADC-TR-77-220. Washington:
Government Printing Office, August 1977.

. Software Data Collection Study. Volume II:
Data Requirements for Productivity and Reliability
Studies. RADC-TR-76-329. Washington: Government
Printing Office, December 1976.

Schoderbek, Peter P., Asterios G. Kefalas, and Charles
G. Schoderbek. Management Systems, Conceptual
Considerations. Dallas: Business Publications,
Inc., 1975.

"Software Improvement Plan Pushed," Aviation Week,
April 5, 1976, p. 43.

Thomas, Lewis. The Medusa and the Snail. New York:
The Viking Press, 1979.

U.S. Department of Defense. Acquisition and Support
Procedures for Computer Resources in Systems.
AFR 800-14, Vol. II. Washington: Government
Printing Office, 1975.

Annual Report Fiscal Year 1979. Washing-
ton: Government Printing Office, 1978.

. Management of Computer Resources in Systems.

AFR 800-14, Vol. I. Washington: Government Print-

ing Office, 1975.

116

—

i et

B. RELATED SOURCES

Ackoff, Russell L. "Towards a System of Systems Concepts,"
in Systems Analysis Technigues, Robert W. Knapp and
J. Daniel Couger, eds. New York: John Wiley and Sons,
1974.

Aeronautical Systems Division, Air Force Systems Command.
Management Guide to Avionics Software Acquisition.
Volume III: Summary of Software Related Standards and
Regulations. ASD-TR-76-11, Volume III. Washington:
Government Printing Office, June 1976.

Beer, Stafford. Cybernetics and Management. 24 ed.
London: The English University Press, Ltd., 1971.

. "The Zaheer Lecture: Cybernetics of National
Development: Evolved from Work in Chile," as presented
to the Zaheer Science Foundation, New Delhi, on
5 December 1974.

Computer Systems Command, United States Army. Software
Phenomenology: Working Papers of the Software Life
Cycle Management Workshop. Fort Belvoir, Virginia,
August 1977.

Electronic Systems Division, Air Force Systems Command.
An Air Force Guide to the Computer Program Development
Specification. ESD-TR-78-139. Washington: Government
Printing Office, November 1977.

. Cost Reporting Elements and Activity Cost Trade-
offs for Defense System Software (Executive Summary) .
ESD-TR-77-262, Volume II. Washington: Government Print-
ing Office, May 1977.

. Cost Reporting Elements and Activity Cost Trade-
offs for Defense System Software (Study Results).
ESD-TR-77-262, Volume I. Washington: Government Print-
ing Office, May 1977.

. Life Cycle Cost/Design-to-Cost Guidelines,
ESD-TR-75-77. Washington: Government Printing Office,
{ June 1975.

L3 7

-

. Software Acquisition Management Guidebook: Life

Cycle Events. ESD-TR-77-22. Washington: Government
Printing Office, February 1977.

. Software Acquisition Management Guidebook: Series

Overview. ESD-TR-78-141. Washington: Government Print-
ing Office, March 1978.

Electronics Command, United States Army. Life Cycle Cost
Model. ECOM-4338. Fort Monmouth, New Jersey, July
1975S.

Forrester, Jay W. Industrial Dynamics. Cambridge MASS:
The MIT Press, 1977.

Rome Air Development Center. Software Data Collection
Study: Summary and Conclusions. RADC-TR-76-329, Volume
I. Washington: Government Printing Office, December
1976.

Watson, Jerry Keith. “Acquisition of Embedded Computer
Software: A Descriptive Model." Unpublished master's
thesis, University of Missouri-Rolla, 1977.

Wigle, Captain Gary B., USAF. "Spare Memory and Timing
Parameters in Avionics Computer System Requirements."
Unpublished master's thesis. AFIT/GSM/SM/77D-30,
AFIT/SL, Wright-Patterson AFB OH, December 1977.
ADA056521.

Wooldridge, Susan. Softward Selection. Philadelphia:
Auerbach Publishers, Inc., 1973.

118

—

