
AD__________
FINAL TECHNICAL REPORT .4 7 ,A c
GIT-ICS-79/09
For Period Covering 25 November 1976 -30 June 1979

PORTABILITY OF LARGE COBOL PROGRA~

THE COBOL PROGRAMMERS WORKBENCH

Philip H. Enulow, Jr.G

P. 0. BOX 12211
RESERCHTRIANGLE PARK, N. C. 27709

Grant No. DAAG29-77--G-0045

GIT Project No. G336-618

GIRGIA INSTITUTE OF TECHNOLOGYV
SemL OF INFORMATION AND CO"MPULTRR CI

ATLANOTAs GEORGIA 80383

0 4

~Q F7

PORTABILITY OF LARGE COBOL PROGRAMS -- !

THE COBOL PROGRAMMER'S WORKBENCH

FINAL TECHNICAL REPORT

GIT-ICS-79/09

25 November 1976 - 30 June 1979

PhiLip H. EnLow, Jr.

September* 1979

U. So ARMY RESEARCH OFFICE

Grant Number OAAG29-77-G-005
ARO Project Number P-14752-A-EL

GIT Project Number G36-618

School of Information and Computer Science

Georgia Institute of TechnoLogy
Attanta, Georgia 30332

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED*

J~I~ j

i ,
I;

THE VIEs, OPINIONS* AND/OR FINDINGS CONTAINED IN THIS REPORT
ARE THOSE OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION9 POLICY, OR
DECISIO'li UNLESS SO DESIGNATED BY OTHER DOCUMENTATION,

' eorcia Irwtit'ut" of Technolouy COBOL dorknench

- -

une ~I %i ri t
%9CUMIT1 CLAI#ICATIO" OF T649% PAOCE (111e. Data k,.d...0

1EA lKSTRUCTIO4S
REPORT DOCUENTATION PAGE 1 EOR liE OacMPLETMG FORM

PrtablityL~ oftag OO rgas h COBOLJ Finul ehia keor

Programmer's Workbench , /

________GIT-ICS-79,/0,9

PhlpIf./iKnslow, ir/ /1) AAC29-77-G-0045(

0 PERPOMitiO OM6A~iEZAYIO&* MAheC AND LOOII 1 PROGRAM ELI!MCN? PMOJfCT. TASK

School of Information and Comsputer ScienceARACOKUWTWJKN
Georgia Instit* of Te;c7,.IAE ty

VI. f Rty -setroh '4r1sec 197

Sne an Item 11UI-aaife

Approvedf-' putli-- relense; distributi-n unlimrited,

17 01%tRIU 1104 $osT (eElt" W. fp's obee,.,w tw#ee4 a.. ptf 10. If8a wf hoo.s to "

N/A4

Th! j-j Picnn, t.i.: -r rinling 'ti~~ in this repcr' arc t.hose of' the
ru . n ~ 2 . c-%nnt rued as rt:n Orfficitl Departmnent of the IArT

~ t '.* pIi '. r f ~i ~es r Wirnatcel by o~Iher documentition.

It E V~ cO D ... l. -0..* Cf # .t.0 *00eee W-d Jd..Coft moA4th sbf

COBOL Software Tools
Mannagent of Programming
Portablty ofcoputer programmers

qThe COBOL Prograsmer's Workbench is a fully integrated collection of automated
software tools designed to substantially aid in the design, implementation,
test, and maintenance of COBOL data processing systems, especially those that
must run on a variety of target host operating environments. The Workbench
also assists in the preparation and maintenance of all supporting dceumentation.
One of the most important capabilities of the Workbench is thle automatic
preparation of a set of equivalent but compiler-unique versions of a baveline
program that has been written in Workbench COBOL

DO~/' 143 1K108O$OV61I '(SLtI
- ~ ~ ~ ~ ~ ~ ~ cas f - -~----~-~- . -

-The research en
- -: ., here included un investigation of the

problems of converting a baseline program into compiler-unique versions,
ain initial study of the use of reuseable modules in-line COBOL code,
a limited feasibility demonstration of these capabilities, and a pre-
liminary study for tile design of COBOL.wbc.

I:

4

Il

'C J

,, . a q e i i i
'>1

The COBOL Programmer's Workbench is a fully ntegrdteo col-

Lection of autoratec software tools desiqned to substantial-

Ly aid in the design, i pLem.entation, test, an(m i ntenanc

of COBOL data processino systems, esoeciaLLy those that frust

run on A viriety of target host operdting environment . The

Workbench also assists in the preparation and maintenince of

all suoDOrting documentation. One of the .ost importdnt

caoabiLitis of the dorkbench is the hitomatic preparation

of a set of eouivatent *ut conitler-uniaje versions of o

bsetine program that has been written in Workbench COBOL

(COBOL • .bc).

I' The research effort reported on here incLuced an inveitiga-

tion of the problems of converting a baseLine proqran into

conDiler-uniQue versions an init iaL study of the use of

reuable moduLes to produce in-line COBOL code, a Liutitee

feasibititt demonstration of these capabilities, trd a

pretliminary stuly for the des iqn of COROL.wc.
A ccc,c Ior F o r

"i C

0 r

']: g , ',;t ¢..!on

[~ ~ ~' 1-t . 43:a

Georgia Institute of Technology COBOL Workbench

Paqe V

.1 SCOPE OF THIS PROJECT......................................1
*1 Goaitso....o...o....o..o..o......o....o..o.o.o..oo........2
.2 ACCOMDLishwcntsoooo.o.......o.ooo......oo................2

.3 Organization of this Repurt..............................3
92 MOTIVATIONS FOR THE COBOL WORKBENCH........................4

*I OPERATIN~G ENVIRONM~ENT OF INTCREST..........................b
.1 Multiple Execution Environrments.oo......................6
o2 ProtLems of Standard COBOLo..............................R
*3 Problems in Transoorting Large COBOL Prgaso*0900

Sect ion 2. CAPAOILITIESo.......oo...o...o......................1

92 PROGRAM PREPARA~TIooJ.,...................................5
.1 Overview of Program Preparation.........................1B

o1 Special COBOL Editor..................................18
.2 Standards Enforcer....................................18

o1 Reusable ModuLes....................................2O
o2 Proora' Development Sketetonsoo.....................22

4 e3 TransportabLe fl~setine Proqrams.........................23

.1 Ex6,ansion U t i tiz intq the GeneraL Li1hrary**eo.........31
.2 Fxvansian Utitizinq tie Application Libraryooo&*ooo..31
o3 Fsoansion from the Project Library..................e32
o4 rxpansion frcm the Personal Library..................32
.5 rxoansion from the Test Library.o.o6................33

K. PROGRAm TEST ING.o.....o...........o.o...................38
01 Goals for Testino Surport...............................39

0 2 Test Harness..',O
.3 Test Control Systemo...o.o.oo.o.....o.ooo.o....o......'ooo4
o4 Test Daita C-eneration....................................A1
o5 Automatic Verification System...........................43T

oPROGRAM MA!?C.JTCNPC~oooooeo.,...............................44
el 'aturc of *'Maintenance Activities........................'.*
.2 Main~tenance Support.....................................'45

o5 DOCUMENTAT IOn PREPARATIOo................................46
*I Overview of the Documentation Sub-system,,*o***@*oeoo9,,**46
q,2 On-Line Document HandLinqoo..........a..................48
.1 Preparing Documents...................................48

.2 Upoating Oocuments....................................g9

Georgia Institute of Technology COBOL Workbenlch

-- ~-- -~ - - ~-A- -

Page Vi

.1 overview of Oocutent Coirtoooooooooooove5
o2 Audit Trail. of Changes.o.ooe..ooo.......................52
.3 Ab1Li to Maintain DillLerert Reteases/Versionsooooo...e52
o4 Liflkiio of Com!ments on Documecnts......................e.53

.7 DOCUMENT PRODUCT!OU.. see...... e Se...... ceeec &**o~5

.2 rnacumettion rormi.t Standaruseeeeee~oe..eeeeeeoe.. 56

Sect ion 3. FUNCTIONAL COY(PONCENTSooe...ee..e..oee...e..eoee..57

o1 IOVrRVIEW OF WORKB3ENCH COMPONENTS AND0 ORGANIZAT ION.........57

.1 Workbench COB3OL -- COl3OLoubcoo...eceoeoe..eoeeeoeeeeeb
9

.2 C09OLenetmo....ceee......ese..ee....ee.....eooe.... 60
OA COBOL 4creen Editorooee~oo...eeeee....eeseoe.....ee.6 0

.4 Stand~trois fnforcereesosooeeeseesseee..eesee....e...s*61
.2 "~rooiae Processina.ee...oeos..s....ece...eeeeeooossee

6 l

.1 LiI-rary Supporteeeee..seeeo.,eeeooseseeoeoee...eoseeoeeI
2 Prc graa Processore sac. see.. ssoee..c. ... seee.. e@se e6

3

.4 Z)OCUI~SNTATION PREPARATION ee.....e......ee*ee...e65
.3 Docueent or's Env irontpente. 65

*I TooLs and LibraricSesooeoeoeeeoeoeeeeoeoeeeoeeoe#e.. 6 6

.2 D.ncu.'ertat ion Foro~t Standards* oeeeeeeeeeso ee*9 e.e e 6 6

o.) DO'CUMECNT COJTROLooeseeeeeeee..eesoeeoeee*eeeeeeeeeecsoeeees7l

* .1 Libraric~oseoooeoc...esoo.eeeeeeeeoeeooe..eveeeoe..l 3

.1 GeneraL Library-esecesoo&ee.eoseeseoee*sseeeeceeee*7 3

.2 Aopkication LiL'raries..eooeeesseeee...eeeeoose,...ee6

.2 DroiramminQ SkeLtorsoo..eoooeeeee...ees~c..e...e. 7 7 7
.3 Prolect Liorariesoeoeo~eoe...oe...,e..ee...eeeos.....5

7 7

41 'ieuisable moe1uLCeso e..sceooe.c..eeoeeoeeeee~eeoe ..

.2 Test tarne~sse *555C5 gosa. see.. 5e seeogc..... .. 78

.~ Psetne rograeeose..ee...ee...eeoseee...ooge*7?

o4 ReLease Lioraryoeeooesoeceeeceeesac.ee~ceee..esee.7 9

o Pcrsonal. Librariesefrseoceeee..ceeeseo~oeeooecee...eos. 9

.6 Trst Libraryeeo * * s e * a * 0V0 0 & 0 0..6 s 0c 00ce....BO8

.1 Como~iter-Unlaue Macro' Libtrsriesoo~e...cseeeeeaaoosooeO
*2 Control, of Source~ Cod....se.....oeeee..cecsseowo..ese 8@l

o2 Fecaturcsooosoo..ecesoeoeoe...e~seoe.s.eoeesoeceoe
8 2

3 Ua~et erio o~~flta eea~..see.eese~oooeeeoeseo.ee*85

.Working Documrnts. .. .soos...s. e. eeeee ~oesesce cc. eec

11ngmn 5ocumentsa~eeee..e.,esoeos...ec~es......ceOe
6

,l Oriair'at Reaulrerentsgoe.eeeooe..e.e...sseeeooe.eee86

Georgia Institute of TechnoLogy~ COBOL Workbenlch

WINq~,co4

f Pane Vii

* 2 Current Peguirements..................................86

.5 Maintaining Comments on Documents...........,.........67
t.6 Working Documenti.....................................88

.7 Project Status and Cont rot ooooeoo.0 0 00 . 0 0 & 0Ce0

.1 Program Product ion......................................89
o 2 Documentation Production................................89

0. Printing TooLssoo......................................1

Section 4o UTILIZATIONo.o......................................q3

.2 PROGRAM PREPARATION.......................................#94
.1 Producing a COBOL Modute or Proardtm.....................94
e2 Preonrina 6 Peusobte Modtuteo............................94
*3 Producing a BaseLine Prograa...........,................o96
.~Preparing the Comoiter-Unioue Macro Librdrieso..........97

.5 Producing a idreadboard Proqrari..........................99
kll.6 vaintainirng the Basetine Proaram........................99

.7 vaintainino RELEASES and VERSIONS......................100
* 8 Summaryo......o......o.................o....0*.........luo

0. DOCUMENTATION PREPARATJON................................104
.1 Drepare OrioinaL Ooctuments..........................,..10*
.2 modifying Oocuments....................................104
o3 Annotating Docusents......,............................105
0 4 Producing Specific Version,............................105

.1 Input to the Testingj Process.........................107
92 Output from the Testing Process......................1Q8

.2 Spec ific Test CaoabitIities..............,..............109

Sec tion 5. IM1PLEMENTATIOa..,,.o..............................113

.GOALS OF DEMONSTRATIONJ VOKECoooo*ooooooo*1

* 2 SYSTEM ENVIRO-1yENT ANDQ TOOLS AVAILADLE*..................115

.1 0 Cmue

.3 Instruction Set Hardware Svpport...................1l7
o4 Process rxchange Fac. ity...1 1

.6 Proqras Environment................................119I
.2 Standard SysteT Softvare.......................... ...119

9 1 The PRI'40S Ooeratinq System..................,.....119

.3 The PRIMOS Fite System.............................123
.2 The Georgia Tech Software Tools Subsystem9..........,..124

.2 Major Components and Features........................125
e3 ORGANIZATTONJ OF THE DEMONSTRATION UORK8ENCH..1 0..........126
.4 OPERATION OF THE DEMONSTRATION WORKRENCH.................128

Georgia Institute ot Technology COBOL Workbench

Pag viii

s5 MAJOR PfiGOLEMiS ENCOUNTEREO. *.... 129

Sect ion 6.SUIAY.....................13

92 PROJECT L!RRARYo...............o.........................1A5
*3 %ORKUEN'C COBOL PROGRAM**..................................7

el Prirne 4uG Version......................................1A9
.1 Prlime 400 Program............. 000000 oooooe .*.*.@ ***149

.2 CYBEP Otu.... Oe.s.. 5

2; .1CAPAOILITIES...155

.1 Adding Ndew 0eLteiso***9e*.**.o.o**o*.o..............,....56

.2 1pec tat Oto.....................5
.The Storage of DtLtas..................................158

.2 The M o y......................5

.5 1St~npini an Identification on a ?ModuLe.................16Q

oe Soeciat Characters and Ouotinco.........................63

.7 S.1ources and Destinatlons of ~t............6

.10 Function CaLLsao.o..t..oo*.**..oe.....o....e.........ol70

*12 Conctusion..................................,.........172

.2 SUPMARY OF SYUTAX AND 3EMAITICS.........................o1721.

.2

Georgia Institute of TechnoLogy COBOL Workbench

Page ix

V. .8

.3 APPLICATIO!J NOTES..1BA
61 Basic Fntos....................8
.2 Shell Control VariabLes................................189

.1 ED...o.o..o.o........ o..o.o.o.3 a o o4 o.,...............191 0
A.1 Starting3 an Editing Session............................191

9 2 Lntering Text - the Append Command..os.................191.
.3 Writing text on a file - the write coaund.............192
04 Finishing up *the Quit command........................193
.5 Reading files -the Enter command..,...................193
*6 Errors - the Query commando............................195
.7 Printing text - the Print cormand......................195
.8 Pore Complicated Line Numbers..........................196

.10 Text P trs.....................
ell F'aking Substitution% - the Substitute comtiand#........203
.12 Line Changes and !nsertions...........................205

o14 Stobak Comm~ndso,..oeoo.eogo..ooo**otao.....,.....e..o20b
.15 Mark inn Lines......................................,%..207
.16 Undoini Things -- the Undo Cotoand....................209
* 7 S~ay....... ~ **ee....1

.2 Eiting - Fillng ond ?oargon Adjustmcet...............2l6

3 Suontrol ChSracing o ritn and Pageo Conrol...............22

Geogi Istiut Coman Irterrttooooooehoog OBOorkbench22

Appendix~ fie---- - ----*oooooooooootoooo~o -oo*

Page x

*4 MARGINS AND !h'OENTATIONu................................,229

.2 Top and Liottom larins.................................230

.3 Left and Right Maroirns................................23O

.6 Summary - Pargins arid Indentation...........*........232
.5 HErAO1VIGS9 FOOTINGS AND TITLES............................232

.1 Three Part TitLes......................................232
o2 Page Headings and Footingsoooo.........................234
.3 Summary - tleidinass Footers anO TitLrs..,.............234

.6 1ADULATIO...o234T

.2 SUM?~dry - TabuLat ion...................................236
o7 "ISCELLANEOUS COMMANOS...................................236
.1 Cotcnenso......o..........o..........oo....oo..........236
o2 SoLdfac ing and UnderLining...... 237
o3 Cant rot Characterso.o..................................238

.6 Su!-mary - MisceLLaneous Co~tnsooooooe*oo~*4

.1 Input File ControL.....................................240

.Funct ions and Variatules................................241
o3 Su-9cary - Input Processinp..................,..........242

.2 4acro Invocationoo.o.....oo..o.........................244

.3 Summory - Ihrsoeoooooooooooooooooo4
.10 APPLICATIl';S NOTESo*...................................2i5

*I Paracraohs...*6

o2 Sub-headinps...2,6 1
*6 UoLifacinao..248

oR Tobte Construction....................,................249
.11 SUNIM.RY Or~ C OMMANOS SORTED ALPHiABETICALLY...............2'50
o12 SwiMM4RY OF CO04ANCS GROUPED SY FUICTIONoo................253

.1 FiLLing and uaruin tduteto~obooooo.oo*5
*2 Snacing aind i'Age Controt...............................254
05 varilns arid 1ndentation............................*...255
e .4 feadinqst rooting& and Tittcs...........,..............?55

.6 viscelLAncous Cureands.................................256

.7 Input Proc- ssina.......................................256
.8 acrose...........................,.................... 57

01 THE FORYAT OF A MIACRO DEFINITIONi........,................258

Georcia Institute of Technology COBOL Workbench

Page xi

Afltendiz 8 THE PRIMOS FILE SYSTEM 2

IlODNR
o2U&G FCOO

[.2ndi COPA1*N COBOL FCATUoeCSeo.oo........e..............,..265

Georqia Institute of Technoltogy COBOL Workbench

Page xii

LM 2L LL&GL&LI

10-1 Relationships Retween Program RELEASES*
VERSIONS% and POOIFICA! IOU4S..................7

2,591-1 Preparation and Mooific,,tion of

Support ing Douettooo9oo~~ooo4

204.1-1 Document Control of all Doctrnentationesee.....Bi

207*2-1 Production of Gocuentation s#,.....55

I,- major Funct tonal Com'ponent% of the

30401-1 Orcoaration of Supporting foCumentationoqq**ee67

Preo4irat on and Control of Program-
ond Oocuientation...........................7?

3*4- ocuirentat ion 0 outir...........j

4*201-1 Production of n Program in C~lLk******9

4*2*2-1 Production of lReushbLe ModuLes and
4: ~~~~~~~Tcir touettin............9

400- Production of Reusabke Kodules in COBOLek.....96

40204-1 Preparation of CompiLer-Ufligue Macrossseoeeve*97

40208-1 Utlitaion of the COBOL Programmer's

404-1Testing of a COBOLowbe 4odu~c................1O7

66362-1 Senuence of Four Deltas Indicating Four
Revision% of o

80302*1-1 The Resultt of Adding a Revision
to Release1booo*,eoeo.eeeee 5

~ Uzanote Body Part ol the Dett File

~o a

Georgia Instituste of Technotogy C0I30L Workbench

Page Xiii

2.1-1 CaPabitities of the COBOL Programmer#% Workbench,,14

3*5.1-1 Workbench Libraries and Their Contcnts******ee*...7'

3.5.1-2 Workbench Libraries and Their Use%*****o..........75 I

44

1

r eorala Institute of TechnoLogy COBOL Woekbehch

-- 44 -~ -V
Ww *OA

Section 1 INTRODUCTION Page I

SECTION 1

INTRODUCTION

1.1 SCOPE 2E 1=l PROJECT

This project was Initiated orlinaLLy as a broad-based

examination of the problems and difficuLties encountered in

transporting very Large COBOL proqrasminq systems and the

deveLopeent of toots that would assist In such activities.

As the project oroaressed, it became apparent that there

. were a number of other issues that should be addressed* such

as the maintenance of transportable proqrams as weLL as the

quick development of breadboard pronrams to examine specific

concepts* These concepts have been qntegrated into the

original project and this report coverts the most important

output of this oroject, the COBOL Programacrts Workbench

which is the coLLection at tools -tnd other supportino

software for the oesigqn inpLementationt and maintenance of

baseLine proorams that can he easily transporteo to a wide

variety of target operatino environments as welt as for the

suoport of the quick development of breadboard programs.

oR

Georgia Institute of TechnoLogy COBOL Workbench

Section I INTROOUCTION Page 2

I.1*1

The specific goats established for the final portion of this

Droject were:

1) '*oaamine the problems involved in establishing

A baseline program that could be easily

transported to a wide variety of target

oner.itlnq environrentse

2) lstattish techniques for the design and im-

aLeeentation of Such baseline programs

utilizing the maximum assistance possibLe

from automated software orograiming aids.

3) tveLop a elan for the maintenance of the

system documentation required for support of

the vrogras as well as user documents,

4) rvaalnc the feasabtiLity of integratinq all of

these tools into a single programmer su~oort

environmento

44

Th e oroject has been successful in accomplishing the

soecific goals set out at the beoinningA

1) the concept of being able to develop a single

baseline oronrax thtit can automatically be

transoorted to various operating target en-

vironsents has oen successfully

demonstrated*

2) 1he preliminary characteristics for the COBOL

Georq4a Institute of Technology COBOL Workbench

r

Section 1 INTRODUCTION Page

orogrammerts environment have been

established*

3) ALL of the software aids have been integrated

into r singLe operating environment known as

the COBOL Proorammer's Workbench.

ll* LLt MoUUrl

FoLLowing this introductory sections which estabLishes the

environment appLying to the need ari vaLue of transportable

baseline programs, Section 2 presents an overview of the

facilities and capabilities that would be provided by a cor-

pLete COBOL Proqrammer's Workbench. Section 3 describes tte

functional components that constitute the Worktench. Sec-

tion 4 ciscusses how the Workbench would be utiLized to ac-

coroLish the various task% required durino the design, im-

pLementation. and maintenance of Large programs and systems.

Section S presents some details on the implementation of the

deionstration version of the COBOL Programmer's Workbench

that was impLemented at the Georgia Institute of Technology.

FoLLowing a summary section* the apoenoices provide more

detail on toocs such as Workbench COBOL (the transportable

subset of the Language), technioues for document control, a

descriotion of the najor components of the Georgia Tech

Software TooLs Subsystem which was utilized extensiveLy in

the implementation of the Workbenchq a oLossarys and, per-

hao% of most interests An annotated exomplc of the operation

of the Oemonstration Workbench.

Georqia Institute of Technology COBOL Workbench

Section I INTRODUCUON Page $

There ;re a number of objectives modivatinq the design and

imptementdtion of a faciLity such as the COBOL Programmer's

aorknench. A few of these are outLined beLow:

1) 4educe cost and increase prodvctivity,

2) Avoid rearogramming.

1) Suoport the muLtipLe use of program

douLes.

b) Reduce the ProbLems of system

nditnt ennce,

C) Support ,U.gX transportation of a i r..

nrogras to a number of operating en-

vironsents without requiring reprogram-

3) 4aintain controL of the basetine prooram,

I) Code.

t) focumentation,

4) 'zuppurt the quick and Low-cost deveLopment of

oreadboard systems that wiLL aLLow the

examination of a syste" or program concept

without incurrinq the fuLL cost of compLete

devetooment,

Georaia institute of Technotogy COBOL Workbench

Section 1 INTRODUCTION Page 5

1.0 OPERAIN I.M 2 k

ALthough aLmost any Programminq environment wouLd benefit

from the ideas and facilities that are incorporated into the

COBOL Programmeres Workbench, tne research on the Workbench

was focused primarily op an environment having the foLLowing

characteristics*

1) A single organization is responsibLe for the

iesioe, impLementation, and maintenance of a

Large number of data processino systems.

2) The data processing systems are written in

COBOL.

3) Thr systems are quite Large, usuaLLy consist-

ino ol more than 100,000 COBOL statements ane

often such Larger.

4) The data Drocessino systems have a long

Lifetime - five to eiqht years - and they

tust be maintained by the preparing organiza-

tioh throughout their entire Lifetime.

5) The nersonneL in the maintenance, oroup of the

orogramming organization may work on more

than one system.

6) The individuals that deveLoo the system are

not necessarity avaitabte for for its

maintenanceg most often, they wiLL not be

avaiLabLe.

7) The data processing systems wilt be executed

on & variety of hardware configurations which]

Geornia Institute of Technology COBOL Workbench

A& W1 ramV

Section 1 INTRODUCTION Page 6

may not utitize COBOL systems identicaL to

that utiLized by the development agency.

8) The nesign cycle for a new system or a major

modificition to an existing system is ex-

treiely Lonl and costly.

9) The time pressures invoLved for the detivery

uf a new system usually preclude being able

to produce a trial design*

Finure 1.3-1 itLustrates the meanings of the terms used in

this reoort to describe the various proqrams existing in the

oDer~ting environment --- RELEASESf VERSIONS$ and

4 0 I IC a T Iau S.

1*31 MuLigak LiuMtIu Enviranual

An oxtreteiy important characteristic of the environeent

projected for the utilization of the COBOL Programmerts

JorIrench Is the reouirement that the COBOL data processinG

systrl% deveLooed be canable of being executec on a "wide'

vorietf of computer systems. The variety of execution en-

vironzents tay include totaLLy different systeos supplied by

different hardware manufacturers as well as variations in

the ooerating systems under which identical hardware systems

may be executinjo The different environments may also ex-

hibit Large variations in the ooerationaL Load placed on the

execution system since the total processing Loads may be

quite different.

Georqia Institute of Technology COBOL Vorkbench

-. ' ~/

Section 1 INTRODUCTION Page 9

knowledge, Information* and understandinn required to

transport a orogram exceeds even that required to maintain

thf orooram. (We at Georgia Tech did not consider our

transporting activity to be totaLly successfult howevert the

knowle.ge that we gained about the problems of transportin

programs was extremely vaLuabLe.)

There is no avoiding the fact that transportinq Laroe COBOL

proqrams from one operating environment to another is an ex-

tremeLy costly and ti.e consuming activity. There are two

approaches to this problem and both have applicability to

specific instances.

The first approach might be characterized as a Linear tech-

nioue. The progras is orioinaLly written on machine A to

run only on that syste6. Then* as the need arises* the

program is transported from machine A to machine Rt and,

then, Later from machine a to machine C and so on. If there

is only a single operating environment required at any one

time and If the machine conversions do not occur too

frequentlye then the Linear approach to transportina the

oroqrams is probably the best and cheapest since the only

problems that must be addressed are those arising directly

fros the incomDatabiLity of the mx machines involved.

The other approach to transporting oroqrams can be charac-

tepized as the *star technique*' The proqram is originally

written In a Language applicable to the developent machine.

Georgia Institute of Technology COBOL Workbench

Section 1 INTRODUCTION Page 10

This program then becomes the baseline proqram which is

controlled to insure that the program continues to meet the

operating requirements of the system. In this environment,

whenever a new tarqet operating environment is required* the

nrocgra is transported from the central devetoptent machine

directly to the tarqet environment. It should be recoonized

tht in this environment, the initial cost of deveLooing as

oroqram on the certral machine that can be transported to a

itoe variety of target overatinci environments without any

reicsion Is higher than the cost for oeveloping a program on

a single machine that wiLl then Later be transported to only

another single machine.

L ii

I

I: .,# G..e.o', . .ra,.;: ,,: n titute .of Techrn ,oy CO..... or. kbench...... ,..

Section 2 CAPABILITIES Page 11

SECTION 2

CAPABILITIES OF THE COBOL PROGRAMMER#$ WORKBENCH

2.1 OVERV lSIEW

The primary goaL of the COBOL Programmer's Workbench is to

assist and support the development of COBOL programs in an

refficient* cost effective, and speedy manner. Yhis qoaL is

to be accoptLished by the development of an integrateo en-

vironovnt of powerfut software toots easily accessibte and

usable by tho prograamer. The general objective is to moke

maimum use of the data processing capabilities of the Work-

oench in order to increase the productivity of the COBOL

programmer.

The COBOL 4orkbench provides a wide variety of capabiLities

to the systems analyst and proqramming staff. As can be

seen from the List of these capabilities qiven in Table 2.1-

1, it is envisioned that autontion support be provided for

aLL ohases of program developmento %aintenance, and

documentation.

The central concept of the programmin subsystem is the

Preparation of a baseline program that can be easily and ac-

curately transported to a Large variety of target operating

environments. The basetine program is written ana

Georiia Institute of Technoloqy CO8OL Workbench

zk.~ 90A9

Section 2 CAPABILITIES Page 12

maintained in fWorkbench* COBOL and is processed by one of

the cosponents of the Vorkbench to produce a "compiter-

unicue version" of the naseLine program. The Workbench aLso

supoorts the testing of the~ basetine program. It will also

provide som~e assistance in the testing of compiLer-unioue

versions of the ".aseLine orogram; however, it is otvious

th.it the ftnal. test ing of these~ program% must ne done on the

target environment. B3oth the baseline REASES of the

orograe as well as its comoiter-unique VERS!OPCS siLL he

maintained on the Workbench. The principal probtem here is

not so much one of orogramming in COBOL as it is a probles

of document maintenance and controL. Therefore, the prooram

iaintenance function is at!%ost totally supported by the

ca)nabititirs of the docunentation subsystems.

The documentation subsystem is designed to handle both

program text and suooorting documentation* The preparation

o f oronrams is supoorted by the programmino subsystem while

tho preparation of supporting documentation Is supported by

the documentation sunsystem. Howevero both of these types

of documents fall under a common document controL procedure.

In a situation where proorams are under continual,

ealntenance and ftodification, several versions of both the r

code as oveLL as the support documentation must be

maintained. It is the function ol document control to

provide Droaranmerv and systems anaLysts with the abitity toJ

rec4LI any Specific versions of a program or its supporting

documentation that they wish to utilize. The documentation

Georgia Institute of Technology COBOL Workbench

Section 2 CAPABILITIES Page 13

sultsystem A~so orovides the capabilities needed for prooue-

lng final documentdtion in a format suitable for publication

anu distribution*

Another important capability of the Workbench is the obitity

to produce and utilize 1."lIjj COBOL moduLes. There are a

nuner of COBOL programming support systCm,3 in existence

thdt facilitate and support the preparation of COBOL

programs in modular form so that a program may be divided

among 4 team of orogrammerse Howeverv those systems support

the preparation of moduLes for utilization in a sinaLt

eemniLer-and-aomLlcation-gn&onnt COBOL prograw. In other
worast the final use ano the detailed specifications of each

module are dictated by the usific program under develop-

•ment. The goal of the Workbench is to qiVe orograq.Ners theKability to develoo modules that can be used in several dif-

ferent proorams. These mcduLes will have "standard" inter-

faces and wiLL be capabte of being parameterized internaLLy ,

to match the specific rr uirements of the COBOL proaram un-

der devetooment. The purpose of providino this cppaoiLity

is to faciLitate the rapid and Low-cost preparation of

prototype COBOL systems providing a specified capability anda

functionaLity without the expense and time reouired for the

design of a compLeteLy new COBOL system.

Georoa Institute of Technology COBOL Workbench

IA -

0'ection CAPABILITIES Page 14

TABLE 2.1-1

CAPABILITIES OF THE COBOL PROGRA""ERtS WORKBENCH

to Programming Subsystem
A* Program Preparation

I* Proorammerts Environment
a* Spvct! COBOL Screen Editor

be Standards Enforcement

c. Library Support
- Program Preparation SkeLetons

- Utilization of Reusable Modules
2. TransportabLe Baseline Program

a COBOL.wbc
3. Program Processing

a. Expansion
b. Library Support
c. CompiLer-Unique VERSIONS

B. Program Testing
1. Test =Harnesses"
2. Test-Data Generation
3. Test Libraries

C. Program Maintenance
I1. Incremental ChanC*es

2. Support of Nuttipte RELEASES/VERSIONS
Ito Documentation Subsystem

A. Document preparation
1. 0-1ginats

2. Updating
B. Document Control

1. Support MuttipLe RcLEASct/VERSIONS
2. Audit Trait of Changes
3. Linkage of Comments

C. Document Production
I* Programs
2. Supporting Documentation

Georola Institute of TechnoLogy COBOL Workbench

4.- -$:i*

Section 2 CAPABILITIES Paqe 15

2.2 P50GAA Pe$A1

Proqrae oreparation is the first major capability provided

by the Prograpm:ng Su:system: It consists primarily of the

capabilties to produ~e the Basetire Program, RELEASE Aria th~e

ComoiLer-UniQut VERSIt)NS of that RELEASE. Thr Programmin9

Subsyste% Also Provides the capability for ouickty and

easily implementing a "breadboard design" of i progrdmmina

systen utilizing reusable modules and other faciLities ol

the Workbench.

2.2.1 QutIa& i Poaua Pruia Atil

One oa the goats of the Workbench is to provide a program-

minq environment which wiLl itslIt the programmer throughout

the entire developmt~nt% impLementationt ooerationt and

maintenance Proceetse. This imLties the deveLopment of a

number of software toots; another qoaL is the concurrent

devetooment of croorams for different taraet machines* The

aonroach taken in the Workbench It to write in an

environment-indepenoent Larguaoes Workbench COBOL

(CBOLowbc), and to convert that Language to a particular

COBOL dialect only when preobrinq the delivery of the com-

oLete program to the instaLlation (tee Figure 2o2.1-1). A

third ooeL is to Provide the capability to make use of

reusable code modules whenever a 4ask or function can be

identified that is freauentLy used.

j Georgia Institute of TechnoLogy CGBOL Workbench

Section 2 CAPABILITIES Page 16

FIGURE 2.21o1

PROGRAM PREPARATION

*.•.), Programmerts I
--> Environment

Programmer/ !
System AnaLyst I

. I I I t >

****)I Librarian I"•,>1 Library I
• I ... - -. . . .- I I <bI (i

* II

•> Breadboard Program ------- >1 I
* I(COSOLvbc,
••,>1 I CompitLer-Independent)

* I Program
> - Test Program -------------- >1 I

* Processor (COBOLowbco
* CompiLer-Independent)

> ---- > Baseine Program RELEASE ->I
• I(COBOLewb,
* ICompiLer-Independent)

• I
- _ _ _ _ -II

• II II
• Program I< -------------

I Processor 4C -.-.--.-- ..- ..- ..-.--....-....-..-..

Target Ma~htn* VEASIO%

(CompiLor-Uniqu*)

4 I 4

Text • Command
FLow R Ftow

I t " I
Georgia Institute of TechnoLogy COBOL Workbench

Section 2 CAPABILTIES Page 17

222 Proara m_ r's Eniemal

The programmer's environment may be described as the inter-

face between the human ano the machine. It consists of

those toots which are provided to assist directLy in the

task of preparing code. Depending on the particuLar systen,

the programmer say be faced with a *hostile" or a

*friendLy/Mospitabte" environment. A hostile environment

may compticate the programming task in many ways: primitive

fiLe system, restrictive naming conventions, obscure error

eessagest etc. A system may also wake programmino difficuLt

by Providing the programmer with only a few toots of timiteo

caoabi ites.

The Workbench contains a number of very powerfuL, yet easy

to. use software toots to simplify the programmer's task and

to permit d Pore efficient interface between the human and

thi machine* These tools include a special editor for

entering COBOL text, a standards enforcer to verify the

clericaL correctness of code before further orocessinao

IskeLeton proorams to aid in code preparation* test routines

to aid in the test process, and a weLL-structured fiMe

system to aLLow aLl of these to work together efficiently

and productively.

A

:Georqia Institute of Technology COBOL Workbench

Section 2 CAPABILITIES PaQe 8

2.2.2.1 Speciat C00L Editor

The purpose of the special editor is to assist the proqram-

mer in the entering* maintenance* and updating of files

containing COBOL code. It is designed to support the

interactive preparation of COBOL code utiLizinq A CRT

terminaL.

The soeclat editor should have the folLowinq cdpabilities:

1) vrovide the programaer the capability to

enter COBOL code easily.

2) Provide the capability to modify or extend

existinq code files.

I) rcqani e and %pla y the code entered In a

standard and easy to read foraat*

.) Irovide the ability to refer to code by tline

numbers at well as paraqraph name%*

5) Orovioe the ability to recall and easily

modify modules cf code such as file

lefinitions or a %eries of almost identical

repetitve catculations.

2.2.2.2 Standards Enforcer

Theh Purpose of the standards enforcer is to verify that the

orolrdnmer has adhered to the COBOL.wbc syntax, names, and

format standards.

Georola Institute of Technology COBOL Workbenth

Section 2 CAPABILITIES Page 19

The standards enforcer must check that the foLlowing

requirements are met:

1) Code is written in a machine- and compiler-

unique form. In the Workbench* this is ac-

comptishea by verifying that all statements

?are acceptable within COOLewhc syntax.

2) '%aminq conventions are followed correctly.

At the Least* it is postibLe to determine

that a variable used in several code segments

maintains the same data type throuqhout its

use.

3) 1 check is made for clerical errors* such as

the misspetltrig of reserved words or of

variable names. Foltowinq this* the code is

orocessed through a *pretty-orint" program to

guarantee clerical uniformity.

2.2.2.3 Library Support

There are a number of different "Libraries* utilized by the

workbenche and several of these collections of file& ray be

utilized by the same Workbench activity. A conpLete discus-

sio of the various Libraries and their components will be

oiven Later after more of their uses have been covered. As

far as supoorting the COBOL Programmer's Environment is

conternedt it should ,)e obvious that some of the file& that

shOuLd be available are

I) ULocks of code providing definitions of

Georgia Institute of Technotoqy COBOL Workt'ench

Section Z CAPABILITIES Page 20

characteristics applicable to a specific

program under development such as the Hile

eftinition stotements .

2) SLocks of code providing a f!. k f a . t

ti n.i2Q r.V. of a special or tailored version K
of a commonly encountered function such as

the File Definitions* an edit routine, o

reoetitive catculation, etc.

3) Larger *locks of code that are treated as

"open subroutines" and inserted in the

orogram under development as in-Line code.

4)i e tc.

These fit#s miht have been developed by a oroqrameer for

his own use and kept in his Private or Personal Librarys or

they i.iy have been developed for wider usage and placed in

the Ceneral Library or one applicable to a specific apptico-
tion area or project under development. Since similar files

may .xist in all of these various libraries, the order in

which they are searched it very imoortant. This topic is

also discussed oelow.

An eximote of the us- of reusable modules may he seen in the

very large class of problems in which a transaction file is

processed against a master file to produce a report. The

mainline processing may be performed by the following

Georgia Institute Gf Technology COBOL Workbench

Section 2 CAPABILITIES Page 21

7 1 ~OPEN INPUT MASTERt-FILE
TRANS-F ILE

OUTPUT REPOPlT-FILE

PERFORMI PROCESS-1tRANSACTIONS
UNTIL NO-MOFIE-TRANS

CLOSE MASTER-FILE
T RAN S-F ILEC
REPORT-FILE.

t~n RU)N.

Once this moduLe of codet is thorouahty tested, it can be

copied from the appropriate Library for use without

modification in simitar programs. Since this modute is

LogicaLLy Quite simpLe and reLativeLy short* it may appear

easier to write it agqain for each new progrem t,'a I,'- expend

the additionaL effort required to check out the code anc'

catato-I it in a Library. T~he ma~or aajvantaoe of considerina

this short proqras segment as a reusabte modsute is that

these nine lines of code can be inctuded in *ome Larger

modute by means of a simpte macro caLL. Thus many errors,

even simpte typooraphicaiL ones, are avoided.

Continuing the same exampte, other reusabLe nodutes may be

devetoped. The main-tine moduLe performs a paraoraoh

PROCESS-TRANSACTIONS which is invariant*

The todute

PROCESS-TRANSACTIONS.
MOVE ONO' TO VALID-TRANSACTION.
PERFORM GET-VAL90-TRANSACTION

UNTIL VALJID-TRANS
OR NO-MORE-TRANS.

IF VALID-TRANS
THEN PERFORM PREPARE-RESPOtME,

wiLL chLL the reusabLe moduLe GET-VALIO-TRAt4SACT ION and con-

Georgia Institute of TechnoLogy COBOL Workbench

Section 2 CAPABILITIES Page 22

ditionaLLy call the module which will actually process the

transaction The Paragraph PREPARE-RESPONSE will typicalLy

h he in the form of ii reusaule module since each applica-

tion progrim using this general model will hove different

reiuirements for the orocessing of a transaction.

The essential fedture of the two paraqraphs given in the

example above is that they apply to a Large class of ap-

oLication proqrams iind therefore may serve as a model for

the nevelopment of reusatle modules *or a commonly

encount'ren clOss of proolemse

As contrastea to reusable modules, which provice. the com-

olete code reouired to accomplish a specific task or

outomaticaLLy qenerate such code after suitaole parameters

are provided In the reference to the moduLe, a program

development skeleton ic primarily a 'rf L2£r and for
4y.

the development of a proqram which might vary quite

considerably fro- anything that has been developel

or-viousLy. A orooram deveLopment skeleton is much more

qenerolly anpLicable than a reusable moduLe An example of

a sketeton is the oartiaL description of the file definition

section of the program in which those characteristics which

Ihave been estabtished as Local standards for the programming

oroanization are already specified and the skeleton in-

dicate; where further inforeation should be provided by the

Droorammer utiLitznq it in the preparation of a specific

orocram, there can also be prooram development skeLetons

Georgia Institute of Technotog' CO~BOL Workbench

Section 2 CAPABILITIES Page 23

which handle much Larger tasks* There are even Instances of

skeletons being utilized for the development of complete

programs.

2o2.2.4 Use of Librarits

Oifferent types of modules dnd skeleton oroqrams arc

orovided on different Libraries to permit ease of reference

anJ to prevent improper access. The Libraries defined are

describe In section 2.2..1 and include Libraries for the

fotLowinq:

1) ,eneraL purpose moduLes.

2) PoduLes for a specific apotication area.

3))odules under development for A particular

project.

4) Programmer-devetooed modules for personal

use*

5) Test modules.

6) Compiler-unioue modules.

2.2.3 Tr~goutAWL aseLin ggrgmsa

The development and maintenance of a totpLete COBOL program

that can oe eisity trans$orted to a Large number of target

computer operating :-nvironments is nertainty one of the most

important products produced by the COBOL Prograemerts Vork-

bench. There is certainLy a Large monetary value that can

be associated with the other capabiLitics of the Vorkberich

such as the aoitity to quickLy develop prototype systems

SGeorgia Institute of Technotogy COOOL Workbench

rt.

Section 2 CAPABILITIES Page 24

utiLizing reusabLe Program moduLes and the machine as-

sistonce orovided in the development and production of sup-

Porting ocumentation. However, in the environments of

interest in this study (those that were detaiLed in section

1) the xajor economic payoff appears to be vested in the

aoitLity to produce a program that can be automaticatLy

transporteH to a variety of target computer operatino en-

vironments without extensive human intervention in the

transportation orecess. This transportdtion caoabiLity is

provided orimariLy through the utiLitzation of Workbench

COeOL or COIOOL.wbc as the proqramminq tanQuaQe.

The concept of Vorkbench COBOL is certainly one of the most

i.mnortant central ideas in the CO,5OL Programmer's Workbench.

The oojective of Workbench COBOL is to vrovile a Language

the5 crooranmer may t to prepare proqrams that can be

easily tr.nsoortea to a variety of target environment

systems. ' secondary objlrtive of Workbench COBOL is to

include facilities for the use of reusabLe COBOL moduLes and

other program productivity aids. There have been, since the

very beginning of COBOL, a number of demonstrations of the

abiLity to transport programs from one system to another.

This has been reinforced in recent years by the establish-

ment of nationaL standards for COBOL; however* it is a welt

recognized faet that it is etrem, y difficuLt f not im-

possibLet to execute any Out the most triviat COBOL crograes

on different system without making some changes to the

-Georia Institute of TechnoLogy CO ,OL Workbench

Geor94a

' - -

I

T-

Section 2 CAPABILITIES Page 25

code* Some differences are quite obviousv such as the

situation where statements required by one copitLer must be

absent in another or prepared in quite a different form,

e*g., the fite LabeL statement. Other probLems of

transportation are such more difficuLt to handLet such as

the effects of word sixe when the computationaL form for

variabLes is utiLized. It is e goaL of the design of i-ork-

33

i bench COBOL to overcome aLL of these dffficuLties.

The basic objectives in the design of the Workbench COBOL

Language vre as folLows:

1) COBOL~wbc shoutd be as cLose aS posSibLe to

standard COBOL in syntax and semantics. This

wiLL greatLy assist in the training of1*roqramers to utitize the Workbench,

!2) COBOL.wbr should be capable of unambiguous

transLation to a wide variety of compiter- A

i unioue target environrent diaLectze For thia

reason there wiL be features and statement

types incLuded in Workbench COBOL that appear

identical to those in the standard; however,

I It say be necessary that these statepents be

processed by the Workbench in order to

produce the exact form r-equireo for a

particuLar target diaLect.

3) COBOL.woc shouLd 'e "rich* enouqh for easy

use by programmers in the deveLopment of com-

oLex programs. It appears that there is no

Georgia Institute of TechnoLogy COBOL Workbench

All"

r Section 2 CAPABILITIES Page 26

reaL need to inctude III of standard COBOL in

COBOL.wbc. What is more desirable is to

insure that those features of COBOL that are

frequentLy used by programmers are avaiLabLe

in Workbench COBOL. The basis for the design

of COOLoWbc should be a thorough examination

of the olaLects of standard COBOL 1hat are

encountered on the target environments as

well as a study of the types of statements

that are actuaLLy utilized by COBOL orogram-

SArs. (InitiaL work in this area is I
documented in Appendix 9.)

The soLution to the "transportation problem" seems simpte.

If Drogrammers are restricted to imoLementing their programs

usinq onty the feature* and format of "standard COBOL,"

those proqroms shouLd compiLe and execute on laX rachine, I
UnfortunateLy, it is not that easy. Despitt the existence

of two CO~nL *Standards" (68 and 74), there Is no real

agreement on the features that shouLd be included in the

Langunqe. Even if a subset of Lanquaq? features couLd be

identified which were Provided by all COSOL compiLers,

statement syntaw varties between coapiLers. Even in those

sases where the syntax used to express 6 oarticular Language

element by two different compiLers is the same, the Language

features of the two compilers may have different

interpretations. The next nossibLe soLution is to select

one of the two COBOL Standards as the OStandard Standard"

- Georgia Institute of Technology COBOL Workbench

2 -

-7, -.

Section 2 CAPABILITIES Page 27

and to develop a compiter for the Language which that stan-

dard defines. However, compilers are deveLoped to meet the

needs of a particutar macnine environment and Interpretation

of certain features is uLtimatety a decision of the compiler

designer. many ocerationso such as input 3nd outputo must

depend on the host operating system. Since different

machine environments provide many different festures, a

standard coapitler is not sufficient to eiiminate the

transportation probLek:.

Perhaps a solution can be found by investigating the method

in which OBOL Programs are qeneraLLy transported now. The

gener&l procedure is to Locate those features In the grammar

of the source compiler which are not the samr as in the

Sqrasaar Of the target compiler, ALL occurrences of these i

statements must then be Locatea ir the source code and

trantlated into the corresponding foraitt for the target

system. This step may be carried out with the aid of a text

editor. The next step involves Locatina those Language

features which are provided by the source compiler, but are

not avaltabLe from the compiLer to which the program is to

be transported. (Note that the reverse step is not neces-

saryt hut may be desirec due to the possible increase In

prooram efficiency.) Those sections of code which rely on

such features muat De identified and recoded usino onty

features ivaitable fro the target comitier# If the source

program was developed for a compiler which accepts a very

Georais Institute of Technotogy COBOL Workbench

5 S

- ~IL

Section 2 CAPABILITIES Page 2:

initunt this orocess may be very Long and difficuLt, As

this cinnot be automated* , hp possibility of introducing

errors to the tronstatton which were not Pretient in the

ori inat it, very hiqh. In sove cases* tranuport.1tion ray be

found t,) bv inDossiLe.

The :b'-ve procedure onLy describes the transportation of a

COPOL orolraa frop one Particular compiler to another

particular cozoiter, The entire process is repeated every

time the %ource program is to be moved to a ne, environrente

tLsot in:e no compiler is accepted as the "source" cor-

oiLer, nro,-Ats toy have to be transported between any pair

of CNIOL compilers.

In an easiLy tranported CGBOt.. Droorame only a subset of

COOL it vsede consisting of those features which are

avaiLabLe in sote fore fro, aLL COBOL compilers* Where this

is not possitLte as in the cae of certain machine dependent

features such as occur in input and outout ooerationst these

cooiLCer-unioue features are isolated in easily identified

sections of code which nay be changed otthout requiring the

recodino of other, vortions of the.programe The remainino

differencest due to differing syntax between the two com-

oiLterso, Ay be easily eliminated with the aid of a tewt

editor.

The process oescribed above permits easier tr. ,portation of

COBOL nrogras tctween differing machine environments but

Georgla Institute of 11chnology I'OBOL Workbench

b xiii

Section 2 CAPABILITIES P&Ve 29

it ill requires the efforts of a programmer who is cognisant

%ith both the source and tdrget systems* as well as being

famitar with the desired behavior of the program to he

transported. Since Programmers are an expensive rescurce,

it would cv oesirabte to automate this orocedure.

A necessary first steo in Attewpting this automation is the

reduction of the number of pairs of dialects between which

orograms are tc be transoorted. AS new dialects are

continuously being develoveds the scope of apLticdtion of

the resuLtino systet would tc unduLl Linite, were the choice

of torget Lanquqqts to be restricted in any manner. Less

difficulties arise in tlimitino the number of possible source

dialects. Jo single existing dialeci contains enough of the

necessary information to permit easy tranglation into all

oossibhe target diltocts. As 6 result it is necessary to

develop a dialect of COBOL particular to tt e Workbench

system (COOL,.obc). COOOL.wbc wiltl rovide the user with

those COBOL features that can be su~ported (-, a "nortable"

proqransinj environment. Some features which rely on

speifitc hardware or operating system capabilities cannot be

irplemented on all target eachines and thus will not be

avaiLa)le in CBOL.wbc. COBOLewbc can be translted into

any of a nvaber of target dialects (COBOLok). 'Fich of the

translation process wilt, be automated= however, bscause of

varlations iti corputer architectures and oroanizAtions, some

huvin intervertior wiltl stilt be reqvired to translate a

prooram from anrkbench COBOL into the COBOL di3Lect that

Georaia Institute of Technotosy CO'OL Workoench

Section 2 CAPABILITIES Page 30

3' iwiLL execute on a specific machine.

2.2.5 I~rglr uui"

There)re two oritary rrocucts from the Program l'rocessino

subsystem of the Workbench* The first of these are

*copoiLer-indreondelt" versions of the progriim or, Modute

that drc vritten in COBOL.wbco The second tyive or group of

Droducts are the 'comoiker-unique" versions 0' thle program

wrIt ten inr a specific csialect of COBOL ICOBOL9.") and ready

too, Turtherinq processing (translation) and exetution by a

tarovt operating environment.o The first cLass of products

voO;rar~xr wh i Le the second coroup results from LotL~

of COPOL-wbc into a target COBOL dialect.

2*2*591 Expansion

The purpose of orooram expansion 4s to produce compiler-
inrco~endtnt oroirts rodlutes meetino tho standards of

COVOL.whc and caoable of being collected together with other

no;*utes to oroduce coIDLetet coOpiLer-indeoendent Programs*. ~

Inp~ut to th", orooras expansion Drocess Consists of proorem-

-jer scfctoofthe COOOL.wbe text fcr the %oduteo th~e

name of the module, and the name of the Mirary in whith the I<
?oeuLe is tr be found* The output is a prooram modute, or

cor-oIete Dragramg meeting the standards oi COBOL.vbco

5eoriia Instit;te of Technology COBOL Workbench

7.4 77777 -77-i

Section 2 CAPABILITIES Paqe 31

Expansion may be performed relative to one Library at a

times or to any combination of Libraries,

2o2c5.1.1 LigjtjjjLt Ujjjjj ID j!1jraj jj.p.'

The General Library will be available to programmers on aLL

proJects and in aLL application areas and will include

generaL-purpose modules which are freouentLy used. these

modules might include the foLLowinq:

s data input editing

-file structure definition

-report generation

Use of these general purpose modules oiLL eliminate much

repetitive coding. The Possibility for error will also be

reduced greatly through two causes. 4istake% caused Dy

clerical error .ill be Less freouent, since fewer Lines of

code will be entered. 4ore siqnificantLyt the General

Library will include only modules that have been thoroughly

tested* reducine the oossibLity Of incorrect code.

2.2.5.1.2 --j~tnin g UaLJ1L± 1.Rl j=111111SM L.1grgfy

The Application Library contains modules developed for an

applications area Such as inventory or payroll. 1hese

modules will be thorouohly tested before addition to the ap-

Dtication Library* The application Libraries might IncLuce

the followina:

Georgia Institute of Technology COBOL workbench

Section 2 CAPABILXIIS Page 32

- a coLlection of payroll modules

- a collection of modules developed for inventory

cont rol

Iach aoptications area will possess Its own Library* APPLIe-

name 0,496 APPLIEI-PAYROLL or APPLIB-INVEN), which will

contain this tyoe of module* Projects will be permitted to

make use of other application Libraries as welt to encourage

standardization and to decrease maintenancr costu. One

examoLe of this po-tentiaL savings Is a business maintaining

both a payrotL prograt and a financial report generator. If

botn of the Programs caL the same module to calculate with-

hotdinQ tax* chanoes in the tax Laws will cause Less

moeification to the currently running Programs than it each

figures the tax separately. Standardization also decreases

the errors that occur when different heuristics are usea for

the sane function by different proqramfrso

The Project Library contains those modules currently underk

devetooment specifically for a Particular Programming I
oroject. Each Project will have a Library* PROJLIB-name,

containing these modules. This library differs from an ap-

olication library primarily in including modules tailored to

a Specific project*

The orooraimer may develop a personal "shorthand" notation

to ovoid repetitive proqrammini when the same task is to he

performed a number of times. PersonsLLy developed modules

coeorgia Institute of Technology COBOL Workbench

Section 2 CAPABILITIES Page 33

give the programmer the abiLity to enter code into the

machine in a convenient form. Cals to moouLes contained in

a Personal Library must be expanded into standard COBOLowbe

as soon 3s the code containing those non-standard module

caLls is made avaiLabLe to other members of the proqrdming

project (icluded in the Project Library).

The Test Library, TESTLIB, wiLL be avaiLabLe to programmers

on aLL projects and in all application areas to assist in

module and program testing at all stages of project deveLop-

sent. The Test Library contains Podules for the coLLection

and output of test data, dusy moduLes to be used in tetstin

ca Linq seouences# and skeleton programs for the testing of

modute behavior in isolation and as a result of different

caLling sequences.

2.2.5.2 8uiLd Programs

in order to buiLd a program or system* the following input

Is needed:

1) A collection of COSOL.wbc modules selected by

the orogrammer in order to produce a desired

overall functional capability in the output

program.

2? Special Instructions required by the Program

Preparation Subsystee.

Georgia Institute of Technology COBOL workbench

Section 2 CAPABILITIES Pag~e 34 I

The following output is generated:

A iljjltj1t but f Z iki'COBOI.ewbc program

which can be expanded with the approoriate

choice of target machine macro Library into

an executable COBOL proqram in a form which

is acceptable to any ojne o' a number ofta~r-

qet COBOL compilers.

SpecificaLy, in order to buiLd complete COBOL.wbc praolramse

the Workbench must have the following capabilities. The

Workbench must be abLe to

1) Collect and Link together all of the ap-

oropriate interface components of the Input

4 '080L.woc modules aroducing an output proqram

in CO8OL~wbco These interface components

include but are not Limited to data

letinitions and tile specifications,

2) Pesolve or identify unresolvable namfing

inconsistencies*

3) Establish consistency in data and fk

detinitions or identify possible problems

that might result tram Inconsistencies*

Georgia Inititute of Technaloqy COBOL Workbench

Section 2 CAPABILITIES Page 35

2.2.5.3 Transportton

One of the most important cavabitities of the Workbench is

the devoLtpment and transportation of portable COBOL

programs. This goal is achieved by the development of

baseline COBOL programs in a compiLer-independent form (in

COBOLowbc) and the a.Laiiz &LMaI J ,j transtation of these

proorams into the COBOL dialect of a particular target com-
10 oler system*

This translation could have been accomplished by the

developeent of a new COBOL dialect and of a new compiler to

accept this Language. This was not the chosen solution. A

new COBOL copitler and a new dialect would only add to the

proble%. VhiLe It uouLd be possibLe, assuminq progrommer

and industry acceptance of the new dialect, to develop new

proqrams which could run on any target machines the addition

of new environments to the original set of target machines

would be an extremely difficult proceeding and would

Probably result in the same chaotic situation presently

existing with the *standard COBOLsel Worse* only now

systems would be portable. Systems would be able to include

previously written software only after extensive rewriting

to translate the old proqream into the new Lanouage. Final-

Ly, development of yet another COBOL compiler does nothing

to address the problem of developing C slu.Le £aaf

Georgia Institute of Technology COBOL Workbench

S.. - - -- - . M. , , -

Section 2 CAPABILITIES Page 36

The chosen soLution is to express those functions and

stbtements for tihich a compiler-dependent imotperentation is

necessary as speciat statements in a compiler-independent L
Is renresentdt ion of the progrdm, and then to "expand" these

stateets separately, relative to each target compiLero

292*6 Breagkgard PegBal*

A major expense in the deveLourment of automated information

systems has been the high cost for the redesign of the t

systeni after the initial prototype has been implemented.

This is esoecially true when a separate oroanization is

preparing~ the program for another organization which is the

proponent or motivator for the system to be designed* One

aoproacn that h~as been provosed to Lower this initiaL design

cost is the utiLization of a breadboard program* or system,

e. tnat provides the basic functionatity of the desired system

without the high expenses associated with detailed and comn-

DLcte cevekoch~ent# T h is breadboard p r o ra m or pr ot ot y pe

cjtukd then be demonstrated to the proponent organization and

feedback on the design would be obtained at a much earlier

stone and at a mtuch Lower cost without complete development

beinq reauired.

The characteristics of a breadboard program/prototype syttem

wouLd be that i of the desired functionality would be

present in the system; however, the performance of the

systeit wouLc certainly not oe optimized or even Owell

(eorgia Institute of Technology COBOL Workbench

Section 2 CAPABILITIES Page 37

engineered," To the maximum extent possibLet the breadboard

system wouLd be assembled out of reusable modules of code

which Provide the functionaLity desired* or close ap-

proximations thereto* The overaLL objectives of breadboard-

ing are to provide gk_ and lj-js prototypes of systems

under design so that meaningful feedback may be obtained at

the eartiest date possible.

I

G- eorgia Institute of TechnoLogy COBOL Workbench

Sectio" 2 CAPABILITIES Page 38

2.3 P ILEIU

The modular approach to the preparation of complex tystems

significantly aids in the development of quality programs.

While it is true that in most Large systems absolute program

accuracy can only be approximated* the separate testing and

verificotion of tho "correctness" of individual moduLciv

before the mocuLes are combineJ into a single proqram unit*

will Lead to the development of quaLity programs in an

economic fashion*

Program testing is aided by a collettion of utility func-

tions and modules which are used by the programmer to test

both modules and programs. Besides providing the op-

portunity for -fMQ.jj.2DAj testing, utilities will be provided

to aid in the measurement of . Specific
utilities which might be Included for this purpose include:

1) i3in programs to invoke the module in oues-

and print input and output ("test har- A
nesses")

2) routines to generate random input data meet-

inq a specified COBOL format

3) routines to generate random input files meet-

Inq the conventions of a particular compiler

and machine

4) routines to coLLect performance datas incLud-

ing time and snace usage

These utilities are olaced in a special test Library wh'ch

Georgia Institute of TechnoLogy COBOL Workbench

. .

Section 2 CAPABILITIES Page 39

. contains tools uspo for testing modules and programze Some

of the essential tools are:

c a1) Test Control System

2) Test Harness

3) Automatic Test Data Generators

4) Automatic Verification System

5) Object-Time Monitors

2.5.1 JauL I" IaTesta i ung mar

Program testing capabiLities are included in the Workbench

to provide for the testing of COBOL.wbc modules produceo us-

inq the Workbench Module Preparation Subsystem prior to the

inclusion of these modules in COBOL.wbc programs. The foL-

Lowing goals must be met:

1) Orovide a test environment covering both

Language testx as well as 1/O and data tests

to easily check-out the modules as they are

produced by the above process.

2) Permit the collection of data about module

performance before the inclusion of the

aodule in a finished program.

3) Test moduLe behavior as it will perform on

Ieach target machine* This will involve con-

vertino the originaL COBOL~wbc module into

each member of the related famity of COBOL.i

modules, providing COBOLeI drivers* and

executing each of the resultant proqrams on
the appropriate machine.

Georgia Institute of Technology COBOL Workbench

'rSection 2 CAPABILITIES Page 40

4) Orovide utitity routines to aid the program-'' mer in the generation of test data meeting

oArticuLar program requirements as specified

vy the appropriati. data declaration division.

5) (Optional) Provide utility routines to enable

tne programmer to netermine it the set ofii

test cases is adequate~ to properly test the

modular logic*

:1:02 of the major tools to be used In program (or module)

testinQ is the~ JrL t1iiracal. This main or driver program

serves as a framework w~hich supplies appropriate inputs to ti

'noduLeo It also records the output% produced by the module

(aLonq wit,% the associated inputs) in such a manner that the

vrograemer can ceterminc whether the output produced is inIL accordance with the specifications established by the syrtten.

de3s5igner*~ ra~ rata

The Test Control System causet the tests to be exectited.

Throuoh the Test Control System, the *poropriate test data

is retrr ed, the driver or test harness is executed using

the prescribed test data, and any postprocessing of the out-

out from the test harness is performed. The Test Control

System5 autopiaticaLty modifies the source code -as necessary

when performance evaluations are conducted. In the case of

Georaia Institute of Technomiogy COBOL Workbench

Section 2 CAPABILITIES Page 41

the testinq of modules which perform certain fiLe processir.q

activities internally, the Test ControL System will

outomitica~Ly compensate for differences between the wby In

which fites are stored and accessed durinq the tett and the

way in which fiLes are to be managed under the eventuaL

prouctonsystem*

It it. through the Test Control. Systefr that most of the tools

used in the progrpm testing phase are sequenced, monitored.

and controLed. The Test Control. System can also ghthert

records and report in an appropriate form information to be

used in the management of pr,-ram testing. Pertinent in-

formation regarding each test (who tested what module, what

data was used in the test, when was the module Last tested, -
etc.) afe Logged by the Test Control System.

White the testingof indvduat modules or components of a

Lare sste ma sinifcanty idin error 2 .uentiq~nt each

indildut edu~emus beexercised for the purpose of err,)r

~f~jjjfl.The primary goal of the testino process it to

ak* astskes happen (if errors do in fact exist) with

results that can be easily recognized as incorrect and which -

provide enough information about program behavior that the

errors can be found Quickly and corrected. In order to sc-

comptish this task, enough inputs must be tested to exercise

the program or moduke under consideration completely.

C IGeorgia Institute of Technology COBOL workbench

Section 2 CAPABILITIES Page 42

The development of sufficient test dota is an exacting task.

It is not enough that a Large number of inputs are tested; I
the variety of inputs tested is aLso important since each

control path in the code must be examined. If the test data F'
is prepared manuaLly, control paths may be missed, causing

errors to pass undetected until the system is in production,

in,. any errors found wiLL require expensive correction. The

preparation of oood" test data by manual means is an ex-

treneLy difficult task which requires extensive anaLysis of

branching and controL flow. The Workbench %ust therefore

provide a nechaniss to facilitate the generation of a suf-

ficient number ano variety of test cases for vc'! module to

be tested. This facitity must Lrov¢de for the Automatic

qeneration of test dato using (at a minimum) as input the

OATA DIVISION of tne test arness and the test definitions

given ty the programmer in sooe procedural notation. It

wilt also permit the peneration of test data by combining

records from existing lties of test material and integrating

these records into a comprehensive set of test data. This

tlatter capability may be used to insure that atL modules in

a particular oroqran receive final testing over an identicat

data set orodoced as the union of test input generated for

the individual modules.

Georoa Institute of technoLogy COBOL Workbench

Section 2 CAPABILITIES page 4A3[K2 *395 Atpule XItifito WtU

A number of toots will be avaittbLc for the analys~is of out-

out resulting from execution of the trt harness. An output

analyzer would Permit comparision of outputs with correspon-

ding inputs, with previously generated outputs, or with

predetermined results Presented to the analyser in some

form, and would report the discrepancies on an exception

basis, Standard statistical library routines would be used

to intercret the output from the object-ti~e monitoring

faci ly.nHaitr

Options provided within the Test Control System will permit

the OinstrusentationO of the module being tested in such a

way that Drograw execution efficiency can be evaluated. The

areas within a given module which will receivei closest

vonitoring will be determined by usage statistics provideo

it the source progrin paraoraph level.

*4

Georgia Institute of Tectinoloqy COBOL Workben.h

*74757____

Section 2 CAPABILITIES Page 44

204 PROGAM HWEA

The maintenance of vroqrams that have already been developeo

oni olaced into operation is widely acknowledged as the most

e aensive part of the Life-cycLe cost of such proorams. The

COPOL Proor&mmer t s Workbench fully dcknowLetqes this fact

ana Provides coiplete support for maintenance.

* NaureU gl flainitvnL A&ctiiles

Peferring to Fiqure 1.3-1. it can be seen that there are two

ditensions to the maintenance activities supported by the

Workbench. The first of these is the maintenance that must

be performed on compiler-unique VERSIONS of lhe proqram in a

OQuick-fix" manner to correct LogicaL errors, in the develop-

ment of the baseLine proQram or Workbench errors in the

trdnsLation of that oroqram to the compiLer-unique en-

virontents. Each VERSION of the Program presents a seoarate

saintenAnce Droblea and MODIFICATIONS of VERSIONS are

generated inoiviuaLL, as required.

The other dimension of maintenance is the preparation of a

new release of the baseline Program. In this instance,

there is only one proqram being maintained.

Ih

Georgia Institute of Technology COOL Uorkbenth

Section 2 CAPABILITIES Page 45

4 ?.4.2 flhjflhIO*B Sugnrt

The support for program maintenance provided by the COBOL

Programmer*$ Workbench consits of several capabilities*

1) The concept of a single* controlled baseline

orograsm reduces the amount of maintenance

programming required in a auLtiple-target

operating environment.

2) The programmerts environment provided by the

Workbench for the preparation of programs

also greatly facilitates the preparation of

modifications to previously devetoped

oroqrams.

3) The on-Line documentation system and the

capabilities it provides for Linking comments

to specific portion% of the docurentation

test greatly facilitate what Is perhaps the

%ost time consuming activity in maintenance

operations - the correlation of all of the

information apolicable to the original

program and the changes to be made.

4) The Oocumentation Control Systei C lo

Droviaes for the control of multiple versions

of both code and test so that the maintenance

irogrammer can easily check out a new version

of a prooram without disturbing the old one.

Georgia Institute of Technology COBOL Workbench

S7

Section 2 CAPABILITIES Page 46

2.5 DOCUMNLL101 PREPAAUk

nne of the major tasks faced by the designers of software

systems is the production and maintenance of complete

documentation including specifications# desions, user and

reference eanunLst and reports as well as the program code.

to encourale the production ond maintenance of current and

co'nLrt documentations the Workbench will be equipped with

a oroad range of tools which are designed to assist in the

preparation of all of the system documentation reouireo for

tho support of prototype systems* the base-line systems and

thosr versions of the system produced to run on specific

ta rget machines. The documentation toots provided by the

dorkoench will be simpLe to uses witl interface with each

other, .mnd will provide additional capabilities which make

the documentation task Less burdensome to the documentor and

increase his productivity.

2.5.1 Ovrve gt LU Documgntatio £MklAb-ys

rinure 2.5.1-1 depicts the flow of text and commands that

will occur durinq the preparation of system documentation*

The docauentor will oe able to both enter an orioinal

d~cutent as well as modify existing documents* The

documents will De stored in a series of Libraries* In ao-

dition, It will not be necessary for a document to be

entered in a final finished format; instead, a separate

Georcia Inst i tute of Technology COBOL Workbench

4

Section 2 CAPABILITIES Page 47

FIGURE 2.5o-1

PREPARATION AND MODIFICATION OF SUPPORTING OOCUMENTATION

I I
I Documentor I

* I
* I
* I

I I
I Editor I

* I -

Librarian

: ' i Lbraesn

I ,;~- -I
*oll

9 * I -
SI I
' I Libraries I

I-_ _ __I_ _ *

I I Text * * Command
FLow * * Flew

I I f C
I---.- (0* tooo

Georgi sitt of Technotogy COBOL Uorkbench

Section 2 CAPABILITIES Page 48

process, the Fcrmatting Process* will be available to per-

form these formatting duties (see section 2.7.2). By making

formatting a separate procedures one wilL only have to save

and revise the unformatted text of documents. This will

take the task of modifying documents easier since it will be

oossibLe to make changes without worrying about the effect

of those changes on the format of the final output*

2 *502 OnLine gH.~ aftd.Ling

One of the essential reouirements for the Documentation Sub-

system is that it be available for on-Line use. This wilt

enji., e the documentor to compose and enter documentation

into the system in & sinqle step. In addition, he will be

able to extract text from other documents for use in another

docunent that is oeing prepared or modified*

2.5... Prepering Documents

The oocumentor will be able to enter documents in an on-Line

fashion. Intermingled with the normal text of these

documents will ze formatting commands which will be

interpreted at a Later stage by a Formatting Process. These

commands wilt allow the documentor to control the format of

the final document (see section 2.7.2). For examples one

will be able to underline and bold-face desired words in the

test by simply inserting the appropriate commands in the

Droorr Dosition of the unformatted text.

4

Georgia Institute of Technology COBOL Workbench

Section 2 CAPABILITIES Page 49

The documentor wiLL he able to easily edit the input text

during the document preparation phase. He will have the

~capability to inserto deletes or modify as well as to reor-

der parts of the text. The documentation process often in-

volves copying text from other sources* for example, other

documentation or actual proqram text. The Latter situation

often arises when one wants to present an example within the

documentation or when one wants to discuss the text of the

program. Thus, an important editing feature of the

Documentation System will aLLow test from any source to be

tnserted Ito any document white it is being prepared or

modified. Snce th uopy capability is included as part of

the editing capabitlitiest one will be able to obtain text

from other sources ano then trim and modify the text to suit

his needs.

2.5.2.2 Updating Oocuments

The capabilities provided by the Workbench for originally

preparing documents wit(also be available for updating

documents. The documentor will be qven editing

capabilities which enable him to insert, delete, reorder,

and modify text. As mentioned abovc# he will alto be able

to copy text from a variety of sources, includinq proqram

text, and wiLl be able to perform this white entering or

modifying the original document.

Georola Institute of Technology C080L Workbench

Tw*

Section 2 CAPABILITIES Page 50

Proqrams and supporting documentation often exist simul-

taneously in several different forms. For example, a

program may be in production use while at the same time im-

orovements are oeinq developed for it* A form of document

control that can selectively retrieve any specified version

of a document s required* The facility providinq document

contrel must provide the user access to any revision, allow

the user to create new revisions, and insure that no change

mooe to a document is Lost. The Last capability wiLL help

to insure against an accidental Loss of information.

The Document Control System will handle all programs and

supporting documentation. Any user or process needing a

specific revision of any document (the term document refers

to both Drograms and documentation) will request that

revision from the Document Control Process. Thus, both the

Documentation Preparation System ond the Program Preparation

System wiLL have to interact with the Document Control

System in order to obtain documents. The Document Control

Syste% will store adl revisions of mLL documents in various

Libraries.

Georgia Institute of Technology COBOL WorkbenchGerI ecnlg

-

7,
Section 2 CAPABILITIES Page 51

FIGURE 2o4o1l1

OOCUMENT CONTROL OF ALL DOCUMENTATION

I I---------------- >1I
I Documentor I Oo;umentation Preparation

Librarian ID (ocument Controt
I ~ ~ ~ ~ - -.-----...---- . . -

Tex * Comn

*41.

*I*I•

• I • ouet ot~

Geri Insitt of•tntg OO okec

LitI •aa -A

el Ltr(eI

I "I

' I Pogramer IProgram Preparation I

IText * * Command

I • •

II
Geri nttt fTcnig OO okec

Section 2 CAPABILITIES Page 52

2.6.2 Audgit IC&JL agt Q&ana

'The Document Control System wiL automaticaLLy maintain an

audit traiL of alt changes mdde to a document (see Appendix

3). This wiLL aklow the programmer or systems analyst to

identify changes made to a document in d chronologicat man-

ner. Thus* corrections need not be considered permanent

because they can always be recovered. It should be noted,

thouqh, that the Document Control System witL never discard

any chjnge; rather, if the change is not desired, it simpty

wiLL not De anoiLed during the construction of a particuLar

rev i sion.

2 * 693 Abijit Ig nMain Differen atkauu'!tu~siou

The Document Control System wiLL provide the capability to

maintain separate RELEASES of aLL documents. The need for

seaarate RELEASES occurs wheno for exampLes one RELEASE of a

oroora% is ifn Proauction while a newer RELEASE is in

develonpment. In addition to maintaining separate RELEASES,
A

one Tust be able to maintain the different VERSIONS of aLL

RELEASES. Thus, the Document Control System witt aLlow one

to obtain or create any VERSION of any RELEASE of a

document*

Georgia Institute of Technology COBOL Workbench

-A

Section 2 CAPABILITIES Page 53

2 *6 * Lint&"u a! Comments n agIV.MUD~~

To encourage as much feedback as possibLe on programs and

supporting documentation* the Document Control System

orovides the abitity for user comments about documents to be

dated and Linked to the document to which they refer. Thus,

users can comment on any errors which they believe they have

discovered or make suggestions for changes to the documents,

The systes analyst responsibte for a document wilL be able

to examine aLL comments pertaining to the document. He c€n

then act upon them and report back to the ortainator of the

comment as to the status of the document or the point raised

by the oser.

IISn tO

Gtorgia Institute of Technotogy COBOL WorkbenchI

Section 2 CAPABILITIES Page 54

2.7 DCURENT eRDUCTUO

207 *1 Praas Proction&1

The w.orkbench has the capability to produce record or

docum~entation cooies of the various VERSIONS of the source

code; however# It cannot produce the object code version of

th~e procra~. That has to Do produced in the tirget-compiter

env ironeren t.

2*7*2 Dogsetn±Iison ProduitL19,f

The Workbench wilt be able to process the documents as they

are stored in the various Libraries And produce printed

reports which are formatted according to appropriate stan-

dards. The 4orkbench wilL provide a Formatting Program

which wilL accept commands imbedded in the text of the4

documents* These commands wilL inform the rormatter as to

how the text should be printed: for exampLe, what words

should be underiined or tcpLd-facedo what text should be

centered, how many tines should be skipped between sectionsA

of the text, etc* In addition, the Workbench wilt provide

the aeAns for defining documentation standards and aiding

documentors in foLtowinQ these standards.

Georgia Institute of Techno'.ogy COBOL Workbench

(.. 7

Section 2 CAPABILITIES Pdge 55

FIGURE 2.7.2-1

PRODUCTION OF DOCUMENTATION

I I I

I Docum&entor I******>> Librarian I
I 0 0= - -I_ _ _ -

Formatting IJLibrariesI -

i P-- ce-s---, -. --,- --

I FormattedI

D ocumentsI

0 0

IText Command

I *

. -°,, *oF omtin I Lbrris

I Pressee (eeeaaeoee

Georgia onstitute of Technoogy COBOL Workbench

..

Section 2 CAPABILITIES Pdge 56

2.7.2.1 Formatting

The workbench witl contain a rormatting Proc',s% which will

orint documentation accordino to the users specification or

a standard set of specifications stored in the General

LiorAry. The user wiIL imted commands in the cocumenation

text storel in libraries which tell the rormatting Process

whAt fcr of output is desired. There will be default set-

tinns for Dora-eters not specified ti the user. Thus, the

Fortatter will proouce a formatted document according to the

coslanas specified within the text utiltizinq defautt set-

tin-. for these options not soecified by the user.

27.2.2 Documentation
For mt Standards

The sorkbench witl alvo provide the caabitlity to define

dlocumentation standards and aid docunentors in foLLowlnq

these standards. Standards may vary from project to project

or froi one tyce of document to another within a single

nr:)cct. The Vorkbench wilL provide a uniform technique to

locate definitions of the various standards and the means to

nutomaticaLty preduce documentation meetinq those standards.

3eorQgia Institute of Technology COBOL Workbench

Section 3 FUNCTIONAL COMPONENTS Page 57

SECTION 3

FUNCTIONAL COMPONENTS OF THE COSOL PROGRAMER'S WORKBENCH

301 QV=U R MUUIC COMMENTS AU~ ORANATION

The user sees the workbench as a coLLection of capabititis

and functions that provide his with support in accomptishinq

his programming and documentation tasks FunctionalLyt

these capabitities can be divided into severaL 4%aor sut,-

systems or Lomponents as shown in Figure 3.1-1. Since the

major activity of the Iorkbench i$ the preparation ano

processing of documents, whether they are program moduLes or

suvoorting docufentation, the subsystem providing control of

those documents it certainly a central component of the

orkbench. The Cocutient Control Subsystem as shown in

Cioure 3.1-1 light be compared to the ftile system of a

reqular cozuterl however, as pointed out in section of

this report, the Workbench envisiont the maintenance of mut-

tipte versions of the sane document, and the support

nrovided by the Document Controt Subsystem is much more ex-

tentive than that proviled by noroaL fMle systems.

Georoia Institute of Technolooy COBOL workbench

Section 3 FUNCTIONAL COMPONENTS Page 5P

FIGURE 3.1-1

MAJOR FUNCTIONAL COMPONENTS OF THE COBOL WORKBENCH

I-->1 Program I-->1
I Preparation i<--I

II - I II
I I I

"'>1.) I.o>,
I I Program J--)

(--I Processor K--
I__ _I Oocument

Uier 10°>1 > -->1 Librarian I
" -'I1 Test I--> K--I__________

Support I ° I
I---__ :__ I IControl I I
.... II

Libraries I
I 10)> Documentation I..>g I
S-->l Preparation I

and I-I"
Maintenance I

I Oocunentation I
1<--1 Production J<--l _ _

I Txt • • Command
I I FLow * 0 FLowI I *0•

I, 0 ,

C>

Georqia Institute of TechnoLogy COBOL workbench

9, ..

Section 3 FUNCTIONAL COMPONENTS Paige .9

(5.32 PAQAIJj SUBSYSTEMf

30201 r aarms r ra nla

3.2.1.1 Workbench COBOL --- COBOL.wbc

Workbench COBOL (COBOL~wbc) is the portable version of

COBOL. It has been designed to provice the user with as

many of the capabilities of full COBOL as may be supported

in o "portable" oroqramsino environment, LODOL~wbc was

developed fror standard rOBOL with the explicit goal of

procucino a COVOL cialect which would permit a COBOL proqrom

developed on one machine to be executed on another without

tee1ous and error-producing hand-modification. However,

COSOL.wbc 11 a" Itj I it" £.Ua L . t of COBOL ap-

plicable to all of the target computers selected; instead,

........................ on t of the common subset of COBOL applicable to all

of the selected target computers (COBOL.ccs) pLu; those

those features heavily used by CO6OL proora*oers EVCn . if

these features are not directly portable. The translation

of thits latter qrouo of features into compi er-unique code

is a function of the Proora Processor.

Georoia Institute of Technology COeOL Workbench

. ¢ - *v , , - ------

Section 3 FUN'CTONAL COMPONENTS Page 60

3.2.1.2 COBOLedemo

COOt. eeo is this proje ts first approx m.1tiov to

C 0OL.w tC, COBOL.wit consists of those elements of rOBOL

ahcl are covon to aLL COBOL compilers olus a num,,er of

other c'oaviititis which cannot be cirectLy implemented in

the sate formAt by aLL compiLer%. The nature and type of

these capabiLities which must be provided in order to permit

the deveLooment of useful COBOL proqrats is not yet k.nown.

A nunter of COBOL capabi Lities (such as Oata declaration)

are atsumeO to be necessary; these c4ipabiLities will be

inctuned in COSOL.demo* Other capabi Lities mitt be added to

rOqOL*CeCo as their usefuLnesf is demonstrated. The

eventual nro.-uct of this process will be COBOL.wbc. t

For th- Purposes of this reoort Only a casual distinction

is #ode between COBOL~wbc ano COBOL.demoe CO8OL~whc is used

whenever either "OBOL.oeeo or COBOL.wbc eiQht be meant°

(ror exanoLee at different stages in the Workbench's

Jevclooaent)* COtOL.deso is used only in reference to

developmental activities which wiLt be over when the Work-

Dench systen is complete.

3,4.1.' COBOL Screen Editor

T .dlition to the standard features available in a coc-

Drehen~ive screen editor (Line-at-a-time deLetionso ad-

itions, senrcht scan and substitution, and full screen

Gecroa Institute of Technology COBOL Workbench

Section 3 FUNCTIONAL COMPONENTS Page 61

display of adjacent text), the screen editor utitized in the

proorammer's environment would also contain features that

are soecificatLy taikored to the preparation of COBOL

programs. These features would be capabitities such as

Automatic foreattings automatic searching for sections of

the program by name# etc.

3.2.1*4 Standards Enforcer

The most important standards enforcer is obviously the one

for CODOL.abc. This would function in am anner very simt3r

to presently existing stndards enforcers. It wouL4 operate

as a preprocessor on the source code ensuring that proorams

contained onLy statements taken from COUOLewoc or properly

formatted references to reusable modules.

If it is desired that the Workbench support COBOL program-

ing in A specific dialect (COBOL.k)t then a different stan-

dartls enforcer vouLd have to be provided for that diaLect of

COBGL.

3*2*2 Praa rotan

3o2.2.1 Library Support

A number of support Libraries must be made avaitabLe to the

oroqras desioner. The Workbench provides the capabiLity for

each InstaLlation to develop and maintain a useful and

meaningfut collection of macro and moduLe Libraries taitored

Georqia Institute of Technology COCOL Workbench

s ect ion 3 FUNCTIONAL COMPONENTS Page 62

to the needs of the individual installation* These

Libraries are described in detail in Section 3,5.1o

A COBOLewbc program containing references to reusable

ioJules may be exoanded Into an eouivalent COBOLwbc program

relative to any one or more of the module lioraries, For

etIVolet the reusable module references used by an in-

dividuaL proqram)mer as abbrevIations may be removed while

teovinq etuduLe calls from the Project, Application, and

General Libraries. Translation of a COBOL.wbc program into

the eouivaLcnt COROL program for a particutar tarqet machine

(CCaOLok) should occur only after all reusable module

references have been expanded.

The macro processor uses a search rule to Locate the macro

aefinition corrcspondinq to a specific module call in much

th@ sa4e wiy that a loader searches for Load modules. Un-

less otherwise specified the search rule used is:

1) PnatonaL Library

2) Project Library

3) Test Library (utilized only when specifically

reouested)

4) Arolication Library

5) ,eneral Library

40 roapiler-Unioue "acro Library (utilized only

when transportinq a COBOL.wbc program to a

specific Comoiler)

In thin wayo imProvements to nodules already included in

Georaia InStitute of Technology COBOL Workbench

Section 3 FUNCTIONAL COMPONENTS Paoe 63

standard Libraries may be tested without recopying the stan-

darl Library or modifying proqrams to use new names for

moduLes.

3*2.2,2 Program Processor

Using the tools described in the previous sections, the

proqramser develops a COBOL.wbc proqram. Before this

program can be executed on some target machines procssino

wiLt be necessary to convert the COBOLewbc code into

comopier-acceptabte code,

The nature and extent of processing needed depends on the

nature of the task. The Workbench is a flexibLe tool,

suitable for use in a number of ways# ranging from the most

sinte to the most compLex appLications. In Its simplest

xode, the gorkbench serves as a text editor and Librarian. $

In its vost complex mode, the Workbench provides the

proqramuer with all of the tools necessary to produce COBOL

code which is both portable and reusable.

Rasicattyt the Proqrsm Processor in the Workbench can Ve

used to expand calls to reusable modules into in-Line code

and to translate programs written in COBOL.wbc into programs

which wilt execute correctly on a Particular

compiLer/machine-environsent.

Georgia Institute of Technology COEOL Workbench

%-

Section 3 FUNCTIONAL COMPONENTS Page 64

3.3 DOCUIP[NTAT!ON j1JUlSTEM

As contrasted to the various steos invoLved In proqratnmings

the three dspects of documentation --- preparation, controL,

and production --- do have rather clear divisions and can be

discussed separately.

A

iA

GtC

"Georgia Institute of Technology COBOL Workbench j

Section 3 FUNCTIONAL COMPONENTS Page 65

3.4 00CUNENT~lMEAATION &4..D

To encoutage the production of complete and up-to-date

documentationt the Workbench provides an environment weLL

suited to th- documentor. This environment incLudes tooLso

Librariest and a set of documentation formAt standards. A

major potion of this environment is provided by the Text

Editor which serves as the user's primary means for creatino

and modifying documentation*

3*4* Dotment L nwiroanen

The Workbench provides an environment for the documentor

which Is desiqned to make the documentation task as easy as

possibte. This encourages the documentor to maintain com-

pLete documentation and to keep this docutentation up-to-

date@ The documentorts environment consists of toolst

Lihrariesv and documentation format standards. The basic

tooL for documentation is the Text Editor* The Libraries

contain text which can be used durinq the creation of ne%

documents and macros which can be used durino the formatting,

stage to make the documentation task simpLer (see section

3.*.?b*) The final aspect of the documentor'; environment

is a set of documentntion format standards and aids to help

oroduce documentation fitting the standard*

Figure 3.4*1-1 depicts the Oocumer'ation Preparation System.

The documentor interacts with the Text Editor to create and

Georgia Institute of Technology COBOL Workbench

r4 -

Section 3 FUNCTIONAL COMPONENTS Page 66

modify documents which are maintained in various Libraries*

To maintali order among the documents, a nocument Control

System (see section 3.5) stands as an interface between the

Text Editor and the Librarian.

3.4.1.1 Toots and Librarls

To encourage the practice of good documentation, the

aocumentor needs a good set of tools. Chief among these

tools is a Text ^ditor (see section 3.*42) which allows the

user to create and modify text in an on-Line fashion. In

accition to the Text Editort other simpler tools are also

useful. rxampLes of these are a file copier, a cut and

Paste tool, a pattern searching tool, a tool for comoaring

the sitlarity of two files and identifying their dif-

ference,. etc. ThLese tools are designed to provide the

documentor the ability to perform his task with the expen-

diture of as LittLe time and effort as possible, To meet

this goal the toots must be si:ple to use* esy to learnt V
ftr~tete consistent with respect to each other, have

default values assioned to options which reflect the common Y

us.oe of the ootions, and finalty they must naturally inter-

face with each other so that several simple tools can be

connected together to perform comptex tasks.

Georoia Institute of Technology COBOL Workbench

rt.-ta - ~ ~ .- --

Section 3 FUNCTIONAL COMPONENTS Page 67

FIGURE 3.4.1-1

PREPARATION OF SUPPORTING DOCUMENTATION

It• ' * • •• • • • ' > I -

Documentor ------------------ >1.) Text I
---- I Editor

I

Document
SControI _ _ _ _

I Libraries j< ------------------- I Librarian I

t_ _ _ _ __"

IIText •* Command
IIFtow * FLow

;-Georgia Institute of TechnoLogy COBOL Workbench

Section 3 FUNCTIONAL COMPONENTS Page 68

The documentorts environment also includes a series of

Libraries. The Libraries contain among other things text

which may be used by a documentor in the construction of e

document. This text can be either other documentation or

prorams. The Libraries also contain commonly useo f.ocros

for the Foreatter (see section 3.6.2.1) which held to

oroduce standard formats of items within a document (e.g.*

taolest charts, listst fiqures, etc.).

3*4.1.2 0ocuaentation Forest Standards

Another asoect of the documentor's environment is a set of

documentation standards. These are oesiqned to ensure that

aLl i-ocuBents of a Particular tyoe or belonoing to a

oarticuLar orianization use the same set of formdtting con-

ventions. The definitions of the standards are maintained

in Lit'raries and are thus readily avaiLabLe for consultation

durinq the documentation preparation process.

Since the ultimate ooal of documentatioi ireparation is a

finished document, the cocumentor wit have to consider the

foreat of the finished product durinq the preparation stage

of the documentation process. T his means that the

documentor will have to insert formatting commands within

the text in order to produce the desired results whet, the

text is processed by the Formatting Program. These imbedded

formAtting cormands are also the key to achieving standard

for-ats within the documentation. Py constructino a set of

formatting wacros (see section 396.2.1)v and storing them in

Georoa Institute of Technology COBOL Workbench

X~ ~ ~

Section 3 FUNCTIONAL COMPONENTS Page 69

Librariest one can proviae the necessary aids to help the

documentor easily construct documents conforming to a set of

format standards.

This technique was used to provide the section headings in

this report. Five macros were available (hO, h1, h29 h~t

h4) depending on the Level of the section beinq written.

The parameters required by each macro consisted of the set-

tion number and the title for the section. The macros

provided for the consistent spacing around the headinos and

consistent use of underln ng and boLdfacingo

394*2 Editofh±.r

The Test Editor aItlow' the documentor to create* uPdate, and

sodify unformatteo documents in an on-Line manner. In Ad-

aition, it alLows him to copy text from one document whi r

creating or editing another. Thus, the oocumentor can copy

text from other docusents and trim and *jdify the copico

text to fit his needs.

The Text Editor nossessrs a Powerful set of commands which

obey a simnLe Arid consistent syntax. Complex pattern match-

ino is also avaitaote and allows matching patterns within a

Line of text as well as Locatinc Lines containg the pattern.

Printed responses by the Editor are terse resulting in a

minirum of delay to the user.

Georgia Institute of TechnoLogy COBOL dorkbench

IL

Section 3 FUNCTIONAL COMPONENTS Page 70

The Text rditor also provides ,isers possessinq fast CRT

term t1r, t t'e i bititY to view a window of their t ext h i tC

editinq. Ihis is m Powerful feature which not only aids the

user in 4inding portiotis of test but also makes the

cor'struction anI rodification of text easier. In additict

to 'inu, ,'bLe to view d win!"O of text. one his the abl it

to ,:irrctty chmQr test tisplayeO in the window. To enhance

9.his cuaD1Lit) , the user is also given the ability to 'osi-

t.ion t~c cursor to the left, to the rights up, own, or to a

pnrt icuLor character on a Line.

In cAv > the user forgets one of the sitpLe cotlands of the

.dit.r, the can ask the rditor for helD. 'ependinq upon how

the heLo i, reqjesteds the user will get either general in-

fortatori it the Editor or inforEat on aoOu! the use of a

c4rti uLar commano The help feature is desigqned to provide

colotete inforeati. for the beginner and specific infora-

tion for the wore eDerienced user of the Text (ditor.

Ceorgia 'nstituti? of Techfnology COBOL Uorkbench

IL

Section 3 FUNCTIONAL COMPONENTS Page 71

K

The development of software systems is an evolutionary

process* Thus* there wiLL usuaLLy be multiple versions of a

program or document In existence simu" aneousLy. For eam-

Pte, a particular Program may be in Production white ao up-

dAted release of the same program is in develooment. These

constitute two different versions of the same program. In

addition to these two versions of the prograss there wiLL

alse De two versions of the documentation supportinq the

proqrans. To helo maintain order among muttipLe versions of

the same oroIranm or oocument, the Vorkbench Provides a

Oocuient Control Systes.

The rost oromisino strategy for providing document control

is that of maintaining a List of changes corresoonding to a

Particular revision of a document. These changes witL

reflect the differences between a particultar revision and

Its previous revisions. A more detailted eotanation of this

techninue can be found in Appendix 3e The revisions of atl

docusents will reside In a set of Libraries (see secti -

JGeoroiA Institute of TechnoLogy COBOL Workbench

..

Section N ~ FUCTIOINAL COMPONENTS pqe 7

FIGURE 3.5-1

PREPARATION AND CONTROL OF PROGRAMS AND DOCUMENTATION

- - -- - - - - - - >1 Text
I *.e...........)~EditorI

------------ >1

**I 0 t p t 1----------- > o

1 AnL~'t .. e....)J ocuent -------------- umLirts

II

G e r * I n t t t fIcn t g C B L W r b n hz

Section 3 FUNCTIONAL COMPONENTS Page 73

3551 Librar1.ai

An important part of document control is Liorary managevent.

As mentioned earLier, there are a number of Libraries

required to support all the activities of the Workbench, ano

many of these Libraries contain similar component files ors

at least, component tiles that could be oppLiec to the sate

us, And might even be identified by the same name. The tho

tannrtarif Atpeet¢ then of library management are

) The manaqement of the contents of the various

Libraries in a consistent manner* and

2) The iana;cment of the use of the various

Livraries In the support of the various ac-

tivities provided by the Workbench.

The various Litraries in the Workbench and their contents

are deoicted in TAble 3.5.11. The uses of these Libraries

arr Listed in TaBLe 3.5.1-2.

3o5.1.1 General Librofy

The General Library, GENLZB, contains the compiler-

inoeoenaent tret of a collection of general-purpo;c,

reusable modules which will be of use to a L k ororammers.

These sioduLes might include the followinq:

- dxta inout editinq

- file structure definition

- report qeneration

Georgia nstitute of Technology COBOL Workbench

[1K.

SectIon 3 FU4CTIONAL COMPONENTS P13Qe 74

TABLE 3.5.1-1

WORKBENCH LIBRARIES AND THEIR CONTENTS

Generat
Apptication

Prolect
Ree&se

I I PersonaL
I I i Test C.U.
I I I iaMcro

III I I I I
__ __V V V V v V Vi

Deftinition of, I
CompiLer-Unique I T
Functions I

.. I I I

ReusabLe T T T D I
Modutes I

II I
C lest I T 0 T

Harnesses I I

It II
N Prooraasing T TI 0 I

Sketetons I IT _ _ _ _ __ _ I _ _ 1 _ _ __ _ .. I _ _

E Baseltine T T 0 I
Programs IN ____________-... .I. __I..-.--

NI

T Program RELEASES T I
& VERSIONS I

I I I II
NotationaL I I I O/T I
Shortands I I1I

IIII

Programs 1

..... __...... .._______ .__._1--._ -- 1 .-

T:Tested D: In Devetopment

Geor,3ia Institute of Tech:notooy COBOL Workbench

I!

I , let- Icawaul, 0 I

Section 3 FUNCTIONAL COMPONENTS Page 7b

II
I
I TABLE 3o.51-2

I WORKBENCH LIBRARIES AND THEIR USES

U~A

General Supports work on a Large
number of projects and ap- I
plication areas.

APPL~catton PrimariLy to support work in

a specific application area,
eeg.. payroLt, inventory.
etc.

PoetThe devetopment fit~p$ fora
I specific project,

I ReLease The documentation actuaty I
released to users.

Personal Anything that is not ready
for public use# eg.o has
not been tested or is not
intended for public use.

Test Test harnesses.

CompiLer-Unique Macro Compiler unique macros which
!I are used to replace macro~catts of COBOLewbc in order

Ito produce code for a par-
Iticular compiter (C0BOLk).

M

Georgia Institute of Technotogy COBOL WorkbInch

Sect ion 3 FUNCTIONAL COMPONENTS Poor 7f,

G[PIL I cont a I s onLy tested code. New yoduLe definitions

may ne added to GENLIR uy instaLLation oersonntel only after

co.tlete testin o.

The "loouLes are written in CO.OL.wbc and contain no

conpiter-deoendent ref.rences. These modules may contain

caLls to nticros Ats .eLL as caLls to other modules.

ptic Aptlication Li braries L

The , !,Licat ion Libraries .Ire special purpose modul.e

"tiorri es contfnfnnq odules oeveloped for specint aln -

oduten or n ackaoe of eodules developed for inventory

control. Fvery appli cation itil osess rit own Library*

-1PPL IP-nose 4e. ;i. APPL IB -PAtYPOLL or ADDL n- NVE'N). A -

P~lication Libraries contain only tested code.

00, ule r2 A r used to isoti te any frer uently performed func-

tion or ta sk in ,v sinotc piece of t.odet to eliminate re dun -

ja ,a t c ori n; Iaf AJc h t aP.k s and t 0 1 D L if, r a In t enan-e . The

'nOdu e s i c tu~ded in the ADVIIcat ion L ibr~r ies are aevel oped

specifically for a rparticutar noDlicati n but may be ured by

other crojects as the occasion reauires. They are written

in C 0O9L.,wnc an1 must be both tested and complete.

Georqia Institute of Technology COBOL Workbench

' 2 L

Section 3 FVNCTIONAL COMPONEN!S Page 77

Tested Programmino Skeletons which are useful to a

particular aoptication and are written in COBOLwbc are kept

in the Application Library for the oarticutar appLication.

These skeletons may refer to reusable modules stored in

other Librarie%.

3.5.1.3 Project Libraries

Project Libraries contain reusable test harnesses* propras-

nina skeletons* baseline proqrams, and breadboard programst

all of which are developed specifically for a Particular

programminq orotect. The Libraries are named "PROJL18-proJ"

where "oroj" is the name of the particular project which Is

served by the library.

IS
The reusable modules contained in the Project Libraries ser-

we the same Purposes at the reusable modules kept in the Ap-

plication Libraries. They are developed sPecificatly for a

Particular oroject under development and should not be used

by any other Project since the changino needs of the

deveLoo~ent tean say mooify module catling usane or behavior

or eli fnate scee modutet altogether. The moauLes included

in the Project Litrary are written in COOL.wbc and are

tested.

Georgla Institute of Technotogy COBOL Workbench

le1

Sect ion 3 FUN"T IOAL CO.PONENTS Paoe 78

3.9.1.3.2 Ttllikne1

est hrnesses to be used in the testinq of the o uLes of d

Ddrticutar project are housed in that project*s; Project

Liorary. These moduLes are written in COBOL~wbc and have

t~een tester##

r'ro!ram |n,; sketetons that are aP LicabLe onLy to u

orticuiar pro'ect are kept in the orojectfs Project

Liorary. They are written in COBOL.wbc an f hove been

testel. They may t ll rodutes, which are housed in other

i. rit r i es.

The baseline oroqram as contained In the Project Library is

a tes;ted oroira'i, It is written in COBOL.wbc ana may

contain cLts to modules developed esecti3lty for the

oroject ani a.3intained on the oroject Library, as weLL as

calls to tested modutes contained in the otrSer libraries

descrioed in this section.

3• . _5.£I

Breac:)oard oroorams tha . are devetooed for a ParticuLar

0oJje are kept in the Project Library for the project.

these orograms are written in COBOL~wbc. They have not been

rlorousLy testedt but are stilL beLieved to be correct.

;eorgia Institute of TechnoLogy COBOL Workbench

Section 3 FUNCTIONAL COMPONENTS Page 79

3 .1.. Release Library

The Release Library contains those proirams which have Leen

released for general use. This includes tested asetline

Programs written in COOL.wbc ana the cooiLer-soecific

RELEASES and VERSIONS of the Basetline oroqrams which are

written in the particular dialect of COBOL (COq1OLo)

provided by the target machine on which the proqram is to

run.

3.5.1.5 Personat Libraries

The Pertonal Litrairies Are used by the programmer to store

any *,terial he is oevelopinq* They contain code in

COPOL.wtc or COHOL.k and will usually be untested. After a

oroorar or iooute is compLeted and has been satisfactoriLy

tested, it will normally be moved to one of the other

Libraries (eoo. General Library* Application Libraries,

Project Librariest etc.).

The inOiVidudL oroorammer may choose tc wake use of tht*

Workbench facilities to permit notational %horthand for

things Like long variable names or frequently occurring

statenents. These notational shorthands are stored in the

Personal Libraries. These Individual abbreviations shouL

be removed from the co~pleted code by expandinp such moduLe

calls into the corresponding code.

Georgia Institute of Technology COBOL Workbench

Section V rUNCTIOtAL COMPONENTS Page 80 1

3.S.1.6 Test Library

The Test Library, TESTLIOg consists of test harnesses into

w1hich the prolrammer may insert a newly designed nioduLe for

test nuroosest routines for the generation of randoS O-at a

ereetini srecified fariat restrict iont and eneraL-purpose

Outzut rout ines. Other TESTLIB functions Aqht vrovide the

cinabiLity to collect perforaance data. -e moduLes are

orovined in oroer to assist the proirazmter in the develoD-

oent of ne4 modu es.o

TFSTLIV contains only tested code. New module definitions

~or routines may be added to TrSTL111 Dy instaLtation perso
n -

~net onLy alter corDLete testina.

3.9.1.7 Compiter-Unique 1acro Libraries

The orkbench contains a series of Libraries* PtCLIBenf for

each target coRDiter n. These contain the text for the

COmLerO.-dpendnt macro expansions for the particuLar com-

pitrr n.

The macro Library witi serve as one of the inputs to the

eacro exonsion processor which will
translate the compiler-

indeoendent prooran text into COBOL code for compilation by

a oarticutar comoiLere Macros may call other macrost but

i ay not call sodutes or contain COBOL.wbc statements not

includeo in the coooiler for the given taroet machine*

Georgia Institute of Technology COBOL Workbench

Section 3 FUNCTIONAL COMPONENTS Pane 81

The macro Library contains the text which the macro Proces-

sor uses to expand macro calls into compiLer-unique

notatione It is necessary that strict naming conventions e[

usect as each MACLIB.i must contain definitions for a I of

the sae macro calls. Due to the nature of this orocesso it

Is LikeLy that the majority of macro definitions storeo in

any thven 4rCLI9.k wr -e emptyo

The necessary MACLI s wiLL De provided atong with the VorO-

bench and shoutd not be modified by instaLtation personneL.

MACLIHS contain onty tested code&

Within the workbench environment* a single module may be

maintained in a number of different versions. The source

code comorising the module *ay be maintained In multiple

cooies, each includinq (posvibly minor) changes from the

orininaL. This approach is not desirable for three major

reasons.

1) storage is used inefficientLy to maintain

ulttiDLe copies of (essentially) dunLicate

information.

2) . proqrAmmer making a modification may not be

eodifying the Latest version.

3) It is very difficult to remove a modification

other than the Latest*

I better approach is to store the originat module source

Georgia Institute of Technology COBOL ;Iorkhe -h

Section 3 FUNCTIONAL COMPONENTS Page b2

code only once and to record aLL modifications as

insertions, deletions, or replacements to the original file.

To sitoLtty operation by avoiding the need for special crea-

tion f.citlttess the oriaInal Module Source riLe imby be

reqardec as empty, with the first update consisting of a

series of Insertions. The workbench Source Control Facility

is suogested to provide these features.

3.5.2.1 Structure

Th.. Source Control Facility maintains a project's source

code in a nunber of data fites, hierarchically orqanizeco

Each %ocule ii naintained as an individual fiLe which may be

modified individually. Larger program fragentss white

storce. internally as a collection of *odule source files,

may te treated Iooically as a single file and modified as a

unit. This proces% of combinatioh of modular suhunits to

produce Larger units is carried upwards throuqhout the

project source Library, The PRIMOS file systef (see Appen-

dix 8) facilitates the use of this kind of hierarchicaL

struc'ure.

3.5.2.2 Features

reatures of t;ie Source Control Facility inc'jde

I) .reation of 4odule Source FiLe4

2) odating of 4oduLe Source File by inserting,

ieLetinot and restoring source Lines accord-

inc to information stored in the file or

Georoia Institute of Technology COBOL Workbench 4

Section 3 FUNCTIONAL COMPONENTS Page 83

provided as part of the correction s.'t.

3) AniLity to completely and permanently remove

correction sets fro% the module Source File.

4) leneration of a module version correspondino

to the modifications desired by the proqram-

ter and expressed in the correction set.

5) neneration of a new, uodated Module Source

6) comprehensive Listings notin any chanqes

tade to the vaduLe Source File, as .ell as

the status of all source Lines contained In

the file (inserted, deleted, modified).

7) the ability to group modules toqether into

Larqer units and to perform the above tunc-

tions on these Larder units.

In order to imotement these features* it is necessary to as-

sign each source Line a unigue identifier.

3.5.2.3 Status

The Source Control Facility is not yet fully implemented;

however, the facility parallels a number of commercially

available tools, such as CDC's programs UPOATE and MODIFY.

haonq the documents maintained by the Document Control

System are user documents. Examples of this group of

documentation are user manuals* reference Panuatst instruc-

Georgia Institute of Technology CObOL Workbench -

Section 3 FUNCTIONAL COMPONENTS Pa~ge 84

tions for data r6reparation and entry, reference material to

support feedback from users, etc*

3.5.3.1 Originat Document

An originaL document is identified bs version one of reLease

ont- of the documenlt* Since It is the first revision of the

document. the kist of ehangesx correspondinq to it will -I. consist only of insertiolls. Treating the oriqinal document

in this manner witl. make It consistent with thr other

rev isi ons*

3.5.3.2 Released Modifications

?odifications to a document are obtained by creating new

VERSIOJS for a oarticular release or creating a new RELEASE *
(see Fioure 1.3-1). Changes to the baseline program result

in the creation of a new RELEASE white changes to the

comoiLer-uninue VERSIONS of the baseline, Program result in

ne4 VERSIONS. The nocument Control System provides the

ability to mark revisions as to whether or not they are

available for release. In addition, the user can upon

reotuest obtain a list of those revisio~ns approved for

release.

Georgia Institute of Technology COBOL Workbench

-' 'Alt-

Section 3 FUNCTIONAL COMPONENTS Page 85

3.5.3.3 Latest Version of a ReLease

The Document Control System aLLows one to obtain any VCRSION

of any RELEASE by simpLy specifying the specific version

number and reLease number. Users can aLso obtain the Latest

VERSION of a RELEASE by simpLy specifying the desired

retLease or he Latest RELCASE hy specifyinQ the name of the

document.

3.5,3o4 Maintaining Comments on Documents

To obtain a document which is correct ond %atisliet the

needs of the user community* a means of obtaining feedback

from the user community must be avaitabLeo This service it

provided with the help of the Document ControL System. User

coerments. which may be either notes on oossibte errors or

suggestion& for changes to a document* are dated* idontified

by the user makinq the comment, and Linked to the document

to which the comment refers. The one responsibLe for the

document can obtain the comments from the Document ControL

System* act uoon them, and repLy to the originator of the

comment.

3.5.3.5 Working Documents

Documents in the working state can be identified as such by

the one responsibLe for the document. The Document Control

System wiLL then be abLe to detect that the document is a

working document and wit not give that document to a user

requesting a reLeased document*!I
Georgia Institute of TechnoLogy CO8OL Workbench

4~ .4

Section 3 FUNCTIONAL COMPONCNTS Page 86

Manegement documents are maintained by the Document Control

System in the same manner as user documents. ExamDLes of

this group of documents are personneL/team orqanization and

task breakdownt project buagetat cost and time performance,

project statust test PLans. etc.

3.5..1 Original ReQuirements

Among the docutents maintained by Document Control are those

specifying the requirements for the software systems* The

original requirements for a system are found in version one

of release one of the document containing the requirements.

39.5.4.2 Current Requirements

As the requirements for a system change, the document

containing these requirements wiLl evolve new versions and

possibLy new releases. To obtain the latest requirements,

one need only sDecify the name of the document containing

the requirements and the Document Control Syst-m wiLL obtain

the correct release and version. It should be noted that

the treatment of these documents is the save as the user

documents menttoned above.

Georgia Institute of TechnoLogy COBOL Workbench

Section 3 FUNCTIONAL COMPONENTS Page e7

3.5.4.3 Change Requests

Chanqe reqjuests received from either users or the prooonentL V organization for whom the awstem was designed are reviewed

by the Project management staff and then entered into the

documentation data base so that they wilt be avaitabLe for

consideration when the next major release of the program is

prepared*

3*&9 Approved Modifications

Based upon change requests from users or based upon changes

in the functions that must be provided by the data proces-

sing system, the Proponent or the proponent orqanization orI
*owner" of the system in consuttation with the deveLoping

organization wiLt review and approve modifications to be--

made to the system the next time a major retease is -

orepared. These modifications wilt be stored in the

documentation data base appropriatety Linked to those

ortions to which they appLy so that they are readily

avaitabte and apparent to the project team when the new

release Is pre~ared.

3e5*4*5 Maintaining Comments on Documents

The technique for taintaining comments on management

documents is identicaL. to that for user documents (see sec-

tion 395*3*4)*

Georgia Institute of Technotogy COBOL Workbench
- - --- 7f

.. ~

Section 3 FUNCTION4AL COMPONENTS Page 6d

I 3.5.4.6 Working Documents

The technioues used to handle working management documents

is identical to that for user documents (see section 3e~o3)9

3*5.4*7 Project Status and Controt

Since the Dlocument ControL System maintains all revisions of

alt doc'uments and alL comments pertaining to those

* revisions* one shouLd be abte to easily obtain the status of

a project. Since the Document Controt System possesses the

necessary Information to report on the status of a project,

it is responsibLe for providing this service. The user need

only specify the docueents to be analyzed* and the Document

Cohtrot System wilt provide information indicatino tht

revisions availabLe and the change reauesks which have been

acted upon.

IGeorgia Institute of Technology COBOL Workbench

6t

Section 3 FUNCTIONAL COMPONENTS Page 89

3.6 Di.ggLM PRODUCTION.

396*1 Program Pgoduct.±en

Program proiouction is a function provided by the COBOL coms-

piter and programming system applicable to the target en-

vironmentv The Workbench tools provide the capability to

produce a compiter-unique VERSION of a basetine progra3m

RELEASE; however, the only didtect of COBOL that can be

translated into an object program by the Workbench is

COBOL~wbc*

3964 ouagsn.Iillon Prgducila

To produce printed documentation, the documentor must direct

the Text Formatter and the desired printinq toots* The text

to be formatted is obtained via the chain from Document

Control to the Librarian to the Libraries and passed atorso

through the Formatter and printing toots to the device which

Is to print the documentation.

3.6.2.1 Text Formatter

Documents in their finished forms are obtained by running

them through the Text Formatter., This formats the text ac-

cording to commands intermingled with the text and default

settinas for those options not spetified by commands* The

Text Formatter allows the user to make either the Left or

Georgia Institute of Technology COBOL Workbench

Section 3 FUNCTIONAL COMPONENTS Page 90

FIGURE 3.6.2-1

DOCUMENTATION PRODUCTION

t _____ I_ I*** * '*j**° "

SLibaries ILibrarianI -o-- -- ! a.. >1 Lt. etl I

~* I

I I
I ocument
I ContrL I

4,,

*J

iocumentor I.....**''***.** > Formatter i
'* II

* A

"-* I I
*°******.e~eeoee..°.>,Printing I

, ITootl I

I I

I - -- I

., l erir;ted I
- ; I Document i

4 i 4.*
G I I Text * * COmL ond

I I FLo * * FLow

l I (sa*ec.,

c_..ec se)o (****0.,..

#.1

, "Georqita Institut.e of TechnoLogy CO8OL Workbench

Section 3 FUNCTIONAL COMPONENTS Page 911

right margin event controt the size of the Left and right

margins as wett as the too and bottom margins, and specify

heoders or footers to be printed on each page atong with

numbering of the Page* The user tan controt the Line spac-

Ing and specify the centering of specific Lines* In ad-

dition, specific words or phrases can be hightighted by bot-

I dfacing or snetinla.I

The abitity to define and use macros is atso avaitabLe in

the Text Formatter. This inctudes the abiLity to pass

oarametert when caLting a macro. This capabitity gives one

the abitity to orovide a set of standards to a group of1 :z::2;s:2 tis is one by treating macros to perform the

macros to the docusentors through specific Libraries*

Thus, the Test Formatter provides neatty formatted output

f ro* very unstructured input* By deLaying formatting to a

Later stage, one is abLe to enjoy a considerobte amount of

ftexibility during the entering and modification stages of

document preparation. This allows a document to grow and

change with a minimum of effort.

3.6.2.2 Printing TooLs

In addition to the text formatter, other tooLs directed

specificatty at the Production of prin~ted materiaL are

needed In order to produce documentation. Amnong these are

to~Ls to setctt the range of pages and number of copies of

Georgia Institute of Technology COBOL Workbench

S F- -.

Section 3 FUNCTIONAL COMPONENTS Pane 92

the 'documett to be printed, The documents may be printed ont

A variety of devices including Line printers and hard copy

terminalso Thut there must be toots to take the output

fron the text formatter and convert it to a form appropriate

for the device on which it is to be printed. For esamlpef

documents to be orinted on a line printer ne'ed to convert

- l~LL back soacs into sep~arte ti ne outp ut& with a form.s
control that does not advance the paper* These tools must

interface with the other tools avaiLable on the Workbench.

N

I

eth

tGeorgia Institute of Technokoqy COBOL Workbench

a jt -

Section 4 UTILIZATION Page 93

SECTION 4

UTILIZATION 0F THE COBOL PROGRAMMEROS WORKBENCH

As is perhilps evident from Section 39 the Workbench conists

of onty a few Ogenerat-purposem toots that are utitized in

"speciatizedu ways to Drovide the capabitities outt.1ned in

Section 2. This ftexibitity is provided by the very power-

ft Anld versatile Command Interpreter that controts the

operation of the Georgia Tech Software Toots Subsyste..

The paragroohs below are not meant to be a user manual for

the Workbench. Rather* they provide some insight into how

the system can be utilized to~ provide the capabilities

desired.

Georgia Institute of Technology C080L Workbench

Section 4 UTILIZATION Page 94

4.2 PROGRUAM PREAAIn

The variety of options that are possibLe in the use of the

Program Preparation Subsystem are almost Limitless* The

paraoraphs below provide some examples of typical or

representative uses of the capabiLities of the Workbench.

4.2.1 Produ.cing C0106 bodU~L& gtEr &

In the sitplest situation, the Workbench is used to produce

code for a & .I jJ,.i compiler ko (Note that It is not

netessary that k be a COBOL compiler.)

FIGURE 4.2.1.1

PRODUCTION OF A PROGRAM IN CO8OLsk

o COBOL II COfOLbk I
Programmer ----- >1 1--->l Standard I--->Program for

I Editor E nforcer Compiler k

.A' reusable nodule is prepared very similarly to any other

-: code moduLe, The critical aspect of a reusabte module is

its Interface to other moduLes, The production of a

i' reusable module differs from the production of a complete

system primariLy in that the interface behaviour must be

cLearLy and exactLy defined and rust meet the standards

Georgia Institute of Technology COBOL _orkbench

Section 4 UTILIZATION Page 95

estabLished for reusabLe modutes. Use of the standards en-

forcer is required for consistency between modutes develoved

by different orogrammers. New modutes shouLd be transferred

from the proqrammerts personaL Library to the project

Library onLy after passing the standards enforcer and under-

going thorough testing& Podutes devetoped by the project

shouLd be added to the apotication Library or other generaL-

access Libraries onLy after comptete test* once a modute

has been transferred to a permanent Library, any further

modification must maintain interface behaviour.

FIGURE 40202-1

PRODUCTION OF REUSABLE MOOJLES AND TMEIR DOCUMENTATIONI

ICode I COSOL~wbc INodute
Programmer >1-) Editor I---IStandards I--> in

I IEnforcer I COSOLowbc

Tex Document Documentation

Editor >1--) Standards I --- for
Enforcer M oduLe

Nodute
in -- '(GCNLIS or APPLISename or PROILI~ename)

COBOL~wbc

Documentation shouLd be produced in paraLteL, and shouloI

incLude information about the st4tu% of testing and a record

of any subsequent modifications performed or requested*

Georgia Institute of TechnoLogy COBOL Workbench

Section 4 UTILIZATION Ptge 96

The Workbench Kay also be used to Produce r.s kiifj code for

a 2jjj~~ com~piler k.

FIUr U *.22-2

PROOUCTION OF REUSABLE NOOULES IN COBOLek

I COBOL i I COBOL.k I ModuLe
Programmer ---- 1 -... >1 Standard I....> in

I Cditor I E Inforcer I CO8OLokI _________ __ I I _______1_____

4,263 Proucas4g A&W~ Progr .cam~s

Perhaps the most isportant factor in the preparation of a

baseLine Program is that the resultant COBOL.wbc program

rust be transportabLe to all of the target operating en-

v i onen t s of interest, The exact sequence of steps to be

foLlowed and the depth of nesting of caLLs to code moduLes

!nd/or reusable modutes is reaLLy 6 matter of Personal

orooram in? style, The Workbench wiLl support almost any

technique possible.

The basic form of the baseLine program th,t is retained for

maintenance can contain references to reusable toduLes that

Ar- vaiabLe for pubLic use (defined in the project, an-

Wotcationt or general libraries).

Georgia Institute of Technology COBOL Workbench

Ole(V ,

- --- I---7

Section 4 UTILIZATION Pat;e 97

4*2* PggjjJing MMf CgsniLgr-MnAJUm kiLg Lilkcutgu

There must he a complete macro Library prepared for each

target ooerating environment whether they are distinguished

by hardware, software, or other difference%* he can be seen

fro* the example in Appendix 29 macro Libraries can become

quite Lengthy since they each must contain a macro defini-

tion for every environmentaLty-unique feature even if that

uniqueness applies to only one environment* As can be seen

from the example, macro statteents can be utiiized to accom-

ptish severaL actions

1) Selection of one (or more) of several

stat.esents in the oriqinat program based on

the name of '%he target environment*

2) Expansion of a statement in the original

oro~jram which way pass parameters to the

%ac ro.

3) [Liminat ion of a statement in the original

orogramo

4) Do nothing (copy the orloinak ztatment)e

is FIGURE 4**~4-1

PREPARATION OF COMPILER-UNIQUJE MACROS

Systems~ ~ n ~~ acre$ for compiker2

Iyts > N tcrot f~or cos#'iter2
Programmer ---->I ToxtI

fa cooIKtt n

Georgia Institute of TechrioLo~y COBOL Workbenchi

tm ~ lS a AL11a.~~t.A~fa~=atwnnXn a

Section UTILIZATION Page 9e

It can be seen from Figure 4*9- that it is anticipated

that a system$ programmer will be required to Preiare

compgier-uniQue tacrosa

4*.2*5 ProAMIn, A 4fteadgkurdO Progama

A B~readcboardi Program is prepared in a manner similar to any

othvr program or modute with two exceptions:

1) !he emphasis is on preparing a

oroqram provioing a rjjgjLC Ii±.jj~jjij to

* system functiona~ty desired* not on rAeetin!)

itl user requirements or on Pertor*sance and

-fficiency,

2) The breadboard Drogram is not meant to be

portAbLe to a nuaber of operating en-

v irone'nt s.

As a result of the two foctors cited above, the developer of

a breadboard pro~ram ovitt make much heavier use of reusable

modotes even if they do not provide elatty t-he detailed

functionality desired and even ~It they are cooiter-unlouc.

The steps in the preparation and Processing of a breadboard

41 Program are basically the some as those required for a

baseline Program*

Georgia Institute of TechloLogy - COBO0L Workbench

-a777

ISection 4 UTILIZATION Page $9

49*.26 Mitjm MAaaLu

As noted above, the baseline program is prepared utilizing

gnzCOflOL~wbc which contains statements that oct as macro

catis to handle compiter-uniaue features and reusable module

*statements"n which are also expanded usingi a m-Ncro caIJ

orocedures It is important that the baseline crogra retain

these features in order to maintain its i*iteqrityo Any

changes or modifications to the baseline program must fellow

these sane starzdardso

Maintenance of the baseline proqraa is usuallty performed for

one of two Purposes:

1) To modify or increase the functionality ofI

the system as directed by the systept

orooonents, or

2) to correct errors in the program resuttina

from tooleat error% in the design of the

basel ine program or "mechanicat" errors

caused by the expansion and/or transportation

rhases of Proaram processing,

The first situation is a fairly stoadard situation ana

merely requires reworking the code in the baseline program;

however, the Latter circumstance, which wittl certainly occur

quite freauentty in a dynamic world of changing target en-

vironments, modifications of target system software* etc*,

will necessitate changes in th~e definition% of the reusable

module and comoiter-uniaue mascro Libraries#

1Georgia Institut* of Technology COBOL Workbench

-A I- -

Section 4 UTILIZATION Page 100

4*297 daintaAn±OI SLLLASE A" XLUSIfl

I There is actuatty no need to maintain a program RELEASE

Iother than the activitioss described above for the

s aintenAncv of the !%asctine Programe howeverp there will be

continual aitintenance on compiter-uniaue VIRSIONS of the

orogram to provide immediate correction of errors in the

design of the orooram as wett as in Its automatic proceshing

by the Workbench* Such changes kill be made directly on the

distribution '/rRSION of the Program In COGOL~k and will

orodvce MODIFICATIONS of VCRSIOIISo

4;4

40208 Summary

The best Sumftar,' DOoSSbLe is 3 figure relating the various

activities described abovee T his itiforw'atioii is oroViced in

Ficure 42~1

444

Georgia Institute of Technology COBOL Workbench

Section 4 UTILIZATION PAge 101

FIGURE 4.2*S.1

UTILIZATION OF THE COBOL PROORAMNMROS WORKBENCH
(Notes on foLLowing pages)

Programmer/ I ReusabLe ModuLe (1)
System AnaLyst ---)1 COBOL I --------

I Editor I

Program I I
I CompLete

I Nodules (1) (2) I Program (1) (2)._...Pg.. (1) _________

I" II II

, I Personal I IProgram
| ~Library I .. lProcessor

' I gasoline PON (1)

* BaseLinePg

IIProject I I
. Library (--IiI I I

Program IReusable
I Processor <
-I t) NoduLes

Systems I 5) M odules II
~~~~~~P r o g r a m m e r I . . . l! - . . .

II

Systems _______ Ap! a ij 2
VV

IProgram Reusable General II Text,IText IProcessor j< ------------- I Library I<--- "
I dtor I I (6) M Nodule* | I
I1I . . .II I

I asetinew Pgm (7)

.v RELEASE

Compiler- ! I I Release
Unique I Program ! Compiter- Library
metro I >---)I Processor I----------
Library I I (a) I Unique

,_o a Ins it t of Techno o y ,O O oeVERSIONn

Georqia Institute of Technology COBOL Workbench

-A 
N,



Section 4 UTILIZATION Page 102

Definitions of Various Code Modutes

Reusabte Rodutes

4ritten in COOOLowbc (or, possioty in special

instances, COBOLek). May contain references

to other reusabLe moduLes and/or compiLer

unique features in COBOLowbc,

CompiLer-Unique Macros

'acro definitions that provide the informa-

tion required to transLate references to com-

oitLer uniaue features into fuLLy expanded

costiLer unique code.

Compiter-Unique Program VERSION

Contains no references to reusable modules or

compiLer unique features. Hat been processed

so that it is a source Program written

entireLy in COBOL~k (ready for processing by

compiler lk* on tarqet machine K).

SBeasetine Program

iqritten In COeOLwbca Contains references to

compiLer-unique features and reusable modules

(written In COBOL~wbc),

Ii eB'eadboard Program

aritten In CO3OLwbc (or, in special,

instances, COBOL~k). 14akes heavy use *,f

reusable modules written in COBOL~vbc (or

C O'dL.k)o If no compiler exists for-

Georgia Institute of TechnoLogy COSOL Workbench



Section 4 UTILIZATION Page 103

COOL.wbc, the hreadboaro program can be

processed to produce a .,k" version for

executton of the Prototype syste,.

uiul l19 Lisr " .2.tI

1) May contain references to Workbench ReusabLe

'4odules and/or compiLer-unique features*

2) 'oy also contain references to PersonaL

ReuxabLe ModuLes.

3) Processes and removes references to Personal.

qeus-jote Modules.

4) Processes and removes references to Project

Reu24ble Modukes.

V 5) Processes and removes references to AppLica-

tion Reusable Nodutes.

6) Processes and removes references to General

Reusabte ModuLes.

7) ?, copy of the Rasetine Proqram wj nlj

cogtal. 4I a tlt l1 &aX ReusabLe KodutesI

At such calls have been expanded fuLLy into

COOOL~wbc* It may stiLL contain references

to comoiter-untaue features*

R) Processes and removes references to compiler-

uninue features*

Georcia Institute of Technology 'COCPOL Workbenchi4' -.- !-.
It ~i: ofoo~ ,.'7,u , ,,,o4,,iE.., o,,.,,



Section 4 UTILIZATIOU Page 104

4.3 D2CUaMN&TkATI PREPfAAION

Th prprto f-iia ocmnsi copihdb

m~eans of the Text Cditoro Text can be either entered direc- A

tky or copled fron other docusients which aLready exist

within the system. PossibLe sources for copies incLude both

oronrioc code anu text documents. The docuimentor wiLl.

normatLy onty wish to copy n~rts of a prouram or a text

document. This is accospLished by first copying the entire -

document and thrn detetini those Dortions which are not

desired* Since these operations are aLL carried out by the

lext Editor* one can rasity trim~ and mcdify the copied text

to suit the needs of the document bein3 created.

40302 Modify~na Douants

The itodification of documentation is atso reatized through

the Text Ed,,itor. The Operations avaiLable to the documentor

incLude insertion, detetion, and modification of text* In

addition, the documentor can copy, triuo and modify text

frot any desired source.

-cGorgia Institute of Technotogy COBOL Workbench

:4 .... --- ~



Section 4 UTlLI?TION Pane iPC

4*3*3 Annala1.isn flacuat±

It is x.treieLy likely that after a proqrai or teKt document

has -ieen released for generaL use th.t an error will -t

discovered or a place for improvement wiltL be noticede if

one %ishes to ooint out an error or make d suqqcstion for

imvrovement, one need only access the annotatin- feature of

the worktencht soecify the document of interests incLuoivn.

the reLeasc and version numbers* an4 specify the corment

concernino the document# The Vorkbench wiltl arpeno to the

document the name of the user generatinq the comment and

wiL then Link this collection of informotion to the groper

docutwent. Those respons16Le for the document witL !r abLe

to ohtain the List of comments pertainino to !ny docuentj

Act uaon these co'menti, and respond to those identified (is

responsol-7d for the comment.

The onnotatina capabiLity need not only be usec on prooratD

(: 3nd dacumentation released for generaL us. It can aLso be

used by the devetooaent orouos to aid in coordinatin i adl

Darts of a Large systen.

4*3* Prgdujj~ g petfi 1aicaana

Speific versions of documentation can be iontointd and

orodoced throunh the document controL faciLities of the

orkbench. Cocumentation is organized accorainq to A

reLease nuzber and a version number within a release. To

create a new version of a reLease, one must obtain the

Georriia Institute of Technology COBOL korkbench

...

!. 

A

.++m, " " '+,++'" '+ +' '++ '++++'+ +' , ' 4'+'°° . V " '+ +',+,,+++I4 +., 
+ , + + + ++" +. + ++- 

+'  ,  
" +•.+ _" ++. +Li+:=+, + .+ + .iL. ,:t,& .++ +.: -+, ,t ' " " +, + "++- ,|



Sect lo 4 UTILIZATION 10qe 06

Latest version of the document from Document Control.. Any

chanqes* ,iddit ions, on jn etion. can then be maoe to this

document by means of the Text Editor, "4hen all of the

nodifications have Deen made* tocu-nent Control is catLed

uoon to build a new version* if a new release is to be

constructed* one must obtain the Latest version of the

Latest reLease 4na oroceed as describej above* FinaLLY, i f

the first version of the first rcLea, of a oocument is to

- e nroduce-ls one: need only build the document ith the TeY-t

ditor and inform Document Control that the first version of

the first release is to be built. Further deaiLs coscern-

min Tocueent Control can be found in Anvendix 3.

4i
,1

)I

i Georkia Institute of Technology COBOL Workbench

IV



Section UTILIZATION Page 107

4#4 PI&GRM TESTING

TESTING A CO8OLowbc HOOULE

C01Oolebc CO8OL~wbc
Modute -- ) oduIte >- Test Outputs

Test
Input ISubsystem I

Text Date --- *> I

Speriat
Instruct ions

4*4*1.1I nput to the Testing Process

1) COL1OL~wte Source ,'odute

The testino Drocess Witt convert th.

COBOL~woc moduLe into successive CUIeOLoi

irodutes and test each amber of the resuttino

faxlty o# modutes.

2) 5OACLi'3.4, where i goes froA I to m

6eoroiA Institute of TechnoLogy COVOL W1orkb~ench



s;ection 4UTILIZATION ~ Paoc10

':ecessary to pertit conversion o f the

C030Le.wtc mOtfute into the corre'spond inj

COieLoi %odules,

3) ojccial instructions (Miodule's orovitej on

CS T L 1q)

- ~ establish 11i test en-

vi ron-ncnt *

-To control the test seoueflcineis

Ctc.

-to create test data nectina ata

docttjrat ion reouire~tents#

-To creotc test file; wmectinq the

tile f orro t specifications of a

nlven Pachine,

4*** Output from the Testing Process

1) uxeric values from test runs.

2) :iacnostic informatiun*

mo*no the special instructions ivictuded on I
Geornia Ins~titute of Technotogy COBOL Vorkbench

-4- 1



Section € UTILIZATIONP

tFSTLI6 wilt ue routines to coLLct ner-

formaone data and to trace e.xecut ion of

modules under test.

I %cceut the COBOL.*bc SourLe 'AoduLc.

It Is strongly recommerde1 that only thos,

nodutes which have passed Standards Znfor-

rer.uoc oe accepted as input. This may be

Acnieved automaticaLtLyt by caLtinu the stan-

dards enforcer as the first step in the test-

inQ: Drocesso or manuaLye by re'ouestina

project oroqraamers to submit only a;oroved

iodutes for testing.

2) Jsinq test h.arnesse, (modules) provided on

TrSTLIl produce an ext jj COSOL. bc

oroqrao.

,hat we mean by x test harness is a main

o ;pqrtxo expressed ,n Uii form of a mooule,

which serves os a driver to evecute an other-

wise incotete COOLowoc todutee Specific

capoaiitities and requirements of test hernes-

ses will be discussed ir a Later section.

;"i': '3) Tr;,nsthte the resulting COB0L~wbc progoram

..? IGeorgia Institute of TechnoLogy COBOL Workbenc_

1lk 7



Section 4 UTIt. IZA.AIOti P.ge 110

into COBOLek.

A't the lom'ent we make no ottempt to execute

' , Lewlcc 1hiLt it ry in fact be possibLe

to do so* and thus to test CO!AOLow C orouram%

directLy without conve', iion into specific

dtinLectse thi% approach Lends us into a very

roE'pLex orobLem jrea which is beyond theI

scope of this oroject, namely the problem of

verification. If we are to draw any useful

concLusions from our testin9 of a 0OaOLowht

orocro we mutt be a~le to verity that ,i

orticutar CCBOL.k program is functionatty

identicaL to the cri,2inAl COBOL.wbc prograsm.

A LL that we are note to show without dispute

is that a earticuLar COBOLsk vrogrnm was

derived (ie.t :ss A mcro expansion) fror the

origina!t COSOL.wb orogram* This is not tuf-

ficient to deftonstrate correctness.

4) Generate test data.

diat we want here are a set of routines to

ienerate random data meetino a iven data

,eetification. These routines

- could be impLemented in any

Language (need not be written in

COBOL)

Georgia Institute of TechnoLogy COBOL Workbench

L 
- I .+ ... .". ... +



Section UTILIZATON ~ %aeI!

-couto t'e implemented either as
* nmonui,4s (if writteh in CO1OLoubc0

or as separstc routines (in which

case there 'coutd be at Leasit one

routint* for each C050L.i)

- wovkd' he storea in TESTLI-

- acep anInput COPOL~uoc dasti

declaration divisions

-produce As output ranidcA r at a

Reetino the Input data cec~tara-

tion and the flLes structure

rquirements of the qliven targetI

%achine

5) rxercise the proqram koqice

In other woroso execute the CMLoi.. rPrograte

tlevetoped in steo% 2 and 3 athove usinq thle

random data firom step A a4 input* A. trace

routine to ensure that every Logic 1 ranch is

iporoqcl' wovtd 0,7 to m~ake~ use of thi, ' drnf of

nronroa Nmt,*hnt%" to ensure thnt tne test

c tse s oenerated by step repres~ent A n

idecouate test of the program Lolics

6) )Prive statistics on performa~nce of the;, I* ~iduLe being tested0

Georgia Institute of Technotopy COBOL ,oorkhench I



le~c t !on UY UIL.14'AlION' p~loe 111

TESTLIfl incLudes C(U3OLowtic moduLes desiqned

for the coLtcction ot performance data* The

ipropricstC modutenti re setected ana caLten

(macro catts) hy the tesit harness* P~er-

lormaince data which migjht no CoLtected

It rc Lutc Cs

C0 VEL t ie u r.e d

-.,oi memory used

-num~ber of iterbt ions

7) epe~t steos. 3 - 6 above for e~ch 'zOrGLi an

I coos from 2 to no

" fo

.......



Section b IFPLEMCNIATION Pape 11!

SECTION 5

IMPLEMENTATION OF THE OEONSTRATION WORKBENCH

An i oortant qoaL of this research project was empirical

:.uoies of the concept of the COBOL Programmer$s Jorkbench

and the imppementation issues involved. There have teen a

Large number of proposaLs to &chieve orogiram portabitlity;

however, very LittLe of this work has been reduced to prac-

tice. It was felt essential that a practical cemonstration

of at Least the generaL concepts be included in this

research project. Atthouqh it was not oossibtc to construct

a co~cLete version of the Vorkbench, it is fitt that t.e

Deonstration workbench that was produced cLearL)

enonstrate.n the feasibiltty of the concepts and i rea:

~~orosented as well it highlights the Probtem, that must "

ddres.soo in the oeve~opment of a complete 4orkhench system.

rh,re were four basic objectives for the deveLon*ent of the

desonstration rOBOL Prooramper's Workbench. These four were

1) Feasibility demonstration of the ooeration

rnCepts proposed i

2) luentification of the major problems that

! , would be encountered in the implementation of

a comotete Workbench.

.') investigation of the desirabte featvre of a

Georgia Institute of TechnoLogy COO0L 4orEruench

-A -



Section 5 TmPLEMENTATION Pagle 114

user environment for the Workbench,

4) Estimation of the value of the concepts of

reusobte Program tooduLes and maintenance ot a

singiLe oas'c-tine proojraT for muLtioLe tiorget

What w% attempted wds ii batance aPoroach toward mfakintl sofeI

pg-ocrtss in reachinn all of these notils. It was reco(InizeJ

ttit it i~ouLd not be PossibLe to impLement a comotc ver-

sion of the COiO)1 Proorammer's Votkt)Cnch with the time and

resources avaiLabte nor did thie research team feet that it

hao tufficient Information to attow it to embark. on a com-

oLett (SevelopImeft project* it was fet that the effort

coud be- uc moe uefutyappLieo to Laying solia around

work on wJiich a further project aimed at the complete work-

Dencri impLenentation could be based*

~ IGeorqiji Institute of Technology COBOL Workthench

4A
77"_s



Section 5 IMPLEMIENTATION Page 115

5.2 UXJft LMYIRflNflLN AM RIOfLS £W.IA.U

The research teap dat fortunate in having available for this

project an extremely powerful hardijare and software en-

vironment on which to imnplement tIke Demonstration Vorktbenche

The cousputing systems a Prime 4009 is one of the "Larcie" or

Omega* minie'aputers which rivajls mainframe systems as Lar~'e

as the IBM System 370/158 4nd 168 !or computational nowere

A further aovantaqe of this specific co,?puter systen was the

extredL~y Large virtual. nco1ress space avaiLabloe. (Howevere

there *ere L.imitations on the size of object rrolr~ms that

couldl be generatLd oy the versions of the LO030L cortpitcr

that were available during the earl~y phases of the project*)

The hnrdware, however* vrovides onl~y a oortion of the% er-

vironm. nt in wh i Ch the Demonstration ork')ench was

estibLished.

nT oneyeanc steeyosibl environment f a o the user

butnce a vo in exreel powerful. e onmfo the cone 110sstructh

teion oec ondfwae ThotssSpbort th [use of tne19ubsystem

bec. Teaat~lt fteGeorgia Tech Software Toots SussesIhch i ecie

bify telowa ndau~ in e eting the apediloont o

Getoyan enxittreelof Tehni ionmenqyo theO1 usr~ers

bu lo netrml Poeru enioin for--' th cntu-

tion of com'-' fie tha s-.r theus ofth susyte

coonvt in- th imlmnaino h-eosrto



Section 5 IMPLEMENTATION Pagse 116

tht Otronst ration 'orkbcnch.

5 U. rlui ina £BnulteL Ays1±U

The Princ. 400 computer system is a fairLy recentty

intro-iUCrd systet (1976) th~t fttills into the c~teuory of the

Large or megqa-minicomputer size* The Prime~ 400 shous strong

infLuences of the "uttics System~ in both its hardware and

software. It is an extremety nowrft minicom~puter pr'ovid-

inn an excetltent environment for software deveLooment

projects susch as this#

5.2.3.1 Hardware

The rhe 00 is of the Large mini or meaa-rnlni clAss ef

coorouterso It nossesscs a powerful arocessort Ladrge mair

memoryt Large virtua. memory, and can handle uo to 63 users*

Shired Code facitities And a mutt 1-rina orotecL ion mecchanism9

are aLso oroviided. The Prime 400 uses microprourammed Logic

and oossesses a writabLe control store.

j Tho Priie 400 vrcovides both a Larne real and virtual. memory.

the maximum size of D'hysicul. memory is qmillion bytes. It

4 1is incrementally expandobte thy P56K byte boards* In audi-

tion to main memory, a high speed# biooter cache memory ot

2x rytes is orovidcd.

Georgia Inst.itute of TethnoLogy COBOL Workbench

-~ .. '- -- ~'7-



Section 5 IMPLEMENTATION Page 117

VJirtuial memory is provided in terms of paging and seq-

mentatipn* The maximum size of virtuaL mem~ory is 512 miL-]

lion b~ytes* but each user program is Limitedj to 3?^ milLion

bytes. The page siZe is 1O?4 bytes; the seqlment size is

1241K L.ytes* and the maximum number of segments is '.096.

The P~rime 400 has 128 Drograv aldressabte 32-bit re.'isterso

Of these* 4 are used as oase reqisters, 2 are used as fto~t-

in- ooint accuiiuLatorsi anca 2 are used as fieLd address and

Lengjth registers* The remalnina renisters are used to

* controL 004~ 4hanneLs amnd hoLd the machine states of active

orocesses.

The Primfe 400 hardware provides a 32-0it arithmetic Logic

unit and 3?-bic and 64-thit integer arithietice A ftoatinq

point unit Is orovioed by mean& of microcodeo The foLLowiru;

is a list of some of the instruction grou~s ant, how they are

Implemented:

decimdL arithmfetit emutation

inteaer arithmetic hardwart,

A fLoatini noint microcode

ch'iractet strino emuLation

conditiondt branches hardware

LonicaL otperations hardware

tooicpt test and set hardware

orear~sm controL and 7umrp hardware

Geoejin lIstitute of Technotogy COBO0L Workbench
2 .4,* ,.;W,



Section 5 IMPLEMENTATInN Paqe 11

.ueue manaqement microcode

shifts and skips hardware

data move hardware

5.2.1.1.4 jjfr.j~i 9 f.LilU

The Prire 4O0 orocess exchange facility is provided througih

f irm a r that autotaticaLLy dispatches tasks for execution

and reorders those which renaino This is acco.pLished with

no software intervention* The process exchanqe facitity

iAg.o automatically handles the register twitching that is

needed as j result of a process exchange.

5.0, 1, 1 5 :afnkk_/2Vgut

ro - Lyoes of access olmoes for 1/0 are avaiLablP:

1) nirect Memory Access (OMA)

2) irect %ezory ChainneLs (P;lC) A
3) lirect Fenory Transfer (Dr*T)

4) 'irect Memory c;ueue (DMII)

There ire a %aximum of 32 program assignable 014A channeLs.

These -,re controt Led by hith soeed channel address

reoisters. They are used for high speed periphernts such as

fa,.t disk !evicese The staximum transfer rate is 2.5 million

tytes aer second.

The )IMC channels are controlled by channel address words in

the first -lk bytes of main memory. Un to 2348 of these

channeLs can oe provided& Their use is mainly for medium

soce t/3 trinsfers such as 4ata communications transfers.

The in xium transfer rate is 960K bytes oer second.

Georgia Institute of Technology COBOL Workbench

I~lk -4~~



Section 5 IMPLEMENTATION Pane 119

The VO'T channels are used =y high speed device controLters,
LA

eop., controLLers for movinq head disks, thAt execute chan-

net controL oroorams. The meximum throuqhput rate is 2#1.

miLLion bytes Per second.

The, DFO io-c of operation orovides a circuLar Queue for han-

dtinq coemunication devices* It reduces operating system

over.e ad by eLiminating interrupt handting on a character-

by-character basis.

Programs on the Prime 4CO onerate in a muLti-segment en-

vironment. This consists of a stack segment for Loc3.t

variaotes, a procedure segment, and a Linkane segment for

staticaLLy attocated viriahles anl Linkaqes to common data.

Stack nana-lement to. Provioed by means of ntlrdwaret and

orocedure caLLs are managed by microcode.

I

5.2.1.2 Standard System Software

The Standdrd rilme 400 Systems Software of interest in this

ProJect is the PRq;'OS Oneratino System, the PRIvOS File

System, and the Prime rCPOL Proaramming Syste.

5.2.1o2.1 -The -PR:Q _jjr n P

The oceratin.i system for the Prime 400 computer systero

PRIVOS9 orovides interactive, batcho and reaL-time super-

visory services within a sinute system. It can handLe uo to

63 concurrent rrocesses incLuding interactive users at LocaL

Georgia Institute of Technotogy COROL work1ench

+ ++ - -++ .. ,+ + +++ ++'+ ++. ++-,~- - -. + + _ . . ++



Section .i IMPLEMENTATIO; Page 120

or re.rote terainats, phanton userso and RJE processes. The

Prime O00 system contains a segmented and pp.led virtual

inemory with a 5? meqdbyte address soice and uo to I
menabytes of main memory* In addition# a 2K-bytc hipotar

c atc h rmemory is utilizea. R I RPOS ca n raintain a ait

capacity exceeding 2,4 billion oytes.

PRIODS is entiedded in the virtuat adaress sances of all

Drecesses° This results in providing access to any ooerat-

in- sy ste. resource in the saime amount of time as it takes i

user process to caLL a qubroutine. The multiple ring)

orotection system ensures that this feature does not result

in the operatin. system beinq modified by 'he users. .

4 Tht ,Allocation of CPU time is provided by means of t ime

slices, normally 1/3 second. Time slices are allocated on a

priority ov-tS with highly interactive processes receiving

relatively iiqh oriorities ond processor-bound processes bO-

ino .nven Lower orioritlese

STO .ni.ize pagino, multiple processes ore able to use

Identical oaqes of a shared procedure segment* These sharen

orocedures arf reentrant and thus remain unaltered by the

_roresses that use ther. A shareo procenure exists only

once en tisk and, when activet only once in main memory

regardIess of the number of processes usinq it.

Georaia Institute of Technology COBOL Workbench

-' 4



Section 5 IM~PLEMENTATION ~ Pad e 121

Process exchange? is han'!Led by a hardwar., dispAtcher

(picrocode) which manaqrs the Ready List* a ntinher of wait

Lists, ')e'ihoress ani the Process ControL Etock%#

process exchange is caused asynchronousLy oy haruwar'

Igenerated interrupts, fiiuttsq ano checkso and it i s c ause'-,,

I synchronously by a process executinn either the W1,17 or

INO1FY instructions. the dispatcher also manaqcs the

processor's Live regjisters so th-at sets of the reqisters con

be assignea to elffcrent processes, anti thus the nm'ec to

a counter which indicates how many times an event hnis oc-

curred without helm;- serviced by a orocess or the number )f1

processes waiting for an event deoenalrno on the !tin of the

nusnero The seconi wora contains a Pointer to a '4ait List

of oroce'sses waitinq for the evert*

The virtuaL address soace is aroanized as ruLtioL-! seisents

each with sikty-four (64) 2V-byte otqgese A virtuaL d,dr es

consists of a scaerent number, a p~ge number, and a word or

displacement nuiabcro Physicat address can be obt.~ine by

means of segment tables and page maps which are nuintained

in main nem'oryo The systen uses demand paning with the LRUt

reotnceiscnt schetes To soeed access to memory there is a

-F IGeorqia Institute of Technology COiOL Yort hench



Section 5 P-mPLEMENTATION Paoe 122

se~rent tathLe Lookaside bufter which holds PhysicaL page ad-

dresses an:i a hiah soeeo cache mem~ory which contains the

most r ec ent memory references. T o sa t is fy is memory

refvrence, the cache memory is oddressed on the basis of the

wor,1 number of the virttuaL address atnd th- seament table

Lookaiside ,,ultr is consulted to determine it the worrn ob-

tt nea trox. the cache is the desire,$ once

50.1..2.Z 2r.iE i:

CO.10L. on t- e tmrite 4.00 system is based on the ANSI COBOL

* Y3?S-17 standard. Programs up to 32 miltion b~ytes can be

sunportede ALL An';! 974 CO.POL. files ortonized as INJDEXED or

qELAliVr are estabLishec' as MIC~AS ('41uLtipLe Index 13a ta A c

cess 1St -r) f It!!S. 11 41tOA file Can be ticcessed by trrut-

tipl-! users in a scatientiat or ranao-n manner atnd can have

Locke. soccltied at the data record Level to resolve

concurrent usa{2C confLicts. Up to six keys or key synonyirs

can oe use!f to nerforn a DartiaL lte seArch.
ifi

Pris-: ^Oe),, inpteientst to A minimum of Level It the

nucL.sus; table hondLinno sectientialt relative and indexed

t/1. Li"r~ry; ;ni interproctrai communications monuLes. The

de u- -oouLe is imotemented with the F~.V.IC ThtACC, RFSVTI "'C, anid EXHIBIT NAPE* feaitures supported in the procerure

diviSion. The Level? features which are irptenented arec

the foLtowinq;I I) STRIrK /tYVqTR INC steltersents.

"I :' -onfitionaL. exorcssions:

S~) Conjunctive ooerators (an'i or, not)*

Groroia Institute of Technology COBOL workbench

*- -A:



Section 5 NLEMENT AT I ON Page 123

:~) Retationat opera t~or <: ) C not :

not No not 09

V) v'uLt Parenthesis supports

I) ImoLied subjects an retationshicss

C) Nested Ir statemients*

5) ALTER stite~en t.i

6) COMP-3 pack decimate

7) CO!FPUTE with m!u-tipLe rec~ing Oietds.

P~) O'fRF3RM VARYING with indew.

10) ALTERNAT RECORD. KEYS WITH DUPLCATES for IN~-

IYE fiLes.

) .s-ries or r. e~ of vatu-,s in Level 8 con-

5.2.S.2.3 ThlL Pej5~j . £Ll 11111%

Tht- PR1'MOS ootor; tir.' systen for the Prime 400 com~puter sup-

ports s one of its strvices a f Lexibte, hierarchical Me~

System t?'al 3rviS,5 us('rz with the ftilty to m.,intain

tartic o'j.antitios of data in an orderly, Loaicai mdnner. *f br icf ove'rview o f the f i ie s y st e -% s capAML i tie's it n

features is providedi in Anpk:ndix 69 It is somnewh~at tutcrint

in naiture -ind *!oes not attrnt to cover aLL of the .zdaitabLe

fe-itures, nor to present the detaits of iympLe~cntation,

M4.



Sect ion 5 IMPLrMENTATO Pace 124.

5.2.2 I Izaraix I&"~ Software TouLz Igbsyste

5*91*2.1 GeneraL

th( Sa.tstve consists of a comitrafl!J interp)reter that sup-

nor'ts easy interconnection of t~ro.arazmst a Larne coLLection

o f softwdr,- to)L%v -~i d t he capahility ior d'e v e I.n 1n .

cuslo! iied tootse It runs a!; a coLLertion of user ororraits

kunt er 't zin .ro ve rs ions of t he PRI vas I V ind V opera~tin~

Sys t #.- t hue. ret.-inif1n iLL secuity :orovidecd by PRIPOL) xs

w.eLk % a 3L 1.o.i ne us er s t o S ono re t tI s-i, y s t e . if they so

acre tvef SO% the0 'ub sy &t em i suf Iic tent L , co--

orpens Ive t o cjer i t ur ofI t he cociiut er w it hout ii workiJn 4

i no ( c te Ol %C

The concecp ! usei ill the ' utsystcm are nerived I roo the text

fj~ !Wj Crnihan 761. The 'ecorglna Tech Software

Too~g lutisy-,tc'm hio.evert nos undergone devc~onment t1hat he~s

arreatty extendiea it beyond the st.artinc. noint given by the

took. ror instf,rcv the lcwt rdjitor bi, heen exnanded into

A futLl-screen; rOT editor* ann tnO Co-Mdin' Lanosagce has

Deco-C a sm.,"rset of that orovided i'y th-' Ltkly op'rratin.4

Georaia institute of Teeno~a COBOL Workbench

1 _____________k



ISection 5 IMPLCMENTATI01I Page 125

59., MSajor Components and Faturts

The mai~jor romponents ani feature~s of thp Subs)steR are .

!l) )n~ii Comtnd Lne Srctures

C) CxitanLrites~c
1) ~Cocntro tucu

t) Notworko of Cooperatin~ cropramr*

Q)'etfo~r ("RationaL FOARIAN" - o Prerocessor)
X) liodern ContrcL Structures
t, ) cree Fori.6t ! ource Celde
C ) si c Xa cro -apab I tI ty
4) Long V~riabke Nadotes

C. etiuvqnr anca Perforff-ince Menitn~tino

T txt

x~ utt-Scrren vtrtioi
') Lint-Oriented
UIn-t ine Edit Ing Cipnbitity

0) Iutotatic Ifyctnet.at Ion
t "iscros
t) In-Line Functiors

A~; Atcess to Reference Fanuat
:) Short Usage Sumeary Avaitabko

g;.r t ec Too L

C ort and Comp~,4 lson

Georrnio Institute of Tetbncooy COIOL '4orkrlerich

-- ~49



Sect ion ! ~IMPLEMEITATION Paoe 12o

5.*3 Q IZA.UI2I 2E I. . UNSTRLLQO "jUU

Co-cettalLy the or:,anIi.tion of the 'Jeconstration ,*orkt, nCh

is quite s Inn Le. It consists of the totLowing r,Jor cot-

Ponent ~

1) The PQ0a4C 400 Compute~r S"yster.

T The PQ 1 -*0. Ooe rAt Ino Sy st im

3) 'he '-eorcla Tech Softwhare looLs Subsysti.

4) collection u1 *ttware TooLs comnand fites

The t-ist toimponent ;'bove tronsforms the total environm~ent

fror a gelnernL ourpo,;e support environm'ent into a uystLuim

which aitll orovide the srecific ca~aoiltitivs *f the COBOL

Proor~onmerts dorkl'encb* I si th is soeclt i rcal the rceiL

nower of t's oftwara Tools Subsystem oruvell invatudote to

A cosqual or non-systims oo ronncr user of the 'Aorl&,-nch

j ocs riot noed to ser the inotVidJUAL com~onenfts kistezd jU4Dvve

It is ilso 1tighty unti'cety in nortmat ure that a casuaL user

wotsti need to ey )Anc or understand the contents of the' con-

ntone files or their overation. One of the ext re'ety useful.I

feiturps of the -oftvare Tools lubsystem is the b i i ity X 0

t re,,t Ve etu t -lb I co rmand fi Les in the same ! anocr is at,'

other file, and f I tho u-,er sittino at 'As t crv i, L t-ntct-s

the n i-e o f that f iLes then i t w ikLl be bojtoiatIce)(L r

C Ie c tst Cr, t~'is ittows us to define a ri u tIIi z e e ~v-reL

s I, *Le n!mernin 1f ut conean(: eses for ut iM)itioi ty the i
MOjOL ~ro iraii r I t i s atso the extremfe ft~ifbility

Gearnia Inst.itute of Technotoqy CORDL worht'ench
P- ~



Section 5 IMPLEMENTATION page 1j

orovided ny the comm~and interp~reter- tha~t provides~ iar en-

-vironepent lia t w i LL react t o any S t yLP o f prrtrim i no,

le s ir eI i y t h r o 4r amtr.

(owIs Institute of Technotogy C0t60L 4rkl-encJ

7 Z,



Sect ion 5 !,'PLrMENTAION Page 1P?'

5- 2ELIA112 2E 3.UL MLUStB.A1JI2 WQRBEflLH

n olir t y of aDeration by the usur has tien one of the

pr dar , o tlectives in the esign of the 4orkoettch. Th s i

one irva in w.hich we feet that the research oroject has been

e~t rcmedy nuccessfut.

As oientioned abovet the aorkbench user invok,', the service

desired y merrly qlvinn a uingle name command to the com-

mane interpreter interface. owevero at the tome time, the

orojr 4 mmer is at!, to cFante or modify the sl:ndard opera-

tion of the .orkbench by ouiLding personaLizeo comnand tiles

r en erinj sinote ore' orinitive co ran3s to the coaranI

interf,ice.

"n- rf trh' rritary foundations for this fLc hibitity Is the

st iIA rd 'l te tructure for a t , fiLe. create ,= oy the rork-

,e nc. * e;aruLess of whether a file * created and/or

,ICo C y a co=mand fil e ooeration or tvy individual

Sofl'u rr Toots co- manast it retains it% stanlril or-

nini.itionj ino therefore can be easi y integroteot

Loncatinaterlt or oDPrated on with other fiLes in a uniform $

Georola Institute of TechnoLoqy COBOL Workbench

~Ila



T

Sectiof" 5 IMPLEMENTATION Page 129

5e5 MAJOR PRIULLU ELMOUNTIL2

There were actually onLy two major orobLems encountered dur-

inj this project ands unfortunateLy, neither one has been.

W SoLved completely. One of these major proLlems pertains t&,

I Pronram Preottrat ion, white the other concerns the 'ocumentA-

tion Siuosyste..

The concepts of the Prograr Preparation Suthsy!;te~i have becn

impLenented and 4inoLy !emonstrjted for bjoth tho'ir power and

*us'efu~ness, The major impediments to comfoeteina an

ooerbtionat modeL of the orogramminV sunsystet are:

-The definition of Workbench COBOL (CO80L~wbc)

Th~e definition of the COBOL Progrd.amet's En-

virontent

COPOi. nroiraru'erst as a aroup, have oeen very 51.0w to

utiLize automatic progromminq aids, even those rudime'ntary

ones presently available to theme During the course of this

studys extensive conversations have beer; held with key per-

sonnet in several Largle COBSOL Drogrft..inl qrouns. In -tmost

I aLL of these meetings the same conclusions were reached.

I Since 080OL crooramrmers have had so littLe exposure to
automatod software tools, they are not abLr to provicie any

definitive quldance as to what wouLd be uselut for them or

even what they wouLd Like to have available. On the other
han~ds all of these programmers ;dmit that there is a high
potentioL for increased pro~ductivity if such tools were

Georoia Institute of Technolony COROL Workbench



Section b UmPLEME14TATION Page 13U

avaitlble. It appears that the only approach that is going

to work in soLvinq this problem is to deveLop some specific

v COrL v ro rmeherts environment incLuding specialized tools

such ,VS custolize'l rcreen editors. copy-from-Litbrary

catabti it it's oro~jrati n steletonst f lL-in-t-e-nLanks

technioues, etc*, and to try out these specialized tools

with COtPOL oro~ramers in an operation environment.

As has been well areued earlier in this reoort, there is no

desire to esinn a new lanauage for the use of proqrammers

oreoarinn transoortable COBOL programs. Rather, what is

desired is a lanuaoe that is as close as oossible to stan-

dard COBOL with devihtions einzn -aade only to accomodate

those Absolutety essential requirements necessary for

oortabLty. 'jr studies during this orojectt however. in-

dic te that it does not a'oear feasable to incLude the

entire COBOL standard in 4orkbench COBOL* It does not ap-

oear to us that such an extensive Lanquage is at all neces-

sary. Thu real ooal in the design of dorkbench COOOL is t-o

nrovide 3 Lanquaoge powerful enough and rich enough so that

experienced COBOL Drogrmters can easily and efficiently in-

oleen: coerational COBOL data orocessino systems. There

have oeen a nutber of studies Prepared on the development of

oortatde COeOL subsets. HoweVert it should be emphasized

that that is not the aooroach beino taken here. What is be-

Ing c'one here is preoaring a "comDlete" COBOL langquaqe where

those features that have to be tailored to a specific

cooiler-unioue environ.ent are handled by the proom

Georgia Institute of Technology COBOL Workbench



Section 5 IMPLrMENTATION Page 131

processors in the Workbench. The init al studies th3t have

been performed in obtaining this goal have focused on

identifyingi what features of COBOL are utiLized by oroqrap-

mers in the execution of their task. It aoears that this is

a vaLid approach to this probLeri and all that remains to he

done is to utilize a broader sample of Drograms and apoLtica-

tion areas in order to obtain hiqh confidence in the

vaLidity for the design of Jorkbench COBOL.

l The.P Last maljor problem' areat that was riot completely soLved,

during this research p~roject was the selection of a Method

to store and vroduce various versions of a document that is

undergoing continual change bnd revision. The basic ao.

proaches to this problem a re described in Appendix 3. This

is another area in which it appears that tore detaite!

knowledge of the environ.ment in which the system is to !1C

utilized wiLL be required before a specific implementation

technioue can be selected,

:II4

Georgia Institute of TechnoLogy COBOL workbench

AT l



Section 6 SUMMARY Paqe 132

SECTION 6

SUMMARY

Thit. reseorch project has been successful in achieving its

QoaLs in the study and development of the COBOL Programmerts

Workbench* The concept of the Yorkbench and the

capalLities it provides have oeen shown to be quite valid, A

nc the Demonstration Workbench cLearly iLlustrates the

feasibility of imoLementing a complete, fuLL-scaLe COBOL

Programpergs Workoench. The Workbench siniLarLy supports

the oeveloonent of breadboard, prototype systems; however*

it should ?e noted that investiqation of the value and

le-isibility of the use of breadboara systems was not within

th,' scope of this project.

ALthouoh the conceot and feasibiltity of the Wnrkbench have

been verified, a larqe amount of work remains to be done

before a complete Workbench could be implemnted. The major

areas in which work is still required are

- Co moetion of the oeflinition of Workbench COBOL 4

- Compt-,tion of the definition and design of the

COBOL oroqrammer's environment

- SeLection and ieptementation of the technique to

be utilized to maintain ana generate various

versions of docutmentationo

Ono of the requirements necessary to support this fLrther

work is Access to several major proqramminq teams and

cooperation from those teams in ohtaining actual usage data

Geornia Institute of TechnoLogy COBOL Workbench

* ,~-: ~7Law~-



Section 6 UMR ae11

and informition a~bout the present ioro-;ram deveLopment ;jfld

maintenance environments*

4

Georrqia In'stitute of Technotogy COBOL Workbench--

-:4 -1 1



REFERENCES Page 131 Al

REFERENCES

App~ield C(ata Reseiircht It& fjj. e R
Pub, N4o# PhIIL, Princeton* New Jersey: AopLied Data
Pesearcht !nC., 1971.

AOplied lata Research, Mea.O2 tjsj g JLrIJina voL. 1, Pub-
?io. D50IV9 Princeton, New Jers~ey: Applied Data
Research, Inc., 1973.

AppLied Oata Research, ! 1jUzg .t1iing, voL. 2, Pub*
Nso. P5501', Princeton* New Jersey: APPLied Data
Researchp Inc*% 1973.

Aop1 ied Data Research* 21jr 2Uj jg !11 ,0L Pub. No*
P206KM, Princeton, New Jersey: AonLied $ata Research*
Inc*$ 11730

sachusetts: Cam1bridge University Press, 1977.

Cri~ffords J. Cot Jr., Curry. R. W., and DeCarti, Pt A#*

lit U.So Army Comouter Systems Com~mand Technical Report
U'ACSC-A1-7T-089 Novemo3ero 197i,.

Cur r y Rot. 1flZULjjjA lulj Znf liigt .1yI
19~ j, US. irmy Conpouter Systeqis Coo~tarnd TechnicaL

Pcoort USACSC-AT7T-04 Anust, 1976.

Denike, Tot, moltand, Aot Ward* To, *,nd DesaitHo 12..1 ~jre

Comouter Systems Command Technical Renprt U~kCSC-A7-77-
11. June. !1977.

Pub. oo~ AA-17"7C-TC9 "aynardt M ssachusi-tts: DiqitaL
coulolent Corporation, April, 1977o

Par~yl I* Trotter, Leonp-4oraO ticLkis, and Fife, Oennis d*,

*Thre,)u of Stondares Speciat PunLication 500-149 Aunust,

Ivi.c, Cv~in Los "TI'e Program'merl's 4ork'iench - A Ma.chine for
Softw-re ",ewlopment,"s r s-I~~1a i 21]
(octoh'er, 1917): 146-753o

Georqia~ Institute of Technotoly COSOL Vnrkbench



RE2FEREN~CES Page 135

Kerriiqhan, ~r ian W 9 and PLauger, Po Jog j~jj. 2. %
Refsdingi Massachusetts: Addlison-WesLeyt 1976.

*PRIME Computer* Inc., taj.MC £Q20Q ft2~jtj 2u~ Puh.
No. P')r3Oi69 Frjininnhato Massachusetts: Prime Computert
Inc., Seotetbere 19789

Reilwinev SdmueL T o Jr., "Ving COBOL Macroprocessing fcor

St'-at, 19799 pp 59-60o

Rochkinat marc Jot "Thi Source Code, Control System*" jE
1LAS4.I..012a 2±IM.4gZk f.21-ingtIf S-1 (Decem.ber,

1975): 364-3699

Sorditto, OonaLd A.9 It Pr ogr.a~frj jj COLIjL Rfertnf
fljjZU&k' Fngtewood Cliffs, New Jersey: Prentice-HaLL,
Inc., 1978.

Turner, Dennia; Jet "An Integrateo System of Toots to Sucport

the 000 Coison Lanauaae," 5jgj Uo. o Arr 6~q..UM
gliumv!A~ 25-27 October, 1978, .S ryC9ue

Systems :0'mand.

University of Floride and University of South Ftor4dje,

2P.U-i 2.L1I. 2 " l kukari J.a 0 1 ot it~ Y rl
allndr. U (!.UizW1.Laliit U.S. Army C^o-Ipute.r

Systess Coiimard Interim Technical IVorking Report*
February, 1976o.

Wait.r, W. %!, "Hints on Distributing Portable Software*"
2gjj~i~r s.±Iit j gfjWW n 5 (1971 A: 295-30ou~

Georgia 1nstilute of Technology ,*C91 p~es'*

4 .......4



Appendix A GLOSSARY Page 136

APPENDIX I

GLOSSARY

APPLIB-name: A Library file containing mdcro definitions
(in COPOL.wbc) of utility routines and modules cotftronLy
nt-euer' in a particular application area. Typical exam-

plea include APPLI3-PAYROLL and APPLID-INVEN.

Base Line System: The COBOL.wbc prooran that define! the

d jj~ed COROL.n programs for the various tarqet

Breadboard: A progri developed primarily as an ex-
norimentaL sodel of a production proardm. rasily
modifiaoe to permit both requirements changes and

eventual obtinization.
[See prototype3

Capability: A task, purpose, or function which mav be
carried out in some unspecified mariner by a Lannuaqe or

system. An example of a capability in :OUOL is the
ability to sort ftiles according to the value of a given

field; this might be performed by the use of a SORT

verb, oy a call to dn external proceduret or by the in-
fLine Inclusion of the appropriate COBOL commands.

COBOL Programmerts Workbench: 4 comprehensive collection of
capabiLities and facilities to assist the CQBOL
crocammer in the develooment and preparation of com-

olete C090L systems 'uooorted by uLL eocumentation.
other capaoiLities of the Workbench are to facilitate
the oeveLooment of "orototype or breadboard" COBOL
oro;r cs from a collection of reusable COBOL modules
and to facilitate the preparation of COBOL orograms

that may be easily converted to a number of different
target Machines each having its own unioue dialect of
the COBOL Language.

[Set program preparation system& text documentation
preparation; document control system3

COBOLoccs: Common COBOL Subset* This consists of those
elements of COBOL common to all COBOL compilers#
C090L~cCs Is not sufficient for the devetolment of
useful solrams. COOL.ccs is incLudea in both
CO=OL.deo and CO50L.wbc. COBOL.ccs is a proper subsct
of COP'OL.

COBOLodemo: The initlat approximation to COSOL.evt. As

COMOL.lemo is expected to approac;i COOL.owc aver times
distinction Is sade between the two Languages only when
necessary for a clear understanning of the difference
netween what lhg.jl be Included (COBOLowbe) and what it
his been able to implement thus far (COBOLodemo).

Georola Institute of Technology COBOL Workbench



Appendix 1 GLOSSARY Paqe 137

FventuaLkty COBGLedemo and COBOL.wbc will hecome
ienticaL. Note that COBOL.oemo is not a proper subset
of stindarc COBOL!

COBOL.i: !efers to any member of the aroup of COBOL
diLectu iccepted by target machines.

ISee COBCL.wbcl COBOL.b']

COBOL.i Program: A compiler- (and machine-) dependent C030L
program. Refers to any member of the family of
orogramc defined by a particular COBOL.wbc orogram.

[See COBOL.k program3

COBOLek: The dialect of COdOL associated with a given COBOL
compiler k. Programs written in COeOL.k mby not run in
a different COBOL compiler without modification sinve
the dialect may contain compiler-dependent features.
[See COBOL.wbel COBOLei]

COBOLek Program: A orogram written in COBOL.k, A nor,-
oortabte program.

CSee COBOLewbc program3

COSOLewbe: A lariouage for the deveiopment of port~ole COBOL
proqrams. This consists of COBOLoccs plus a collection
of macro calls givinq the programmer the ability to ex-

prvss comoiter-devendent features in a compiler-
independent manner. The Workbench expands COBOLewoc
into the COBOLok of a target compiler k. Note that
COOOLewbc is [.1 a proper subset of standard COBOL![LSo# COBOL~il COBOL~k; COBOLodomo] rSee also Appendix

: 2; Apcndix 7; Appendix ?I

COSOLowbc Module: A macro which expands into COBOL.wbc coOc
defining a commonly occurring function or action. This
permits the proaragmer to develop rcVagtAtLC sections of

. Codes COHOL~wbc module definitions are included in the

following Libraries: GENLIB. APPLIB-namee PROJL16-nae, TESTLIB.

COBOL~wbc Program: A proqram written in COBOL.wbc. A
program which can be easily transported. Consists of
C05OL.ccs statcmentse module caltls and micro calls.

Copiter-Oependont: gritten in a particular COBOL dialect
for compitation by a qven compiler. Cannot neces-
sariley be comoited by a compiler written for a dif-
ferent dialect. It is possible for a nrooram to be
conpiter-dependent white beino 0achine-independente
[See nonportabL.l"lechine-dependentI COSOL.k1 diatect]

features unioue to a qiven COBOL dialect. Can -e

transported easily. Usually designed with portability
as a major goal. 'ust be machine-independent.
(See portableS machine-independentl COBOL.wbc]

Georgia Institute of Technology COEOL Workbench

S.7,



App~endix I GLOSSARY page 13R

Conversion: Ttie modification of a program written in one

COB OL dialect !or execution on x. machine acceptinga

different COBOaL diaLecto
[See portabtel COSOLowbel

Deli vered Program: The C08OL~k nroqroa as it wit rut- on
the" toroat machine k in a oroduction environment* Th :
r:rogr,)iT as intended for use we the customr or oth~er
eno usere At this pooint the Drogram soecifications &re
f I %ed unt i t the o riq Ina t COS3OL. wb t; protqrdm I. s od i iea
ano1 new C-,',Q e code 1. delivered.

[See revision]

Dialect: The oa rticuLar COR OL %yntax required ty 4 civen
CO;)OL CON oitc r. 4Lsov those Language features %up-
Darted by that compiler*
CSee CO8OL~k; COBOLowbe; machine-dewedintl compiler-
dep~endent

Document Control System: ,Maintaint each program and each
revision, or version thereofs ai well at any related
text eocumentso ontine in an chsity accessio Le &nd

Element: 4 ch.ivacteristic of the Langvaoe ds nearted by the

,1974 r.- 9OL standarde

; Feature: A' char~cteristic of the tinquage as impecmentedl by
ja jomoi--r on a spezif1: nechine*

Fpnctiena1 Testing: TestSnR to ehow the funct1ana

e(104. tenlc of each of the famity of COBOL.i -modules or

C Se verolono orogran fartly] ion

+ O NLIB: A ;=inr~ry lfite containing .Mdcro definitiont, Nhichdef3Qne utiity functions dnd ,toduLes of enera, us-*e t.

ithreviiit4on of the trooram-o section* such as
Diprov4ed ogy HrTA-COBOL k ShouL conta n only jl u

thAcro reft tions wrtte n io CtOL.oct
rHEL tomsnd: in-Lnne docuentat ion orovtded for the

naO userch user in the fore of a quided tutorLs

qantne-Ot oLndent : vrtten uu4n) hkdware and oderet trig

" Di syste features ui4oue to a particular machine* Cannot
.1e, i executel On a lochtne with aaffer-nt features,
",:rte5sariy compiler-.eoendent as well due to the neeui

Docu mnt contr lir to ~oinacco s to the harlwarn and

onerttij system features, l an
ia Sev nonofortarltel fomLer.dependentl C0BOL..I dialect)

CGeerl nt: iu of co Tetcnooy theO Worke2 d e dbenth



Apoendlx I GLUSSARY Paoe 139

Machine Environment: The combi-,ation of hardware and
software features (incluCinq hr,,ware cdaooiititst,
operating system features, and cL.p)ler didkect) which
define the environsent under which a oroqram is to L 0
run* In particular, those features .hich differ from
machine to machine, compiler to compiler* and instaLLa-
tion to installations and make program transportation
ai f IicuLt

Machine-Independiot: written without reliance on hardware
or operating system features unique to n given machine.
Con De transportrd easity unless the proaram is
compiLer-dependent.
CSee portablel comptLer-ondependentl COBOLowbo

MACLISek: A library fite containing those macro definitions

which MACRO needs as input in order to convert
COBOL.wbc into COeOL~k, (Macro calls must %eet stan-
dards so that a given macro will be caLleri the same way
by COBOL.k and COBOLje) Should contain only ij jtgI sxcro definitions*

Macro: (In general usr tne term is used to refer to
assembly-Level programmino. However, it Ray be applied
to higher level Language Programmino, as it is used
here) A skeleton for an open subroutine which is con-oteted by a macro generiator in response to a call bya
socro instruction curing the Process of assembling a

prooram. The completed subroutine is passed to the as-
sembLer for incorporation into the program. |Powevere
the term may also apply to higher Level language
prograsming. A nrogram unit which oerforms a single
function and Is expre4sed in a reusable form. Simitr
to a subroutine, although 6 macro Is a purely
.Ji,2n device wtich is expanded (ljj£ (Like a
Fortran statenent function) to produce the appropriate
code Cj"1 2l it is called white a subroutine call
oroduces only a jump to a single copy of the required
code regardless of the nunber of calls to the
subroutine.
CSee modu.l (See also Appendix 7)

Macro Processor: A program which accepts as its inputA text
containing macro calls and a file containing macro
definitions and produceS as its output text in which
the macro calls have been Pixanded into their related
definitions.
[S*e macrol modute CSee also Appendix 73

fMaintenance: The chanqes necessary to keep a delivered
progrie executing correctly accordina to the oriinal
specifications despite discovery of errors and changes

in machine environment*
[St modification)

Georaia.Inttitute of Technology COBD. Workenph

~~At -~A



Appendix I CLOSSARY Paqe 140

M odification: The change% necessary to change the %pDcifled

behavior of a delivered program,
CS.. maintenance! revision]

ModiLe: A program unit which perform% 3 singLe function and
is expressea in a reusable fore so that the same cooe
fmoy be useo to perfor" the tame function Hherever ix
appears in the same oroorai or other programs. Writt<n

in CO1*OL..inc*
tSee maero]

NoduLe Interface: The standards qoverning moouie caLls and
interreLattons betwveri the segments resuLting from
moduLar expansion into the COPOL.-oc program. For the
ourooses of the Workbench, aLL mod Les are expressed as
macros and moduLe usage must meet the same vtandards as

Mitlcro aSachin

Nonportobke: A program written to fit a specific machinte
environment and incopablo of r-inning =
M g jj ,A jg n DLL machine environents*

' Est* portableO

PortoLe: A pregram writt-n to run in lay machine cn-
44ronment an in )ny compiLer. GeneraLLy, this ir ac-
comotishen ny restricting the uroqram to the use of
those t-rdwafe feaqurex whip.6 are common to ,iLL of the
Rkchinc environments On which the program wiLk run )nd
those Languaqe fzdturos which are it;Lelcented In com- U
Diters for each of these vachine en'.ironmxnts* )his
aDpro64h orohibits the orogrommer from mtiq uic of
mschine-dcpenden or comoiLer-atoend'nt ftatures for
the sake of efficiency.
CSe nonportAbtel C080L.wbc1 CO80L.k1 NACLI8.kjii COBOi..co..]

Production CnvirOnment: The systom on which the customer ot
end uvrr vitL run the celivertd COCGL.k vroram, Per-
f oretatr.- reau Iresnt s re ¢ d

j See WOrko*nchl

Progred: 'e 'ltck of code necessary to o-rform some t^sL
without i .itionnL icstracticons. UsuaLLy compiLed ar
Lo3ded separatety.

Progran Famity: The set of CO-3OL,0 Programs deffnea by a
particutlr COOLiobo rrogram anC orcluct-0 by macro ex-
pannsion usino MACLI99 where I rpregenis each cf the

tirget 41ines !0 !.ecerce,

CSee COOtwbc grog-amt CO8tv programJ

Program Fragment: An incomplete .ection of code# usuaLLy
On- I mnich ocrform; an Indentifibtz task. Cannot

executc without additional Instructions* An incomplete

(See Programl ModuteO

Geori4, Jnstttute o4 Tech~oLoqy COBOL Workbench

4x 4 - . A*



1 Appendix I GLOSSARY Page 141

Program Preparation System: Provided to assist the orogram-
ner in devetooinq the originaL baseline syster0 ao veLL
as in converting or transportino that system to various

tarqet machinose

PROJLIB-nast: A Library file containing macro eftinitions
of moduLes deveLoped specifically by the project team
for use on their project*

Prototype System: The COSOLowbc g)ronra m th..t defInes a
faoily Of COBOL.n proqrams during testing, *efore
deliveryo The firste , s weLt ds the successive* ao-
oroviseat ton toward% the program wh Ic h wiLl oe
detivertdo
[See breadboard)

Reease: Pefers to a famiLv of documents nich differ from

Dredecessor or successor releases by virtue of
modification for efficiency* expandedf capabitttyt or to

remove errors. This concept allows severl grouos to
uork independently on a document existing in severtL
stages or releases. ror exampLet one release may be in
production and another in development. Thusq one oroup
can make corrections or modifications to the release in
production with no effect on the release in develop-

xento
ESee modtficationt revisioni version]

AeusabLe: uritten in a fLenioLe manner so that the cade may
he used in other program applicationt.
IS#* nodule; portablW

Revision: 0efern to * document which differ& significantLy
frnm o)re(Jecessor or sutcessor revisior,2 !y virtue of

$ IodIfIcatIon for efficiency* expanded caIOILItyI or to

remove errors. A revision consists of A release of a
document and the version of the release. Thus*
revision 2z3 of a cocu!ent is versi n 3 ol reirase 2.
(See modlficstionl relotsel version]

S Software Tools Subsystem (SWT); An integretated set of
automated software and text preparation &nd lenipula-
tion routines.
[see lection 5:2.2? Appendices 4 through 7)

Source Code Control System (SCCSI: As defined in IloLl Labst
PrnarAsmer*s YoriSrnrh toehkind 7Ibl thit system

FA mnintains end provides access to att revisions of any
~detriments

Standards Enforcer* A routine that operites v~s
Ourporocetsor* to verify that the standards for
COHOL.wbc or CODOLek are followed in both proqram text
•na docurentation,

I Georgia Institute.of Technology . COBOL Workb.nch

A.



Apondl 1GLOSSARY Page 142

Test Hiarness: A maoin Prograim which provides a framework
into vhich a modulor unit can be PLaced for the purpose
of testirjo. A driver Program, expressed as a macro and
stored in TESTLIB.
CSee functionat testing]

Text Documents, ALL Program documentation *piart from com-
monts interrnat to the code. VsuaLly includes programn
snetiticatiom, Project memos,9 error reports, andJ a
ust-res qaii0ee ~iti on tine*

Text Ootusentstion Preparation Sy stwm This systeiw is

nrov I ea to assist the syste-ets analyst Int the nrepara-

TESTLIB: A lib1rary fiLe containing macro definitions of
utitly fun~ctions nd modules to aid the Programmer in
testin~l both roelutes andi proorsms for both correctness
Aiet verforrance, !should contain cnLy ttlt code.

jTransportoote: A oroorns written to run in sla machine en- 3
vironsent ancd on &L, comliiLcr. Generally, this is ac-
co-s-he1z by restricting the orograim to the use of
those har are features which are common to at*% of the
machine environments on which the programn wiLt run ano
those Lon:uaqe fraturet which are implersnted In comn-
pliers for each of these machine environments. This
*4Pnroo'C' nrolliEits the Dronommer from makino use of
%chine-deeldft or comoiler-dependent featurcs for

the, -'ke of officiency. use of certain machine-
a-.ocnlcnt or coiicr-deDndent feajtures may be perm~it-
ted. II f ny necessary modifications can ne Made
Autoffiticatty.

IOBLLcCS.. nonport*btl COBOL~wbC9 COBOL~k; MACLB~k;

Transportation: The process invotvec in movinq A program
f rom on~e nachine to another. If the twco machines ac-
t-vt the 5sine COMO diatectt the Process is mechanicak*
iC 'he too lialects invoLveO differ, extensive
-woiiflcation, may *r rccuircd.*
16See conversion]

vers ion: uefers to a oarticuLar document within a family of
liocunm'nts aefined by a reteasc of a oocurnent. Version
re Ie rc to0 a document resuLting f rom torc if Ic
Mlneiificaotions to anoth,-r version within a releCASe.
tSee modificationt releasel revision:

Workbench* A comorehensive collection of cactabilities atru
flcilities to a s Sst the COBOL oroirsommer i n the
-teveLoo'ncnt ind crevaration of co*nkete COBOL systems
suoported -y full docuimentationo :ther capabiLitirs 0

GeorqiA ln,titvte of lcchnoLogy CODOL- workbench

- X -A



Appendix 1 GLOSSARY Page 143

the 4orkbench are to facititate the~ devetopment of
"oratotyve or breadboard" COBOL :)roqrams trom a~ coLtec-

tion of reusobte COEROL moduLes and to facilitate theI
preparation of C083OL programs thast may be easily c on -
verted to a number of different target m~achines each

havinq its own unique dialect of the CO8O1- Lan-iuagre-

Is-

Georia nstiuteo f echotog COOL Wrkbnch



Aondix 2 EXAAPLE Page 144'

APPENDIX 2

AN ANNOTATED EXAMPLE OF
TRANSPORTING A WORKBENCH COBOL PROGRAM

In this exampLe, the t basetine" Program is written in
Ca90L*Ceffiot the demonstration version of COSDL~wbco The two
ttirget operatinq environments ore the Contro. Data Corpora-
tion CYDEI:R 70/74 ana the PRIME Comnuter P400 system* This

ex,%lovLe fncuses on the differences ihi the~ form and contentI
nf the source Program; however, the principal, tochniQue iL-
Lustrate'dt the use of macro Libraries* can *Lso be apptied
to so',Pe of the other incomoatihitities in the nperatin ; en-
vironment.

IMPORTANT NOTE: In the exompLes given betow, Lowier
case Letters are used to indicate coLLs to
reus,)ote iodutcs anl co.plLer-unique
features* Louer case is used here soLety as
)n aid to the reader's comprehension and con-

v'ysno adoed information toth ar

~ncro processor as if they wi-re upper case,

2.1. A f

The mAcro Lio3rarics contain the definition% of the nacros
tha~t transform the Program from COBOL.9wnc (aemo) to
C06OLftargtt In this exampLe, there are two r'acrc,
Li'rarieso 4iote that throughout this exArnoLe caLls or
references to the functions in these Libraries are
identified by usin-i Lower-case Letters; however* this is not
rejuirrtd. It is done in the exampLe to hiqhtLiht the caLts.
Atso note th~it "ll" and "S20 refer to0 the first and secona
ar~uctents -iiven in the macro caL, respectiveLv.

Ul~gLlbrtl .L atv PRIRE

)rnt
def inc(co~nCUPUTATIONAL)dnL
Jefine~rer9PFS)dn.

Elef inr(f iLe id*V.%LUr OF FI-10 IS 0S1)dnt

define(P403,11).JnL
definetotuote,' S1 *) enLI

Georaia Institute of TechnoLogy COB3OL Workbench



7,7, =-4,-

Appendix 2 EXAMPLE Page 145

defline(Id
IDENTIFICATION DIVISION.
PROGRAM-10.

deflne(como3,COMPUTATIONAL~dnL
defline(reader, IPUT-FZ)dnL
deflne(vrinterOUTPUT-rZ)dnL
defline(ILe Ia,)dnL
define(cyberS1)dnt
deflne(p4OO,)dnL
define{nuote"S I")dnk

A programoer usi;iq the Workbench wiLl need to have access to
code modules th2t are common to all those working on a Qven
project. For this exampLe, we assume that two file descrip-
tions are to be shared, and that one COSOL code structure (a
multi-LeveL split on several keys in a sorted file) occurs
often enouoh that it has been included in the project

Library.

Thr two File Description modules in the Project Library IL-
Lustrate Ifow two rather drastic differences oetween CYBEI'
anc PRIME COBOL are treated. These differencet are

- LABEL RECORDS statement must say
-- STANDARD In PRIPE
-- OMITTED in CYBER

- rILE 1O nust oe

-- VALUE OF FILE-ID IS in PRIME
-- omitted in CYBER

Examining the macro Library definitions for Otyber" ard
f OO0 in each Library shows how the 0400 Library causes

entrIes annotated "cyber* to be deleted 9nd entries an-
notated Oo4O0 to be copied into the transported program.
The "cyber" Library causes just the reverse action. The two
definitions for "fite-id" handle the second problem vy
generatinq the proper statement for the PRIMr and ignorina
it completely for the CYBER.

I
," Geo,rgtA.~Ies!itteof Technology ....... COB L, Wp,b~n,€ ,



Tw A. -,7 3 f m tR

Appendix 2 EXAMPLE Paqe 14i6

uLg peacri&.±an MagJLga~r'A~~

FO SALES-FILE
P40OfLABEL RECORCS ARE STANDARD)

cyber(LABEL RECORDS ARE OMITTED) X5.I

o9 'ISTRICT PICTUt(E XXX.
15 SALES-DOLLARS PICTURE 9(5)V99*

F. REPORT-FILE
n4GOCLABCL RECORDS ARE STANDARD)
cyber(LASEL PECORDS ARE OMITTED)
fte id(REPORt)
DATA RECORO IS REPORT-RECORD*

01 Rr.PORT-RECORO.
1 - C R I AG F- C0N T R 0L PICTURE x.
A' SL E SM A Is- OUT PICTUqE X(5)
05 FILLER PICTURE XXX.
05 SALESTMAN-TOTAL-OUT PICTURE $&1SSS9119*999
0' PaLLER PICTURE X(8)e
n5 ISTAICT-OUT PICTURE XXX.
05 rILLER PICTURE XXX.
o5 -ISTRICT-TOTAIL-OUT PICTURE SSS,$$$,119.99w

405 cILLER PICTURE (0

05 FINAL-TOTAL-OUT P!CTURE %S%*lS%9S19.99&

RausabLe "fgt aftig. 1dgt±±±±g I& "Guv&

d-e1 ire(nLeveLo
4OVE 52 TO FREVIOUS-%29

PURFR9 1 UNTIL
Eifelsce"2999 S2 IS 14OT EQUAL To PREVIOUSo.12
) I)dn I
C ifelse(13999 OR $3 IS NOT EQUAL TO PREVIOUS-13

) I an (
(ifceS(1499 OR 14 IS NOT EQUAL TO PREVIOUJS-14

OR NO-MORE-DATA.

) dn I

Georaia Institute of TechnoLogy COBOL Workbench



i Appendix 2 EXAMPLE Page 147

Now that the preLiminaries are out of the wayt the orooram-

mer can create a program in "Workbench CoboL," a combination
of COOOLeccs and macro cattt:

incLude(PROJLIP/NLEVEL)

4!(TWOLEVEL)

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CO14TROL, 4

SELECT SALES-FILE ASSIGN TO reader.
SELECT REPORT-FILE ASSIGN TO printer*

DATA DIVISION.
FILE SECTION*
incLude(PROJLIHIFD-SALES-FILE)
inctude(PROJLI8/FD-REPORT-FILE)

WORKING-STORAGE SECTION,

01 FLIGS.
05 4ORE-DATA-FLAG PICTURE XXX VALUE auotv(YES).

88 MORE-DATA VALUE ouote(YES).
88 NO-MORE-DATA VALUE ouote(NO l.

01 SAVC-ITE"So
05 PREVIOUS-SALESMAN PICTURE X(5).
05 PREVIOUS-DISTRICT PICTURE XXX[

0 TOTALS coao3.
05 SALESMAN-TOTAL PICTURE SS(8)V99 VALUE ZERO.
05 DISTRICT-TOTAL PICTURE S9(8)V99 VALUE ZERO.

V 05 FINAL-TOTAL PICTURE S9(8)V99 VALUE ZERO.

'PROCEOURE DIVISION.LPRrPARE-SALES-REPORT.
OP2N INPUT SALES-FILE,

OUTPUT REPORT-FILE.

READ SALES-FILE

AT END MOVE ouote(NO ) TO PORE-DATA-FLAG.
MOVE ZERO TO FINAL-TOTAL.
PERFORM DISTRICT-TOTAL-PROCESSING

UNTIL NO-MORE-DATA,
4OVE SPACES TO REPORT-RECORD.

MOVE FINAL-TOTAL TO FINAL-TOTAL-OU'lH
WRITE REPORT-RECORD.
CLOSE SALES-FILE,

NEPORT-FILE.
STOP RUN.

Georgia- Institute of TechnoLogy CCEBPL Worqbfch.



Appendix 2 EXAMPLE Page 148

0 IS TR ICT-T OrAL-PROCESS INO.

MOVE ZERO TO OISTRICT-TOTAL*

ntcefL(SALFSMAN-TOTAL-PROCESSINGO2 STRICT)

vOYE 'qPACES TO REPOPT-RECOR~o.
OOVC? PREVIOUS-DISTRICT TO DISTRICT-OUT*
mOVF DISTRICT-TOTAL TO DISTRICT-TOTAL-OUT.

ADD DIStRICT-TOTAL TO FINAL-TOTAL.

S ALES 4AN-T OT AL-PROCESS INGe

M4OVE ZERO TO SALESMAN-TOTAL.

ntevct CPROCESS-AND-REA0,SALESMANOISTRICT)

MOVE SPACES TO REPORT-RECORD*
MOVE PREVIOUS-SALESMAN TO SkLESMAN-OUjT9

MOVE SALESMAN-toTAL To SALESMAN-TOTAL-OUT.
WRITE REPORT-RECORD.
ACD SALESMAN-TOTAL TO OISTRICT-TOTAL.

PROCESS-A 0-R~E AD.
400 SALFS-OOLLARS TO SALESMAN-TOTAL.
PEAD SALES-FILE4

AT END~ 'ROVE quote(NO4) TO MORE-DATA-FLAG.

The.2 dato for t'nis Drogrim is present in the fue Otaecs":

Al10010032
41 10000300

5 P 10011000

I9 1OZ6O62
16 20020769

P0CIP560

( 9 __0012140

AS'
Geor~ia intititute of Technotogy COBOL workbench

-Yff



Appendix 2 EXAMPLE Page 141

2o'* PR~gESSNJ

1 * Using the workbench utility "convert," the initi-l program
can be £ r24£ utilizing the Project Library and then
rlh..r±lDl:S.J utitizing the lacro Libraries* In the examples

below the intermediates expanded versions of the proqram are
no! Listed. Only the two comoiker-uniue forms of the
program arte Listed compLeteLy; however, the results of the

expansion are redily apparent in the file definitions and

in the calls to "ntevet."

2.i.ljj~~jf

Since the standards enforcer is not availablet we will sim-

Dly proceed to the compilation, ltinking, and executior of
the P400 version of the prooram.

20 ,1,1 Prime 400 Program

REV 14 COBOL SOURCE FILr: EX.P*0 06/09177
- ,(0001)V

o (0002)

(0003)
(0004) IOENTIFICATION DIVISION.
(0005) PROGRAM-TO.
(0006) TWOLFVEL.
(0007)
(00A) ENVIROJ'4UT DIVISIO;.
(0000 ) INPUT-OUTPUT SECTION.
(0010) FILr-CONTROL.
(0011) SELECT SALES-FILE ASSIGN TO PFMS.
(0012) SELECT REPORT-FILE ASSIGN TO DFKS*
(0013)
(0014) DATA DIVISION*
(0015) FILE SECTIO ,#

~(0016)
(0017) FD StLES-FILE
(0018) LABEL RECORDS ARE STANDARD~(Otlq)

(0020) VALUE OF FILE-ID IS OSALESO
C0021) DATA RECORD IS SALES-RECORD.
(0022) 01 SALES-RECORCe
(0023) 05 SALESMAN PICTURE X(5).
(0024) 05 DISTRICT PICTURE XXX*

(0025) 05 SALES-DOLLARS PICTURE 9(5)V99*~(0026)
(0027)

(0028) FO RrPORT-FILE
(0029) LABEL RECORDS ARE STANDARD
(0030)

(0031) VALUE OF FILE-ID IS 'REPORT'
S(0032) DATA RECORD IN REPORT-RECORD*

(0033) 01 REPORT-RECORD.
(0034) 05 CARRIAGE-CONTROL PICTURE X.

GeorgAi Imstitute of TechnoLogy COPOL. Worbetlh..

1 4.



Ao~pendix 2 EXAMPLE Page 150

(0035) 05 SALESMAN-OUT PICTURE X(eso
(0036) 05 FILLER PICTURE YXx.
(0037) 05 SALESMAN-TOTAL-OUT PICTURE S1$,S$$,5S9o99.
(0038) 35 FILLER PICTURE x(S)o
(00-39) 05 OISTRICT-OUT PICTURE XXX.
(0040) 0'= FILLER PICTURE XXX.
(0041) 05 OISTRICT-TOTAL-3UT PICTURE $SSsS,$SS~999o
(3042) 05 FILLER PICTURE X(8)o
(0043) 05 FINAL-TOTAL-OUT PICTURE SSSSS,119o99o
(col" )
(0045)
(0046) wOlKING-STORAGE SECTION*
(0047)
(0048) 01 Ft. AGS.
(r049) 05 v0ORE-DATA-FLAG3 PICTURE XXX VALUE 'YES'.

(005) PRMOREDATAVALUE 'YESO.
(0051) 88 tNO-MORE-OATA VALUE IP.O

fr(005.!) 01 SAVf-!f[MS*
(0054t) lc PREVIOUS-SALESMAN PICTURE X(5)*
(01551 c PREVIOUS-DISTRICT PICTURE xxx.
(Z,056)
(0057) 01 TOTALS COMPUTATIONAL.
(0058) 15 SALESMAN-TOTAL PICTURE S98)V99 VALUE ZERO.
(0059) 05 :2ISTRICT-TOTIL PICTURE S9(e)Vi5 VALUE ZERO.
(0060) 05 FINAL-TOTAL PICTURE S9(8)V9)') VALUF ?ERO*
(0061 )
(C062) PROCEDURE DIV!SIONO
(0063) 0RFPARE-SALES-REPOR To
(0064) OPEN INPUt SALES-FILE,
(0065) OUTPUT REPORT-F!LE9
(0066) READ SALES-FILE
( 0A7) AT FN0 MOVE INO 9 TO MORE-DATA-FLAC.
(0068) 'lOVE ZERO TO FINAL-TOTAL. f
(0069) PERFORM DISTRICT-TOTAL-PROCESSING

-r (%0070) UNTIL 'O-MORE-DATAo
10071) MOVE SPACES TO REPORT-RECORD.
(3072) MOVE FINAL-TOTAL To FINAL-TOTAL-OUT.
(0073) WPITE REPORT-RECORD.j(0074) CLOSE SALES-FILE.
(007 5) REPOPT-rILEe

(007&~) STPP RUN.*I (0077)
(6~07,4) 'j14TR IC -TOTAL-PROCESSING.
(C074) 'OVE ZERO TO DISTRICT-TOTAL.
(coqo)

(OOP2) 4'0VE DISTRICT TO PREVIOUS-DISTPICT.
(aGpi) PrRF3RIM SALES?.AN-TOTAL-PROCESSING UNTIL
(&084) DITITIS NOT EOVAL To PPCVIOUS-fDISTRICT

(C'o*.) 4iOVE SPACFS To REPORT-RECORD.
P,049) 'OVE PREVI0U_'-DISTRICI_ TO DISTRICT-OUT.

* ,*(0090) 4OVE L.STAICT-TOTAL TO OISTR3ICT-TOTAL-OUTo

Georgia Inztitute ol lechnoLogy COBOL IWorkbench

~~-' ~ --.--- - - - -p j



appendix 2 EXAMPLE Page 1b1

(0091) WITr REPORT-RECOOe.
(00911) ADO DISTRICT-TOTAL TO FINAL-TOTALeI( (0093)
(0094) SALESMAN-TOTAL-PROCESSING
(0095) MOVE ZERO TO SALESMAN-TOTAL.
(0096)
(0097)
(0098) MOVE SALESMAN TO PREVIOUS-SALESMAN.
(0099) PERFORM PROCESS-AND-READ UNTIL f

(0100) SALESMAN IS NOT EQUAL TO PREVIOUS-SALESMAN
(0101) OR DISTRICT IS %OT EQ;JAL TO PREVIOUS-DISTRICTV t (0102) OR NO-MORE-DATA.~(0103)
(0104)
(0105) MOVE SPACES TO PEPORT-RECORD.
(0106) "OVE PREVIOUJS-Si-LESMAN TO SALESMAN-OUT.
(0107) MOVE SALESMAN-TOTAL TO SALESMAN-TOTAL-OUT,K (0108) WRITE REPORT-RECORD.
(0109) AUD SALESMAN-TOTAL TO DISTRICT-TOTAL.
(0110)
(0111) PROCESS-ANO-READ.
(0112) OD SALES-OOLLARS TO SALESMAN-TOTAL.
(0113) READ SALES-FILE
(0114) AT END MOVE 'NO* TO MORE-DATA-FLAG.

58:/WI "CO4Pw IGNORED FOR DECIMAL ITEM.
59:/W/ "COMP" IGNORED FOR DECIMAL ITEm,.
6i:/W/ "COMPm IGNORED FOR DECIMAL ITEM*

0000 ERRORS 0003 WARNINGS, P400/500 COBOL REV 14.0 <TlOLEV>

2*41.2 Prime 400 Output

The output of the P400 version of the program is:

41 $203.37
52 S116.00
69 S134.65

1
is 1207,64

2 S393,29
36 $19a,15

39 S3P7*455c $5100

%19,2000E66

Geornlat Intitkte of Technoogy CO.. .O4 Workbenoh....



Aoocndix 2 EXAMPLE Page 152

2o4*? GYBLD lacaion

The Cyber vers~on of our sampte proogeam was writtv'n to tape
on the Workbench f0Ptm uystem) and then transferred to th#%.
C ytier # where its compitation ,jnd execution yieLded the fot-

towinu reskitts.

2944o IYE Prga
40 0112 COBOL

00001

0001:ENIIC1 !1 )IVISION. oIPU-Z

000o TOAV3

-0000tI7

00901 LfVIWB1. *!IVDS &I(OIT(

20001r" -CV4L
0000 0TA ECOR II ShES-RECOR

O'~ALSOi1 01IG TOF-tCa)
101122 S-LC SA POR7$,&AN AS IGNT UTC K(

00012
00?1 DIA1VIIk

00014 vILC SECYI%'.
0002 1

00011, L%9FL cEC'ThS &RE rwtTTEO
3 0 0
0020 D&TA RCORD IS RCPOR-RECOADo

04021P01 -P C C REORat

O02 0 cS ALES "AUN PICTUqE X(5)6
002 0O DILLE5.t PICTURE XXX.

C0t 05 S4ES-ALLR PICTURE ;(5)v99

00 )lTIC-U 0IT0rX

POO .1 e

0005 Or In0ttut If reCNoTO CICTUR V*rbe

DOG 01 S4CSAuOU PICUR X'

1005 rILE PCTUE XY



.ADpendjiK 2 EXAMPLE Pag 15

00044

00047 P~1 FLA501
00048 05 "OilE -0AT A I'LAG PICTURl XXX VALUE "YES".
0004q SER MORE-DAIA VALUE "YES".
00050 1q, NO-MORE-DATA VALUE " 0

0 0 0 1 II
00052 01 !AVE-ITEPS,
00053 05 PR -VI0US-SALCSY'AN PICTURE X(5).

004 05 PRrVI0US-OISTRICT PICTURJE vlxx
00055
00056 31 TOTA"LS COMPUTATIONAL.
00057 05 SILES'4AN-TOTAL PICTURE S9(8)V39 VALUE '7EPr-.
00058 05 0,STRICT-TOTAL PICTURE S9(8)Vq9 VALUE ZEHkJ.
00059 05 FINAL-1OTAL PICTURE S9(8)V99 VALUC ZERO.

TWOLEVEAO 0112 COBOL

C 00060

TWOLEVEAO 0112 COBOL

30061 PROCEDURE CIVISIOi.
0006~2 PREDARE-SALES-REP0RT.
00063 OP rN IPJPU1 SLLrS-FILE*
00064 CUTPUT REPORI-Fl'..Ee
00064' REAG SALES-FILE
00066 AT CND MOVE "NO 4 TO MORE-DATA-FLAG*
00067 MODVE ZERO TO FINAL-TOTAL.
0006e PERFORM DISTRICT-TOTAL-PROCESSINO
00069 UN4TIL NO-MORE-DATA.
00070 MOVE SPACES TO REPORT-RECORO.
00011 MOVE FINAL-TOTAL To rINAL-TOTAL-OVT*
0007? WR.ITE REPORT-RECORD.
00073 CLOSE SALES-FILE.

00C74 9EPORT-rtLE. i
00076
00077 ^ISTRICT-TOTAL-PPOCESSINI(.
00078 M4OVE ZERO TO DISTRICT-TOTAL.
00079
000po~
00 0 1 1 OVE DISTRICT TO PREVIOUS-GdSTRICIo
000i? PLRFORtM SALES4Ati-TOTAL-PtOCESSIt4G UNTIL

00083 DISTRICT IS NOT EQUAL TO PRrVIOtUS-OISTRICT
00CR4 OR NO-10ORE-DATA.

COW MOVESPACES To REPORT-RECORD,
~0OAS MOVE PREVIOUS-DISTRICT TO DISTRICT-OUT*
000R9 MOVr DISTRICT-TOTAL TO OISTRICT-tOTAL-OUT*

Gearcotn *lnsti tut e of Toc hflo?;oy ~ ~ COROL 110rkte



A&,pondix 2 EXA' )PLE pagre 15'e

t00090 wAITE REPORT-RECORD,
00091 A3D DISTRICT-TOTAL TO rINAL-TOTAL.

00092
000093 rALESMAt:-T0TAL-PROCESSlNG.

00094 "OVV ZERO TO SALESMAN-TOTAL,

0009£
00097 "OYU St.LESMAN 10 PREVIOUS-SALESMAN*

0 011IR PZ'RFORP' 0ROCESS-AND,-HrAo UN11L

000"9 S~LESMAOJ IS N~OT EQUAL TO PREVI0US-SALESMOANI
0 0 10C Q 'BITR1CT is NOT ECUAL tO PAEVIOUS-VISTRICT

0 1 ~OP ?!;O-.xOR tOT A

c010~
00104 MOVE SPACrS TO REPORT-PECOR~o

00101) t'OV1 PREVI3VS-SAL[%mAN TO SAL CSKAN-OUle
0010f, MCVE SALrs"AN4-TOTAL TO SALESWAN-TOTAL-OUT*
1)0107 URITE REP0RT-RECOR().
30101 A'OC SALtSPAN-TO1&L !O DISTRICT-TOTALe

0 010 fi
I CI11O VROC ES- ANi-P EAD,
30111 00O SALES-DOLLARS TO SALESmAN-TOTAL&
00111, 4F40 SALES-FlLr

C0113 AT I,) MiOVE *NO" TO '40E-DATA'-FLAGs
LIOLEVE LENGTN IS 000347

"60200. "C USE()

2*4.2.2 CYBEA Output

la 1207*64

Geori nO.A4tute o~f tethmoLogy COLWorkbench

G r4a OO



Appendix 3 DOCUMrNT CONTROL Page lb5

APPENDIX 3

DOCUMENT CONTROL

The informsti0n contained in this appendix wa; extractec
from h research paper by Timothy G. Saponas. That reseairch
oLner served as partial fulfillment of the first year Ph.@.
research requirement at Georqia Tech.

Document Control ii the 4orkbench facility that oroviocs for
the generation, modifications and general nananement of all
revisions of any documents Asonq the documents which are
serviced by Docuaent Control Are COBOL noiuless
secificationst manuals, cataLoost and reports. Post of the
discussion concerning Cocurent Control wilL refer to COBOL
aooluLest but it is equilLy applicable to any other document.

a oocu'ent, such as a oroqrame may oo through matty
revisions* At any tie several of these revisions may be in
use* F3r edRaole. one group of people may be workinq with
Droora A in production, another group ndy be correctini
known buai in proqram At anc still another grotio may be ex-
tending the canabilities o program A. This olviousLy could
result in a very chaotic situation if all three groups are
using the save prograt. Thus, it is necessary for Document
Control to nbintain and follow a document through all of its
revisions, Docueent Control should be able to create any
revision at Any point in time. A protection mechanism
should be provided Oy Document Controt to protect aeainst
accidental tamoerinne Corrections sh')ul be selectively
oropnoated to those revisions which need Its and users of
revisions Later than those changed should be alerted to the
chianges. Each reviion uhould contain a release number.
version numbert date and tine of creation, status vprodjc-
tion, tests develooment), and historr information (who made
the iodification, what It consisted of, where the modificao-
tion occurred, and why the iodification was mailet. FinatLy,
the revision control proqram shoulo possess useful audit in-
formation to aid %anagesent in following the Progress of a
project*

3.2. In. ULECjANILSf

A good candidate for the ':ocument Control mechani' m is
described In CRochkind 19753. The ptilosophy of this methoat
is that the text common to more than one revision will not
be duoticated. The fundamental atom used to record informa-
tion is called a delta. Deltas arr identified by an ordered 1
Pair (4 j) where I refers to release i of o document n j
refers to Level J of the release, we wit denote the delta

Georgia instittte of Technology COBOL orkben~h

__ _. . ..



R
Aopenclit S DOCUMENT CONTROL Pag~e 156

corriesoonding to version I of rettase i of a document oy
'01)." A deatc consists of List a of changes that must teI

applied to the Latest previous revision to ottain the
current revisicn.o For exampiLe, to obtain~ the current
revision for the situation in figure ao3*2-1, lettas 1.1
thre-uqh 1.' Tust be applied in successions In aLL cases

'lelta 1..1 wjilt represent the oricia doumn. t chAnqrs
art expressed in terms of the Primitives, insert and delete. I
Each of these Primitives is Performed on an entire L in e -3f
t e Kt For exa~citev to re-present th'e chans,e of one ch.4rac-
trrs one wo-uld delete the- Line ton1taining the character anc:
insert a new tine containing th~e changes character. -K
pe-rience has shown that the information w~hich is Lost Ly
reoresentin;j all changes as a combination of inserts and
icte-tes is not realty essential (Rochkind 19751. Thus*
there is no penALty in conitructini a delta from a serie-s of
inserts and ceLetei.

FIGURE 0*3*2-l

SEQUENCE OF FOUR DELTAS f
INDICATING FOUR REVISIONES OF A MODULE

011 1---01*2 --- 01*3 --- D1.*

01.2 represents the changes that must be applied to

0191 to got release Is version 2 of a document

3.2.1 aaaUg mtM O&LI*&S3

'trw drcta can only be aoptied after the Lost delta of a
rekease. 'huse it one h'as * document that tias two releases

anO iIt is desired to xake a modification to release Is then
t tit, n e cta*seti the ade beptedt I- n figure 2..?11

This situat ion couto ccu whden releaeIsben tested by
oerosinrees isbeiria deeoe yaohrirouo.

Iftefirst aroup finds an error in the first release* det-
ta1.5 mutt h~e added to correct the error. ilektto 1' will

not oc use-! to obtain any version of a release after re-Lease
I unless an ootlonAl delta as excitainod below is npriL ed;
in~teatdo A warnina messoge wilL be Issued informini the user
thit a nodificatipo to the first release hat. occurred.

Georgia Institute of Technology COBOL Workbench

-Xv



Appendix 3 OOCUMENT CONTROL Paqe 157

FIGURE a.3*2o1"1

THE RESULTS OF AODING A REVISION TO RELEASE 1

01*1 --- 01*2---01*3 --- 01*4 --- 0291 --- 02*2 --- 0293 --- 0D2*4

add 01.5

01*1 --- 0192 --- 0D1*3---D1 -01- 15 --- 0D2*1---02*2 ---02*3--02,4

3.2.2 St±*i Detasi

In addition to these deltas one can specify two kinos of
special deLtas. The first is the optional delta. These are

Like the reqular deltas except that associated with each of

these deltas is an option letter. A delta of this type will

only bc applied if the option letter is presented alonn with

the request for the specified document. This is useful in
situations in which one wants to make a change to the code

to provide for a soecial environment experienced by a uubset
4L of users tut wants this change to be invisible to the rest

of the users. The second kind of special delta is used to
indicate hetner or not previous deltas are to be included
or excluded from the revision represented by the special
delta. For examplet if it is desired to remove delta 1.*3 a
special delta will be added which will indicate that delta
1.3 is to le excluded from any revision beyond this point in
tiece This method prevents the risk of aecidentALly remov-
ing code that may be Later found desirabteo One can also
use this special delta to specify the inclusion of previous
deLtase In the discussion conterning figure o*3*291-19 it

~was mentioned that delta 1, would not be applied to obtain
any version in release ?* If the chanqe represented by del-
ta 1*5 is desired in a revision of release 29 one can adda

special delta* delta 2o59 that reouests the inclusion of
delta 1.*5

Georgia Institute of Technology COBOL Workbench

H



Appendix 3 DOCUMENT CONTROL Page lbS

3.2.23 111 Soage aI Ottas
ALL the aeLtas for a Particular document are placed in a

data structure which is designed to allow the parallel ap-
pLication of all deltas. Each document (i.e. set of deL-
tas) is stored in a separate sequential file which consists
of four oarts.

3?.3,! Header Information

Tne first Dart is the header* which contains release Locks*
a List of proqrammers authorized to add deltas, an Enalish
description of the voduleo and any other information that
one feels is apropriate for the hender. Next in the file
Is the release taole. This contains a count of the number
of deltas in each release (this is useful in determining the
configuration of storage for the processing of the body to
Ve descrioed celow). The release table is followed by the
delta taolet wtich contains for each delta the release nuri-
ero level nuvber, option Letter if one exists, date and

t .e is was added, List of other deltas included or excluded

by this delta, who created this delta, and why this delta
was createc. The Last part of the file is the body in which
the actual deltas are placed.

3.2.3.2 The Main Body

The V)dy contains two types of records, text records, which
contain th source code inserted by the deltas* and control
records, which specify the effects of each delta. The
control record uses three Letters (I* Do E) to indicate the
action to be taken (insert, delete, end of control). The
release and version nuabers for which the action is to oe
aopLied are also specified on the control record. An exam-
Dle of 4 body presented in [Rochkind 19753 is depicted in
fiqure a.3.2.3.2-1.

Oeorola Institute of Technology COBOL Workbench



Aopenoix 3 DOCUMENT CONTROL Paqe 159

FIGURE 4*3*2.5.0-1

EXAMPLE BODY PART OF THE DELTA FILE OF A MODULE

I11:

1II.,

text of 1.0

E1.4

text of 1.1

Dle2

ore text of 161

£1.2

11.2

text of 1.2

D1.3

more text of 1.2?I
£1.2

more text of 1.1

(E1,3

more text of 1.1

£1.1

Notice the bracktting by (It E) and (D, E) pairs.

nI

G. ' eorqbs .Inititute of TechnoLogy .. .COBOL Uorkbenc |



Appendix 3 DOCUMCNT CONTROL Page 160

Document Control must also include a method of protection

against accidental tampering and chanoe. As mentioned in
thi' discussion above, no delta can be reroved chysicaLLy
fron the systems insteaot a new deltas which indicates that
the delta of interest is to be ignored in the production of
a revision, must be constructed. Thus, one can be assured
that no change can be Lost, which implies that any ac-
cidental davage done to the module can ultimately be correc-
ted. This then reduces the problem to one of preventing
taperinq. Obviousty, it is impossible to be certain that
the changes being made are valid. Thus, Protection mutt be
Limited to screening the users trying to make changes to
%odules. this can be imoLemented by associating h bit
matrix with each module tRochkind 1975). One dimension
renresents the names of the orogrammerx allowed to modify
the todutet and the second dimension represents the
revisions of the modaLes. Thust each programmer con meooily
only certdin nodules and certain revisions within those
frodul es

3,2.5 j s58na &a Idintificatign gg £ MaduU

In addition to orotection of modulest it is necessary to
stanD in iqentification on the modules. This should include
the release number, version numbert date and time the module
was Lost -odified% the napes of the programmers responsible
for the zodulet and the status of the module (productions
tests development). It has been suggested that this in-
formation ne incorporated into the moduLe in such a way that
the o.oad socuLe will also contain this information Ckochkina
197'1. In C0OL, this information could be stored in the
workinq storage section. In fact by using a standard racro,
this tisk could be easily nerformed. and one could oc
insured of a uniform system of identification.

this 4pproach to the probLei at first olance appears very
costly because of the soace reauireds but this anxiety is
soon cjrnchcd by the followinq statistics taken fro r CPoch-
ki d 19753. The statistics were based on the Largest user
qroup on on l9w 370. The group included 100 programmers atod
2964 &couLes° This resulted in 14ts5 deltas which OCCupiec
1,01h.766 records. there was an average of five deltas per

modules but 4OX of the modules had only one deLta. Of those
with nore than one deltas the average was 7.5 deltas per
mocute. There were 126 roduLes that had more than 25 det-
tas. The number of Lines of code resulting from all the
moiiules taien at their latest revision was 740,719, This
mepnt that 'ere was 37. additional space occupied 'r the
dettast but one must remember that this was obtained by coo-
oaring the space occuoied by only (;ne revision of each

Georgia Institute of Technology COBOL Workbench



Appendix 3 OOCUMENT CONTROL Page 161

module. Thus, for 37% additional space* they were acLe to

possess the capability of accessing any revision of any

-odu L e

A

; I Georgia Ih'Ittute o' Technoloqy COBOL Workbench



Appendix 44 COMMANO INTERPRETER Page 162

APPENDIX 4

GEORGIA TECH SOFTUARE TOOLS SUBSYSTEM COMMAND INTERPRETER

The Software Tools 'ubsystem is a set of program devetopment
tools based on the book j Mjrf T22,L by 6rian W. Ker-niahan and Po J# PLauger. It was oriqinaLLy oeveLoped foruse on the Prime 400 computer in 1977 and 1978 in the form

of severaL cooperating uter programs. The oresent Sub-
systems the sixth version, Is a powerful tool that ains in
the effective use of computinn resources.

The command inter.rretert ailso refe red to as the jhtriw is a
vital oart of the Subsyutemo It is a program which accepts
commands typed Dy the user on his terminal and converts them
into more primitive directions to the computer itself. The
user's instructions are expressed in a special medium called
the £2!212a j~ gUA £, The next few sections will describe
the co-nand tanauage and give examples of how it is used.

Three areas will be covered in the following pages. Firsts

there is a tutorial on the use of the command Language.
Second* there is a summary of the syntax and semantics of
the command Language* Lastly, there is a selection of ap-
plication noteso This section is a good source of useful
techniques and samples of advanced usaqe.

40*101 iLLSL~tl~iMS

After you have Lodged in to the cOmputers yoj tust start up
the Suwsystet. To do thfis tyoc the command mswt*:

Owt swtI]
Thr Suzsystrm fires un and the command interpreter prompts
yov for Inout 1y tyoing a right bracket.

The rues for correcting typos under the ubsystem may vary

from. ;ystcn to system. Usuatty the Subsystem eypect5 a
backsoace (control-h) to e used for detetino sinnLe charac-

ters tnat 4re in error, and a DEL (RUBOUT on some ter-inat%)
to l:etcte entire Linen that are in error.

Georgia Institute of Technology COBOL Workbench



Appendix 4 COP'MAND INTERPRETER Page 163

t'N

LIn the next few sections* references will be made to input
lines that are terminated with a OnewLine.' You shoulc use
the "newtinf* key on a tereinal only if the terminal tacks a

"return key* They do not necessarily have the same effect*

Input to the comeand interoreter consists of Ocommands."
Conaandsi in turns consist of a "command names" usuilLy maCe

up of Letters and digits, and additional oieceS of in-
formations often called "ptrameters" or "arjunentso" (Note
that a command may or may not have arouments. dependinu on
its function.) The command name and 3ny arguments are
separated from e4ch other oy spaces.

For exmL L.*:

I echo Hello world!

$IeLLo world?
3

The command name is Oecho". *Echof is not a very involved
commAind; it simply types back its Parameters* whatever they

may bt*

Here i. another commando one that is a bit more usefuL:

3If
adventure cc outde -6800

shell sheLLedoc subsys time-sheet
words zunde
I

9Lf9 is used to List the names of your fiLes.

4* 104 Spj& Charattgrz Ang ougt±Do

Sore characters have spectial meanina to the cormand

interpreter. For example* try typino this coaxand:

I echo Alas, Poor YoriCk
A IasV

poor: rnot found

This strange behavijor is caused by the fact that the comma
is used for dark mysterious purposes elsewhere in the cot-
mand language. (TMe comea actually reoresents a null 1/O
connection between nodes of a network. See the section on
pizes and networks for more information.) In facto all of
the following characters are potential troublemakers:

Georqjo, IntJtute of Tecnnology COBOL Vorkr-ench

!, 4



ADoendix 4 COMMANO INIERPRETER Page 164

, ) f ( ) t J ( ) blank

The way to handle this problem is to use gIuLa£u. You may
use either single or double quotes, but be sure to natch
each with another of the same kind. Try this command now:

1 echo "ALas, poor Yorickl I knew him well*"
ALas, poor Yorick; I knew hina well.

You can use quotes to enclose other quotes:

echo 'Quoth the raven: "Nevermore!" 9

luoth the raven: "Nevermorel"

A final word on quotations: Note that anything encosen in

quotes necomes a 1111 argument* For examples the command

I echo "Cin I use that in my book?"

has only one arquF ement outoc

I echo Can I use that in my book? j
h3s seven*

I
Suooosc you have a task which must be done often enouqh that 1

I'll is inconvenient to remember the necessary coomands and
tyoe thee in evory time* For an ex mpLet Letts say that you

have to print the year-end financial reports for the Last
five years* If the 0orint" command is used to Print fiLes,
your co~mand mia~ht I o ok LI.Ike

I Drint year73 year74 year75 year76 year/7

If you use a text editor to make a file named "reports" that
contains this cotmands you can then print your reports by

- reoorts

-N o soeciaL command is required to perform the ooerations inthis "coenand file;" simvly typing its name is sufficient.

Any number of commands may be olaced in a command file. It
is possiblr to set up groups of command& to be reoeated or
executeo only if certain conditions occur. ee the Ap-
plicntions 'otes for examcles.

Georgia Institute of Technology COBOL Workbench

122 -3

Y4 IN-



!z

Appendix 4 COMMAND INTERPRETER Paoe 165

It is one of the iiportant features of the command
interpreter that commanu fiLes can he treated L,,ix Like
ordinary commands, As shown in Later sections, they are ac-
ttidLLY programs written in the commano Lanqu,,9ej meny Sub-
System commands (tell *fos@t and 9rcL#9 for example) are im-
Dtemented in this manner.

4** 6 2glna Reaitive .Tasks 11trX.4an

Some comdnds can accept only a singte argument. One exam-
pte of this is the Ofost command. "Fos" stands for "format,
overstriket and spooL." it is a shorthand command for
printing Nlormatteo* documents on the Line printer. (A
-formatted" document is one prepared with the help of a
program ca;ted a "text formattert" which justifies right
mar-gins, indents paragraphs. etc. This aocument was

prepared by the Software TooLs text formatterv catLed
"lit.') If you have several documents to be prepared* it is
very inconvenient to have to type the Ofos' command for each
one. A speciaL technique catLed *Iteration" aLLows you to
*factor out" the repeated text. For exampLe,

I los (fItel ftte2 fiLe3)

is equivaLent to

I fos fILeI
I fot fiLe?
I fos fItLe3

The arouments inside the nArentheses form an "Iteration
oroup*" There may be more than one Iteration qroup in a
command* but they Tust aLL contain the same number of ar-
quments. This Is because each new command Line produced by
iteration iust have one argument from each group. As an it-
Lustration of thist note that

I (echo print foo) fite(I 2 3)

is equivatent to

I echo fitel
3 print fite2

I fos fiLe3

Iteretion is oerformec by a simpLe text substitution; if
there Is no space between an aroument and an iteration group
in the oriqinal command, then there is none between the at-
gument and group elements In the new commands. Thust

- 1fite(1 2 3)

is equivalent to

Georo. Ins.tAtute of Technology COBOL Workbench

II_



ADdendix 4 COMMAND INTCRPRCTER Page 166

filel

file2
file3

Iteration is most useful when combined with function callso
which wiLL or discussed tater.

Control of the sourcet and destinations of data is , ver1
b8 |C function of the command interoreters yet one that
ieserves special attention. Every Program and command in
the Su:system c.in qather data from certain welt-known places
i nd deliver it to other well-known place-., Data sources are

known a s I 2.U1; data destinations are called

standard input" and "write on standard output*' The key
point here is that proqrams need not take Into account how
the input data is eade available or what happens to the out-
nut data ahen they are finished witb it; the cotmand
interpreter is In complete control of the standard ports.

cO-'ano ir wiLL use freauently in this section is 'copy'.
'Cony' joet exacitly what its name implies; it copies. data
fron one oL.1ce to another. In facto it cooies data fror its
first stnndnrd incut port to it% first 2tandara output port.

The first point to renelber Is that D1 2 fL11 9 ir

~riir!It~1fl2~ i~ ~Try #CODY* now:
CODY

op

after you have entered this commands type some rdndoA text
folloued by a ncwltne. 9CoPy will type the same text back

to you. (Jhen you tire of this oamet type a control-Ct thit
causes an end-of-fi'.e signal to be sent to 'copy'* which

thon returns to the conond interpreter. Typing controt-C
to cause end-of-flie is as convention observed by all Sut-
sys.tee Dronran%.) ;inco you did nct say otherwise, standard

input nnd standar output referred to the terminai i nputd-1 t .1 as taken from the terminal (,,, you typea it) ;inc out-

* out data was nlacel on the terrnal (printed by 'coy').

Obviously, 'cony o would not be of much use if this was all
it could dO. rortunately, the command interpreter can
rhamre the sources ani ncstination% of data, thu; akinn

'cony' less trivial.

Standarl ports say oe altered so as to refer to disk files
by 'se of ) jUpfaj the qreater-t-i n sian 0)) iS used to
represent a fnrinet. onvpntionally, the ")" Points in the
Siirection of dAta flog. For exaple, if you wisher to copy

the contents of file "ce" to file "oldee" you could type

IhO ; e(,ila Institute of Technology C 8OL Workbei ch•



Appendir 4 COMMAND TITERPRETER Page 167

I ee> copy >oLd-ee

Itl SussAit:t1a klilp. tuli1 alll w 1221dialcix ail 12 Al

W11i 209 UADn &I 1 U2LAII tti !> .LL22 AD.X LYMLAI PIAM
o- r ~jjuQj ahi L, ! 12 1 - i 11 Tfliat 12 1011u Ifhlx. zmmaod mss i n U Ja =tutlig itunklusunilz.

The construct nee) is read 'from ee"1 *)oLdcen is read
*toward oLo ee,0 1huss the comond Above cn be read "from

ee cop) toward oLd eeqt or* *copy trot ee to ward oLd re,"
The orocess of chanqinq the file assionient of a stinOcarl
port by ust, of a funnet is cakted "I/0 redirection," or sip -

Dty *relirection."

It is not necetsary to redirect both st wndard input Aa
standard Outputi eitcher may be redirectei independentLy of

the other* ror examptee

I re> COPy

can be used to print the contents of fMLe Oee on the
terainaL. (ReiseRber tftat standard output, since it was not
specifi4cLLy redirectede refers to the terminaL*) Not
surprisingLy, the Last variation of 0coPy9t

I copy )otd ee

is alto usefuL. This :oamand causes inaut to be taken Irow.
the terainL (untit an end-of-fiLe is generated by typinq o
controL-C) and pLaced on the fiLe holdee', This is a ajick
way of creating a smaLL fiLe of text without usino a tevt
editor*

It is i'portant to reaLize that ALL uiILJ 2r2,UMI
ut~ iinnl2 z tiin rvairg~ ig rtiqr=.,L2n it is as
correct to redirect the output of* say* 'lf

SIf >fitLe List

as it Is to rellrect the output of Ocooy.°

ALthouih the discussion has been titted to one inout port

and one output port up to this point, more of each type are
avaiLabLe. In the current imotementation, there are a totaL
of %ixi three for input and three for output. t he highest-
numoered output port is oeneratLy used for error Aessagese
and Is often caLLed 'errout;" you can "capture" error mes-

sages by redirecting this output port. For exampLes if any
errors are detected by OtI t in this command

2 tf 3>errors

then the resuLttnq error messages wiLL 6e p bted on the litLe
*errors.

leorqi.4 , 'nttltute of TechnoLogy CO8OL Workbench..

ki 
'



Appendiv 4 COMMANO INTERPRETER Page 168

Final words on redirection: there are two speciaL-purpose
redirection operators Left. They are both represented by
the characters O)>N Thv first operator is called mappend:"

I tf > List

cAuses a List of files to be placed at Itiz tag 2i (appended
to) the file named tlisto The second operator is calleo
"from command Inout." It is represented as just >> with no
fiLe name* and causes standard input to refer to the current
source of commands, It is useful for running proqrams Like
the test editor fror Oscripts" of Instructions Placed in a
coamvnd file.

The Lost section oiscusseo I/0 reUirectiong the process of
uakin; standard oorts refer to disk fiLest rather than just
to the ter-inAl. This section witt take that Idea one step
further. "requentLys the output of one proarem Is placed on
a fele only to be pickeo up again Later and used by another
nrograis. The command interpreter simplifies this process by
eLtiinatin; the interAediate file. The connection between
oro~rans that is so formed Is called a tt and a Linear
Array of oroqraas communicating through pipes is called a
a.IrLUat .

Suppose that you Paintain a Large directory, containing
drafts of varlous ranuals. Each draft Is in a file with a
name of the fore, 06AN~xxxrr~s where Oxau" is the number of

the ntnuat and Orr* is the revision number. You ere asked
to produce A List of the nuebers of all wanuaL2 at the first
revision stage. The follovinq command wiLl do the )ob:

L' -c I find .01

*If -co lists the n&,oes of atl files ii the current uirec-
tory. The 00iop connection* (vertical bar) couses this
Llktino to oe Passed to the 'find* commands ohich selects
thotf tinrs containina the string =001 and print% then*

Thus* the oioeline above will orint all filenames matching
the conventional for% of a first-revision manual name.

The ability io buiLd special puroose commands cheaply an,)

quitly from available tools using oipes is one of the ioft
valuable features of the command interpreter. Vith prac-
tice, surprisinoly difficult problems can be Solved with
easee ear further ecamples of vpiotinest see the An-
oricatians tiotes.

'0

Geri nttt fTcnlg OO okec



Appendix 4 COMAND INTERPRETER Page 169 V
Cotbin6tions of programs connected with nipes need not be
Linear. Since multiple standard ports are avaiLabLe,
proqrats can be and often are connected in non-Linear
networks. (Some networks cannot be executed if the pronrams
in the network ore not executed concurrently. The commamo
interpreter detects such networks, And prints a warning mes-
sage if they cannot be performed*1 Further inform4tion on
networks can be found in sections 6.7.2.2, 6.7.2.3, and

4*1* Caa*U~ Nod#%

It is sometimes necessary to change the standard ort en-
vironment of many commands at one time, for reasons of con-
venience or efficiency. The 8comoound nodeA (a set of
network% surrounded by curly braces) can be used in thece
situations.

As an examptc of the first case, suppose that you wish to
generate A List of manuak names (see the Last eoampLe) in
either the first or the second stage of revision. One wty
to do this is to genrrate the List for the first revision
stale* place it on a file using a funneL, then generite a
Litst for the tecond revision stage and Dtace it on the end
of the sace file using -in OaopendO redirector. A compouno
node might simplify the procedure thusly:

I ( if -c I find .01 if -c I find .02 ) list

The first network finds all manuals at the first revision
stages and the second finds 3Ll those at the second stage.
The networks will execute Left-to-right, with tne output of
each being placed on the file Otist," thut aeneratinu the
desired Listing. with iteration, the command can be coLLaoo
sed even farther:

I ( if -c I find .0 1 2) ) )list

This co~bination of iteration and conpound nodes is often
useful.

rfficiency becomes n consideration in case% .here succossive

Long streams of data are to he copied onto a fMle% if the
aoend" redirector it used each tite, the file must be
reopened and reno;itlone- Icvcr*L tiees4 Usin2n e comrPeund
node, the output file need be opened only once:

I ( (fiel fite2 ftle3l> copy )llfites

This compLex exasoLe cooes the contents of files "fitel,"
'fiLe299 and Ofike3 into the file named Oallfiles. =f

GeorQgi,|nstitute of Technology .

~~---



Appendix 4 COMAND INTCRPRETER Page 170

4,1,10 Fnct,.±a £aLiL

Programs in the Subsystem receive information through their
command-Line arguments as well as their standard ports, to
it is sometimes useful to deliver the output of a program to
the coariand Interpreter for further processing, rather than

to a DIp' The "function caLL" mechanism is av4ilabLe for
this ourpotse ror example, recall the situation illustrated
in the section on pipes and networks* Suppose it is neces-

lary to ictuaLLy print the manuals whose names were found.
This Is how the task could oe done:

print (If -r find .01)

Tho function call is composed of the network "11 -c I find

.01" and the snuare brackets enclosing It. The output of
the network within the brackets is passed t' 'print' as a

set of argumentst which it accesses in t usual manner.
Specifically* all the Lines of output from the network are

coibined into 2 s set of arguments, with spaces provided
where suLtiple line; have been collapsed irto one Line.

'Print t accepts multiple ariuments; however, suPPose it was

necessary to use a oroqram Like 'fos', that accepts only one
aroument? iteration can be combined with a function caL to

do the l0t-

3 fot ((If -c I find .01])

ThIs command f0rzat% and prints all manuals in the current

directory with revision numoers 01.

Function calls are frequently used in comand filest

oarticuLarly for accessing arguments possed to them. rince

the secuence "If -c I find oattern" occurs very frequently,

It Is a oood candidate for reoLacement with a command fite;
it is only necessary to oa-s the nattern to be eatched frow

the arqement List of the command file to the 'find' command
with a function call. !he foLtowinq command file, calleo

9filest will ItLutrat(, the process:

If -c I find taro 1)

I" retrieve% tPe firtt rommand file argument. The 'I

funttion cll then oasscs that arqueent to 'find' throughi its ariuacnt IIst. triLes* tray then be used anywhere the
oriGinal network was appropriate:

* I fiLes .01

Sprint [files .01)

1 fo ( f tles .01)

Georgia Institute of TechnOLc~y COBOL Workbench



Appendix 4 COMMAND INTERPRETER Paqe 171

4.1.11 Varlabkta

It has been ctadied that the command Lanqouqe i-. a
proqraRminq Lnquaae in its own right. Cne facet of this
Laniuaqe that has not Ucen discusiied thus far is the use of
its variables. The command interoreter allows thte user to

create variables, with scopes and assign values to them or

refer ice the values stored in them.

Certain speciol variables are used by the costdno
interpreter in its everyday operation. These variabLe% have

nases that begin with the underline (. One of these is
9_orompt.=, which is the prompt string the command
interpreter prints when requesting a command* If you object
to "10 as a promot, you can change it with the "set" Com-
mand

t set promt = OOK,
OR, set -prompt "I

set -prompt "=

You may create and use variables of your own. To create a

variable in the current scope flevel of comtano file
execution)* use the "declare* comeno:

I declare I J k suet

Values are assined to variables with the *set* commana.
The commanti interpreter checks the current scope and al
surrounling scopes for the variable to be set; if found, it

is chanoed, otherwise it Is declared in the current scope
and assigned the specified value.

Variables behave Like small proorams that print their
current values, Thus the value of a variable can be oh-
tained by si.ply typing Its name, or it can be used In a
command Line by encLosinq it in brackets to fore a function

CAlL* The following command file (which also illustrates
the use of tit** 'evatto and Ooeot) will count from I to
the number given as its first argument:

declare i
set i 1
:loop

If (evt I ">" Cara 1]]
gote exit

f4i

* Iset iz: evat ! 1
pate tooo

~:eE it

-Note the use of the "evat" function, which treats Its ar-
quments as an arithmetic expression and returns the e xores-

ion's value. This Is required to insure that the string "i
Georr11A IA,titute of Technolooy CQ0.4L Ir khr,1 ...

- - - - ~ ~ - - - .--- -- . --



Appendix • COPMANO INTERPRETER Page 172

* 10 is Interpreted as an expression rather than as a
character strinq* ALso note that Ofi* terminates the fife
coomand.

In the future, typed variabLes and better controL structures
will tie aded to the co~mand Interpreter.

4*112 f'=la~a.n
This concLudes the tutoriaL sections for the convand
Interoreter. 3espite the fact that a good deaL of sateriat
has been iresentedt such detaiL has been omitted. The next
neyt few sections incLude a compLete summary of the
capaoitLitis of the command interpreter and some exampLes
uhic may orove heLofuL.

rhis section is the definitive document for the syntaX and
cerresponain4 senantics of the Software TooLs Subiystem Com-
Rand Interpreter. It Is composed of severaL sub-sections,
each coverini sofe sajor area of command syntaext with
niscussions of the semantic 4onsequences of emptoying
ParticuLar constructs, It is not intended as a tutoriaL,
nor Is it intendtd to supoLy *uLtitudinous exampLesi other
section% in this cocuaent are provided to fiLl those needs.

4*2*1 *Jem&fl1

(coinand) ::: I (net> ( (net) I (newLine>

The jgj!jfg its the baSIC unit of communication between the
coiOmnnrd Interpreter and the User*. It consists of any number
of networks (described be~ow) separated by semicolons and
terminated v A newLtine. the networks are executed one at t
ttee left-to-right; %houLd an error occur at any point in
hte Drse or execution of a network, the remainder of the
(co-vond) is Ignored. The nuLL command i LegeL, and causes
no a ct Ion.

IThe coi~and intproreter reads eosoxnds for interpretation
fro' the a x ru* Th I Is initiaLly the user's
terfinat, a thouih rxec ut ion of a n~aD fijj may chan e
the tsiinnent. Vhenever the command source ii the
teriiatL. ,nd the command interpreter is ready for inoutt it
prompt% the" user with the string contoined in the sheLt
variabLs *oronot t. Since this variablte may be aLtered by
thp user, the prompt strinq is seLectabLe ot a nar-user

Georgia Institute of TechnoLogy COBOL Workbench



Appendix 4 COMMANO INTERPRETER Page 173

4*.2.2 Netwoks

( (nole separaitor> C(<noae sep6rator> ) <node> 3

<node senarator) : , (vipc connection>

<oine connection> : t (port> I tt9 C <node number> I I e<port> 3

(Dort> ::: <integer>

<node number> ::: <integer> I S I <Label>

A <net> generates a block of !PnSsibLy concurrent) procestes
that are bound to one another by channels for the flow of
d-ita. TyoicaLLy, each Cnode> corresponos to a single
process. (%tPode>s are described In more oetaiL below.)
There Is no predefined "execution order" of the Processes
co oDOSin9 a <net>; the command Interpreter will select any
order it sees fit in o'der to satisfy the required
Input/output reLttionso In particuLar, the uier is
specifically enjoined 01 to asiume a Left-to-right serial
execution, since some <net>s cannot be executed in this man-
ne r

*nPut/outout relations between <node>s art specified with
the <node separator> construct* The following discussion
may be useful in visualizing the date flows in a <net>* ano
ctarifing the function of the components of the <node
sernorator>.

The entire (net> may be reoresented as a directed oraph with

one vertew for each <node> (typically, equivalent to each
orocess) in the net* Cach vertex may have up to g arcs
terminating at it (reoresentina Jaggj gjL"A ztrejl)s and 2
arcs oriqinating from it (representing 21Y1291 2A.U [t t*
An Arc between two vertices indicates a flow of data frot
one <node> to another, and is physically implementee by a
p-i£,

Fach of the a possible input points on a (node) is assigned

an Identifier conistinq of a unlaue integer in the range I
to a* These identifiers are referred to as the p oL£1
for the j.jrgA. " input port of the given <node>. SifiLar-

Ly* each of the g possible outout points on a (node> Is as-
signed a unioue integer in the range I to f, referred to as
the Port numbers for the jLjjgJ R.tIgu 2g of the given
<node>*

Lastly* the (node>s theakseles are nLobered, startinq at I
and increasing by 1 from the Left end of the (net> to the
righto

Georqia Institute of Technology COBOL Workbench ..

4 .. .. ' , *: ? F " ' | .:. ,,,- = , i ..



Appendix 4 COMMAND INTERPRETER Page 174

ClearLyt in order to specify any possible input/output con-
nection between any two <node>s it is sufficient to

1. The number of the *source* (node>,

2* The number of the *destination' (node>.

3. The nort number of the standard output port
on the sourt (node> that is to be the source
of the oata.

40 The port number of the standard input Port on
the destination <node) that is to receive the
data*

The syntax for <node separator> includes the specifications
for the Last three of these Items. The source <node) is un-derstood to be the node that immediately preceeds the <nodesevarator> under tL Iderstione The speciaL <node

separator) It is used %o separate <node>s that do not
participate in oate sharing; it specifies a null connection.
t hui, Iti <niajt are.xrgu !: pucyi t
Any 22ijii r.20111120 kiliun 1X2 <naLIZ>a gI A!11<nt)>,

The full flexibility of the <node separator> is rarely
needed or desirable. In order to Peke effective use of the
capabilities provided* suitable defaults have been designed
into the syntax. The semantics associated with the defaults
are as follows:

1, If the output port number (the one to the
left of the vertical bar) is omitted* h
nl~L U11nnz &g.L2g± a2L, ILI Incs.LAingl
ltrIjjj orde) 11  j mpi". This default
action takes place g after the entire
<net) has been evamined, and all non-
defaulted output ports for the given node
have been assigner. Thust if the first <node
seoarator) after a (node) has a defaulted
outout port number, port I will be assigned
if and only If no other <node senarator> at-
tached to that <node) references output port
1, It is an error for two <node separators>
to reference the same output port. (This
particular behavior may be chanqed in the
future to allow "forking' output streams$
which would be copied to qore than one
destination*)

2. 14 the destination (node> number i* omitted*
then the next node 4n the <net) (scannino
from Left to riqht) is imptlied. >Fretiuentty 6
null <noOe) Is generated at . end of a

X. !, Georqia Institute of Technology COBOL Workbench

COI3OL orkblip



Appendix 4 COMM~AND INTERPRETER Page 175

(net) because of the necessity for resolving
such references,

30 [f the destination (node>ls input port number
is omitted, then the next unassigned input
port (in increasing numerical order) is im-
plied. As with the defauLtea output p~orts
this action takes place only after the' entire
<ne~t) has been examined. The comments under
(1) above also apply to cefaulted Input
port s.

In aiddition to the dlefoultst specifyino inout/output connec-
tions !jetween widety separated <node~s is aided by alter-
native 3eans of giving <node> numbers. The Last <node> in a
<net> ma~y be referred to by the <node number> St and any
<node> may be referred to by am alphanumeric (Label).
(<Node> LabeLLing is discussed in the section on <node>
syntax, below.) If the first (node) of a <net) is labelled.
the (net) may serve as a target for the 'qotot command; see
the Applications N~otes for examples.

As wILL be seen in the next sections further syntax is
necessary to comapleteLy specify the input/output environment
of a <node>; the reader shouLd remember that <node
senarator~s control only those flows of cata

A few examples of the syntax presented above may hutp to
Ctorify some of the semantics. Since the syntax of <node)
has niot yet been discusseos (node); will be represented by
the string *node" followed by a digits for unioueness and as
a key to (node number>%*

A simple Linear (net> of three <node>% without detauLts:

nodel 112.1 node2 113.1 node3

(Data flows f ropt output port 1 of nodel to input port 1 of
noac2 and output port I of node2 to inout port I o'f node3.)

The some <net>* with defaults:

nodel node? node3

(Note th~at the spaces around the vertical bars are
aa~~ax'so that the Lexical, analysis routines of the com-

mand Interoreter can parse the elements of the command unat-
binuous lya)

A simple cycLe:

nodel 11o2

(Data flows from output port Iof model to input port 2 of
nodels Other data flows are unspecified at thin level.)

Georqiq Institute of Technology *COBOL Workbench~~

W 4

.......



ppendix A COMMAND INTERPRETER Paqe 176

A branching (net> with resolution of defoutts:

nodel IS node2 1.1 node3

(Oata flows from output port I of nodel to input port 2 (M)
of node3 and output port I of node2 to input port 1 of

(node) := :<LabeL C (simple node) I <comp, I node) ]
( (simple node> I <compound node)

<simpLe node> :: ( (i/o redirector>) <command name>
(i/o redirector> <argument> I

<coampound node) ::: ( (i/o redirector> )
*(* <net) ( etnet separator> <net> ) *
( <i/o redirector>

<i/o redirector> ::: (file name) *>0 C (port> I
C <port> J *)' (file name> 
C <P ort > )> * < f ile n 4e > A

C>* <Dort> I

<net separator) :: I

(coemand name) ::( fite name>

<Label> ::= <identifier>

The <node> is the basic executable element of the command
Language. It consists of a Label (strinq of Letters,

4 digats* and uneerscores, beginning with a letter), or an op-
tional label followed by one of two additional structures.

The first Option is the <simple node>. It specifies the
name of a conmand to be performedt any arquments that tOm-

mand may requiret and any <i/o reoirector>s that will affect
the data environment of the command in addition to (pipe
connection>s in any <nets) containing the <simple node>.
M(Iio redirectors will be diScussed below.) The execution
of a si*mLe node normally involves the creation of a single
process, which performs some functions then returns to the
ooert ing system.

The second option is the (compound node). It specifies a
<net> unich is to be executed accordina to the usual rules
of (net) evaluation (see the previous sectiin), and any <i/o
rejirector)s that should affect the environment of the
<net). The <comtound node) Is provided for two reasons.
One, it is occasionally useful tc alter default port assau-

Georoia Institute of (ethnoLogy COBOL Workbench

".Lau



Appendix 4 COMMAND~ INTERPRETER Page 177

than supyinq 0i/o redirectnr~s for each <node>. 7wo, use
of com~pound nodes containini more than one <net) gives the
user some control over the order of execution of his proces-I
ses. These abiLities are discussed in more detaiL below.

Since It is th more Dasic construct* consider' the <simpif Z

nod.e). It consists of a <command ntame> with <argufient>s9
intermixed with Mio redirector>s. The (compand nape) must
be a filename, usuaLy specifying the name of art object codeI
fiLe to be Loaded. The command interpreter Locates the con-
mand to be performed by use of a user-specified ltl~ tgLg
The search rule resides in the sho-tL variable
"search rule", and consists of a series of comma-sepairatea
elements. Each element is either a template in which amper-
sands MI are replaced by the (command name> or a flao

instructing the command interpreter to search one of its
internal tables. The flag 0mintl indicates that the command

ked. (An internal copmand is imptemented as a subroutine of
the command interpreter, typically for speed or because of a
need to access some private data base.) lhe f'lag O~var*
causes o search of the user's jfrhjj llrjik1. (see below for
further discussion of variabt.4% and functions). The follow-
Ing search rule will cause the command ttrpreter to search
for a command amona the internal commands, whell variables,
and the directory /im. in that or-ler:

The purpost, of the search rule is to allow optimiiation of
cormand Location for speed, and to 6dmit the possibility' of
rtstricting some users fromp accessing OprivitegcdO commandso
(For exaeple* t~he search rule

"vart/project/Library/to

would restrict a user to accessing his variables and those
commands in the directory /prcJect/library, t4e could notN
atte-, this restriction, since he does not have access to the
(internal) 'set' commandi the 04intf flaq is missing from
his search rule.)

<Argument>% to be Vassed to the program being readied for
execution are nathered by the command interpreter and placed
In an area of memory accessed by the Library routine
'getaro'. they may be arbitrary strings, separated from the
comeand name and from each other by blanks. Quoting may be
necessary if an (argument> cauld be interpreted as some
other element of the command syntaxo Either singLe or
double quotes may be used. The appearance of two strinas
adjacent to one another without blanks impties
concatenation. Thus,

"Quoted "string

Georgia inst-itute of Technology COBOL Workbench



Appendix 4 COMMAND INTERPRETER Pacie 178

is equivatl!,nt to

"Quoted string*

or to
quoted* string'

Single quotes may *ppesr within strinas delimited by double
quotes, and viice versa; this is the only way to include
quotes within a string. Example:

"$quoted string#"
'"Alas, poor Yorick?"'

Arguments are generally unprocessed by the command
interoreter, and so may contain any information useful to
thi program being invoked*

in the previous section, it was shown that streams of data
from~ "standard ports" could be piped from program to Program
through the use of the (pipe connection> syntax* It is also
possible to .*edirect these data streams to fies, or to use
files as sources of data. The construct that makes this
possible is the *Ziio redirector). The (i/o redirector> is
composed of filenamess port numbers (as described in the
Last section), and orne or A~ore occurrences of the *ftunnel"

fie0I)hec0

The two sipetfrstake input from ~a file to a standard

of dtivrin ououtto a fie. the file is automatically
cratd fitdi ntexist, n overwritten if it did. in
the ase f tainginput from a file, the file is

.ocumentat ion>I

causes the data on the tile *documentation" to be passed to
stAndard in~ut port 1 of the nodal

I )resuLts

cnuscs data written to standard output port 1 of the node to
be olaced on tho file "resuLts"*

if no 0i/o redirector) is Present for a given port, then
thdt port ,utoma~ticatly refers to the user's terminal.

If Dort numbers are omitted, an astignment of defaults is
made. The assiqneent rule is identical to that Qiven above
for <pipe connections): the first available Port afte the
entire (net) hos been scanned is used. <1/0 redirector>%
aro evaluated Left-to-riohtq so Leftmost defaulted redirec-
tors .re assigned to lowcr-mumbered Ports than those to
their right. ror exampleq

Georgia Institute of Technology COBOL Workbench

-..
1-



Appendix 4 COMMAND INTERPRETER Page 179

data> requests) trans 2)summary 3>crrors I spool

is the same as

data>l reouests)2 trans 2>summary 3)errors 112.1 spool I
where aLL defaults have been elaborated. .Trans' might ne
some sort of transaction processor, accepting data input and
update requests, and producing a report (here printed off-
Line by being piped to a spooler proqram), a summary of

transactions, 3nd an error tliting.

In addition to the <i/o redirector>s mentioned above, there
are two Lesser-used redirectors that are usefuL. The first

. output to a ftle, rather than overwriting the file.
The syntax is Identical to the other output reorector, with

the exception that two funnels ,O), are used, rather than
cne. For example,

6))stuff

. causes the data written to output port 6 to be appended to
th. file *stuff", (Note the tack of spaces around the
redirector; a redirector and its parameters are !1r.1
separated from one another, but are iJUJIL separated from
surroundin; arguments or other text. This restriction is
necessary to insure unambiguous Interpretation of the
redirector.) The second redirector causes input to be taken
from the current command source file. It is most usef t l in
conjunction with command files. The syntax is simiLir to

the input redirector mentioned above, but two funnels are
used and no fitlename may be specified* As an exampLe, the
following segment of a command file uses the text editor to

change a*U occurrences of 00archm to "April' in a given
file?

>) ed file
o/March/s//Aprit/
V

When the editor is Invoked, it will take input directly from
the command file, and thus it will read the three commands
plated there for it.

the "command source" and NappendO redirectors are subject to

the saqe resolution of defaults as the other redirectors and
<pipe connection>s. Thus, in the example immediately above,

)) ed file

is equivalent to

>>1 ed file

Georgia.Jnst.4tute of Technology COBOL Workbench

AtI



Appendix 4 COMMAND INTERPRETER Page 180

Now that tne syntax of (node> has been covered* just two
further considerations remain. First, the nature of an
executable program must be defined. Second, the prootem of
execution order must be cLas'ified,

In the vast majority of cases* a <node> is executed by
bringing an object program into memory and starting it.
However, the (command name> may also specify an internal
totmand, a shell variabLe, or a command fite. Internat com-
mands are executed within the command interpreter by the in-
vocation of a subroutine, When a sheLL variabLe is used as
a command, the net effect is to print the value of the
variable on the first output ports foLLowed by a newline.
If the fiLename %oecified is a text fitle rather than an ob4
ject fite, the command interpreter "guesses" that the named
file is a fiLe of commands to be interpreted one at time.i
In any cases command invocation is uniformt and any <!to
redirector> or <ppe connection> given wiLL be honored.
Thus* it is aLLowabLe to redirect the output of a command
filet just as if it were an object program, or copy a sheLL
variable to the Line Printer by connecting it to the spooler
through a olpe.

As mentioned in the section on <net>st the execution order
of nodes in a <net> is undefined. That is, they may be
executed seriaLLy in any orders concurrently, or even simuL-
taneousty. The exact method Is Left to the impLementor of
the command Interpreter. in any caset the ftows of data
described by (pipe connection>s and (i/o redirector>s are
quaranteed to he Present. There are times when it would be
oreferable to know the order in which A (net> wiLL be
evaluatedl to help with this situation, (compound node)s may
be used to effect seriaLization of control flow within a
network. Chet>s separated by semicolons or newtines are
guaranteed to oe executed serialty, left-to-right, otherwise
the command interpreter would exhibit unpredictable behavior
as the user typed in his commends. Suppose it is necessary
to operate four Programs; three may proceed concurrently to
make full use of the multiprogramming capabitity of the com-
outer systent but the fourth must not be executed until the
second of the three has terminated. For 'siompticity, we will
assume there are no input/output connections between the
oroqrams. The foLLowing command Line meets the reauirements
stated above:

nroqramel (program2; program#), programS

(Recall that the comma represents a nuLL i/o connection.)
Suppose that we have a sLightLy different probtem: the
fourth proqram must run after Jl of the other three had run
to completion. Thist toot can be expressed concisely:

Progrdml, prooram2o program3l program4

Thus, the user has fairLy complete control over the execu-

Georgia Institute of TechnoLogy COBOL Work4-nch

4"t



Appendix 4 COMMAND INTERPRETER Page 181

tion order of his <net>so (The use of commas and semicoLons
in the command Language paraLteLs their use for cokLateraL
4nd seriat etaboration in ALtoLt 68.)

This compLetes the discussion of the core of the command
Lanquaao The remainder of the features present in the com-
mand interpreter are provided by a buitt-in prepracessor,
which handLes function catLs, iteration* and comments. The
next few sections deaL with the preprocessor's capabititiess

4.2.4 CommeciA

Any good command Longuage shouLd provide some means for the
user to comment his codcs particuLarty in command fites that
may be used by others* The command interpreter has a simpte
comment convention: Any text between an unQuoted sharp sign
(4) and the next newline is iqnoredo A comment may appear
at the beginning of a Line, Like this:

0 command fite to preprocess, comoite, and Link edit

Or after a command, Like this:

fikeor) rf U Ratforts output goes to the terminal.

Or even after a LabeL, for identification of a Loop:

**Loop a beginning of daity cycLe

As far as imptications in other areas of command syntax, the
comment is functionalty equivaLent to a newkine.

(variabke> <: identifier>

<set command> ::= set C (varisbie) 3 E (argum~ent> 3

Cdeclare coomand) dectare ( (variabLe C =(argueent> 3

(forget Command)> forget (variabte> C (variabte>)

The command lnterprete' supports named string storage a~eas
for misceLtanpous user appLications. These are caLted

yj~jj.Variabtes are identified by*e name, consisting
of Letters of either Cate* digits, and underscores, not
beginning with a digit. VariabLes, have two attributes:*
votue and scope. The- vatue of a variabLe may he aLtered
with the #set$ command, discussed betow. The scope of a
variabte is fixed a t the time of its creationl simpty,
variabtet deciared during the time when the command

Gtorgia.,Imstitule of Technotogy

-2~>~4r



Appendix 4 COMMAND INTERPRETCR Page 182

interpreter is taking input from a command file are active
as Long as that file is being used as the command source.
Variables with global scope (those created when the command
interoreter is reading commands from the terminal) are saved
is paet of the oser's profile, and so are available from
terminal session to terminal session. Other variables
disappear when the execution of the command file in which
they were declared terminates.

Variables may be created with the 'declare' command.
$OecLare' creates variables with the given names at the
current Lexical Level (within the scope of the current com-
tand fiLe). The newly-created variables are assigned a null
value, unless 4n Initialization string is provided*

Variables may be destroyed prematurely with the Oforgjt'
cormund. The named variables are removed froo the command
Interpreter's symbol table and storage assigned to them is
released to the system. Note that variables created by
operations within a command file are automatically released
when that command file ceases to execute. Also note that
the only way to destroy variables at the global Lexical
Level is to use the 'forget' command.

The value of a variable may be changed with tht 'set' com-
mand. The first argument to *set' is the name of the
variable to be changed. If absent, the value that would
have been assigned is printed on *set's first standard out-
put. The Last arqument to *set$ is the value to be assigned
to the voriabLe. It is uninterpreted, that is, treated as
an arbitrary string of test. If missing, 'set' reads one
Line from its first standard input, and assigns the result-
inn string, If the variable named in the first argument has
not been declared at any Lexical Level, *set' declares it at
the current Lexical Level.

Variables are accessed by naaeo as with any command. (Note
that the user's search rule must contain the flag "*var"
before variables wilt ., be evaluated.) The command
interpreter orints the value of the variable on the first
standard output. This behavior makes variables useful in
function calls (discussed below). In addition* the user may
ontain the value of a variable for checking simply by typing
Its name as a commands

<teration> : Ot (element) (element>) 9)9

Iteration is Used to generate muttipte command Lines each
differing by one or more substrings. Several iteration
elements (cotLecttively, an *iteration group") are pLaced in

- - parenthesest the command interpreter wilt then generate one

Georgia Institute of Technology COBOL WorkbenctO

~--- ~ -~- '4 - a--.



Appendix 4 COMMAND INTERPRETER Page 183

t command Line for each etement, with successive elements
reotAcing the instance of iteration. Iteration takes ptate
over the scope of one (net); it will not extend over a (net
separator>* (If iteration is applied to a <compound node>#
it wiLL, of course, apply to tht- entire (node); not just to
the first (net> within that (node>.)

Pultiple iterations may be Present on one command; each
Iteration g~roup must have the same number of eLements, since
the command interpreter wiLl pick one etement from each
group for each qenerated command Liiee (Cross-products over
iteration groups are not imolemented.)

An example of iteration:

3 fos part(1 2 3)

is equivaLent to

I fos partl; fos Part2l fos part3

and

I co (intro body summary) part(1 2 3)

is eouivalent to

I cp Intro partl; cp body part2; cp summary part3

4.2.7 EMaUXJ AWL~

(fijnction call) ::z 9E9 <net> < net separator) (net)> )

OccasionalLy it is useful to be able to pass the output of d
program along as arguments to another oroqramt rather than
to an input Porto The iMia akmakes this possible.
The output appearinq on each of the first standard output
Ports of the <net>% within the function call is copied into
the command Line in place of the function call itself. Line
separators (newlines) present in the (neltz outp~ut are
reolaced by blanks. No quoting of (net) output is per-
formed* thus blank-separated tokens will be passed as
separate arguments. (If quoting is desired, the filter
9quote' can be used or the shell variable O"quoteopt* may
he set to the strinq "YES" to cause automatic quotation.)

A<niet> stay of courte he any network;t all the syntax
described in this document is apolicable. In particular,
the name of a variable may appear with the brackets; thus,
the value of a variable may be substituted into the command
line.

Georgia* Inpjjktute of Technology - COBOL Workbench

7
-~ ~- J

J0,-- .



Appendix 4 COMANO INTERPRETER Paoe 184

This concludes the description of command syntax and
semantics. The next section contains actual working exam-
ples of the fuLL command syntax, along with suggested ap-
pLications.

$ .3. AE±.LICAJIGk UMI

The next few sections consist mostly of examples of current
usage of the command interoretere Extensive knowledge of
some Subsystem programs may be necessary for complete under-
standing of these examples* but basic principles should be
clear without this knowLedqee

40301 Basic Lullslian

In this section, some basic applications of the commana
Languaqe will be discussed* These applications are intended
to give the user a "feet" for the flow of the Lanquages
without being explicitly pedagogical.

One commonly occurring task is the Location of Lines in a
file that match a certain oattern. The 'findt command per-
forms this function:

I fiLe> find pattern >linesfound

Since the Lines to be checked against the pattern are
frequently a List of file names* the foLLowinq sequence oc-
curs often:

I If -c directory I find pattern

jConsequently, a command file namea fitles t is available to
abOreviate the sequence:

I cat files
I If -c torgs 2) I find Caro 1)

('Cat' is used here only to print the contents of the com-
mand fiLe&) The internal command 'arg' is used to fetch the
first hroument on the command tine that invoked 'files'.
SimitirLyt the internal command targs' fetches the second
through the Last arcumcents on the command Line. The command
file aives the external appearance of a program 'files' such
t ha t

I files pattern

is eoulvatent to

I If -c find pattern

Georgia Institute of Technology COBOL Workbench

A-



Appendix 4 COMMAND INTERPRETER Page 185

and

3 fiLes oattern directory

is equivalent to

I Lf -c directory find pattern

Once a List of file names is obtained, it i. freQuentLy
processed further, as in this command to print Ratfor source
fiLes on the Line printer:

I or (fiLes .rs I sort]

'FiLes' produces a List of fiLe names with the ".r* suffixt
which is then sorted, by 'sort e. 'Pr9 then prints aLL the

I named fiLes on the Line printer.

One ProbLem arises when the pattern to be matched contains
command Languaqe metacharacters. When the pattern is sub-
stituteo into the network within 'fites', and the coemand
interpreter parses the commands trouble of some kind is sure
to arise. There are two solutions: Ones the fiLter 'quote'
can be used to supply a Layer of quotes around the pattern:

Lf -c Caras 2) I find targ I J quoteA

Two* the sheLL variable ' quote opttt which controls
automatic function quotation by the command interpreter, can
be set to the string "YES*:

declare _quoteopt = YES
Lf -c Cargs 23 I find Caro 1)

This Latter soLution works only because 'arqs' prints each
arqument on a separate Line; the command interpreter always
generates separate arouments from separate Lines of function
output. In practice* the first solution is favored, since
the non-intuitive auoting Is made more evident.

On- common non-Linear command structure is the so-called "YO
structuret where two streams of data join together to forst e
third (after some processing). This situation occurs
because of the Presence of dyadic operations (especiaLLy
comparisons) in the tools avaiLable under the Subsystem. As|
an examoLe, the foLlowing command compares the file names itn 
two directories and Lists those names that are present in
both:

I If -c dirl sort Is If -c dir2 , sort c common -3

* VisuaLize the command in this way:

4~:: 1 GeorgIa.lnettute of TechnoLogy . . CO8Ol kb~oh,,

1 71
++ ,iI

<
,. . .. +;+ + : ;+++,S +. ++++, + :++.,*+ , +, + ++ + + . .'



Appendix 4 COMMANO INTERPRETER Page 186

Lf -c dir I sort Lf -c dir2 I sort.

\ /
/ i "/

common -3

The two 'LfI and 'sortt pairs produce Lists of file names
that are compared by *commont, which produces a List of
those names common to both input Lists.

Command tiles tend to be used not only for often Performed
tasks but also to make Life easier when tyoing long* complex
commands. Ouite often these Long command Lines make use of
line continuation -- a newLine Preceeded immediately by an
underscore is ignored. The following command ftile is used
to create d keyword-in-context index from the heading lines
o the Subsystem Reference Manual. ALthough it is not,used
frequently. it does a great deal of work and is illustrative
of many 3f the features of the command interpreter.

N make-cmd.k --- build permuted index of commands
files /doc? -f commands-files -

I chanqe % "find %.hd -

s h
I change 9%.hd *(t- )) C 3.(C"*3.)?*9 991: 920
I kwic -d /extra/soeLttinq/discrd
I sort -d I unrot -w Ewidtfi3 >cmd~k

First a few words on how Suhsystem documentation is stored:
The documentation for Subsystem commands resides in a sub-
directory named Ocommands files". The documentation for
each cos~vand is in a separate file with the name
doc (command). The heading Line in each file can be
identified by the characters ".hd" at the beginning of the
line*

The entire command file consists of a single network. The*fltest Command produces a List of the full oath names (the

-f option is passed on to 'Lft) of the files in the sub-
directory "coemadsfiles" that have path names containing
the characters "/doc_0 followed by at Least one additional
character. The next *changet command generates a 'find'
command for each documentation file to find the heading
Line. These command Lines are passed back to the shell
('sh') for execution. The outputs of alt of these 'ffind'
commands. namely the heading ltines from all the documents-
tion fitles. is passed back on the first standarl output ofIsh'. The second 'change' command uses taggeWpatterns to
isolate the command name and its short description from the
header line and to construct a suitable entry for -the kwic
innex generator. Finally. 'kwic', *sort t s .nd *unrotA
produce the index on the file "cmd.k.-

Georgia Institute of Technology COBOL Workbench



Appendix 4 COMqMAND INTERPRETCR Pae187

To this point, only serially-executed commands have been
di:;cussed, however sophisticated or oarameterizedo Control
structures are necessary for more generally useful. ap-
pLications. The following command file, 'ssr', shows A
useful technique for o.arameter-settin, comme'nds* Like many
APL system commands, 'ssr' without arguments prints the
value it controls (in this case, the user's command search
rule), whle tssr' with an argument sets the search rule to
the aroument given, then prints the value for verification.
'Ssr' Looks Like this:

Nssr --- set user's search rule and print it

if Cnargs]
set -search rule targ 1I quote]

f i

.search-rule

The tif' command conditionally executes other commands. I t
reauires one arqument, which is interpreted as "true* if it
is oresent, not nuL, and non-zero. If the arournent is
true* all, the commands from the tiff to the next unmatched
'else' or 'fit command are executed* If the argument is
false, all the commands from the next unmatched felset comn-
sand (if one is present) to the next unmatched #fit cormano
are executed. In *ssr' above, the arauient to tiff is a
function colt. invoking 'nargs', a command that returns the
number of arquments paused to the command~ file that is
currently active. if 'narns' Is zero* the~n no arqur'ents
were soecified, and 'tar' does not set the user's search
rule. If Onarout is nonzero, then tssrt fetches the firsrt
argument, Quotes it to prevent the command interpreter from
evaluating sptcial characters, and assiqns it to the user~s
search rule variable '-search rule'.

'If' is useful for simple conditional execution, but it is
often nec'mssary~ to select one amonq several alternative ac-
tions instead of just one from two* The 'cage' command is,
available to perform, this function. The premier exampte of
"case* is the command file 'e', which is used to invoke
either the screen editor or the tine editor depen~ding on
which terminal is beirnq used (as well as rtumeibering the
name of the file Last edited):

jGeorgja Luit~tute of Technology COOLWpbec~

7e



Appendix 4 COMMAND INTERPRETER Paqe 188

x e --- invoke the editor best suited to a terminal

if Cnargs]
set f = Carg I quote]

fi

tase [Ltine)
when 10

se -t consul Ese.params3 Ef1

when 11
se -t b200 tse-params] tf)

hen 15
se -t b150 Ese.params) (13

when 17
se -t Qt40 [se params3 Ell

when 18
se -t b200 Cseparams] IfI

when 25
se -t b150 Cte-params] CIf

out
ed Cf 3

esac

The first *ift command sets the remembered fiLe name (stored
in the shell variable 'ft) in the same fashion that 'sir'
was used to set the search rule (above)* The 'case* command
then selects from the terminaLs it recoqnizes and invokes
""e proper text editor. The argument of 'case' is compared
with the arguments of successive *whent commends until a
match occurs, In which case the group of commands after the
*when# is executedl if no match occurs, then the commands
after the #out' command wiLl be executed* (If no 'out* com-
mano is present, and no match occurs, then no action is
taken as a result of the #case'*) The 'esac* command marks
the end of the control structure. In *e', the *case* co-
mand selects either 'set (the screen editor) or fed* (the
Line editor), and invokes each with the proper arguments (in
the case of 'se', Identifying the'termina type and specify-

f . ing any user-dependent PersonaL parameters)*

The 'goto' command may be used to set up a Loop within a
command file. ror example, the following command fiLe will
count from 1 to 10:

. bogus command file to show computers can count

declare I = I

:Loop

set I = [evat I * 1)
if revaL I <= 103

noto Loop

In actual experience, Little need has been found for Loops

Georgia lnstfitute of Technology COBOL .orkbench



Appendix 4 COMMAND INTERPRETER Page 119-

within command files; thus the need for this contrived exan-

4.3.2 CoL. ~ntro aiYaLki
Several special sheLL variatbLes are used to control the
operation of the tommarnj interpreter* The following table
identifies, these variables and gives a short explpnation of
the function of each*

-ci-name This variable is used to select a comffiand
interpreter to be executed ahen the user
enters the Subsystems It should be set to4
the full pathname of the command interpreter
desired* The default value is "/b4n/sh",

erase This variable may be set to a single charac-
ter or an ASCII mnemonic for a character to
be used as the "erase," or character dalete,
control character for Subsystem terminal in-
out processing. The change in erase charac-
ter becomes effective only alter the Sub-
system is re-entered and the initidtization
routines read the shell variable storage
f iLe.

hello !his vajriable* it present, is used as the
source of a command to be ,txecuted whenever
the user enters the Subsystem.. it is
frequently used tc implement memo systems,
supply system status information, and print
plea sinq messages-of-the-day.

_kill This variable may be set to a sing)le charac-
ter or an ASCII mnemonic for a character to
be used as the *kill," or Line deLetes

* control character for Subsystem terminal in-
out processing. h cag in kill character
becomes effective only after the Subsystem is
re-entered and the initialization routines
read the shell variable storage file.

-7~ jprompt This variable contains the prompt strinc
printed by thie command interpreter before any
command read from the user's, tersinal. The

default value is a right bracket Ca)o

_quoleopt This variable, if set to the value "YES",
causes automatic Quotation of each Line of
proqram output used ini a function caiL. it

Is mainly Provided for compatibility with an 1
older version of the command interpreter,
which performed the quot-inq automaticalLy.

The orogram 'quote' may be used to explicitly

: IGeorgia.Xns.tltute of Technology yoPAOL .oZk bench~.



Aopenoix 4 COMMAND INTERPRETER Page 190

A

I force quotation*

Isearch rule This variable contains a sequenre of comma-
separated elements that control the procedure
used by the command interpreter to Locate the
object code for a command. Each e'ement is
either (1) the flag "wintv meaninq the con-
mand interpreter's table of internaL com-
mands* (2) the flaa "*var~o meanino the
userts sheLL variables, or (?) a template
containinq the character ampersand (&), mean-
inq a particular directory or fiLe in a

directory. In the Lust case, the cornana
name specified by the user is substituted
into the template at the point of the amper-
sands hopefuLLy providing a fuLl pathname

that Locates the object code needed.

4.3.3 CancLsan

This concludes the Apotication Notes section.

Georgia Institute of Technotogy COBOL Vorkbmnci

~'- ~-~ - _______________________________3

~~A.



Appendix 5 EDITOR Paoe 191

I APPENDIX 5

EDITOR
* GEORGIA TECH SOFTWARE TOOLS SUBSYSTEM

The Software TooLs Subsystem provides two editers, led# and
tse.' The tajor oifference between the two editors is that
tse' aLlows the user to view a window of text during the
editing session. To enhance the window feature, *set aLso
provides some additional capabiLities, for exampLe soeciatL
characcers for controLLing the position of the cursor. The
basic editing commands avaiLabLe on both editors, thought
are identicaL.

*Ede is an interactive program that can be used for the
creation and modification of "text". "Text" iqay be any coL-

Lection of character data* such as a reports a prograim, or

data to be used by a proaram. The nature of the next few
sections is that of a tutoriaL. and (as such, a step-by-steo
journey throuph an editinq session*

50101 Sta±tin a Editing Sgualo

Since you are in the Subsystem, the commanu interpreter

shouLd have just printed the prompt 03m) To enter the text
editor, type

) ed (foLLowed by a newLine)

(Throuqhout this introductions boLdface is used to indicate
Information typed by the user.) You are now in the editor,
ready to oo. NJote that 'ed' does not print ny oromptinq
information; this quiet behavior is preferred by experienced
users. (if you wouLd Like a prompt* it can be provided; try
the command "op/orompt/O,)

At this ooints *ed$ is waiting for instructions from you.

You can instruct Oed' by usinq "commands*, which are singLe
Letters (occasionaLLy accompanied by other information*
which you wiLL see shortLy).

51.2 Ltrina i : 1W 1 Aa anU 1UUA
The first thing that you witt need is text to edit. Workin7

with 'ed' is Like working with a bLank sheet of paoer, you
write on the paper, aLter or add to what you have written,
and either fite the paoer away for further use or throw it
away, In 'ed' terminotogy, the bLank sheet of paper you I
start with is caLed a "buffer*" The buffer is emoty when
you start editing. ALL editing operations take oLace in the

Georgia_%isititute of TechnoLogy COBOL Workbench

l~__+ j + 4 # 7v

-. T ..:+p+ + +: : .++ . :,+ +,- ' +-+ , ++



*Appendix 5 EDITOR Poor 192

buffert nothing you do can affect any file unless you make
an explicit request to transfer the contents of the buffer
to a fiLe.

So the first problem reduces to finding a way to put te\tj Into the buffer. The "append* command is used to do this:

a

This too,)nd appenos (aode) text Lines to the buffer, as
they are typed In.

To out text into the buffer, silply type it in, terminating
each Line 4ith A newLine:

The quick brown fox
jump* over

the tozy dog.

To stop entering text, you must enter a Line containing only
a perioo, immediately followed by a newtinet as in the Last
Line above* This tells fed* that you are finished writing
on the ouffer, and are ready to do some editing*

the buffer now contains:

The quick brown fox
juaos over

the Lazy doQ,

)Ieither the append coT~sand nor the final period are included
-in the ouffer - just the text you typed in between them*

5e1*3 Kr a I t n a2 LUa : &2IM5f

Now that you have some text in the buffert you need to know
how to save its The write cosncood Ow" is used for this
Puroose. It is used i1ke this:

V file

where "ilel Is the name of the file used to store what you
just typed in& The write command copies the contents of the
puffer to the named file, destroying whatever was previously
i n the file. The buffert however* is untouched; whatever
.ou typea In is stiLL there. To indicate that the transfer
Of data was successful, fed* types out the number of LineI
writtrn. In this eamotet tedo would type:

It is advisable to write the contents of the buffer out to a,.. ,i" fMe ,vertodlcaltyi to insure that you wilt have an UP-to: .66"

d:te ,ersion in case of some terrible catastrophe (Like .a

A': .  eoroia Institute of Technology COBOL _orkbeh

C40 6i O ,

-- r - __ ____ ____ _____7_



Appendix 5 EDITOR Paqe 193

system crash)e

Now that you have saved your text in a fite, you may wi'.h to
Le,,ve the editor. The "Quit" command Iq* is provided for
this:

q

The next thing you see shouLd be the )" prompt from the
Subsy3tem command interpreters If you did not write out the
contents ol the buffer, the editor witL respond:

(not saved)

This is to remind you to write out the buffer, to that the
resuLts of your editing session wILL not be Lost. If you
intended that the buffer be discarded, Just enter "q* again
and trot wILL throw away the buffer and terminate*

When you receive the 010 prompt from the Subsystem command
Interpreter, the buffer has been thrown awayl there is ab-
sotutety no way to recover its If you wrote the contents of
the buffer to a fiLe, then this i of no concerns if you did
not* it may mean disster.

To check if the text you typed in is reatLy in the ft.e you
wrote it too try the fottowing command:

c eat fite

where "fiLe is the name of the file given with the Ow" coT-
sand* (OCtO Is a Subsystem command that can be used to
Print fitles on the ter.inaLo If, for examoles you wished to
Print your fiLe on the Line printer, you could say:

I pr file

ano the contents of Oflle would be oueued for printinq,)

5*1u eaing fit&u - I"a Ln"t sAASan
Of course, most of the time you witl not be enterin, text
into the buffer for the first time# You need o way to fiLL
the buffer with the contents of some fitLe that already
exists, so that you can modify it. This is the purpose of
the "enter" command Wetl it enters the contents of a fiLe
into the buffer. 'to try out *enter,' you .tt first get
bock into the editor:

* I ed

leorqia,,.Institute of Tecinotogy COBO. Votkbehch,

-,,, .. k,,: , , e,' .- , A - ,-, - . . ,



Appendix 5 EOITOR Page 194

"Enter" is used ki.ke this:

"File" is the name of a file to be read into the buffer.

Note that you are not restricted to editing fiLes in the
current directory; you may asto edit files belonging to
other users (provided they have Oiven you permission).
FiLes t eton;in,1 to other users must oe identified by their

QfuLL p~thnome" (discussed fuLtLy in !±Y£ U_.oIC £ jL .2ix1_
" All 91L . ).£ For examples to edit # fiLe named

document" belonging to user *too** you would enter the lot-
lowinn comri.nd:

e /tom/document

After the f'Le's contents are copied into the buffter **do

prints the number of tLines it read. In our examples the

buffer woutd now contain:

the quick brown fox
jumos over

the Lazy dog.

If Anything at all is present in the buffers the e command
destroys it before reading in the named fitLe.

As a matter of convenience, Oed remembers the fiLe name

specified on the last ge" command, so you do not have to

specify a lite nome on the OwO command. With these
orovisions, a conson ealtino session Looks Like

ed
e file
Ceditinol

The "file* command ('f*) is available for finding out the

re-emtered file name. To print out the name* just type:

f

You might also want to check that

I d ftile

is exactly the some as

I ed

That is, ted' will perform an "e" command for you if you

Georola Institute of TechnoLogy COBOL ,orkbinch

- .-- Aq ~ ~ ''.. --- - __________________________



717 77R"~

Appendix 5 EDITOR Page 195

give it a lite name on the command Line*

591*6 E.raras Z Qh uery £.alaa
Occasionattys an error of some kind wiLL be entountered.
Usuatlly% these are caused by misspetted lite nairess atthough
there are other possibitLit~ieso W~henever an error occurs*
led* tyoes

Although this is rather cryptic, it Is usually cLear what

caused the problemt If you need further explanation, just
enter 0?0 and *edO will resoond with a one-tine eptanation
of the error. ror example, if the Last command you typed
was an *ell command, fed' is orobabLy saying that it could
not Lind the Mie you asked for. You c'an find out tor sure
by enterinn 0?:*

0e yfik*

I can't open the fite to read

Except for the messages in reponse to I?"* fed* rarety gives
others more verbose error messagest if you shoutd see one of
these* the best course of action Is to report it to someone
who e-Aintains the editor.

S.l*? Printing 1* :1a~t sasi
You are Likely to need to print the text you have typed in*
to check it for accuracy. The *print" command "p* is
available to do this. op" is different from the commands
seen thus far. "e,' Qk* and *a* have been seen to work on
the whot-e buffer at once. For a smattlfile, it might t~e
easiest to print the entire buffer just to cheek on some few
Lines* but for very Larqe lite,% this is ctearly impracticat.
The Opw command therefore accepts *tine numbers* that in-
dicate which Lines to orirnto Try the foLtowing experiment:

I *d Mie

The auitk brown fox
39

the lazy dogs

The, quick brown fo x
jumps over

1, SP
The qu-ick brown fox

Jumps over
'J the Lazy dog*

.44

.~ .Georgi&. Inititute of TechnoLogy .COBOL Workhefth

-- A



Appendix 5 EDITOR Page 196

"1D" teLLs 'ed$ to priwit tine I ("The quick brown fox).,
43o" says to print the third tine (*the Lazy dog."). *1,2j)"
teLLs 'ed' to print the first jbLU2,h the second Lines, and
"113D" says to print the first irMh. the third Lines*
Suppose we want to print the Last tine in the buffer, but we
don't know what its number Is. 'Ed' provides an abbrevia-
tion to specify the tst Line in the buffer:

Sp
the Lazy dog.

The dottar sign can be used just Like a number. To print
everythinq In the buffer, we could type:

1,sp
The quick brown fox

lumps over
the Lazy dog.

If for some reason you want to stop the printing before it

is done, press the BREAK key on your terminaL. If you
receive no response from DR[AK9 ed' is waiting for you to
enter a command. Otherwise, *ed# OIL respond with

and wait for your next command.

I= 5.10oolu £ a tIa~A Lint Igaka
'Ed' has several ways to specify Lines other than Just num-

ners and 0"S. Try the fotLowing command:

the Lazy dog*

f'Ed' prints the Last tLine. Does 'ed' atways print the Last
tine when it is given an unadorned p"O command? No, The
"o" command by itsett prints the "current" Line, the

*current" tine is the Last Line you have edited in any way.
(As a 4atter of fact, the Lost thing we did was to print aLL
the Lines in the buffer, so the Last Line was edited by be-
a n rinted.) 'Ed' aLLows you to use the symboL t.. (read

"dot") to rcpre.cnt the current Line, Thus

OP
the Lazy dog*

is the spe as

the Lazy doe.

which is the sAne as just

Georgia Institute of TechnoLogy COBOL Workbench [



Appendix 5 EOTOR Paqe 197

the Lazy aog.

Ito" can be used in many ways. For exampLee

1,2p

The quick brown fox

Jumps over
hlp
The quick brown fox

Jumps over
,tip

Jumps over
the Lazy dog.

This exar.pLe shows how to print aLL the Lines up to the

current Line (Ilp) or aLL the Lines from the current Line

to the end of the Duffer (,*So)* If for some reason you

wouLd Like to know the number of the current Line* you can
tyoe

3

and sed' wiLt dispLay the number. (Note that the Last thing

we did was to print the Last Line, so the current Line
became Line S.)

se" is not ParticuLarLy usefuL when used aLone. It becomes
much more irportant when used in "Line-number expressions."

Try this exper'iment:

JUMPS over

".-1" means "the Line that is one tine before the current
Line."

9+1P
the Lazy dOg.

*.*1" means "the Line that is one tine after the current
Line,"

The quick brown fox
jumps over

• *.-21p" means *print the Lines from two Lines before to

one Line before the current Ltine." A

7Georqia-Jnst--tutt *.f Techinotogy CO" Vpkhp

"7~~ 7:i

.5,



Appendix 5 EDITOR Page 198

You can also use "S" in Line-number expressions:

, Jumps over

"S-lp" means "print the Lin' that is one Ltine before the
Last Line in the buffer (the next to the Last Ltine)."

Some .tbbreviations are available to help reduce the amount
of typinq you have to do. Typing a newtine by itseLf is
equivaLent to typing ".**1p typing an uo arrow, "^"* foL-
Lowed by a newLtine is equivalent to typing ".-Ip*; and typ-
ing ai Line-number expression foLLowed by a newtine is
equivaL ent to typing that tine-number expression foLLowed by

°.PO Ep o xamples:

WI "P(type a newtine by itseLf)

the Lazy dog.

~Jumps over

SThe quick brown fo x

It tight be worthwhile to note here that aLl commands 'xpect
Line numbers of one form or another. If none are suiLoied,
tedt wiLL use default vaLues. Thus, -'

w fite

is equivaLent to

1Sw fit*

" and

is equivalent to

(which eanss append text after the current Line.)

50109 DezLeling Lings
As yrt, you have seen no way of removing Lines thit Are no
Longer wanted or needed. To do this, use the "delete" com-
mand dOd:

192d

fDeLetes the first through the second Ltines. Odw expects
Line tiurbers that work in the same way as those specified

Georgia Institute of Technology COBOL Workbench



Appendix EDCITOR Page 199

for O"' deteting one Line or any range of Lines,

d

deLetes onty the current Line* It is the somwe as led" or

After a deLetion, the current Line pointer is Left pointing
* to the first Line jijjr the group of deteted Lines* untess

the Last Line in the buffer was deLeted. In this case, the
current Line is the Last Line kijgCj~ the group of deLeted
Lines*

5.1.10 !ISAIet gI~nt

FrcQuentLy it is desirabte to be abte to find a particuLar
Ooattern* In a piece of text* For exampLe, suppose tha't
after Proofreading a report you have typed In using fed* you
find a speLting error* There must be an easy way to find
the misspeLted word in the fite so it can be corrected. One

* way to do this is to count aLL the Lines uip to the Line
containing the error* so that you tan clve the Line number
of the of fendina Line taq 9ed'. Obviousty, this way is not

*very fast or efficient. fEdO aLtows you to "sarh for
patterns of text (Like words) by enctosinq the pattern in
stashes:

/Jumps/
Jumps over

Ord* Looks for the Pattern you specified, and moves to the
first Line which contains the pattern. '4ote that If w~e had
typed

/jumped/

Oedv informs us that it couLd not find the pattern we
want ed*

ordl searches i~rujrd from the currint Line when it attempts
t o find the pattern you specified. If 'ed'v reaches the Last
Line without seeing the pattern, it "wraps airound" to the
first line in the fite and continues searching untiL it
either finds the pattern or gets back to the Line where it
started (Line Oe")* Itii Procedure ensures that you wiLL
get the "next* occurrence of the pattern you were Looking
for, and that you wiLL not miss any occurrences because of
your current position in the fite.

SuDPCse, however, that you d'a not wish to find the "next"
occurence of a word, but the previoul occurrence of a words
Very few text editors provide this capabiLityl however, 'ed'
makes it simpte. Just surround the patt-crn with back-
stashes:

GeoraInstitute of Technotogy MM CO W orkbenich,_.

's: ~- - -**



Appendix 5 EDITOR Page 200

\quick\
The quick brown fox

Remember: back%%Lashes - search backward. The backward

search (or backscan, as it is sometimes called) wraps around

the fiLe in a manner similar to the forward search (or

scan). The search begins at the Line before the current

Line, proceeds untiL the first Line of the fiLe is seen,
then begins at the Last Line of the file and searches up

until the current Line is encountered. Once again, this is

to ensure that you do not miss any occurrences of a pattern

due to your current position in the fite.

A tEds aLso provides more powerful pattern matching services

th.in simpLy Lookitng for a given string of characters. (A
note to beginning users: this section may seem fairLy com-
plicated at first, and indeed you do not reaLLy need to un-

derstand it completely for effective use of the editor.

However, the results you might get from some patterns would

be mystifying If you were not provided with some ex-

planation, to Look this over once and move on.)

The pattern that may appear within slashes (or backslashes)

is caLLed a 'requLar expression." It contains characters to

Look for and speciaL characters used to perform other

operations. The folLowing characters

x ? S • a (

have special meaninq to *eds:

% Beginning of Line. The " character appearing as

the first element in a pattern matches the begin-

nino of a Ltine. It is most frequently used to

Locate Lines with some string at the very oegin-

ning; for exampLe.

/%The/

A finds the next tine that begins with the word
"The"o The percent sign has its special meaning

only if it is the first element of the pattern$
otherwise* it is treated as a literal percent

sign*

? Any character. The question mark "?0 in a

requlAr exprestior matches jal charatter (except &

tbeginninq-of-tine or a newline). It can be Used
like this:

" /&?b/

to find strings tike

a .b

a-b

Georgia ;nstitute of Technot.ogy COBOL Vorkbench

Z 7 ~ W~--~ ~~'



Appendix 5 EDITOR Page 201

a b
arbitrary

However, M?. is most often used with the
OcLosure" averator *a* (see below)l

S End of Line. The doLlar sign appearing as the
Last element of a pattern matches the new.inecharacter at the end of a Line. Thus*

/todayS/

can oe used to find a line with the word *today"
at the very end. Similar to the percent sign, the

dollar sign has no special meaning in positions
other than at the end of a pattern*

1) Character classes. The square brackets are used
to match "classes" of characters* For examplet

/CA-ZJ/

will find the next Ltine containing a capital Let-

ter*

/%Cabcxyz J/

will find the next Line beginning with an a, bt c,

xi yt or zt amnd

r will find the next line which contains a non-

digit. Character classes are also frequently used
with the *closure" operator *e

Closure. The asterisk is used to mean "any number
of repetitions (incLudinq zero) of the previous
oattern element (one character or a character
class in brackets)** Thus, i

Iol|b/

will find Lines containing an *a" followed by any
number of characters and a to", For examotet the
foLtowina Lines will be matched:

ab
abnormal

Recording Medi*I by Oro Joseph Pe Gunchy

AS another exampLe,

will match only those Lines containing all eouaL

Georgia. lnst-itute of.- TechnoLogy SN. or n

'I0-4, - ..t>.....



Appendix 5 EDITOR Page 202

signs (or nothing at aLL). If yOU wish to ensure
that only non-empty lines are matchedt use

ALways remember that "*" (closure) wiLL match C2
or more repetitions of an element.

Q scape. The "at" sign has special meaning to both
'ed' and the Subsystem 1/^ routines. It is the
"escape" character* which is used to prevent
interoretation of a special character which foL-
Los. (tote that to enter a singLe 090 from a
terminal, you must type two; the Subsyster 1/O
routines remove ine in the process of interpreting
cscaped characters.) Suppose you wish to Locate a
Line containing the string "a * b*. You may use
the fotLowinq command:

/a g b/

(Note that i "at* signs are required to pass one
"at* sign to the editor*) The "at* sign "turns
off" the special meaning of the asterisk, so it
can be used as an ordinary teit character. You
may have occasion to escape any of the regular ex-
pression aetacharacters (%9 ?9 So Is * @9 or 0
or the stash itself* For example, suppose you
wished to fina the next occurrence of the string
"1/2". The command you need is:

) Pattern tags. As seen in the next section, it is
sonetimes useful to remember what part of a Line
was actuaLLy matched by a pattern. By defaults
the string matched by the entire pattern is remem-
bered. It is also possible to remember a string
that was matched by only a part of a pattern by
enclosing that part of the pattern in braces.
tience to find the next Line that contains a quoted
stri g and reeember the text between the quotes,
4e Rioht use

if the Line thus Located Looked Like this

Ci "This is a tine containing a *quoted string".

then the text remembered as matching the tbgqed
nart of the pattern would be

quoted strin-p

Geoeoin Institute of TechnoLogy COBOL Workbench



7 ,7 ,F7 -7ZeJ7F.7F . " ,l

Apnendix 5 EDITOR Page 203

The Last important thing you witl need to know about Pat-
terns is the use of tne "default" pattern. 1010 remembers
the Last regutar express-Ion used in any comirands to save you
the troubLe of retyping it* To access the rememLered Pat-
tern* simply use an "empty" string* For examples the fol-
Lowing sequence of commands could be used to step throuqh a
file, Looking for each occurrence of the string "ICS":

/ICS/
/
/I

(and so on)

One Last comment before Leaving pattern searching. The

constructs

/pattern/
\pattern\

are not separate commandsl they are components of Line num-

ber expressions. Thus, to print the Line after the next
Line containing Otoe"t you could say

/tape/+Ip

Or* to print a range of tines from one before to one after a

Line with a given pattern, you couid use

/08ttern/-l9/pattern/#lp

5*1911 Mlkinar $u±Mtu t n  : St M u and

This Is one of the sost used editor commands* The "sub-

stitute'" command "S" is used to make smaLL changes within
Lines, without the need of retyping theme It is used Like
this:

startinq-Lineending-Ltine s /pattern/new-stuff/

For instante, suppose our buffer Looks Like this:

the quick brown fox

jump$ over
the tazy do,.

To chance 'Jumps" to "Juoped." {
Ssljumps/juoped/

jumped over

Note the use of the trailing "p" to print the resuLt. If

Georqia'Institute of TechnoLoay ...... O .orkben t

? -170



gAppendix 5 EDITOR Page 2C4

the "o" had been omitted, the change would have been ocr-
formed (in the buffer) but the changed Line woutd not have
been printed out*

If the Last string specified in the substitute command is
emapty* then the Pattern found is deleted:

s/jumped//p
over

s/z .1 jumps /P
jumps over

Reca~lling that a missing pattern aeans *use the Last pattern
specified*"m try to explain what the following com~mands do:

2///p
jumps over

/V
jumps over

(NJote that* Like many other commands, the substitute command
assume% you want to work on the current Line if you do not
specify any Line numbers.)

What it you want to change *over* into Oover and over"? W~e
msicht use

s/over/over and over/p
4UMDS over and over

to actomplish this. There is a shorthand notation for thisj
kind of substitution that was attudeJ to briefly in the Lest
section. (Recall the discussion of *tagged* oaterns.) Bly
default* the oart of a Line that wat matched by the whole
Pattern is remembered* This string can then be incLuded in
the replacement string by typinq an ampersand COLO) in ttte

desired position* So, instead of the command in the Last

s/over/i and 91

could have been used to get the same resut. If portion of
the pAttern had been tagged, the text matched by the tagged
part in the replacement could be reused by typing "26101:

s/jump(?.)/v&ULtV8l/P
vaults over and over

It is possible to tag tip to nine parts of a Pattern utin.9
braces. The text matched by each tagged part may then be
usecs in a replacement %tring by typinq

where n corresponds to the nth "( in the pattern. 9htat
does the following command do?

Georgia Institute of technology COBOL Workbench
4-



Appendix 5 EDITOR Page 205

s/(* 3*) (?*)192 881/

Finat words on substitute: the stashes are known as
"deLimiters" and may be repLaced by any other character ex-
ceot a newLineo as Lonq as the same character is uszd
consistentLy throuqhout the commands Thus,

stvaultslvauttedlp
vauLted over

is LegaL. ALsoo note that substitute changes onLy the first
occurrence of the oattern that it finds; if you wish to
change aLL occurrences on a Line, you may append a On" (for
"gLobaL") to the commando Like this:

S/ /*/gp
****vauLted*over

5.1.12 Lint Chanau £s AInlrlon
Two "obbreviation" commands are availabLe to shorten common
operations anpLying to changes of entire Lines. These are
the *cnangeO command Oc' ano the *insert" command "1%.

The change command is a combination of deLete and arpend.

Its format is

starting-Linesending-Line c

This coemand deLetes the aivf-n ranqe of Ltineso and then goes
Into append mode to obtain text to repLace them. Append
mode works exactly the same way as it does for the "a" com-
mand; input is terminatedl by a period standing aLone on a
Line. rixamine the foLtowing editing session to see how
ch rge miqht be used:

1,c
Ed is an interactive proqram used for
the creation anrz modification of "text.

C
the creation aod kodification of Oteyt."
*Text" may he any coLtection of character
data.

As you can see* the current tine is set to the Last tinc

entered in append mode.

Georola Institute of TechnoLogy . Q 48 qg.rkbenc,h,,.

I - -%



Appendix 5 EDITOR Page 206

The other abbreviation command is i". 0I is very closely
related to "a*; in facts the following reLation holds:

starting-Line I

is the sair as

starting-tine - 1 a

In short, 1" inserts text Ite oreJ the specified Linet
whereas "a* inserts text jItgr the specified Ltine.

Throughout this introductiont we have concentrated on what

may be called "in-place" editinq. The other type of editing
commonly used Is often called "cut-and-paste* editing. The

move command "a* is provided to facilitate this kind of

editinqe and works Like this:

starting-tinetending-Line a after-this-Ltne

If you wanteo to move the Last fifty Lines of a fiLe to a
point after the third Line, the command would be

Any of the Line numbers mayt of course, be full expressions

with setirch stringst arithmetic, etc*

You Sayt if you Liket eopend a "DO to the move command and

it will print the Last tine moved. The current Line is set

to the Last Line moved.

The "LobaL" comaand "9" is used to perform an eoiting coa-

!and on aLL Lines In the buffer that match a certain Pat-
tern. For exampLet to print all the Lines containing the
wor". "editor"t YOU Could type

g/editor/p

If you wanted to correct some common speLling errors you. _~ use

. giotd-stuffis/Inew-stufflg

which wiLL make the change in all appropriate Lines and
Print the resuLtinq Lines. Another example: deLeting aLL
Lines that begin with an asterisk couLd be done this way:

Georgia Institute of Technology C08L Viorkberih

ha . " '.,¢ 4 *., , + ,& ,.,.,..,! . £ ,g ,< ,.,. ,, .,. " ,..,, -,'> , '.,* -- '.. <. -, .,,p . .t,.-, . ,, :. i , " l



Appendix 5 EOITOR Page 2R0

g/28B./d

G' has a companion command "Nx (for "excLtae") that per-
forms an operation an'all tines in the buffer that do 02
match a qFven pttern. ror exarpleg to delete all Lines
thit do a heqin vith an asterisk# use

"G" and "xk are very powerful commands that bre essential
for advanced usage* hut are usuaLLy not necessary for begin-
ners. Concentrate on other aspects of ted* before you move
on to tacXle gLobal co*%andsa

During some types of editin.79 esoecxltly when moving ttocks
of text* it is often necessdry to refer to o Line in the

buffer that is for away from the cuvrent Line. Forinstoncev say you want to move a subroutine near the hegin-

nnn of it fite to somewhere near the end* but you nrent
sure that you can specify patterns to oroperLy Locate the
suhroutine. One way to solve this orohbee it to find the
first Line of the subroutine* then use the command

/subroutine#*
subroutine think

and write down (or remember) Line 47. Then find the end of
the subroutine and do the s 6 thing:

/end/
end

Now you nove' to where you want to place the sunroutine and
enter the command

*Tim.

which does exactly what you uante

The vrobtem here is that absolute line numbers are easily
forqottent easily nistypedf and difficuLt to find in the
first place. It is much easier to have tedt remember a
short "name" along with each tine, and aLlow you to
reference a tine by its name. In Practite, it seems con-
venient to restrict names to a single character* such as "h"
or "e" (for "beginning" or "end*). It is not necessary for
a given name to be uniquely associated with one Line; many

Georgia Institute of Technology COBOL Wo.rkbench,.

0- .



Appendix 5 EDITOR Page20

Lines may beat the same nape. In fact# at the beginning of
the editing session, atL Lines are marked with the same
names a sinate space.

To return to our exampte, using the lkt commands we can mark
the beginning and ending Lines of the subroutine quite
eas fy:

/subrout ine/
subroutine think

kb

end
ke e

we htvc now %arked the first Line in the subroutine with Nb*

and the second Line with O".

To refer to names, we need more Line number expression
eLementg: 0)0 and 00e. Both work in Line number expres-

* sions just Like *SO or 0/pattern/e The syiboL 0>0 foLtowed
oy a sinate character mark name means "the Line number of
the first Line with this name when you search !jgrwa", The
syqbt~ 0<0 foLLowed by a singte character mark name %eans
"the Line number of the first Line with this name when you
search k4ksMz". (Just retmember that 0(9 points backward

andj 4>0 points forward*.)

Now in our exampte, once we Locate the now destination of
the subroutine* we can use *CbO and OWe to refer to Lines
47 and 71. respectiveLy (remember, we marked them)* The
*move* command wouLd then be

SeveraL other fettres pertaining to mark names are im-
portant* First, tt~e 9kf command gjkj pjjgg h urn
Line 0.9. You can say

5k X

(which marks the tast tine with "x") and O." will not be
chanced* If you went to mark a ranoe of lines, the 'k9 com-~
tand wiLL take two tine numbers. For instance*

5910ka

witL m~rk Lines S through 10 'with "a* (ise., give each of
tines 5 through 10 the name ma").

The *n', #10 And apostrophe commands also deal with markt.
The 'ri' cO~imand performs two functions& if it is invoked
without a mark name foLLowing it, Likz

U Georgia Institu~te of Technology -COBOL 'workbenth

30-,

AUZ



Appendix 5 EDITOR Page 209[

Sn

it will orint the mark name of the Line. In this case* it
wc'uLc print the mark name of the Last Line in the fite. if
the tnt commanO is followed by a mark name* Like

4nq

it mtarks the Line with that mark name* and eraises the marks
on any other Lines with thAt name. In this case% Line 4
marked with "q" and it is guaranteed that no other Line in
the fie is marked with *"o

The *'and apostrophe commands are both gLooat commanos
that deal with mark names. The apostrophe command works
very much Like the 090 command: the apostrophe is followed
by a mark name and another command; the command Is performed
on every line' marked with that name* For instancet

will change the first "fox" to *rabbit" on every Lime that
is named "a"s The $It command works in the same manners
exceot that it performs the command on those Lines that 9rt

~gmarked with the specified name. For examples to delete
AL tines not named "k*, you could type

tkd

5.1*16 Ungaing b1nM MM Lhaf Com and
Unfortunately, Murphy's Low nuarantees that it YOU Imake a
mistake, it wiLL happen at the worst possible time and c-ause
the areatest possitte amount of damage. *Edt attcempts to
prevent mistakes by doing such things as workinq with j copy
of your file (rather than the file Itself) and chec.king com-
mands for their pLausibitity. However, if you typeII

d

when you reatly meant to type

'ed'0 must take its input at face value and do what you say.
It is atl this point that the Pundo* co,%mand becomes usefuL.
"Undo* allows you to "undekete" the Last group of tines that
were deleted from the buffer. In the Lost example, some
inconvenience could be izvoided by typinq

"ud

which restores the deleted line. (By default "undo" wilt
also delete the current tinel "ud" keeps the current Line

Oeorgia Institute of Technology COP3OL #qr~benchl



Apoendix 5 EDITOR page 210

from being deteted.)

The Problem that arises with *undo" is the answer to the
Question "What was the Lost group of Lines deLeted?" This
answer is very dependent on the imptementation of cedt aria
in som~e cases iIs subject to change* After many commands,
the Last group of Lines deteted is weLL-defined, but
unspecified* It is not a good idea to use the *undo" com-
mand after anything other than *c*, *d*, or Oslo Af ter a
Oct or 9 dO command,

ud

wiLL Dtace the Last group of deLeted Lines ir sitrzi
jjj~.After an OsO command (which by the way, detetes the

oLi Line and then reinserts the changed Line),

u

wiLL deLete the current Line and reptace it with the Last
Line deLeted -- it wiLL exactLy undo the effects of the 'st
command*

You 4thoutd be warned that white "undo" works nicety for
reooiring a singte Oct* Odt, or fit coamand, it cannot
repuiir the tdamaqe done by one of these commands under the
controL of as gLobaL prefix 0~99 Oxtv *I' and apostrophe)*
Since the 9tobaL Prefixes Perform their commands many times*
onLy the very Last command verformed by a gtobaL prefix can7
be repaired.

This conctudes our tour through the worLd of text editing.

iocommands (many of which were not discussed in thisA
introduction, but which you wiLL undoubtedLy find usefuL) is
qiven in thp next few sections.

J,

Georoia Institute of TechnoLogy COBOL WorkbenchA



Appendix 5 ED ITOR Page 211[

5..*17.1 Command Summary

Editor Command Summary

* a ac'oend text after the specified t~ine

c change; delete specified texto then accept text

.. d delete specified rangex ofLines

V edit namedfie(ytx e ienml

f print remembered file name (syntax: ftfitename3)

19$ ni gLot).sLLy perform command (syntax:
(7/oat tern/command)

* insstrt text before specified Line

3 Join the specified Lines into a sinqLe tine
(s yItoax j/string/)* *string* is inserted
between each pair of Lines joined.

90 k maIrk Lines with given name (syntax:
k<,Angte-character-name>)

*9 move Lines from one place to another (syntax:
from-rheretto-here m~ therCD)

n print mark names of sorcifie1 Lines

none o options command. Syntax includes:
op/prompt/ to set command orom'pt

p print specified Lines

non' q quit (exit the editor qraceftly)

read a file into the buffer (syntax: r
[fitenameJ)

S substitute (syntax: s/change-this/to-this/[p3)

* ,. t translit (syntax: t/from-range/to-range/pJ)
Characters in the tfrom-range" are converted to
their corresponding characters in the

* U*to..range**

Georgia institute of Technology COO Workbench



77i

Aopendix 5 EDITOR Page 212

u un-substitute (restore Lines that were changed
by substitution)

I.. v overtayl print aLL Lines in the given range,
waitina at the end of each Line f~or text that

I*$ W write buffer (syntax: w CtitenameJ)

11 x excLudel converse of "90; perform command on
aLL Lines that do not match a given pattern
(syntax: x/pattern/command)

y copy; reproduce a btock of Lines in another
ptace (syntax: from-heretto-here y after-here)

* - print vatuel vaLue of the tine number
expression Preceding the eauats sion is printed
as a decimaL integer* (syntax: <expression>=

1,1 * gLobaL on miirkl perform commiand on aLL Lines
havinq a tiiven mark name (syntax:
9na me >c mqa nd )

its exctude on mairk; perform command on aLL Lines
th-it da not hive a given mark name (syntaxt
* (n.Ame coimmand)

Geogi Inttt1fTcn~g OO okec



Ap~pendixv 5 ED I TOR Paqe 213

5.1.17.2 Line Number Expressions

Ettments of Line Number Expressions

Eiliu

integer vaLue of the integer. (Ex: 44)

number of the current Line in the buffer

S number of the Ltast Line in the buffer

number of the previous Line in the buffer(.
1)

/pattern/ number of the next Line in the buffer that
matches the given pattern (Ex: /February/)
the search proceedt to the end of the buffer*
then wraps around to the beginnino and back
to the current Line

\Pattern\ number of the next Line in the buffer that
matches the given pattern; search proceeds in
reverse* from the current Line to Line 1t
then the Last Line back to the current Line.
(Ex: \January\)

>no-Re numoer of the next Lifle having the given mark
name (search wrap~s around, Like II)

(n~e number of the next Line having the given mark
<namename (Cseorch proceeds in reverse* in the sme

evnression Any of the above operands may be combined
with Pius or minus signs to produce a Line~
number expression. Pius signs may be omitteo
if dlesire2d. (Ex: /parse/-59 /LexicaL/#Z,
/Lexicat/29 1-59 ..6)

Georgia 1nst~itqte of TechnoLogy COBOL Vorkbench



Appendix 5 EDITOR Page 214

5,1.17.3 Pattern Etlemnts

Summary of Pattern Etements

L 1p ar, i ain

Patches the null string at the beginning of a
Line Howevert if not the first element of a
patterns is treated as a Literal percent
sinn.

? Matches any single character other than
newline.

$ Patches the newLine character at th(- ena of a

Linp. However* if not the lst element of a
pattern, Is treated as a Literal do(Lbr sign.

t<ccL>) Matches any single character that is a member
of the set specified by cc0L> (cct> may be -
conoosea of single characters or of character
ranges of the form <cl)-<c2>, If character
ranges ore used, <cl) and <c2> must both
belong to the digits, the upper case alphabet
or the Lower case alphabet.

1V<ccl>3 Matches any single character that is not a
member of the set specified by <ccL>.

In combination with the immediateLy preceed-
inq oattern elements matches zero or more

characters that are matched by that element.

Turns off the special meaning of the Im-
mediateLy following character* if that
character has no special meaninot this is
treated as a Literal "SO*

C<vattcrn>) Tags the text actually matched by the sub- t
pattern specifed by <pattern> for use in the
replacement part of a substitute command.

& Appearing in the repLacement part of a sub-
stitute command, represents the text actuatty
matched by the pattern part of the command.

n(dioit) oApetrin2 in the replacement part of a sub-
stitute command, represents the text actually

matched by the tagged sub-pattern soecitied
b~y <oiqit>6

Georqta lnstitute of Technology COBOL workbench

* A - .4
C,- - - ~ - '' ~ ----- ~ --



Appendix 5 EDITOR Page 215

5.2.,j

'Se' works much Like the regutar editor ledg, dccePtinn the
same commands with a few differences. Pather than display-
ing only a sinqle line from the file being eHited (as 'edo
does)* 'se' always displays a "window" onto the file. TI
order to do this, 'se* mutst be run from d CRT terminnt and
must be toLd what sort of terminal it is. This is acco.-
pltshed through the soecification of a Particular paraTeter
when #set is invoked*

Se* is capable of hein9 used from a variety of different

terminals, New terminal types are easily auded by makin.I
smalt additions to the source code. In general, all that is
reouired of a terminat is that it have the abiltity to home
the cursor (position it to the upper Left hand corner of the
screen) without erasina the screen's contentst although bac-
ksracingi a screen clear functiont and arbitrary cursor
oositioning are tremendousty helpfut.

The terminats currently supported are the following:

adds ADDS Consul 980. (this is the same as "consul"
below.)

ad'-3a Lear-Siegter AOM-3A,

bbSO Seehive International 8350.

b200 Beehive InternationaL 8200.

c9 Chromatics Color Graphics Terminal.

consul ADDS Consul 980.

fox Perkin-Elver 1100.

hat Hazettine 1500 series.

isc Intetligent Systems Corporation 8001 Color
Terminal.

regent ADDS Regent 100.

sbee Beehive Internationat Superbee.

soL vrocessor Technology Sol cosouter with software to
emulate a Beehive 8200.

tvt Southwest Technical Products TV Typewriter 11.

Georgia Institute of Technology COBOL Workbench,

Ilk 7 '

~ .........



Appendix 5 EDITOR Page 2.16

9Se9 atlows the user to set various options which control
the editing envrionment. To set an option* the user must
specify the "option" to) command, This consists of the Let-
ter Oot followed by one of the following strinqs of charac-
ters:

a causes absolute Line numbers to be dispLayed in
the Left-hand marqin of the screens Default
oehavior is to dispLay upper-case Letters with the

Letter "A" correspondin9 to the first tire in the
wIndow,

c inverts the case of all Letters typed by the, user
(i.e., converts upper-case to Lower-case and vice
versa). This option wiLl cause commands to be
recognized only in upper-case and alphabetic Line
numbers to be displayed and recognized only in
tower-case.

dt<dir>) selects the placement of the current Line pointer
following a "d" (delete) command. (dir> must be

either ">" or "(". If ">0 is specifiedt the
default behavior is selected: the Line foLLowing
the deleted Lines becomes the new current Line.
if "<* is soecified* the Line immediately preced-
inq the delete Lines becomes the new current
Line. If neither is specified, the current value

of <dir> is dispLayed in the status Line.

f Selects F -tran oriented options. This is
equivalent 4 specifying both the "c" and "t6"

(see PeLow) options.

(tC<Loo>3 sets the Line number disnay option. Under
control of this opt ion, 'se' wiLL continuously
i splay the vaLue of one of three symbolic Line
numbers. <Lop> may be any of the followinn:

* dispLay the current tine number

V display the number of the top Line on the
screen

I display the number of the Last Lite in the buf-

fr r

f, 'lctes that the number is an increment; stops are

Georgia Institute of TechnoLogy COBOL Workbench



Appendix 5 EDITOR Page 217

set at regular intervals separated by that many
cotumnst beginning with the most recently
specified absolute column numbers If no such num-
ber precedes the first increment specification*
the stops are set relative to column 1 r,y

defaults tab stops are set in every thrid co(uip
stdrtinq with column It corresponding to a <tabs>
specification of ".3". If <tabs> is omitted* the
current tab sDacino is displayed in the status
tine.

Su[<chr>) seLects the character that 'set displays in place
of unprintable characters. <chr> may be any
printable character; it is initiaLLy set to

btanke If (chr) is omtitted, *set dispLays the
current replacement character on the status tLine
at the bottom of the screen.

v[<int>) sets the defauLt "overLay coLumn". This is the
column at which the cursor is initiaLLy positioned

, by the "v" cofmann. <int> must he a positive

integer, or a doLLar sign (1) to inoicate the ernd
of the Line. If <int) is omittedt the current
overlay column is aispLayed in the status Lines

wC<int)2 sets the "warninn threshold" to <int) which must
be a positive integer* Whenever the cursor is

positioned ot or beyond this columns the column
number is displayed in the status Line at the bot-

tom of the screen and the terminatts beLL is soun-
ded. If Cint> is omitted, the current warning
threshold is dispLayed on the status Line. The

default warninq threshold is 74, corresponding toiT the first coLumn beyond the right edge of the
screen on an SO column crt.

-CtLnr>l %ptit3 the screen at the tine soecified bj <tnr)
which must ne a simpte line number within the
current window. ALL Lines above (tnr> remain
frozen on the screen, the Line s.pecified by (tnr)
is replaced bf a row of dashes* and the space
netow this row becomes the new window on the
file. Further editinq commands do n')t affect the
Lines dispLayed in the top part of the screen. If
<Lnr) is omitted, the screen is restored to its
fuLL site.

- 2
o 10

Georgia. Institute of TeihnoLogy CO Lqkorkhenc,,,.

-- *



Appendix 5 EDITOR Page 218

5.2*3 C0n3trOi Ch*US U . 'tlnal A" 9M= notion

Since $set takes its commands directty from the terminaL it
cannot be run from a script by using Subsystem 1/0 redirec-
tIont and Subsystem erase, kIttL, and escape conventions do
not exoctty appLy. In fact* tset has its o~n set of controL
characters for editing and cursor motiont their meaning is
as lollows:

ctrl-A ToaLe insert mode. The status of the insertion
indicator is invertea. Insert modes when enabLed.

catuses characters typed to be inserted at the
current cursor position in the Line instead of
overwriting the characters that were there
oreviousty. When insert mode is in effect*
"INSERT* appears in the status tie.c.

ctrt-C Insert blank. The characters at anO to the right
of the current cursor Position are moved to the
right one coLumn, and a bLank is inserted to fitLL
the qap.

ctrL-O Cursor up. The effect of this key depends on
'sets current mode. When in command mode* the
current Line pointer is moved to the previous Line
without affectin9 the contents of the command
Line. If the current Line pointer is at Line It
the Last Line in the fiLe becomes the new current
Line. In overLay mode (viz, the *v" command)*
the cursor is moved up one Line whitLe reaining in
thv same column. In append mode, this key is ig-
nored.

ctrL-E Tab Left. The cursor is moved to the nearest tab
stop to the Left of its current position.

ctrL-F *Funny' return. The effect of this key depends on
the editor's current mode. In command mode, the
currpnt command Line is entered as-ist but is not
erased upon compLetion of the command; in append
todet the current Line is duplicated; in overLay
code (viz, the "v" command), the current Line is
restored to its original state and command mode is
reentered (except if under controL of a gLobaL
orefix).

ctrt-G Cursor right. The cursor is moved one column to
the riqht.

ctrt-H Cursor Left. The cursor is moved one coLumn to
the Left. Note that this does not erase any

i characters; it simply moves the cursor.

ctrl-I Tab right. The cursor is moved to the next tab
stop to the right of its current position.

Georgia institute of TechnoLogy COBOL Workbench



Appendix 5 EDITOR Page 219

ctrt-K Cursor down. As with the ctrL-0 key, this key'ss1
effect depends on the current editinq mode. In
command mode* the current Line pointer is moved to

command Line. If the currcnt Line pointer is at

the Last tine in the file, Line I becomes the new
current Line* In overLay ',,ode (viz, the "v" cou-
mand), the cursor is moved down one Lin: white
remaining in the same coLumn. In append mode,
ctrL-( has no effect.

ctrt-L Scan Left. The cursor is positioned accordina to -

the character typed immediateLy after "he ctri-L.
In effect* the current tine is scanned, startinq4
from. the current cursor position and moving Left,
for the first oc-zurrence of this characters If
none is found before the beginning of the tine is
reached, the %can resumes with the Last character
.in the Lin*. If the Line does not contain the
character being Looked for* the message ONOT
FOUND" is printed in the status Line at the bottomj
of the screen. tSet remembers the L*5st character
that was stanned for using this keyl if the ctrL-L
is hit twice in a row, this remembered charactert
is searched for instead of a Literal ctrL-L9

ctrL-M" NewLine. This key is identical to the NEWLINE key
describad beLow.

ctrt-N Insert newtinc. A newtine character is inserted
tefore the current cursor vosition, and the cursor
Is moved one position to the right. The newLine
is disptayed according to the turrent nonprintabLe
replacement character (see the Pum ootion).

ctrL-0 Skip right. The cursor is moved to the first
position beyond the current end of Line.

ctrk-P Interruot. If executing any command except aout
01", or Ov', *set aborts the command and

reenters command mode* The command tine is not
erased.

ctrt-0 Fix screen. The screen is reconstructed from'
@r sets internal representation of the screen.

ctrt-R Erase right. The character at the current cursor
position is erased and all characters to its right
are moved Left one position.

ctrt-S Scan right. This key is identical to the ctrL-L
key described ahovet exceot that the scan proceedS
to the riqht from the current cursor position.

ctrt.T Kitt rlqhte The character at the current cursor
nosition and aLL those to its right are erased.

Geor-gia -Institpte of, Technology ,C O90~rbe~~R.

- "---' 'V

J~



4optnJix 5 EDITOR Page 220

c tr L-J Lrane Leef. The- caracter t e tt L e It o f thec
current curior tuosttion is deteted and att char'ac-
t vr t I t s rioht nee imoved to the Left to fiLL,
the q~ip. !he, curnr is atso moved Lef t one

ctrkI-Y 040P niqhl and terminate* The cursor in moved to
the ,cut-rent end of Ll n z, and the L.ine is
t ermi not ed

ctet-j Skip, Left* The cursor is positic~ned at cotumn lo

ctrL-Y Kittl. eft* Ml characters to the Left of the cur-
Sor are ernsed; thoste above and to the right of
the curitor are movecd to the Left to fiLL the

vjoid. The cursor is Ltett in coLumn I*

ctrt-z Tagjlte case ueoopin; ftaq. The status of the case
niDori.ni indicotor is invertedl if case wa&poing wds
on* 11t 1, turred off* and vi~t versa. Case map-
pinq)q when in effttt, cau-se% ati. upper case L-et-
tlkrs to be tornvsrted to tower case* and stl tower I
case Letters to he convertea to urper csse.' V.otep
however, that tset continues t;, recognize netptive'
L ine numbers In voper case onty. in cotllrast to
the case saopinci option Ciee the description of
options above). When case mapping is o*1, "CASE"

appears in the status Line.*I

NE4LINE K(itL riqht and terminate. The characters at and
to th~e right of the current cursor position are
Ietetedt and the Line is terminatede

DEL KILL )L. The entire Line is erased, &Long with
ly error me%saQe that appears in the status lines

ESC tZcaoeo The ESC key orovides a means for enterinq
;sets controL chara1.tfrs LiteraLty as text into A
the fite. In fact* any character that 'can be

tener~ited fro* the keyboard is taken LiteraLty i
ohen it immediately foLLows the ESC key* If the
i:haractcr Is unprintabLe (as are aLL, of *sets
tontrot. characters), it wiLL appear an the screen
accordino the current nonorintabte reptacement

character (normally a btank).

Tht- set of controL characters defined above can L- used lnrI
correcting mistakes white typing re'iutar editinq comran, -
for correct ing commands that have caused an error message to
he disoLayed, for correcting Lines typed in append onode, or
for intine editing using the O"3 command descrP'rd betow.

Georoia Institute of Technotogy COBOL 4orkbench



Aopendix 5 EDITOR Page 221

5 *294 .!Ua± ComanDg ifItgrotJ±±2D

There are a few differences in command interpretation
bettieen the requtar editor and the 'set. The onLy effect of
tho "o" com n n4 in 'se' is to 1)osition the window so that as

man' a oosstihle of the "printeoli Lines are d1i:ntayed while
IncLudirq the Last Line In the range. In fact* the window
is atways oositioned s4 that the current Line is displ ayed.
Tyninq a "o command with no Line nuibers uostt ,ons the win-
dow so thdl th.e Line previousLy at the top of the window is
at the bottom. This can be used to "page" backwards tt-rouoh
the fiLe. The "" comnando (which in the reguLar editor
Drints about a screenfuLl of text starting with a specified
Line), Dositions the window so it begins at the soecified
Linet and Leaves the current Ltine pointer at this Line.
Thus, a ":0 can be' used to page forward throunh the fiLe.

The Oov.erLoy" () commuand in the requLar editor 'ed' onLy
aLLows th, user to add onto the end of Lines, and can be
tertinated before the stated range of Ltines has been proces-
sed by enterinq a period by itsetft as in the "lapend" com-
mandw 9ut in *se*9 this comearid aLLows arbitrary chanqes to
be .ade to the Lines, and the period has no saeciaL
meaning. To abort before aLL the Lines in the range have
ceen covered, use the "funny return" character (ctrL-F).
Doina this restores the Line containing the cursor to the
state it was in before the Ov" comand was started.

*Soe h~s extended Line nurber syntax. In generat, whatever
nopears In the Left margin on the screen is an acceotable
Line number and refers to the Line dispayed in that row on
the scrten.

Gr I

SGeorgia Institute of TechrnoLogy -. C~ ,~k.e~



~'Q

Appendix 6 FORMATTER Page 222

APPENDIX 6

FORNATTER
GEORGIA TCHt SOFTWARE TOOLS SUBSYSTEM

6. 1 *1 ln.L~dctio±±n

fnfis as prooram desiqned to facilitate the preparation of
neatly fornhtted text. It provides many features* such as
autoz~atic narqin atiqnment, paragraph indentation, hyphena-
tion and 03<)inat ion, thiat are designed to greatly ease, an
otnerwise tedious job.

It is the intent of the next few sections to familiarize the
* usf'r with the Principles of automatic text formatting in

A general and with the capabilities and usage of 'lint' in
p r tic ut ar.

'Fmt' ta~kes as input a file containing text with formatting
instructions. It is invoked by a command with various ov-
tionaL. parameters, discussed below* The resultant output is
approo~riateLy formatted text suitable for a printer having
backspacino caoobitities. The output of 'fmt' Is nTade
available on its first standard output port, and so may be
placed in a fiLe, sent to a Line printer, or changed in any

ofa number of ways, simply ny applying standard Software
Toots Subsystem 1/0 redirection*

when Ofat' is invokced from the Subsystem, there are several
ootionaL parameters that may be specified to control its
ooerdtion. The full command Line synt4m is

l'it I -s I E -p~lirst>t-(Last>3 3 1% <file name>

A trief exrLanation of the rryptit notation: the items
enclosed within sonre bracket& (*[]*) are optional, -- they
may or --a not oe soecifled; items enclosed between brict's
(Of)") may occur any number of times, ihetudinq zc'rot itemns
enclosed in angle brackets (") designate character
strinas whose sigrnificisnee it suggested by the text within
the bracketst everything else should be taken LiteraLty.

Georcia Institute of Technology COBOL Workbench

0 49'



Appendix 6 FORMATTER Page 223

And now for an exoLanation of what these Parameters mean:

-s If this option is setecteo, 'fmt' will pause at
the tot of each paget ring the Pell or buzzer on
your tzrminatv and wait for a response. This
feature is for the benefit of people using hard-
copy termindls with paper not having pin-feed mar-
ilns. The correct response, to oc entered attcr
the paper is mounted, is a controL-c (hold the
'controL' key down and tyoc Oct)*

-o ,,. This option allows selection of which pages of the

formatted document will actually be Printed. Im-

mediately foLLowinq the "-o", without ary inter-
vening soacest should be a number indicating the
first page to be Printed. FoLLowinn this, a
second number may oe specified, seDarated from the
first by a single dash, which indicates the Last
oage to be printed. If this second numoer is
omitted, akl remaining pages will oe produced.

ffile> Any number of file names may be specified on the
command Line. *Fmt$ will open the files in turn,
formatting the conttnts of each one as if they
constituted one big file. When the Last named
file is orocessed, 'fmt' terminates. If no file
names are specified, standard input number one is
used,, In addition* standard input may be
soecified explicitly on the command Line by using
a dash as a file name*

Sauuug Lg liu

'Fet', Like almost every other text formatter ever written,
operntes on an input stream that consists of a mixture of
text and formatting commands. rach command starts at the
beginning of a Line with a 'controL character', usually a
period, followed by a two character namet in turn foLLnwed
by some optionaL $parameters'. There must not oe anything
else on the Line. For exampLe, in

& to 11 21 31 41

the tontroL character is a oericd, the command name is ta,
and there are four parameters: "1109 "21', "31" and 041"o
Notice that the coimand name and all the parameters must be
seoarated from each other by one or more blanks. Anythinq
not recognizable as a command is treated as text.

g S

A Oeorgia Institute of Technology CO9OL Workbench

t -,' '



Aovendix 6 FORMATTER Page 224

6*2* E1LILIM "a MARGIN ALLUIIJlENT

6*2*1 FLL~a Lii

'Ft t coLLects as many words as wiLL fit on a singte output
Line before actuaLLy writing it out, regardLess of Line
boundaries in Its input stream. This is caLLed OfiLtingt
and is stzcdard practice for *fmtte It can* however, be
turned off with the 'no-fittt command

.nf

and Lines thenceforth wiLtl be copied from input to output
undtteredo W.hen you want to turn fiLtLing back on aqain, you
Mdy CO so with the 'fiLL' command

and if't t wiltl resume its normAt behavior*

If there is a partiaLLy fitted Line that has not yet been
written out when an nf command is encountereds the Line is
forced out before any other action is taken* This
phenomenon of forcing out a partiaLty fitted Line is known
as a *breakt and Occurs implicitLy with many formatting com-

Sandse To cause one exDti.itty the Obreak* command

is avaiLabLe.

If. white fitting an outout Line* it Is discovered that the
next word wiLL not fitt an attempt is made to hyohenate It*
Aithough 'fmtt is usuaLLy quite good in its choice of where
to soLit a word* it occasionaLLy makes a gaffe or twot giv-

tno reason to want to turn the feature off. Automatic
hyphen, tion can be disabted with the Ono-hyphenatioint com-

malnd

*nh

Long enough for a troubLesome word to be processed* and then
reenabted with the thyphenatt' command

shy

-either command ca.uses a break.

Georoia In. titute of Technotogy COBOL Workbench

1'.
'~ - ~' A



Appendix 6 FORMATTEK Page 225

6.2.3 Maill A~tiJ*nJ

After fiLLing an output Line, fett inserts extra bLbnks
between words so that the Last word on the Line is flush
with the right morqn, giving the text a ODrofessionaL" an-
pearance. This is one of several marqin ddjustmnnt modes
thit can be selected with the Oadjuitt comand

ead <mode>

The optional parameter <moce) may be any one of four singLe

characters: "bu, *cut "L" or "r. If the parafreter is "b
or fiss in , normaL behavior wiLl DrevaiL -- both margins
wILL be made even by insertino extra blanks between aords.
This is the default margin adjust-tent mode. If "c" is
specified* Lines wiLL be shifted to the right so that they
are centered between the Left and right margins* If the

parameter is *t"5 no adjustment wilL be performed; the Line
wiLL start at the Left margin and the rioht marlin wilL oe
ragged* If Or" is specified# Lines wit% be hoved to the
rioht so that the rilht margin is even, Leavini the Left
marqin raqqec.

The, *no-adjustment' command 
-1

on&

has exactly the same effect as the foLLowing 'adjust* com-

mand:

*ad k

No adjustment wiLL be performed, Leavino the Left margin
even and the right margin ragged. In no case does a change
in the .djustment mode cause a break.

input Lines may be centered, without fiLLtno, with the help
of the 'center' coomand

set Nl

The optional parameter : is the number of subseauent input
tines to be centered between the Left and right marqins, If
the o,ramrter is omittedo only the next Line of input text
is centered* TyicaLLyt one would specify a Larqv number.
say 1000, to avoid havinq to count linest then# immediately
foLlowing the Lines to be centered* give a 'center$ conmand
with a oarameter of zero. For exampte

Georgia Institute of TechnoLogy COBOL Wqrk1)eCtq,,

(7



Appendix 6 FORMATTER Paqe 226

p s¢e 1000

more Lines
than I care
to count
see 0

It is worth notin 9 the difference between

*Ce

and

*ad c

When the forver is used* an ImpLicit break occurs before
each Line is printedt preventina fitLting of the centered
Linest when the Latter is used, each Line is fiLLed with as

many words as possibLe before centerinq takes pLace.

602.5 1uua*L : LILtra& argin hA juLtu ±

Command Initial If no Cause
Syntax Value Parameter Break Cxptanatlon

.ad c both both no Set margin adjust-
ment mode.

obr - yes Force a break,

*cc 1 O N=I yes Center N input text
Lines.

.1i on - no Turn on fill mode.

ehy on - no Turn on automatic
hyphenation.

n - - no Turn off margin ad-
-ustment,

onf - yes Turn off fILt mode.

(ALso inhibits ad-
Justment.)

n - no Turn off automatic
hyohenation.

esb off - no Single blank after
end of sentence.

,wh on - no Extra blank after
end of sentence.

Gtorqia Institute of technology COBOL Vorkbench



Appendix 6 FORMATTER Page 227

60311 L~IU £aIlln

*Fmt# usuaLLy nroduces singLe-spaced outputs but this ctn be
changed, without i break, usinq the *Line-soacinot command

ets N

The parameter N specifies how many Lines on the page a sine-
Le Ltine of text wiLL use; for douole spacing, Q would be
two. If N is omitted* the defautt (singLe) spacing is
reinstated*

Blank Lines may be produced with the 'soacet command

The pArameter N is the number of bLank Lines to produce' if
omitted, a value of one is assumed. The sp command causes a
breakt if the current Line spacino is more than one, the
oreak will cause blank Lines to be output* Then the blank
Lnes qenerated by ip are output. Thus, if output is being
double-spaced and the command

is givenj four blank Lines wiLL be generated* af the vaLte

of NJ calls for more blank Lines than t %ere are remaining on
thp current paget any extra ones ore discarded* This

*Frtt automaticaLLy divides its output into pages* teavinq

Adequate roo at the too and bottom of each nape for running
headtnE and footins There are severag commands that
factitate th e nrc wt ao dvisons when the normal
behavror is inadequate,

The 9begtn-oaqe$ command

• bp +N

causes f break and a skio to the to of the net page* If a
parameter is givent it serves to alter the page number and

so tt ust be numeric with an optional otu or minus sign
If the parameter s os tted the page number is ncreented
by one If the command occurs at the top of a page efore' any text has been printed on Ito the command is iqnoredo ex-

' , ' "cent perhaps to set the page numbere This is to prevent the

random occurrence of btank pages*

Georqia Institute of Technology COBOL Workbench

U, 77V



Appendix 6 FORMATTER Page 228

The optionally signed numeric parameter is a form of
parameter used by many formattino commands. When the sign
is o-itted, it indicates an absolute value to be used: when
the stn is present, it indicates an amount to be added to
or subtracted from the current value.

The oaqe number may be set independently of the *begin-oage*
command with the 'page-number' command

The next Page after the current one, when and if it occurs,
will be numbered _019 No break is causedo

The Length of each page produced by ffmtt is normaLty 6
Lines* This is standard for eleven Inch opaer printed at
s ix Lines Per inch. Sowever, if non-standard paper is used,

the orinted ken'th of thj. Pane may easily be chanoed with
the foaae-lenoth' command

which will set the Lenoth of the page to +4 Lines without

causing a oreak.

Finally, I' it is necessary to be sure of having enough room

on a eage, tay for a figure or a graph, use the *need* co--
Mand

o ne

'*Ft' ILL cause a break, check if there are N lines Left on
the current paqe and, if so* will do nothing more, Ither-
wise* it will skip to the top of the next page where there
should be adequate room.

.3 *N aai flg

'No-soace' mode is a feature that assists In preventina un-

wanted bL,vnk Lines from appearing, usually at the top of a
pav1, when in effect, certain comnands that cause hLank
Lines to be oeneratedt such as bpo ne and ipe are suppres-
S.. For the most oart, Ono-soacef mode is managec

automatically! it is turned on automatically at the top of
each once elore t 'S first text has appeared, and turned off
again automaticaLLy when the first line on the oage is writ-

ton. This accounts for the suopression of bp commands at
4 the too of a page and the discardino of excess blank iine-

in so commands.

Georgla Institute of Technokogy COSOL Workbench

~~~~~ ~~~~~~~~~~ i2!_-" " " ", -' " ... * ---- "-- * -' ".. ""


Appendix 6 FORMATTER Pa.-e 229

*NO-spaces mode ma~y b)e turned on extiLicitty with the- 'no-

ano turned off exo.ticitLy with the *restore-spacing' comm'andi

Neither command causes ;s br,.ako

6** jWAS=~ Slnulga W~ EMu C.antro
Command Initiat If no aus
Syntax vatue Parma~tte Break Explanation

*bo *-N N=1next yes fOeqin a new oaoe.

eLs .1 *J:lIl~ yes Set Line spacing.[

one 11- y tS Express a need for ;
contiguous Lines.

ens on -no Turn on *no-spacet

opt *N fl=66 V=66 no Set page Length*

:2n +N fir ignored no :Set:page ::umber,,

ofD cmowo'sieideidbye Pou t outi~ toN bt- 3

t~nmbrofLne ht ' Lfinak tte to5nd bt

tomi oef endh rpahto Tieihe teft and riht marqins emn

determine the first and Last columns across the page into
w'hich text m~ay be pLacecd.

Georgia institute of Technotogy C040L workhqnch_

Aopendix 6 FORIATTER Page 230

Both the too and the bottom margins consist of two sub-
margins thtt fix the Location of the heaoer and footer
Lines. For the sake of cLarity, the first and second sub-
maroins of the top marqin wiLL be referred to as 'maroin 10
And #margin 2', and the first and second sub-margins of the
botto'if maring 9marcgin 30 and marlin 41o

The value of mdr.gir4 1 is the number of Lines to skip at the
too of each oage before the neader Line, pLus one. Thus,
marain 1 includes the header line and aLL the bLank Lines
preceding it from the top of the paper. By aefauLt, its
vaLue is three. Sargin 2 is the number of bLank Lines that
art% to appear ,etwc.en the header Line and the first text on
the page. AlormaLLyt it has a vaLue of two, The two
together form a standatrd top margin of five Lines, witn the
header Line rioht in the middLe. It is easy enough to
change these defauLts if they prove unsatisfactory; just use
the *margin-1' and *margin-,"I commands

':" .m2 *;1

to set either or both sub-marqins to *N.

The bottoi margin is coepLeteLy anaLogous to the top margin,
with morqin 3 being the number of bLank Lines between the
Last text on a page and the footer Lines and mirgin 4 being
the nuhber of Lines fron the footer to the bottom of the
paper (incLuding the footer). They may be set usinj the
'aorgin-30 and Omarqin-49 commands

3o3

which wor. just Like their counterparti in the top merain;
none CIUSe d hreak

The Left and right marqtns define the first and Last coLumns
into which text may bc printed. They dffect such thinqs as
adjus t"ent and centering* The Left margin is normaLLy set
at coLumn onct thouoh this is easiLy changed with the 'Left-
marint copmann

The right marriine which is normaLLy positioned in coLumn
sixtye can be set simiLarLy with the #right-maraint command

To .nsu'e that the new margins appLy onLy to suourquent

Georqla Institute of TechnoLogy COBOL Workbench
IJ

A" A,' ":

Appendix 6 FORMATTER Page 2.I

text, each ommand causes a break before chatiqing the margin
va Lue.

It is often desirable to change the effective vaLuc of the
Left m~argint for indentation# without actuaLy cnancing the
matrain it.SeLf. For insta:ice, aLL of the examnles in this
guide ore indented from the Left margin in order to set then~
acart from the rest of the text* Indentation is easiLy
arranged using the *indent$ commando

*in +.N

whose Parameter specifies the number of columns tn indent
from the Left margin* The initial indentation vaLue, and
the one assumed if no Darameter is qiven, is zero (ice
start in the Left margin).

For the Durpose of margin adjustments the current in.,senta-
tion vatlue is added to the Left margin value to obtain the
effective Left margin* In this respect, the LN and in comn-
manas are quite similar. Butt whereas the Left margin vaLue
affects the pLacement of centered Lines produced by the ce 4

command, indentation is completely ignored when Lines are
centerede

Paragraph indentation poses o sticky oroblem in that the in-3
dentation must oe appLied only to the first Line of the
Paragraph* And then normal margins cust be resume4.e This
can't be done conveniently with the 'indentO co-mbnt~ since
it causes a break. Therefore, 'fmtt has a 'temporary-
indent' conand

oti 4.41

whose function is to cause a break, alter the current In-
dentation value by IN until thc next Line of text is
produced, 3nd then reset the indentation to its Previous
value. So to begin & new nar;zranh with a five column in-
dentationg one would say

.ti #5

As if control over the Left ma~rgin position and indentation
were not enough* there is yet a third means for controLtinq
the position of text on the 0age. The concept of a Pace of-
fset invoLves nothing more than Drepending a number of
L..anks to each and every Line of output. It is prisarily
intended to attow output to be easily oosit ionea on the
paper w'"hout having to adjust margins and indentation (with

Georgia Institute of Technology COBOL. Workbench

~1; ~111~A

koAendix 6 FORMATTER Page 232

* aLL their attendant side effects) and without having to
ohysicaLLy rove the Papers Atthough the page offset is
initiaLLy zero* other arrangt-ments may be made with the
tc, Qr-offsetg command "

• po i

~which causes a break*

)Command Initist If no Cause

SSynt!x Vaue Parameter break Exptanation

*in #,j N=0 0N=0 yes !ndent Left margin&

.Lm *N N=1 %1=1 yes set tell. rargin,

,11 N= 3 3 no Set too margin
before and inclu~ding

page headinoe

• P NZ 14=2 no Set to:) margin after
page heading*

* 3 N 2 4=2 no Set oottom margin
before Page footings

.• ON N=3 %1=3 no Set bottom margin
including and after

' page footino,

9Do #N yes Set cage offset*

,ro *N=A Nr60 yes Set right *6rgin,

t N N=O ?1=O yes Temporarity irndent
Left margin*

1 5* tiLAINGS FOOTIO5 An ITE

.5 1 6.5.1 Threet Eorl I..lUg

A three vart titLe is a Line of output consistini. of three
segi-entse The first segiment is Left-justified, ttv second
is centered between the Left and richt margins, and the

thir' is riqht-justified, For example

Left oar't center Dart right vart

"3

IGeorgia Institute of TechnoLogy COBOL Workbench

Appendix 6 FORMATTER Paqe 2?.3

Ilk is a, three rnart title whose first setpient is "Left oart,*
whose second segment is "center patt and whose third. see-

men is Orioht partd.

To generate .s title at the current positlon on the page* the

*t ItI.t!I con er'an d i - vai LabLeI
4tt /Left part/center part/right ,iart/

In f~t this command wds useo to generate the crevious
exanmpLe. ?he Parameter to tho title commanc is mo'~de up of
thr text of the three c'arts, with each segrrent encloseA
w it h in a onir of detiziter characters. tirret the delitriter
is a stas'lis but any other character can he usea as Lona os
it is ust~f consistcently within the same. coviacd. If one or
niorc segments are to be omitted, indicate this with two ad-
jacent detimiters at the desired position. Thus,

Ott ///P4"e I/

specifies only the third segment and1 would)roduce soxethi:i)

Like this:

It ifi not necessary to include the treitinq deLi:5iteriv

To laciLit.t otign numberinqt you msy intLude the shamn
ch~tracter ("90) anywhere in 11he text of the title; when the
command is actuaLty performed% tfett will replace all oc-
currences of the "IN with the current Page numiber. To
produce a Literal sharp character in the headingo it should
be preceded by an -""

so that it loset its special meaning.

The 'irst segment of a title always starts at the left mar-
pin at specified by toL comufando dhiLc the thir-1 septcnt
normally *'nds at the riliht margiin as specified by the rm
commandt tnis can be chanqed with the 'Lenqth-of-titteO con--1

-. lt a n

which chanaes the Length of subsequence titles to ;tth, still
tieginning at the lef I inaroiti Note that the title kenoth is
automatically set by the to arid re commands to coincide with
the distance between the Left and right *aroipis.

fI

Georgia Institute of Technology C090L workbench

4 4z'

Aopendix 6 FORMATTEk Paqe 2114

6*5,2~ EMin HWM A" Fooings

The most coamon uses for three part titLes are page headings
.arl, footinnn. lhe header and footer Lines are initiaLly
r, Lank, rither one or tuoth may be set at any times without ia
tr%,k : y us ina the *header# commancl

the /teft/center/riqht/

to set the vaqe headings and the *footer'l command

*fo /eftlcenrterlrliht/

to set the nage toot inj. The change wiltL become manifest
the newt titv the too or the bottom of a p age is reachee..
As with tht tt Coertanov the "NO may be used to access the
current phVe nunber. s an ItLustrationt the toLLowinq com-
manc were usen to crerate the page headings ano footinens
for tns Oz1Oe:

A o .he /,Ot ° Userss Guide///

o. O II- "! -/I

6.53 luaaa: i.aaa Epotesu a& iLL
Cc"aand Tnitiat If no Cause a
Syntax Vatue Perameter Break ExpLanation

efo 0L cer blank blank no Set running ogc
foot inc.

sh." ,L'c'r9 blank tank no Set running Dage
,.ead nq.

N *t -:60 no Set Length of

header, footer and
t i t L C.

*ti Ol*c~r* tlank hLank yes tenerate a three
part title.

A

14
retirnia Institute of TechnoLogy COBOL Workoench

Al --

Appendix 6 FORMATTER Pane 235

IJust Like any tqoo'1 typewriter, timt' hits tacititles for
tabulation. when it encounters a cI h siricter in it s
inout ctLled the Itao chAracter' (antio-ious tc the~ TIF key
on do tyotwwriter)o It automa.ticiLLy jdv.eo to the rtex: out-
out coLu'mn in which a 'Itoo stop$ has :)ell or-viousty set.
T a t stops are (ILwdys measurea from, tte ce1faill jj i

gri'thit ist the Left -nargin pltus the current I n ,rn t a-
t ion or temporary inwentation value Whatever coLur* ttw
Left rarrqin may actualy be in. it is aLways assumed tc ut,
colurn one for tt-v purpose of taoutation.

Origin-ittye a tb stop is set in every eighth coluirn, start-
Ina with cotutn nine. This maty oe changen utsin~ the Otant
c0.mtarld

ata <cot) <cot>

Each~ parvleter speci fied rust be a nuthber, and crau^ cs -jt t
StOD to 0Ce set in the corrt'soonding ot,'ut cotumn. ALL

*existing stops are cteared before settintj the ne-w ones% nc.
a Stop is ---t in every column beyond the latt one specified.
This me,)ns that it no columns are specified* I stop ir set
in every column.

5 y de f iu Lt 90 't 0t recognizes the A1.CI1 T A R control.-i, 's
the sta character'* jiut since thin is an invisible charac-
ter and is guaranteed to he interpreted differently by oif-
ferent terminats, it can be changedi to any chiaracter w it h4 the tb-character' command:

ate <Char>

Whtle there Is no restriction on what oarticular character
is specified for <char>* it is wise to ch'oose one that
doesn'tI. occur PLsewhere in the t ex t. a you omit thle
>arAretert the tab character reverts to the defasuLt.

Who-n 9 fr-tQ citands a tdb chstrActer, it normally outs out
enough blanks to Oct to the next tab stop. In other wordso
the default 'replacesent' character is the olank. This too
may e4%ily be chanoed with the *reritacement-character' cor-

.rc <char>

As with the tc comnmands (char> r-AY be any single character.
11 omitted, the default is useti.

A cortion alternate reoltacement character is the Period,
which is freauentLy used in tabLes of contents. The follow"
lrno example itlustrates how one might beCconstructed:

Georola Institute of Technolooy COBOL Workbench

L IN

Appendix 6 FORMATTER Page 236

• ta 52

Stc \
Section Name\Page
orc
GOP
enf
.ta 551
.-;as ics\1
riLtinq and Pargit. Adjustsent\2
Spacing and Psqe ControL\i
esD

.ft

Th. resuLt shouLo Look about kike this:

rilL i g and Par'i n A justeent oo oo e*oo o oooo •2

qr~c'~ nQ And Dooe

69* *2 Suaau _- Tabitla
Command Initiat If no Cause

Syntax VaLue Parameter Break Explanation

ott l ... N 17 oo a 4 rio et tab stoos.

•tc c 141 TAB no 'et ta character.

,rc c ILA fK RLANK no Set tab reotacement
character*

6,P 7 *611LLA&IL2" COMMANgaI
6.7. l gg gt

It is rar. that a aocument survives its writing under thr-

orn of Just oni author or editor. More frequentLye sever.t
cifferent Do oDLE are LikeLy to Dut in their two cents worth
conc,-rnino its foruat or content. So* if tte author is
narticutarLy attached to somrthina he has writteng he is
ueLL 4dvisc to say so. Comments are an Ideal vehicte for
this ouroose dnrd are easity introduced vith the gcoimentf

Georiia Institute of TechnoLogy COBOL gorkbench

V r- --

Appendix 6 FORMATTER Paqe 237

.I <comentary text>

Evtrything after the I up to an, incLuJinq the next n-w tife
chdracter is compLeteLy i9norea by ff't,.

6*792 Pj.U8jfl 10.4 kagatiiDna
tFtt makes provisions for boLdfacing and u nLern tines

or oarts thereof with two co.mmands:

obf *1

boldfices tthe next N1 lines of input text, whiLf-

oUt 'Z

uneerlines the next 4 tlines of input text. In t-oth casest
if %, is o-ittedo a value of one is assumed. *'hither coiann
causes a break* .tLLowino sinqLe woras or phrases to be boLo-
faced or undertiner, without affecttno the rest of the output
Line.

It is also possible to use the two in comeination. ror
instance* the section hcadinq at the beinnlnq of this r~ec-

tion was oroduced by a1 sequence of comitands an,; text sitmiLar
to the fotLowing:

Oct
*bf
out
laiscellancous Coiranas

As with the #center* com-ands thse two eo'," ni. irr nftrn

conveniently ustd to bracket the lines to ne ffectedo ic.
specifyira a huor paraicter value with the first occurrence
of the comvhnd ano a value of zero with the second:

*bf 1000
out 1000
Lott of ULnes

to be
:)oldfoced
and
uncerlined
.bf I
out 0

Georgia Institute of Technotogy COBO0L Workbench

0I

Apgoendix 6 rORIATTER Paor 238~I

6*193 Caantr.a Qaragterz

A s men tioned i n the f irst sect ions co'mmand Line& are
dist ifiluIsned f rot It e xt y the presence of a 'control
ch.,ractert In ctumn one. In all the exomptes c it ed t hus

faa period lids 9been, used to represent the control charac-
ter. it is vossibLe to select any character for this
ourposr'. In fact* several. occasions arose in the writing of
this aooefldix which called for use of imn alternato contral
Character* DarticuLarky in the construction of the cor,.ans
sUT1br~ 14:%jt t te end of each sec t ion. The 'cot roL -
chractters cornari eay bc used anywhere to select a new
va~ I Ue

.cc (ch-,ir)

Th" p.,ronettr <char),q which may b e any s i n9 L e chdractcri
becorec t~te new Control Character. It the parameer is
onitte, the fareiLior Der t otd is reinstated.

It t,,s ',en- sh~wn that many commands automaticailLy c au se a
oreak oelnrr thry perform~ their function. '.hen this
orv''.ents a tir:1ttecn, it can be altered. I f instead of us i ti
the hAsic control character the *no-break' control chbracter
is u se' to i nt1,ro-uc r a c omm~ind , t he au t onat ic ti r zaV tha t
wouli. normaiLly result is suppretsedo The stanoard no-break
control choractt'r is the grave accent ("s ut ay anit)
ne chang)ed with the following commanc:

*c2 <Char>

As vith the cc cotemand, the parameter "by be any single
characterp or may be omitted if the default value is
des ired*

nri-'ft one-tine messag~es Itay be written to the user's

:uie- n~, sin ise *prom~pt* comm~and

*er (brief, one-Line message>

The text that isactually written to the terminal starts
with the first non-,)Lank Character foLtooinq the comman,
naineo one continties lip tol 1)1,t not inctlina, the next4
newLine chAracter. If a newLine character should1 he~
Itir uere. ir the -7ssan-", the escape sequence

o c 1 ue d . Leadinn titanks may also be included in the
"le S S,!1e n,, orecedina the message w it h a .1 uo te or an '
~oostrothe. h. will disc.,rd this character, but will
th -n rrint the 'eest of the miessag~e vartiatim. ror instaincet

Georuig ;nqtitute of TechnoLooy COBOL Workbench

Aopendix 6 PnRMATTER Paqe 239

er * this is d messaq with 3 Leodino bLonk,

wouLd arit the foLLowinq text on the terminaL, Lcavin-, t te
cursor or c, rriage at the end of the meqsane

this is -j messatle with 3 Ledin. bLatks

For a multiL~Le-Line messaqi, try

,er ,uIttpLe-nLtnnnmessawe~n

The outnut should Look Like this:

MuLt ipte
tine

Prompts tire particuLnrLy useful in forn Letter appLtc:itiofi%

where there m-y be severaL 0!eces of infor-.ation tht *ift'

has to ask for in the course o l its work. The next section

describes how Ofmtt can dynomicaLLy obtain irnfortation fro,

the user.

It Ofat'l should ever encounter in texit' co'nano

4eX

In the course of doinq its jo09 it will cause a breisk and

exit ismediatety to the Subsystem.

Georqia Institute of Technology COBOL llorkhen h

I- "
AV" .. il: . . • ".++.. -:. + , + ; ',, " "

++
- -

+ +++++ -++ -+++u

Apnendix 6 FORMATTER Paue 240

60706 SumeatX - aULLeA, UM Cumand

Command InitiaL If no Cause
Syntax Value Parameter Break ExpLanation

Kx -- no Introduce a co.ricnto

t) f t. ,'I=C ,no oLdface input
text Lines*

*cc c no Oet no-oreak controL
character*

*CC C• no Set basic contro
chAractero

*er text - nored no arite . message to
the terminaL.

*eA - - yes Exit immediately to
the Sulisystemo

uL N = I no UnderLine N input
text Lines.

6.8. 1frEI! BgfLQUIQM

6.8.1 I nau fl" Cntro k
op to this point, it has been assumed that Ofnt* reads only

frov its standard input file or from fitles specified as
oarnmeters on tne commane Line. It is also possiLe to
cynatmicaLly include the contents of any file in the midst of
for.attino another. This aids areatly in the soduLarize-tion

of 1.iroev othcr.icp unwirldy docutentso or in the definition
of frequentty usel secuences of comi-anis anl text.

Th" 'sourcef coie -an is avaiLabLe to dynaimicatLy include the
contents of a file:

.so <fiLve

The odrameter <file) is zannatory; it may be an arbitrary
fle syst-, o;thnatet or, as with file nates on the col.manj

Line* . sinqLe dash ("-") to specify standard input number
one

Geornia Institute of TechnoLooy COFHOL Workbench

• ' , -. .; ". + +.. .
. ++. .~~ ~ ~ ~ .. ++ -,+ ,, + +,. .+

++, ." .. • ::+ , , /-+i . ,

Appendix 6 FORMATTER Paqe 24'1

The effect of a $source# cohmana is to temoorariLy preempt
the current input source and begin reading from the named
file. Wlen tne eno of thot fitle is reachedt the orijin;Al
source of innut is resut.ed, FIles included w ith source '
co-mands may themseLves contain other #source' commands; in
fict, this Onesting' of input ftiLes may he carried out to
virtuaLLy t ny oeoth.

.rffte orovices one additionL command for manijiulatin; input
.fiLes. the! $next file' com-.dnn

.nx <file>

may oe usea for either one of two purposes* if you snecify
a (tile> oarametert aLlk current Input f Les are closed
(incuding those opened with so commands), and the named
file becomes the neo ,nout source. You can u.O this for
reoeatedLy processing tne s.me fite, as. for exatnLeq with j
form Letter. If you omit the (file> parameters 'f t still
closes all of Its current innut files. Iut instead of usino
a file riame you supply with the nx com-iand, it uses the next
file nared on the command Line that Invoked 'fmt'. If there
is no next file, then formattino terminates normally.

Neither the so conand nor the nx command c.tuses a bre,.-t

6* 802 Fujgin &"g Vaibe

Whenever 'fmt' reads a Line of input, no mattrr what the
source nay be, there is a certain amount of lpre-processin,'
done before any other formatting ooerations take nLaco
This ore-processinq consists of the interpretation of Ifunc-
tions' and 'varianLes'e * 'function* is a oretef ined set of
actions that produces a textual result, possintLy basro on
soTe user supLied textual input. ror ;x a r. Pe ne
hypotheticql function might be name .i *ttinet ano its result
might tie a textual representation of the current time of
day:

i 0q:31:19 '

A variabLets on the othcr hand, is simply one of *fmt's
internaL oarameters, such ais the current oage Length or the
current Line-spacino value. The result of a variable is
just a textual representation of the value of that
p araseter.

From the standooint of a us-ro functions and variabLes are
very similar. In fact, they are invoked ioenticaLLy by
enclosing the appropriate name in square brackets.

_ time I

Georna Institute of Technology ,C OBOL Workbepc n

%, ; ; .,

Appendix 6 FORMATTER Paqv 242

When Ofitt sees such a construct in an input ine, it ex-
cises everythinq in between the brackets* incLudinq the
brackets themtelves, and Inserts the resuLt of the function
or variable in its otace NaturaLLys anything not recon-
niz.bLe as a variahLe or a function is Left aLone. To vlace
the strinq "ttime]" in some text, just type "'[time]"; the
"i" preceiina the Left bracket makes it Lose its speciaaL
-P c n in n

The Onumoer reqisters' are ten accumLators on which simpLe
arithmetic operations can be performed. They exist in the
form,.tter specificaLLy for the irmpLementoti on of
;iutn-nAt icatLy nup'hered sections and paraoraphs.

At tis writing, functions and variables are stiLL (voLvinqo

lut the features just cescribed are rather stable &no i'.L
orcb hty remain so in future expansions* At this point, the
av.titatLe ttinctions and variabLes are:

Functions:

IIN t e Current diste; e.o. Oq/28/79
da y Current day of the week; eg* friday
tine Current time of day e.g. U9:31:32

V,iriai)tes :
rc Current basic control character
r'? Current no-break controL character
2n Current inoentation vaLue
Lm Current Left maroin vaLue
Ln Current Line numoer on the page
Ls Current Line-soacing vaLue
qL Current macro invocation LeveL
-1 Ct,rrent ,m.rqin 1 vaLue

Current mirqin P voJtur
Current margin I vaLue
Current marqin 4 vaLue

ot Current onge tenoth vaLue
on Current paqe number
no Current oige offset vaLue
rr Current right margin value
tc Current tab character
ti Current temporary indentation vaLue

6.8*3 SummijtX In: Loau raiaifta

Command Initial If no Cause
Syntax VaLue Parameter Break ExpLanation

.nx file - next arg no Move on to the next
input fiLe.

,so fiLe - onore no TexperariLy aLter
th. input igource,

Georgia Institute of Technology COBOL Workbench

IPro(

Apnendix 6 FORMATCR Panq 243

6.9. BCO

A nacro is nothing Pore than j frequently useC scuence of
con mands ano/or text thVt have t een nrouvei toorther under a
% inqte name. This n3me nay then be usea just Like ,,n or-
dinary conmand to invake the whoLe nroup in one. teLL swoop.

The definition (or redefinition) of a macro starts with d

#define# command

,de xx

whose parameter is a one or two character strin9 that
occones the name of the macro* The macro nai.e muy consist
of any characters other than blankso tabs or newlines; upper
an-i Lower case are siqnificant. The definition of the macro
continues until a matching tenot cormand

*en xx

is eniountercd. Anything may appear within a macro
definitions inctuding other macro definitions. The onty
processing that is cone durinq aelinition is the interpreta-
tion of variables and functions (i~e. things surroun:ed by
square brackets). 3ther than this, Lines ire stored exactly

-" as they are reaa from the input source. To ineduce a funr-
t ton cALl in the definition of a macro so th")t its
interpretation will be delayed until the macro is invoked*
th' openinq bracket shouLd l[e Preceded by the escape charac-
ter r or eope

.I tn --- ti' of day
:do tr

een toi

would produce the current time of day when invuked, whereAs

I3 ti - tine of day
*do t~r

.en t.

wouLd nroduce the time at which the macro definition was
orocessedo

A

Georqiia Institute of Technotoqy . COOOL ,Workbqtq

t.,~ ~;$: ~ ~ --

Apoendi 6 FORMATTER Paqe 2.44

6.992 Mar lwgajjjgn

Again, a mscro is invoked Like an ordinary comaand: a
control cnaracter at the .'eqlnninq of the Line im mediately
followed by the ndme of the macro. "o to invoke the above
tiqe-of-day$ macros one might say

*to

As with ordinary commands* macros may have parameters* In
fact, anyt'itna typed on the Line after the macro ndfme is
avaitable to the contents of the macro. As uu;uat, blanks
ana tabs serve to seoirate parameters fror each other ano
fro the .acro name. If it is necessary to include a blank
or a tat, within at para',.tert it may be enclose: in quIotes.
T hu .t

"paraieter one,"

woul.1 constitute a single parameter and would be Dassed to
the ,Pacro is

Darareter one

To include an actual cuotation mark within the Parameter,
typie two quotes immediateLy adjacent to each other* For
instancse

" q'uote o st rina." " *

would ne passed to the macro as the single parameter

"ouote" strino"

Vithin the tacros pirareters are accessed in a way siftilar
to functions and variabls: the number of the deirec
pardimeter is enclosed it, scuare brackets. Thus*

, 1)

wou'1,, retrieve the first oarometer,

wouLd fetch the second, and so on. As a special cases the
no%'e of the macro itself may be accessed with

Assume there is a macro named nmx" defined as foLLows:

Georoia Institute of Technology COBOL Workbench

ADVendix 6 FORMATTER Page 24b

. nx --- macro example
o de i, it
,',.cro named t[G3t% invokefi with two tr'2uoent !

or12 t ana 'C?]'.
oen frx

T h.'n, t ynint

.mx "oara0 I" "naram P"

'gouLd produce the same result as typing

4acro named *milt invoped with two arguments*
'Ovaram It And Oparai 2'.

Macros are nuite hanoy for such common operations aIs stirt-

Ina a new naratirapht or for such tedious tasks as the
construction of tables Llke the ones ampearinq at the end of

each section in this guide. For some examples of frequently
used mAcrose see the aoplications notes in the foLlowino
pages*

6.99.3 SumL =_ Mac~ros

Command Initial If no Cause
Syntax Value Parameter Break Exotanation

.de xx - inored no Eegin nefinition or
ri.definition of a

i acroo

*en xx - ignored no Eno racro
defi nit ion*

6.10. APELIAIQMS NOIES

The next fw sections will illustrate the cpabiLiticS of
Ofmt. %ith some actual applications. 'ost of the examptes
are macros that assist in common formatting operation.t but
attention has also been Oiven to table construction. LLI of

the macros presented here are availahle for general use In
the file ;extri/fhicro/report', which may be named on the
command Line invokina 'fmt' or may be included with a tsour-
ce* cocmand as foLLows:

I , gaO /extra/fmacro/report

Ge-irqia Institute of Technotoy CUOL iorkbench,
,-2 " - ,4*

7 ",2 --, , ,- -

Appenoix 6 FORMATTER Page 2'6

One standard way of beg inning a new paragraph is to skip a
Line and indent by a few spaces. This can be done oy ;ivinq
an sp comnand foLLowed oy a ti commnand. A better way is to
define a macro. This aLLows procrastination on decidi,.o the
fornat of oaraqraphs and faciLitates change at some tater
date without a major editing effort.'

Here is an exa,.nLe of a paragraph macro:

of pp --- begtn oaragraph*dI! ;iiP

tpi

i r st a Line is skippLd via the tsoace' command. Then,
after checkinq that there is room on the current page for

the first two Lines of the new omra.rapho a temporary in-
dentation is set up that is five co.uns to the rlaht of the
runnin inientation with the two ti commands. Pinally, no-

s),Ic" modc is torned on to Vuporess unwanted olank linrs.

6.10.2 JaI_-hgadinga

SuDi-headinls may be easily produced with the foltowinq}
,nocro:

. sn --- suo-headinq
))iode sh

sip 2
one
eti CinJ
obf
£1)

.pp
sen sn

1 lrstt t~to oLankI Lines are Put out. Then it is determinedl
if there are four contiguous Lines on the current Page I one

for *ie headino itsetfo one for the bLank Line aftQr the
hea;idinq and two for the first two Lines of the next
oarairaph. The temporary indentation value is ther set to
coincid" w 'h tne, currr-nt Indentation vaLue. %cxt# the
first oaraeter assel to the macro (the text of the sub-
hc,)dino) is ,oLdfaced and a new paraciraph is oeoun. The
"n * tacro .4iLL insert the btank line after the headng.

eoriia Institute o' Technotogy COBOL Workbench

Appendix 6 FORMATTER Paao 2A7

6.10.3 Malat jjngJM

An example of a macro to produce m.ajor heainus is the fol-
Looinc:

*I nh --- M itr headinQ
ode mi~

.sp S
one 5
oce

4- ~OutI
.bf

pp

.en t

Tils is simitar to the sub-heading macro: three bLank Lines
are out out; a check for enough room is made; the oarameter
is centered, underlined and botdfacea' another ttank Line is
put out; and a new paragraoh is begun.

6*1004 2MRi*±s

L'enthy quotations are often set apart from other text oy
alterino the Left ano riqht marnins to narrow the width of
the quoted text. mere is a pair of macros that may be used
to delimit the beoinnino and end of a direct quotation:

*I a --- oegin direct quote
.de bv

One -

sin

.t +5
een ')Q

.0 en --- end dlirect cuote
ode co

*en ers

"Jotice the tt co~mand in the first ,aceo. To hvoid affect-
ino oae headnas and footinoss the Left varqin is not ad-
justed; rather, an additional indent~tion is apLied. But
to increase the right marqin ,widths there is no other atter-
native but to us- the ra command. The *titt-Lceqth' ccn-
sand is thus necessary to aLLow headings and fooatnos to
remain unaffected by the interim right margin.

I4
Georgia Institute of TechnoLogy COIUOL Workbench

A -

Apoendib 6 FOR"UATTER Page 248

6 01O* L&5.&JU

Since most, printers can't easiLy produce itaLics, they are
frequently simuLated by underLining. The foLtowing m3cro
OitaLicizes' its parameter by undertining it.

.I it itaLicize (by unOertining)

.U

*on it

VhiL, Ofmt' has buiLt-in faciLities for boLcafacingo their
use lay be somewhat tuetersome if there are many short
obrases or sinqte words thet need botdfacinot each rhrase or
worJ renuires tuo inout Lines: one for the bf command and
one ftr the actual text. The fotLowinq macro cuts the over-
he,,d in half by alLowinn the cotmana dna the text to oppeor
on the same Line*

*1 ho --- boldface parameter
*do bo
.bf

This .- eniix is oepoered with examptes, each one set apart

fro% other text by surroundinq oLank Lines and additionaL
indentation. The next tuo macros, used Like the "bQ" and
Nen* macros, facilitate the production of examoles.

of hix --- beoin e ,lmoke text
ede oil

one

.nf
:in #10.en *t

. ex --- end ejaple text
•de rx
.sID

.ti
in -10

oen ex

Georgia Institute of TechnoLogy COBOL Workbench

Appendix 6 FORMATTER Page 24

6 I.*bkt onuructl

Cne exmpLe of tdbLe construction (for , table of contents)

has already oeen mentioneo in the section deaLino with tabs.

Another tyve of table that occurs freqoently is that uSec in

thi conmanl stmaries in t.his opendix. rach entry ot such

a tdbtte consists of a numoer of OfjpiLdsl folLowea on the
ri qht ,)y d body of explanatory text that neeCs to be itlled

and adjusted.

The easiest way to construct a table Like this involves us-

in. a co bination of tabs dna indentation, as the tolLowino

series of coilsands iLtt. tratcs:

*in #40
otq 14 24 34 1
Otc \

The idea is to set t tab stop in each column th,,t heoins a

fieLd, .nd one Last one in the column that is to he the left

marain for the erVLa.natorv text. the extra indentation

moves the effective Left maroin to this column. To begin a

new entry, tenporairiLy undo the extra indentation with a t1
cormands andi then type the text of the entrys separatin9 the

fields frot one another with a tab character:

.ti -40
field I\fieLd 2\fieLd 3\lieLd \rxpLanatory text

The first line of the entry will %;tart at the Left irqin.

Then aLL su!bsequer. lines will be fiLled and adjustev

betweers coljin forty and the right Prarqin,

Georgia Institute of Technology COPi. Woriit nch,

~ ~' A

ApDendix 6 FORMATTER Paqe 250

""* ftA1 flE 2AAM SORTED ALeHA1;T1Q""L

Command Initiat If no Cause

Syntax Value Parameter Break ExpLenation

- - no Intro-luce a comment.

.dc C both both no 1zet mirrin adjust-
m~ent m Oct*

*bf IN NC :I no BoLdface , input
text Lines.

.; 'nest yes fegin a new pagje,

- - yes Force a break* lit

.c, c no Set no-break control
Charac ter.

*cC c no Set basic control.
character,

*cc ': C h=! yet Center N input text

t. ies.

de i, - Iqnored no Segin definition or

redefinition of a
' ,I C tO0

n -2 inored no End macro

def it ion.

ter text - innored no larite a mrssoge to
the terirnal

-- yra rUit i eecdiateLy to
the S y t erm.

,1* on - no Turn on fill mode,

*fo elctr9 tlank .lank no Set runningi page
foot init

.h. electr' btl.ink blank no Set running Page
head inn.

ohy on - no Turn on dut*'atic
hyphen t ion.

.in *'; : yes indent Left mrcain.

•l= *' lyes Set left morain.

Oeorqia Institute of TechnoLogy COBOL Workbench

Appendix 6 FORMATCER Paqe 251

Command initla It no Cause
Syntax VaLue Parameter Break Exptanation

.s pj tJ:I ':I no Set Ltne spicin .

tt ONt N60 N=60 no Set Length Of
header* footer ana
titles.

r .-1 *t N: no "ct too :roin

before dnd inctudint:

naqe headairn.

2 *HN N:2 Ni:2 no Set top margin After
page hesdinq.

*.t *N .4:2 61=2 no Set bottom aroin

before page footinn.

*a4 14 PJ:3 N:3 no Set bottom ra roitn

includinq and after
paqe footing.

no no Turn off marqin ad-

Justntt

nN - N:1 yes Express a need for t.

contiguous Lines*
.nf yes Turn off liLL mooe.

(ALso inhibits ad-
justnment *)

n no Turn off automattc
hyphenpt ion.

Ons on no Turn on Ono-space*

On% fMte - next arp no Move on to thr n ft
input file.

t tN N:66 .::66 no Set paqe tenqtt.*

,On ±N ? :I ignored no Set Oaoe number.

.po _N U:0 ":0 yes Set oa,'e offset.

rc C 4L flK hLANK no Set tato reptacement

charac ter.

Or- 64 1N60 yes Set riatt marqin.

.rs - -no Turn off tno-sDocet

ode

Geor4i. Institute of Technotooy ,C0BOL.WorbencI

2.T c n lg , O D ,Wo ~ e ,h :

A Dendix 6 FORMATTER Page 252

Command Initiat If no Cause
, Syntax Vatue Parameter Break Exotanation

off - no SingLe btank after
end of sentence.

*so fiLe - ignored no TempordriLy aLter
the input source.

*so h - N:! yes Put out tN blank

Lines.

*to U *.. 9 17 .o. aLl no Set tab stons*

etc r TAP 16r no Set tab character.

.t 0j=O NzC yes Temporarily indent
Left marnin.

tt OtLet r' blank blank yes Generate u three
part title.

euL .14 N: no Underline N input

text Lines*

on no Ext ra bLank after

end of sentence.

IC

I

SGeorliA Institute of TechnologyCOO obec

'A A.CO O W r-e c

Appendix 6 FORMATTER PaQe 253

6.12. SUMMABY E COMMANDS GROUEL 11 FUNCTION

6*12*1 EJJ #jjjjj ij~f AotAtegnt

Command Initial If no Cause
Syntax VaLue Parameter 8reqk Explanation

*ad c both noth no Set mitrgin acust-
merit mode.

4.br - -ye Force a nreuk.

.re k, N=O t:1 yes Center 1i input text
Lines*

.f1 on - no Turn on fill mone.

.hy on - no Turn on automatic
hyphen.t ion.

na - no Turn off maroin ac-
Justmento

nf - yes Turn off fill mode
(Also inhibit% ac-
Justmentol

*nh - no Turn off ,lutomatic
hyphent ion.

.! of - no SinoLe blank after
end of sentence.

* Z) on - no Extra blank after
end of sentence*

G

" .Geor~tia Institute of TechnoLogy COBCL Workbench

.... , , , -- ' -. . - .. - , ,• - - -, .. ,, ,,,,

Appendix 6 FORMATTER Pace 254

6.12*2 Spatin. n *h.C.

Comand Initiat If no Cause
Syntax VaLue Parameter Break CxpLanation

*bn *; next yes Seqin t new pages

•s ~K =:1 no Set Line spaclng.

.ne , -= yes Express a need for N
contiguous Lines*

ns on - no Turn on Ono-space*
mode*

*o.L ON N:66 Nd:66 no Set page Length.

,pn olk UZI ignored no Set page number.

.rs - - no Turn off 'no-space#
node.

h- N: yes Put out IN LHank
Lines*

.5.

I

Geori,1 Institute of TechnoLogy COBOL Workbench

5* --- '~Th~%~ ~ -':~- - ' -fu

!-

Appendix 6 FORMATTER Paoe 255

60 1203 lal&"in &a Lngantatigg
Command Initial If no Cause

Syntax Value Parameter Break ExpLanation

.in *N f'=O yes lncent Left marqin#

* .L *N N=I I yes Set Left margin,

, .1 *N no Set top nar qin
before ano incLuding
oace headinio

.mZ !N no Set top marqin 'fter
C page headings

*m3 hfl ?4=2 ! :2 no Set bottom r.arg i n

before page footina,

Sf4=3 no Set uottom margin

1± incLudino and after
on e foot inn.

Do ?I4 tio yes Set oaqe offset

r 4=60 t1:60 yes Set rlnht w.raino

ti *N ? :0 tl:O yes Temoor-rily indent
Left m ;rqi .

6*1294 uztag,±nas Ec±aiat I"A ItLv
Command !nltiat If no Cause
Syntax VaLue Parameter Break ExpLanation

Ofo Otlcer' blank bLank no Set running pace
foot inn.

she *LOctrt blank blank no Set running Oflne
head in.

*it *N1 U--60 1460 no Set Lenoth of
t : 6henJers footer and

~ttle.

OtL 'lcOr' blank bLank yes Generate A three
part titLe.

Georqla Institute of TechnoLoqy COBOL Workbench

IM*; .?r

Anpendix 6 FORMATTER Page 256

6*12.5 ITebkuLu±Jan

Command Initial If no Cause
Syntax VaLue Parameter 8reak ExpLanation

Ott ') ** q 17 @** aLL no Set tat, stops*

tc c TA3 TAB no Set tau character

.rc c ALAPLK BLANK no Set t4b reoLacement
charact tt

6.12.6 MititLlaneguaus jg~g

Command Initial If no Cause

Syntax VaLue Parameter Break Explanation

- - no Intr'oduce a comment*

.bf no Bo:fl no d oLdface N inout
text Lines*.

,c2 e no Set no-break control
character.

*c c c • no Set basic control
chkzract er.

*er text - ignored no write a message to
. the tervinaL.

e- - yes Fxlt imeediatety to
the Suosystem.

•ut N=O l:! no Underline N input
text Lines.

Command Initiat If no Cause
Syntax VaLue Parameter Breas ExLanation

.n file next ar4 no Move oi to the next
input fie.

.SO fi le - inored no Temporarily alter
the Input source,

Gecrqia Institute of Technology COBOL orkbench

Apoenoix 6 FORMATTER Paoe 257

Command Initiat It no Caus*
Syntax Vatue Parameter Break Exptanation

*do xx - hinored no begin definition or
redef inition c f a
fr a c r o

*en XX ignored no End
definit ion*

Georia nsttuteof echotoy COOL orkenL

/opendix 7 MACRO PROCESSOR Paqe 258

APPENDIX 7

MACRO PROCESSOR
GEORGIA TECH SOFTUWAE TOOLS SUBSYSTEM

tacrot Is an enhanced version of Kernighan asnd PLaunerts
macro pr-processor from Chapter A of Software Tools.
K.K cro* is 3n exceedingly complex and powerful program; it
is oossitot to use it is a general proqramminq Lanquacje.
comrtet descriotion of its caoability is beyond the scope
of this document, but a few samples are presenteo here to
help the user become proficient in its usage.

7.1. JU E0MAI 9EF A MAR DFINITL L
The basic format of a macro definition is:

te fine(macro-names replacement-text)

WMacro-nam," is An identifier, I.e. a sequence of Letters

or viqits beoinninn with a Letter. "RepLacement-txt" is A
(Ocissitty empty) sequence of characters* which may be
specially interureted by 'macro*.

" acro ornuments are referred to by a construct of the form
"$(inteaer>" in the replacement text. The (integer> must be
a dinit from 0 to 99 inclusives (Digits 1-9 represent the
first through the ninth arnuments; digit 0 represents the

nae'- of the macro itseLf). For example, the following macro
could oe used to skip blanks and taos In a strings starting
at a civen position:

def ine(sk iobL,
while (11 ($2) BLANK t $1 (%2) TAB)

52 $2 1 1

4ere are a few examples of the use of this oacro:

skxnol(.tr, J)

In orter to orevent premature evaluation of a strinot the
string !ay be surrounded by square brackets. For example,

sunoose we wishec to redefine an identifier* The foLLowing
senuence will not work:

define(xqy)

de fine (wqz)

This is because "x" in the second definition will be
real.,cei by "y"t with the net result of defining "y* tc be
z The correct methoa is

Georoia Institute of TechnoLogy C060,l workbench

- -C

Aopendix 7 VACkO PROCESSOR Pale 259

tS

aefinel~y)

define((x),z)

The square brackets prevent the premature evaluation of "x".

7*2. FUTIJ T j

'-Iicro' provides several "built-in" functions. These are
qiven below:

Oivert(titename) or divert(ILenametappond) or divert
"FtLeniomel is ooened for output ano its file descriptor
is stacked. whenever 'macro' oroduces output, it is

nirectea to the nAted lite* If the second arqument is

present, output Is appre'led to the named fiLet rathor
than overwritinq it* It both aroumentt are mlssinq,
the currert output file is closed ano outout reverts to
the Last active file (the one in use when the *diverts
cotmand was recognized)*

dnL or :nk(co~mentdry infortation)
As sugqested by Kernilhan and PLauger, 'dnL' may be
used to aelete all blanks and tabs up to the next
newtLnet and the newline itseLf, fron the input
stream* There is no other way to prevent the newtine
after each 'define * from being nassed to the output.
Any arouments present are iqnored$ thus %lLowinq 'dnb'
to be used to introduce cotments,

if e le (a ,b~c d)
14 a 4nd b are the same strinq then c is the value of
the expression; otherwise* d is the value Of the ex-

pression. Example: this macro returns "0KI if the
value of i is 1"t *ER" otherwise:

oefine(statuseifetseli$ltOKlERRJ)

inctude(filename)
"Fitename" is opened and its fito descriptor is stac-
ked* The next time tiracro* requests inoutt it receivps
inout from the named filet When end-of-fiLe is seent
'macro* reverts to the Last sictive -Input Mte (the One
containine the include) and vicks up where it left off*

incr(n)
;_ increment the value of the imteger represented by ?,

-and return the incremented vaLue, For instance* 4t1e
. fo(Lowing pair of def'ines stst MAXCARD to FO and MAXLI%-_
" to 81:

define(MAXCAD,)
define(04AXLINU incr(UAXCARD))

Georgia Institute of TechnoLogy COBOL Work~bench

Z

4' - ~N- - F -IF

V64

Appendix 7 MACRO ?ROCESSOR Page 260

suost r(smsn)
return a substring of string s startinq at position m
uith tength no substr(aocvl*2) is ab; substr(abco2,l)

is n; sstr(abC) is 'efipty. If n is onittedo the
rest ot the strinq is used: substr(abc*2) is bc.

undettne(nuse)
*t0ndef1'net is used to remove the definition associated
with a name. Note that the nane shoutc be surrounded
by brackets# if it is supptied as a Literat, otherwise
it wiLL :)e evaLuated Paefore it can ,e ondcfined. Exar-

undef ine(substr)

undefine (Exd)

i~j V

Georqia Institote of Technotogy COBOL Vorkbench

14

77,77 I

AflL)efdix 8 THI PRIIOS FILE SYST~r Paae 261

APPENDIX 8

THE PRIMOS FILE SYSTEML

Th.' PRTT MOS operatinc system for the Pri.ese 400O comouter stun-
ports is one of its services a ftexin.Let hicrirchicdt file
system that vroviacs users with the facility to m~aintaini
Large quantities of ciata in an orderly, Loqicat, manner.
These next few sections are indended to Eoro-vicir a brie'f
overview of the file syst(M*s CdpabiLities a~nd features. It
is somewhat tutoridt, in nature and decs not attempt to cove'r
aLL of the available featurcs, nor to present the details of
liplement at ion*

So* ORDINARY FILESU

A file is a named collection of informatione Preserved upon
soma-- storagJe medium,9 such as trannetic disk* Some files may
contain text as in an article or a 0ook, others may contain
binary data produced by or to be used as irnDut to some
orogra-m, and still others may contain t cua eectal
instructions of the oroqram itself. In other w.ordso no
particular structure is forced upon a file by the system.
ahite some programs may operate on files with a definite
structure, it is their responsibiLity to naintain this
structure and of no real concern to the system*

We mentioned aoove that a file has a name; this ra ises the
auestion of what are the accectoble names for files.£
file neme consists of 1,1 or fewer characters chosen from the
Roikon alohhobet, the Arabic digits in-I the foLLowinki srecial
character%,:

Th e f irst characters however, must 1221 be a digit. seof
the stash (0/') is strongly discouraged for reasons which
will soon become anvarento The case of the alphabetic
characters is insiqnificant since the system forces theft all
to uooer cise. Thus

GEORGE Harry myjile YoureFiLe fiLel

are atl Icoat file names, while

(bad.fitename) naughty fiLe? t66

are not.

Georgia Institute of Technology COBOL Workbench

-~ -rA

J)

Appendix 8, THE PRPMOS FILE SYSTEM Page 262

rF,1mop nisociates the name of 'a file with its contents

throUgh the use of 'directories', Which themselves are noth-1
ini more than ordinary files that PRII'OS trents specially.
A Jiri~etory contmins a numb~er of tentries', each of %hich

wosthe name of a fite pLus other information (which we

of he ctulcontents of the file. Each fite with a

corrspodin enry n agiven directory is said to 'reside
withnt hatdirectory, and that directory is said to

Os ntingottt fieents which it hoLds an entry. Now there
is nthin ths preentus from having within a directorya
fi~etha is tsef adirectory. This phenomsenon i~nw

as nesini ofdirectories and may be carried out to any
depths, iioriet hierarchical, structure:

dirl

dir2 11te fite2 dir3 fite3

fiLe~i dirt dir0 fiteg dm7?

Ifite4 fieCO

It shouLd be noted that white the names of aLt lites within
4 o~iven directory must he unique among themseLves, it is
oerfectty Legal to have, in separate directories* two dif-

ferent fites wit the same name* So*, in the exampLe aboveo.
file& that !,vtide% within dir. is distinctty separate from
fite4 that reiuides within dir2e

-,, ~At the toomost Level, of the hierarchy is the master lite
directory (?6FD), which always begins at a fixed Location on

) a liven storage volume. In addition to severat entries
f required by tht system, the NFO contains any other direc-

Wtors and/or Ordinary files that an InstaLlation may see
fit to maintain, (Nornmntiy, a directory is established
within the MFO for each individual. user of the system. Each
such directory is known as a user fite directory or UFD.)

N'ow that we have a structure containing multipte nested
directories and potentially duplicate file -names, the
problem arises as to how a specific lite, say the one named
of fitDO in the example* it relcrenced ,or worse, how one

-~ file named "filei" is rrferenced distinctly from another by
the sane name but in a dilferent directorye.I Pt h na.ees

2- wh.ich we take up i;. the next section, are the solution.

rov'qva Institute of Technology C0eOL-Workbench

Appendix 8 THE PRIMOS FILE SYSTEM Page 265'

A oathndae is a syntax for uniqueLy specifying any Mie
contained within the fite system* But before we can no any
further, a touate of details shouLd be broug~ht to tiihte.
When zi user Logs in to PRIMOS, he is tiutomriticaLty Oat-
tathed' to oi specific directory whose name is usuatly theFaea his Login name* This directory is said to hehi

Ocurent orOdeau~O drecoryandhasa specint in

way t walk around within the lite system. changina t~.e

current directory, but ue won't go int'. that here4

As we said, a vathname allows you to uninuely specify any
file anywhere In the hierarchy by describing a path to the
file from some known point# Two such known Points are the
current directory and the PIFO. A pathname, then* consists
of a number of directory names, separated by stashes ("Po.
recall our Previous admonition) and endinq with the name of
the desired fite* If the pathname starts with o sLashe the
path startr in the mFD; otherHise, it starts in the current
directory* A sinple lile name that contains no slashes
refers to 3 fMe within the current directoryl a pathname
consisting only of a single stash refers to the MFD itsef$
and the emoty pathname refers to the current directory*
Thus* the pathnomes

/b in/cd
aydir/f i I

(Orpty string)

refer to a fite named Otd* within a directory named 'cm'*
which is contained in the PrOt a fite named *lite* within a
directory named "eydir' which sprouts from the current

'1directory* wherever that may be; the MFIF and the current
directory. resoectivetys

Use's have the option, If they so desire* to protect their
file% fro*i unwanted perusal or alteration by other userp.
Two nechanisms are invoLved in orovidinq this feAtu'
First, with each directory is associated an 'ovner" nd
*password** th~e owner of a directory is# by default, thv.
user who created It, though this may be changed. When a

rdirectory becomes a user's current directory, either of two
conditions A6Y prevail: the user miy oe declared 'ownert of
the directory If his Login name natches that of the direc-
tory#% creator, or failing this, he is declared a 'non-
owner#* The password comes into play in this tatter case*
the owner of a directory may require that any non-owncr who

* wishes to eAke it his current directory must first specify a
Password. If he is able to do this, then he in attached to
the directory as a non-owner; otherwie he is not ollowed

X:Georgia institute of Technology c,.RqL Wor k hIc"

4

Appendi x 8 THE PRIMOS FILE SYSTEM Page 264

to Attach to it.

Once attached to o directory, either as owner or non-owner,
the, second protection mechanism comes into play* As part of
the "other informotion" tnat we mentioned in the directory
entry for a file, the system keeps two sets of #protection
keys$* one that applies to the owner of the directory, and
the otherv to non-owners. These keys* which may be changed
on a ner-te basis by the directory's ownert control the
kinds of things that can be done to a tile* There are three
ooerdttons that may be individually allowed or denied to
both oaner ind non-owners: readinn, writing and truncating
(tUrLetina)* If 4 user has read permission for a file, he

wyread the contents of it but may in no way alter theme
If write permission is qranted, then the fite may be written
upon (possibly overwriting existing information or extending
the file), but nothing may be read from itt If truncate
permission is granted, the file may be shortened to any
Lenoth or even removed completely, but its contents may
neither be read nor written.

6.5. 1UIHNIX

There ore eany more le.~tures and subtleties in the PRINOS
file syste- that both enhance its power and usefulnes, as
iiett 4ti ao to itt .iwkwardnz~ss. Those thinqs we have talked
obout he thbought seem to be the mtost import.ont for at
ienertil ufl.iCrstaflnifl9 For further detaiLs on these other
feitures Aind on the ImpLeftentation of the fite system* you
~might went to consult the aeee!j j~jjgj, fLjI !ijLiljge.tLi
JX11g:9 PunLished as PDR31O1 by Prime Computer* Inc.,
Framinqhav, #a&-so

t

Georia nstiuteof echhtog COOL Urk~ncI
.N ;

Apoendix 9 COBOL~whc Pag 2653

APPENDIX 9

COBOL~wbc

This aopenaix contains some of the oreLirnin.ary work toward~s
defininiq rOBOLowbc t hitt has been accomptished. The f irs~t
sect ion Provides some insight into the frequency of the use
of various features of ICOBOL, white the second section show~s
the actua, discrepancies discovered between sojp of these
features.

9.1. USA L tg M FtAINNES

A Study at the Usage of COBOL Features

The Listiiv betow providjes the frequency (static) of use of
reservea wordl discovered in a fite containine atbout 2C9000
tines of code from Arm prograess

ACCEPT 0 CF
ACCESS 12 Col 4
ACTUAL 0 CH$ARACTER a
ADO 136 C!IARACTCRS
tOORESS 0 CLOCK~-UNITS0

LAFTER 0 COO01<ALPHA~CT1C I COOE-SET 0
ALSO 0 COLLATINC.0
ALTER 0 COLUMIN 0
AL ERNATC 0 COP.4A 0
AN 2 COMMON 0
ANPL 36 COMMUNICATI1O? G

APY0 COMP 940
AR~E 22 COMPUTATION4AL 0

tAREA 0 coMPUrE47
A R EA _ CONF16URATION
AS;:NDING 0 CONTAINS 4?A-
ASSIGN 41 CONTROL 0
A T 54CONTROLS 0
AUT14OR 4 COPY 0
BEFORE 0 CORA
BEGINNINJG a CORRESPOUjOING a
BLAN~K 0 COUNT
BLOCK ~ 20 CURRENCY 0
BOTTOM DATA .16

By 269 DATF 0
CALL 59 DATE-COMPILrO I

ACANCEL 0 OATE-WRITTCN L2

NCD 0 DAY

YA A

Georgia Institute of Technioto~y C~LVbc~,

ftwt -Y, *e V'A.:R

Appendix 9 COBOL~wbc Page 266

DE0 GO 1243
DED'UG-CONTENTS 0 GREATER 148

DEeUG-ITEM 0 GROUP0
OE10U-LINE 0 HEADING 0
DEUUG-tjAME 0 HIGH-VALUC 0
ODrIUG-Sufl. 0 -3
3r~vG-Slt8-' 0 1-0-CONTROL 0
DEPUGGPNG 0 IDENTIFICATION 13
DEC14AL-POINT 0 IF 88b
DECLARATI~rS 0aN
O ELCTE 0 INDEX 3
DELIKITED 0 INDEXED 62
DELIMITER. C INDICATE 0
DEEDN 1s I NIT I k. 0

DESTIIAT!O'l 0 1 NPU T 14
OCTAIL 0 INPUT-OUTPUT 13
DISABLE a IN4SPECT 2
DISPLAY 377 INSTALLATION 11
)I V I E 0INTO 2
JIVISIO0i 56 INVALID 3

04N16 Is 3.37f
3W'LJCATES 0 JUST0
D YllA M IC 0 JUSTIF'IEO
FG1 0KEY
ELSE 7281 OEYS0
c 14 0 LABEL 41
E4ABLE 0 L AST I
END 54 LEADING 1
END-OV-PAGE 0 LEFT 0

ENDING 0 LENGTH 0

ENv IR0??"tNT 14 L14MIT 0
'E OP 0 LIMITS 0

EQUAL !.7LIUAGE 0
ERROR LINAGE-COUNTER 0
ESI 0 LINE 0
EVERY 0 LINE-COUNTER 0
EXAMINE 0 LINES 0
EXCCPTION 0 LINKAGE 8

* XIT 193 LOCK
LX T CI't LOW-VkLUC 7
FO 41 LOWl-VALUES 9j 2

FILE 22 MEMORY 0
FILE-CONTR3L 15 MERGE 0
FTLE-LIMIT 0 PZSSAGC
FILE-LIIT 0 MODE 22
FILLERl 1012 MIOULES 2
FI'IAL 0 MOVE 36

F 14S T 0 IULTIPLC C -
FOOTtNG 0 MULTIPLY
FOR 6 NATIVE 0
FRO4 113 NE4ATIVE
GEtIERAt 0 %,EXT58
GIVI4G NO 4

Georgia Iristftute of Tethnotogy COBO-L Workbench

_ __ ~uzLz

Appendix 9 COBOL~wbc Paoe 267

NOT 153 RCPORT 0
NOTE 0 REPORTING 0

NUBR0 RrPORTS t
NUMERIC 2 RERUN 0
OBJE"CT-COOMPUTER 0 RESERVE P
08%x .T-PROGRAR 0 RESET 0
OCCl ,S 104 RETUR:) 0
OF 19 REVERSED 0
OFF 0 REWIND 0
OMITTED I REWRITE 10
ON 23 RF 0
OPEN 21 RH 0
OPTIONAL 0 RIGHT 0
OR 162 ROUNDED 7

ORGANIZATION 3 RUN 36
OUTPUT 6 SA 0
OV 0 SAME 0
OVERFLOW 0 so 0
PAGE 0 SEARCH 13
PAGE-COUNTER 0 SECTION 81
PERFORM 668 SECURITY 0
PF 0 SEEK 0
PH 0 SEGMENT 0
PIC 4833 SEGMENT-LIMIT 0
PICTURE 9 SELECT 41
PLUS 0 SEND 0
POINTER 0 SENTENCC 583
POSITION 0 SEPARATE 0
POSITIVE 0 SEOUE4CE 0
PRINTING 0 SEOUM'CED 0
PROCEDURE 14 SEOUENT1'L 4
PROCEDURES 0 SET 262
PROCEED 0 SIGN 0
PROCESSING 0 SIZE 0
PROGRAM 28 SORT 0
PROGRAP-I 14 SORT-4ERGE 0
QUEUE 0 SOURCE 0
QUOTE 0 SOURCE-co5PuER
QUOTES 0 SPACE 61
RANDOM 7 SPACES 222
RD 0 SPECIAL-NAMES 0
READ 56 STANDARD 41

RECEIVE 0 STANDARD-I 0
RCOR 61 START q
RECORDS 43 STATUS 0
REDEFINES 147 STOP !6
REEL 0 STRING 0
REFERECCES 0 SU6-oUEUE-I 0
RELATIVt 0 SUB-OUEUE-? 0

RELEASE 0 SUB-QUEtUE-3
REMAINDER 0 SUBTRACT 40
REMARKS 3 SUm 0
REMOVAL 0 SUPPRESS 0
AEUAMES 0 SYMBOLIC 0
RENAMING 0 SYNC 23
SR[I. I tG 0 SYNCHRONIZED 0

G(orgis Inst-itute of TechnoLogy COBOL iiorkbench

Appendix 9 COBOL*WbC Peg* 268

TABLE 2 UNSTRING 0
TALLY 7 UNTYIL 86
TALLYING 2 UP 95

T~r0 UPON
TERMINAL 0 USAGE
TERMINJATE 0 USE0
TEXT 0 USING b
THAN 177 VALUE 1724

rTHEN1 0 VALUES 0
THROUIGH 2 VARYING 68

vzTHRU 456 WHENJ 1
T1E 0 WITH 0
T IMES go WORDS i

comparison of COBOL FoatuAr*0 Offeried by
the 74 COBOL Standard* POP. 11 COBOL9 and PR IME COBOL

The following are ewcer~s fr*4 A mcre complete study of the
differences found in Various features of COBOL on several

wAchiflCso

aUL!T identifier-I EUC L mjnewonic-name) -

A~Iidentifier-I E!& { 2AU I 2AX I UL
1) 74 C060OL

A) o)ata is transferred accoroing to the rukes of
9OVt.

0) oesole-nme ustbe specified in the SPECIAL-

d) if tlic size of the data being transferred 14
1tdentictI. to Ihe size of identifier-e, the data is
tr.isferred and stored in Identifier-I*

6.'Georgiio Institute of TethnQLoqy COBOL, Workbench

NN'V W

_________________________ , '. -T

~ 4 - -

Apoendix 9 COI3OL~wbc Pag~e ?69

v
e) If the size of identifier-I is Less than the i'ize

of the data bti nq transferred* the Left-m~ost
characters o f the data being trntnsferred -are
stored in identifier-1, Left-justified; characters
to the, right are i9norede

1) it the size of identifier-1 is greater than the
size of the data oeing tronsferredo the data i s
stored Left-justified and additional data is
roquestede For subsequent data transferst the
size of identifier-I is taken to be equajl to the

as ye~t unfilled oortion of it*.

9) 0tE is implicitly dc-scribed as an etementary data
item with PICTUJRE of 9(6)V; it contains yea~r of

j the century, mordi of the yearv and-'day of the

year in tat order.

h) IJAY Is implicitly described as an elementary data
item with PICTURE of 9(5)V; it contain% year of
the century and the day of the year numbered fromI
1 to 366.

i) TIM1E it iaoLicitty describen as an elem~entary data
item with PICtVRE of 9(8i)V; the value represents,
in a 24-flour systes, the number of elapsed hours,
ainutese seconds, and hundredths of seconds after
allnight in that order from Left to right.,

2) POP-i1

a I As in 74 COBOL.

b) As in 74 COBOL.

C) If the FqOP ohrase is not aiven, the data is
transferred from the userts terminaL.

d) As in 74 COBOL*

e) As in 74 COBOL*

f) If the size of identifier-1 is greater than the
sirze of the data heing transferred, this data is
stored Left-justified atd this remaining snacir vad-
ded with blank%.

0~) is In ?4 COBOL&

h) This is '.dtnticaL to DATE.

I) At in 74 CtiBOL9 but tho positionu for the hun-

diredths of a second are fite4 with zeroes*

GeoraiA Institute of lechnotoqy COBOL Vorkbenth-
tn

V-a n %a -

Appendix 9 C080Lowbc Page 270

3) PR1IME

a? Characters are moved without change.*

t) As in 74 CO0OL.

c) If the FROM~ phrase Is not qiven, the data is
tra~nsferred from the user's terminato

d) As in 74 COBOL*,I

e) 4% in 74 COBOL.*

f) If the silt Of identiti*Zr-I is Less than the size
of the data being ,transferredo' t~ie LefttAost
characters of the data being transfered are stored
in ieientifier-lt Left-justifiedt and the remaining
space is ftted with btanks.

q) ks in 7' Cn"OL.

h) As in 74 COA

is, TIME is impticitty described as an etementary data
I t e- with PICTURE of 9(6)VI it contains hours*
minutes* aind second* in that Order*

AiCidentilier-I LiteraL-i) 9 C identiller-2
titeraL-2) 3 so Qidentifier-. C aM 3 E
identifier-n C 3fl2 .L&2 3 3. t OiN J2Z La!2O
imperative-state~et 3

ADDQ identif 1er-iI LiteraL-1),(Idemtifler--2
Litr~-2) C identifier-3 Literal-3) 'I .

~jy~jidentifier-m C ,2;)tE 9 identifier-n C
J at C I. ON U i~ZE LIUQR ioterative-st atement

A~~~2Q~ (Q ki IiQB) identif ieri1 I. identilier-2 I
~ 2 C :ON '111L Lamj lptrative-statement 3

ai) In forets I and 29 each identifier muast refer to

refer to either an etementary -numeric item or an'4
1)mntr numri edte iem i format ec

Georgia Institute of Technotogy 0OO Workcbench-,

____________- -TS

-"7 M,771 TM 7N. a7

Appendix 9 COOCL*WbC Page 271

b) CaCh titeraL m~ust be a numeric Literal.

c) the composite of otperands must not exceed-18~
digits*

d) In format It values of operands precedinn the word
TO are added toqether; then the sum is odded to
the current value of identifier-m storing the
result imneciAteLy Into identifier-me, and repeat-
ingi this process respectively fo'r each operand
fottowing the word TO*

e) In format 29 the vatues of the operands precedinti
the word GIVINGI are added together; then the sum
is stored as the new voLue of each identltier-pt,
identifier-no ... , tiet resultant-identifiers.

1) In format 39 the date items in identifier-i are
*sdded to and tftored in corresponding data items in
identltier-2o A pair of ontoa itemse one from
identilier-1 and one from identifier-2 correspond
it (1) they are not designated by the word FILLER
anid have the same data-name ind the same
tiuattiffers top too but not incLuoinge identifitr-l
and identifier-2o (2) both data items are
clementary nuireric data items*

q~) The compiter insures that enough olaces are
carried so as not to Lose any significant digits
durin4 execution.

h) Size error condition:
i) A size error exists when* after execu-

tion of the adoition and subsequent
decimat goint alignment. the Integer
portion of the absolute value of the
riiuLt is too Large to fit into the
receiving item* This does not appLy to
intermediate results. If rounding is
specified, it occurs prior to the check
for the size error.

Mi If a size error occurs and the SIZE
ERROR phrase is specified, the values of

the receiving itens affected by size

of the statcment, the imperative

executed (it Is executed onty once per
statexent texecution).

Mi) if a size error occurs and the SIZE

ERROR phas is no snecif led, the~~

Georia-nsttutiof echoteg COOL orkbonch~

Appendix S COBOL~wbc Page 272

1) if truncation has occurred and the ROUNDCD option
is specified, then if the most significant digit
of the truncated part is five or more, a one is
added to the absolute value of the-resuLt.

7) PLP-11

a) As -in 74 COBOL.

0) As in 74 COBOL.

c) 1, the size of the intermediate reeult tieLd is
otreater than 18, the excess high- 'er digits are
truncated.

d) As in 74 COBOL.

0) As in 74 COBOL*

f) As in 74 COBOL* but a pair of data items
correspond if they are elementary numeric data
items, And they have the same name.

q)- A maximum of 18 digits are carried, thus anything
over this is Lost.

h) Size error condition:
i) As in 74 COBOL.
ii) As in 714 COBOL.
Mi4) if a size error occurs and the SIZE ERROR

phrase is not specified, tht high-order
o4gits are truncated.

i) As in 74 COSOL.

3) PRIME

(identifier-i I LiteraL-t) C, (identifier-2 J
Literat.2) I . identifitr!-% I RONL I I ON

S - ioerative-statement I

n Q (identifier-tI LiteraL-1) (, (identifier-2 |
LiterAL-2 1 9 C , (identifier-3 kiteraL-3 I
JjyVjNj ';entitier-m E ft"gL2 3 C 04 §UfL ERRORR
i"per.ative-statement I

a) As in 74 COBOL* but cannot have multiple receiving
identifiers or ADO CORRESPONDING.

b) As in 7q COBOL*

c) As in 74 COBOL.

d) As in 74 COBOL, but can only have one identifier
|fter the word 10. .

Insttute of Technology COBOL rkbenchGeorgia Insttut 0 OBO

77 7 -4 -i'

Appendix 9 COBOLewbc Page 273

0) As in 74 COBOL% but can onty have on ident'ifierN
after the word GIVING.

f) The CORRESPONDING fet~ture it not avaiLabte.

h) A~in 74 COBOLe

i) As in 74 COBOL*

IT
COMPUTE

COMgtT idtle- 2 U 3C idenjcilier-2 CamL ii:
'3 ~ ~ wrihmic uesprthe Lnth of th ONrnd

ON jjaive-satmoet Ie-temt2

A) IdenifierOOL-utIt ny ae n identifier-2 o utbeeetr

mefoieth o eatinswthu th esrctos w.o

b)aemosite of operands t reevno cntainem mr

b) tha n gh ofteitee n deciwit dimpiten.

thn IS
~~~~.~3 -VGe raInsiueo"eEooq OO okec

idntfiI- E- RONE 'Iifmtce~rsin'

a .. As~ in- ?4 COO*bu a nt ae on e til

befor the2;.j ,e..Ju*6* %A-

b)~~~~~~~~~~~~ T~ opst foeadsms'o oti tr



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.


