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1. INTRODUCTION

Statistical methodology has long been a familiar tool for
use in understanding our natural environment. Classical examples
of applications of statistics are seen in weather forecasting,
in evaluation of attempts at weather modification by cloud seed-
ing, and in descriptions of the fluctuations in the sea surface.
Now the accessibility of new and extensive data from a variety
cf remote sensing sources, such as earth orbiting and geostationary
satellites, again calls for the development and application of
appropriate statistical methodology. Classical methods of statis-
tics and of probability modeling frequently must be adapted to
the new needs. The process of adaptation will proceed most
efficiently if statisticians work cooperatively with the scientists
actually obtaining data and studying the associated natural
phenomena. Conferences such as PRIMARS I are of great value in
promoting the necessary interchange of information and the stimulus
to approach novel and difficult problems in a realistic manner.

This paper describes new approaches to the analysis of
data, in particular to quite "noisy" data of the sort that is
likely to be encountered when observing the natural environment.
The descriptions given will necessarily be brief, but an attempt

will be made to show how the methods and viewpoints presented may

be applied to problems arising in remote sensing. ACCESSION for
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2. ROBUST METHODOLOGY: REQUIREMENTS AND POSSIBILITIES

Many scientists who have closely examined real data
have encountered occasional, or even frequent, anomalous behavior.

Apparent anomalies in data may be with respect to either
(a)

preconceptions as to "proper" data behavior, these perhaps

being buttressed by (physical) theory, or

(b) the nature of the general pattern of the data, especially

those data points in the immediate neighborhood, e.g.,

in time or space.

2.1. Plots

In simple circumstances graphical plots will quickly reveal

those points that are blatant anomalies. For instanée suppose that

one wishes to investigate data concerning the relationship between

wind velocity and whitecap cover in the ocean. Theory mav suggest

a specific relationship, e.g. that white-cap cover, C, be nearly

a cubic function of wind velocity v, so that it will be tempting

to plot C vs v and note an appearance as shown on Fig. 1; there

solid black dots represent (simulated) raw data. Since the eye

2

finds it difficult to distinguish curves of the form C =av

C = av3, cC = av7/2

, etc., €rom one another, and vet is sensitive to

departures from linearity, a graph of C vs v3 suggests itself, but

is not included here.

A plot on log-log paper may be still better.




As presented, the data conforms in general to the theorized relation-
ship or scaling, with the obvious exception of the circled point to
the right. Such an anomalous point, or points, represents a challenge

both to statistical technology and to the ultimate user of the data.

Statistical technology assumes the responsibility for revealing
the presence of such points, and, if possible, for providing a
meaningful and useful summary of the remaining points. It falls
to the consumer or ultimate user of the data, preferably with
the help of a subject-matter specialist (physicist or oceanographer)
to interpret the apparently anomalous maverick--or exotic, or
autlying--data point: is it

(i) an evidence of the failure of the relation C = av3, say

for large velocities,

or is it
(ii) an outright error in data recording, and to be disregarded?
being just two possible options.

Note that simple graphs are invaluable for pointing out
extreme outliers in simple, one explanatory variable, situations.
If more variables are required, informative plots are more diffi-
cult without the use of more statistical technology. We next
show that classical, least-squares, technology may be quite mis-

leading, but that replacements are available. See Mosteller and

Tukey (1977), abbreviated MT hereafter.
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2.2. Fits and Residual Plots

Suppose that one wishés to summarize data such as that
in Fig. 1 by fitting the relationship C = av3, i.e., determining
the parameter a from the data. The classical and automatic way
of doing so is to apply least squares; computer programs are uni-
versally available, even for handheld calculators (the TI 59, or
HP 67). What are we likely to find? A least-squares line (treat-

ing w = v3 as the independent variable presents C = qw; one

i V2 SRR Y

(a) v, and there may be reasons

can also plot and fit C
for this choice) is quite apt to fatally misrepresent the situation,
responding much too sensitively to the single (here encircled)
outlying value, and straying systematically away from the main
body of the data; see the points represented by o in Fig. 1.

An alternative method for fitting, described in MT, is
less susceptible to outlier influence--is far more robust to

departures from basic assumptions--than is the ordinary least

squares (OQLS) method. This new method, termed biweight fitting,

is carried out by a procedure that uses the OLS computation itera-
tively. In the course of the computations weights are auto-
matically developed that reduce the influence of the encircled
value of Fig. 1, permitting the fit to more closely apprcximate
the main body of the data. We now describe and illustrate the

biweight fitting procedure as it is adapted to the problem of

determining the parameter o in the relation Y; VS ax,.

-




Biweight Fitting Calculation

(1) Compute the kth (k =1,2,3,...) iterative estimate of «qa,

denoted by a(k) by solving
n
R (k~1) _
izl (y; = oV x ) xw, =0,
to obtain
n
! Yi"i“'i(k-l)
oK) _ i=l g
n
) x2y (k-1)
-
: (k-1) ;
(2) the weights, Wi , are of this form:
(k-1) 2
e O O e B ! if () ¢ 1
i cS(}?—I) 2
=0 if (°) > 1
where (°) refers to the term [(yi-a(k°1)xi)/s(k’l)];

s*=1) s a scale factor (robust replacement for the

standard deviation) that may be computed in the following manner.

(3) The k-ISt iterated value of the scale factor is

glk=1) median{lyi - a‘k-l)xil},

¢ being a constant of value 6, or 9;




(4) the first value, a(l), of the iterative sequence can be

obtained by equalizing all weights (w{o) = 1), which is
equivalent to OLS; alternatively, one can utilize a "robust

start," suggestions for which can be found in MT.

The iteration is carried on until the difference between successive
values is small; usually 4 to 8 iterations is sufficient. The
resulting a-estimate can be denoted by a.

Following the fitting it is informative to plot the

residual values:

ri - ¥ = ax, =Y. =y

i Yoo QT o e G

;i being shorthand for the predicted y value. 1In case there
is a single outlier, as in Fig. 1, the fitted line will tend to
hug the major point cloud, and a histogram of the residuals will
dramatically reveal the presence of the outlier, suggesting

further investigation. A plot of r, vsy; is also useful. See

MI for further suggestions.

2.3. Numerical Illustration

The following are a set of (simulated) whitecap percentages
and corresponding wind velocities. Alongside are values for

white cap coverage estimated by OLS and by the biweight procedure.
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Velocity Cover Cover Cover

("Actual") (OLS Estimate) (Robust Estimate)
2 0.011 0.011 0.0067
7 0.63 0.49 0.29
10 1.30 1.43 0.84
15 3.89 - 4,82 2.83
18 2.89 8.33 4.88
21 8.16 13.2 7.76
24 25.7 19.7 116

It is clear from the above table, and perhaps clearer from Fig. 1,
that the OLS solution, in its attempt to fit the point C(24) = 25,
systematically and considerably over-estimates the points at v = 15
and above. The biweight estimator performs much better, allowing
a closer fit to all data other than C(24). A residual plot brings
attention to bear on that point.

Since the values of "Actual Cover" were actually constructed
by forming 0.008v3 and adding Gaussian random noise with value pro-
portional to C(v), and since the sequence of values of 0.008v3

were 0.0064, 0.27, 0.80, 2.7, 4.67, 7.41, 11.06, we cannot fault

the manner in which the biweight procedure functioned in this

example and are encouraged to use it more widely.




2.4. Possible Application to Remote Sensing Data

In a paper in this conference proceedings by Depriest
(1979), and in Fleming (1979), a problem arising from partial
cloud cover contamination of remote sensing data is described
and addressed. This problem has the following origin. A series
of measurements are made on a physical quantity (sea surface
temperatures) but are contaminated. That is, in the case of
sea surface temperatures, if no clouds are present the measure-
ments are approximately normally distributed around u (the true
temperature). However, if clouds are present a fraction of the
measurements are made artificially smaller, cloud temperatures
being lower than those at earth surface. The problem is to esti-
mate u. Techniques for doing so are described by Depriest (1979)
and by Fleming (1979). We describe a possible alternative approach
that uses robust regression. Operational characteristics of

the two procedures have not yet been compared.

(1) Arrange the measurements in order: Y1 < Y, < Y3  eoe K
Yo < ¥y The largest observations may well appear
similar to the largest order statistics of a normal distri-
bution with (unknown) mean 1 and standard deviation o
(sometimes assumed known, although caution is in order),

while the smaller ones are likely to depart systematically.

(2) Carry out a preliminary plot of




(3)

where O-I(p) is the inverse function of the unit normal: ;

recall that if »

Yy
oy) = [ exp(-3 z0) 2=,
- 00 /2"
is the unit normal distribution, then the solution of the

equation ¢(y) = p gives
v = ¢ Lip); |

®, and hence ¢ 1, are widely tabulated. Alternatively,

use Arithmetic Probability Paper. If Yy is an ordered
observation from a normal population, then the plot should
appear straight, while a systematic departure from linearity
indicates a departure from normality. Suppose departures
begin to occur at k = D; sometimes D may be greater than
n/2. One may first eye-fit a straight line to the points
k=n,n-l, ... , D. Then §n/2 = || (estimated temperature).
i.e. the value of the fitted line at n/2 should give a

reasonable value for u.

Going further in a formal direction, one may wish to fit a
line to the data points. Here a biweight fit should behave
well, tending to be oblivious to spurious (cloud contamina-

tion) points. One can proceed to fit the relation

Yk vs u * ka

with

’ k = n' n-lp n-2' CRCE B




a start using the eye-fit to points k =n, n-1, ... , D '

may be worthwhile. Finally, quote the estimate

A~ ~ l A A
We=med y, =3 (¥, + ¥Y(ns2)41)¢ n even;

Y(n+l)/2' n odd .

where

~

Y = U+ 9x .

The above procedure seems worth further investigation and refine-
ment. One important step may be to adjust for the effect of
correlation between order statistics when carrying out the

regression.
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3. SMOOTHING DATA

If one plots certain environmental data, e.g. monthly
total rainfall, or perhaps daily maximum temperature, at a
particular location, systematic regularities seem to appear,
but may be masked by noise. Often there is a seasonal pattern,
i.e. one that is roughly cyclic in nature. Attempts to fit such
a pattern with polynomials is doomed to failure, and selection
of a set of sines and cosines that does well (Fourier series)
may lead to many terms. Some ﬁethod of smoothing the original
series that lays bare the reqularities is to be desired. After
such is made available, one can study the residuals around it.
Spectral analysis or some such formal procedure may then be of
use.

Classical smoothing procedures involve some form of moving
average, and are susceptible to the python-swallowing-the pig

difficulty: imagine using the linear smoothing operation

Yoy Y Y Y Yy

s 3
on the y, series
t A 5 6 G S 10
" ASEAE b g Sk e $. 1% . ke 9
sy, @0 Y TRy I8 M8y i 3 nr 9
AR T b deow aRde  nuder I en TR
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3 clearly the entry of 29 at t =5 into the smoothed value
series Syt gives a serious ‘distortion, travelling as it does

in partially digested form through the next two terms of the

s Junoe

smoothed series. If further smoothing is attempted the bulge - |
is reduced slightly, but spreads out in time. \
On the other hand, the non-linear operation of taking x
running medians, as suggested by Tukey (1977), performs effec- l
tively (in both cases circled and values are copied from the |
original series; more sophisticated procedures can be invented \
as well). The last row in the table, labelled Ry, s gives the
result of this robust smoothing; note that it behaves in an
ihtuitively appealing manner, essentially ignoring the outlying
value 29. Further steps can be taken to improve the "smooths," : |
but we refer to Tukey (1977) Chapters 7 and 16 for details.
Two further points may be made. The first is that the
analysis of a sequence of data points, and their projection or
forecasting in space or time, should not end with providing a
! smoothed or averaged version. Examination of the remaining vari-
‘ ation, e.g. the sequence ¥e = Ry, called the "rough" by Tukey

may well be rewarding; presence and suggestiveness of various

outliers is much more evident in the rough (residuals) sequence

{ than in the original sequence of data points. Secondly, the
procedure described for smoothing simple sequences of data points
must be adapted to planar (two-dimensional) data; some work has

been done, but much remains.
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4. STOCHASTIC MODELING OF ICE PRESSURE RIDGES

The dynamics of ice formation in the Earth's cold regions
results in the development of irregular ice pile-ups, or pressure
ridges. These ridges occur in an apparently random fashion in
space; in fact the following regularities are observed by remote
sensing methods (courtesy of Dr. W. Weeks, in a seminar at the

Naval Postgraduate School, Monterey, California, Winter, 1979;

see also Weeks, et al. (1979)):

1) Along a sampling line (e.g. airplane flight patﬁ, or straight
submarine track) ice ridges seem to appear in accordance
with a stationary Poisson process, so if R(x) is the number
of such ridges encountered over a distance x, then approxi-

mately

_ =Ax (xx) "
= e —

P{R(x) = n} -

n= 0,1,2,..-

where ) > 0 is the density of ice ridges.

2) The probability distribution of ridge "sail heights" (or
"keel depths") may be approximated by the forms F(y) = 1-e7HY
2
or 1 -¢e& %% ; the best-fitting distribution may well depend

upon the method of observation (averaging properties).

For further details see work referenced in Weeks et al. (1979).
Now it may be of interest to compute the distribution

of the maximum sail height, or keel depth, that one is to encounter

over a course of length x. This is very simple, given the

particular distributions of.sail number and size and furthermore

13
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assuming independent between ridge heights. Let H(x) be the

maximum sail height; then

-ax (x)"

P{H(x) ¢y} = [ e 2 (r(p)I"

n

e 8

0

since all of the Poisson-distributed heights must be less than
in order for the maximum to be below y.

Sum out to obtain

P{H(x) < y} = exp{-Ax[1-F(y)1}

Depending upon which distribution is picked for ridge heights,

we get
a) P{H(x) < y} = exp(-ixe”"Y)
b) P{H(x) < y} = exp(-ixe Y

These closely resemble classical extreme value distributions.

Note that if logs are taken simplicity occurs:

a') &n P{H(x) ¢ y} = -axe”"Y;

’

gn(=2n P{H(x) < y}) = ¢n(ix) -y

2
b') &n P{H(x) < y} = -axe™"Y ;

’

gn(-2n P{H(x) < y}) = 2n(Ax) - vy2




If either of these formulas are to be used for practical purposes,
values of the parameters must be obtained. In order to estimate
parameters ), u, v in the above models from data one naturally
thinks of the method of maximum likelihood. Suppose that we

have observed R(x) = n ridges of heights Yir Ygr cce ¢ Ypo

Then the maximum likelihood estimates are

S X 1 Z 2—}—
A = H ’ M i 'y_‘ ’ AV) __7
Y

X _ 1 2 k
y == ) vy,

Hence our estimates are of the form

a") est gn(-gn P{H(x) < y}) =4n ) + 4n x = py

¢n A + &n x - vyz

b") est an(-2n P{H(x) < y})

If rather large samples are available and if distributional assump-
tions are well satisfied one may feel comfortable with conventional
standard errors based on Fisher information and normality; see
Crameér (1946). On the other hand, it is of interest to apply

the jackknife technique (see R. G. Miller (1974) for a review) to

obtain estimates of the variance of estimate due particularly to

the ridge heights. To carry out the calculation, (i) compute

Va11 = n/;is then (ii) compute

n-1
) )
j=1 * 0 * ¥4

2 < . §ton o
Y v Y, vy v + +-yn




for j =1,2,..., n; then (iii) compute the pseudovalues

~ A

i 2 . - o . . : f d
vj nv., (n 1) “(-j)’ and (iv) average to obtain a jackknife

. 5 0 . -
point estimate v, = (1/n) Zj=l v4e and its variance

1] 38 3 (v, 9" fanal .
r [ n-1 j=1 J JK ] v

Then we can estimate the standard error of the probability prediction,

e.g. b") by computing

S.E. = (Var[est 2n(-&n P{H(x) £ y})])l/z

1/2

R
>
&
(7]
N
+
~
[ ]
0
N

>
<>
<

A similar calculation is easily performed for model a); details
are omitted. From the above results, approximate confidence inter-
vals may be constructed for the probability of encountering a
(maximum) ridge sail height less than y in magnitude.

Fairly recent theoretical results of Efron and Hinkley
(1978) suggest that if a traditional maximum likelihood approach
is taken, one is better off using observed Fisher information
rather than expected Fisher information in order to establish an
approximate standard error in either case a) or b). However,

work of Reeds (1978) suggests that use of the jackknife in

conjunction with maximum likelihood yields results that tend

16




to be rather independent of the basic model chosen. Both of
these suggestions must be validated by further work, a good
deal of which will necessarily involve Monte Carlo simulation.
Such work should be of great importance and interest to those
who must assess the probabilities of extreme, rare, events, and
who furthermore wish to provide some reasonably valid estimates

of the error of their estimates.
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