V AD=A076 570

UNCLASSIFIED

N
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 5/8 Q
REFERENCE TREE NETWORKS: VIRTUAL MACHINE AND IMPLEMENTATION. (U)
JUL 79 R H HALSTEAD NOOO14=75=C=0661

MIT/LCS/TR=222 NL

o

NATIONAL BUREAU OF STANDARDS
T CmaRY

WCROCOPY BEROAUTION TES

LABORATORY FOR %% MASSACHUSETTS

INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-222

REFERENCE TREE NETWORKS:
VIRTUAL MACHINE
AND IMPLEMENTATION

Robert Hunter Halstead, Jr.

This rescarch was supported by
the Advanced Research Projects Apency of
the Department of Detense and was monitored by
the Othice of Naval Research
under Contract No NOOO T ¢ 795 C 066

_/

S5 THOCHNOLOGY SOUARE C AMBRIDGE NUASSACHUSETIN 00130

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
, REPORY NUMBER 2 GOVY ACCESSION NO[3 RECIPIENT'S CATALOG NUMBER
\'* b MIT/LCS/TR-222
TITLE [andg Subdtitle) S TYYPE OF REPORY & PERIOD COVERED
/ o . Ph.D. Thesi
, ’ >ference "‘ruc &th s$: Virtual Machine and h.D is, Jaly 2, 1979
o4)l«!uu Ps = — € PERFORMING ORG REPORT NUMBER
MIT/LCS/TR-222 et
‘T‘TJT..SZ . @ CONTRACT OR GRANT NUMBER(s,
5) i /’Q“, NOOD14-75-C-0661
’) !;{/)/Lvrt qutcx'_;l’):xlst(m, ;Jf" s
E—
] Plnfﬁnum:onslmzAY\on NAME AND ADD.l!SS L] ::82".‘:‘;‘&::'C“NY'"”U'LO."‘:; FARK
MIT/laboratory for Camputer Science gl ' 1t
545 Technology Sqare) /,) N B T
Cambridge, MA 0213‘)
(77 CONTROLLING OF FICE NAME ANO ADORESS e 12 REPORT DATE
ARPA/Department of Defense /1 A W4 July 2, 1979)
1400 Wilson Boulevard '3 NUMBER OF PAGES
Arlington, VA 22209 254
T4 MONITORING AGENTY NAME A ADDRESS (f different from Controlling Office) 18 SECURITY CLASS (of this report
ONR/ Department of the Navy Unclassified
Information Systems Program R N :
Arlington, VA 22217 [15a g)cr:[;a::.;.cn-ou DOWNGRADING
T DISTRIBLUTION STATEMEN® of ihis Repors >
This document has been approved for public release and sale; its
distribution is unlimited
“mi e el e S R
F'—" _'n'ﬂ ;;;—'mn svnv(utuv tm. abatract entered in Block 20 If giiferent from Report)
;.
Docteral thesis,
A SUPP_FMENTARY NOTES
h «FfY MOADS L ontinue on r.-.;.. side (I mecoannary and (dentify By Mook number
MesSsage PSS 1K
distributed camputing
miltiprocessor systems
distributed object management
hetworkq S e R —_—
3-) CT Continue on reverse tide ([necesesry and (dentily by Mock number
A current- technnlnx\ camputing machine may be roughly decamposed into a
processor, a memory, and a data path connecting them. The interposition of
this data path between processing and storage elements creates a bottleneck,
which inhibits progress at the high-performance end of the technological
spectrum. Additionally, the monolithic nature of present-day processors resists
incremental addition or ramoval of processing power.
The research described here attacks the problem of constructing more L
powerful and more flexible computer systems along three fronts; the definition 3> =<’

J
DD ,Ji%%: W73 roimon or 1 wov esis owsgpe e e

‘ 9 “CIlecLuano-m TWIS PAGE (When Dot Entered)
09 4*+?2

vo4d

IECURITY CLASSIPICATION OF THIS PAGE(Whan Ders Batered)

Cenl,

Nof a virtual machine providing for parallel camputation using objects
and object references, the‘gevelopmnt of a distributed implementation
mechanign ("reference trees") supporting object management functions
including garbage collection, and the investigation of scheduling
algorithms and collection of performance results.

A reference tree network using theses concepts is composed of a
multitude of independent amall processors, yet operates as a coherent
programming system. Programs and data spread autamatically and
transparently through the network to occupy underused resources. The
modular structure of the network provides many parallel data paths
as well as allowing for easy addition or ramoval of modules, thus
addressing same of the problems discussed here. A prototye reference
tree network, the MuNer, 1s currently in operation. -

o 5d
i

SECURITY CLASSIPICATION OF THIS PAGE(When Deate Bntered)

e . . e . e
e L R W o

Reference Tree Networks:

Virtual Machine and Implementation

Robert Hunter Halstead, Jr.

« Massachusetts Institute of Technology

July 2, 1979

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under contract
number NOOO14-75-C-0661.

Massachusetts Institute of Technology
Laboratory for Computer Science

Massachusetts 02139

REFERENCE TREE NETWORKS:

VIRTUAL MACHINE AND IMPLEMENTATION

by

Robert Hunter Halstead, Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on July 2, 1979, in partial fulfilment of the requirements for

the degree of Doctor of Philosophy.

ABSTRACT

A current-technology computing machine may be roughly decomposed into a
processor, a memory, and a data path connecting them. The interposition of this
data path between processing and storage elements creates a bottleneck, which
inhibits progress at the high-performance end of the technological spectrum. Addi-
tionally, the monolithic nature of present-day processors resists incremental addi-
tion or removal of processing power

The research described here attacks the problem of constructing more power-
ful and more flexible computer systems along three fronts: the definition of a vir-
tual machine providing for parallel computation using objects and object references,
the development of a distributed implementation mechanism (“refercnce trees")
supporting object management functions including garbage collection, and the inves-
tigation of scheduling algorithms and collection of performance results.

A reference tree petwork using these concepts is composed of a multitude of
independent small processors, yet operates as a coherent programming system.
Programs and data spread automatically and transparently through the network to
occupy underused resources. The modular structure of the network provides many
parallel data paths as well as allowing for easy addition or removal of modules, thus
addressing some of the problems discussed above. A prototype reference tree
network, the MuNet, is currently in operation.

Name and Title of Thesis Supervisor
Stephen A. Ward,
Associate Professor of Electrical Engineering and Computer Science

Key Words and Phrases

message passing, distributed computing, multiprocessor systems, dis-
tributed object management, networks

ACKNOWLEDGMENTS

It is perhaps too easy, after immersing oneselt in a project for a period of
time, to convince oneself that the project is more important in the grand scheme of
things than it really is. Nevertheless, it the work reported here has any
significance at all, it is because of the selfiess contributions of a large number of
people.

At the top of the list must be my thesis supervisor, Steve Ward, who supplied
crucial inspiration, encouragement, and support. Steve's receptliveness to new
Ideas, plus his continued interest, combined to make the most pleasant possible
environment for this work.

Significant contributions by my thesis readers, Jack Dennis and Peter Elas,
must also be gratefully acknowledyed. Although | was often impatient with their
suggestions, they have materially contributed to the content and presentation of
the thesis.

Another unofficial “reader,* Cilark Baker, helped in important ways, not only by
his careful reading of the thesis document, but as a sounding board and source of
ideas throughout the research. Several of the examples and illustrations in the
text were first suggested by Clark. Beyond these contributions, Clark took upon
himself much of the drudgery of construction of the MuNet, and also generated
much of the software technology used to include drawings in this document.

The remaining members of the “"MuNet group" at M.I.T. were Jim Guia and Eric
Strovink. Jim was the principal architect of the MuNet hardware, which didi’t at all
help him to finish his thesis (on operating systems for the MuNet). Eric, along with
Clark, was my closest partner in MuNet debugging and testing, and also contributed
the MuSpeak compiler, giving a welcome alternative to assembly language for pro-
gramming the MuNet

All the other members of the Real Time Systems group at M.1.T., and particularly
Chris Terman and Tom Teixeira, aided in numerous tangible and intangible ways —
with moral support, with stimulating ideas, with maintenance of the UNIX system
used to develop MuNet software and produce this document, and with ail the other
little things that go into making a laboratory a pleasant place to be.

Others who helped formulate the ideas contained in this thesis include Carl
Hewitt and Henry Baker.

| must express my gratitude to my parents for their support and encourage-
ment over my twenty-year career as a student.

Finally, although all of the above people have done their best to improve the
quality of this document, its shortcomings can be attributed to none other than its
author.

T SR AYEANASE R -

TABLE OF CONTENTS

1: Introduction
1.1: The MuNet
1.2: The Virtual Machine
1.3: The Physical Machine
1.4: System Performance
1.5: Summary
1.6: Thesis Overview
2: The VIM Virtual Machine 19.
2.1: Introduction to VIM 19.
2.2: Deadlock Avoidance 23.
2.3: Object Types 26.
2.4: System Services 27.
2.5: The Blackboard Interpreter 28.
2.5.1: Definition of the Blackboard Interpreter 29.
2.5.2: Discussion of the Blackboard Interpreter 36. i
2.5.3: An Extended Blackboard-interpreter Example 63.
2.5.4: Programming in VIM 68.
2.6: Changes of Object Format 72.
2.7: Summary 76. .
3: Extensions to the Virtual Machine 79.
3.1: Event Tracing 80.
3.2: Object Tracing 84.
3.3: Protection 87.
3.4: File System Support 88.
3.5: Summary 80.
4: Architecture of Reference Tree Networks 91.
4.1: The Physical Machine: Network Topology 91.
4.2: Dynamics of the Network 06.
5: Reference Trees 101.
6.1: Object Text Management 103.
6.1.1: Adjustments to Custody 107.
6.1.2: Inquiry Processing 111,
6.1.3: Side Effect Management 113
6.1.4: Conflict Resolution 114,
6.1.65: Summary 118.
6.2: Garbage Collection 120.
6.3: The State Protoco! 123.
6.4: Modifications to the Reference Tree Concept 136.
65.4.1: Reference Tree Management 136.
6.4.1.1: Disconnecting Reference Trees 136.
6.4.1.2: Reorganizing Reference Trees 138.
6.4.2: Reliability 140. 1
Contents 5.

6.4.3: Global Names
6.4.4: Non-homogeneous Networks
6.5: Summary

6: Performance of Reference Tree Networks

6.1:
6.2:
6.3:
6.4:
6.56:
6.6:

Models of Network Elements

A Model of Computations

Measures of Performance

Calculating Maximum Possible Throughput
Memory Constraints

Discussion

6.6.1: Performance of Some Simple Topologies
6.6.2: Assignment of Events to Processors
6.7: Summary

7: Scheduling Strategies for Reference Tree Networks

7.1: The Diffusion Strategy
7.1.1: Tests for the Diffusion Strategy
7.1.2: MuNet Performance Peculiarities
7.1.3: MuNet Performance Results
7.1.4: Diftusion of Objects

7.2: Extensions to the Diffusion Strategy
7.2.1: Pull Factors
7.2.2: Variable Pull Factors

7.3: Communication Graphs

7.4: Summary

8: Conclusions and Directions tor Future Research

8.1:
8.2:
8 .3:
8.4:
8.56:

Al
A2:
A.3:
AA4:
A5:
A.6:

The VIM Virtual Machine

Reference Trees

Performance of Reference Tree Networks
Additional Directions for Further Research
Final Conclusions

References

%: The MuNet Virtual Machine

Object References
Object Texts
Events

Monitor Calls
Special Objects
Summary

B: Correctness of the Membership Protocol
B.1: Local Properties of the Membership Protocol
B.2: Global Properties of the Membership Protocol
B.3: Summary

141.
143.
144,

147.
147.
161,
166.
169.
162.
164.
165.
170.
173.

176.
177.
178.
181.
182.
187.
188.
188.
196.
197.
200.

203.
204.
207.
208.
209
210.

212.

2156.
2156.
218.
219.
222.
225.
226.

227.
229.
245.
252.

Contents

e bt et it <

Chapter 1: Introduction

A good part of the history of computer science has been the story of man's
struggle with the capacity of his computing machinery. At one extreme lies his
drive to construct ever more powerful machines, at aimost any cost. Within this
expanding limit of technology, man faces the constantly changing demands on his
computer systems, trying to adapt yesterday's computing structures to face
tomorrow's challenges

Both quests are hampered by the reiatively monolithic nature of today's com-
puter systems. A current-technology computing machine may be roughly decom-
posed into a processor, a memory, and a data path connecting them. The interposi
tion of this data path between processing and storage elements creates a "von
Neumann bottleneck"[1] which inhibits progress at the high-performance end of the
technological spectrum.

Even at lower points on the spectrum, the bottleneck causes problems.
A'though memory size can be scaled reasonably successfully to match user require-
ments, the monolithic nature of the processor defies incremental modification. The
best approach to this problem that is currently widely available is the concept of
compatible families of processors. Using this approach, when a processor's capa-
city becomes inappropriate, it may be replaced by a more suitable compatible proc-
essor capable of executing the same software, thus avoiding the overhead of
starting comgletely over from scratch.

One imaginable approach to giving processors more of the scaling properties of
memories is to develop processors with multiple functional units. Thus, at least in
theory, a computer’'s processing capacity could be altered by the simple addition or

removal of tur.ctional units. This approach has a couple of drawbacks. First,

Chapter 1: Introduction 7.

commercially available processors with multiple functional units still attempt to give
the appearance of executing a single sequential instruction stream, and this seman-
tic constraint limits the number of functional units that can be used effectively.
Second, even it this constraint is removed, the data-path bottleneck limits the
number ot functional units that can be kept busy. In essence, as more processing
power and memory are added on opposite sides of the bottleneck, the effective
usage rate of a unit of either must drop. The point at which this begins to happen
is determined by the bandwidth of the bottleneck.

The C.mmp project[40,41], therefore, attempted to increase the bandwidth of
the bottleneck by creating many parallel data paths between the bank of process-
ing units and the bank of storage units. Still intact in C.mmp is the principle that
every processing unit should be able to access every item in storage with equal
ease. The programming environment presented by C.mmp is roughly one in which a
number of concurrent processing units. share a common memory — not too different
from the wvirtual machine presented by many of today's operating systems. If a
user wishes to obtairn the full potential throughput of the system, he must break his
job into enough parailel tasks to keep all the processors occupied. Means for
manually doing this are well known, if perhaps not all that easy to work with. The
user is not forced to adopt any bizarre programming style, or face any situation
where data is not equally accessible to all tasks. The drawback of C.mmp is that
its widening of the processor-memory data path is expensive. Its 16x16 crossbar
switch is a large piece of hardware, and engineering problems almost prevented it
from ever workirg. Thus it is not clear how far that approach can be scaled up.
Fven if it can, its size qgrows as the product of the number of processing and
memory units.

It is possible to generate a strongly connected (every memory unit equally

8. Chapter 1: Introduction

uccessible to every procassing unit) data path without incurring quadratic expan-
sion costs — Batcher sorting nets[4] and the arbitration and distribution nets from
data flow computers|[7,30] are examples of such organizations; however, the cost
always grows more than linearly in the number of processing and memory units. An
extreme reaction to this situation is to directly connect each processing unit to
only its own private memory unit, and arrange some other mechanism for processor-
memory pairs to exchange data with each other. This approach is evident in the
DCS ring network[9,10], ARPANET[20], Ethernet[27], and countliess other ad hoc
taelecommunications networks that exist Such networks achieve a form ot scalabil
ity in that processor-memory pairs may be added or removed reiatively easily in
most cases. However, there is very often a central medium which can only physi
cally support a certain number of connections, and which can also cause a
bandwidth bottleneck if large amounts of communication are required

Perhaps more importantly, such networks often do not form coherent systems
with good support for co-ordinated parallel processing. Indeed, this is not usually
their purpose — they exist instead as vehicles for sharing information present at
the various nodes, and accomplish even that by often arcane and speciak-purpose
mechanisms. This detracts from their usefulness as solutions to the problem of the
von Neumann bottleneck, limiting it to cases where many small and largely self-
contained tasks are being run

A compromise between thase weakly connected networks just discussed and

structures of the C.mmp class is the Cms project[36]. This project avoids some of

the problems of a central communications medium by attaching its processor-memory
pairs as leaves o ‘reelike structure of "clusters." Any processor can still
address any word of memory in the system, but the access time, though still fairly

short, increases with the length of the path through the tree to the desired word.

Chapter 1: Introduction

As a result of this abandonment of the "equal access" philosophy, Cms is able to
achieve linear scaling behavior. The basic semantics ot a shared-memory system
are preserved, althcugh there i1s some incentive for the user to arrange for compu-
tations to be performed near the data they reference. Two objections can be
made to the Cm=~ approach. First, its scalability may still be limited, although the
bound is probably loose enough to be primarily of theoretical interest. Thore is a
set of "central" media that handie accesses crossing cluster boundaries; as the
number of clusters grows, those media could become saturated

Second, Cm= is an expensive way of connecting processing elements As proc-
essors and memories become smalier and cheaper, they may be dwarfed by the
interconnection hardware. The cost of communication hardware will probably drop
along with the cost of other components, but the ratio of communication to comput-
ing hardware in Cm= is stll quite large. A principal reason for the cost of this
hardware is the demand for real-time performance placed on it by the architecture
of Cme when a processor requests a non-local memory access, it is prevented
from continuing until the access has been performed. A system that did not make
this demand would be able to use communication hardware chosen from a wider
range on the performance spectrum.

That the Cme« system penalizes nonlocal memory accesses by a processor, rela-
tive to local references, implies that optimal performance by the network depends
on a certain amount of locality among the tasks being executed on the network
the system will work poorly if memory accesses made by each processor are uni-
formly distributed throughout the entire memory of the system. But if locahty of
reference i1s, or ~an be made, a strong enough effect, perhaps the penalty on non-
local accesses could even be increased without seriously degrading system perfor-

mance. If a faily high penaitv is acceptable, it should be feasible 1o get by with

10. Chapter 1: Introduction

AN SR

much less exotic interconnection hardware than in Cms_ This, in fact 1s the theory
behind the loosely coupled networks discussed earher. The tasks processed by
these networks display a great deal of locality, internode communications are rela-
tively expensive. Yet these networks often do their jobs quite well The

difference is that Cme at least supports some kind of coherent methodology for

making nonlocal accesses, while many networks offer none at all.

1.1: The MuNet

It seems plausible and useful, then, to consider constructing a netwoerk which
is tailored for tasks that exhibit some locality of reference, but which stll supports
a coherent, transparent methodology for making noniocal accesses to data any-
where in the system. Virtually any current networking scheme can probably be
used as a base for such a system the key element s the environment provided
on each processor in the network for the execution of user software. The provi-
sion of such a software environment, which allows transparent access to, and
mot.on of data objects throughout the system, is a central part of the MuNet proj-
m‘t[1(!,14,1!‘),.1-1,.'!_"_(!:',30] The MuNet 1s a network built for the purpose of test-
ing the various 1deas reported in this thesis Its hardware 1s composed of several
LSI-11 processors, each with 28K words of private memory. tach processor has
ports for up to four 125KBaud serial lines which can be connected to other proces-
sors to create a network configuration of some desired topology. The design of the
MuNet hardware s not hailled as any advance in technology for constructing com
putrr networks, quite to the contrary, it is simple n the extreme, since the prince
pal aoal of the MuNet project is the development of software methodologies and

organizational principles for using such networks

Section 1.1: The MuNet 11

1.2: The Virtual Machine

We begin in Chapter 2 of this thesis by considering the virtual machine, or
interface, through which programs can invoke internal network machinations, only
later are the machinations themselves examined. This wvirtual machine is an
abstracted and improved version of the environment provided for program execution
on the MuNet and has its conceptual roots in earlier work on the “mu calculus®
message-passing formalism[1538] A detalled description of the MuNet environ-
ment, along with a commentary on it appears i Appendix A Occasions to refer to
the virtual macthine described in Chapter 2 will anse frequently, so we succumb to
the temptation to coin an acronym, and name it VIM (Virtual /nterface tu the
MuNet) This term should be understood to mean specifically the virtual machine
outhned in Chapter 2, not the closely related one aescribed in Appendix A In
broad outline, VIM is a garbage-collected object-reference system[6] which sup-
ports message-passing, or actor-style, computation. Our treatment of VIM is at two
levels: first, an introduction, written in English prose, and second, an informal
"blackboard interpreter™ akin to the "contour model™ used for block-structured
languaqges, to make the specification more precise

VIM s important in that it serves as 1 clean interface between the user's
requirements and the system's capabiities, but 1ts specification only begins to
attack the problem of constructing a viable network Nevertheless, the choice of
this starting point underscores a key prinziple behind this thesis research: that
the environment provided for program execution is a much more significant aspect

of a system than the particular technology of its construction

g) Chapter 1: Introduction

e e L R SR .

L e———]

1.3: The Physical Machine

tvery virtual machine must be supported by some underlying implementation,
and an early hurdle that must be passed by any practical scheme is the demonstra-
tion that there exists a viable implementation of it. Details of an implementation of
VIM will obviously be influenced by details of the structure of the underlying net-
work For concreteness, then, we are forced to make choices, some of them fairly
arbitrary, about those detaills We pck a network of dentical processors, each
with some amount of private memory attached tach processor communicates
directly with only a hmited number of other processors (e.g., four) in the network
There are two reasons for making this choice First, it lends itselt to extremely
simple communication hardwure, keeping communication costs in proportion to the
costs of other parts of the netwo'k Second, it avoids scaling problems. The
absence of any central medium means the absence of any opportunity to saturate
it, hence a processor array of our design could in principle be iterated to arbitrarily
large size

It can bte argued that as our network is expanded, the distance, and hence
delay, of nonlocal accesses will increase, defeating the scalability argument. This
1s true if accesses by a processor are uniformly distributed over the network,
However, if tasks extibit a suitable locality o, reference, this need not be sc
Expanding the network will always increase its capacity to handle more tasks con-
currently, though at some point it will cease to affect the real time required to com-
plete any narticular task — at that point, the task will be spread thinly enough that
any further sproading would increase communication delays more than warranted by
the processing power gamed It i possible, however, to construct networks, such
as binary trees, where the power gained is exponential in the increasing distance

batwean the far hestapart ncdes serving a task. (The three-dimensionality of

Section 1.3 The Physical Machine 13.

space dnes put an ultimate limit on the application of this approach, but only at the
point where the length of wires connecting nodes becomes significant[37].)

It may be that a central medium is actually more cost-effective, up to some
size, than the fully decentralized scheme proposed here. As such a network with a
central medium is scaled up, though, a time will come when it is impossible to con-
tinue connecting processors to that central medium. At this point, the central
medium will have to be split into two “central” media, with some link between them.
After further size increases occur, a macroscopic view of the resulting network will
look much like our proposa! - a collection of tightly couplea processor-memory units
(one such unit corresponding to each "central medium") connected so that each
unit directly communicates with some number of neighboring units Thus although
our approach may not be the best for some small networks, it deels with the himiting
case of any network as it is scaled up.

The ultimate validity of our approach stems from the fact that it supports an
appropriete environment for program execution, but its usefulness depends on the
practical wviabiity of an implementation The most basic problem here is the
management of data and code objects, to allow nonlocal accesses, motion of
objects from one processor to another, and garbage collection across the network
These functions are accomplished using data structures known as reference
trees[15,16], leading any interconnection of processors using this scheme to be
dubbed a reference tree network. Chapter 5 describes the use of reference trees

to support the various operations required by VIM.

14. Chapter 1: Introduction

1.4: System Performance

Reference trees allow the basic network functions to be performed However,
a network will not operate up to its potential unless good decisions are made about
how to allocate tasks and data among processors.

Inethciencies in the MuNet implementation fall into two categories. One
cateqory includes overhead incurred during normal housekeeping chores inside proc-
essors, such as free storage management and task enqueuing and dequeuing, the
other includes lost time resulting from unfortunate distribution of tasks or data, or
from non-optimal reference tree configurations The former kind ot inefficiency might
be called "tactical," the latter “strategic * Tactical mefficiencies may be remedied
by more careful coding or more appropriate hardware, but do not present resecarch
questions alono the general thrust of the thesis For the most part, they relate to
activities that would be required on any garbage-collected message-passing sys-
tem, even a single-processor one Strategic inefficiencies, on the other hand, are
intimately related to strategies of operation of a particular network. Furthermore,
strateqgic inefficiencies can have effects which are orders of magnitude greater
than those of tactical inefficiencies, and also quite possibly grow faster than
linearly in the size of the network

For these reasons, we shall he pamarily concerned with mefficiencies of the
strategic kind. Our principal metric will not be whether the networs performs bhetter
at some task than another confiyuration of simuar cost could, given comparable
efforts devoted to programming the task in suitable ways for each configuration
(although this would be a reasonable way to judge a commercial product). Rather,
we will compare the performance of similar massage-passing programs (/.e., subject
to the same tactical inefficiencies) and see if employing the network brings an

acceptable increase in perforimance over that afforded by a single processor or

Section 1.4: System Performance 15.

smaller network. The scheduling algorithms described in this thesis do exhibit rea-
sonable scaling behavior over different sizes of networks, at least for some applica-

tions.

1.5: Summary

Present-day machines do not scale well. This is because of the monolithic
nature of current processors, and (in the high-performance realm) because of the
"von Neumann bottleneck" separating processor from memory. Attempts to “widen"
the bottleneck by adding parallel paths within it are unattractive because the com-
plexity of the hardware involved increases more than linearly in the degree of
widening achieved. An alternative is to replace a big von Neumann bottleneck with
several independent little von Neumann bottienecks, in the form of small processor-
memory pairs connected in a network. This alternative, which is a way of distribut-
ing processing power among the memory (or vice versa), has the advantage of
being scalable to arbitrarily large sizes. If the network nodes are sufficiently small
and numerous, the network solution may also offer an answer to our first complaint,
about the difficulty of making fine adjustments to the capacity of today's proces-
sors. Given the current economics of LS| chip technology, it may also offer 1 more
nexpensive way to deliver computing power,

The utility of such a network will be seriously compromised, however, without
an appropriate semantic coherence among the nodes and reasonable transparency
of network operations This thesis reports on the specification of a standard
environment for program execution which has these desirable properties, and the
design and evaluation of an implementation.

The problem of constructing scalable, high-performance systems is thus

attacked along three fronts: the definition of the VIM virtual machine. the
16. Chapter 1: Introduction

?
' 1

I R

e s - 4

development of the reterence tree mechanism for object management, and the
investigation of scheduling algorithms and collection ot performance results. These
efforts, although they all come together in the architecture of reference tree net-
works, are nevertheless to some extent independent. In particular, the VIM virtual
machine does not presuppose in any way an implementation using reference trees,
and shou'd be <uitable in any context where an object-oriented system able to han-
dle concurrency is desred Conversely, the reference tree scheme could be used
to support = wide variety of virtual machines needing its abilities to deal with
obje ts ani object references, and to perform garbage collection and synchroniza-
tion of access to objects VIM and reference trees are a good match for each
other, though., and come together in the evaluation of performance results in

Chapter /7

1.6: Thesis Overview

This thesis has eight chapters. Chapter 1 s this introduction. Chapter 2
describes the basic VIM virtua' machine and its blackboard interpreter. Chapter 3
outimes some possible extensons to VIM to handle demands that might be made by
operating cystems running urder VIM. Chapter 4 describes the kinds of physical
networks on which the proposed implementations of VIM are to be constructed.
Phe "reference tree” mechamsm at the heart of these implementations is
prescr.tod in Chapter & Chapter 68 1s a discussion of network performance,
Chapter /7 deal. with strateqgie - “or distributing objects and tasks around a net-

work, and Chapter 8 contains concluding thoughts.

Section 1.6: Thesis Overview

—

Chapter 2: The VIM Virtual Machine

2.1: Introduction to VIM

Programs running under VIM belong to a universe populated with two basic
kinds of entities: objects and events. Data and algorithms are represented as
objects, which serve functions simiar to those of files in operating systems, or
cells in LISP[25] Computations to be performed are represented as events, which
correspond very roughly to processes in traditional operating systems. The con-
cepts of object and event derive from research into actor systems[3,18,23]

The information contained in an object is recorded in its text. A text may be
represented as a series of words in memory, together with some format information
The format information indicates the length of the text, and also identifies certain
ot the words as references[5] to other objects (or even to the same object -
circular structures are perfectly legitimate) The remaining words need not be
intelligible to VIM and may contain arbitrary binary data. The space of objects is
assumed to be garbage-collected, so no explicit de-allocation of objects need ever
occur. (in fact, VIM provides no facility for explicitly de-aliocating objects.)

In the blackboard interpreter, an object is represented as shown in Figure 2.1
Each object is drawn as a series of slots which represent the contents of that
object’s text and bear symbolic names (for convenience in using the blackboard
interpreter). The names may be integers, such as 0 and 1, ordinary identifiers,
such as a or b, or special reserved symbols such as #. Each slot may contain a
reference to another object, drawn as an arrow originating in the slot and pointing
at the object referenced (as in the slots # and b of Figure 2.1). A slot may alter-

natively contain a special null reference drawn as a diagonal line (as in slot 0 of

Section 2.1: Introduction to VIM

end marker

Figure 2.1: Blackboard representation of an object

Figure 2.1), or an arbitrary integer.

Another feature of every obiect is an end marker, drawn as a double vertical
line, which indicates the end of the object's text. Only the contents of slots to
the left of an object's end marker are accessible to executing programs. (Exam-
ples will be given later in which there are slots to the right of the end marker; for
now, that possibility may be ignored.) The number of slots from the beginning of an
object to its end marker is referred to as the object's length.

In form, an event resembles an object text. It too may be represented as a
serias of woards in memory with associated format information, and it too may con-
tain both object references and uninterpreted words. A particular slot within each
event, however, is reserved for a reference to its target object. Semantically, an
event is a request to execute code associated (in a way to be described) with
the target object During execution of that code, the references and words con-
tained in the event will be available as parameters. Upon completion of execution,
its mission fulfilled, an event is deactivated (and presumably reclaimed by the
storage system). Thus if further computations ought to ensue, execution of an
event should result in the creation of new events requesting the performance of
those computations. It is possible to "fork off" several consequent events from a

single event execution, and it is possible to construct "join" operators that wait for

20. Chapter 2: The VIM Virtual Machine

|

the completion of several events before continuing; Iindeed, it is expected that
the use of such paralielism will help greatly in making the most effective use of a
network. Within a single thread ot events, however, there is only the simple con-
trol structure of event creation. Subroutine calls and returns, loops, and other
more complicated control structures may be implemented using contirivations[18].
An event in the blackboard interpreter is drawn as in Figure 2.2. As in the
case of an object, an event is drawn as a series of named slots, each of which
may contain an object reference (note that there is no such thing as a reference
F to an event), a null reference, or an integer. The reserved identifier r marks the
slot containing the reference to the event's target object. A special triangular
area is drawn to the right of the end marker, containing a Boolean active flag. The]
| value of this flag is true, or T, if the event should be executed, and otherwise is

false, or . This latter state can occur if the event in question has already been

executed, or for other reasons. i}

end marker
‘T//YY\

| T el B R R e

| ¥ el il

| 3 1,{ e o v active flag
J

Figure 2.2. Blackboard representation of an event

In the course of executing an event, several special services provided by VIM
‘ may be invoked. It is often necessary to examine and/or modify the text of an
object, so VIM offers facilities for gaining access to a text in either read-only mode
(sharable with other readers) or read/write mode (sharable with no one). Request-

ing either service entails specifying to VIM a reference to the desired object.

:

Section 2.1: Introduction to VIM 21.

3
k
:

|

Execution of the requesting event is not allowed to continue until access in the
indicated mode is acceptable. Once granted, permission to access a text in a cer-
tain mode persists during the remaindar of the execution of the event. Thus if an
event has acquired non-shared access to an object, no other event execution may
access the object while the original event continues to execute. These permis-
sions are not inherited by any subsequent events, however, which must re-
establish (via new calls to VIM) any access privileges they desire.”

The VIM style of access to object texts, analogous to locking protocols used in
transaction-based database management systems[8,11,32], makes possible the
construction of various kinds of synchronization operators without additional special
provision within the VIM implementation itself. Operators such as semaphores need
to examine, and possibly modify, object texts free from inconsisiencies caused by
concurrent activities of other processes, and without causing any other process to
see any inconsistencies By controlling the areas of possible interference between
concurrent event executions, the VIM access style simplifies the construction and

understanding of programs

"It is important to note that this regulation of "access privileges" is not
intended as a protection mechanism. Significant protection may inhere in the fact
that it is impossible for an event to access the text of any object to which it can-
not obtain a reference, but this protection is insufficient in many cases. Additional
protection must be supplied either through higher-level constraints (e.g., forced use
of some high-level language compiler) or through augmentations to the facilities pro-
vided by VIM. The use of either alternative as a protection mechanism is only
tangentially within the scope of this thesis.

22. Chapter 2: The VIM Virtual Machine

FEE s

2.2: Deadlock Avoidance

The VIM scheme for obtaining non-shared access to object texts sounds like a
sure recipe for deadlock any time concurrently executing events attempt to gain
such access to the same objects. In order to be able to resolve deadlocks, VIM
must have the authority to abort an event execution any time additional access
privileges are requested. (In fact, VIM's authority to abort events is slightly
broader than this.) Aborting the execution of an event frees any resources (such
as access to object texts) that the event might have accumulated, allowing other
events waiting for those resources to proceed Execution of the aborted event
may then be tried again later.

When VIM aborts an event, it should create the appearance that execution of
the aborted event was never attempted. |If this is done, programmers working
under VIM will never have to consider the possible influence of previously aborted
executions on the final, successful execution of an event. Therefore, if an aborted
event had performed any modifications to object texts, those modifications must be
undone. This problem can be avoided by prohibiting an event from making requests
for additional resources once it has performed any such modifications. If all events
observe this discipline, no event that is aborted will ever have performed any side
effects, and events can be aborted correctly without adjusting the contents of any
object texts. Accordingly, we modify our previous statement concerning VIM's
authority to abort events, stipulating that execution of an event may be aborted
only if 1t has performed no side eflects (the concept of "side effect" will be made
more precise in the definition of the blackboard interpreter). So that an event can
be aborted any time it requesis additional access privilages, we must require that

such requests be made only when the requesting event has not yet performed any

Section 2.2: Deadlock Avoidance 23.

e —————

side eflects.

Requiring events to adhere to this discipline does not reduce the logical power
ot VIM,; it additional resources are needed after a side eftect has been performed,
a new event may be created and execution of the current event brought to an

end. This new event, when executed, may accumulate such resources held by the

old event as are still needed, plus the new resources desired, and then proceed
with the computation

If an event were to acquire some resources, perform a side effect, and then
execute forever, no opportunity would arise for aborting it and freeing the
rescurces it had tied up, and hence other events needing those resources would

be prevented from ever completing If execution of every event is guaranteed to

take only finite time, this problem can be avoided (actually, only the execution time
after the first side effect need be finite), hence we require the user of VIM to obey
this discipline The possibility of events being "starved out" from access to

needed resources is one reason for insisting that execution time of events not be

infinite. There are oiiier, pragmatic reasons for keeping the execution time for any
one event fairly short. The longer the execution time for an event, the more
resources it is likely to nead to acquire. This increases not only the likelihood that
the event execution will be aborted before it is able to complete successfully, but
also the amount of work that is lost f such an abortion occurs. Thus although VIM
is a perfectly suitable environment for running lengthy programs, the execution of
such programs should be broken up into modest-length event executions. In the

MuNet, there is actually a bound on the amount of time the execution of a single

event is allowed to take.

The concept of event abortion, although strictly necessary only for deadlock

avoidance, has other u . es. In a multiple-processor system, an event might request

Chapter 2: The VIM Virtual Machine

a resource inconvenient to supply on the processor where the event is currently
being executed. For example, an event might request access to an object text
not currently present on that processor, or ask to create an inconveniently large
object. In such a case, the best solution may well be to transfer the event to a
more hospitable location. It will frequently be more economical to abort tha event
execution and start over from scratch in the new location than to attempt to
transfer all the intermediate state information pertaining to the event execution
Therefore, under VIM, we include requests to allocate storage (create events,
create or expand objects) along w~ith requests to gain access to object texts in
the class of operations that are only legal when the requesting event has not yet
performed any side effects. Thus an event execution may be aborted during any
such request

The original motivation tor aborting events was to allow resolution ot deadlocks
caused by requests for non-shared access to an object; the concept was then
found useful for the various functions described n the preceding paragraph. ¢
only shared (read-only) access to objects is allowed, then it will never be neces-
sary to abort an event. But if the ability to obtain read/write access to objects is
removed from VIM, and no new facility put in its place, it becomes impossible to
perform "joins" or any kind of synchronization between parallel processes. There
do exist mechanisms less general than the unlimited ability to perform side effects,
such as conduits[38] or tokens(15], that might be used to solve this problem
without introducing the need tou be able to abort events. VIM's goal of being able
to represent most general-purpose compttations, however, is most easily served by

the unencumbered side-effect mechanism proposed here.

Section 2.2: Deadlock Avoidance 25.

2.3: Object Types

When an event is to be executed, the machine code to actually be interpreted
by VIM is determined by the identity of the event's target object. Any object used
as a target object must contain, within its text, an object reference designated as
that target object’'s type. In the blackboard interpreter, the slot containing this
reference is designated by the reserved symbol #. The text of the type object
(whose reference is found in this slot) is interpreted as containing the machine
code to be executed This relationship i1s depicted in Figure 2.3 Execution of an
event begins by locating the text of the target object’'s type object, and transfer-
ring control to the machine code found therein This machine code may contain
ordinary arithmetic and logical manipulations, along with requests for special VIM

services such as those discussed above !

& Y
e]]
Event l Parameters || T
P - - g
' }
Target object Environment ‘

% 2 SN

o
Type object: : \1 Machine code

Figure 2.3 Object types

The reascon for adding the extra level of indirection of the type mechanism,
rather than simply finding the machine code to be executed in the text of the tar-

get object, is that it permits easy creation and manipulation of closure-like objects

26. Chapter 2: The VIM Virtual Machine

The text of the target object contains the execution environment (bindings of vari-
ables within the closure), and the text of the type object contains the algorithm.
The type mechanism thus eliminates the need to copy the algorithm into every clo-
sure. In terms popularized by Hewitt, the type object contains the script and the

target object the acquaintances[18]

2.4: System Services
For concreteness, this section enumerates the fundamental VIM system ser-
vices These are not "operating system" services, merely the most basic facilities

provided by the virtual machine itself

gtext(ref),
Obtains access, for the currently executing event, to the text of the object
referenced by ref, in read-only mode. For the remaining duration of the event
execution, ref may be used in specifying words or references to be read out
from the text A gtext request may not occur after a side effect has been per-
formed

locktext(ref);
Like gtext in every respect, except that non-shared (read/write) access to the
object 1s obtained

newobj(s/7e) returns ref;
Creates a new object with a text of the specified size A reference to the
new object is returned in ref Read/write access to the object is allowed dur-
ing the remainder of the current event execution A newobj call can abort the
requesting event (this allows a VIM implementation to move the event to where
more space is available), and hence may not be made after a side eflect has
been performed

newev(s/ s e) returns evpointer,
Creates s new event of the size requested, and returns a pointer (which may
be used for filling in the avent) in evpointer An event created by newev will
not be activated if execution of the creating event does not complete success-
fully. Also as with newobj, a newev request may not occur following a side
eflect

Section 2.4: System Services 27.

done(),
Indicates that execution of the current event has completed. All objects and
events created by it are officially Iinstalled, and the current event is deac-
tivated.
This set of primitives provides only a very basic and unoptimized interface to
VIM. Calls providing additional capabilities are discussed in subsequent sections;

modifications to VIM to improve the efficiency of possible implementations are

touched upon in Appendix A

2.5: The Blackboard Interpreter

The blackboard interpreter for VIM has two components: a graphical represen-
tation for the state of a computation, and a set of transition rules specifying what
alterations to a computation state will yleld a legal successor of that state. By
starting with some initial state, and repeatedly applying the transition rules, one
can generate a sequence of states that corresponds to a legal computation in VIM
Due to the fact that several events can simultaneously be active, as well as the
fact that it is possible to write nondeterminate programs in VIM, a state will in gen-
oral have several legal successor states, depending on the focus of the transition
rule applied Indeed, this attribute of VIM is necessary i we are to imagine VIM
programs executing on multiple processors. Not all /lega/ successors of a state are
equally dasirable, though, since some involve regression rather than progression of
the computation (aborting an event is an example of a regressive step). Some
choices of successors may result in parts of a computation being "starved out" or
ignored to the benefit of other parts of the computation. Avoidance of these prob-
lems is generally associated with "fairness" of scheduling, and is not dealt with by
the rules of the blackboard interpreter. Thus the VIM semantics defined by the

blackboard interpreter cannot guarantee termination of a computation. They can,

28. Chapter 2: The VIM Virtual Machine

o A

a#

however, assure partial correctness, in that no rule allows a transition which
violates any of the guarantees which VIM makes with respect to the meanings of

the various permissible operations

2.5.1: Definition of the Blackboard Interpreter

The graphical representation of objects and events has already been given (in
Figures 21 and 2.2, above) One additional entity appears in blackboard interpre-
tations of VIM: this is the activation record (see Figure 2 4), one of which is asso-
clated with each event currently being executed An activation record for an
event appears when the event begins execution, an event's activation record
disappears when it either successfully completes execution or is aborted. Every
activation record 1s drawn just to the rnight of the event it corresponds to (an
event may have at most one activation record at one time). Like an object or
event, an activation record has several slots, each bearing a symbolic 1dentifier and
containing either an object reference or some kind of primitive value. Slots may be

added to an activation record as execution of its associated event proceeds.

event activation record

.
o} jal fe] Je] jxlAy] }z,]

)L [_3 L L },1 {1 3 | F_ L] 6

/

¢ {3 {

Figure 2.4. An activation record (with associated event)

As in the case of an object or event, special slots in an activation record may
be labeled with various reserved identifiers. In fact, every activation record has

saveral such slots. The reserved identifiers used in activation records are given in

Section 2.5.1: Definition of the Blackboard Interpreter 29.

{

i A A

Identifier Slot Contents

r a reference to the event's target object
’ a reference to the event's type object

v the current program counter for the event
v a Boolean side effect flag

. an access privilege

Table 2.5: Reserved identifiers used in activation records

Table 2.5 Several new terms are found in the table. The program counter w
names the slot in the event's type object containing the next machine instruction
to be executed. The s/de effect flag ¢ is a Boolean which is initially false, but is
set to true when the event performs its first side effect. In fact, we will define a
"side eftect" as any action which causes the side effect flag to be set to true;
the specific rules governing the setting of the side effect flag will be given below.
The slots a, contain the access privileges obtained thus far by the current event
(e.g., via gtext or locktext). The graphical representation of an access privilege
bears a superficial resemblance to that of an object reference — both are drawn as
arrows However, to denote their special status, the arrowheads associated with
access privileges are drawn with serifs, as in the access privilege a, in Figure 2.4.
An access privilege that has been granted is drawn as an arrow with a solid shaft;
a privilege which has been requested but not yet granted is drawn as an arrow
with a dashed line for a shaft (see the access privilege a, in Figure 2.4).

To distinguish between different kinds of access privileges, arrows with multi-
ple heads are used Table 2.6 summarizes the different kinds of access privileges
and the monitor calls from which each may result.

Access privileges cannot be explicitly handled by programs in VIM. In particu-

lar, they cannot be copied out of the slots a, into any other slots in an activation

30. Chapter 2: The VIM Virtual Machine

Access Privilege Meaning
~->-~—> read-only access to an object (gtext)
-—» read/write access to an object (locktext)
——» newly created object (newobj)
- »> newly created event (newev)

. >> gtext-to-locktext conversion request

Table 2.6: Access privilege types

record, nor can they be saved in event or object slots. Access privileges exist
only to record permissions accumulated by an executing event, and when an
event's activation record disappears, the associated access privileges must disap-
pear also

Before giving the state transition rules for the blackboard interpreter, it is con-

venient to define some "canned procedures" as follows:

ERROR:
A call to this routine indicates that an erroneous condition exists (/.e., the user
has violated some rule of programming in VIM) The response of VIM to such
error conditions is not specified by the blackboard interpreter

HAS-GTEXT(event,object):
If some slot a,in the activation record for event has an access privilege (of any
type) for object, then return true; else return false

HAS-LOCKTEXT(event,object):
If some slot a, in the activation record for event has a locktext- or newobj-type
access privilege (serifed double or triple arrowhead) for object, then return
true; else return false

GTEXT(event,object):
If HAS-GTEXT(event,object) then return, else create a new slot a, in the activa-
tion record for event and place in it a gtext-type access request (an arrow with
a dashed shaft and a serifed single arrowhead) for object.

Section 2.6.1: Definition of the Blackboard Interpreter 31.

LOCKTE X T (event,object):

If HAS-LOCKTEXT(event,object) then return; else if some slot a, in the activa-
tion record for event has a gtext-type access privilege (serifed single arrow-
head) for object, convert that access privilege to a gtext-to-locktext conver-
sion request (an arrow with a dashed shaft and a double arrowhead with bent
serifs) for object; else create a new slot a, in the activation record and place
in it a locktext-type access request (an arrow with a dashed shaft and a dou-
ble arrowhead with straight serifs) for object.

CREATE-ACTIVATION-RE CORD(event):
Draw a blank activation record to the right of event. It event has no slot
labeled r, or if the contents of slot r is not a reference to an object, then
ERROR; else copy the object reference from slot r of event to slot r of the
activation record. Set slot # of the activation record to the null reference. Set
slot » to zero and slot ¢ to false. Perform GTEXT(event, object referenced by
slot r in the activation record).

ERASE-ACTIVATION-RFCORD(event):
Erase the activation reccord to the right of event. Also erase all object refer-
ence and access privilege arrows (whether their shafts are solid or dashed
lines) emanating from the erased activation record.

CAN-RUN(event):
If no access requests are outstanding in the activation record for event (i.e., no
arrows with dashed shafts emanate from any slot a, in the activation record),
then return true; else return false.

SIDE-EFFECT-PERFORME D(event):
It slot ¢ of the activation record for event contains the value true, then return
true; else return false.

The following transition rules can each be applied to any event e meeting the
specified conditions:

Rule R1: If e has no activation record and the active flag of e is true, then
CREATE-ACTIVATION-RECORD(e). This corresponds to beginning execution of the
event e and gtexting the event's target object.

Rule R2: If e has an activation record and SIDE-EFFECT-PERFORMED(e) is false,

then ERASE-ACTIVATION-RECORD(e). This corresponds to aborting execution of
e.

32. Chapter 2: The VIM Virtual Machine

Rule R3: !t e has an activation record, CAN-RUN(e) is true, and siot # of the activa-
tion record contains a null reference, then if the object referenced by slot ¢ in
the activation record has no slot # then ERROR; else if that slot # does not
contain a reference to an object then ERROR; else copy that reference into
slot # of the activation record for e, and perform GTEXT1(e, object referenced by
slot # in the activation record for e). This corresponds to gtexting the event
e's type object.

Rule R4: It e has an activation record, CAN-RUN(e) is true, and slot @ of the activa-
tion record does not contain a null reference, then NEXT-INSTRUCTION(e). The
routine NEXT-INSTRUCTION is described later in this section, and has the effect
of executing the next instruction in the type object of the event e.

The following transition rules can be applied to any object o meeting the

specified conditions.

Rule R5: If o has a gtext-type access request (dashed arrow with serifed single
arrowhead) impinging on it, and no locktext-type access privileges (solid arrows
with serifed double arrowheads) impinging, then convert the gtext-type request
into a gtext-type access privilege (solid arrow with serifed single arrowhead)
This corresponds to granting shared (read-only) access to an object that is not
currently being held by anyone for non-shared (read/write) access.

Rule R6: If o has a locktext-type access request (dashed arrow with straight-
serifed double arrowhead) impinging on it, and no access privileges of any sort
(solid arrows with any number of serited arrowheads) or gtext-to-locktext
conversion requests (dashed arrows with bent-sorifed double arrowheads) imp-
inging, then convert the locktext-type request into a locktext-type access
privilege (solid arrow with serifed double arrowhead) This corresponds to
granting non-shared access for an object not currently being held by anyone for
any kind of access.

Rule R7: It o has a gtext-to-locktext conversion request (dashed arrow with
bent-serifed double arrowhead) impinging on 1t, and no other gtext-to-locktext
conversion requests, or access privileges of any sort, impinging, then convert
the gtext-to-locktext conversion request into a locktext-type access privilege
(solid arrow with serifed double arrowhead) This corresponds to upgrading an
event's shared access to an object to non-shared status.

This completes the list of transition rules for the basic VIM blackboard inter-
preter, except that the routine NEXT-INSTRUCTION, which is referenced in the

definition of Rule R4 and describes the interpretation of machine code found in type

objects, has not yet been described. The purpose of postponing this until last has

Section 2.5.1: Definition of the Blackboard Interpreter 33.

been to abstract from the presentation the details of any particular instruction set
for VIM. The goals of this thesis are little advanced by hypothesizing in detail, for
example, the permissible set of addressing modes for an add instruction. Conse-
quently, such nuances are avoided in the definition of NEXT-INSTRUCTION. Instead,
the body of the definition has two main parts: first, a section dealing with the VIM
system calls, whose format may be considered somewhat standardized, and second,
a section describing the treatment of different kinds of accesses to objects and
events, without detailing how these basic kinds of accesses are packaged into
instructions. The definition of NEXT-INSTRUCTION follows
NEXT-INSTRUCTION(event):
Fetch the contents of the slot in event's type object (referenced by slot ¢ in
the activation record of event) designated by the contents of slot » (the pro-
gram counter) in the activation record for event. Interpret the datum thus
fetched as an instruction. If the instruction is a VIM system call, then it is one
of the following:
done() For every a in the activation record for event that contains a
newev-type access privilege (arrow with serifed quadruple arrowhead),
set to true the active flag of the event pointed to by the access
privilege. Set to false the active flag of event. ERASE-ACTIVATION-
RECORD(event)

gtoxt(ob/m‘r)" If SIDE-EFFECT-PERFORMED(event) then LERROR; else
advance x to the next instruction and perform GTEXT(event,object).

locktext(object): If SIDE-EFFECT-PERFORMED(event) then ERROR; else
advance ¢ to the next instruction and perform LOCKTEXT(event object).

'Although we have not specified the means by which the reference object is
obtained, in this and all subsequent cases it is assumed that object came either
from event, from the activation record for event, or from the text of some object for
which at least gtext-type access has already been established by event. The
intent of this stipulation is to ensure that all references used by an event are
accessible from it via some chain of object references.

34. Chapter 2: The VIM Virtual Machine

newobj(/d wal, id .valQ,...,id".vaIn): It SIDE-EFFECT-PERFORMED(event) then
ERROR; else advance » to the next instruction, draw a new object with
n slots labeled Id‘.ld?,...,ldn, with initial contents val‘.val2...<,valn, create
a new slot a, in the activation record for event, and draw a newobj-type
access privilege (solid arrow with serited triple arrowhead) from this slot
to the newly created object. The newobj operation returns a reference
to the newly created object.

nowev(id‘,val‘,id?,val?.....fdn.m/n): It SIDE-EFFECT-PERFORMED(event) then
ERROR; else advance = to the next instruction, draw a new event with
n slots labeled /d ./(12,...,1(1 , with initial contents val/ .val?..“,valn, create
a new slot a in the activation record for event, and draw a newev-type
access privilege (solid arrow with serifed quadruple arrowhead) from this
slot to the newly created event, and set the active flag of the newly
created event to false. The newev operation returns an integer which
may be used to refer to the new event

If the instruction is not a VIM system call, then it may attempt some combination
of the following operations:

read from activation record for event: it reading from one of the slots a,
then ERROR; else proceed.

write into activation record for event: if writing slot ¢ or any of the slots a,
then ERROR, else proceed.

read from event: proceed
write into event: ERROR.
read from an event other than event: FRROR.

write into an event other than event: if a newev-type access privilege for
the destination event exists in some slot a, in the activation record for
event, then proceed, else ERROR.

read from text of object: it HAS-GTF XT(event object) then proceed; else
FRROR.

write into text of object: if a newobj-type access privilege for object
exists in some slot a, in the activation record for event, then proceed;
else if a locktext-type access privilege for object exists in some slot a
in that activation record, set slot ¢ in the activation record to true, then
proceed, else FRROR.

One additional important requirement of the blackboard interpreter has not yet
been stated in this section: this is the requirement that the execution of any

event take only a finite number of stops after the first step that causes a side

Section 2.6.1: Definition of the Blackboard Interpreter 36.

e —

effect (/i.e., causes slot ¢ of the activation record to be set to true). This require-
ment may be imposed on the user in one of two ways. It may simply be stated
that any program which might execute forever after performing its first side effect !
is illegal, without any indication of how such an illegal program could be detected.
This would impose on the user the onus of ensuring the finiteness of every event ’
execution once it has performed a side effect. Alternatively, some number of
steps, such as 10,000, could be picked arbitrarily as the maximum number of steps
permissible after performing a side effect. Any event execution exceeding this
limit could be terminated with an error condition, much as it would be if it attempted

to obtain additional access privileges after performing a side effect.

2.5.2: Discussion of the Blackboard Interpreter

Before discussing the interaction of the various parts of the blackboard inter-
preter, it is best to illustrate the interpreter’'s operation by means of an example
In order to give an example, it is necessary to settle, at least informally, on some i

sample "machine language" with which to populate the slots of type objects. At

the foundation of this language must be some notation for operand locations — we
must be able to name the slots from which operands are to be fetched or into
which results are to be put. For this purpose we settle on the following conven-
tion: a lone identifier x denotes the slot (or its contents, depending on whether
the identifier appears as a destination or as a source) bearing the label x in the
currently executing event's activation record. A pair x:y denotes the slot labeled y
in the object referenced by the contents of slot x in the activation record. A pair
«:y denotes the contents of slot y in the currently executing event.

Slots are stored into by using the form /ocn+ value, where value may denote

the contents of some slot, as discussed above, or may be the result returned by

36. Chapter 2: The VIM Virtual Machine

some system call such as newobj. /ocn will denote the slot into which the value
should be stored. If /ocn is a lone identifier, then a new slot by that name will be
added to the current activation record, if no such siot existed before; otherwise,

the slot named by /ocn must already exist.

1 bf»?:q
2 gtext(a) 7
3 locktext(b)
.ﬁ e
VSIJone()
. —

b:z- a:z e

Figure 2.7(a): Initial configuration.

This "machine language" suffices to present simple examples of blackboard
interpretations. The reader will indulge one additional piece of noveltly — drawing
type objects wvertically rather than horizontally to more easily accommodate the
symbolic representations of the instructions in their slots. Consider then the black-
board interpretation shown in Figure 2.7, Along with each part of the figure is
listed the blackboard interpreter rule whose application produces the configuration
shown in that part from the configuration in the previous part.

Figure 2.7(a) shows the initial configuration, which includes one event (with its
active flag set to true) and a collection of objects. The event's type object,

drawn vertically, contains the program to be executed. The slots in this object are

Section 2.6.2: Discussion of the Blackboard Interpreter a7.

labeled with numbers, corresponding to values that will be taken on by the program

counter during execution.

o] Ix]]yl NTW'J FTT'J]]
% | 6 | 0 F[4

A E
zITpT[qI AP Rt -
L 1 1 E ﬂ’—d !
olaex
1 b*f:q
2 [gtext(a))}g ag
l;‘rioch'.‘g«(@)” BRI S
4b:z-a:z H(w e s ettt
tﬁﬂﬁe't'()__]

Figure 2.7(b): Produced from 2.7(a) by Rule R1.

gtext(a) | = ad
3 !ocktoxl(b) 2

2

3

4 b:z-¢r:2 _AF“"'_ — -
5 |done()

|
i
{
Vi
S

Figure 2.7(c): Produced from 2.7(b) by Rule R5.

38. Chapter 2: The VIM Virtual Machine

PEEFE]

f
]
1
= = eere
)
- 1
O are:x e J :
Thewig K1
2 gtext(a)
3 ‘lockterxt(b)
4 b:zra:z S e —
5 done()

Figure 2.7(d): Produced from 2.7(c) by Rule R3

Figures 2.7(b) through (e) show the standard start-up sequence for events;
note that no step in this sequence depends on the program contained in the type
object. This event start-up phase thus corresponds to the next-instruction-fetch
phase typical of standard von Neumann machines, which is the same, up to some
point, no matter what instruction is being fetched (since the nature of that instruc-
tion is not known yet') In our blackboard interpreter, this "fetch" phase collects
references and read-only access privileges for the target and type objects of the

event.

Section 2.5.2: Discussion of the Blackboard interpreter 39.

S

40.

- A

O |ase:x

17 b*iv:q

>2 qgoh(a)

3 flocktext(®)

X

lb:l' a:z

5 do_no()

t

Figure 2.7(e). Produced from 2.7(d) by Hule RS.

v Je] @] “fﬂ a]

P‘f:q- 3

gtext(a)
bcktoxt(b)
bizeaiz

=TE
[=Tel

| %

12

[x|

|

| |

Y, *‘WLKJ

QbW N

done()

E_—‘:":—“_":; -

I

st e e

Figure 2.7(f): Produced from 2.7(e) by Rule R4.

Chapter 2: The VIM Virtual Machine

3 locktcxt(b)
‘i'_’_"_" - J‘

A s B

‘ouxt(l) 7

3 locktext(b) |
ATb:z;i:z r '
Sldc_ar‘u() -]

Figure 2.7(g):

|

Figure 2 7(h):

Produced from 2.7(1) by Rule R4.

RORCE Y RCROEOROETE " BORD
i ',xJ ?y |! il '1 J J I’,) K
{ :tlﬁl‘ [L{ Q{*ri }J}i

At
o jm; [a] T j | B

= !/.I- A :L ‘ ; 1]
l e tw'lh £'< [
W \) | j
- it i et
ek ¢
2'gt¢xt(n) L z 3

Produced from 2.7(g) by Rule R4.

Section 2.5.2: Discussion of the Blackboard Interpreter

S - IS PR TP ——

41.

\

2[

}3 lockg,xt(b_)
4 b:z+ a:z ‘c——
5 don.() B 71

== — —

Figure 2.7(i): Produced from 2.7(h) by Rule RS.

Actual execution of the machine code in Figure 2.7 begins with the transition
between snapshots (e) and (f). Starting at this point, every application of Rule R4
corresponds to the execution of another instruction. In snapshots (f) and (g}, the
activation record is extended with new slots a and b, and initial contents for those
slots are suppled The requesting and granting of gtext and locktext privileges
occupies snapshots (h) through (k). Snapshot (1) shows the result of the first (and,
in this case, only) "side effect" performed during execution of the event The
reference from the slot a:z has been copied into slot b:z and the side effect flag ¢
has been set to true. Note that gtext access has been obtained for object a and
locktext access for object b, otherwise the operation "b:z+ a:2" would be illegal
Finally, snapshot (m) shows the result of executing the done system call — the
activation record and all arrows emanating from it have been erased, and the
active flag of the event has been set to false, ensuring that its execution will not

be attempted again.

4?2, Chapter 2: The VIM Virtual Machine

are:x
bfnq

b:z-a:z

7 d_ov_no'(i) :

0

1

o ol el
2|gtext(a)

3 lpck!ox!(b) :
4
5

=

|

Figure 2.7()):

."Vﬂiirx
b« r:q i
gtext(a)

& "

b:z- a:2z
done()

ODGJN-‘O

=

locktext(b) '

Figure 2.7(k):

Produced from 2.7(1) by Rule R4.

Produced from 2.7(j) by Rule R6.

Section 2.6.2: Discussion of the Blackboard Interprater

[TTe
| E 2
| [.]

o
]
t
-
x

-t
: 4
-
o

-~

N -

atext(a)
>loc k(oxt(ﬁ)‘ ' 1
b:Zf a:z
Poc_u()

w

"o a

=

Figure 2.7(1): Produced from 2.7(k) by Rule R4.

Several aspects of the sequence in Figure 2.7(a) through (m) are worth noting.
The first is that, since only one event execution was involved, there was no oppor-
tunity for parallelism. in fact, at any given point, there was only one rule that
could be applied, except that at any point before Figure 2.7(1), Rule R2 could have
been applied, aborting the event execution and restoring the state in fFigure 2.7(a).
The property illustrated by this is true in general. any time an event is aborted, the
resulting state Is indistinguishable from the state that would have resulted f the
aborted event esccution had pever been attempted. The VIM rules regulating the
setting of the side-effect flag ¢, in combination with the restriction that an event
can only be abc ted when the side-effect flag ¢ in its activation record is false,

ensure that this is the case.

Chapter 2: The VIM Virtual Machine

-
£
= ™
———]

2 gtextia)
SlosEiasn)

-

1

4 t_"z“,',’z, 7
6§ done()

—— J

Figure 2.7(m). Produced from 2.7(1) by Rule R4,

More specifically, we can define an accessible event as being any active event,
and an access/ble object as being any object reachable by some chain of object
references from some ac'ive event or its activation record. When an event exe-
cution is aborted, it may have created some events or objects, which will be left
around afterwards, but these events and objects will always be inaccessible. The
newly created events will be inaccessible because their active flags will still be
set to false. Every newly created object will be inaccessible because, in order for
it to become accessible, a refarence to it would have to have been stored into the
text of some previously accessible object. Any event performing such an opera-
tion, however, would have its side-effect flag ¢ set to true, rendering subsequent
abortion of the event impossible. Thus if we consider only the states of accessible
events and objects to be relevant (a reasonable assumption, since the others can

never influence any future computation), an aborted event execution leaves behind

Section 2.6.2: Discussion of the Blackboard Interpreter 45,

the same result as an event execution that never happened.

An interesting blackboard-interpreter feature illustrated by Figure 2.7 is the
way in which control is passed back and forth between events and objects. In
general, control resides with events, in the sense that transition rules are applied
at events, and primarily involve the contents of events, activation records, and
their associated target and type objects. However, any time an event makes a
gtext or locktext request to access an object, no further rules (other than Rule
R2, aborting it) can be applied to the event until the requested access is granted.
Granting this access is under control of the object, in the sense that the relevant
rule (RS, R6, or R7) operates in the vicinity of the object, taking into consideration
only the other access privileges already granted for that object. The form of arbi
tration among access requests specified by these rules is what guarantees that
gtext access will oniy be shared with other readers, and that locktext access will
be shared by no one

The nature of these arbitration rules in turn guarantees a second fundamental
property of VIM. If we define an execution history as a series of snapshots, such
as those in Figure 2.7, then for any legal VIM execution history there exists a his-
tory starting with the same initial state and ending with the same final state, which
has the property that at most one activation record exists in any one snapshot. In
other words, any arbitrarily parallel execution of some set of events cannot yield a
result that could not also be yielded by some sequential execution in which no two
event executions are ever interleaved This property of VIM simplifies the
programmer's job, for he can treat each event execu‘ion as though it were an
atomic operation which cannot be interrupted by any complete or partial execution
of another event.

Every VIM execution history can be viewed as a sequence of primitive

46. Chapter 2: The VIM Virtual Machine

operations, corresponding to the successive applications of the blackboard-

interpreter rules to various events and objects. tach application of a rule can be
associated with the execution of a particular event. In the case of a rule that
applies directly to an event, this event is the event assoclated with the primitive
operations performed. In the case of a rule that is applied at an object, to grant
an access privilege, the event to which access 1s granted is the event associated

with the primitive operation.

5
In a VIM execution history in which events are executed in sequence, the

primitive operations corresponding to each event execution will be grouped
together, with no interleasing of primitive operations belonging to different event
executions. In a general VIM execution history, this will not be the case; how-
ever, any legal VIM execution history can be transformed into one in which primi-
tive operations pertaining to each event execution are grouped together, without
altering the initial or final state. The transformation is simple to perform: without
any change in the orderning, relative to each other, of the primitive operations per-
taining to each event execution, a new history is built out of these sets of primi-
tive operations, in which the sets appear in the order in which the corresponding
event executions in the old history ended (/.e., either completed successfully or
were aborted) In other words, all primitive operations in the original history are
delayed as long as possible, until they run into the primitive operation representing
the termination of the corresponding event execution (this operation should not be
delayed) This strategy will produce the appearance that all operations associated
with an event execution happen in a burst, immediately before the termination of
that event execution.

Obviously this transformation can be made on any execution history, but the

contention that the transformation is legal, /.e., does not affect the state change

Section 2.5.2: 0Discussion of the Blackboard Interpreter 47.

_—

——

performed by the execution history, needs to be justified. A sufficient condition for
the transformation being valid is the following: given an event execution B that ter-
minates after another event execution A, and a primitive operation pertaining to B
that occurs immediately before a primitive operation pertaining to A, the order of
the primitive operations may be switched without altering the state change per-
formed by the pair of primitive operations. This property, if true, can be used to
Justity “percolating" operations pertaining to event executions with earlier termina-
tion times forward and those corresponding to later termination times back, until no
operation appears before another one whose event execution ended later —
precisely the situation we are trying to achieve.

In trying to establish this property, we must concentrate on the ways in which
event ¢xecutions can interact. All such ways involve reading or writing of object
texts, or manipulation of access privileges to objects. Operations involving an
event's activation record are of no interest, since the activation record can only
be accessed by the event it belongs to. Similarly, operations that involve reading
or writing events are of no interest: an event can only be written by its creator,
during which time no other event execution can access it, and it can only be read
during its own execution, which cannot overlap with its creation. Thus only manipu-
lations involving objects can lead to interference between event executions.

The primitive operations that affect objects can be grouped into five classes:
reading from an object, writing to an object, requesting access to an object, being
granted access to an object (this includes gtext access, locktext access, and

object creation which entails a grant of newobj-type access to the newly created

object), and relinquishing access to an object (this only happens when an event
execution ends). The only way events can conflict is on operations involving the

same object, clearly, a pair of primitive operations on different objects may be

48. Chapter 2: The VIM Virtual Machine

A write l A request

of possibly conflicting operations on the same object.

performed in either order. Table 2.8 shows the status of the various combinations

A grant l A relinquish

_____ | Aread
B read OK(1)
B write NP(2)
B request OK(4)
B grant GT1(8)

B relinquish | NP(3)

NP(2)
NP(2)
OK(4)
NP(2)
NP(3)

+

OK(4)
OK(4)
OK(4)
OK(4)
NP(3)

GT(6)
NP(2)
OK(4)
G1(6)

NP(3)

OK(5)
OK(5)
0OK(4)
OK(5)

___NP(3)

Event execution B is assumed to have ended after event execution A; each
entry in the table applies to a pair of primitive operations on the same
object in which the operation pertaining to B occurs immediately before that
pertaining to A. A key to the table entries 1s

NP: this sequence of operations is not possible in a legal VIM execution

history.

OK: this pair of operations performed in the reverse order will still cause
the same state change.

GT: «f this pair of operations is part of a legal VIM execution history,

then all accesses granted must be of gtext access;

in this case, per-

forming the operations in the reverse order will still cause the same

state change.

Parenthesized numbers following the table entries refer to more detailed

explanations in the tex’.

Table 2.8: Legality of primitive operation sequence changes

Explanations associated with parenthetical numbers in the table entries are as fol-

lows:

(1) Certainly intcrchanging the order of two reads will not change the data read

by eithor.

(2) If either A or B has access to write the object, the other carnnot possibly

have or be granted access to read or write it until the first access privilege

Is relinquished.

Section 2.6.2: Discussion of the Blackboard Interpreter

(3)

(a)

(8)

(6)

in

Since access privileges are only relinquished when an event execution
ends, and event execution A is assumed to have completed before the end
of event execution B, B cannot possibly relinquish any access privileges

prior to any operation pertaining to A.

The existence, or absence, or requests (as opposed to granted privileges)
from an event does not interfere with any operation performed by another
event. Thus the ordering of a request by one event and any operation by

another event may be freely interchanged.

It a read, write, or grant pertaining to B were legal before A's relinquishment

of access privileges, it will certainly be legal after.

Both A and B have access to the object by the end of the pair of opera-
tions. The only way this can happen is if both have gtext access; other-
wise, sharing would be prohibited. 1f the access grants are all of ptext

access, then the order of the operations is irrelevant.

summary, then, a VIM execution history may be viewed as a sequence of

primitive operations. Any legal VIM execution history can be transformed into an

equivalent one (performing the same state change) in which event executions hap-

pen in sequence, in the order in which the event executions terminate in the origi

nal execution history. This transformation can be performed incrementally by a

“bubble sort" technique, interchanging the order of pairs of adjacent primitive

operations where their order is the opposite of that desired in the final, sequential

execution history. The considerations presented in Table 2.8 show that, if the ori-

ginal execution history is a legal one, such order changes will always be legal,

Chapter 2: The VIM Virtual Machine

even when they apply to pairs of operations on the same object.

In the scenario of Figure 2.7, there was always one transformation, other than
aborting execution of the event, that could be applied. In the presence of several
events, there might at any point be several possible transtormations: on the other

hand, there might be none, as illustrated in the snapshot of Figure 2.9.

e J L‘ A 2 1.3 T |

0 TIcoc:ktext(c:x)

| -
l N
1 - -w=f -~
1 locktext(s:y) ! \
i T req i OB
e

ik FEER
== = DA [T

Figure 2.9 Deadlock in locktexts

This snapshot, from which inessential detaills have been omitted, shows a deadlock
situation. Neither event can continue execution because each is waiting for a
request to be granted, and neither request can be granted because each conflicts
with another request that has already been granted (here is a case where the
arbitration function of objects substantively affects the course of execution) "
Thus the only choices available are to abort one or both events. Aborting an event

will erase some previously granted access privileges, removing the obstacies to

"Situations similar to this conflict between locktext requests can arise out of
conflicts between gtext and locktext requests.

Section 2.6.2: Discussion of the Blackboard Interpreter 51.

granting other requests. Since an event is forbidden to make gtext and locktext
requests after performing a side eftect (/.e., after performing any operation that
sets the side-effect flag ¢ to true), any event with pending requests that have not
yet been granted can always be aborted. Conversely, any event that has per-
formed a side effect (and therefore can no longer be aborted) cannot be prevented
from executing because of unsatisfied access requests. Given our earlier assump-
tion that the execution time, or number of instructions executed, for any one event
is finite, the third fundamental guarantee about execution of VIM programs follows:
no unresolvable deadlock can occur. 1t an event holds access privileges that are
preventing execution of another event from proceeding, and the former event has
not yet performed a side effect, the access privileges it holds may always be
released by aborting it If the event holding access privileges has performed a
side effect, after some finite number of steps it will have finished executing, at
which point its access privileges will be released

Inspection of the rules of the blackboard interpreter yields a fourth theorem:
no event can conflict with itself (i.e., cause a "deadlock" with itself because of an
unfortunate sequence of access requests) At first glance, it might seem that this
could happen if, for example, the same event issued two locktext requests for the
same object The blackboard-interpreter routines GTEXT and LOCKTEXT, however,
always check if the requested access has already been obtained by the current
event, and thus avoid making any such redundant access requests. Therefore, if
not interfered with, any event can eventually finish execution.

The various guarantees made by the rules nf execution of VIM programs may

be summarized as follows:

52. Chapter 2: The VIM Virtual Machine

® since the effects of aborted event executions cannot be detected, the pro-
grdmmer need not concern himselt with the possibility of that such execu-
e
/tions could happen.

® since all deadlocks at the gtext-locktext level can be handled automatically,

the programmer need not concern himself with the possibility of such

deadlocks.

® since no result can be obtained which could not result from some sequential
execution of events, the programmer need not co'm.ern himself with the pos-
sibility that other events might be executing concurrently with the execu-
tion of his. Of course, the programmer still has to worry about the conse-
quences of other event executions intervening between executions of any

two consecutive events of his.

2.5.3: An Extended Blackboard-Interpreter Example
As a more realistic example of the use of the blackboard interpreter, we now
consider the sequence of snapshots in Figures 2.10(a) through (k). The program

shown in these snapshots computes the nth Fibonacci number 'n using the relation

1 it ne2
fh = le_ ot it na2 (2.1)

n-2 n-1
If n > 2, the algorithm spawns parallel computations of 'n—2 and fn_ . In the par-

ticular case of Figure 2.10, the program is used to compute '3'

Section 2.56.3: An Extended Blackboard-Interpreter Example

e

#I/f . n(? goto 5

X+ nowob)(c e:C 00 c.a0)

"———'—1

0———*—

>

»2 newev(r.crnen 2.c.x)
3 neWev(r..:r,H,a:n 1.e.x)
4 done)
'5 mewcv(r w:cf 1)
Q*donc()

Olif r:a20 goto 4
L‘ Iockte;t(r)r)

2 r:a-c:f

3 donc()

A ——

4 newev(vr c. fr rave f)

sLon"“* —_—

Figure 2.10(a)

Initial configuration for Fibonacci example

In Figure 2 10(a), the sole event names the Fibonacct actor as its target
object, gives the value 3 for the argument n, and contains in slot ¢ a reference to
a continuation object to receive the result The contents of the continuation
object are not shown here The target object in Figure 2.10(a) contains only one
reference, to its tyne object. The type object contains in slots 0 through 6 part
of the Fibonacci program, and in slot ¢ a refarence to another object containing the
remainder of the program. This arrangement illustrates a general property of type
objects, nanely that some slots may contain data even while other contain instruc-
tions. The program is best understood by watching its execution unfold, hence its
logic is not explaired here. The "machine language"” used In it has a few new
features, though First of all, arithmetic expressions, rather than just slot

identifiers, are used on the right-hand sides of assignment statements and as

54. Chapter 2: The VIM Virtual Machine

parameters to system calls. Secondly, the form
It expression goto n

Is used to cause the program counter v to be set to n it expression is true. This

provides a primitive facility for conditional branching

§ TTW}?}?‘Tj J"”' il oted

et
bt O

R ——

. _— L 1] e TIST F o
N ECROR0R =l 1
=S Y i
Al |
. h‘: {
| | L
N
0 m—— N
FO#' «:n{2 goto § 4 k i | : o i
‘f newobj(c:c?l:c.a0) 1 >)10*(' r:as0 goto 4 =
2‘nowov(n rnen 2.c.x) 1 locktext(r)
‘a’nowcv(no.v,ng.n 1.c.x) ‘ urz v:aca:f]
4 ciono() : 3 a‘dono() s o 2 i i
e SR M
oIdono() [deon;ET]

Figure 2.10(b): Ceontinuation of fibonacci example.

Figure 2 10(b) shows the state of affairs after execution has proceeded past

slots 0, 1 2, and 3 of the type object The figure shows the new object and two

Section 2.53: An Extended Blackboard-Interpreter £ xample 56,

new events created, and the activation record entries and access privileges
created In the process. Note that no operation performed during this event execu-
tion caused the side-eftect flag ¢ to be set to true. 1o keep the diagram from
becoming even more cluttered, the convention has been established that drawing
an arrow to the shaft of another arrow pointing at an object is as good as drawing
an arrow directly to the object itself. This applies both to regular object reference

arrows and to special access privilage arrows.

T«
| S
3
w 4
| SHSSE|
(2]
i*j
Vv

- PRI A 7= Sk TR
O*If «:n<2 goto § : J\' 1
‘ Ix nowobj(co chl: cnO) ; ..)dilf r:a#0 goto 4 '—:‘
4 newev(r.s:r,ne:n 2.c.x) 1 locktext(r))
i n.wev(r-rnnn lcx) » 2{ ot A
| fclono() 3 done()]
Tnowov(c sief,1) 4 (‘_;_ii:'_('_' tc, f riae f))
t I‘”"'” , SN SR T R
!
Figure 2 10(c). Continuation of Fibonacci example.
56. Chapter 2: The VIM Virtual Machine

Lh-—-—-——-—-——-—l-—i——_—_.. -

In Figure 2.10(c), execution of the original event has finished, as can be seen
trom the fact that its activation record has been erased and its active flag set to
false. Upon successful completion of its execution, the two events created by it
were activated and they now await execution These events represent recursive
calls to the Fibonacci program to compute " and '2' whose sum will be the desired
answer '3‘ The target object for these events is, of course, still the Fibonacci
actor Both events give as their continuation a reference to a newly created
object whose function will be to collect the two results generated from the compu-
tations of f‘ and f',. add them, and forward the sum to the original continuation

supplied in the request to compute '3

Section 2.56.3: An Extended Blackboard-Interpreter Example 57.

pp paLED

] GRONOEN
—— p——— — N 2 1
" FRER

L
4 ~

(1 FER

o

% _r S < —")
[[—— e ——
0 it :n<2 goto & }1 y
1[x-newobj(c.:c.00:c.a,0) 4O if r:as0 goto 4 _ ﬁ
2 newev(rsir.nen-2.c.x) 1 locktext(r) |
Jn.g!![f:vno nlc cx) 2ir:a-e:f A

4 done() 3 dona() A
5 nkoov(v,.:c,rfJ)] 4 ncwg\i(ir ctr raset) |
6 done() e 6 done()

Figure 2.10(d): Continuation of Fibcnacci example.

For the transition to Figure 2 10(d), we have arbitrarily chosen to execute to
completion the event whose job was to compute 12, As before, this has led to the
creation of two new events (for computing 10 and f') and a new object. This new
object is named as the continuation of each of the two new events, and will func-
tion to collect the values returned by them and return their sum as the value of '2'
The fact that recursive calls to the Fibonacci actor are occurring is evidenced by
the stack-like structure of continuations that is developing. Since each call to the

actor generates two new calls if n > 2, the stack-like structure is really, in general,

58. Chapter 2: The VIM Virtual Machine

a tree-like structure;, however, this example is too small to demonstrate that

The existence of these multiple continuations also illustrates the motivation
behind the target-object/type-object mechanism. Etach continuation has a slot a
which records the state of the particular computations that are to return values to
that continuation |If the slot a contains rero, both computations are stll active. It
the contents of slot a are nonzero, then the slot contains the result returned by
one of the computations At the completion of the other computation of the pair
associated with that continuation, the sum of its value and the contents of slot a
will be returned to the higher-level continuation referenced from slot c¢. Thus the
algorithm followed by each continuation object is the same, even though the state
information in slots a and c varies from one continuation to another. VIM allows us
to place in slot # of a target object a reference to another object containing the
algorithm, thus avoiding the need to explicitly copy the algorithm into each of our

continuation objects

Section 2.5.3: An Extended Blackboard-Interpreter Example 59.

Lk ERRLER

Gapaa

s 1

\ i
cJ ey 1 1 E LU‘ T
0 u :n<2 goto § L Y Chsnmanaiieh
J x+-newobj(ce:c00:c a, ()) 'Owlvf_:‘:vni(f)_g_q_t'o_a__ AT
2tnowov(r crnen-2.c, x) 1 locktext(r)
3nowov(nvn- n1.cx) 2ir:a-e:f -
'4 done() swdono()

+ cwev(ncf 1) 4newov(rvcfr a+: 1)
AT — e —

Figure 2 10(e). Continuation of Fitonacci example.

All the remaining active calls to the Fibonacci actor have n < 2, and therefore
cause a different flow of control through the actor's type object, through the
newev request in slot 6. The event created by this request simply returns 1 to
the continuation specifiec in the event, furnishing the basis for our recursion. Fig-
ure 2.10(e) shows the result of exccuting, in any order, the three remaining active
calls to the Fibonacci actor. Fach generates a specific event returning 1 to its
continuation. Note that every event from which it would be possible to reach the
main body of the Fibonacci actor is now inactive. Not only could all these inactive

events be reclaimed by a garbage collector, but since part of the Fibonacci actor

60. Chapter 2: The VIM Virtual Machine

is now inaccessible (unless it is referenced from other events not shown), the two

objects associated with this part of it cou'd also be garbage-collected. The code

object on the right-hand side, however, is referenced by continuation objects that

are still accessible, and hence must be retained for now.

e—————— ‘fr‘m“ FT
K " o [N 18
— (.
HARGENNGRORGRORTE™R
i J ’ 4
- F!’LMD-;INM}EI
["a(oo Fr] o e Al
.QT‘}T s 1{' TQ =" 71,%1!(* G N
Lf | LET D{yi}n‘u 3 fj}' 1
| P e e AT
L ~) . —
{c?‘ . | {’: T‘ﬂ Jz\‘
E}H «:n<2 goto 5 F ' ?‘(i —. ‘1 g
1 /x+newobj(ce:cb0:c a,0) ©)10+lf r:a+0 goto 4
2 newev(r.ernen 2.c.x) 1 locktext(r) i
3newev(rs:ir.ne:n-1.c.x) ! 2} ao:f
4 done()] 3 donef)
»5 new.v(r c:c.f,17) 4 newov(v ricfriase 1)
6 done() Sldone) |

Figure 2.10(f): Continuation of Fibonacci example.

In Figure 2.10(f), the two events returning to the rightmost continuation have

concurrently started execution, and each has reached, but not yet begun to exe-

cute, the locktext request in slot 1 of their type object. Both axecutions having

obtained (through the standard start-up sequence) gtext access to their target

object, and both having determined that slot a in that object contains zero, each

Section 2.5.3: An Extended Blackboard-Interpreter Example 61.

e ————

will now attempt to lock the object and write its result (found in slot f of the

event) into slot a of the target object.

] Tel T3 P X TRl
P} P ﬁEFD!J e T
| |) [FEDEFER r”E}
(1 EFR] EER——

}%

o it :n<2 goto 5§ j\

1 X+ nowobj(c ‘:c, -0.0:c.a.0))0 it r: afO goto 4

L *n-wev(n irnen 2.c.x) 1 Iocktcu(c)

L:! newev(r:rnen 1.c, x) 2 ’2".!_5!, -4 . A
4/done() e 3/done() 2
5‘now.v(f_.¢:c.f.1) 4q now.v(v r: c f _v 1l f)
6 |done() e i 5 done()

Figure 2.10(g): Continuation of Fibonacci example.

Figure 2.10(g) shows the result of executing the two locktext operations.

Since the object being locked, namely the target object, is an object to which
gtext access had already been obtained, the access requests shown in Figure
2.10(g) are gtext-to-locktext conversion requests, rather than simple locktext

requests. It the requests were simple locktext requests, one of them could be

granted, execution of that event could complete, then the other request could be

granted, and execution of that event could complete. Each event would write a 1

Chapter 2: The VIM Virtual Machine

into slot a of the target object. This sequence of operations would be wrong,
since the second event to complete would see the contents of slot a change dur-
ing iIts execution, an occurrence inconsistent with any sequential execution of

events and hence in violation of one of the advertised properties of VIM.

B s e

The root cause of this problem is that in seeking to upgrade their gtext 3

R

access to locktext access, the events would have replaced a gtext access

privilege with a locktext access request. Thus an access privilege would have
been relinquished before completion of an event execution, which should never
happen. What is needed is something that combines the properties of the gtext
access privilege already obtained, and the locktext access request now being
made. In particular, this hybrid should prevent locktext access from being awarded 3
to any other requestor, for this would be inconsistent with the gtext access
already enjoyed by the original requestor. The gtext-to-locktext conversion
request i1s, in fact, just this combination, and Rule R/ correctiy indicates that, in

Figure 2. 10(g), neither gtext-to-locktext conversion request can be granted.

Section 2.5.3: An Extended Blackboard-Interpreter Example 63.

-

W

c| r.

0lit ¢:n<2 goto 5 W
‘ J_x»nowobj(c 1:c0.0:c,a0) k—)‘O'lf r:a20 goto 4 g
‘ gﬂncw.v(r ernen-2,c.x) 1 lqcktext(r)

3 newev(re:irne:n 1.c.x) 2r:avet i

4 dono() S =a 3+dono()

Hnowev(u c.t. 1))] dlncwov(r ric.tr SELAE f)

6 done() o 5 done()

fFigure 2.10(h): Continuation of Fibonacci example.

The only alterna‘ive, then, is to abort an event. In Figure 2.10(h), the upper
event has been aborted, whereupon the lower event was able to obtain locktext ﬂ

access to its target object and execute the side effect specified in slot 2 of its

type object. Note that siot a of the target object now contains a 1 and that as a

result the side effect flag of tho event has beon set to true. This means that the

lower event can no longer be aborted.

64. Chapter 2: The VIM Virtual Machine

D P

t

0 if «:n<2 goto §

= RN T

1 x-newobj(c ¢: c'lcaO) 0 'ra:() got04
‘2 newev(r ¢:r ne:n- 2.C.x) '1?Iocktext(r)
'3 newev(r.eirnen 1.c.x) 1 2; et
4 done() 3| done()
5anwev(v,o:c.¢.b1) i Ld;newov(r,f.c.f.v.au f)
6 done() 1 Bewon o

Figure 2.10(1): Continuation of fibonacc: example.

In Figure 2.10(1), the upper event has again begun to execute, but has been
stymied early in its start-up sequence by its inability to obtain gtext access to its

target object. This access cannot be obtained because, under Rule RS, it would

confict with the iocktext access alteady heli by the lower event. This lower
event can no longer be aborted, since it has performed a side effect, so the upper
event will just have to wait until execution of the lower event completes success-

fully.

Section 2.5.3: An Extended Blackboard-Interpreter Example 65.

[“B(ag ek =8 =

kb NI "

r’. u ljr- f ™

i SR SRR e BE o ocmon sty —t—=J2

3 | 2l o

0lit e:n<2 goto 5 W 5

lzx*newobj(c w:cll:c.a, O)4 »0if r:as0 gqgo_g_ e

2*newev(r Grnen 2.c.x) A 1‘locktoxt(f)]
newev(re:r.ne:n 1.cx) 2 tt 000000000

Idone() it 3 done()

5 nowev(v,-:c.f.t) _____] 4 nowov(r ricfr:asa f) -

oldonel) Sdone)

Figure 2.10()) Continuation of Fibonacci example

In the transition to Figure 2.10()), execution of the lower event has completed,
allowing execution of the upper event to proceed. This execution, finding the con-
tents of siot a in the target object to be nonzero, proceeds to the newev opera-
tion in slot 4 of the type object. The event created by this operation contains in
its slot f the sum of r:a and «:f, which in this case is the value of 02 that was

dsired.

66. Chapter 2: The VIM Virtual Machine

ﬂwwﬁ%FDurr
T BEEPRy

) AT

W . (— o] Tt T
[i [1ol] [c] [o] 1 } CHED
M FPEL FER——ERP
J', L e '4\? 1l ¢1 18§
iy R | | 10 T
G mos | K ‘ 2]5
L4 l al” | L
| Bl
o Y| TN
[c - h R ! || F >
| ey— I] | g el (105 IB€ 9
O'if «:n<{2 goto § l v, W
1 x- ncwobj(c_o:c.!.':c,a.())1 . "IO‘vf r:as(goto 4 '
2‘newev(f,a:r,n,o:n 2.c,x) 1 ‘l locktext(v 1
»{!‘pgwe!_(_r.-:g,q.-:n 1,¢.x) i '2v a o:f *‘
4 donel() '1 ¢3.done() |
5 newev(re:c f 1) } Jd‘newev(f,f:c.f.v:au:f‘ ‘
1 {
Lﬂ ’donc(_) J ‘B‘done() ‘

Figure 2 10(k): Final configuration for Fibonccci example

Fiqure 2. 10(k) shows a final configuration resulting from the execution of the
two active events in Figure 2 10(j) The value of f from the upper of these two
events has been copied into slot a of i's target object, by the same mechanism
ilustrated in Figures 2.10(f) through (h) The one remaining active event in Figure
2.10(k) contains the sum of the re=ults contaned in the two active events of Fig-
ure 2.10()), and in fact gives the correct arswer 'd = 3 Note that at this point
the only items that remain accessible are this one event and the caller's origina!
continuation. All other items in the s<napshot can be garbage-collected, unless

referenced from other active events not shown

Section 2.5.3: An Extended Blackboard-Interpreter £ xample 67.

(l‘

2.5.4: Programming in VIM

In spite of the Fibonacci example just given, the reader may be forgiven for
wondering whether (and how) it 1s possible to translate arbitrary programs written
in othaer, more ordinary programming languages into VIM programs. An existence
proot that such translations are possible, at lea<t from a programming language
similar to C[21] is the compiler for programs written in the MuSpeak language,
which generates code that actually runs on the MuNet The reader is referred to
Strovink[34.35] tor a description of MuSpeak and for a much deeper discussion of
translation issues than it 1s possible to give here In this section, however, we
give an overview of the complications that result from the rules of the VIM inter-
preter and of how these complications may be dealt with

One complication is the need to request access to data objects bhefore actu-
ally operating on them. This calls for a modicum of planning, so that all necessary
access privileges will have been obtained before an operation is attempted. This
planning s comphcated further by the fact that access requests (and other
resource requests) by an event execution are illegal after a side effect has been
performed

These properties of VIM require every computation to be organized into quanta,
where each quantum frst obtains relevant access privileges and then performs any
necessary side effects. It would indeed be feasible in some cases to organize an
entire program. or at least a whole subroutine, into one such quarntum, accumulating
first all access privileges that will te needed, and then in eflfect exacuting the pro-
gram Optimization questions arise here — an event accumulating a large number of
access privileges and taking a long time to complete is more likely to be

aborted — but, more seriously, the single-quantum approach is in general not

68 Chapter 2: The VIM Virtual Machine

applicable because of other constraints imposed by VIM.

One such constraint 1s the time bound on execution of an event once it has
pertormed a side effect It a program contains loops of indefinite duration, such
loops must be broken up into multiple event executions to ensure that no event
execution continues torever

Another tfactor favoring the decomposttion of programs into smaller quanta (s
the impossibility, in VIM, of “"suspending" execution of an event in the sense that
execution of a routine in a procedure-oriented programming language may be
thought of as "suspended" during a call to a subroutine. If a subroutine call 1s to
be encoded as an event, which is a reasonable thing to do, then the body of the
caller must be spht into at least two quanta one which contains preparation for
the call and culminates in creation of the subroutine-call event itself, and one which
contains the processing that should follow a return from the subroutine

Since in VIM there s no imphcit notion of a "return" to the previous activity
when execution of a subroutine has completed, an explicit continuation object must
be passed along with every subroutine call (as was done with the Fibonacci subrou-
tine In our example). Invocation of the continuation as a target object should
cause the resumption of the routine boring returned to; that s, it should cause the
execution of the instructions following the procedure call to which the continuation
was supplied Thus the continuation object will be the second of the two objects
discussed at the end of the preceding paragraph If the procedure being called
returns one or more values, these may be included as parameters in tho event that
names the continuation as its target object These results will then be available
during execution of the continuation object

The considerations discussed above concern differences in contro! structure

between VIM and other lanquages. The object-orientation of VIM also makes for

Section 2.65.4. Programming in VIM 69.

differences in data structure. For example, VIM has nothing quite like a stack,
which s a concept relied upon In the implementation of many programming

languages tortunately, VIM's version of "heap" storage is general enough to model

stacks or virtually any othar kind o! data structure If a language’'s environment
structure (s oriented toward frames on a stack, each such frame can be
represented as a VIM object Static, dynamic, and any other desired links can be
handled easily by using object references The VIM target-object/type-object
mechanism can be used to make closure objects that bind together a piece of exe-
cutable code and an environment for its execution Such closure objects can be
used for passing and returning procedure parameters, thus VIM is fully capable of
handling even this relatively exotic operation

VIM'< lack of explicit support for stacks, and consequent reliance on linked
lists of objects, undoubtedly has some cost in run-time overhead However, in sys-
tems with many co-operating tasks executing concurrently, such as the multiproces-
sor systems for which VIM is designed, a stack is quite an inadequate environment

struc ture anyhow The environment structure ascociated with such situations will

generally be that of a tree, with an active computation associated with each leaf
node, and various parts of the tree "trunk™ shared by tasks whose common ances-
tor used that environment Linked hists of objects are a very reasonable way of
implamenting this kind of environment structure, arnd probabiy cost little more than
"spaghett <tm:k~."[ﬁ] or other ways of achieving the same semantics

Back in the realm of contral structures, the notion of a continuation object,
introduced above, s a key concept for handling all sorts of problems with translat-
ing programs into tha VIM style. Fssentially, if one can envision a program as a
flowchart, such that the operation in each box takes a bounded amount of time and

never needs to obtain access to additional data after performing a side effect (/e

70. Chapter 2: The VIM Virtual Machine

. A

,___________________—___‘

such that the operation in each box conforms to the VIM rules tor a legal event

execution), then the translation into VIM is simple. A different continuation object :

can be generated to implement the operation in each box, and then only two
details remain to be settled. One is the stringing together of the continuations,
using object retaerences, so that every continuation has a reference to each suc-
cessor to which it might need to transfer control, the other is the provision of a
suitable execution environment for each continuation, which may be done either

using the VIM closure mechanism or by explicitly passing the environment to the

continuation whenever 1t 1s invoked

Using the flowchart analogy, it (s easy to see how programs contamieg itera-
ticn, conditionals, sequencing of statements, and other control structures can be !i
constructed out of the simple boxas that VIM aliows. There s =tll a great deal of

room tor choice in determining exactly what functionality to pack into each box, as

well as just how to organize collections of objects to represent particular data, and
tow to implement the commumcation among continuations in a program. These ques-

tions, whose answers car have s:ignificant performance ramifications, are con- 1

sidered at length by Strovink[34,35] Whatever optimization decisions may be
made in the course of a translation, though, it i+ cloar that VIM is sufficiently
powerful to serve as the basis fo. implementation of real programming languages,

not only in the Turing-completeness sense, but in e ve.y practical sense as well

Section 2.5.4. Programming in VIM 71.

e ey

2.6: Changes of Object Format
Given the fact that VIM objects may persist for long perlods of time, and come

with all kinds of different lengths and sets of slot identifiers, it is convenient,

though not logically necessary, to be able to change the format of an object. Such
a facility in tact exists on the MuNet, and is in fact useful there Changing the
identifier of one or more slots in a blackboard-model object introduces no new
complications 1t can be treated simply as a side effect to that object and accord-
ingly handled in the routine NEXT-INSTRUCTION Changing the length of an object,
howeve., leads to some subtle ramifications that are worthy of discussion
Shortening of ar object text (,.e., moving its end marker to the left) can once
again be viewed as a <imple side effect to the object and handled by existing
mechanism in NEXT-INSTRUCTION If an object is to be lengthened, though, not only
a side effect but also a resource request (for more space for the object text) are]

potentially involved Unfortunately a resource request cannot occur after a side

eflect has been performed (for then it would be impossible to abort the requesting
event) Thus an object expansion would always have to be the first side effect in
the execution of an event (the resource request would have to occur before the
actua! side efect) This rules ou! expanding two objects in one event execution, ‘

and is generally an annoying constraint on the construction of VIM programs.

'} A better solution 1s to split the object expansion operation into its two com-
ponents the rasource request and the side effect An event execution could then
request additional space for all those objects whose expansion was contemplated,

and only then perform the actual side effocts Adoption of this strategy requires a

modification to the blackboard interpreter so that it is capable of representing an
object for which additional space has been granted, but which has not necessarily

yet Heen expanded to use that space Consequently, the concep! of the

72. Chapter 2: The VIM Virtual Machine

authorized end of an object is introduced, as illustrated in Figure 2.11. The total
number of slots In an object, from its beginning to its authorized end, is referred to

as the object's authorized length

end marker

[*]
i
]
f=3
[]

1

authorized end

Figure 2 11 Object with authorized end after end marker

Only the slots to the left ot an object's end marker are considered semant
cally part of the object, slots between the end marker and the authorized end are
inaccessible and have unspecithed contents It is assumed that when the side
effect of actually moving the end marker rightward 1s performed, identifiers and ine-
tial contents for the slots moved past will be specified Conversely, when an end
marker is moved leftward, the slots moved past become inaccessible and their con-
tents become unspecified (but the authorized end of the object does not move, and
remains at least as far right as the original position of the end marker)

There is no point in asking for additional slots to be authorized for an object
unless moving the end marker 15 actually intended This, in turn, is a side effect,
for which locktext-type accoess s equirted Thus it makes sense for the primitive
(which we call objxpnd) authorizing additional slots for an object to also perform e
locktext request for the object. This decision serves another purponse as well |If
any object that has been objxpnded bu' possibly has not yet had its end marker
moved is pointed to by a locktext-type access privilege, then the absence of such
a privilege pointing to an object may be taken as an indication that the extra slots

between the end marker and the authorized end are no longer needed and may, if

Section 2.6: Changes of Object Format 73.

desired, be reclaimed by the storage system. This consideration leads us to add

one more basic rule to the blackboard interpreter:

Rule R8: If the object o has no locktext- or newobj-type access privileges (sold
arrows with serited double or triple arrowheads) impinging on it, move the
authorized end of o rightward to the end marker of o. This rule states that,
except when an object is newly created or Is currently susceptible to being

written into (by virtve of an outstanding locktext privilege), its authorized
length need not be preserved

Additionally, we must add a clause to NEXT-INSTRUCTION to handle objxpnd calls:

objxpnd(ob ect,size) |t SIDE-EFFECT-PERFORMED(event) then ERROR; else if HAS-
LOCKTE XT(event object) 1s false, then LOCKTE XT(event,object),” else advance »
in the activation record for event to the next instruction, and increase the
authorized length of object, if necessary, to be at least as large as size.
Beyond these changes, NEXT-INSTRUCTION need only be updated to stipulate that
moving an object’'s end marker 1s considered a write into the text of that object,
and to incorporate the observations made above concerning the disposition of slots

added to or removed trom the accessible portion ot an object text! by moving its

end marker

"This is a "hack" to make sure that object has been locktexted before its
authorized length is changed. The intent is that if HAS-LOCKTEXT returns faise,
locktext permission will be established and then the objxpnd request re-executed
This is why the program counter g is not incremented until after locktext permis-
sion has been established The inelegance of this definition does not correspond to
any obscurity in the concept, nor does it seem to have foreboded any difficulties in
implementation.

74 Chapter 2: The VIM Virtual Machine

o

2.7: Summary

VIM recognizes two basic kinds of entities: objects and events. Objects may
contain arbitrary binary data, and may also freely reference other objects. An
event is a request to execute machine code found in the type object of the
event's target object An event may ceall upon VIM to create new events or
objects or gain access to object texts in either read-only or read/write mode.
However, any event executinn (1) must be able to complete in finite time after
having performed its first side effect, and (2) may be aborted at «ny time prior to
performing its first side effect. No event execution may request any resource
after having performed a side effect, as defined by the blackboard interpreter
Thus execution of an event consists of two phases an initial phase, when
resources are accumulated, texts may be read but not written, and new objects
and events may be created, followed by a final phase, which begins with the first
side offect to the text of a previously existing object During the final phase, no
additional resources may be requested " When an event execution terminates suc-
cessfully, all events and objects created by it are formally installed, and all access
privileges accumulated by it are terminated

The attractiveness of VIM as a virtval machire for parallel processing derives
from several desirable features None of these capabilities 1s all-important, but
each contributes to the appropriateness of the virtual machine for distributed com-
puting, and VIM provides a nice package for them all. First, the gtext-locktext
style of object access not only lends itself naturally to the solution of synchroniza-
tion problems such as that handled by *he continuation object in the Fibonacci

example of Section 253, but gives an early signal of which resources will be

“The final phase need nol occur; it is entirely reasonable for an event execu-
tion to perform no side effects

Section 2.7: Summary

required for a particular event execution, allowing the system to assemble them in

a suitable location. It becomes unnecessary, for example, to give every processor
in the network direct access to every memory, because such memory accesses as
may be necessary during execution of an event can all be arranged to happen
locally. This, in turn, allows reasonable performance to be exhibited even by a sys-
tem using simple and low-cost technology in its communication hardware.

A consequence of this VIM object access style is that a program must contain
checkpoints to which execution can be rolled back if conflicts, or deadlocks,
develop. Such checkpoints are also useful for indicating points at which moving a
task from one processor to another, or performing a housekeeping chore such as
garbage collection, will be especially easy Implementations of VIM are simplified
by the legitimacy of rolling tasks back to their most recent checkpoints when such
needs develop.

The VIM concept of "event" (in the concrete sense of "event" as a request to
perform a computation) is a natural manifestation of such checkpoints. An event is
also a compact and concise package, highly suitable for shipmet between proces-
sors, contaimng all the information necessary for turthering the computation it
belongs to. Finally, the use of events in the style allowed by VIM not only makes it
very easy to express large degrees of parallelism, but also permits the construc-
tion of highly flexible and sophisticated control structures, as described by
Hewitt[18].

The VIM object striocture similarly allows the construction of flexible and
sophisticated data structures, of the sort made popular by users of LISP[25]. Fur-
thermore, it parmits data to be represented as an interrelationship of small modules,
enabling operations to proceed even in the presence of only parts of the data.

Tius capability 1s important where a data structure may be flung across several

76. Chapter 2: The VIM Virtual Machine

processors in a system.

The synergy of these various features makes VIM a powertul, simple, and
potentially efficient virtual machine particularly suitable for implementing modern
object-oriented languages such as LISP[25] or CLU[24] Services, such as gar-
bage collection, required by these languages are implicitly part of every VIM imple-
mentation, simplitying the job of generating run-time systems. VIM objects are
flexible enough to be used directly to represent objects in these languages without
undue wastage or ineffic.ency Finally, VIM events are quite capable of represent-
ing the computations that must be performed, including any desired use of parallel

ism.

Section 2.7: Summary 77.

Chapter 3: Extensions to the Virtual Machine

The foregoing discussion of VIM describes an environment capable ot support-

a3 b

Ing message-passing computation in a fairly elegant style; however, its usefulness
in the broader context of a computer utility can be enhanced by the addition of a
few extra features. The purpose of this chapter is to outline extensions that
create a more hospitable environment for operating systems running under vim;”
readers more interested in other topics may skip this chapter with no loss of con-
tinuity tlaborations of some of these extensions are also given in Appendix A. A
reference tree network could be useful in practice even without these extensions,;
the purpose of the tollowing discussion i1s to demonstrate the power and flexibility l
of the VIM approach, in that desirable system features can be incorporated without
doing violence to the essential concepts of VIM

In the context of VIM, an "operating system" might serve several functions. It
might provide for long-term storage of user data, allow for user control and tracing
of program execution, or mediate allocation and usage of various kinds of

resources. For maximum flexibility, it 1s desirable to avoid building such an operat-

ing system into VIM. A preferable aporoach is to supply only the basic "hooks"
necessary to enable a user to implement his own operating system services. The
architecture of an oparating system built around this philosophy is described by
Gula[13,14]; our purpose here is to concentrate on the "hooks" in VIM naecessary
for support To begin with, we concentrate particularly on a feature which tacil-
tates user augmentation of the basic VIM environment, and also provides additional

control over execution of user programs.

"For a discussion of such systems, see [13,14].

Chapter 3: Extensions to the Virtual Machine 79.

PRECEDING PAGE BLANK-NOT FILMED

3.1: Event Tracing

In the primitive VIM environment, once a program has started running (by crea-
tion of some Iinitial event) the only control that can be exercised over that
program's execution is that built into the program itselt. If the program coes into
an infinite loop, there is no way to force its execution to be terminated. It is pos-
sible, within the primitive VIM context, to adopt a convention for creating events
wherein a specific "trace actor" gains control before each new event execution.
The trace actor wiil then determine whether to proceed normally with the event
execution or whether, for exaumple, to terminate that chain of events or invoke
some trace routine betore continuing Unfortunately, it a user fails, either acciden-
tally or on purpose, to obey this convention, execution of his program will not be
controllable by this means Another objection to the proposal is that it introduces
substantial extra overhead to make a decision which in the vast majority of cases
will be simply "go ahead. "™

A better solution is to asso . iate with each event a process object which as
part of its text would have a reference to such a trace actor. In the normal case,
this could be a reference to some distinguished object meaning, simply, "proceed."
In the context of the blackboard interpreter, every event could be considered to
have a slot labeled with the reserved identifier ¢, conteining a reference to the
process object (see Figure 3. 1) Before executing an event, VIM would examine
the reference to that event's trace actor (found in slot # of the event's process
object). If that raference were found to s.cy "proceed," normal event execution
would ensue. Otherwise, the trace actor would be invoked, supplanting the normal
invocation of the event's target object. The trace actor could then determine the

proper course o! action, and if executicn of the event were calied for, aventually

80. Chapter 3: Extensions to the Virtual Machine

transter control to the event's target object.

R
Event: Parameters
-e V W
: —— T

Process object: Process context

—,—— e

[-v e — e ——— : 4 i

Trace actor: ~~>l Tracing code

DS SIS W= RS C——

Figure 3.1: Process object and trace actor

By detfault, the process object would be passed down from an event to its suc-
cessors (new events created by it), thus assuring continuity of the tracing mechan-
ism through many generations of events. Due to its automatic inheritance by newly
created events, the process object is the logical repository for all kinds of context
information (such as user identification, privileges, quotas, etc.) normally associated
with a process in a more traditional operating system ® When an attribute is stored
in an event's process object, it will automatical'y apply, unless subsequently
changed, to all events descended from the original event — that is, to the entire
computation initiated by the first event. This notion of process object is even more
flexible than the usual concept of process, since a single process object can even

be shared by several concurrently executing events — but presumably only if these

*in order to maintain the integrity of this information, it would probably be
desirable for VIM to put some restrictions on the ability to change an event's proc-
ess object

Section 3.1: Event Tracing 81.

vttt b

e i b I 4T

events are co-operating toward a single goal identified with that process object.

A method tor structuring and using process objects is discussed by Gula[14].
For our purposes, only relatively simple details surrounding the creation of a seman-
tic task (a set of events co-operating toward a particular goal) are of interest.
When such a task is initiated, a new process object should be created, and
assigned to the initial event of the task. If the creator of the task retains a refer-
ence to the process object, the creator will be able to manipulate the task by
changing values in the text of the process object For example, if it is desired to
cancel the task, a trace actor can be inserted which will terminate any event that
invokes it. The ability to easily perform this kind of manipulation is the reason for
introducing the extra level of indirection of placing the reference to the trace
actor within the text of a process object, rather than having it be directly an attri-
bute of an event. Changing a particular process object's trace actor reference will
suffice to influence a/l events using that process object, avoiding any need to
explicitly know the identities of the affected events.

This trace actor mechanism is perhaps not yet powerful enough to meet all rea-
sonable needs Halting a particular line of computation is made simple enough, but
gathering execution statistics or performing an event-by-event execution trace is
shll cumbersome. This is because the trace actor will have to explicitly transfor
control to the event's target object when done with its own tracing operations.
The target object will prosumably want to access some object texts, or otherwise
make requests that might result in the event's being aborted. By our carlier rules,
such requests would be illegal after any side effect had been performed on any
object text. Therefcre, the trace actor must refrain from performing any side
effect, such as incrementing a count of successful event executions, if it is subse-

quently going to transfer control to the event's target object. The only way the

82 Chapter 3. Extensions to the Virtual Machine

trace actor can leave behind a record of a successful execution, without violating
any rules, is to create an event recording the occurrence. That event will only be
activated it the subsequent execution of the target actor completes successtully
Assuming the event is indeed activated, It can then trigger an arbitrarily complex
series of computations, including side effects, to update the relevant statistics

Thus statistic-gathering, although cumbersome, s not impossible The operation
which remains intractable is interactive tracing, event by event, of a program exe-
cution. Here, it may be desired to construct a trace actor which pauses before
executing an event, waiting for user input betore continuing This much can be
achieved using the trace actor mechanism thus far described. What is difficult is
nstalling a new trace actor which will allow the current event to continue, but
pause before executing any descendant event created by the current one

This is similar to the problem of correctly implementing a “trace bit," specified
to cause a trace interrupt before every instruction execution, on a processor of
traditional architecture The solution is also similar An event must have two
states. not-yet-traced and already-traced These states are comparable to the
active/inactive status indicated by an event's active flag When a not-yet-traced
event i3 scheduled for execution, its trace actor, if any, is invoked instead of its
target object After a successful trace actor invocation, the event 1s changed to
the already-traced state In this state, the target object is always invoked " New
events would ordinarily be created in the not-yel-traced state, for proper operation

of the tracing mechanism MHowever, a special facility for creating already-traced

"t may be desirable to allow the interposition of a short, side-effect-free
"aftertrace actor" here to permit, for example, immediate killing of events even if
thoy have reached the already-traced state.

Section 3.1: Event Tracing 83.

events would be usetul to debugging software.

In summary, several advantages can be gained by associating with every
event a process object The process object is usetul in imphcitly passing context
information down through a whole chain of successive eveaents [t is also useful, in
conjunction with the concept of the trace actor, for retaming control of a computa-
tion that has been started, and in tracing and gathering statistics. Its usefulness
in this regard may be enhanced by distinguishing between already-traced events

and not-yet-traced events,

3.2: Object Tracing

Another service which an operating system might want to use wou!d be a facil-
ity for monitoring patterns of access to object texts. In a sense, this kind of
capability is the dual of the event-tracing function described above, but some of
the difficulties are greater. In any case, one can distinguish an analogous set of
usetul oparations: gathering statistics regarding accesses to an object, intercept
ing such accesses, or suspending them to aliow for some period of computation or
user interaction Thus, by analogy, one might imagine associating a "trace actor"
with each object Code associatec with the trace actor would be invoked upon
any attempt (via gtext or locktext) to access the text of the object. As before,
some default value would mean "no tracing," whereupon access to the text of the
object would follow the normal procedure outlined previously

Gathering statistics regarding accesses to an object would be possible, sub-
ject to restrictions similar tH those discussed in our first proposal for event tracing:
no side eflects could be directiy performed by an cbject's trace actor, since the
currently executing event might attempt additional resource requests after return

from the trace actor The trace actor could, however, create a new avent to

84 Chapter 3. Extenswons to the Virtual Machine

e

record the tact of the object's having been accessed. It is true that an attempt
to create such an event is a resource request which might result in abortion of the
current event, but this will never cause a problem, since the trace actor is only
invoked in the course of processing a request which might in itselt cause the
current event to be aborted

Another possible use ot a trace actor for an object would be In validating
requests to access the object. Under VIM, the main control on access to an object
Is possession of a reference to the object, which s admittedly quite a coarse
restraint A trace actor could examine the process objact of the current event to
determine the dentity of its owner. On the basis of this information it could decide
whether to allow access to the object in the requested mode If access were to
o demed, the trace actor could terminate execution of the current event by sig-
naling an error to VIM This 1s a rather clumsy prctection mechanism, though,
further discussion of protection issues will appear below

A third use tor trace actors would be In conjunction with an incremental compi-
lation or dynamic linking scheme Uncompiled or "unlinked” objects could be given a
special trace actor which would, upon first access, nitiate a compilation or hinking
step to fill in the correct text for the object The trace actor could suspend and
record all requests for access to the object whie being made ready, then re-
create all the suspended events

Pearhaps the most important apphication of object trace actors, however, is in
restoring a certain universality of message-pass.ng systems that is compromised to
some extent (in return for a potential gain in run-time efficiency) in the design of
the basic VIM machine. In a pure message passing system, all interaction between
entities in the system is by exchange of messages; thus any module in the sys-

tem can be fully specified by detailing its responsa to various different message

Section 3.2: Object Tracing 85.

protocols. The fact that the only way to communicate with a module is by passing
it a message makes it simple to transparently splice additional processing into the
message path ahead of the module. This could be done either for the purpose of
augmenting or altering the semantics of the original module by modifying its
response to certain messages, for the purpose of gathering usage statistics, or for

the purpose of creating a virtual entity within the system An example of this last

application i1s the concept of a ruzum(aj, in which a dummy actor s supplied as a
place-holder to collect and save messages received while the real actor that is to
receive those messages is in preparation Another example could occur in the con
text o! viwtual memory management an actor could be "swapped out" and a *
dummy substituted for it to initiate a “swap in" operation upon receiving a mes-
sage At any rate, an important fact abou! the exclusive use of message-passing
protocols is that they allow an arbitrary computation to be trniggered by receipt of a
message This is the universality property alluded to above

In VIM, however, there are two ways of interacting with an object One is oy

sending it messages, the other is by accessing it directly (via gtext or locktext)

The message-passing mode of interaction has the nice properties discussed above,
but the accessing mode does not The addition of object tracing to VIM restores
these universality properties. By specifying an appropriate trace actor for an
object, it is possible to trigger an arbitrary computation upon any access to the
object. Thus any of the virtual memory or other mechanisms mentioned in the previ-
ous paragraph can be implemented. This general capability, in fact, is at the heart

‘ of the applicability of object tracing to all the uses discussed earlier in this sec

tion.

Chapter 3. Extensions to the Virtual Machine

3.3: Protection

In the basic VIM environment, possession of a reference to an object is a
grant of unlimited access to that object and all objects reachable by chains of
references starting with that object. There are many situations in which It is desir-
able to give only partial access to an object, for example, access to invoke the
object as a target object, but not to read or write its text. One might wish to for-
bid writing into a text to prevent some unauthorized agent from damaging the
object, one might wish to prohbit reading from a text to avoid giving out refer-
ences contained within it

The trace actor mechanism outhined in the previous section may be used to
discriminate among the access rights granted to different holders ot a reference,
provided that it is impossible for an unprivileqed holder of a particular reference to
masquerade as a privileged one It can also be used to enforce "execute-only"
access to an object either across the board or for certain users Under execute-
only access, the object’'s text can be accessed only during 1ts own execution, /.e.,
iIf it is the target object of the current event A user distnibuting a reference to
an execute-only object need not fear compromising the secrecy of the references
contained therein, for they can only be accessed by the machine code associated
with the execute-only object tself, which can apply arbitrarily complex security cri
teria bofore divulging any information

Similarly, the trace actor mechanism can be used to enforce read-only access,
whurein the text of an object may be read but not changed. In fact, across-the-
board imposition of read-only or execute-only access (or both!') might be a common
enough operation to warrant adding special bits (for efficiency) to object texts for
specifying either kind of access restriction

Combined with the ability to generate unique references by crealing new

Section 3.3: Protection 87.

P

b AR o

objects, and use these references later as keys,' these admittedly ad hoc protec-
tion mechanisms might actually serve as the basis for a reasonably comprehensive
security system. However, research on capability systems has led to much more
elegant solutions to various protection pfoblems[28,41]; it remains to be seen

exactly how best to use these ideas in the VIM environment

3.4: File System Support

Anothar area of operating system interaction is in helping the user manage his
data Since VIM supports a universe o! objects with unlimted ability to reference
each other, it would seem natural to use these as a basis for building any desired
filing system The user could represent his data as objects, and references to any
such objects could be entered into a directory system, also composed o! objects
Unfortunately, the storage of reasonable amounts of data in this fashion imposes a
requirement on the network to maintain a large virtual memory space of objects,
larger, for example, than could fit in the collective primary memories of the proces-
sors in the network. Thus low-level network software might be required to page

objects in and out from secondary storage attached to the network at one or more

nodes. Such a scheme has the advantage of being completely transparent to all
programs running on the network, but the possible disadvantages of being harder to
control explicitly where such contro! is desired, and of further enlarging and compli-
cating the lowest-level network software

An alternative approach is to leave the management of secondary storage to
highor levels of "operating system"” software, possibly supported by some spaciak

purpose facilities mplemented at lower levels. f the appropriate facilities are pro-

“The tarm “"keys" here is as used by Henderson[17]).

88. Chapter 3: Extensions to the Virtual Machine

vided, such a scheme can remain reasonably transparent to user-level software
(see Gula[14]).

A problem that must be faced by any scheme for data management on a large
scale i1s that of relhiabiity. tspecially it viewed as a multiprocessor architecture,
rather than a distributed computing network, it may be reasonably tolerable for a
reference tree network to "crash" occasionally due to some failure, and it may be
convenient to bring down the network periodically, for reconfiguration, maintenance,
or whatever Such a "crash" may entail the interruption, even the loss, of all com-
puting then occurring on the network, but it 1s not tolerable for it also to entail the
loss of all data stored in the system. Thus whatever large-scale data storage
scheme is used must be "stable” in the sense of being able to survive virtually any
conceivable incident on the system substantially intact. This implies that updates
to data in "stable storage” must be recorded in a non-volatile tashion within a rea-
sonable length of time It also implies that when the system, or some part of it, is
restarted, the non-volatile record must be avallable and understandable. These
challenges must be faced by any software that mplements the large-scale data
storage mechanmsm, whether at the lowest level or at higher levels

One possible way of managing stable data storage without building it into VIM
i1s to use the object tracing mechamnism. One "object manager" might be associated
with each mass-storage device in the system. Inactive objects could be paged out
to mass-storage devices and "aliases" understandabie to the object managers sub-
stituted for them, every such alias could name as its trace actor the relevant
object manager When an object's text is again needed, a "trap" to the object
manager could cause it to be retrieved from mass storage

Unfortunately, accessing efficiency is not the only casualty when aliases are

introduced, the network garbage-collection mechanism also suffers. When an

Section 3.4. File System Support 890.

object is converted into an alias, its object manager must record all references
contained in the object's text, for use if the object ever needs to be reconstituted
out of the alias. Since these objects are always referenced trom the object
manager, they cannot be deleted unless the object manager itself becomes inac-
cessible. This in turn cannot happen unless every object managed by the manager
becomes inaccessible This 1s a realistic possibility for some well-chosen assign-

ments of objects to managers, but is by no means likely in the general case.

3.5: Summary

This chapter described possible modifications to the VIM virtual machine
designed to facilitate controlling and gathering statistics about event executions
and object accesses, handling protection problems, and providing other operating
system services A reference tree network could be quite useful, simply as a com-
puting engine, even without any of these facilities, however, the incorporation of
features such as those described would contribute to making a network a more
well-rounded total computer system. For the purposes of this thesis, perhaps the
real signiticance of the material discussed in this chapter lies elsewhere yet — it
shows some of the flexibility of the VIM programming style in adapting to the addr
tional needs considered in this chapter. This flexibility is an important reason for
being enthusiastic about VIM as a good interface between programs, operating sys-

tems, and multiprocassor networks.

90. Chapter 3: Extensions to the Virtual Machine

Chapter 4: Architecture of Reference Tree Networks

4.1: The Physical Machine: Network Topology

As much as possible, it is the intent of this research to avoid becoming commit-
ted to the narrow technological characteristics ot any one type of network. How-
ever, for concreteness, it is helpful to make certain assumptions. Furthermore, the
algorithms presented depend on a certain /ogical organization of processors which
may be more easily achievable with some physical organizations than with others

The basic logical structure assumed by our Implementation s a collection of
processors, each with a private local memory (/.¢., no sharing of memory between
processors is required), each connected to a small number of other processors
which are its neighbors. The connections are bidirectional and symmetrical; thus if
A is a neighbor of B, then B is a neighbor of A Such an organization of processors
is equivalent to an undirected graph (which may or may not contain cycles) in
which only a few arcs emanate from each node "Few" here is a relative term; its
use is due to the fact that the overhead incurred by a processor will increase if
that processor accumulates more neighbors. Thus it might well be appropriate for
higher-capacity machines or machines with more of a commitment to serve the net-
work (rather than, say, theirr owners) to have greater numbers of neighbors A
variety of topologies are consistent with these general restrictions (some are
shown in Figure 4.1)

in addition to the specifications given above, each processor is required to
have a processor ID unique to the entire system. (This 1D is used in generating
unique names and unique time stamps If unique names and time stamps can be
dispensed with, or generated in some other fashion, processor ID's are not neces-

sary.) It is not necessary that aill processors be identical, as long as all interpret

Section 4.1: The Physical Machine: Network Topology o1,

—

N——

Figure 4.1: Some possible network topologies

substantially the same machine language.

The physicai topology of the system need not follow the logical topology
described above. The logical topology in effect constrains the paths over which
information may travel, any physical topology which permits information flow over
these channels may form the basis for an acceptable implementation. For example,
an fthernet {(on which every processor can communicate directly with every other

processor) could be made to support tha logical topology descril ed above either by

92 Chapter 4: Architecture of Reference Tree Networks

declaring every processor to be a neighbor ot every other (which might however

impose a large amount of overhead on each), or by choosing for each processor a

set of logical neighbors, and constraining the communication patterns on the net so

that no processor ever sends a message to another processor that is not its neigh-

bor.

However, this is far from the ideal way of using an Ethernet.

In any case, the scheme presented here was certainly not designed for Ether-

nets, but rather for physical networks with properties closely matched to those of

the logical network Such networks have several advantages:

® expansibility. The network can be expanded to a very large size at hittle

marginal cost. The space allocated for unique processor ID's does grow, but
only logarithmically. Otherwise, expansion presumably involves simply hook-
Ing up new processors to the edges of the network, and has only a very

local impact

bandwidth For many topologies, there are potentially a large number of
communication paths between any two points in the network, no central

Fther or other medium serves as a bottleneck

reilability. tven a catastrophic hardware failure at some node is likely to
affect only a limited number of other nodes (its neighbors). In systems with
a central medium, there are components whose failure will stop all communi-
cation on the network. Of course, reliatility is also strongly influenced by
the software system's ability to carry on in the face of failures; admittedly,

this thesis does not address this problem very thoroughly.

Section 4.1: The Physical Machine: Network Topology 03.

e flexibility. Many different processor and link technologies can in principle !
coexist in the system, allowing considerable freedom in picking the lowest-

cost option for the performance desired at each point.

There are disadvantages to this kind of organization also. Chief among these
is the need for extra processors to become involved in transactions between proc-
essors which are not neighbors, with the attendant overhead and delay. 1t is
hoped that the scheduling strategies proposed in Chapter 7 will tend to minimize
the need for this kind of transaction.

The topologies depicted in Figure 4.1 consist of units which are private proces-

sor-memory pairs, connected by communication lines. An attractive alternative

might be composed of multiport processor and memory elements, as shown in Figure

et Pt

4.2 Although each processor might have its own private storage for read-only and
temporary data, all objects would be stored in the multiport memories. Assuming a
nominal amount of loca!l program or microcode memory at each processor, it should
be possible to connect as many as three or four processors to each memory
without serious degradation of performance due to access conflicts. An architec-
ture such as this has some flexibility advantages — a processor can attach itself to
any adjacent memory that contains data to be operated on, or even simultaneously
operate on data stored in several different memories. Additionally, each processor
can serve as an active communication link between any of its adjacent memories,
moving data from one to another (or even performing more sophisticated operations)
at high speed. For a tightly coupled local system, this multiport architecture is

very attractive

The reference tree network implementations we will discuss are described in

terms of the kinds of topologies shown in Figure 4.1. They can be adapted to mul

94 Chapter 4: Architecture of Reference Tree Networks

1
{ l = memory 0 = processor

Figure 4.2: Multiport processor-memory networks

tiport networks such as those in Figure 4.2 by considering each memory to be a
node, and drawing links between every pair of memories that share a common proc-
essor. Some modifications to the reference tree algorithms would undoubtedly help
make the best use of the capabilities of multiport natworks, but the basic concepts

are quite applicable to either kind of network.

Section 4.1: The Physical Machine: Network Topology 95,

4.2: Dynamics of the Network

The static and structural aspects of our implementation have now been
described in sufficient detail that we can proceed to consider its dynamics, that is,
the motivation and mechanism surrounding the scheduling of events, sending of
messages, and so forth. In the remainder of this thesis, we shall generally be con-
cerned with a “steady-state" situation in which, as a result of some unspecified
history, several processors in the system have been assigned things to do, and
need to communicate with other processors containing, for whatever reason, data
upon which they need to operate In this section, therefore, we shall concentrate
on developing some intuition for such a "steady-state" situation, briefly exploring
mechanisms by which it might come to be and strategies by which it might be
managed

A piece of software or firmware known as the monitor resides on each proces-
sor and supports the basic VIM execution environment The monitor maintains on
each processor a list of events waiting to be executed on that processor. This hst
is known as the event /ist.

let us assume that initially, by some means such as an operator typing at a
keyboard, one processor somewhere in the network has been given an event to
process. This processor will now have one event on its event list. The goal of a
processor is to empty its event hst, so our processor wili take the new event off
its list and see what to do with it Most likely, the event will cause some computa-
tion to occur and then result in a new event's being added to the event list,
whereupon the whole cycle will repeat. As long as this situation persists, and each
event causes exactly one new one to take its place, there is little opportunity for
other processors to get into the act

Let us suppose, therefore, that at some point an event causes two or more

96, Chapter 4: Architecture of Reference Tree Networks

AD=AO076 570

UNCLASSIFIED

coF 3

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 5/8
REFERENCE TREE NETWORKS: VIRTUAL MACHINE AND IMPLEMENTATION.(U)

JUL 79 R H HALSTEAD N0OO014=75=C=0661
MIT/LCS/TR=222

=

-

1= lz

p—
N
(3]

K

1]

R = E ",
il it
it o i

2y

w
Bt

NATIONAL BUREAU OF STANDARDS

WCBOCOPY RIS UTION TEST CudmT

events to be added to the event list. Henceforth there will be several events
vying for our processor's attention at the same time. The processor might continue
to operate on all the events itself by always taking the oldest event from the
event list, producing its consequent events, and placing these at the end of the
event list. Things could be speeded up, though, by taking advantage of the other
processors in the system. |[f there are enough events on the event list, the over-
head of sending some of them to a neighbor should be worth the increased proc-
essing power thus brought to bear on the problem

The process by which it is decided what events to execute where is the sub-
ject ot subsequent chapters; before taking that up It is a good idea to have a
short look at the mechanics of moving events (and, as a consequence, objects)
around Sending an evenit to another processor is simple enough — all that is
required is to send a list of references to the objects participating in the event
This, however, represents only a small part of the overhead required to really bring
that processor into the action Betare the new processar can make any sense out
of the event, it will need a copy of the text of the target object of the event. |If
it does not happen to already have this text, it will have to send an inquiry for it
to some processor which does "™ While this inquiry is being sent and replied to, the
avent cannot be processed Depending on the nature of the target object, further
inquiry-response cycles may be required to gather enough information to process
the event. Finally, when the event is processed, a new event or events will most

likely be generated, containing references related to those present in the original.

"This will probably be the original sender of the event, however, it may be that
no neighbor of the inquirer has a copy of the text which enables it to reply immedi
ately to the inquiry. In this case, the inquiry must be forwarded until it reaches a
processor capable of replying, whereupon the reply must be forwarded back to the
origirial inquirer

Section 4.2: Dynamics of the Network Q7.

st SR ST Y £ %

Frequently, the texts of these objects will not be available locally either, so addi-
tional inquiry-response delays may ensue as subsequent related events are proc-
essed. Thus the true overhead associated with sending an event to another proc-
essor is the overhead required to establish a "working set" for that event and its
consequents on that processor.

Having exposed the drawbacks of sending an event to another processor, it is
worth mentioning some mitigating factors. First, it the event realiy represents the
beginning of a computation that will proceed for a time without requiring too much
communication with other activities, using another processor can still come very
close to doubling the eftective computing speed of the system. Second, the
efficiency of the system can probably be improved greatly through various forms of
tuning. For example, the sender of an event might also send a selection of object
texts fikely to be asked for by the raceiver in the process of setting up its "work-
ing set" Similarly, the reply to an inquiry might not be just one object text, but a
collection of related texts including the one asked for. These strategies, which
are analogous to virtual memory strategies that attempt to predict which pages
should be kept in core, might not do much to reduce the number of bytes sent over
communication lines, but would reduce the number of wasteful delays between
sending of inquines and receipt of responses.

Fortunately, the working set that must be accumulated by an event running on
a new processor can often be reasonably compact. Suppose, for instance, that the
event is a function receiving arguments and a continuation. A working set that will
allow this computation to proceed for a while would include the body of the func-
tion (or at least those parts of the body which will be exercised by the arguments
given) and the texts of the arguments. If the arguments are numbers, no extra

information is required if the arguments are highly structured, it is probable

08. Chapter 4: Architecture of Reference Tree Networks

(depending on the nature of the function) that only a portion of the texts accessh
ble trom the argument references will ever be accessed. Note that the text of the
continuation is not needed at all - at least not until the function returns a value,
which might be a natural point to transfer responsibility back to the first processor,
where the text of the continuation Is presumably located.

To summarize, then, we can imagine the system beginning to operate with one
event at a particular processor. Activity will spread to other processors as the
parallelism of the program increases and overloaded processors send events to
their less-loaded neighbors. Perhaps at some later point the various threads of the
computation will either die out or begin to come together again. Thus the number
of active processors might shrink until there is again only one active processor
with one event to process — perhaps "print out the answer. " Of course, another
possibility is that the system is constantly receiving new events to process, as
users come up with new tasks for the system to perform. This will lead to more of
a steady-state situation where, at any time, some tasks are just beginning, some
just ending, and others in various growing or shrinking phases. In either case, the
system will suffer from some amount of overhead and inefficiency as processors
build up working sets for newly acquired events, but may gain even more from the

application of extra processing power to its business.

Section 4.2: Dynamics of the Network 89.

Chapter §: Reference Trees

We now consider the detaills of an implementation capable of supporting the
VIM object structure. These details fall into two categories: those involving the
bookkeeping that keeps track of the state of objects and their whereabouts, and
those pertaining to the garbage-collection of objects.

Keeping track of an object in a reference tree network is accomplished by
maintaining the processors which contain references to the object in a connected,
acyclic graph called the reference tree for that object. Each reference tree con-
sists of some subset of the nodes and arcs (processors and inter-neighbor links) of
the network. The nodes which belong to the reference tree are chosen to include
all the processors in the network which contain references to the object.- and the
arcs are chosen in such a way that (1) the reference tree is connected, [.e., it is
possible to reach any node in the tree from any other node, traveling only over
arcs that are in the tree, and (2) the tree is acyclic in that the arcs in the tree
form no closed loops (Note that the arcs in the reference tree are undirected,
hence requirement (2) means that there should be no undirected cycles.) Put
another way, there should be a unique path (using only arcs in the tree) from anv
node in a reference tree to any other Additionally, every arc in a reference tree
must go between two nodes that are in the tree. Reference trees are so named
because they form unrooted trees embedded in the network (see Figure 5.1).

It is important to note that, in general., the reference trees for different

objects need bear no relation to each other. In particular, it is not the case that

"Keeping a reference tree for an object connected may require it to include
certain processors which do not contain any references to the object and would
not otherwise need to be in the reference tree. We shall return to this problem
later.

Chapter 5: Reference Trees 101.

Figure 5.1: Examples of reference trees (in heavy lines)

there is one "reference tree" in the network, used for all objects. Central to the
concept of reference trees is that they are free to grow and shrink dynamically,
following changes in the roles of the corresponding objects in the operation of the
system.

Also significant is the fact that reference trees can be maintained by a com-
pletely distributed mechanism in which each processor in a tree remembers only the
state of its immediately adjacent links (/.e., whether each link is in the tree o1 not).
Processors not in the tree for an object, of course, have no references to the
object, and need remember no information about it. Even the cycle-free nature of
the tree can be preserved on the same strictly distributed basis — no central clear-

inghouse is needed to determine whether a cycle is being formed.

102. Chapter 5: Reference Trees

oy p

5.1: Object Text Management

Some subset of the processors having references to an object will also be
custodians of a copy of the text of the object. The management of object texts
has three basic goals: (1) to ensure that no object text is "lost" (i.e., to ensure
that at least one processor has custody of an object’'s text at all times), (2) to
keep each processor in the reference tree for an object apprised of the directions
In which it may send inquiries requesting a copy of the text, and (3) to provide a
mechanism for performing side effects on object texts. The primary reason for
requiring reference trees to be connected is so that any processor with a refer-
ence to an object can always communicate with all custodians for that object sim-
ply by following links that are part of the object's reference tree. Indeed, we will
require that al/l communication concerning an object travel strictly over links that
are in the reference tree for that object,

The acyclic nature of reference trees guarantees that, once a message has
been sent across a particular hink, It can never "loop back" to its sender unless
either (1) it leaves the reference tree, or (2) some processor returns the message
back along the same link over which it was received Thus when a processor
wants to send a message to a custodian of a text, all it needs to know locally is
"which way" to send it imtially, /.0, which of its neighbors in the reference tree
lies along the unique path from it to the desired custodian. /It does not even need
to know the identity of the custodian, since the message can be forwarded from
node to node using only the local information telling which way the desired custo-
dian lies. Consequently, the only information processors need to record concerning
the location of custodians is which ways (through the reference tree) they may be

found. This in turn means that local changes in custody need only cause data base

Section 5.1: Object Text Management 103.

updates in the processors directly involved — the remainder of the reference tree
will not be affected.

gtext requests may be handled using an inquiry-response protocol in which a
processor containing an event which has performed a gtext request for an object
may send an inquiry through that object's reference tree to a custodian. The cus-
todian may then reply by sending a copy of the text of the object back to the ori
ginal inquirer.

Since a gtext request is for read-only access, multiple copies of an object
text may simultaneously serve gtext requests in different locations. The handling
of locktext requests is more complicated. The basic strategy for satisfying a
locktext request is to eliminate all redundant copies of the text in question, leav-
ing only one copy at the site where the locktext request was made. Once this
has been accomplished, the requestor may perform any desired side effects on the
text, without fear that some other copy of the text might escape the update.
Unfortunately, this strategy leads to new possibilities for deadlock: if two proces-
sors simultaneously try to perform locktext requests for the same object (each
requesting to have the unique remaining copy of the object's text), some means
must exist for inducing all the processors in the object's reference tree to co-
operate in satisfying first one of the requests and then the other. The way this is
accomplished in a reference tree network is by associating with each locktext
request a unique priority chosen from some totally ordered set. Then at every
processor which must co-operate in satisfying a locktext request, priorities of
conflicting requests can be compared and the highest-priority request honored. Fur-
thermore, since gtext requests can conflict with locktext requests, gtext-type
inquiries must also carry priorities.

A minor augmentation of the scheme suggested in the preceding paragraph is

104. Chapter 5: Reference Trees

necessary to avoid the problem of cyclic restart[32]. An example of cyclic restart
may occur in the presence of two events, A and 8, and two objects, X and Y,

where execution of A first requests locktext access to X and then Y, and execu-

tion of B requests locktext access to Y and then X. Suppose A is executing and
has acquired access to X. Then B begins to execute, acquiring access to .
when A asks for access to Y, its execution may be aborted and restarted, once
again acquiring access to X. When B requests access to X, B may be aborted and
restarted, leading to a repetition of the above cycle. This kind of “dynamic
deadlock" may be avoided by establishing a total priority order on events, rather
than just individual requests. Then if event A has a higher priority than event B,
any access privileges ever requested during execution of A, even during execu-
tions that were subsequently aboried, could be made unavailable to B until success-
ful completion ot the execution of A. A simple measure of an event's priority, and 3
one which is consistent with fair scheduling, is its "age" (suitably qualified, as with]
a processor 1D, to make it unique). Using this measure, there will always be an
"oldest" event which will be able to accumulate all the resources it needs in order
to complete. Then the second oldest event will be able to complete, and so on,
avoiding cychc restart.

Consequently, we use time stamps as priorities, and associate higher priority
with smafler (older) time stamps. It is not necessary that all processors have
access to a common clock in order to generate these time stamps; a method by
which these time stamps can be obtained, and their uniqueness guaranteed, is dis-
cussed below in section 5.1.4.

We now discuss in more detail the management of object texts. For each out-

going link of each reference tree it belongs to, a processur maintains the informa-

Section 5.1: Object Text Management 106.

tion shown in Table 6.2."

® "text-this-way" bit
® "request-received"” field (values are NULL, INQUIRY, and LOCK)

® request time stamp

Table 5.2: Text management information

For each reference tree it belongs to, a processor also records whether it has a
copy of the texi of the corresponding object (and, if so, the memory address of
the copy'). Additionally, it keeps track of all events on that processor currently
waiting for or using the text, and the timestamps of those events.

For reasons discussed below, every reference tree link has an asymmetry, the
processors at its ends bearing a master-slave relationship to each other. In a
stable condition, one end of a link (for a particular reference tree) is always mas-
ter, and the other, slave. Transiently, both may be slaves, but both ends of a link
can never simultaneously be masters of that link. The way in which the master-
slave relationship is recorded and manipulated is described in a subsequent sec-
tion. For now, suffice it to say that it is possible for a processor to determine
whether it is master of a particular link of a particular reference tree; that a proc-
essor can relinquish its mastery of a link to the processor at the other end by
sending a suitable message; and that a processor that is not master can send a
"mastery-request" message which will induce the master to relinquish its mastery

of the link. The pieces of information enumerated in Table 5.2, plus mastery infor-

"various encoding schemes can be used to reduce the average amount of
memory needed to store this information. For example, the contents of the request
time stamp will only be relevant if the "request-received" field is not NULL, presum-
ably an infrequent occurrence, on the average, for any particular object.

106. Chapter 5: Reference Trees

Py

mation, constitute all the data used in manipulating object texts.

5.1.1: Adjustments to Custody

Transmission of object texts between processors will frequently occur in
response to inquiries or other such stimuli, but can also occur "spontaneously" as a
result of garbage-collection activity or storage-load balancing among processors.
The spontaneous case is simpler to discuss, and illustrates mechanisms common to
all communications of texts from one processor to another. We deal only with
movement of copies of an object’'s text among processors already in the reference
tree for the object; expansion and contraction of reference trees will be dis-
cussed later.

The representation of texts sent over communication links cannot be discussed
without reference to concepts not yet introduced; for now, we note simply that a
suitable representation exists

Explaining object text management involves discussing the meaning ot each
text management datum in Table 5.2, and the mechanisms by which these data are
used and updated. The "text-this-way" bit for a unk indicates whether a custodian
of the text can be reached, through the reference tree, starting with the link (see
Figure 53). The "text-this-way" bit need be updated only when custody of a text
changes.

The simplest kind of custody change occurs when a processor ceases being a
custodian by simply deleting its copy of a text. For example, in Figure 5.3(a), two
processors have copies of the object text. It should be possible for one of them
to delete its copy without any damage being done. The problem is that processors
in a reference tree must somehow agree on which copy of the text will be kept, a

negotiation possibly global in scope. Simply knowing that another custodian exists

Section 5.1.1: Adjustments to Custody 107.

1 0 1 1
= L]

1 0 (0] 1 1

1 1 1 0 1
B e

(a) (b) (c) (d)

Heavy lines indicate reference tree links; shaded boxes indicate
processors with copies of the text. "lext-this-way" bit is shown next
to each reference tree link emanating from a processor.

Figure 5.3: "Text-this-way" bits

is not enough to allow a processor to delete its copy of a text, for the other cus-
todian could then, symmetrically, make the same decision, and all copies of the
object text would be lost

Negotiation can be avoided if every processor, just before deleting its copy of
a text, sends the text to another processor, thus ensuring that the information will
not be lost. If the text message arrives at another processor already in posses-
sion of a copy of the text, the message can be discarded. Otherwise, the recipt
ent processor must become a custodian for the text (although it always has the
option of passing it on to yet another processor). If the two custodians in Figure
5.3(a) both transfer their custody to the center processor, one text message will
be received and the other discarded, leading to the situation in Figure 5.3(b).

Note that every reference tree has embedded in it a (possibly null) subtree
which includes ali the processors that can reach a text in more than one direction,
i.e., that have at |"~s* two "text-this-way" bits set In Figure 5.3(d), this subtree

consists of the top center and middle center processors. Whenever such a

108. Chapter 6: Reference Trees

subtree exists, it is bounded by two or more custodians (upper lert, upper right,

and bottom center, in Figure 5.3(d)) which each have only one "text-this-way" bit
set. As long as each of these custodians obeys the text-preservation discipline
set forth above, at least one copy of the text is guaranteed to be preserved no
matter what the processors in the interior subtree do with any copies they might
have Theretore, we may exempt these interior processors from the requirement of
sending out a copy of the text before deleting it. The rule used by the processors
is /f at [east two "text-this-way" bits for an object are set, a local copy of the
object's text may be deleted without sending any messages. Note that such a dele-
tion (as by the top center processor in Figure 5 3(d)) does not require adjusting
any "text-this-way" bits

In general, sending a text from one processor to another requires adjusting
some "text-this-way" bits. However it only requires adjusting the bits pertaining
to the link over which the text was sent. The sending processor always sets its
"text-this-way" bit for the hnk, recording the fact that the text is out in that direc-
tion, and will continue to be, at least until a copy of the text comes back over the
same link. The receiving processor, however, must be told by the sender how to
set its "text-this-way" bit for the link. Presumably the bit is a 1 before the mes-
sage is received (else the receiver would be very surprised to see a text coming
from that direction'). The question, then, is whether there will continue to be a
text in that direction after the message. If the sender keeps its copy of the text,
the answer is yes If there is another custodian in the same direction from the
receiver as the sender ("behind" the sender, as it were) then the answer is yes.
If there i1s no such custodian and the sender is going to delete its copy of the text
upon sending the message, then the answer is no. Corresponding to these alterna-

tives are two kinds of text massages, T+ if the receiver should set his “text-this-

Section 6.1.1: Adjustments to Custody 109.

_m:.; - a oy " . - - . i, "

way" bit, and T it he should clear it. For example, going from Figure $.3(a) or (c)
to (b), the center processor wonuld receive T- messages; going from (b) to (a) or

(c), it would send T+ messages.

7 i Y
.1 1. 1 1 .0 '
N
.
(a) (b) (c)

Figure 6 4. Race condition in sending texts

Unfortunately, this updating scheme can lead to an inconsistency among the
"text-this-way" bits. Figure 5.4 shows what would happen if two neighboring proc-
essors simultaneously decided to delete their copies of a text. Fach would be
required to send a T- message to the other just before deleting its copy. Figure
6.4(b) shows the two T messages in transit. Upon receiving its message, each
processor would obediently clear its “"text-this-way" bit and once again become a
custodian of the text, leading to the inconsistent state in Figure 5 4(c) This can
be prevented if a processor is prohibited from sending a text message over a link
that it is not master of. Since both ends of a link cannot simultaneously be master,
the situation depicted in Figure 5.4 can never arise No unsolvable problems are
created by this restriction — a processor desiring to send a text over a link of
which it is not the master must simply send a "mastery-request" message and

await the reply.

Chapter 6: Reference Trees

5.1.2: Inquiry Processing

We now turn to the handling of inquiries from processors wanting to obtain
coples of a text. Such inquiries will result from gtext or locktext requests made
by events executing on those processors. For the time being, we restrict our
attention to inquiries of the gtext variety

When a gtext request is issued for a text not available locally, the processor
on which the request is issued has two alternatives: it can send the requesting
event to another processor where its chances of satistying the request will be
better, or it can send out an inquiry to bring in the requested text. Assuming it
chooses the latter, the processor must select a neighbor for whom the “text-this-
way" bit is set and send an inquiry message to that neighbor. (It the inquiring
processor is currently master of the link, it would do well to first relinquish mastery
to its neighbor, facilitating the return of the desired text)

When a processor receives an inquiry message, it responds immediately (it it (s
able (/... it has a copy of the text, is master of the hnk, and no pending locktext
request with priority prevents it from sending out the requested text) If 1t is not
able to reply immediately, 1t sets the “"request-received” field for the link over
which the inquiry was received to have the value INQUIRY and reccrds the time
stamp of the inquiry in ‘e "request time stamp" field

If an inquiry cannot be replied to because the replier is not master of the
relevant link, a "mastery-request” message must be sent. When mastery has been
obtained, the reply may then be sent (assuming no other circumstance then
prevents it) If an immediate reply cannot be made due to a locktext request with
priority, no further action need be taken When the event requesting the locktext
finishes, the inquiry will be honored.

If a processor receives an inquiry for a text which it does not have, then it

Section 5.1.2: Inquiry Processing 111

will in general have to forward the inquiry. The “"request-received" field set upon
receiving the Inquiry records the direction in which the desired text should be
returned when It is finally obtained.

Forwarding of inquiries contains a couple of pittalls to avoid. Generally speak-
Ing, torwarding of an inquiry received is analogous to sending of an inquiry needed
to satisty some internally generated need. In either case, some neighbor in whose
direction a text exists is selected as the target of the inquiry. However, a neigh-
bor selected for forwarding should not be the same neighbor from whom the original
inquiry was received, or else an infinite loop of forwarding inquiries could occur in

the situation shown in Figure 55

Proper Forwarding

TN i
| (] [—
] ~__~ A

Text Improper Forwarding

Figure 56 Inquiry received from direction of text

It is possible for there to be no legitimate direction for forwarding an inquiry (if
the only direction in which a text can be found is in the direction of the sender of
the original inquiry). However, the sender must have thought there was a text in
the direction it chose for sending the original inquiry. Therefore, unless the refer-
ence tree data base has broken down, the inquiry must have "crossed in the mail"
a T- message to the inquirer containing the desired text (see Figure 5.6). In other
words, the inquiry had already been replied to, even before it was received. In
such a case, the incoming Inquiry message can simply be ignored.

When a processor that has "request-received" ficids set to INQUIRY receives a

copy of a desired text, it should send a copy of the text over every link over

112 Chapter 6: Reference Trees

s 4. i A

T- Message

Figure 6.6: Inquiry crossing text message

which an inquiry for that text was received, clearing each "request-received" field

to NULL as the corresponding text message is sent.

5.1.3: Side Effect Management

When an executing event issues a locktext request, and it is decided to con-
tinue execution of the event on the same processor, steps must be taken to
ensure that a copy of the relevant text is brought to that processor, and that all
other copies are deleted. These conditions are satisfied if and only it the proces-
sor has a copy of the object’'s text and all the processor’'s “"text-this-way" bits for
the object are zero. If some of the "text-this-way" bits are nonzero, then LOCK
meaessages must be sent out over those links connected to the processor that have
nonzaro "text-this-way" bits.

A LOCK massage is a request for the processor receiving it, and all other proc-
essors in its part of the reference tree (all processors reachable from it through
the reference tree without using the hink over which the LOCK message was
received), to delete their copies of the relevant object text. Thus a processor
receiving a LOCK message will, in general, set the émresponding "request-
received" field to LOCK and forward the LOCK message over every link whose
"text-this-way" bit is set, except for the link over which the original LOCK message

was received. A processor that receives a LOCK message but has nowhere to for-

Section 5.1.3: Side Effect Management 113.

halbamaitee Toau i oo o

ward it to is expected to delete its copy of the text and respond with a 1- mes-
sage as an Indication of its compllunce.‘ A processor that has forwarded some
LOCK messages is expected to wait untii a T- message has been received in
response to each, then delete its own copy of the text and make Its own
response, in the form of a - message sent over the link whose "request-received"
field had been set to LOCK. Finally, when the original processor on which the lock-
text was requested has received a T- message from each neighbor that had a

text, it can proceed with execution of the requesting event.

5.1.4: Conflict Resolution

What has just been described is the simple case, where only a single locktext
request is pending in the whole reference tree In an actual situation, a processor
may receive LOCX messages for the same object, originating on different proces-
sors, over several different links To further complicate matters, it could simultane-
ously receive inquiry messages for the same object over yet other links. Finally,
the processor could have locally executing events also requesting various kinds of
access to the object A processor in such a situation must serve as an arbiter and
determine which of a set of conflicting requests to honor first.

To handle these conflicts, | OCK messages, inquiry messages, and events them-

selves, carry time stamps "~ fvery event is assigned a unique time stamp when it

‘H is possible to devise protocols that do not require actual text messages to
be sent back from all the leaves in response to LOCK messages. A short "LOCK
acknowledge" message can be sent instead Unfortunately, such a scheme compli
cates the handling of inquiries by invalidating the premise illustrated in Figure 5.6.

"On the MuNet, inquiries are not time-stamped. This is adequate in every case
except that of an object which is named in gtext requests and also continually in
locktext requests. Under these circumstances, the locktext requests will take
precedence and the gtext requests may never be satisfied. This has not occurred
to any observable degree in normal operation but must be regarded as a "hole" in
the MuNet implementation.

114 Chapter 6: Reference Trees

is cmated.t In principle, the precise algorithm for assigning time stamps to events
Is unimportant, so long as it never assigns the same time stamp to more than one
event. However, in practice, it is desirable if the time stamps assigned increase
with time, so that priority, which accrues to the events bearing the lowest time
stamps, will accrue to the events that have been waiting the longest It is not
necessary to use a globally accessible clock to achieve this; a set of local clocks
will do, provided that they are kept sufficiently synchronized that fairness criteria
are not grossly violated.

On the MuNet, each local clock is a counter which is incremented once before
each use This provision Is sufficient to guarantee that no single processor will
ever give the same time stamp to more than one event. 1o assure that processors
acting independently will not give out the same time stamps, each processor
appends its unique processor ID to the value read out from its counter. Whenever
a request or event message bearing a time stamp is received at a processor, the
processor's time stamp counter is increased, if necessary, to match the time stamp
value in 'he message. To make sure that rough synchrony is maintained even in
the absence of request or event traffic, each processor periodically sends its
current time stamp value to each of its nmghbov&t

The need to have time stamps for confict raesolution is unfortunate, since it
imposes a space requirement of unknown size, depending on how long the system is
expected to operate Perhaps some scheme can be devised for "garbage-

collecting"” and recycling time stamps that have fallen into disuse, but any such

?Actually, on the MuNet, an event only receives a time stamp when it first
needs one for purposes of these protocols. This policy reduces the speed with
which time stamps are used up, but does not introduce any indeterminacies into the
processing of requests.

3For a further discussion of synchronization of clocks in distributed systems,
see Lamport[22]

Section 5.1.4: Conflict Resolution 116.

scheme must preserve the ordering among all entities currently bearing time
stamps. No such scheme was considered during the course of this research.

A processor needing to arbitrate among a set of requests uses their time
stamps to establish a priority order among them. It then acts to satisfy as many
as possible, subject to the restriction that no request be satisfied at the expense
of a request with an earlier time stamp. In practice, this means that if the request
with the earliest time stamp is a locktext-type request, it is satisfied first and all
other requests are held in abeyance. If the request that has priority is a gtext-
type inquiry, it and all gtexts up to the earliest locktext can be honored simultane-
ously."

By these means, a processor can determine which of the various requests of
which it is aware should be satisfied first. It does not follow that the processor
will singlehandedly have the wherewithal to satisty the selected request. For
example, if the highest-priority request is an inquiry, it cannot be satisfied without
possession of a copy of the relevant text. Thus, in order to satisfy the request it
picks as the most urgent, the processor may need to forward this request to one
or more of its neighbors. Fach of those neighbors will then compare the priority of
the forwarded request to those of all the others it has received, and again act on
the most urgent one, holding the others in abeyance. The only external information
a processor needs in order to make this determination is the type (i.e., inquiry or
LOCK) and time stamp of the most urgent request which is known to each of its

neighbors and which it must co-operate in satisfying. Thus whenever a processor

"It satisfaction of the request that has priority also incidentally satisfies some
request made by an event with a muck later time stamp, it is permissible to
attempt to execute this latter event while the former request is still active. What
is not permissible is to take actions to satisfy the latter request which would be
inconsistent with the treatment required to satisfy the former.

116. Chapter 65: Reference Trees

sends an Inquiry or LOCK message to a neighbor, it is in effect saying, "“This is now
my most urgent request involving this object. Its urgency Is Indicated by the time
stamp in this message. You may forget any previous requests | have sent you
regarding this object, for | will resend any of them if and when it becomes my most
urgent request and your co-operation is still needed."

A strategy that reconciles our previous discussion of text management with
this philosophy is as tollows: when an inquiry or LOCK message arrives at a proc-
essor, set the "request-received" field accordingly and record the time stamp from
the message in the "request time stamp" field for that object for that link (see
Table 6.2). 't some other request for the same object active on the same proces-
sor has a lower time stamp, take no further action — the newly received request
must wait until it has top pnomy.\1> It the newly received request has the lowest
time stamp of all, however, it must be honored immediately, using the algorithms
described above for handling inquines and LOCK messages. If those algorithms call
for forwarding of requests, the forwarded requests must bear the same time stamp
as the original.

An inquiry can be considered satisfied when a text (either T+ or T-) message
is sent back over the same link from which the inquiry was received. Therefore,
when a T+ or T- message is sent over a link whose "request-received" field is set
to INQUIRY, the “"request-received" field can be reset to NULL. This can be done
even without knowing whether the text message was intended as a response to
the inquiry or just happened to be sent while the inquiry was active. Likewise, a
LOCK request can be considered satisfied, and the corresponding "request-

received" field cleared to NULlL, when a T- message is sent back over the

1’Exccmt that if the request is a gtext-style inquiry, and all requests with lower
time stamps are also, then all may be satisfied simultaneously

Section 5.1.4: Conflict Resolution 117.

requesting link.

When a text message has been sent over a link, and the “request-received"
field cleared, there is instantaneously no request active over the link. This situa-
tion will continue at least until the processor at the other end of the link has itself
disposed of the request, bringing top priority (for its local operations) to another
request for the object. Then if the processor which had sent the text must once
again co-operate in satisfying the new request, it will receive another request mes-
sage.

Note that no request message is ever sent to a neighbor whose "text-this-
way" bit is not set. Thus processors at the fringes ot a reference tree will only
send requests inward, toward the areas of the reference tree where texts exist.
Requests will never be sent outward past the last text in any particular branch of
a reference tree. Consequently, if a processor has sent a T message, in
response to a LOCK request, say, it will thenceforth receive only inward-directed
requests, but, until the processor once again has a copy of the text, none from the
center of the reference tree (defining the “"center" as that subtree of the refer-
ence tree which contains all custodians in the reference tree and has a custodian
at every leaf node).

Discussion thus far has centerad on the treatment of requests received from
neighbors. Requests arising from locally executing events are treated in a very
similar fashion. If processing such a request involves sending messages to neigh-
bors, the time stamp of the requesting event is used in those messages. When the
conditions of the request are met (a copy of the text available, for gtext;
exclusive access to the text, for locktext), execution of the requesting event may
be resumed. This resumption may conceivably lead to other requests, for other

objects, but all requests made by an event remaiin active (/.e., must continue to be

118. Chapter 6: Reference Trees

|
1
1
z

satisfied) until execution of the event has been completed successfully, or until
the event is aborted. Therefore, if a request from another event with a lower time
stamp, either on the same processor or on a different one, conflicts with the contin-
ued satisfaction ot a request made by a currently suspended event, this latter
event must be aborted so that the higher-priority request can be honored. This
does not cancel the requests made by the aborted event; they continue to be
active, and to take priority except where temporarily superseded by requests with
even lower time stamps. But satisfying one of the superseding requests, without
aborting an event whose request has been superseded, violates the guarantees
about access rights made by the definitions of gtext and locktext. Therefore,
such an event must be aborted and held for re-execution at a time when all its

requests can be given top priority "

5.1.5: Summary

Within the framework of reference trees, an object text management protocol
can be devised which is capable of handling multiple copies of object texts, reduc-
ing the number of copies to one when a side effect is to be performed, and arbi
trating between asynchronously generated requests of differing priorities. lLoca-
tions of texts within a reference tree are recorded by means of a distributed set
of "text-this-way" bits kept at the various processors in the reference tree.
These bits do not indicate the exact locations of texts, but only the directions,
traveling through the reference tree, in which they may be found. As a result, local

motions of texts require only local updates of "text-this-way" bits; other proces-

"On the MuNet, some complication is avoided by instantly aborting any event
whose request cannot be immediately satisfied. Thus no "suspended" events ever
exist, only aborted events awaiting re-execution.

Section 6.1.6: Summary 119.

sors in the reference tree do not need to be informed.

The object-custody protocol allows processors to request read-only (gtext) or
read/write (locktext) copies of object texts on behalf of events executling on
them. Each such request must be labeled with the priority of the requesting event,
in the form of a unique time stamp. These time stamps are used to resolve
conflicts between requests, and the "text-this-way" bits are used to forward
requests to all processors that must co-operate in satisfying them.

By recording only partial information about text locations (only “text-this-way"
bits instead of the actual identities of custodians of texts), this object text
management protocol throws away the opportunity to perform certain kinds of
optimizations, such as sending a request to the nearest processor with a copy of a
desired text In return, updating the information is very simple and economical,
encouraging a fluid situation in which texts may be moved freely to balance loads
or adapt to changing access patterns. Moreover, all essenti/al .operations (determin-
ing whether there is more than one copy of a text, reaching all custodians of a

text, etc.) can stll be performed in a straightforward fashion.

5.2: Garbage Collection

A reference tree network includes garbage-collected storage as a standard
part of the programming environment it supports. Garbage collection on such a net-
work entails the /dentification and disposa/ of objects that will never be used
again. When an object becomes inaccessible, it may have become known on
several processors. None of these processors can take the initiative to delete the
object outright because, in general, none knows whether accessible references to
the object exist on other processors. Therefore, it seems that it might be very

difficult to ever reclaim the object. If the object is only known on one processor,

120. Chapter 5: Reference Trees

— -

- '4'-'——'-—""—'————-—-———-—_.‘

the story is difterent. In this case, it is obvious that no references to the object

exist on other processors (else the reference tree would be larger) and theretore
the object can be deleted if it is not accessible on the one processor where it is
known.

Our garbage-collection scheme works by shrinking the reference tree of an
object to be collected untii only one processor knows about 1t, at which point the
object can be collected by traditional means. In order for a reference tree to

shrink, nodes must remove themselves trom it. Clearly, any node which has more

than one neighbor in the reference tree cannot unilaterally remove itself it it did,
the tree would become partitioned, since those nodes which were originally con-
nected by the removed node would now have no means of communicating. Thus
only "leat" nodes — nodes which have exactly one neighbor also in the reference
tree - may disconnect themselves from it" Fortunately, since reference trees are
acyclic, every reference tree has leat nodes

This garbage-collection scheme depends on the fact that a garbage-collectable
object will not be used anywhere once it becomes garbage-collectable. Thus, after
: some interval, processors with references to such an object may guess that it can
3
be collected ;)y the fact that they have not seen it used recently. Even if an

object is still potentially accessible, it is inefficient to keep it on processors where

it is not needed. Therefore, it is economical for a processor in the reference tree

for such an object to remove itseif if it can. It that strategy is applied con-

sistently, the reference tree of any garbage-collectable object should slowly shrink

"An additional consideration is that no leaf node which is a custodian of a text
for an object may remove itself from that object's reference tree without first
preserving the text by passing it on to its neighbor.

Section 5.2: Garbage Collection 121.

to a point (a single node), whereupon the object can be disposed of.

There is one unfortunate problem with this scheme, involving the collection ot
objects which are part of certain cyclic data structures. For example, consider an
object A whose text contains a reference to B, whose text in turn contains a
reference to A. Assume further that the structure is garbage-collectable — that
neither A nor B can be reached from any active event. Then by the argument
given above, the reference trees for both A and B should slowly shrink to a point.
If both converge to the same point, there is no problem: ordinary garbage-
collection techniques can easily handle the situation. However, another scenario is
possible, as outlined in Figure 5 /7 Here the two objects may spend forever chas-
ing each others’ tails, and it may be that neither reference tree will ever shrink to
a point The reason this can happen is that when a text is moved from one proc-
essor to another it draws with it the reference trees for all objects referenced in
that text Thus when the reference tree for object A shrinks and the text of A
moves from processor 1 to processor 2, the reference tree for B will be extended
by the addition of a link from processor 1 to processor 2. If the reference tree for
B attempts to contract next by the removal of processor 3, the text of B will have
to be sent from 3 to 1, re-extending the reference tree of A to include processor
1 Of course, there are many other sequences of events, even starting from one
of the configurations shown in Figure & 7, which will result in both reference trees
converging on the same point; however, it is possible to have an infinitely long
sequence of events which never results in either object being collected.

This problem is similar to the problem of cyclic restart in some transaction-
based data base management systems[32]. perhaps there are solutions to this
garbage-collection problem which are analogous to solutions to the cyclic restart

problem. There is reason to believe, however, that the problem will rarely occur in

122. Chapter 5: Reference Trees

P

-
\ 7 \ V4
\ r4 \ V4
% /
72 B—2 B
2 (a) 3 (b) 8 @ (c) 3
1 1 1
%
V4 \
V4 \
S % - - 7, -
? (d) L () 3 2) s

Solrd lines denote links in the reference tree of object A, dashed lines
the tree for object B. A solid box represents a processor with a text for A,
a shaded box a processor with a text for B. Successive reference tree con-
tractions, alternating between the reference trees of A and B, can lead to the
sequence of situations shown above as (a) through (f). whereupon a final
contraction involving B will restore situation (a).

Figure 6.7 Cyclic restart in garbage collection

actual operation

5.3: The State Protocol

Reference trees are maintained by means of an interprocessor communication
protocol which may be used to grow and shrink reference trees while preserving
the required connectedness and freedom from cycles. In order to participate in
this protocol, each processor maintains, for each object it knows about, a /ink state
for each neighbor (there are thirteen different link states) Various flavors of mes-
sages can be sent pertaining to an object's reference tree, and a simple state

transition table dictates the responses so as to keep the various link states mutu-

Section 5.3: The State Protocol 123

|
|
\
|
|

o

ally consistent. By sending appropriate messages, it is possible for a node to
delete itself from a reference tree (an option only available to leat nodes) or
extend a reference tree to include a new processor. Typically, a node will attempt
to delete itself It it discovers, in the course of a garbage collection, that it no
longer has any accessible references to an object. The reterence tree for an
object will be extended it a text referencing the object is sent to a processor not
previously a member of the object’'s reference tree

The protocol for accomplishing these things we shall call the membership pro-
tocol (because 1t keeps track of membership in reference trees) to distinguish it
from other protocols such as that used for moving object texts. The membership
protocol, a further evolution of an earlier protocol[1b]. Is more intricate than one
might at first imagine necessary, but simpler protocols failed because of deadlocks
or inconsistent states reached after inopportune sequences of events. The proto-
col s described below in what some may find to be daunting detail; the reader
who finds the going tedious can at any point skip the remainder of the section and
proceaed to the next without any loss of continuity. The reader who perseveres,
however, will hopefully be rewarded with more than merely an understanding of our
particular reference tree management protocol. There is not really a reference
tree protocol, rather there i1s a whole family of such protocols, a representative
member of which is described here The description below includes an outline of
the design considerations which made the current protocol what it is. After com-
plg_unq this section, the reader should be equipped to design his own reference
tree protocols to fit his own particular needs, or even, perhaps, improve on the one
presented here The important thing about this description is not its detail, but its
Mustration of the concept of using link states to maintain a global structure while

keeping only local information. The material in this section is presented in a

124. Chapter 5. Reference Trees

relatively informal style;, Appendix B contains & more rigorous argument for the
correctness of the membership protocol — that it indeed keeps reference trees
connected and prevents cycles from forming in them.

The membership protocol makes no attempt to recover from damaged or lost
messages, or messages arriving out of order. These problems can be solved by
various wellkknown mearns[26] which may be assumed to provide an underlying pro-
tocol on each lnk

The membership protocol requires that each object have a globally unique
name This name s needed so that when an attempt is made to extend a refer-
ence tree to a new processor, that processor can determine whether it already
knows of the object via some other route This information in turn is necessary to
detect attempts to form cycles in the reference tree

The membership protocol involves seven basic kinds of messages, whose mean-
ing and format are as given in Table 58 tach message is specialized by
identification of the object (and hence reference tree) to which it pertains. This
specialization is effected in one of two ways, depending on the message type
Messages which establish new communication paths for an object (commonly by
extending the object's reference tree to include another processor) include the
object’'s global name (shown as GN in Table 5 8) These messages also include a
shorter /ocal name (IN) which the sender of the message will use in the future for
sending references to the object over the same communication link. The other
messages in the membership protocol (as well as a/l other messages, including, for
example, text management messages) use only the local name to denote the
intended object The use of local names not only shortens messages but speeds
their processing Since the space of local names is smaller and presumably reason-

ably compact, conversion of an incoming local name to an internal object reference

Section 5.3: The State Protocol 126.

can be accomplished economically by means of a direct table look-up, rather than

the more expensive scheme required to look up a global name.

Message Meaning

R+ GN I[N request to add link to tree
L+ GN (N agreement to add hink
L- GN (N retusal to add link

+ IN transfer mastery of link

- IN request to drop link from tree
A+ [N positive acknowledgment

A- IN negative acknowledgment

Table 6 8: Membership protocol message types

Messages in the membership protocol may be sent either spontaneously (i.e., in
response to some external stimulus, such as the need to have a local name for an
object so that a text referencing it can be sent) or in response to an incoming
message requesting some change in a reference tree. R+, + and messages are
always sent spontaneousty, L+, { , A+ and A messages are always sent as
responses

The membership protocol operates by associating with each end of each link a
state for each possible object [t is these states which actually define the extent
of an object’'s reference tree. In terms of implementation, each processor must
maintain a data base for each object it has a reference to, indicating the state
(with respect to that object) of each link adjacent to the processor. It is impor-
tant to realize that the two processors at the ends of a link may have different
ideas of the state of the link; this may be as the result of some intentionally intro-
duced asymmetries discussed below, or it may occur if messages regarding the
object have been sent at one end of the link but not yet received at the other.

The possible states may be grossly characterized as being either stable or

126. Chapter 5: Reference Trees

transient. Stable states are states which might be expected to persist over a
relatively long period ot time. Transient states are those in which a message has
been sent across the link and a reply is expected; the reply will cause a transi
tion to some other state, either stable or transient. Transient states exist to pro

vide the proper sequencing so that the next pair of stable states to be esta-

blished is consistent and does not result in partitioning the tree or closing a cycle.
For purposes of discussion, the states have been given one- to three-character
mnemonic names (iisted in Table 5 9, below) tor purposes of actually manipulating
object references passing over links, the most important attribute of each link
state is whether a processor in that state is directly prepared to send or receive
a local name for the object on that link. Processors in all states but X, N, and N?1
are directly able to send local names (/.e., such names have already been declared
by R+, L+, or | messages); processors in all states but X, N, and M? are directly
able to receive them (/.e. such names have already been declared to them and
recorded)

In addition to the various link states, each processor maintains for each object
a processor state, either “in the reference tree"” or “not in the reference tree”
Certain link states are only consistent with a particular processor state. Rather
than show the pair (processor state, link state) that governs a processor's
response to messages arriving on a link, we encode the processor state information

into the link state, adopting the convention of using state names containing the

letter “X" to imply a processor state of "not in the reference tree" and other
state names to imply the opposite. Thus either all of a processor's link states for

a given object will contain X's, or none will. When a lirk state changes between

these categories, other link states in the processor must also change to preserve

this consistency. Special transitions (between X and N, X? and N?), requiring

Section 5.3: The State Protocol 127.

neither the receipt nor the sending of messages, are provided to fulfill this need.
In general, each X link state has an analogous N state, diftering only in the proces-
sor state of the processor in question.

We now describe the five stable states. Perhaps the state most likely to
occur is X, which indicates that not only is the link not considered part of the
reference tree, the processor Is not considered part of the reference tree. If a
processor has no knowledge of an object, it acts as though it were in state X for
that object on every link.

The state analogous to X is N In state N, the processor is considered part of
the reference tree, but still does not believe the link in question to be part of the
object’'s reference tree. State N may come about either because the processor is
the only processor to contain any references to the object, or because the proces-
sor is connected to the reference tree by some other link or links.

Another closely related state is L. State L is like state N in that the relevant
hnk i1s not considered part of the reference tree, but indicates that the processor
at the other end of the ink does know about the object, and that local names have
been established for communicating references 1o the object over that link. In a
stable condition, the processor at the other end of the link will also be in state L
with respect to the link. The reason for state L is to enable the communication of
an object reference over links that cannot be allowed to join the object's refer-
ence tree because adding those links would close cycles. Such communication is
not only desirable, but sometimes is necessary.

Another stable state is M, which indicates that the link in question is believed
to be part of the reference tree, and furthermore that this processor is currently
the master of that link (for transactions involving that object). The master of a link

is the only one that can effect changes in the status of the link or send a text of

128. Chapter 6: Reference Trees

r e

the object over the link.

This asymmetry seems to be necessary to prevent confu-

sion resulting from, for instance, both ends of a link simultaneously attempting to

terminate their connection with the reference tree.

In a stable condition, the state at the other end of a link from M will be S, for

“slave "

the link;

A processor in state S cannot directly cause a change in the status of

it may however (by means ot a message not discussed here) request the

master to commence a change, and it may respond to messages sent by the mas-

ter

The transient states will not be described to the same level of detail as the

stable states.

ships with the stable states

For the most part, they acquire their meaning from their relation-

Instead of attempting to describe the meaning of

these states, we present a state-transition table (Table 5 9), and summarize below

the normal sequences for handling several situations

Transition Upon Receiving

, 5 I TR A A
A-N?1 A+ M
‘M A N71
A X
A+ M?
AN
L+ S ‘N
B A - N?1 A+« M A N
‘M L
AO:S’ 3"7
87 S

‘N1
L?

‘M2
:8?

Spontaneous

| Transitions

:N
Re:M? X
L?
- X?

:N?

X?
Re M?21

The notation a:b means that under the specified circumstances, a transition to state

b can occur with the emission of message a.

of a local name are shown in column LN.

Transitions occasioned by the receipt

Table 5.9: Membership protocol state transition table

Section 5.3: The State Protocol

129.

Although the table indicates which states may receive a local name and what state
changes may ensue from that eventuality (shown in the column headed (N), it does
not show in what states a local name may spontaneously be sent. As mentioned
above, a local name may be sent from any state except X, X7, N, and N?1, and
never causes a state change in the sender. |t a processor in state N or N?71
wishes to send a reference to the object, it must first send an R+ message, which
will cause a state change to a state from which a local name may be sent. A proc-
essor in state X or X? has no business sending a reference to the object, since
such a processor is not in the reference tree for the object and therefore, presum-
ably, has no references to send.

The fundamental principle that motivates this protocol design (other than the
need to maintain the link data base in a consistent state) is that a processor must
always be able to send a reference over any link without prearrangement. For
example, it is not acceptable that the sending of a reference should be the culmi-
nation of some transaction allowing the reference to be sent only upon receipt of
suitable clearance from the message’s target. In order to understand this require-
ment, the circumstances under which references may be sent must be considered.

In general, a reference will be sent as part of some text which is being com-
municated between processors. Sending a text involves communicating the refer-
ence to the object whose text is being sent, as well as references to other
objects referred to in the text. Thus obtaining clearance to send a text may
involve simultaneously obtaining clearance to send several object references.
Unless every processor always has clearance to send any object reference, it is
easy to see how the piecemeal aggregation of such clearance could lead to a
deadlock on a link. This is especially true when, as is the case with this protocol,

transactions involving different objects are completely independent — no overall

130. Chapter 65: Reference Trees

master-slave relationship applies to all communication on a particular link, for exam-
ple.

This need to avoid deadlock is one of the primary factors acting to complicate
the protocol design, and requires that any processor always be able to send any
object reference without the possibility of contusing the processor at the other
side. The only exception to this requirement occurs it the sending processor is in
state X if a processor has no references to an object, it has none to send' In
any other state, the processor must either already have a local name for the
object to use over the link, or have the option of picking a local name, declaring it
to its neighbor with an R+ message, and then immediately using it in messages.

We now turn to how and why various state changes may occur. We start with
a processor in state X, having no references to the object in question. The only
kind of message that can be received in state X is an R+ message from some proc-
essor attempting to extend the reference tree for the object, perhaps in order to
send a text mentioning the object. Upon receipt of the R+ message, our processor
returns an | + message as an indication that the link should indeed be added to the
tree, and changes to state S in anticipation of the sender of the R+ message
entering the M (master) state when it receives the L+ message. Simultaneously,
the states of all other links to our processor change from X to N, indicating that our
processor is now part of the reference tree. Also, any links in state X? change to
N?.

Now that our processor is part of the reference tree, it may attempt to further
extend the tree by sending a reference along one of the links just converted to
state N. From state N an object reference must be preceded by an R+ message.
Upon sending the R+ message, the sender’'s state for that link changes from N to

the transient state M?, awaiting a reply. The reply tc R+ depends on the condition

Section 5.3: The State Protocol 131.

of the processor at the other end of the link. If it was in state X, it changes to $
and replies with L+, as described above. Upon receiving the L+ message, our proc-
essor changes from M? to M, and the link has been established. If the other proc-
essor is in state N, then the link cannot be added to the reterence tree because it
would close a cycle (since both processors are already connected by some other
route in the reference tree). Consequently, the other processor responds nega-
tively, with an L- message, and changes to state L. When the sender of the R+
message receives the L message, it also enters state L. As long as both proces-
sors remain in state L, local names have been established for communicating refer-
ences to the object over the link, even though the link has been agreed not to be
in the object’'s reference tree.

Another possible scenario is that two processors, both in state N (for the same
link) might simuitaneously attempt to add that link to the tree by sending R+ mes-
sages to each other and entering state M?. Under these circumstances, it is clear
that the link should not be added, or a cycle will be formed. Therefore, each M?
will react to the R+ with a transition to state L.

Once it has been agreed that a link /s part of the reference tcee for an object
and things have settled to a quiescent state (/.e., no messages are in transit), one
processor (the master) will be in state M and the other (the slave) in state S. It
is a simple matter to reverse the roles of master and slave, but the transaction
must be initiated by the master. The master sends a + message and enters state
S. When the slave receives the + message, it enters state M.

Having seen how a link may be established in the reference tree, we now
come to the question of how a link may be deleted from the tree. Due to the con-
nected, acyclic nature to the tree, every time a link is deleted, a node is also

being removed from the tree. Thus the only reason for deleting a link is because a

132. Chapter 5: Reference Trees

T ————

processor wants to remove itself from the reference tree. This in turn will be
caused by that processor's discovery that it has no references to the object
reachable from any active data on that processor. No node which has more than
one neighbor in a reference tree can unilaterally remove itselt. If it did, the tree
would become partitioned, since those nodes which were originally connected by
the removed node would now have no means of communicating. Only "“leaf"
nodes nodes which have exactly one neighbor also in the reference tree — may
disconnect themselves from it. Furthermore, no node may remove itself from a tree
leaving dangling (though non-tree) links in state L. (But a link inconveniently in
state L may be removed by sending a message and changing to state L? - the
reader can follow the transitions that ensue.) Thus a processor may attempt to
remove itself from the tree only if all its links but one are in state N (or N?) Addr-
tionally, that one link must be in state M, f the processor is currently a slave on
that link (for that object), it must first induce the master of the link to relinquish its

mastery. F

A master requests to remove itself from the tree by sending a - message to
its slave and changing to state X? (simultaneously all N links from that processor
should change to X and all N? finks to X?). The slave responds with A- and
changes to state N?1. Upon receiving the A-, the old master returns to state X,
emitting another A-. When it receives this A-, the old slave goes to state N from
N?1. The extra level of acknowledgment here is needed because a processor in
state S may send out object references as local names, a capability it must have.
The old master must be prevented from returning to state X, where such refer-
ences will not be accepted, until it is confirmed that the old slave is no longer in

state S. In effect, the A- message sent by the old slave serves to "flush” the

Section 5.3: The State Protocol 133.

channel, bringing up the rear for any local names that might have been sent.

A complication for this scheme occurs precisely when a processor in state §
sends such a local name to an ex-master now in state X?. In this case, the ex-
master will once again be in possession of a referen.ce to the object, and must
abort its initiative to leave the reference tree. It does this by changing to state
N! upon receiving the local name. In state N!, when the expected A acknowledg-
ment is received from the old slave, the reply will instead be an A+ message and a
transition to M?, indicating a desire to remain in the reference tree after all. When
the old stave, now in state N?1, receives the A+ message, it replies with L+ and
returns to state S. Receipt of the L+ message by the old master will then cause it
to return to state M. An L+ message is used here rather than, say, A+, because a
processor in state N?1 does not have a local name it can use immediately to send
references over the link. The |+ message serves to re-establish such a local
name.

Other transitions in Table 59 exist to take care of other pathological
occurrences. For example, the old slave, while waiting in state N?1 for either an
A+ or A reply, may discover that it needs to send out a reference to the object.
Since in state N?1 it has no local name for so doing, it must declare one by send-
ing an R+ message, which is accompanied by a transition to M?1. The reader can
follow the sequence of transitions and replies triggered by this R+ message, and
see some more of the entries in Table 6.9 come into play.

Cases like this are another source of complication in the membership protocol.
Generally speaking, whenever a processor can undergo a spontaneous transition to
another state, the new state must be able to respond meaningfully to any message
the old state might have been expecting. When both processors at the ends of a

link are susceptible to spontaneous transitions, adding one new function to the

134. Chapter 5: Reference Trees

.”.’ﬁ"l I" " — - . ——

protocol may require the addition of several new transitions.

5.4: Modifications to the Reference Tree Concept
This section is devoted to a discussion of several potential problems with the

reference tree concept, along with some possible solutions to them.

5.4.1: Reference Tree Management
Use of reference trees can lead to two kinds of inefficiencies. Both are sug-

gested by the reference tree depicted in Figure 5.10

.

The solid box represents a processor with a copy of the object’'s text;
the shaded box represents a processor inquiring for the text.

Figure 5 10: A non-optimal reference tree

One liability 1s that reference trees may not always grow in the most desirable

shapes. In Figure 510, the shaded processor's inquiry and the solid processor's

response will both have to travel the entire iength of the reference tree, when in
fact the processors are adjacent. The other liability, which can also occur in more

"stretched-out" reference trees, is the overhead involved in keeping reference

Section 5.4.1: Reference Tree Managerment 136.

trees connected. tven if the two end processors in Figure 5.10 are the only two
which continue to have any interest in the object, all the intermediate processors
must still stay in the object's reference tree to keep it connected. In a large sys-
tem with many objects, such extended reference trees could impose significant
overhead on each processor. The amount of overhead involved in membership in a
reference tree is not large, but i1s non-zero As a network grew, it would be possi-
ble, especially given an unfortunate event and object distribution strategy, for the
average size of reference trees to increase to the point where each processor
found itself forced to keep track of more and more objects. Conceivably the net-
work could be slowly strangled as more and more of its storage was devoted to
these reference tree "cobwebs." Even more disturbing is the prospect that a simi-
lar fate would befall a network, not because of any attempt to scale up the number
of processors, but simply because of the accretion of objects over time, as users

come to have more and more data stored on the system.

65.4.1.1: Disconnecting Reference Trees

Overhead imposed on intermediate processors in a reference tree by the
requirement that the tree be kept connected might be eliminated if it were permis-
sible to disconnect pieces of a reference tree. It is not difficult to devise a proto-
col by which one of the intermediate processors could cause this to happen. Since
all communication involving an object travels only along links in its reference tree,
however, two requirements must be met: a custodian of a copy of the text of the
object must exist on either side of the break (otherwise the processors in one of
the disconnected pieces would have no acc:zss to the text of the object), and the
object must be immutable (otherwise an update~perfovmed in one half of the tree

would never become visible in the other half). Generally speaking, it is not possible

Chapter 5: Reference Trees

to tell whether a side effect may in the future be performed on an object, limiting
the applicability of this approach. However, It such information were supplied, say
in the form ot a "read-only" bit, reference trees of “read-only" objects could be
disconnected.

tffectively, breaking a link in the reference tree for an object creates two
reference trees tor the object. tach of the new trees will then behave as it it
were the only refterence tree for that object. Specifically, leaf nodes of either
tree may then delete themselves frem it, so all .‘(he intermediate processors in our
example can leave the tree, one by one, resulting in the desired situation where
only the two distant processors know about the object

In fact, the only problem with disconnecting a reference tree arises if it is
ever desired to re-connect the tree. The reference tree management protocol
avoids cycles in reference trees by refusing to make a connection if two branches
of reference tree for the same object bump into each other. This is done because
it 1s assumed that all branches of reference tree for the same object are already
connected, therefore, adding another connection would close a cycle. If, as the
result of a disconnection, the two branches are not connected, the protocol will
stil refuse to connect them. It would be quite difficult to allow such branches to
be re-connected without introducing the possibility thet cycles could be formed.
Thus it seems that once a reference tree is broken into two or more pieces, those
pieces must continue to exist independently for as long as they continue to exist.
This is not necessarily bad, though. tach piece is still free to grow, shrink, and
move just as the original was, and thus each may independently be reclaimed by

the garbage collection mechanism when its usefulness is ended.

Section 6.4.1.1: Disconnecting Reference Trees

5.4.1.2: Reorganizing Reference Trees

Figure 510 gives an example ot a non-optimal reference tree which could be
improved by being rerouted. Any approach to rerouting based on purely local
knowledge of the reterence tree should fit easily into our scheme, provided it
preserves the essential properties of reference trees (connectedness and treedom
from cycles)

One possibility is tor a leaf node which is aware that one of its neighbors is
connected to the tree by a different path (perhaps because of being in state L
with respect to that neighbor) to break its old connection and connect instead to

that neighbor. This kind of operation is depicted in fFigure 5.11. 1

Figure 511: A simple reference tree reorganization

It is difficult, unfortunately, for a non-leaf node to make this kind of jump, because
it will not know which of its old links to break. If the wrong choice is made, not
only will the reference tree become disconnected, but one halt of it will contain a
cycle, as shown in Figure 612

In addition to the mechanics of reorganizing the tree, there is of course a
strategy question — when is reorganization wise? Once again, in simple cases the
answer can be fairly obvious, but in general it may not be. |f the goal for the proc-

assor changing its links is to get closer to a copy of the text of the object, then it

138. Chapter 5: Reference Trees

Link Added

\

Right // Wrong
///
Link Dropped

| [~ |
j l,Ti —

< . l

| [Link | ,
{ Dropped (

Figure 512 A dangerous reference tree reorganization

is obviously a good idea to reorganize if the processor being connected to has a
copy of the text If it does not have a copy of the text, then it will either have to

have some idea how far the nearest text s (a piece of information that might

become obsolete every time a text moved) or other considerations will have to be

invoked

Section 5.4.1.2: Reorganizing Reference Trees 139.

5.4.2: Reliability

As the number ot components in a system grows, the likelihood that all these
components will be operational at the same time decreases. Although much of a
reference tree network can continue to function in spite of some component
failures, such failures may nevertheless affect the network more seriously than is
desirable or necessary. For a moderate-sized network, this need not be a major
concern, after all, there are many large centralized computer installations with
essentially no resiliency against failures, at least in the central processor, and
their overall reliability record remains acceptable. 1t a reference tree network is
viewed as a replacement for one of these machines, there s no a priori reason to
believe that a reference tree network with the same number of components should
be any more prone to failure

One attraction of reference tree networks, however, is the possibility of scal-
ing them up to very large sizes, where the failure of one or more components might
be a common occurrence furthermore, if refarerice tree rietworks have the poten-
tial for enhanced rehability through appropriate design changes, it is a shame not to
take advantage of this possible benefit, even in networks of modest size. Finally,
it may often be desirable to plan "faillures" of various components to take them
temporarily out of circulation for preventive maintenance or reconfiguration. It turns
out that even such planned shutdowns are difficult to manage with the basic refer-
ence tree scheme

It is useful to cateyorize failures as either failures of nodes or failures of links
connecting nodes. The basic problem that arises when a link fails is that all refer-
ence trees going through that link become partitioned — operations on objects
whose reference trees do not include that link will not be affected. The obvious

solution to this problem is to dewvise a protocol for rerouting the affected reference

140. Chapter 5: Reference Trees

trees through other, still-functioning links, without making the reference tree cyclic
or otherwise leaving the reference tree information in an inconsistent state. A
scheme for doing this, as well as dealing with node failures, is the subject of
thesis research by Clark Baker[2].

Node failures are more serious than link faillures. Not only does a node failure
look like a failure of all links leading to that node, but the integrity of, or at least
access to, data stored at that node may be compromised. If the only copy of an
object’'s text is stored at a failled node, and that copy is destroyed in a failure, it
i1s dificult to see how to recover it It that problem is to be solved, it must be
solved either by redundant storage of object texts, or some higher-level mechanism
tfor regenerating lost object texts, or both Also serious is the problem ot what to
do with events that may have been stored on the failed processor, and how to tell,
it such events vanish, whether they vanished before or after being executed.
These subjects, too, are being studied by Clark Baker, but it remains to be seen
how the cost of avoiding these problems will trade off against the improvement in

reliability obtained thereby

5.4.3: Global Names

The network protocols as currently envisioned require that each object have a
unique global name, assigned when the object is created, and unchanged
thereafter This global name is used in determining whether references that arrive
ut a processor by different routes actually refer to the same object. This testing
of objects for identity is an operation which the user himself may well wish to per-
form, and is also necessary if cycles in reference trees are to be avoided.

Since objects are created asynchronously at several nodes in the network, the

problem arises of making sure that all these nodes deal out unique global names.

Section 5.4.3: Global Names 141.

PSSP

i

P

The simplest solution is to partition the set of possible global names among the
processors, tor example by having each processor insert a unique identifying string
into the global names of the objects it creates. This solution suffers from a minor
lack of expansibility, since the space of unique processor I0's must be large
enough to accommodate all processors which might be added to the system in the
tuture. More seriously, after some period of time, a processor will run through all
the global names allotted to 1it. Even if it were to "borrow" some yet-to-be-used
names from other processors, after a long enough interval all global names will have
been used The problem may be solved for practical purposes by allowing for a
name space large enough to last for a very long time, but it can also be solved by
“recycling” the globai names of objects which are garbage-collected, reusing those
names for new objects. Then the global name space need only be as large as the
total number of objects that can exist in the system at one time -— a bound that is
difficult to improve on as long as each object requires a global name.

Aside from these complications, there are other reasons for disliking global
names. For example, they make it difficult to interconnect systems that previously
had been operating independently It is possible, in fact, to devise a reference
tree scheme which uses no global names. Such a reference tree scheme cannot
easily prevent cycles in reference trees, but the kind of "cycles" that form are not
fatal. They resemble helices more than cycles, with successive coils of a helix
falling on top of each other. What prevents such cycles from being harmful is that
each time a coil of a helix passes through a processor, it appears as a different
reference. Only by initiating some kind of "trace" operation can a processor dis-
cover whether two such references actually refer to the same object. This possi-
bility that an object might manifest itself as two superficially different references,

or, put another way, that two apparently distinct references might be found to

142, Chapter 5: Reference Trees

refer to the same object, puts a new wrinkle into the semantics of vVIM." Without
this mechanism, it can be determined if two references refer to the same object by
simply checking if both are actually the same reference, a relatively inexpensive
operation. While some may regard this checking of objects for identity as a "“dirty"
operation, it i1s often a usetul one. For example, the implementation of a LISP-like
language will be a good deal more efhicient if the equivalent of the LISP EQ
test[25] can be performed by simply comparing references. The generation of
unique objects to serve as iAeys (as in Henderson[1/]) and their later comparison is
another example of a situation where being able to check objects for identity is
useful

In conclusion, although our scheme for doing without global names has its
attractions, it harbors possible inefficiencies, as the reference tree for just one
object can grow without bound. Only experimentation can show whether this kind

of helical reference tree would pose a serious problem in practice.

5.4.4: Non-Homogeneous Networks

So far, we have been assuming that reference tree networks are homogene-
ous: although nodes may exhibit various differences in capacity and features, all
use substantially the same internal representations of data and algorithms. This is
an entirely reasonable approach for many uses of reference tree networks, espe-
cially with increasing standardization of computing hardware around conventions
such as 8-bit bytes and 16-bit words. However, because of special features availk
able or advancing technology, it may become desirable to include various non-

conforming processors into a network. Such processors could probably handle

"The "link" mechanism proposed by Gula[14] adds a similar wrinkle.

Section 5.4.4: Non-Homogeneous Networks 143.

Iy e

differences in data representation, at least within limits, by automatic translations
of incoming and outgoing object texts. However, it might be difficult to translate
texts which contain executable code this way. A possible solution here is to main-
tain several versions of such texts, so that a processor could call for the version
of a text which suited its need In fact, if executable texts were originally
expressed in some higher-level language, that higher-level version might be

retained as well, and new machine-level versions generated upon demand.

§.5: Summary

The reference tree mechanisms described in this chapter provide a complete
set of capabilities for managing objects in a network. The protocols outlined allow
for side effects to be performed on objects, for the maintenance of multiple copies
of objects, and for garbage collection of inaccessible objects, even when these
have become known across several processors

A primary objective of the reference tree design is to permit an extremely
flexible view of event and object text locations. By keeping down the overhead
involved in moving objects and events around, frequent readjustment of their loca-
tions is encouraged. One sense in which this overhead is low is that all updates to
the reference tree data base are strictly local and asynchronous. Since increases
in total system size have no effect on the overhead of any particular reference
tree transaction, the use of reference trees is compatible with building systems
that can be scaled up to arbitrarily large sizes.

The only nonlocal aspects of reference tree management are the use of global
names for objects and the use of globally unique time stamps for conflict resolution.
The cost of storing these names and time stamps increases logarithmically in the

size of the network This increase in cost is the only crimp in the unlimited

144. Chapter 5: Reterence Trees

scalability of reference tree networks. Section 6.4.3 suggests a way of doing
without global names, at some cost; perhaps an analogous scheme exists for
resolving conflicts without recourse to globally unique time stamps.

Beyond these limits on the scalability of reference tree networks, the refer-
ence tree mechanisms are, at least in theory, prey to various kinds of inefficiencies
and unreliabilities. There is reasonable hope, however, that methods proposed in
this chapter, and others like them, can conquer these problems well encugh to

make reference trees truly practical on a large scale.

Section 6.5: Summary

Chapter 6: Performance of Reference Tree Networks

Up to this point, our primary concern has been with the architectural details of
retference tree networks: ensuring that necessary facilities are present, and that
they will operate correctly. Especially since a principal motivation of reference
tree networks is economic, however, we cannot be satisfied with a design simply
because it allows the expression of usetul algorithms and does not make mistakes
in interpreting them. Accordingly, this chapter is devoted to understanding perfor-
mance aspects of reference tree networks. We begin by proposing a simple model
of reference tree networks, designed to highlight variables that most directly
affect performance. The meanings of various measures of performance, in the con-
text of this model, are then discussed. Finally, conclusions obtained by applying

the model to a variety of hypothetical situations are presented

6.1: Models of Network Efements

It is logical, when modeling something, to mimic its gross structure. In our
model of reference tree network hardware, we copy the overall topology of the
network, substituting idealized models for processors and links. Our task is thus
reduced to that of constructing suitable idealizations of these elements. What we
would like to do i1s characterize the resources available in each kind of network

element and the effect of each network activity on the consumption of each

resource.

For a processor, the resources available to be consumed are CPU time and
memory space. Memory space is occupied by events and by object texts (texts
containing both data and algorithms). CPU time is needed for execution of events.

CPU time is also used for the encoding of events and object texts preparatory to

Section 6.1: Models of Network Elements 147.

e i o

(PRECEDING PAGE BLANK-NOT FILMED

sending them across a link to another processor, as well as tor the corresponding
decoding ot incoming events and object texts. Other sinks of CPU time exist also,
such as garbage collection and interrupt processing load. Since the relationship of
these loads to the primary activities of the processor is often indirect and unclear,
we do not represent these loads explicitly in the model. To the extent that they
are constant, these loads can be accounted for by reducing the total CPU time
available tor event execution and message processing. Jo the extent that the
loads vary with the frequency of any activity that /s represented in the model, the
time taken can be added in as "overhead" to the time required by that activity.
To the extent that other factors cause these loads to vary, the model will be inac-
curate.

The model for links is influenced by an expectation that most reference tree
networks will exist within a fairly localized area, so that any delays associated
with message traffic will be due primarily to bandwidth limitations and not to physi-
cal delay between one end of the message channel and the other. Accordingly,
the oniy resource available in a link is "message time," which is used up by mes-
sages (/.e., s'};’»pment of events and object texts) in proportion to their length. (We
concentrate exclusively on transmission of events and object texts, treating
membership protocol messages, inquiries, and the like as overhead for links, just as
garbage collection and interrupt processing are treated as overhead for CPU's.
This simplification is generally in accord with the relative sizes and frequencies of
different kinds of messages on the MuNet.) However, the link has no delay, in the
sense that the moment a message begins to be sent at one end, it begins to be
received at the other, and the moment the last bit has finished being sent at one
end, it has finished being received at the other. Thus a link resembles an orifice,

or narrow bnttleneck, rather more than a pipeline. This is a fairly accurate

148. Chapter 6: Performance of Reference Tree Networks

m’m___mx.... o . N T

mathematical representation of communication over short distances using a parallel
or serial line. This delayless assumption will be relevant in some applications of the
model, but for others the results would not be affected even if the interprocessor
messages suffered delay as well as a bandwidth limitation

Our first excursion into model building will ignore memory limitations of proces-
sors, along with space constraints in general, to concentrate solely on time con-
straints. Under these circumstances, it is convenient to imagine a first-in-first-out
(FIFO) message buffer of unlimited capacity interposed before each link and also

after each link. Then one can imagine a processor able to compose several mes-

sages and dump them into the FIFO preceding the link, letting the messages per-
colate at their own pace through the link into its following FIFO. The receiving
processor can then look at the messages as they come in, or allow them to accu-
mulate for a while in the FIFO." Assuming these FIFO's, which may be thought of as

message buffers within the processors (but accessed directly by the links),

simplifies application of the model to situations where the ability of a processor to
keep a message channel full, by initiating a new message as soon as the channel
becomes free, might otherwise be in question.

Our model of hnks is unidirectional, whereas actual reference tree links are
required to be bidirectional. A bidirectional link, of course, may be constructed out
of two unidirectional links running in opposite directions, but our unidirectional model

is useful in examining situations where we wish to constrain the flow of events and

"This is a reasonably accurate representation of what actually goes on in the
MuNet.

Section 6.1: Models of Network Elements 149.

t

object texts over a link to be in only one direction.
The final model is perhaps best illustrated by Figure 6.1, which shows our

model of a network composed of two processors and one link connecting them.

(a) A simple reference tree network, with two processors and one
link.

FIFO > m' FIFO

r,st rs.t

FIFO €— m FIFO e

(b) A model of the network shown in (a), with performance parameters
rrs.t.r',s . t'mand m'.

Figure 6.1: The reference tree network model

Inside the active elements of the model are shown performance parameters. The
parameter m (or m') of a link may be thought of as the number of time units taken
by that link to transmit one word of message. The parameter r (or r') of a proces-
sor is the number of units of CPU time required per word of incoming (or received)
message; similarly, s (s') gives the amount of CPU time used per word of message
sent. Finally, t (f') indicates the speed of the processor for event execution. 1
may be thought of as the amount of CPU time consumed per unit of computation
during event execution. The primed parameters are shown to emphasize that every
element of the network may, in general, have different sets of parameters, indica-

tive of their differing capacities to perform the various operations that may be

1’E\mn if such a constraint were adopted in a real reference tree network, how-
ever, the reverse channel would still be needed for reference tree protocol mes-
sages.

150. Chapter 6: Performance of Reference Tree Networks

required of them. The parameters r, s, t, m, etc., can be further generalized in

terms of concepts presented in the next section. :

A tformal description of a network topology may be given in terms of a set N of
nodes, a set L of links, and two Boolean matrices / and O. An element /lm is 1 it .
and only it link j € L enters node m ¢ N, else i1s 0. Similarly, an element Ol'" is 1 it

and only if link ; leaves node m.

6.2: A Model of Computations

Constructing a plausible model of the network hardware is trivial in comparison |
to the task of modeling the computations the network is to perform. Many computa- 5
tions of real practical interest have anatomies complex enough to defy any

mathematical modeling approach other than simulation. Among the computations that

can be usefully modeled, the universe of alternatives is too diverse to be encom-
passed under any one modeling procedure. We are forced, therefore, to commit
ourselves, at least temporarily, to studying computations belonging to some fairly
specific class.

The class of computations on which we choose to concentrate is not the most
interesting class of possible computations for a reference tree network, but it has
the virtue of being fairly simple. Furthermore, it can be extended sufficiently so
that it is at least plausible to argue that the scheduling strategy which performs
the best on computations in this class will also be among the best performers in
E actual practice, even when applied to computations outside the class. In other
words, significant further improvement in network efficiency may only be achievable

by adopting radically different approaches, such as making available to the schedul-

ing algorithm additional precompiled information indicating the best treatment for

Section 6.2: A Model of Computations

each specific computation.

This class of computations to be modeled is a class of recurring computations
where each computation has fairly simple structure. "Recurring" Is intended to con-
vey the notion of a series of sets of input values arriving at periodic intervals for
processing. There is little or no interaction between the processing of one set of
input values and the processing of other sets of values, and the processirg of
each set of values proceeds along a similar course. An example of such a
recurrent computation would be a system receiving three-dimensional vectors and
performing a perspective transformation and windewing to yield a sequence cof two-
dimensional vectors. One cculd imagine a steady source of three-dimensionaf vec-
tors, contributing either to continued drawing of a plicture or to successive frames
of'a movie. In either case, the processing undergone by each vector follows the
same outline, or at worst has a few variants according to whether or not the vec-
tor turns out to be visible.

This concentration on recurring tasks is convenient for studying the ultimate
performance capabilities of a network topology, since any amount cf parallelism that
might be needed in order to use the natwcrk resources to their full capacity can
be obtained by simply adding more concurrent tasks. This approach cerefully
sidesteps any consideration of how much paralielism can be used in the solution of
any particular task. In many other situations this constraint of the task may very
well be a much more significant constraint on performance than saturation of the
network elements with work. Nevertholess, our interest here is in the overheads
and limitations involved in the use of network resources, as opposed to the plaust
bility of actually bringing all those resources into play, and thus we proceed with
our recurrent-computation model.

Given a recurring stream of input data, the question becomes how to model the

162. Chapter 6. Performance of Reference Tree Networks

computation apphed to each element of the stream. This 1s done by means of
events and transitions. An event represents a computation in a certain intermediate
state, and corresponds to a VIM event A transition represents the process of
swallowing up an event and producing rero or more other events It thus
corresponds to an event execution under VIM. An event is something which can be
passed from one processor to another, or held for future execution. The important
parameter of an event s its size, which determines the storage required to hold
the event, and the cost of shipping it between proceasors.' A transition has two
basic parameters the time required to effect, or execute, the transition and the
space used to represent the algorithm which implements the transition. Of these
parameters, execution time is the more significant for the purposes of this chapter

In the model, events fall into some small number of event classes containing
events with the same, or at least statistically similar, properties. Similarly, transi-
tions may be grouped into transition classes Two of the event classes are dis-
tinguished as the /nitral event class and the final event class Receipt of a set of
values to be processed 1s modeled by the receipt of an event in the initial event
class, containing these values, at some processor; output of a set of result values
I1s represented by the sending out ! a corresponding event in the final event
class.

More formally, then, our model racognizes a set E of event classes F[ach
event class has an associated size which is characteristic of events in that class.
One event class is distinguished as the initial event class and another as the final
event class Th» model also recognizes a set T of transition classes, where each

transition class has an execution time and algorithm size pertaining to transitions in

"It is assumed that a// data required for execution of an event is accounted
for in calculating the "size" of the event.

Section 6.2: A Model of Computations 163.

that class. There is additionally an ExT matrix G, such that GM gives the number
ot events ot class / consumed (it G:A < 0) or generated by a transition of class k.
Ordinarily, there would be exactly one element Grk less than zero for each Ak, and
that GIA would equal 1, indicating the transition (of class k) consumes one event
of class /. Other elements GM' J # 1, would be either zero, indicating no involve-
ment by the transition with events of class J, or positive integers, indicating pro-
duction by the transition of Gl" events of class j. However, none of these assump-
tions enters into the mathematics below, and it can be meaningful to depart from
them

Using the concept of event and transition classes, additional network perfor-
mance parameters can be described in terms of matrices M, R, S, and 7. M'l is the
time taken by an event of class / to trarerse link 4. le is the CPU time required

to receive an event of class / on node m Similarly, S is the CPU time required

“im

to send an event of class / from node m. Finally, T is the CPU time required to

Am
process a transition of class k on node m. These matrices may often have a fairly
simple structure; for example, all entries Mll might have the same value m. But
using these matrices allows the representation of a great deal of diversity among
the various elements of a network, including variations in the capacity of the ele-

ments, and even variations in the relative capacity of elements for operations of

different kinds.

164. Chapter 6: Performance of Reference Tree Networks

6.3: Measures of Performance

The purpose ot engaging in this modeling eftort (s to obtain a simplified abstrac-
ton in which the performance effects of scheduling strategies can be judged
Before performance can be measured and compared, though, it must be defined
The plausible measures of performance are varied and sometimes antagonistic, but
all are parameters of particular execution histories, not ot particular scheduling
algorithms. A scheduling algorithm, especially it it contains any random or pseudo
random component, may exhibit different performance on successive runs, and will
almost certainly have different pe:formance characteristics when apphed to
different programs Thus our approach te evaluating a scheduling algorithm must be
to apply the algorithm to some program, then examine the resulting execution his-
tory to determine the performance This approach to network performance meas-
urament pays one additional dividend: it is possible to define optimum, or max-
imum, performance as the maximum value of the performance measure over all pos-
sible execution histories for the program at hand, without respect to what, if any,
scheduling algorithin could actually have produced the winning history. Then it can
be seen how far the performance achieved by any particular scheduling algorithm
falls short of the optimum. This may give some indication of how worthwhile it s to
complicate a scheduling alqgorithm in hopes of coming closer to the optimum perfor-
mance level

Several plausible performance criteria may bo derived from examination of an

execution history.

Section 6.3: Measures of Performance 166.

L —

® minimum resource usage. The theory behind this criterion is that the fewer
system resources (processor time and space, link time) used in executing a
particular program, the more are left over tor other uses (unspecified in the
model) Alternatively, one may suppose that a scheduling algorithm which is
frugal in its use of resources exhibits ¢reater potential to be applied to
more demanding problems without exhausting the resources available. Unfor-
tunately, incomplete use of availabie resources may impact adversely on
other plausible measures of performance, such as response time. This con-
sideration leads us, paradoxically, to cur next suggested performance meas-

ure.

® maximum resource usage. This criterion may be defended on the grounds
that large degrees of resource usage are evidence that an effort has been 1
made to derive the maximum possible benefit from every network resource.
Unfortunately, high resource usage does notl necessarily correspond to pro-
ductive resource usage, it is entirely possible to consume resources in use- ‘
less churning. Furthermore, maximum resource usage is not desirable in
itself. Rather, it is conjectured to accompany execution histories with other
desirable properties. A more drect approach, then, is to characterize those

properties directly.

® minimum response time. A parameter that has more to do with the actually
observed input/output behavior of a system is response time, but in the con-
text of recurring computations it« meaning needs to be defined more pre-
cisely. When an evenl arrive. at the system and passe: through several

transitions, ultimately one or more output events, specifically traceable to

that input event, may be caucsed The response time for an individual input

166. Chapter 6: Performance of Reference Tree Networks

event in an execution history is then the length of time that elapses from
the introduction ot the input event into the system until the last associated
output event has been emitted from the system. If it is possible for some
input events to lead to no output events, response time will be a less useful
measure of performance, since it must be defined arbitrarily in such cases
Since a particular response time apples only to a specific event in an exe-
cution history, it is possible to define both an average and a worst-case
response time over an entire history. Knowing the response-time results of

applying a scheduling algorithm to a problem is indeed useful, but response

characteristics are difficult to model analytically. This i1s because of their
significant dependence on timing relationships that develop accidentally dur-
ing execution, and on the specific way in which processors handle tasks (for
4 example, whether one task 1s allowed to pre-empt another) For these rea-
sons, response time can probably be determined only by simulation or actual
execution, and the optimum possible response time may be very difficult to

determine at all

® minimum "event inventory”. An alternative parameter, closely related to
average rosponse time, but which may be somewhat more tractable, is
"avent inventory," the number of events that have been introduced into the
system and not yet discharged (in the sense, discussed above, of all asso-
ciated output events having been emitted). As before, one can talk about
average or worst-case event inventory. Neither measure bears any relation

to worst-case response time, since events are not necessarily discharged in

the order of their introduction, but the average event inventory bears a sim-

ple algebraic relationship to the average rasponse time. Although it still

Section 6.3: Measures of Performance 167.

~ 4

resists exact treatment, the event inventory approach may tacilitate the

derivation of good approximations.

® throughput. We may define the throughput of an execution history as the
rate at which input events are discharged by the system. Unless there is
to be an unbounded bulldup of events within the system, this rate will over
the long term be equal to the rate at which input events are introduced into
the system. Cases where unbounded buildups of events occur represent
overloaded situations to which the system's transient response may be
interesting, but which cannot persist over the long term. Since, in our
model, the rate at which input events are introduced 1s an independent vari-
able, examination of a particular execution history to determine throughput
can only yield a "yes-no" answer: yes, the system exhibited adequate
throughput to prevent ar unbounded buildup of events, or no, it did not. It
is, however, possible to determine from several execution histories gen-
erated using a particular scheduling algorithm and different event input rates
the maximum throughput allowed by that algorithm " What makes throughput
an especially interesting standard of comparison is that it is also possible to
determine, for computations represented by our model, the maximum
throughput of which a particular hardware configuration is capable, irrespec-

tive of the scheduling algorithm used.

"ot course, some algorithms may not be able to meet certain requested
throughputs., even while being able to meet higher ones. In such cases, the
definition of "maximum throughput" admits of some ambiguity, but such behavior is
anomalous, or at least undesirable, and is best described in terms of the actual
critical throughputs observed, not by attempts to define any one "maximum "

168 Chapter 6. Performance of Reference Tree Networks

IR T TP SR N

e

On the basis of the considerations discussed above, we select throughput as
the primary measure of performance to use in comparisons. Not only is it analyti
cally the most convenient, but it captures well the spirit of our broader endeavor to
construct computer systems ot higher capacity. The scheduling algorithm with the
highest maximum throughput may not exhibit the best response time at lower
throughputs, but no cther algorithm can match it when throughput i1s at that max-
imum. High throughput is also a sign that inefficient use of resources due to

wasted motion is being kept at a minimum

6.4: Calculating Maximum Possible Throughput

The maximum possible throughput ot a network is the maximum throughput of
which that network is capable, regardless of the scheduling algorithm used For
computations repiesentable in our model, it may be calculated, for a specific net-
work and a specific type of computation, by a linear programming procedure
Numerical results may be obtained in this fashion, but except in the most elemen-
tary cases, it is unfortunateiy impossible to give simple analytical formulae.

The linear programming approach is based on a kind of network flow model
which considers the lorg-term average frequencies of event transmissions over
links and through nodes, and of occurrences of transitions at nodes. The maximum
attainable frequencies are constrained by the capacities of the various network
elements

In riore detail, the linear programming model contains one variable for

® each event class for each link, indicating the frequency of transmissions of

events of that class over that link; we denote these by e,.’.. for event
class / and link j.
Section 6.4: Calculating Maximum Possible Throughput 169,

1

® each transition class for each node, indicating the frequency of execution
of transitions of that class on that processor; these are written as 'km'

where the transition class is K and the node is m.

in the following discussion, we use these and several other variable names without

further explanation. For a summary of cur nomenclature, refer to Table 6.2

E the set of event classes

i a member of E

io the initial event class

‘4 the final event class

T the set of transition classes

K an element of T !
L the set of links in the network

J an element of L

Lo the set of input links: LO SL

L, the set of output links: L, € L

N the set of nodes in the network
an element of N

the flow of events of class /i over link j

l,::" the frequency of transitions of class A on node m

Olm 1 iff link / leaves node m, else O

,im 1 iff link j enters node m, else O

le the number of events ot class / generataed by transition k
MI/ time taken by an event of class / traversing link j

R,m CPU time to receive an event of class / on node m

Slm CPU time to send an event cf class / from node m

rkm CPU time for a transition of class A on node m

Cm memory size at node m

:ﬂ _‘szgf)l_g!gorithinh_.izpj?r_n:n‘tifg transmon_of class k |

Table 8.2: Netwark Modeling Nomenclature

The number of actually independent variables is reduced by several identities

relating them. For each nude m and each event cla<s /, there is a conservation-

160. Chapter 6: Performance of Reference Tree Networks

of-events condition

f(l/m 'O/'m

+IG
)e” .

e, 0 (6.1)
Furthermore, for purposes of introducing events of the initial class o0 and removing
events of the final class Iy, we aefine a set of in-links LO whose sources are
indeterminate but whose destinations are nodes, and a corresponding set L‘ of
out-links. Then we have the additional constraints that only events ot the initial
class may flow over in-links:
el-j=0. i#ig and j € Ly (6.2)
and only events of the final class may flow over output links:
ell.=0. 1¢i, and[eL' (6.3)
The constraints on the linear programming model are, first of all, that all vari-
ables must be non-negative. Events cannot "un-flow," nor transitions "un-execute."
Secondiy, event flow over any link ; cannot exceed the capacity of the link:
fM“e/l <1 (6.4)
and computational activity (this includes execution of transitions as well as proc-
essing of messages) on any node m must not exceed its capacity:

II(/ +0

1

b
/msrm)elj 3 ;,km'km s (6.5)

. R
jm im
Finally, subject to the above identities and conctraints, we wish to maximize

I e
Jely

(6.6)
ol

which is the inflow of events of the initial class which can be maintained over the
long term without overloading any part of the network. The values of variables
which maximize (6.6) indicate optimum distributions of activities around the net-

work.

Section 6.4: Calculating Maximum Possible Throughput 161.

6.5: Memory Constraints

The model developed in the previous section, although it will be our principal
source of results concerning the theoretical capacity ot a network, deals solely
with temporal constraints on the operation of the network. In a real network, spa-
tial constraints may very well also play a role. In computations fitting our model,
space may be used in two ways: for storage of events, both while being held at
ncdes and while stored in buffers at ends of links, and for storage of the algorithms
that implement the transitions (Reference tree overhead and temporary storage
required during actual execution ot a tracsition are taken into overhead)

The linear programming model developed above, by being insensitive to spatial
constraints, really embodies the assumption thatl sufficient space is available at
every node to buffer all events that may need to be buffered there, and to hold
algorithms for all transitions that may need to be executed thare. Since the model
concentrates on long-term flows, it is very difficult to determine anything about
buffering requirements even from examination of a solution. Buffering requirements
are more a property of the microstructure of operations on each processor, a vari
able deliberately abstracted out in the course of building our mode!. In many
cases, though events may be assumed to be relatively small, and the buffering
requirements relatively modest, or at least relatively unafiected by changes in
event distribution. In such cases, the storage of algorithms may be the main contri
butor to memory use.

A simple assumption about memory use i1« that if a transition is executed at all
on a processor, however infrequently, a copy of the corresponding algorithm must
reside on that processor. Then the memory used at node m is

kau1“km) (6.7)
where Pk is the size of the algorithm implementing transitions of class k, and ul(x')

162. Chapter 6: Performance of Reference Tree Networks

is the unit step function

Oif xsO
) =y it x>0 (6.8)

Note that expression (6.7) is nonlinear in tkm and hence cannot be used in either a
constraint or an optimality criterion in linear programming. Be that as it may, a more
serious question is how memory usage ought to be accounted for in any model,
linear or not. Should some weighted average of throughput and memory usage be
used as the optimality criterion, rather than throughput alone? But what is the
point. givern sufficient memory in the system, of settling for lower throughput simply
because it makes less intensive use of memory the system already has? One
justification for so doing is the existence in the system of activities other than
that being modeled. If the computation being modeled takes up less space, then
more space is free for other uses. But why account for the spatial impact of other
activities when no such accounting is made of their temporal impact? On the
whole, it is of some nterest to observe the memory requirements of the optimal
(maximum throughput) solution or, if there are several, the optimal solution requiring
the least memory, but it is difficult to justify proclaiming the superiority of a lower-
throughput solution simply on the grounds that it uses less memory.

A different tack is to treat memory usage not as part of any optimality cri-
terion, but as a constraint on possible solutions. Borrowing from equation (6.7), a
new constraint of the form

kaul(lkm) sC, (6 9)

could be added for each node m, where Cm Is the memory capacity at node m.
The resulting problem is no longer a linear programming program, but may still be
solved by combinatorial means. This approach at least begins to deal with the

reductions in network capacity that may be forced by space constraints on the dis-

Section 6.5: Memory Constraints 163.

tribution of algorithms (we continue to ignore space requirements for buffering).
Such space constraints will only be significant, however, it the size of algorithms s
of the same order of magnitude as the memory capacities of processors. for com-
putations accurately representable by our simple model, this is unlikely to be the
case Fturthermore, the purpose of constructing this model is to determine the
optimum performance, tor comparison with that exhibited by various scheduling algo-
rithms. Incorporating into these algorithms consciousaess of fairly severe space
constraints adds a whole new level Hf complication to their construction and
analysis.

For these reasons, memory usage will be of relatively little interest to us
There is, however, room to wonder whether our step-function approach to measuring
memory usage is always the most accurate. At a processor where some transitions
are being executed only relatively infrequently, and neighboring network elements
are not fully loaded, a dynamic solution in which algorithms are continually moved
back and forth may actually further economize memory usage without reducing net-
work throughput This may cause total memory usage to be lower than given by
equation (6.7). On the other hand, (6 7) certainly provides an upper bound on
memory requirements, as long as buffering requirements continue to be regarded as

negligible.

6.6: Discussion

Simple and limited though our linear programming model may be, it can be used
to gain understanding of some important situations, and perhaps explode a few
preconceptions one might be tempted to form regarding the performance of retfer-
ence tree networks. One such preconception is that throughput of a reference

tree network, calculated as described earlier in this chapter, can be made

164. Chapter 6: Performance of Reference Tree Networks

R S TP —

arbitrarily large by just adding more processors. As long as communication costs
are nonzero, this i1s not true. Also untrue, as long as communication has a cost, is
the thesis that adding more processors will cause a linear increase in throughput
These statements should be qualified somewhat: increasing the number of proces-
sors will always result in a linear increase in netwcrk capacity, but it events
emanate from a fixed number of sources, more and more of that capacity will be
eaten up in communication overhead as the network grows. If, on the other hand,
the number of event sources increases with the size of the network, this effect

can be avoided

6.6.1: Pertormance of Soine Simple Topologies

A few examples wi'l help illustrate this point, and also give some context for
evaluating MuNet performance results to be presented later. Consider the simplest
possible computation, in which there are only two event classes: the imtial event
class and the final event class. There is only one kind of transition, which converts
an event of the intial class into an event of the final ciass. As far as physical
properties of the network are concerned, we assume that all processors and link:
are identica! (/.e., have the same pertormance parameters). We further assume
that the bandwidth of links does not constrain system throughput This s
equivalert to positing that the CPU time to process incoming and outgoing events is
greater than the link time required for their transmission, something which is true of
the MuNe' and a plausible hypothes's about many other systems. Finally, we
assume (hat the CPU send an. receive tires for all events are equal to the con-
stant ¢ (/.e., R:m = Slm = ¢) and that the time to execute a transition on any proc-
essorist (je, T, = t).

Consider then the pe-formance of a "pipeline" «f N processors, as shownr in

Section 6.6.1: Performance of Some Simple Topologies 165.

e B e Y e R 1
Figure €.3: A pipeline topology

Figure 6.3, where events of the initial class are presented at processor 1, and
events of the final class are extracted from processor N. Our linear programming
analysis gives as the throughput 8 ot this pipeline

N

P e 610
t+2cN ()

The numerator in this expression gives the total number of units of CPU time avail-
able per unit of real time, while the denominator indicates the total number of units
of CPU time needed to process each incoming event: (units of time to actually
execute the transition that converts it from an initial event to a final event, and 2c
time units per processor to forward the event along from the beginning to the end

of the pipeline. As N becomes large, the throughput approaches an asymptote of
L , as each processor spends a higher and higher proportion of its time simply for-
e

warding events. Thus adding unbounded numbers of processors does not result in
unbounded increases in throughput. It is possible to graph equation (6.10) as
shown in Figure 6.4.

In order to avoid the performance deg-adaton that comes with having to send
every avent through a long pipeline, whie still having only one soutce and sink of
evants, we migh* be tempted to try a "bushier" structure such as that in Figure

6.5 The linear programming model now gives a throughput of

"This topology may be construed as violating the "limited number of neighbors"
condition of reference tree netwotk topologes, but this limitation is less important
for our purposes than the performance himitations of the topology

166 Chapter 6: Performance of Reference Tree Networks

" —
o e e

| | |
I I I
I I |
1 | | 5 i
?L { \ t
I I U
! I |
| [| I
I I =g
[! LTS {
i / 1
1 1
I 1
1 T T T [T e S I e g PARCHR U Kl (OO . T I L A
ac ' !
Throughput : :
. ! 1
| |
! !
| I
i I
I i
i 5 e o T
t 4 21
3¢ ¢ <
Number of processors N —— >
t = time to execute a transition on a processor
c = CPU time to send or receive an event on a processor
figure 6 4 Throughput of the pipeline topology shown in figure 6.3
o) S
v — ; o0 »
il s
» -
L]
.
1
Figure 6 5: A paralle! topology
1 N2)
.
-min| -, % 6.11)
(2(‘. t+6¢c (
Section 6 6.1. Performance of Some Simple Topologies 167.

-

which increases linearly with N up to the critical throughput 21c Below this critical

throughput, an analysis similar to that in our previous case holds: N+2 units of CPU
time are available per unit of real time, and each event takes 6¢ time units for
communication (to be received and sent at each ot three processors) and (time

units to be convertad from an initial event to a final event. But the throughput can-

not exceed ;- because at this point the left-hand and right-hand processors,
C

through which ail events must pass, become fully lcaded with communications and
cannot handle any additional events

In many cases, such as the actual performance tests that were run on the
MuNet, events of the final class must be taken out of the system at the same
processor where events of the mitial class are introduced. In other words, the
answers must appear at the same place where the problems were posed Thus the
evaluation of MuNet performance results i1s more directly related to two topologies
we now consider. The first of these, shown in Figure 6.6, is similar to the parallel

topology of Figure 6.5 except that the source and sink for events is on the same

processor
.
el
(
™y
N |
Figure 6 6 Parallel topology with common source and sink
168. Chapter 6. Performance of Reference Tree Networks

R o ittt o
’ p——

The hinear programming model gives for the throughput of this network

| X 3 1 N
[} e [1 (¢ 21.)mm(ac.h2c)] (6.12)

which increases linearly with N until it reaches a maximum value of 0 = 41c at

N = ¢ ; Numbers representative of the MuNet applications to be discussed

later are t = 08 seconds and ¢ = 30 to 70 ms, giving a maximum throughput of 4

to 8 tasks per second, first reached for N between /7 and 3. Obviously this number
t

Is strongly influenced by the ratio that charccterizes a particular apphlcation; on
€

the MuNet, estimates of ¢ are particularly unreliable, since communication overhead
seems to depend in a significantly nonlinear way on the amount of communication

and on the kinds of other activities occurring on a processor and its neighbors

Figure 8 7 "Stack" topology

A final family of topologies, interesting because it was also the subject of
actual MuNet experiments, and interesting as weli because it is a simple example
of a family of topologies whose maximum possibie throughput has no simple closed
form, i1s the family of “stack" topologies illustrated in Figure 6.7 The throughput

#(N) of a stack topology of length N is given by the recurrence relation

1 1+(t-2c W(N)
Ne+1)=m B i M4
" ‘ n(dc t+2c
(6.13)

1
- e

A plot of #(N) using the parameter values t = 0 8 seconds and ¢ = 30 ms is shown

in Figure 6.8

Section 6 6.1: Performance of Some Simple Topologies 169.

e e

| I
| 1
| 1
8.33 events/sec - = ! i-
i e e
i //‘/" i
PP s 1
A ' !
1 |
| I
| |
I I
| |
'(N) I I
/ \ |
- g5 hoch R i
N=10 N =20
N ——>

0 8 seconds to execute a transition on a processor
30 ms of CPU time to send or receive an event at a processor

Figure 6.8 Performance of the stack topology shown in Figure 6.7

6.6.2: Assignment of Events to Processors

Other applications of the linear programming model are to computations more
complex than the very simple case we have been considering. When there are
several classes of events, the strategy issue arises of which kinds of events to
execute where This decision is not always as simple as it might seem. For exam-
ple, consider the computation of the function f(g(x)) of some stream of input
values ¥ Such a computation might be performed in two steps and involve three
classes of events an initial class containing input values v, an intermediate class

containing partial resuits g(x), and a final class contaning results f(g(x)).

3 e g e

Figure 6 9. Two-processor pipeline topology

170. Chapter 6: Performance of Reference Tree Networks

4 '“I‘I‘.'-’III T T —— 2 -

It this computation were performed on a two-processor pipeline topology such

as that shown in Figure 6.9, it would seem appropriate to make the "natural"
correspondence between the pipelined computation and the pipeline topology by
doing all computations of g on processor 1 and all computations of 1 on processor
2. Such an assignment 1s actually best, however, only under tairly limited sets of
circumstances. birst of all, it will not generally be the case that this assignment

will result in a balanced load on the system only for very specihc values ot com-

munication and computation costs will performing computations of g on processor 1
al some rate # keep thatl processor tully utiized whilte computations of f on proces-
sor 2 occurring at the same rate 0 are also keeping tha' processor fully utilized.
More likely, whichever processor has been as- gned the computation that involves
lower computation or communication costs will have some idle time, meaning that
system throughput could be increased by shifting to that processor some of the
load on the other processor Thus if the computation of g were, say, only half as
expensive as that of f throughput greater than that exhibited by the "obwvious"
pipeline would be achieved by a solution in which processor 1 performed all compu-
tations of g and also some of f, while processor 2 performed the remaining compu-
tations of f

Beyond this minor load-balancing adjustment, however, lies room for questioning
the whole idea of pipe'ining the computation at ali. An alternative is to have each
processor pertorm equa' numbers of computations of f and g, never passing any
intermediate results glx) between processors. Only events of the initial and final
classes would then be passed between processors. This approach will be inferior
if the intermediate events are less expensive to pass between processors than
the initial or final events, for then it will pay to convert initial events as quickly as

possible to the more cheaply communicated intermediate form, and to put off for as

Section 6.6.2: Assignment of Events to Processors 171,

long as possible the conversion to the final form — that is, it will pay to use the
pipelined approach. On the other hand, it the intermediate events are more expen-
sive to communicate than the initial or final events (a common situation situation in
programs which bulld up a large collection of partial results before disgorging an
answer), then the highest throughput will be attained it intermediate events are
never communicated, but are consumed as soon as they are produced.

Thus the unmodified “natural" pipeline arrangement will very rarely yield the
optimal throughput. In most cases, the only reason that would dictate such an
arrangement would be memory constraints making it impossible to fit the algorithms
for f and g both on the same processor. Although this might sometimes be a real
problem, it is not likely to be an overriding concern in general

The observations made in this section generalize in the obvious way to longer
pipelines. The linear programming model remains able not only to give the maximum
possible throughput of such configurations, but also to indicate the distributions of
events which will bring about the maximum possible throughput. Perhaps more
important than this capability, however, is the lesson that the distributions that
seem the most natural are not always the best, and that the look of a distrnibution
which /s optimal may be profoundly influenced by small changes in the relative
costs of various operations. A lesson for the development of scheduling strategies
is that appealing heuristics such as "find and exploit any natura! pipeline structures
in the object program" should be approached with extreme caution. A scheme that
is likely to be more generally satisfactory ought to adjust its behavior according to
the run-time load effects produced by previous decisions, or else ought to rely on

the results of a more thorough analysis of the program to be scheduled

172. Chapter 6: Performance of Reference Tree Networks

6.7: Summary

A model has been developed for the performance of reference tree networks
executing certain simple computations of a recurring nature. Applications that
would fall into this class include some kinds of reai-time data acquisition, along with
periodic repeated computations such as would be required, for example, to update
a moving picture of a three-dimensional scene. Using linear programming methods, it
is possible to determine the maximum possible throughput for such computations of
a particular network This throughput can then be used as a standard for comparr
son with the throughput achieved by particular scheduling algorithms

The tinear programming model can also be uced to explore the inherent perfor-
mance limitations of various topologies, and to look at strategies for ascigning
events to processors The discussion of these topics at the end of this chapter s
not intended to convey the impression that reference tree networks are not scal
able For one thing, the point at which the limitations examined become manifest
depends strongly on the ratio of computation to communication speed at each node
More importantiy, the examples in Section 6.6 are not designed to imply that refer-
ence tree network capacity increases less than linearly in the size of the network
The speed of performing any one set of calculations will at some point stop
increasing as more processors are added, because at some point 'communicntmn
costs will dominate the extra computation power available, however, a larger net-

work will still have increased capacity for additional concurrent tasks

Section 6.7: Summary 173.

TR

Chapter 7: Scheduling Strategies for Reference Tree Networks

The term "scheduling strategies" is perhaps something of a misnomer for the
subject of this chapter, which is little concerned with the scheduling of events in
time, but much more concerned with the distribution of objects and events in
space, /.e., their allocation among the various nodes of the network. The former
subject is not wholly without interest — the treatment by the system of tasks with
differing priorities, or the response of the system to tasks with real-time con-
straints, would be important issues in many cases However, spatial scheduling
decisions crucially affect the efficiency of the system by determining the amount ot
internode communication that will be necessary in the course of executing a pro-
gram. The amount of this overhead can have a profound impact on the ability of
the system to meet realtime demands, but is of interest even to the user whose
only desire is that the system execute his program in a reasonably expeditious and
fair manner.

An interesting attribute of scheduling strategies that sets them apart from the
rest of the material presented in this thesis is their discretionary nature. Up to
this point, actions performed by the system have been prescribed by algorithms for
conflict resolution, reference tree maintenance, etc. These algorithms are applied
mechanistically, after having been invoked either by some part of a user's program,
or by desires whose origin has until now remained unspecified, such as a desire on
the part of a processor to ootain locally a copy of a text. The origin of these
desires, wiich are not expressed directly by the user, is the natwork scheduling
strategy. For example, if the scheduling strategy determines that an event is to
be executed on a particular processor, and that event requires a copy of a certain

object text, then it wvill become necessary to obtain a copy of that text on that

Chapter 7: Scheduling Strategies for Reference Tree Networks

processor.

In the context of a reference tree network, the discretion that may be exer-
cised by scheduling strategies is extremely broad. VIM programs contain no expli-
cit directions for allocation of events and objects to processors, and the reference
tree algorithms will support, at varying levels of efficiency, any distribution whatso-
ever Furthermore, moving events or objects is sufficiently inexpensive that it is
practicai whenever there (s an indication that some benefit might be gained
thereby

One degree of freedom open to a scheduling strategy is the choice between
demand-driven and what might be called notice-driven behavior. Any scheduling
strategy will have to face situations that demand some action. For example, an
executing event may request access to some text not currently locally available
In such a case, there are several plausible courses of action: a request can be
made to bring a copy of the desited text to the current processor (so that the
event can resume execution), the event can be sent to a processor that already
has a copy of the text, or some compromise solution can be adopted. Whatever
decision is made affects the distribution of events and objects and is properly
termaed a <cheduling decision A scheduling strategy might also operate in a more
contemplative mode, however, observing the operation of the system and making
adjustments that, although not demanded by any immediately critical situation, will
help the system operate in a more efficient manner in the future. Examples of such
"notice-drivan™ scheduling behavior include processor and memory load balancing,
grouping of related objects on nearby processors, and the like. This chapter will
concentrate mainly on notice-driven stratagies, for it is here that the choices are

widest and the opportunities greatest.

176. Chapter 7: Scheduling Strategies for Reference Tree Networks

7.1: The Diffusion Strategy

The simplest imaginable load-balancing strategy that operates strictly on a
local basis is a "difftusion" strategy in which load 1s continually transferred over
each link from the more loaded end to the less loaded end. Under this strategy,
any concentration of load at a particular point will gradually flatten and spread out
with time, much as Impurities diffuse through a crystal lattice. This strategy can be
apphed both to events (prnimarily to balance processing load) and objects (primarily
to balance memory load) The strategy is appealing for its simplicity and elegance,
but the apphcability of the simplest version 1s limited by the fact that it 'gnores
information about relationships between events and objects which could be used to
make better scheduling decisions Nevertheiess, it does begin to address the
issue of bringing into play as many as possible of the resources of a network, and
can be modified to take into account some of the information that the simple ver-
sion ignores. The diffusion strategy is also of interest because it is the current
scheduling strategy on the MuNet, and thus some preliminary performance results
can be reported

The current diffusion strategy for events on the MuNet incorporates a parame-
ter known, for historical reasons, as QFUDGE. The eagerness of events to diffluse
throughout the MuNet is curbed by .the requirement that, in order for an event to
diffuse from a processor to its neighbor, the number of active events on the proc-
essor must exceed that on the neighbor by at least QFUDGE. There are two rea-
sons for dong this. One is to enhance the stablity of the system, and cut down on
redundant communication, by trying to ensure that once an event has diffused to a
new processor, it will not immediately diffuse back The other (s that diffusing
events across a wider set of processors will, in general, increase the amount of

communication that must cccur. A particuler value of QFUDCE reflects a certain

Section 7.1: The Diffusion Strategy 177.

T TG

tradeoff between the benefits ot using more of the system resources and the extra

communication costs incurred.

T7.1.1: Tests for the Diffusion Strategy

It is easy to construct examples where the simple diffusion strategy will exhr
bit very poor performance. The more structured the relationships among the events
and objects that make up a computation, the more likely diffusion is to make "hach"
out of that structure and stretch communication lines to unfortunate lengths.
Infeed, many programs that would actually be writen (assuming they contain
enough parallelism to be able to benefit from multiprocessing in the first place)
would probably suffer under the diffusion strategy. This section includes results
from some tosts contrived to show the diffusion strategy in the best possible light,
to give an indication of what is possible and of what may be the ultimate limitations
of the approach. While the actual computations performed were rather artificial, an
attempt will be made to relate these to actual tasks that one might carry out using
a reference tree network.

In the first test, which we shall call the "asynchronous" test, a controlled
number of parallel tasks is introduced into the network, such that each task com-
putes for a fixed period (this i1s a fixed amount of CPU time, not a fixed period of
real time), notifies a metering actor of its completion, and then restarts execution
from the beginring of the task. The tasks are simple timing loops not performing
any usefu! computation, but the scenario is simitar to that of a sysiem periodically
accepting packets of input data, processing them in some fashion, and emitting out-
put packets.

Yo form an exact analogy with our test, a packet-processing application would

have to have the property that a new input packet is recewved every time an

178. Chapter 7: Scheduling Strategies for Reference Tree Networks

output packet is emitted. Then the "degree of parallelism,” or total number of input
packets currently undergoing processing, always remains constant. Perhaps a more
realistic scenario would be to assume that input packets arrived at regular inter-
vals, irrespective of the rate of generation of output packets. This was not done
on the MuNet due to the difhiculty of generating tasks at precisely timed moments
However, a glance at the graphs presented below should convince the reader that
if packets are presented at regular intervals not shorter than the average interval
between task completions in our test (for the particular degree of parallelism that
is of interest), then the MuNet should have adequate throughput to handle the job

Another test (the “synchronous™ test) conducted on the MuNet is closely
related to this one, except that after the controlled number of tasks is introduced
into the system, all must report their completion to the metering actor, after which
all will be restarted in unison A real-world analogy for this test might be found in a
graohic display system, where at intervals (for example, when a viewpoint
changes) it might be desired to recalculate the position of each point and line on
the screen. Whereas the asynchronous test reveals only the average delay
between the initiation of a task and its completion, the synchronous test is sensek
tive to worst-case behavior, and will perform more poorly than the asynchronous
one if the netwoik takes anomalously long times to complete some of the tasks.

A third test, conducted under somewhat less rigorously controlled cir-
cumstances, was of a program to compute, in a parallel fashion, solutions to the
classical "eight quoens" problem. The problem is to find placements for aight
queens or a standarc chessboard such that no queen could in one move capture
any of the othars. It is clear, from the rules of chess, that every queen must be
placed in a different file, or column, and that one queen must be placed in each file.

Thus a standard a'gorithm for solving the problem is to tentatively place « queen in

Section 7.1.1: Tests for the Diffusion Strategy 170.

s v S A

one of the squares of the first file, and then continue placing queens in subsequent
files in positions where they could not be captured by any queens already placed.
It it is found impossible to place a queen in some file, then the algorithm must back-
track and find a different, previously untried arrangement of the queens already
placed. The algorithm in effect searches a tree of possibiities, where each inter-
nal node corresponds to some partial queen placement. bach such node has eight
sons corresponding to the eight possible placements of a queen in the next file.
Leat nodes represent potential solutions in which all eight queens have been
placed A tree-pruning heuristic in the algorithm causes backtracking when it is
clear that no leat node under the current node could possibly be a solution.

The program tested on the MuNet explores the same tree, but all of a node's
sons that cannot immediately be pruned are explored in paraliel, leading to a max-
imum of several hundred concurrent tasks FEach internal node under which active
exploration is proceeding has an associated object recording the number of active
sons of that node, and the number of solutions that have been found so far. The
solution count is passed back up the tree as computations finish, until when all com-
putations cease the root node has a record of the total number of solutions found.
Thus the eight queen< program does have some structure of interreferencing
objects, and as a result we would expect the simple diffusion strateqy to be less
kind to it and lead to higher communication costs than in our previous tests. An
additional factor pointing in this direction is that calculations in the eight queens
program arc not arUficially prolonged, as in our previous tests; thus the ratio of

communication time to computing time shou'd be higher.

180. Chapter 7: Scheduling Strategies for Reference Tree Networks

mﬁ * T —————

7.1.2: MuNet Performance Peculiarities

The reader will be able to make a more educated assessment of MuNet perfor-
mance results if a few quirks in the operation of the MuNet are explained first. Ip
the MuNet, being attached to a communication link 1s an item of significant CPU time
overhead for a processor, whether any objects or events are being communicated
over the link or not. This s because cf a steady dialogue of status and ack-
nowledgment messages maintained over each link by the processors at its ends,
plus some reference tree protocol messages triggered by garbage collection
activity. Thus, all other things being equal, adding a link to a system recuces the
amount of available CPU' time in the system Comparing one-processor topologies to
two-processor topologies 1s especially hazardous, for on the one-processor net-
works all the CPU time can be devoted to event execution, while on the two-pruc-
essor versions not only does the diffusion strateqgy have its first opportunity to mix
things up, but also the overhead associated with the link 1s feit for the first time.

Amusingly enough, if a processor 1s sufficiently busy executing events, the load
It causes its neighbors usualiy drops! This s because, with a surplus of events to
execute, less time is devoted to garbage collection and generation of status infor-
mation. Thus the performance statistics show a reduction in communication link
overhead for heavily loaded MuNets.

Neither of these performance juirks is an inherent property of the raference
tree network architecture; the cause 1s the slowness of the LSI-11 microproces-
sors in the MuNet, combined with the simphcity of the link hardware which, as a
result, requuies a far amount of atterticn from the processor. The quirks are dis-
cussed here only so that the reader can discount their effects, to the extent that

he feels is justified, in examining the following performance results.

Section 7.1.2. MuNet Performance Peculiarities 181.

T7.1.3: MuNet Performance Results

All MuNet pertormance tests included a special metering actor which recorded
the start and finish times for task executions. tor a variety of reasons, many of
which are uninteresting from the point of view of this thesis, the metering actor
used a special MuNet facility to "wire itselt down" to a particular processor (this
tacility is described in Appendix A) Thus all new tasks were created on this proc-
essor, and all completed tasks ultimately had to report back to it One dividend of
this approach is that it makes possible a tfairly direct comparison to the linear pro-
gramming model, assuming one input link and one output link each attached to the
processor containing the metering actor. Another payoff is that the metering actor
can record the proportion of time spent on /ts processor for event execu'ion, com-
munication, and other overhead (also getting a simultaneous picture of the state of
other processors is harder) This data helps explain some of the performance
resulls recorded, and also provides the basis for crude estimates of performance
parameters for comparisons with the linear programming model

The execution times for tasks used in these tests are quite long In part, this
is due to the slowness of the [SI-11 microprocessors executing them, but it is
likely that similar tasks in real applications would be shorter, even on LSI-11's
Another aspect of the slowness of [SI-11's (s that interprocessor communication
times (the parameter ¢ in Section 6.6.1) are relatively long on the MuNet. To bring

the ratio of communication to compute times closer to what one can realistically

expect in the future, the compute time was artificially lengthened (it is true that
this also make< the performance data look more pleasing). The only case where
this was not done was in the eight queens program.

Figure 7.1 gives an example of the direct output from the performance tests.

As can be seen, the time per event (which is the reciproca' of the throughput)

182 Chapter 7. Scheduling Strategies for Reference Tree Networks

L

1 second

%\ /'/other overhead

s garbage collection
/»// /‘,--‘commumcanon
\ <7 7 _~event execution
] T —_— —
time per event| — R T e ———
/ \
l 1

{asyn(_:hmnmw case 1
100 events
degree of parallelism >

1 second

\S ?

AR
oy

time per evnnt{

;synchronous case Rkl ! s
100 events
degree of paralleiism — >

topology *+ L} {] arupct = 10

['] = processor with metering actor

These graphs show raw performance data obtained from the MuNet on both
the asynchronous test (top graph) and the synchronous test (bottom qraph).
The "degree of parallelism" is the number of evonts simultaneously active in
the system. The "time per event.” or inverse throughput |Is given both in the
aggregate (top curve in each graph) and by components (labeled by name in
the top graph). These components indicate the fractions of CPU time
devoted to different activities on the metering processor only. The graphs
show that. on this three-processor topology. throughput increases by a factor
of between two and three in the presence of enough parailelism.

Figure 7 1 MuNet performance data

starts out at a high level, when the dogree of para'leism s too low to cavse any

Section 7 1.3 MuNet Performance Results 183.

TR TR pATTTRSTam——————.

diffusion to take place, then drops and levels oft at a new, lower value as the
QrUDGE threshold is crossed tor the experiments that were conducted, this

asymptotic value of the time per event did not seem much aftected by the exact

QHUDGE used, only the precipitousness of the drop toward that asymptote
changed Thus It is reasonable to asscclate this asymptotic value with the
throughput of the network, when sufficient events are present, and compare this J
with theoretical predictions derived from the linear programming model This 1s done !
I

in Figure [/ 2 ‘
The reasonable agreement of actual and theoretical results in Figure 7. 2(a)
indicates that the diffusion strateqy is doing about as good a job as can be done in
this case — not a particularly surprnising result. The lack of greater improvement in
actual performance between the ono- and two-processor cases is a result of the
performance quirk discussed earlier, which occurs as the original processor gets its i
first neighbor
The actual experience with parallel topologies shown in Figure 7.2(b) eventu :

ally diverges from the theoretical because of a serious case of this performance
quirk. These curves cannot really be seen in a proper light except by comparison
with the curve labeled "QFUDGE = ~" which shows the performance characteristics

of the topology whan all events are constrained to execute on the metering proc-

essor. As the number of processors passes four (the metering processor plus

three neighbors), throughput drops almost to zero Examination of the detailed

curves for this case reveals that the metering processor is spending virtually all its
time in communication ocverhead. This is because MuNet processors give communi-
cation functions unconditional priority over event execution, with three or four
neighbors, at least one of them is almost certain to have something to send a proc-

esscr a' any groen time Thus there is very little chance for events to execute on

184 Chapter 7 Scheduling Strategies for Reference Tree Networks

T AL s A TR B
'

synchronous
T asynchronous
056
l sec e —
time per event theoretica! - T
1 2 3 4 5
number of processors ———————>»

(a) Stack topology (as shown in Figure 6.7)

QFUDGE = = bl

synchronous

asynchronous —

L9 X - | (R o
sac
time per event theoretical
- 71 T 27 i 3 Aw—.ﬁr.*\#v—g' i
number of processors ————— ——»

(b) Paralle! topology (as shown in figure 6.6)

Parameters used for theoretical model f = 0 8 seconds, ¢ = 30 ms.
These graphs show the actual throughput characteristics of two kinds of
MuNet topologies in the presence of large numbers of concurrently execut-
ing events, for both the asynchronous and synchronous tests. Theoretical
predictions derived from the linear programming model of Chapter 6 are

included for comparison. Anomalies in the lower graph are discussed in the
text.

Figure 7.2: Throughput of the MuNet

the meterning processor. When other processors are busy executing events, this

Section 7.1.3. MuNet Performance Results 186.

eftect is ameliorated somewhat, but it stll eventually makes itself telt

Finally, tigure /7.3 shows the results of executing the eight queens program.
The shape of this curve compares favorably with those of Figure 7 .2(b), a reason
for optimism that the basic diffusion strategy can in fact be useful over some rea-

sonable range of apphcations

100 .
sec SRl
50 L N
sec
time for solution
e I - SRR e Y e
number of processors —— ——————>

topology = parallel topology (as shown in Figure 6.6)
QFUDGE = 10

This graph shows the amount of reul time raquirod by the MuNet to solve the
eight queens problem, using diflerent numbers of processors.

Figure 7.3: kight queens performance results

186 Chapter 7 Scheduling Strategies for Reference Tree Networks

"‘:.7."—{.(.

7.1.4: Diffusion of Objects

The foregoing discussion has concentrated largely on the diffusion of events
through the network to take greater advantage of the computing power available
It is equally reasonable to think of diffusion as a distribution strategy for objects to
take better advantage of the memory space collectively avallable among the nodes
In a network. Of course, even without explicit difftusion of objects, diffusion of
events does imply a certain strategy for distributing objects about a network.
Once an event has diffused to some location where it is to be executed, objects it
accesses must either aiready be present there or be brought there: otherwise,
the location of the event will not have been determined solely by diffusion, but also
by other factors. This latter may well be & preferable state of affairs, but
represents a departure from the pure event diftusion strategy.

The moral of the story is that the distribution strategy for objects cannot be
divorced from ths® for events, and if independent diffusion strategies are to be
used for each, then some poticy must be adopted for resolving conflicts when they
arise. A reasonabie approach would be to use object diffusion to secrete away
little-used objects wherever there is extra memory space, but let frequently
accessed objects be distributed so as to be near the events that use them.

The object distribution question has other facets as well. When and where
should multiple copies of an object be made? What kind of strategy will keep
related objects on the same or neighboring processors, to minimize reference tree
overhead and make sure that once an even'! has been moved to a processor where
there is a copy of one objact it needs, copies of other useful objects wili be avaik
able nearby? In general, it will probably be harder to operate efficiently in an
environment where objects must be distributed due to lack of memory space than

one in which avents must be distributed due to lack of computing power.

Section 7.1.4: Diftusion of Objects 187.

- . - -

Nevertheless, the questions cannot be completely separated, so the next sectior

makes a stab at a better strategy for event and object distribution.

7.2: Extensions to the Diffusion Strategy
7.2.1: Pull Factors

The main problem with the simple diffusion strategy Is not its concept of
spreading the load across the network, but its naive assumption that events (or
objects) are all interchangeable, and that sending one event out in a particular
direction is as good as sending another. In fact, different events may well have
“roots" (/.e., copies of objects they access) in different directions, and if it is
desired to send an event in a particular direction for load balancing, some events
may be much more appropriate for this purpose than others.

To reflect this distinction, one might imagine adding "pull factors" to the basic
diffusion strategy. If an event were being moved closer to copies of the texts of
any objects it referenced, the QFUDGE in effect for moving the event in that direc-
tion would be reduced by the number of such objects times the pull factor. It an
aevent were being moved away from copies of the texts of objects it referenced,
multipies of the pull factor would be added to QFUDGE. The event would thus
experience a "pull” in whatever direction most of the object texts likely to be use-
ful to it might lie. This strategy is analogous (assuming for the moment that the
distribution of objects has been fixed in advance) to attaching a spring between
each event and every object it references, then allowing the events to be pulled
around until equilibrium is reached. A form of our original diffusion strategy can be
incorporated into this analogy by imagining a repulsive force between any pair of

events, encouraging them, other things being equal, to spread as widely as possible

188. Chapter 7: Scheduling Strategies for Reference Tree Networks

e —

across the network.

Just as pull tactors can be used to improve the diffusion strategy for events,
they can be used with the difftusion strategy for objects. Of course, the use of
pull factors alone would tend to pull all objects together onto one processor. Such
a distribution might well demand memory space in excess of that avallable on that
processor, and does not open any very interesting possibilities for the distribution
of the events that use those objects. These problems can be solved by counter-
balancing the attractive force of object references with a repulsive force tending
to move objects away from high concentrations of other objects. The synergy of
these two forces would then cause tightly related groups of objects to cluster
together on the same processor, while objects more tenuously related would be
stored farther away.

To get some idea of the possible effects of this strategy, some simulations
were carried out using a structure of interreferencing objects that would be
characteristic of numerical iterations over two-dimensional arrays of grid points, as
in solutions of laplace's equation or other sets of partial differential equations
Semantically, one may imagine these objects arranged in a two-dimensional gnd
(this says nothing about their actual physical distribution in a network) such that
each ob,ect has references to its neighbors on the north, east, west, and south.
Objects aong the edges of the grnid, ¢t course, have fewer neighbors

The iterative computation to be performed over these grid point objects can be
described in general terns as follows. When an iteration is to begin, this fact is
signalled to each grid point. [ach grid point then sends to each of its neighbors
the current values of the relevant state var.ables at that point. When a grid point
object has received these state variable values from all its neighbors, those values

are combined with the .urrent state at the grid point to produce the naw state

Section 7.2.1: Pull Factors 189.

that will reign at that grid point when the iteration is complete. i
As our running example of object distribution strategies, we will assume a
2x12 array of grid point objects, mapped onto a 4x4 square network of proces-
sors. Since each iteration of the computation results in a side effect (updating the
state variables) to each grid point object, there is httle point in storing multiple
copies of any of these objects. We will assume that the object distribution algo-
rithm is aware of this and keeps only a single copy of the text of each object.

Thus it 1s meaningful to talk about the location of a particular object text.

RS IR R SR L C _-1L-_1,,.- a5

» - » -

AR B 22 S DO R0 TR 3 SREe iy, S I
P' ' L' g | ¥ r v V4 ¥ Vr !{

» <])

IR D o Tidke] (o A 4 38 BT 5 s "
b — 4 — —1 — 7--T-»_ R —-——T— —————tp s

L] - - - - - - - £l - - -
AR (L5 | A Ko Qo

y v |y Lw TRE Bt 80 B T B TR L o (R | P

—— —4%—-

:_l_L | Pt_wke_# N [LJ 4| 4] »| 4] 4] 4
- . - "_7 - v - - » - - -
LR 20 T &) I TR GRS 5 BRI R AR R

Figure 7.4: Ideal distribution of grid point objects

The "obvious" ideal assignment of objects to processors in this example is the

assignment of a 3x3 subarray of grid point objects to each processor, such that

adjacent subarrays are assigned to adjacent processors. This assignmeni is

depicted in Figure 7.4. The 12x12 array of squares in this figure represents the

190. Chapter 7: Scheduling Strategies for Reference Tree Networks

12x12 array of grid point objects. Within the square corresponding to each object
Is shown a picture of the reference tree for that object. The 4x4 array of dots in
each picture represents the 4x4 processor array; the processor marked with an
"x" 1s the processor where the object’'s text is stored. Solid lines mark the
Interprocessor links that comprise the object’'s reference tree. The reader can
verity that in every case this tree includes every processor containing a reference
to the object

Results of applying the simple diffusion strategy to distributing objects are
shown in the series of snapshots in bigure 7.5 Figure 7.5(a) shows the initial
configuration, with all grid points stored on the lower left-hand processor. To obtain
each subsequent snapshot in Figure 7 5 from the previous one, one pass was made
over the entire set of grid point objects (in a randomly determined order), and the
simple diffusion criterion applied to each one to see if it should be moved to a
neighboring processor This is not an exact simulation of the way in which things
would happen on a real reference tree network (presumably there would be more
concurrency), but the results should be fairly similar. In this case, we can see that

the result i1s a series of long, stretched-out reference trees.

Section 7.2.1: Pull Factors 191.

flusion strategy

la - » - - » v la ¥ * ¥

LSO o T LT W N (T . N C N
[T RN € SN Ao NN € SRS [LT A A

, el] PO | e S IR L 2 || i A e [
[0 e e o e T e -« |+ |« |&
-
o L A L L L R T o R O §
A * [| e N » | a | = &
SRS Tt S Pl | (e il [P) Sl N B
P el A R e L L i P o Je TS
g g -
SRS T halag - PR - SRS« SEEe) I PR | el ST { SO
L A A fhe fle ol L P
(S [P A TN U T s P A

Figure 7.5(b): After one pass using the simple di
3 - I - 1L-—— - l‘v L t 3 i 4 \g
2 b e Jlofe fo U fy Je ig & |~ |
by |+ . I T T |
3
. |b 7_1 .L, v IR N e
L. & - l‘:- Loja v e u
]
v

L\—f«d— - LL- -{}-‘:» »—l.—-«t:*—‘ LL L 4

v L |
‘ ‘- N L LS T o
P -
— |l B LS T S L L [
ik (O (O L 1 (] L A
> R | 2 ol el
F—W> —yd— — —-—.T_ —
[L TS C TN EN L |

»

. lEs Ll g fe s v |G

Figure 7.5(c): After two passes using the simple diffusion strategy

192. Chapter 7: Scheduling Strategies for Reference Tree Networks

N R A R P ey ey

g
2 >
g g :
éurbu.umcuuﬂbc‘ﬁrl:m é#bUMEdUJ&ﬁECLm
1Y N) P)) P Y S) Y) N G | S (RS M
EEB&U.LMLL_NMJJEM P.wwu__.uurmﬂku;uﬂ@ﬁwm
sy, Mm =
NN EEE NP EEEMEREE |
= i | _ : _ © ~
0)] 1 1 N | | 6 P Y PP I
] 0| 5 Y)) | - S)][(| | Y i}) |
, 1
i |] S O] S T R B R ENEEREEERE ubm
ol 1]) e) Y Y R | P] | P T O N
ALLE%QLWC:MLWUMB&B“W Y O e | O) [S S R Y
P I O) Y Y O) e)) Y) 1 Y Y)) =]) s »
| ﬁ BEIRE B PR P R o1 [< g
Noedlel (3| D | F]es| | ST J| . Jidin (0 | 2]~ 8|y w,urwu.U) e
Jdlesfal I L d=1ala§ WY dd L dd2al0) = -
; :
3 3 N
8
14
&

Results of using a pull factor along with the simple diffusion strategy are shown
in Figure 7.6. Although many reference trees still become larger than in the (deal
situation, there are certainly several "domains" of neighboring objects that have all
been assigned to the same processor, and the growth of reference trees, although
still far greater than in the ideal is not nearly as luxuriant as in Figure 7.5
Another thing to notice about Figure 7.6 is that the use of pull factors has put
enough of a damper on diffusion that not all processors are being used equally In
fact, several processors on the upper right have not been used at all. Thus lower
communication costs have been achieved at the expense of an increased computa-
tional foad at some processors. Depending on the ratio of these costs, this may or

may not represent a good compromise.

e —T
' - ' , - - - - TI - - -
- -+

l ‘ ‘ ’ - - - - - - -
——t— —
- - » - -
i k» e <}-: aJLt— —<¢ | LA ~ — -
o | » |» [» |« A 0\, X B ¥] ¥ ¥
» - 4»_1 » » - » ‘. ‘-) —i =]
LR S LA - » » - » + Y *
| _ e
:_ 4L—t » l- el (B - » e sk
HHE

: - + A ‘- » » - (- v

R LR IR Y o 7 I T e LY L

.U,._‘AN_TL

RN (RS AR LN SRS £ R S R S AN T

b —

'
o
TN RS LN R0 L70Y T R [e R RN

Figure 7 6(a): After one pass using pull factors

194. Chapter 7: Scheduling Strategies for Reference Tree Networks

31 i T | » T [T
PAR S Sa | ,, W ~ﬁ. L5 [P R e R
flal = | ~i I~ | #32) Moull i Ead Bt B
T T 5 2 H ~1 & sy i K | R AIILIIJ
| | | | s | ' | ‘
= J L | o, . $ | & | | = - » LR | | | » o =l =1 s |
| -« | » | - -_— } |
.M 1 R | 13 71.1!1!¢|41i,!.+ —t —te—t
| A B |y R A
-l - -~ ’FL\') (el] BB 4 d”f - = il = w { m & e - _ - | o
| B R B 2 Sl o E S P A S
- -~ - .&“ 5 \f "ﬂ |%_. 14 - » iw » | | | r‘ P -l | - » - | - -
| S e I A R R A 5 O B R B 6
| fb - =t] b .= M. ' | | m N J~ » - | =
x - - - 4 1”1 1l R F l & ‘?I«l.“i.‘“&! . » | e R
| | q,, . =1 - s »L { { eh { { _ | | ,_ ,,
£S5 H | | 1™ - | » . e >~ | =
TH = o +— 0¢||I|T||n._ﬂil‘#s¢|¢\ A>,I‘Fia 4 & - 7\1.*IWA“A_|"-.%I! B S e e !
| oo oyl | . 8 | | 1
-~ - .’% .bw ’ P | » 2 d“ m | = il || R = . - ol B N R
' + -t , - e e e . . —
| | . . v i = 1 | | | | | . &
| = - 'L_r hh Aw W ..,_Y!I‘r. a‘.ﬂ) . on‘.. L »-— w| -_, : - L, e .
| et S SR el o R R RS FRRE [T B G [
B By G OB T B R R] o B Fd B B
—_—le T 2 . - $— C = . I B T 2 L (R, ————t A — e 4
| | . ' | | ,« pel | | m m ” .“ . M " . vm
e LR) e P R | © | wlial [
e -+ e e e - - el b M . ‘4_,li+|il_fl_
1 1] 1
s 3 } ,., | } \ i » - » 1
ﬁ - - 4 | 4% ’ - o - =] - - @ | - #Fr oL_ | | | r;. "
e O [P s g ;R e =1 5 = : PSR R] Y B | Py
| & H % f | _ A { (. | _ ﬂ,m i 4 1y nl »
N Lo 4 oe) wl oo &) a] T | £ Bt | § R B EEE

After nine passes using pull factors

Figure 7.8(c):

108

Pull Factors

=
R
~
§
<
9
1%2]

AD=AD76 570 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 5/8
REFERENCE TREE NETWORKS: VIRTUAL MACHINE AND IMPLEMENTATION.(U)
JUL 79 R H HALSTEAD NOOOl4=75=C=0661

UNCLASSIFIED MIT/LCS/TR=222
3or 3

-'—-1

III

lll

N

(-
o

) Iz 1= 1

»
2
315
el P
Ko
e R
[.
S

Ly

i
i

2 g

E

—
[-]

I3

T7.2.2: Variable Pull Factors

Pull factors manage a significant improvement over the simple diffusion strat-
egy, but there is still clearly a great deal of room for improvement. Unfortunately,
we are coming to the edge of information that a scheduling algorithm might reason-
ably be expected to be able to discover for itself. In order to make much further
progress, some scheduling intformation supplied either by the user or by some
language processor will have to be included with objects and events. In general, it
ts desirable for this information to be expressed in as topology-independent a tform
as possible, to make it applicable to running the same program on a wide variety of
different reference tree networks. Even within this constraint, the most appropri-
ate form for scheduling specifications will vary. For the array-processing example
dealt with in the previous section, the best form of specification might be an indica-
tion that the grid point objects fit on a Cartesian grid, giving the co-ordinates of
each object on the grid This section presents a simpler scheme that should be
suitable for many less structured tasks.

One problem with pull factors is that every reference contained in an event or
object text exerts an equally strong pull. For the array-processing example given
above, this is not especially a liability, but in most cases some objects referenced
are much more likely to actually be accessed than others. For example, an event
should be pulled hardest by its target object. Other object references in the
event might be passed along for several generations without the corresponding
objects ever being accessed; to the extent that this is true, such references
should exert less pull. Similar remarks can be made concerning pulls on objects.
Certain references contained in a text may be much more likely than others to be

followed by anyone examining the text; the references most likely to be used

196. Chapter 7: Scheduling Strategies for Reference Tree Networks

should exert the strongest pull.

It difterent references contained in an event or object text are to exert
different degrees of pull on it, the question arises of whether the strengths of pull
should be specified in the event or object text being pulled, a particular strength
being assigned to each slot containing a reference, or whether the strength of pull
should be determined by the object being referenced, so that a given object wil!
pull with the same force on every event or object text reterencing it. In other
words, should the strength of pull be a property of the referencer or of the‘
referencee? A strong argument for it being a property of the referencer is that an
object is not equally likely to be accessed over all paths by which it might be
reached. For example, an object named as the target object of an event is cer-
tain to be accessed by the execution of that event. A reference to the same
object, entered in a directory of a file system, might be passed over almost every
time the directory was examined. Even on the occasions when the reference was
retrieved from the directory, another long interval might elapse without the associ
ated object text actually being accessed. It stands to reason that the reference

to this object should exert a much stronger pull on the event than on the directory.

7.3: Communication Craphs

Thus far, the scheduling strategies suggested all have a fairly mechanistic
flavor: a user with a program to run might have the operation of the scheduling
mechanism explained to him and be introduced to the changeable parameters
accessible to him, but then he would be on his own. There would be no guidance
other than experiment to tell the user which parameter values would best accom-
plish what he wants, namely to run his program as quickly as possible. The user is

being asked to inform the system about the nature of his program, so that the

Section 7.3: Communication Graphs 197.

—~d

system can execute it efficiently. But the form of the specification is so alien to
the way in which the user might describe the program that the only way of telling
which of two specifications is the more accurate is to experiment with them and
see which results in faster execution!

The situation faced by a user of this mechanism is similar to that confronted by
a designer of real-time systems whose only means for influencing system behavior
is by assigning priorities to tasks. What the user would like to do is specify the
required real-time behavior, which could then be satisfied by the system in any suit-
able manner. What he ends up doing is tinkering with priorities of tasks until the
system appears to meet the required real-time demands. This is bad because
there s no formal framework to indicate what sets of priorities should be used, and
there is often no assurance that the set finally chosen will really guarantee the
required performance under all circumstances.

Similarly, it would be better if a user of a reference tree network could simply
describe the behavior of his program in reasonably high-level terms, rather than
indulge in tweaking lttle-understood fudge factors. One possibility along these
lines would be for the user (or some programming language processor) to supply a
"communication graph" showing the frequency of communication between pairs of
modules in the program.

The actual way in which communication would happen between a pair of VIM
objects is that an event or a set of related events would access both objects. |f
copies of the texts of the objects were stored at some distance from each other,
then either object texts or events or both would have to be moved, incurring com-
munication costs roughly proportional to the original distance between the object
texts. A communication graph would have a node for each object, and an arc for

each pair of objects that might communicate. Each arc would be labeled with the

198. Chapter 7: Scheduling Strategies for Reference Tree Networks

—— &

communication cost incurred per unit distance that the corresponding pair of
objects were separated. The object distribution problem would then reduce to the
problem ot finding an assignment of objects to processors that minimized communi-
cation costs.

The obvious assignment that minimizes total communication costs is the assign-
ment of all objects to the same processor. In some cases, this might be ruled out
by memory constraints. In most other cases, this would be undesirable because it
would encourage all events using the objects to congregate on the same proces-
sor, resulting in poor load sharing Perhaps some arcs should have negative commu-
nication costs, indicating that the objects involved do not communicate, and turther-
more that if they are assigned to the same processor, events using them will be
competing for CPU time. It must be said, however, that this solution is rather ad
hoc, and that the problem needs more study.

Another aspect of object distribution strategy is the decision as to whether to
make multiple copies of an object. The wisdom of this will depend on the relative
frequencies of accesses and side effects to the object. A good way of conveying
this information in a communication graph might be to label each node with the cost
of dispersing copies of the corresponding object over some unit distance. This
cost would be high if side effects to the object were expected to be frequent;
otherwise it would be lower.

Making the best use of all the information in a communication graph is almost
certainly an NP-complete problem; however, it is an open question what kinds of
approximate methods might be able to produce good enough results to make the
approach worthwhile. Other open questions exist as well. Can a communication
graph be useful to a distributed scheduler each of whose components operates

strictly on the basis of local information, or must global knowledge of the network

Section 7.3: Communication Graphs 199.

topology be available? How can the communication graph concept deal with a
dynamic situation in which objects, and hence potentially nodes and arcs, are being
created and garbage-collected? How is all the detailed information in & communica-
tion graph to be supplied? Clearly communication graphs are currently a long way
from being a practical medium for scheduling specifications, but the development of
some such mechanism for allowing the nature of a program to be communicated

more straightforwardly is an important goal for the future.

7.4: Summary

This chapter, more than most in this thesis, raises many more questions than it
answers. A simple scheduling strategy, based on "diffusion" of events and objects
to less-loaded processors, seems to do a reasonable job of load balancing, but
does not obtain any guidance from the relationships among data items and may
therefore increase communication costs disastrously. An example of such a disas-
trous increase is given in Figure 7.5 Incorporation of fixed or variable "pull fac-
tors" ameliorates this situation considerably (see, e.g., Figure 7.6), but still leaves
an undesirable situation in several respects.

One attribute of the "pull factors" solution which might be regarded as a
feature is that it provides a large number of parameters through which the user
can twiddle the performance of the system. Unfortunately, the relationship
between the structure of a program and the optimum values of these parameters is
often obscure. The concept of communication graphs is an attempt to bring the
level of scheduling specifications closer to the level at which the user thinks about
his program, but many details of both the structure and use of such graphs remain
to be worked out. Whether communication graphs or pull factors are used, how-

ever, there is still a large amount of scheduling information to supply. How much of

200. Chapter 7: Scheduling Strategies for Reference Tree Networks

g

that can be calculated by some language processor scanning the user's program,
and how much must be supplied by the user himselt?

tven though the introduction of pull factors works a marked improvement in the
performance of the diffusion strategy, many situations are still treated in far from
the ideal manner (compare Figures 7.6 and 7.4). It is hard to know what improve-
ments over the pull factor method can be achieved by using communication graphs
or the like, since the performance achieved using these depends on just how the
information contained in them is analyzed and used by the network. It is reason-
able to conjecture, though, that no such method will match the results of doing the
distribution by hand, as in Figure 7.4.

To keep from being too pessimistic about this state of affairs, it (s worthwhile
to make an analogy with paging strategies on virtual memory systems. These strat-
egies, too, must make object distribution decisions (between primary and secondary
memory) and respond to changing conditions. These strategies, too, attempt to
make decisions based on the observed behavior of running programs, and these
strategies, too, could benefit from being told more about the exact nature of a pro-
gram being executed. Yet in most cases programmers have refrained from fiddling
with the virtual memory strategy or taking matters out of the paging system's
hands by doing their own input/output explicitly. There are several reasons for
this. One is that for many large systems of programs, the optimal scheduling strat-
egy is no less obvious to the system than to the user. Another is that paging
strategies do well enough that it is ordinarily not worthwhile for the programmer to
try to squeeze that last ounce of performance from the system. With hardware
costs decreasing, this argument becomes more and more compelling. Although there
are several ways in which the virtual memory problem is less complicated than the

reference tree network scheduling problem, a reasonable research goal is to make

Section 7.4: Summary 201.

T

the two reasons given above valid statements about reference tree networks as
well. Then users can go back to getting their algorithms right, rather than fussing
with tunable system parameters.

The performance results presented in this chapter are very preliminary, but at
least they are not discouraging. Much work with more substantial applications
remains to be done to determine the adequacy, or inadequacy, of even the current
scheduling strategies. Beyond this, it must be seen if reasonable scheduling strat-
egies can be built around the cherished reference tree network philosophy of
decisionm-making on the basis of local information only, or whether more global infor-
mation and interaction is required. Although it would be nice to have a beautiful
theory to answer these questions, it seems that a great deal of experimentation

lies ahead.

202. Chapter 7: Scheduling Strategies for Reference Tree Networks

Chapter 8: Conclusions and Directions for Future Research

The future development of computer systems will be influenced by two thrusts
of technological progress: the ability to build circuits which are faster, and the
ability to build circuits which are bigger (i.e., which have greater numbers of logicat
components). The former thrust will lead to continued improvement in what is
attainable using architectures that are now in vogue, but the latter thrust poses a
challenge to develop whole new architectures. If the construction of a computing
system with a greater number of components is to render it more powerful, there is
no choice but to design a system in which more and more operations can be per-
formed concurrently. In an architecture based on strict sequentiality, once the
logic necessary for all functions has been provided, it is difficult to achieve any
further speed increase by adding more logic, since what matters is the total
number of operations needed to implement a function, not the variety of physical
gates which perform those operations.

The technological opportunity to build more complex circuits, if they can be put
to use, can be exploited to some extent by switching to architectures which are
internally parallel, even though they still give a superficial appearance of sequen-
tiality. However, to take full advantage of the fruits of the very-large-scale
integration (VLSI) revolution, the user must be introduced to the worid of con-
currency and encouraged to express his algorithms in as parallel a fashion as pos-
sible. The purpose of the research described in this thesis has been to develop
methodologies for accomplishing this.

More specifically, this research may be described as a search for ways of
making multiprocessor systems usable. The word "multiprocessor" is intended to

conveay, first of all, the presence of concurrency, and secondly, the idea that

Chapter 8: Conclusions and Directions for Future Research 203.

general-purpose processing is going on. This is not meant to imply any restriction

on the physical incarnation of that processing power, but is intended to narrow our
scope to include only systems capable of general-purpose computation. The archi-
tecture of speciakpurpose VLS| systems, for example, although an important topic
in its own right, is not a topic addressed by this thesis.

Within the sphere of general-purpose multiprocessor systems, the strategy of
this thesis has been to make a broad cut across the entire domain, covering both a
proposed user interface to such systems, an implementation supporting that inter-
face, and a preliminary evaluation of that implementation. It is appropriate to

review the progress made in each of these areas.

8.1: The VIM Virtual Machine

The VIM virtual machine is only one of many that have been suggested for
parallel computation: communicating sequential processes[19] and data flow[7,30]
are notable examples of alternatives. On the more concrete side, the virtual
machines presented by modern timesharing systems, such es MULTICS[31] or
UNIX[28], deal with interaction between concurrent activities. These systems,
however, frequently either fail to provide facilities powerful enough to support all
the kinds of interaction that might be desirable (the limitations of UNIX pipes are an
example of this), or provide facilities difficult to support on many multiprocessor
systems (e.g., memory shared between processes). A final virtual machine for
parallel computation, the actor machine of PLASMA[18], is the closest cousin to
VIM. The design of VIM was heavily influenced by the actor model of computation,
and in fact VIM may be thought of as a reduction to practice of many of the con-
cepts embodied in the actor model.

The interrelationships of the various parts of VIM have already been discussed

204. Chapter 8: Conclusions and Directions for Future Research

in Chapter 2, particularly in Section 2.7, and will not be further deait with here. By
way of comparison with other alternatives, however, it is worth recapitulating the
advantages of the VIM approach. First of all, VIM is simple and tractable. It can
be described precisely by the blackboard interpreter ot Section 2.5; that inter-
preter could be modified easily to cover the enhancements proposed in Chapter 3.
The essential simplicity of VIM stems from its roots in the mu calculus[156,38], a
simple syntactic formalism for message-passing computation.

Second, VIM is flexible and adaptable. This flexibility manifests itself in two
ways: in the ability to create complex structures such as sophisticated synchroni-
ration operators out of the basic set of VIM primitives, and in VIM's amenability to
extension to support additional demands imposed by desires to implement various
operating system functions, as illustrated in Chapter 3.

Third, VIM is designed for efficient execution on hardware of a familiar nature.
Although it does support actor-style message passing and a garbage-collected
space of objects, two concepts that have not often been associated with run-time
efficiency, VIM also allows direct access to object texts and permits the compost
tion of several functions into the text of one type object, obviating some
message-passing activity at the very lowest level. As time passes and hardware
designs progress, this attribute of VIM may well decrease in importance.

Finally and most importantly, VIM is a powerful and effective tool. Its orienta-
tion toward objects corresponds with various modern views about how to structure
programming systems[5,24], and its ability to handle parallelism suits it ideally to
multiprocessor systems. The various guarantees that VIM makes with respect te
the co-ordination of event executions and object accesses reduce the range of

possible execution histories a programmer must consider and thereby simplify his

Section 8.1: The VIM Virtual Machine 206.

task.

VIM is hardly a finished product, though. The operating system support exten-
sions discussed in Chapter 3 need to be worked out, implemented, and reconciled
with the ideas set forth by Gula[13,14] on structuring a MuNet operating system.

Significantly, "machine-level" VIM is not a very easy language tc program in,
despite the various simplifying guarantees made by it. This is primarily because
many of the machine-level concepts are at too low a level for everyday use. The
need to avoid resource requests after performing a side effect during the same
event execution, for example, is a constant distraction. Additionally, many useful
concepts, such as procedures and environments, must be synthesized out of more
primitive facilities available at the machine levei. Thus some higher-level program-
ming language, such as MuSpeak[34,35], is vitally needed to make practical use of
VIM. An interesting question, in fact, is the extent to which the nature of the
basic VIM execution environment should be visible to a user ot such a language. It
cannot be argued that the simplifying guarantees made by VIM actually uncompli-
cate the programmer's task unless it can be shown how those guarantees affect
the environment in which the programmer works. If all characteristics of VIM are
hidden snugly beneath a rather different-appearing programming language, then the
use of VIM may be a convenience to the language implementor, but can be of no
concern to the user.

Use of the VIM virtual machine can help make a multiprocessor system simple,
flexible, efficient, and powerful. This is true whether or not any of the other imple-
mentation mechanisms suggested in this thesis are employed. However, the design
of languages to serve as the primary interface between programmers and such a
system remains an open (and important) research question. The extent to which

the characteristics of VIM are visible through this interface will help determine the

2086. Chapter 8: Conclusions and Directions for Future Research

R o e g e o

PO

real significance of the VIM concept as a good organization for multiprocessor sys-

tems.

8.2: Reference Trees

Reference trees are the principal implementation mechanism proposed in this
thesis. Although the VIM virtual machine could be used on any kind of computer
system, reference trees only make sense on certain architectures, notably those
discussed In Section 41 Then aga.n, on these architectures, reference trees
could be used to support an environment quite different from VIM.

The principal attractions of the reference tree mechanism are its simplicity and
completeness: simplicity in that the various machinations of the reference tree
scheme, although not necessarily intuitively obvious, are nevertheless uncompli-
cated; completeness in that all essential object management functions (support for
side eftects, multiple copies, garbage collection) can be handled easily. The princi-
pal habilities of the reference tree scheme are in the areas of reliability and, possi-
bly, efficiency. The efficiency of a system using reference trees will be a strong
function of the shapes of refaerence trees that actually arise in the system. More
work needs to be done to determine the effect of various scheduling strategies on
the shapes in which reference trees grow.

To the extent to which reliability and efficiency problems exist, many of them
can be remedied by complicating the basic reference tree scheme. Some such
modifications are suggested in Section 5.4 and in forthcoming work by Baker[2].
Ultimately, reference trees may need to be only one of many object management
strategies in a multiprocessor system. Reference trees should be espocially good
for objects known only in certain local areas, a category which probably includes

the vast majority of objects. Objects known more or less globally across the

Section 8.2: Reference Trees 207.

e

system might benefit from being managed using a different strategy.

Finally, the usefulness of reference trees depends heavily on the contormabil-
1ty of a physical network topology to the model given in Section 4.1. Although net-
works of this sort have much to recommend them, technological progress might ulti-
mately favor a different kind of topology. If a network cannot be viewed as a col-
lection ot nodes, each of which has "only a few" neighbors, then the usefulness of

refarence trees on that network will be greatly diminished.

8.3: Performance of Reference Tree Networks

This thesis can hardly be considered a definitive study of the performance of 1
reference tree networks. The performance resuits reported here are too primitive
to form a basis for comparison with Cms or any other existing system. This is
partly because of the paucity of applications studied, partly because of the many
] improvements that can still be made in the MuNet implementation, and partly
because of the large cost, on LSI-11's, of implementing such tunctions as message
input and owtput, garbage collection, and free storage management. About all that
can be said at this point is that in some cases the scalability promises of the archi-
tecture have been realized, and in others there is still much work ieft to do. Many
different sets of mplementation choices and scheduling strategies remain to be
explored. Beyond that, the really important performance characteristic of a system

is that obtained in actual use, not that exhibited by toy benchmarks. In order to

observe this, the system must be made sufficiently serviceable to attract ordinary H

users. This implies not only the development of scheduling strategies that are at

least adequate, but also of a congenial programming language and system software
to support it. Only at this point could a reference tree network be considered truly

a going concern

208. Chapter 8. Conclusions and Directions for Future Research

8.4: Additional Directions for Further Research

There s virtually no area touching multiprocessor systems that could not
benefit from additional research;, herewith a brief list of Issues that relate to the
material in this thesis. The first is the development of applications for reference
tree networks. Frameworks for general-purpose applications such as timesharing
and simufation, and paralliel algorithms for special purposes such as alpha-beta tree
search, or solution of partial differential equations, are both needed.

Work on some of these applications may in turn call into question one of the
design decisions underlying the construction of reference tree networks: the
invisibility of network topology, interprocessor communication, and monitor cpera-
tions such as garbage collection. Schemes for making visible these aspects of
system operation may help improve the efficiency of certain critical algorithms,
although in general such low-'evel details should remain hidden so as not to distract
the programmer

Another important research area may be opened up by the advent of easily
tailored speciakpurpose VLS| circuits. ldeally, in a system where, say, matrix mult+
plication is an important operation, it should be possible to hook up and use a
specialpurpose matrix multiplier without either disrupting operation of the remainder
of the system or needing to make extensive software changes. The specification
of constraints on the design of both the system and the special-purpose VLSI cir-
cuitry so that this can be done in a clean and general fashion can be expected to
be an important research question for the future. This can be regarded as a
subquestion of the more general question of how best to incorporate special
purpose VLSI into general-purpose systems.

Finally, the multiprocessor systems discussed in this thesis, although they do

Section 8. 4. Additional Directions for Further Research 209.

- e’

not depend crucially on the assumption, assume a fairly tight degree of coupling
between components Beyond the merely physical degree of coupling, it is
assumed that all elements ot the system are under the control of one operating
authority, and that physical security of the system is not an issue. Applying the
tecnnology developed in this thesis to more of a “"distributed computing” context
where these assumptions may not be vaild leads to whole new research issues
involving protection, awareness of physical system structure, and co-ordination of

independent authorities for name generation and other functions.

8.5: Final Conclusions

The marriage ot VIM, reference trees, and some hardware has already pro-
duced a system, the MuNet, which is capable of improving its performance by mak-
ing use of multiple processors. Although much more work remains to be done, there
is reason to be optimistic that the MuNet and its descendants will eventually be
able to exhibit acceptable performance over a wide range of tasks. The most
important feature of these systems, however, will not be their efficiency but their
interface with users and programs. The introduction of a parallel environment
brings with it a whole new set of concerns for the programmer. Our response to
this situation must be to remove as many as possible of the old concerns, leaving
the programming job still at a tractable leve! of complexity. Thus a good system
for programming a multiprocessor network must perform as many housekeeping
chores (such as communication and garbage collection) as possibie automatically,
freeing the programmer’'s mind for other worries.

Whether or not reference tree retwor! ;s are the wave of the future, the tech-
nological arguments favoring use of multiprocessor systems are irresistible. Some

methodology for using them, based on tin fundamental design considerations that

210. Chapter 8: Conclusions and Directions for Future Research

P

underlie reference tree networks, must be developed.

Section 8.5: Final Conclusions 211,

10.

AR

12.

13

14.

212.

REFERENCES

. Backus, J., "Can Programming be Liberated from the von Neumann Style? A

Functional Style and its Algebra of Programs.," Communications of the ACM,
August 1978

. Baker, C, "Reliable Distributed Object Management Schemes," S M. thesis,

Department of tlectrical Engineering and Computer Science, M.L.T., in
preparation

. Baker, M., Actor Systems for Real-lime Computation, LCS TR-197, Laboratory

for Computer Science, M1 T, March 18/48

. Batcher, K £, "Sorting Networks and their Applications ., Spring Joint Com-

puter Conference, 1968,

Bishop, P, Computer Systems with a Very large Address Space and Garbage
Collection, LCS TR-178, Laboratory for Computer Science, MIi.T, May 19/77.

Bobrow, D, and Wegbreit, B, "A Model and Stack Implementation of Multiple
Environments." Communications of the ACM, October 1973

. Dennis, J., and Misunas, D, "A Preliminary Architecture for a Basic Data-Flow

Processor," Second IEEE Symposium on Computer Architecture, New York,
January 1975

Eswaran, K, et a/, "The Notions of Consistency and Predicate Locks in a
Database System," Communications of the ACM, November 1976.

Farber, D J, "A Ring Network," Datamation, February 19756,

Farber, D.J, et al, “The Distributed Computing System," Proceedings of the
Seventh Annual IEEF Computer Society International Conference, February
1973.

Gray, J, et al/., "Granularity of Locks and Degrees of Consistency in a
Shared Data Base.," IBM Research Report RJ 1654, September 1976,

Greif, 1., Semantics of Communicating Parallel Processes, MAC TR-164, Proj-
ect MAC, M I.T., September 19756

Gula, J., "Operating System Considerations for Multiprocessor Architectures,"
Proc. Seventh Texas Conf. on Computing Systems, November 1978.

Gula, J, "A Distributed Operating System for an Object Based Network," S.M.
thesis, Department of Electrical Engineering and Computer Science, M.IL.T.,
June 1979.

References

g——

16.

16.

17.

18.

19.

Halstead, R., Multiple-Processor Implementations of Message-Passing Sys-
tems, LCS TR-198, Laboratory for Computer Science, M.I.T., February 1878.

Halstead, R, "Object Management on Distributed Systems," Proc. Seventh
Texas Conf. on Computing Systems, November 1978.

Henderson, D.A., The Binding Model: A Semantic Base for Modular Program-
ming Systems, MAC TR-145, Project MAC, M.I.T,, February 19756.

Hewitt, C., "Viewing Control Structures as Patterns of Passing Messages,"
A.l. Working Paper 92, Artificial Intelligence Laboratory, M.I.T., April 1976.

Hoare, C.A.R., "Communicating Sequential Processes," Communications of the
ACM, August 1978.

20. Kahn, R.t., "Resource-Sharing, Computer Communication Networks," Proc.
IEEE 60(1), November 1972.

21. Kernighan, B., and Ritchie, D.,, The C Programming language, Prentice-Hall,
Englewood Cliffs, N.J., 1978,

22. Lamport, L., "Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem," Massachusetts Computer Associates Technical Report CA-7603-2911,
March 1976.

23. Learning Research Group, Personal Dynamic Media, Xerox PARC Report
SSL76-1, 1976.

24. Liskov, B., et al., "Abstraction Mechanisms in CLU," Communications of the
ACM, August 1977.

25. McCarthy, J., et al., LISP 1.5 Programmer's Manual, M.1.T. Press, Cambridge,
Mass., 1962.

26. Metcalfe, R., Packet Communication, MAC TR-114, Project MAC, M.LT,
December 1973.

27. Metcalfe, R., and Boggs, D., £thernet: Distributed Packet Switching for local
Computer Networks, Xerox PARC Report CSL756 7, November 1975

28. Redell, D., Naming and Protection in Extendible Operating Systems, MAC TR-
140, Project MAC, M.I1.T,, September 1974.

29. Ritchie, D., and Thompson, K., "The UNIX Time-Sharing System," Communica-
tions of the ACM, July 1974.

30. Rumbaugh, J., A Paralle! Asynchronous Computer Architecture for Data Flow
Programs, MAC TR-160, Project MAC, M.I.T., May 1975.

References 213.

31.

32.

33.

34.

35.

36

37.

38.

39.

Saltzer, J., ed., Introduction to Multics, MAC TR-123, Project MAC, M.I.T.,
February 1974.

Stearns, RE., Lewis, P.M., and Rosenkrantz, D.J., “Concurrency Control for
Database Systems," IEEE Symposium on Foundations of Computer Science
CH1133-8C, October 1976.

Strachey, C., and Wadsworth, C.P, "Continuations: A Mathematical Semeantics
for Handling Full Jumps," Technical Monograph PRG-11, Oxford University
Computing Laboratory, January 1974.

Strovink, E., "Compilation Strategies for Multiprocessor Message-Passing
Systems," Proc. Seventh Texas Conf. on Computing Systems, November 1978

Strovink, E., “"Compilation Strategies for a Multiple Processor Message-
Passing System" S.M. thesis, Department of Electrical Engineering and Com-
puter Science, ML.T , June 1979

Swan, R.J., Fuller, SH, and Siewiorek, DP.,, "Cm= — A Modular, Multi
Microprocessor," AFIPS Conf. Proc. 46, 1977.

Ward, S, "The MuNet: A Multiprocessor Message-Passing System Architec-
ture,"” Proc. Seventh Texas Conf. on Computing Systems, November 1978.

Ward, S, and Halstead, R, "A Syntactic Theory of Message Passing" to
appear in Journal of the ACM.

Ward, S., Halstead, R, Gula, J.,, Strovink, £., and Baker, C., "MuNet implemen-
tation Notes", internal memoranda, M.I.T. Laboratory for Computer Science,
1978.

Wulf, W., and Bell, C.G., "C.mmp — A Mult-Mini-Processor," AFIPS Conference
Proceedings, Falt 1972,

Wulf, W., et al, "HYDRA: The Kernel of a Multiprocessor Operating System,”
Communications of the ACM, June 1974,

References

Appendix A: The MuNet Virtual Machine

The virtual machine supported by the MuNet is in some ways an elaboration,
and in other ways a subset, of the VIM machine discussed in Chapters 2 and 3 of
this thesis. The differences reflect the pragmatics of optimizing use of the MuNet
hardware (a collection of LSI-11 microprocessors), and of decisions intended to
expedite the construction of the initial implementation. The MuNet also bears the
scars of having been produced by an evolutionary process; several aspects of the
MuNet would be constituted differently in any re-implementation. The purpose of
this appendix is to document the current MuNet virtual machine, and give some
examples of both good and bad ideas in reference tree network architecture. The
appendix is not designed to be self-contained, but should be intelligible in combina-
tion with Chapters 2 and 3 of this thasis. Further details about the MuNet exist as

internal implementation notes[39].

A.1: Object References

On the MuNet, an object reference occupies a 16-bit word." Ordinary object
references are pointers to words in memory and hence, on the LSI-11, are always
even numbers. This fact opens the door for the use of odd numbers as special
"raserved” object references. An odd number appearing where a reference is
expected is not a reference to any particular object, but is a distinguishable

entity, differentiable from all other odd numbers and from all ordinary object

"This is a local name, valid only on thﬂgrocessor where the reference exists;
it does not imply any limitation, such as 2", on the number of objects that could
exist in the network. It is thus incorrect to say that the MuNet has an "address
space" of only 16 bits. Taking into consideration the size allotted in the MuNet for
global names of objects, the MuNet "address space" can be considered as large
as 40 bits.

Section A.1: Object References 216.

references. In certain contexts, specific odd numbers have special meanings to
the system.

As Iin VIM, each ordinary MuNet object reference has an associated text, which
may be accessed using suitable monitor calls. In addition, a MuNet object refer-
ence has other attributes, independent of its text. Since the only facilities that
exist for changing an object operate by changing its text, these other attributes
must be determined when an object is created, and cannot be changed thereafter.
Every MuNet object has two such attributes. The first is its type, which in the
MuNet is a separate property of an object, not simply a distinguished reference
within its text, as it is in VIM (see Figure 2.3). It follows that every MuNet object
has a type, whether or not the object is ever used as a target object in an event,
and that an object's type must be specified when it is created.

Experience with the MuNet shows that this is an inferior way of handling
types. Not only does it rob the user of the power to change an object’'s type, but
the special treatment for types complicates various sections of monitor code and
increases the space and time overhead for object management. Finally, it forces
objects to have a type even where (as in the case of purely "data" objects) the
VIM type concept is not exactly what is desired, leading to further wastage of time
and space.

The MuNet distinguishes several classes of objects according to their types.
General objects are most like the target object shown in Figure 2.3, the type of a
general object is a reference to another object. This object, however, cannot be
another general object, but must be a type object, whose type is the reserved
intager 6. If the "closure" aspect of general objects is not needed, a target
object may be a function object, whose type is the reserved integer 3. When a

target object is a function object, the machine code to be executed is found

216. Appendix A: The MuNet Virtual Machine

directly in the text of the function object. Thus a function object is analogous to
a VIM target object whose type is a reference to itself. Finally, the reserved
integer 7 may be used as an object's type to denote a data object which should
never be used as a target object. No other odd integer may be used as a type;
these other numbers are reserved for use by the implementation to distinguish
objects from events and from other entities used internally.

The other permanent attribute of an object is a Boolean device flag. If an
object's device flag is set, the text of the object cannot be moved from the loca-
tion where the object was created. Therefore, an event that requests access to
the text of such a "device object" is forced to execute on the processor where
that text is — the text cannot be moved to where the event is. Device objects
are intended to model peripheral devices which exist on particular processors. An
event whose execution directly involves transfers of data to or from a peripheral
must execute on the processor where the peripheral is. |f the target object used
for final transactions with the peripheral is installed as a "device" on the appropri-
ate processor, this outcome will be ensured (since gtext access to the target
object is requested in the course of beginning execution of an event). A mechan-
ism for creating device objects will be discussed later.

Although devices are quite a "dirty" mechanism, they are extremely useful any
time it is desired to force execution of a particular event in a particular place.
This is the case not only when interacting with peripherals, but also for perfor-

mance monitoring and other kinds of intervention in the activities of the MuNet.

Section A.1: Object References 217.

wree,

A.2: Object Texts

An object text within a MuNet processor is represented as a series of words
in memory. A text begins with a header word, followed by a sequence of r words
containing object references, followed by w words containing uninterpreted binary
data (see Figure A.1). The low-order byte of the header word contains the quan-
tity r, while the high-order byte contains the quantity r+w. Since this quantity
must be representable in a byte, the length of object texts may not exceed 255
words. Larger aggregates of data must be represented as several objects joined

together using object references.

R —‘]
header word F rew r 1
" = -
r references
- -
= —
b —
w words
— —

Figure A.1:. Format of MuNet object texts

If an object is a function or type object, it is presumed to contain executable,
position-independent PDP-11 machine code starting at the beginning of the "binary
words" portion of its text. Control will be transferred to the beginning of this code
whenever the object's code is invoked in executing an event. The ability to
include references along with actual machine code in an executable text provides

a useful way of making available references (e.g., to other parts of the program)

218. Appendix A: The MuNet Virtual Machine

n"’"‘—-__._w...w_ e —

which may be needed during event execution.

A.3: Events

An event has the same format as an object text: it begins with a header
word, followed by a series of references (of which the first is viewed as the refer-
ence to the target object), followed by a (possibly null) series of binary words.
When an event is to be executed, a pointer to the event is placed in the PDP-11
register rO. A pointer to the text of the target object is then placed in r1 (note
this Is not necessarily the text that contains the machine code to be executed).
Next, control is transferred to the executable code associated with the target
object.

While executing, an event can call on monitor services via jsr or jmp instruc-
tions through transfer vectors at absolute locations in low core. The calls available
will be enumerated presently; some further conceptual differences between VIM
and the MuNet should be discussed first.

In VIM, every event is created by a newev request, eventually executes suc-
cessfully, and then becomes inactive. If an event causes additional events to
further the progress of a computation, it must create each such event by means of
another call to newev. It is possible to use this mode of operation when program-
ming the MuNet, but for the sake of efficiency, an alternative has been made avail-
able.

Many events cause exactly one event to carry on the computation; i.e. In
most cases, the thread of event causality is basically linear, with relatively few
forks and joins. In this situation, it is desirable to reuse the storage allocated to
the current event, rather than go through the overhead of throwing it away and

allocating a new event. Thus if execution of an event on the MuNet ends with a

Section A.3: Events 219.

ML oy i e s o o e

nextev request, rather than a done, the current event is not thrown away, but
remains active and is enqueued for re-execution. Unless it was the user's intention
to create an endless loop, he will presumably have modihed the contents of the
event so that it now calls for the next step in the computation; /.e., he will have
written into it what would otherwise have been written into an event created using
newev, had that alternative been adopted.

A few additional comments about the nextev mechanism are appropriate. First,
writing into the current event must be considered a side effect (in the sense that
it would set the blackboard-interpreter side-effect flag ¢ to true), and consequently
must be done after all resource requests have been made if an aborted event
has been modified, re-execution of the event is not likely to yield correct results.
Second, the nextev mechanism is not inconsistent with forks — it is entirely reason-
able to create several new events using newev and also reuse the current event
by calling nextev. Third, an evxpnd primitive (described below), analogous to
objxpnd, is provided for handling situations where reusing the current event may
require increasing its size.

Another note regarding events in the MuNet — every event has implicitly asso-
ciated wit it an operating system object, accessible via the getos and setos moni-
tor calls. The idea behind operating system objects is to make available the kinds
of capabilities associated with process objects in chapter 3 of this thesis; how-
ever, none of these functions is currently implemented on the MuNet.

A second difference between VIM and the MuNet is that in VIM, gtext and
locktext requests serve only to reserve access rights to object texts; no values
are returned. When an executing event actually accesses data in an object text,
it does so by supplying a reference to the object along with identification of a siot

in the object text. The implementation is then responsible for finding the text in

220. Appendix A: The MuNet Virtual Machine

I T

k!

core and pertforming the desired access. lor the sake of efficiency, MuNet gtext
and locktext requests return a pointer to the relevant text, which may then be
accessed directly using PDP-11 Indexed addressing modes. This pointer is only
good for the remainder of the current event execution, since the object text might
be moved betore any subsequent execution. Any subsequent execution wishing to
access the object will have to issue another gtext or locktext request in any
case, and should use the text pointer returned from that request.

Unfortunately, the objxpnd request, which increases the size of the area allo-
cated to hold a text, may need to move the text in order to fulfill its mission. Thus
objxpnd returns a new text pointer which obsoletes any text pointer previously
obtained for the object during the same event execution. The resulting potential
for confusion i1s mitigated somewhat by the infrequency of objxpnd requests, but it
is fairly clear that, in the presence of appropriate hardware support for accessing
texts, a policy of not explicitly releasing text pointers is simpler and cleaner.

A third departure from VIM results from the nature of the LSI-11 hardware base
for the MuNet. In VIM, the legality of various operations (such as aborting an
event) is contingent on the setting of the side-effect flag ¢, indicating whether any
side effects have been performed by the event in question. The lack of memory
management hardware on the MuNet [SI-11's precludes any attempt to maintain
such a flag automatically. It would be possible to construct a monitor call setting
the side-effect flag — the user could then invoke this call upon performing a side
effect However, this approach was not taken, and in fact no side-effect flag is
explicitly maintained for events in the MuNet. This means that the state of an
event's side-effect flag cannot be used to determine the legality of aborting it.
MuNet programs should st!' follow the same rules as if the side-effect flag were

maintained and checked, though; thus it is still unwise, for example, to make a

Section A.3: Events 221.

gtext request after having performed a side effect. The MuNet monitor cannot sig-
nal an error it this (s done, since it has no knowledge of whether a side effect has
been performed Rather, this discipline must be followed by the user, or he risks
obtaining incorrect results.

The need to be able to abort events is as real on the MuNet, however, as it is
in VIM Since there is no explicit side-eftect flag on the MuNet to indicate whether
aborting an event is permissible, events on the MuNet can only be aborted at
places where it can be inferred that the side-effect flag, had it been maintained,
would be false This inference can be made any time an event makes a request
which, according to the rules of VIM, is only legal when the side-effect flag is false.

Thus events can be aborted only while trying to make such requests.

A.4: Monitor Calls
A listing of MuNet system calls follows. In each case, a schematic form of the
system call (e.g.. gtype(ref) returns(ref)) is given, along with the actual PDP-11

calling sequence and a description of the effect of the call

gtype(ref) returns(type):
mov Qref type

returns (moved into type) the type of the object referenced by ref.

gtext(ref) returns(textptr):

mov ref,rO
Jsr pc,@#¥gtext v
mov ri, textptr

obtains sharable (read-only) access to the text of the object referred to by
ref. and returns a pointer to that text. gtext may not be called following a
side effect.

222. Appendix A: The MuNet Virtual Machine

locktext(rer) returns(textptr):

mov ref,r0
Jsr pc,@#locktext v
mov r textptr

like gtext in every respect, except that it obtains non-shared (read/write)
access to the text in question.

newob j(type,size) returns(ref textptr)

mov type,rO

mov size,r1

Jsr pc,@#newob) v
mov rO,ref

mov r textptr

creates an object with type type and size words of text (not counting the
header word). A reference to the newly created object is returned, along
with a pointer to the new object's text. newobj may not be called following
a side eflfect.

objxpnd(ref,size) returns(textptr):

mov ref,rO

mov size,r1

jsr pc,@#®objxpnd v
mov ri,textptr

ensures that the area allocated to storage of the text of the object
referred to by ref is at least large enough to support a text of length s/re
words (not counting the header word). If the area allocated to the object
text is not large enough, the text is moved to a new, suitably large location.
The textptr returned is a pointer to the text after any required relocation,
and supersedes any textptr previously obtained for the same object during
the same event execution." On the presumption that a caller of objxpnd
intends to modify at least the header word of the text, objxpnd performs an
Implicit locktext on the object. objxpnd may not be called following a side
effect. However, since objxpnd does not actually modify the text, calling it
is not considered a side effect

"A better approach would be to have objxpnd never return a textptr, but
instead abort the requesting event if the text is moved The text having been
moved to a more spacious location, the objxpnd would presumably succeed upon
the next execution of the event. Aborting the event when a text is moved, how-
evar, forces ali textptrs used by the event to be re-obtained, thus avoiding the
possibility of needing to discard a textptr because of a subsequent objxpnd, and
the hazards of negligently continuing to use such a textptr

Section A 4: Monitor Calls 223.

RN e

newev(nwords) returns(evptr):

mov nwords,r1
Jar pc,@#newev v
mov rl,evplr

creates a new event nwords words long and returns a pointer to it in evptr.
The new event will be released for execution only if execution of the
current event terminates successtfully. As with a newob) request, a newev
request may not be made following a side effect.

evxpnd(nwords) returns(evptr):

mov nwords,r1
Jsr pc.,@fevxpnd_v
mov ri,evptr

evxpnd is like objxpnd, except that it operates on the currently executing
event rather than on an object text. evxpnd is called when reuse of the
current event is contemplated, and assurance s desired that at least
nwords words of event space are available to hold references and binary
words Like objxpnd, evxpnd is not considered a side eflect (does not
actually modify the contents of the event), may not be called following a
side effect, and may relocate the event to a more spacious location. Thus
after a cali to evxpnd, the returned evptr should be used in lieu of any pre-
viously obtained pointer to the current event.

nextev():

mov @#nextev_v,pc

terminates (successfully) execution of the current event and re-enqueues it
on the event list. Any other events or objects created are also formally
installed.

l’OﬂQ():

224.

rts pc

like nextev, but does not re-enqueue the current event. Because of its use
of a return address on the processor stack, the stack should be popped
back to its state when execution of the current event began before done is
invoked.

Appendix A: The MuNet Virtual Machine

getos() returns(osref):

Jsr pc,@#getos_v
mov r0,osref

returns a reference to the operating system object associated with the
current event. This request can never cause an event to be aborted and
may be executed at any time.

setos(osref):

mov osref,rO
Jsr pc,@#setos v

changes the operating system object of the currently executing event to
osref This is considered a side etfect and should not be done if the event
might subsequently be aborted. Note that the operating system object for
any newly created events (made using newev) will be that operating sys-
tem object in effect at the end of the execution of the creating event.
A few other monitor calls exist also, allowing access to internal monitor variables,
interaction with the UNIX development environment, and implementation of other
specialized tunctions These calls are not intended for use by ordinary users, but

aid in the construction of special actors performing various system initialization and

monitoring functions

A.5: Special Objects

When the MuNet is in normal operation, two kinds of special objects exist
within it: processor objects and a system object. There is one system object for
the entire MuNet, which may be invoked, as a target object, to obtain information
and perform functions of systemwide significance. Among the kinds of events that
the MuNet system object will respond to are (using S to denote a reference to the

system object)

Section A.5: Special Objects 225.

(S 1 C): causes the event (C X), where X is a reference to an array of refer-
ences to all the processor objects.

(S 3 C): causes one event (C P) for each processor object P.

Other calls to the MuNet system object aliow 1/0 to the UNIX console from which
the MuNet was invoked, and provide mechanism for processor objects to inform the
system object of their existence
In a tully operational MuNet, there is one processor object for each physical
processor. Fach processor object is a "device" installed on the processor it
corresponds to. Among the kinds of events that a processor object P will respond
to are
(P 1 X C): causes the event (C Y) where Y is a copy of the object X (same type,
same text contents) installed as a device on the processor whose proces-
sor object P is.
(P 3 C): causes the event (C X) where X is a new object whose text contains
various pieces of status information about the processor associated with P.
A.6: Summary
This appendix has given an overview of the virtual machine supported by the
current MuNet implementation. Generally speaking, the VIM virtual machine
described in the text of the thesis should be regarded as superior to the MuNet
virtual machine where their features differ; the purpose of describing the MuNet
virtua! machine here has bheen to expose some of the influences on and alterna-
tives to VIM, and to show the elaboration of some of the VIM concepts down to a

more concrete and practical level.

226. Appendix A: The MuNet Virtual Machine

o -"; “i‘l“l .I.:" . w . —

e e A SO P

Appendix B: Correctness of the Membership Protocol

The purpose of this appendix is to demonstrate that the reference tree
membership protocol described in Section 5.3 performs the functions claimed, viz.,
that it prevents reference trees from becoming disconnected, prevents cycles from
forming in them, and is not prey to any other sort of error condition. As a side
effect, perhaps the demonstration will shed a little additional light on the workings
of the reference tree mechanisms.

The membership protocol is specified by the list of state transitions in Table
5.9, plus several restrictions not explicitly stated in the table. In this appendix, it
will be convenient to refer to various of the state transition rules in Table 5.9.

The notaiion

old-state : message-recejved /| message-sent : new-state

will be used, so, for example, "X:R+/L+:S" refers to a transition that happens when
a processor in state X receives an R+ message, changing to state $ and emitting
an L+ message back to the sender of the R+ message. Spontaneous transitions
have a null message-received field, and a null message-sent field indicates a transr
tion not accompanied by any output. Thus X:/:N denotes a spontaneous transition
from state X to state N which results in no output.

There are two kinds of important restrictions on the applicability of the spon-
taneous transitions listed in Table 5.9. One applies only to the transition M:/-:X?,
by which a processor ieaves the reference tree. A processor is allowed to make
this transition only if its state for every other link attached to it is either N or N?.
This means, among other things, that the processor making the transition must be a

leaf node of the reference tree. At the time when the transition is made, the proc-

Appendix B: Correctness of the Membership Protocol 227.

essor’s other link states of N and N? must be changed to X and X?, respectively.

The other kind of restriction applies to the transitions N:/:X, N?:/:X?, X:/:N,
and X?:/:N?. The first two of these exist only to represent the state changes on
other links that are associated with a processor leaving the reference tree, as dis-
cussed in the previous paragraph, and should not be used at any other time. Thus,
although the transitions /ook spontaneous, they are in fact only used when other
activities on the processor cause it to ieave the reference tree. Similarly, the
transitions X:/:N and X?:/:N? exist only to handie state changes that must occur
when a processor joins a reference tree. Since it is always the receipt ot a mes-
sage that causes a processor to join a reference tree, there is a sense in which
these two transitions are never “spontaneous.”

Showing the correctness of the membership protocol divides into two tasks:
determining some local properties of the protocol as it appiies to a microcosm of
just two nodes and one link, and generalizing from these to prove global properties
of entire reference trees. An assumption that we shall make throughout is that
only one thing (a spontaneous transition or absorption of a message) happens at a
time. In practice, this means only that each processor must act as an arbiter
among messages arriving at it over different links, and process them sequentially.
The need to ensure more global sequentiality can be circumvented by noting that
the effects of state changes at processors are strictly local. Thus simultaneous
events at different processors can be considered to have happened sequentially,

in any order, for the purposes of this appendix.

228, Appendix B: Correctness of the Membership Protocol

B.1: Local Properties of the Membership Protocol

Local properties of the membership protocol are the following:

@ closure — all configurations reachable from any possible starting configuration
should be possible to handle following the rules of the protocol; no proces-

sor should ever receive a message that it cannot handle in its current state.

® consistency — all quiescent configurations (/.e., configurations in which no
messages are in transit) reachable from any possible starting configuration
should show the desired relationship between processor states; for exam-
ple, we would not like to see a quiescent configuration in which two proces-

sors each thought they were masters of the same link.

From our local examination of the membership protocol we should also like to
abstract a few properties useful in showing global properties of the protocol.
These properties deal with the relationship of the membership status (/.e., in or out
of a reference tree) of pairs of adjacent nodes to the membership status of the
link connecting them.

As discussed in Section 63, every node, or processor, has (conceptually) a
processor state for each reference tree. This state can be either "in the refer-
ence tree" or "not in the reference tree" The processor state is manifested in
the values of the processor's link state for each link attached to the processor,
such that if a processor is "not in" a particular reference tree, each of its link
states for that tree will be either X &r X?. Conversely, if the processor is “in" the
tree, each of its link states for that tree will be some state other than X or X?.
Thus it is easy to determine whether a processor is a member of a particular refer-

ence tree; examination of any of that processor's link states for that tree will

Section B.1: Local Properties of the Membership Protocol 229.

|
1
i
i
|
j

BN S 1

yield the answer.
It is more difficult for a processor to find out whether a //nk that connects to it |
is a member of a particular reference tree. In general, knowing the link state ot

that processor for that link is not sufficient for an unambiguous determination

(exceptions are states M and N!, which always mean the link is in the reference
tree, and states X, X?, N, and N?, which always mean it is not). In fact, even |
knowing the link state at both ends of the link will not always be enough to decide
whether the link is in the reference tree. In addition to the link states, the
queues' of pending messages (messages sent but not yet received) on the link
must be taken into consideration to determine with certainty whether a particular
link is a member of a particular reference tree.

Thus in order to completely specify the condition of a link between processors
A and B, for a particular object’'s reference tree, four pieces of information are
needed: the link states of processors A and B for that link with respect to that

hs

object, and the queues of messages sent but not yet received from A to B and

from B to A. In our discussions, we shall represent the condition of a link as fol

lows:

(A-state A-to-B-queue B-state B-to-A-queue)

Thus the meaning of the link condition

(M?2 (R+ A-) N?21 ()

"The reader is reminded that messages on a link must be received in the same
order as they were sent, in order for the protocols to work properly. Consequently,
the notion of a "queue" of messages on each link is an accurate one.

frhese messages may be any of R+ L+, L-, 4, - A+ A- or [N; in other words,
any of the messages mentioned in Table 6.9.

230. Appendix B: Correctness of the Membership Protocol

is that the link state of processor A for this link is M? and the link state of proces-
sor B is N71, that an A- followed by an R+ message has been sent by A to B but
neither has yet been received by B, and that no unreceived messages have been
sent by B to A. Since interprocessor links in reference tree networks are symmet-

rical, the link condition

(A-state A-to-B-queuve B-state B-to-A-queue)

is for all practical purposes equivalent to

(B-state B-to-A-queue A-state A-1o-B-queuve)

in that any comment that may be made about one of them is valid, mutatis
mutandis, about the other. In this appendix, we shall follow the practice of allow-
ing one of these versions to stand for both, rather than taking the extra space to
list both versions of all asymmetrical link conditions.

Obviously an infinite number of different link conditions are possible, since each
message queue could be an arbitrarily long string. Therefore, it would seem neces-
sary to formulate a rule, or algorithm, that could be applied to a particular link con-
dition to determine whether that link should be considered a member of the
relevant reference tree. Unfortunately, it is troublesome to design a concise rule
for this purpose, so an alternative route is taken in this appendix.

At the birth of a system, when we are entitled to believe that no inconsisten-
cies exist and no messages are already flowing, every link will be in one of the fol-

lowing conditions:

XOXO)) (XONOD) (NONOD) LOLOD) (SOMOD)

Section B.1: Local Properties of the Membership Protoco! 231.

- .

S

Thus the only link conditions that will really be of interest to us are those that can
be reached from this initial set by following the state transition rules spelled out in
Table 5.9. This closed subset of the entire set of link conditions is the only one in
which we are concerned with being able to dotermine membership of links in refer-
ence trees. Although this subset is still infinite, we can group its elements into a
finite number of useful categories by making one simple observation. Since sending
a local name never has any effect on the sender's state, and receiving any series
of consecutive repetitions of a local name has the same effect on the receiver's
state as receiving just one, we can use the symbol (N in a message queue to
denote not just a single local name, but any sequence of one or more repetitions of
the local name As a result, transitions involving the receipt of a local name by a
processor must be performed in each of two ways: by removing the (N from the
input queue, the proper action if the (N represented only one local name, and by
feaving the (N in the input queue, the proper action if it represented several
repetitions of the local name.

With the simplification of letting one instance of the symbol (N represent any
number of repetitions of the local name, the number of link conditions accessible
from our initial set becomes finite. A mechanically generated list of all these
accessible link conditions is given below in Table B.1.

In the table, each link condition is given with a reference number, an indication
of whether the link in question should be considered a member of the reference
tree, and the reference numbers of all link conditions that could be successors of
the current one (/.e., which could be derived from it by applying some transition in
Table 5.9). The status of the link as being in or out of the reference tree has

been chosen so that

232. Appendix B: Correctness of the Membership Protocol

e

® the status remains invariant from a link condition to any successor except

that

e when one of the processors undergoes one of the transitions

X:R+¢/L+:S or X?:LN/:N!, the link (which should not previously have

been in the tree) joins the tree, and

e when the link and both processors are in the tree and one of the
processors undergoes the transition M:/-:X?, leaving the tree, the

link also leaves the tree, and

® the link is not in the tree for the quiescent conditions

XOXO)) (XONQO) (NONQO) LOLQO)

but is in the tree for the quiescent condition (S () M ()).

That the assignment of link status (in or out of the reference tree) to link condt
tions in Table B.1 has these properties has been verified mechanically; the reader
Is invited to peruse the table to convince himself of this and, perhaps, gain further
insight into our approach. The reader should bear in mind, when following the rela-
tionships between link conditions and their successors, that only one of the link

conditions belonging to each symmetrica! pair is listed. Thus the change from a link

condition to its successor in Table B.1 may involve not only a state transition at a

processor, but also a reversal of the roles of processors A and B.

Section B.1: Local Properties of the Membership Protocol 233.

Table B.1: Membership Protocol Link Conditions
Is Link
Number Link Condition In Tree? Successors
.@aoeM No 2,64
2. (LOLUN) No 1,2, 3,56 156
3. (L (UN) L (UN)) No 2, 3,8
a (LOL? () No 6,15, 17, 225
6. (LOL? (- (N)) ___No 4,6,7,8,18
6. (LOL? UN -)) No 6, 16, 19, 226
7. (LOL? UN - IN)) No 6, 7,9, 20
8. (L (IN) L? (- IN)) No 65, 8,9, 15, 21
9. (L (UN) L? (UN - IN) No 7,9, 16, 22
10 (L (L-) M? () . . We 3 A A R
11 (L (L) M2 (UN)) No 2,10,11,14 28
12. (L (+) M? (UN)) No 2,12, 29, 64, 66
13 (LUN LY M2 () No 2,13, 14, 30
14. (L (UIN L-) M? (IN)) No 3, 13,14 3
165 (L7 (=) L (UN)) No 4,15 16, 18, 67 o
16. (L? (UN -) L (UN)) No 6, 16, 23, 61
17. (L2 (-) L? (-) No 19, 66
18. (L? (-) L? (- IN)) No 17, 18, 20, 23, 66
19. (L7 (1) L? UN) No 19, 24, 68, 227
20 QYT UN-END. . . . o Ne 19 .20 2668 @ o .
21 (L2 (- (N L? (- IV No 18,21, 22
22. (L? (- IN) L? (UIN - IN)) No 20, 22, 23, 26
23. (L2 (UN) L? (- IN) No 18, 23, 25, 60
24. (L? (UN) L? UN -)) No 24, 62
26 (L7 (IN) L? (IN - (N)) No 24,2583
26. (L? (UN - IN) L? (IN - IN)) No 25,2
27. (L2 (- L) M7 () No 4, 28, 32
28. (L2 (- L) M2 (UN)) No 156, 27, 28, 33
29. (L7 (- +) M? (UN)) No 15, 29, 34, 67
30. (L? (- INL-) M? () ~__No 5,631,358
31 (L2 IN L) M? UN)) No 8, 30, 31, 36
32. (L? UN - L-) M2 () No 6, 32, 33
33. (L2 (UN L) M2 (UN)) No 16, 32, 33
34. (L? (N - +) M? (UN)) No 16, 34, 69
35 (L2 UN - INL-YM?2 () No 7, 35, 36 =
T36. (L7 (UN - IN L-) M7 (IN) No @, 35, 36
37. (L2 O M2 (« A) No 42 126, 236
38. (L2 () M?21 (+ A- - IN)) No 37, 38, 43, 47
390. (L2 O M?21 (+ A- LN)) No 39, 44, 48, 124
40. (L2 O M2V (¢ A-IN-) No 45,6 49, 237 e
a1. (L?2 () M?21 (¢« A~ LN - IN)) No 40, 41, 46, 50
a42. (L? () M?21 (UIN + A) No 42, 153, 238
43. (L?2 () M?21 (UN + A~ - IN)) No 42, 43, 61
44. (L? () M?21 (IN + A IN)) No 44,6 52, 161
a45. (L? () M?21 (IN + A- IN) No 45, 63, 239
46. (L? () M?21 (UN « A [N - IN)) No 45, 46, 54
47. (L? (IN) M?1 (¢« A- - [N)) No 38, 47, 61, 126
48. (L? (UIN) M?21 (+ A- IN)) No 39, 48, 62, 1256
49. (L? (IN) M?21 (¢ A- (N -)) No 40, 49, 63, 240
60. (L? (UIN) M?21 (+ A- IN - IN)) No 41, 49, 50, 54

234.

Appendix B: Correctness of the Membership Protocol

i i e L e L e e—

Table B.1: Membership Protocol Link Coriditions

Is Link

Number Link Condition In Tree? Successors }
651. (L? (IN) M21 (IN + A- - [N)) No A3, 51, 163 i
62. (L? (IN) M?21 (LN + A- LN)) No 44, 62,162
653. (L? (IN) M?1 ([N + A~ [N -)) No 46, 63, 241 |
54. (L? (IN) M?1 (1~ + A- LN - [N)) No 46, 53, 54 i
665. (L? () N?21 (A - T) No 37,227, 262 y .
66. (L"' (O N?1 (A - lN)) "No 38 556, 66, 60
57. (L7 () N?21 (A (N)) No 39, 67, 61, 225 ;
58. (L? () N?1 (A- IN -)) No 40, 62, 253 ‘
59. (L7 () N?21 (A- IN - LN)) No 41, 58, 59, 63

60. (L? (IN) N?21 (A~ - IN)) ; No 47, 68,680,227
61. (L? (IN) N?1 (A~ [N)) No 48, 57 61, 226
62. (L? (IN) N?1 (A- I[N) No 49 &8, 62, 254
63. (L? (IN) N?21 (A- [N - [N)) No 60, 59, 62, 63
64. (M? () L (+)) No 1,12, 65, 67

65 (M? () L (UIN +)) e N6 2,665 8888 -
66. (M? (IN)L (IN +)) No 3, 65, 66, 71
67. (M2 () L? (- +)) No 4, 29, 69
88. (M2 () L? (- IN +)) No 6,70, 71 ‘
69. (M? () L? (UN - +)) No 6, 34, 69 j
70 (M2 O L? UN IN +) ‘ LS O e R 1 e e |
71. (M2 (IN) L? (- (N +)) No 8,68, 71,72
72. (M? (IN) L? (UIN [N +)) No 9, 70,72
73. (M2 (+) M? (+)) No 64, 74
74 (M? (+) M? (IN +)) No 12,65, 74,75

75 (M? (LN +) M? (IN +))) No 66,75 i fabn e A
76. (M?1 () L (A+)) Yes 82, 88, 100, 301
77. (M?21 () L (A+ IN)) Yes 76, 77, 83, 89, 101
78. (M?21 ()L (L- A-)) No 10, 84, 90, 102
79. (M?21 O L (L- A IN)) No 78,79, 85 91, 103
_80. (M?1 OL(+A)) , _No 64,86,82, 108
81 (M?1 O L (+ A (N) No 80, 81, 87, 93, 105
82. (M?1 () L (UN A+)) Yes 82, 94, 106, 302
83 (M?1 () L (IN A+ [N)) Yes a?. 83, 95, 107
84. (M?1 O L (UNL-A)) No 13, 84, 96, 108

85 (M?1 O L UNL- A (N) _No 84,85 97,109
86 (M?21 O LUN+A)) No 65 86, 08, 110
87. (M?21 O L UN + A~ IN)) No 86, 87, 99, 111
88 (M?21 (UIN) L (A+)) Yes 76, 88, 94, 127, 303
89. (M?1 (IN) L (A+ [N)) Yes 77, 83, 89, 95, 128

90 (M?1 (UM)L(L-A) No 11,78,90,96, 129
1. (M?21 (UN) L (L- A IN)) No 79, 90, 91, 97, 130
92. (M?21 (IN) L (+ A-)) No 12, 80, 92, 98, 131
93 (M?21 (IN) L (+ A IN)) No 81, 92, 93, 99, 132
94. (M?1 (IN) L (IN A+)) Yes 82, 94, 133, 304

95 (M?1 (UN) L (UN A+ IN)) Yes 83,94, 95 134
96. (M?1 (UM L (UN L AY)) No 14, 84, 96, 136
07. (M?21 (UN) L (UN L- A~ [N) No 85, 96, 97, 136
98. (M?1 (IN) L (UN + A-)) No 66, 86, 98, 137
99 (M?1 (IN) L (IN + A~ [N)) No 87, 98, 99, 138

100. (M?1 () L? (- A+)) Yes 112, 127, 310

Section B.1: Local Properties of the Membership Protocol 236.

Table B.1: Membership Protocol Link Conditions
Is Link
Number Link Condition In Tree? Successors
101, (M?21 () L? (- A+ (N)) Yes 100, 101, 113, 128
102. (M2 O L2 (- L A)) No 27,114 129
103. (M?21) L?2 (- L- A- IN)) No 102,103, 115, 130
104. (M?21) L?2 (- + A)) No 6/, 116, 131
105. (M?21 () L?2 (- + A~ IN)) , No 104,106, 117,132
106. (M?21 () L? (- LN A+)) Yes 118 133 311
107. (M21 () L? (- LN A+ (N)) Yes 106, 107, 119, 134
108 (M?21 () L? (- IN L- A-)) No 30, 120, 1356
109. (M?21 () L? (- IN L- A [N)) No 108, 109, 121, 136
110. (M?21 O L? (- uv + A)) _______No ©®a 122 1237 il
111 (M?1 ()L?(N + A- [N)) No 110,111 123, 138
112. (M?1 () L? (LN A+)) Yes 112, 139, 313
113 (M?21 () L? UN - A+ [N)) Yes 112, 113, 140
114 (M?21) L? UN - L- A)) No 32,114 141
116 (M?71 () L? (UN - L~ A IN)) No 114,116,142 el
116. (M?21 () L? (UN - + A)) No 649, 116, 143
117 (M?21 O L?2 UN - + A [N)) No 116, 117,144
118 (M?21 () L? UN - IN A+)) Yes 118, 145, 314
119. (M?21 () L? (UN - LN A+ IN)) Yes 118, 119, 146
120. (M?1 () L? (UN - INL A)) No 36,120,147 B T
121 (M21 O L2 (UN - INL- A IN)) No 1?0 121, 148
122. (M?21 () L?2 (UN IN + A) No 70, 122, 149
123. (M?1 () L? (UN - IN ¢+ A IN)) No 122,123, 160
124, (M?1 (+ A-) L? () No 125, 161, 180
125 (M?71 (¢« A) L? (UN)) No 128 125 152 181
126 (M?1 (+ A~ -) L? (UN)) No 37,126, 1’)3 200
127. (M?21 (IN) L? (- A+)) Yes 100, 127, 139, 316
128. (M?21 (UN) L? (- Ao IN)) Yes 101, 127, 128, 140
12 (M?21 (UN) L2 (- A)) No 28,102, 129, 141
130 (M71 ((N) L? (- (- A_'(_N)) - ~_No 103, 129, 130, 142
131 (M21 (I L2 (- + A) No 29,104, 131, 143
132 (M?21 (UIN) L? (- + A IN)) No 105, 131, 132, 144
133 (M?21 (IN) L? (- IN A+)) Yes 1086, 133, 145, 317
134, (M?1 (UN) L? (- [N A+ [N)) Yes 107, 133, 134, 146
I B U LI b Al N 31,108,188, 147
136. (M?1 (lN) L7 (- INL- A [N)) No 109, 135, 136, 148
137 (M2 (UN) L? (- (N + A) No 71,110, 137, 149
138. (M?21 (IN)L? (- IN + A IN)) No 111, 137, 138, 160
139 (M?21 (IN) L? (UN - As)) Yes 112,139, 319
140 (M?1 (IN) L? (UIN - A+ IN)) __Yes 113, 139, 140
141, (M?1 (IN) L? {iN = L= A~)) No 33,114 141
142 (M2 (UIN) L2 (UN - L- A IN)) No 115,141 142
143 (M71 (UN) L? (UN - + A)) No 34,116, 143
144 (M?1 (IN) L? (UIN - + A~ LN) No 117,143, 144
145 (M?21 (IN) L? (IN - LN A+)) Yes 1186, 145, 320
146 (M?1 (IN) L? (IN - [N A+ [N)) Yes 119, 145, 146
147 (M?2Y (UN)YL? (UN - INL- AY) No 36, 120, 147
148 (M71 (IN) L? (IN - IN L- A- IN)) No 121, 147,148
149 (M?1 (IN) L? (IN - IN ¢+ A-)) No 72,122,149
1560 (M?1 (IN) L? (IN - IN ¢+ A- IN)) No 123, 149, 160
236. Appendix B: Correctness of the Membership Protocol

Table B.1: Membership Frotocol Link Conditions

Is Link
Number Link Condition in Tree? Successors
161 (M?21 (UN + A-) L7 () No 161, 162, 182
152 (M?21 (UIN + A) L? (IN)) No 151, 162, 183
163. (M?21 (IN « A- -) L? (IN)) No 42, 163, 201
164. (M?1 (+) M? (A+)) Yes /76, 168, 162, 367
166 (M?21 (¢) M? (A+ (N)) Yes 77, 164, 166, 169, 163
166 (M?21 (+) M2 (+ A-)) No 73, 80, 160, 164
167 (M?21 (+) M? (+ A (N)) No 81,186, 157, 161, 165
158 (M?21 (+) M? (IN A+)) Yes 82, 168, 166, 368
159 (M?1 (¢) M? (LN A+ IN)) Yes 83, 158, 169, 16/
160. (M?1 (+) M? (IN + A-)) No 74,86, 160, 168
161 (M?21 (+) M2 (UN + A-IN)) No 87, 160, 161, 169
162 (M?21 (UN +) M? (A+)) Yes 88, 162, 166, 359
163. (M?1 (IN +) M? (A+ [N)) Yes 89, 162, 163, 167
164 (M?21 (N «) M? (+ A) No 74,92, 164, 168
165, (M?21 (IN +) M? (+ A- IN)) No 93, 164, 165, 169 :
166. (M?1 (IN +) M? (IN A+)) Yes 94, 166, 360
187. (M2 (LN +) M? (IN A+ [N)) Yes 95, 166, 16/
168 (M?1 (IN +) M2 (IN + A)) No 75, 98, 168
169. (M?1 (IN +) M? (IN ¢« A (N)) No 99, 168, 169
170 (M?1 (+ A) M?21 (+ A)) T L) P
171 (M?1 (+ A-) M?21 (+ A [N)) No 167,170, 171,173,176
172 (M21 (+ A) M?21 (UN + A)) No 160, 164, 172,177
173 (M?21 (¢« A) M?21 (UN +« A [N)) No 161,172,173, 178
174 (M?1 (+« A IN)M?1 (¢« A [N)) No 171,174, 176
175 (M?21 (+ A~ IN) M?1 (IN + A No 173,176,176, 179
176 (M?21 (IN « A) M?1 (¢« A [N)) No 165,172,176, 178
177. (M?1 (IN « A) M?1 (IN +« A) No 168, 177
178 (M?1 (UN « A) M?1 (UIN + A- IN)) No 169, 177, 178
179 (M?1 (IN « A IN)M?21 (IN + A [N)) No 178, 179
180. (M?1 (+) N (A)) No 78, 156, 182, 210, 222
181 (M?21 (+) N (A (N)) No 79, 167, 180, 181, 183, 211
182. (M?1 (IN +) N (A)) No 90, 164, 182, 212, 223
183 (M?1 (IN «) N (A (N)) No 981, 165, 182, 183, 213
184 (M?1 (+ A) NI ()) Yes 164, 185, 188
185 (M?1 (+ A-) N! (IN)) Yes 1565, 184, 185, 189 A
186 (-’H""l (¢« A- IN) NL()) Yes 184, 186, 187, 180
187. (M?1 (+ A- [N) N! (IN)) Yes 185, 186, 187, 191
188 (M?21 (IN « A) N () Yes 162, 188, 189
189 (M?1 (IN +« A) N! (IN)) Yes 163, 188, 189
190 (M?1 (UN + A- IN)N' () _Yes 188, 190, 191
191. (M?1 (IN +« A [N) N!' (UN)) Yes 189, 180, 191
192 (M?1 (¢« A-) N? () No 180, 193, 196, 214
193. (M71 (+ A-) N? (IN)) No 181,192,193, 197, 2156
194 (M?1 (+ A IN) N? () No 192, 194, 195, 198, 216
196. (M?1 (+ A IN) N? (IN)) __No 193, 194, 195, 199, 217
196. (M?1 (IN + A) N2 () No 182, 196, 197, 218
147 (M?1 (IN +« A-) N? (IN)) No 183, 196, 187, 219
198. (M?1 (LN + A- ILN) N? ()) No 196, 198, 199, 220
199 (M?1 (IN + A- (N) N? (IN)) Ne 197, 198, 199, 221
200. (M?21 (+ A-) N21 (A- IN)) No 171,181, 200, 201, 236
Section B.1: Local Properties of the Membership Protocol 237.

Table B.1: Membership Protocol Link Conditions
Is Link
Number Link Condition In Tree? Successors
201. (M?1 (IN + A-) N?1 (A- IN)) No 176, 183, 201, 238
202. (M?1 () S (L+ AY)) Yes 204, 206, 265
203. (M?21 () S (L+ A- IN)) Yes 202, 203, 205, 207
204. (M?21 () S (IN L+ A)) Yes 204, 208, 267
205 (M?1 () S (IN L+ A IN)) Yes 204, 206, 209 SRR b
206 (M?1 (IN) S (L+ A9)) Yes 202, 206, 208, 266
207. (M?1 (UN) S (L+ A IN)) Yes 203, 206, 207, 209
208 (M?1 (IN) S (IN L+ A-)) Yes 204, 208, 268
209 (M?1 (IN) S (IN L+ A IN)) Yes 205, 208, 209
210. (M?21($)X(A-) No 180,202, 212,667
211 (M?21 (+) X (A- IN)) No 181, 203, 210, 211, 213
212 (M?21 (IN +) X (A)) No 182, 2086, 212, 568
213 (M21 (IN) X (A- [N)) No 183, 207, 212, 213
214 (M?1 (+ A-) X272 () No 192, 210, 218
2165 (M?1 (+ A-) X? (IN)) No 183, ?11.77214 7216.?19_7
216 (M?1 (+ A- (N) X?) No 184 186, 194, 220
217 (M?21 (+« A IN) X2 (UN)) No 185, 187, 1956, 216, 217, 221
218. (M?21 (UN + A-) X? () No 196, 212, 218
219 (M?21 (UN + A-) X2 (IN)) No 197, 213, 218, 219
220 (M?1 (IN + A~ IN) X7 () ____No 188,190, 6198,220
221 (M”i (IN +« A- IN) X? (IN)) No 189 191 199, 220, 221
222 (N () M2 (+)) No 10, 73, ?23. 667
223 (N () M2 (UN +)) No 1,74, 223, 658
224 (NONQ) No 222, 5669
225 (N?21 (A) L? () __ No 124, 226, 242 et
226 (N?1 (A-) L? (IN)) No 126 225, 226, 243
227 (N?t (A L? (UN)) No 68, 126, 227, 253
228 (N?1 () M? (A+)) Yes 154, 232, 265
229 (N?1 () M2 (A+ (N) Yes 165, 228, 229, 233
230 (N?1 () M2 (+ A-)) . No 156, 222 284
231 (N?1T () M7 (¢ A (N)) “No 157, 230, 231, 235
232 (N?71 () M? (LN As)) Yes 168, 232, 266
233 (N71 () M? (IN A+ [N)) Yes 169, 232, 233
234 (N?1 () M? (IN + A)) No 160, 223, 234
235 (N?Z1 (OM? (UIN+ A IN) ~— No 161, 234, 236
236. (N?21 (A) M?1 (+ A)) No 170, 180 230, 238
237 (N?1 (A-) M71 (+ A- (N)) No 171, 231, 236, 237, 239
238 (N?1 (A) M?1 (IN + A) No 172, 182. 234, 238
239 (NT1 (A) M?21 (IN « A (N)) No 173, 235, 238, 239
240 (N?1 (A (N) M?1 (+ A IN)) No 174, 200, 237, 240, 241
241 (N71 (A (N) M?21 (IN + A (N)) No 175, 201, 239, 241
242 (N?1 () N (A) No 180, 274, 230, 265
243 (N?1 () N (A- (N)) No 181, 231, 242, 243, 256
244 (N?21 (A-) N () Yes 184, 228, 245
245 (N71 (A-) NI (IN)) Yes 185, 229, 244, 245
246 (N?2Y (A (M) N () Yes 186, 244, 246, 247
247 (N?1 (A [(N) N!' (IN)) Yes 187, 245, 246, 247
248. (N?1 (A-) N? () No 192, 242, 249, 2567
249. (N?1 (A-) N? (IN)) No 1863, 243, 248, 249, 258
250. (N?1 (A- INY N2 () No 194, 248, 250, 261, 2569
238. Appendix B: Correctness of the Membership Protocol

BEEIS—

Tabie B.1:

Number Link Condition

251. (N?1 (A- IN) N? (IN))
252. (N?1 (A) N?71 (A)
253. (N?1 (A-) N?21 (A- IN))

254. (N?71 (A (N) N?1 (A- (N))

265 (N?21 () X (A-))
256. (N?1 () X (A IN))
257 (N?71 (A) X2 ()
258. (N?1 (A-) X2 (LN))
269 (N?1 (A (N) X7 ()
260. (N?1 (A IN) X? (LN))
261 (SOMQO)

262 (S () M (UN)

263. (S UN) M ()

264. (S (IN) M (IN))

265 (S (L+) M? ()

266. (S (L+) M2 (UN))
267. (S (IN Ls) M? ()
268 (S (IN L+) M? (IN))
269 (S O N (-)

270. (S O N (- IN)

271 (S () N (UN -))

272 (S O N (IN - IN)
273. (S (IN) Nt ()

274 (S (IN) N (- IN))
275 (S (UN) N' (UN)
276. (S (IN) N! (IN - IN))
277 (S () N2 ()

278 (S () N? (- IN))
279. (S O N? (UN)
280. (S) N? (UN IN))
281 (S UN)N? ()

282 (S (UN) N? (- (N))
283 (S (IN) N? (IN)
284 (S (UN) N? (IN - IN))
285. (83)8(+)) -
286 (8)OS (+ (N)

237 (S () S (UN +))

288 (S () S (IN + IN)
289 (S (IN) S (+)

290. (S (IN) S (¢ IN))
291 (S (IN) S (IN +))
292 (S (IN) S (IN + IN))
293 (8 () X7 ()

294 (S () X7 ((N))

295 (S () X? (UN)

296 (S8 () X? (IN ~ (N)
267 (8 (UN) X? ()

208 (8 (IN) X? (- IN))
299. (S (IN) X? (IN -))
300. (S (IN) X? (IN - IN))

Section B.1:

Is Link
In Tree?

No
No
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yos
Yes
No
No
No
No

No

No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No

Membership Protocol Link Conditions

Successors

196, 249,
236, 242
200, 237,
240, 2563,
230, 242,
211, 243,
214, 248,
215, 249,
216, 244,
217, 245,
262, 263,
261, £62,
261, 263,
262, 263,
261, 266,
262, 2668,
263, 267,
264, 267,
244,271,
269, 270,
?db 271,
271, ?l?
246, 269,
270, 274,
247,271,
272, 2786,
248, 279,
277, 218,
249, 279,
279, 280,
260, 277,
2748, 281,
261, 279,
280, 283,
261, 287,
285, 286,
263, 287,
287, 288,
262, 285,
286, 289,

’204 287,

288, 291,
267,277,
278, 293,
258, 279,

260, 261,

243, 2562,
264
6569
256, 256
2565
256, 267,
246, 250
247, 251,
285, 293
264, 286,
264 289,
264, 290,
267
266, 268
268
268
273
272,274
275
276
273, 275
274, 276
275
276
281, 203
280, 282,
283, 2956
284, 296
281, 283,
282, 284,
283, 299
284, 300
289

260

2563

268
259,
294

297
298

294

297
298

260

288, 200

291

292

289, 291

290, 282
201

292

297

294, 2908

299

No
No
No

No

?80 295,
259, 2643,
270, 274,
260, 271,
272, 276,

Local Properties of the Membership Protocol

"296, 300
273, 281,
282, 297,
275, 283,

297
298
299

284, 299, 300

239.

Table B.1: Membership Protocol Link Conditions

Is Link
Number Link Condition In Tree? Successors
301. (8?7 (A+) L () Yes 302, 305, 310, 333
302. (87 (A+) L (UN)) Yes 301, 302, 306, 311, 336
303. (8?7 (A+ IN) L () Yes 301, 303, 304, 307, 316
304 (S? (A+ IN) L (IN)) Yes 302, 303, 304, 308, 31/
306, (8?7 (INA+) L () Yes 3056, 306, 322, 345
306. (S7 (IN A+) L (IN)) Yes 305, 306, 323, 348
307. (8?7 (IN A« IN)L () Yes 305, 307, 308, 328
308. (87 (UN A+ IN) L (UN)) Yes 306, 307, 308, 329
309. (87 (A+) L7 () Yes 312, 321, 333
310. (8?2 (A+) L? (-)) Yes 309, 313, 322,334
311 (S? (A+) L? (- (N)) Yes 310, 311, '!14 323, 3356
312, (S? (A+) L? (UN)) Yes 309, 312, 324, 336
313 (S? (A+) L? (UN -)) Yes 312, 313, 326, 337
314. (S? (A+) L? UN - IN)) Yes 313, 314, 326, 338
3165. (S? (A+ IN) L? () Yes 309, 316, 318, 327 L
316. (S? (A+ (N) L? (-)) Yes 310,316 316 319, 328
317. (87 (A+ IN)L? (- LN)) Yes 311, 316, 317, 320, 329
318. (S? (A+ IN) L? (IN)) Yes 312, 3156, 318, 330
319. (S? (A+ (N) L? (UN - Yes 313, 318, 319, 331
320. (S? (A+ (N) L? (IN (N)) yes 314, 319, 320, 332
321 (S8? (IN A¢) L? ()) Yes 321, 324, 345
322 (S” (UN A¢) L2 () Yes 321, 322, 325, 346
323. (S? (IN A+) L? (- IN)) Yes 322, 323, 326, 347
324 (S? (IN A+) L? (IN)) Yes 321, 324, 348
325 (8? (IN A+) L? (IN -)) Yes 324, 325, 349
326. (S? (IN A+) L? (IN - IN)) Yaes 328, 326, 350
327. (S? (IN A+ IN) L? () Yes 321,327, 330
328. (S? (IN A+ IN) L? () Yes 322, 327, 328, 331
329. (S? (IN A+ IN) L? (- IN)) Yes 323, 328, 329, 332
330. (S? (LN A+ (N) L? (UN)) Yes 324,327,330
331 (S? (IN A+ IN) L? (IN) Yes 325, 330, 331
332. (S? (LN A+ IN) L? (IN - IN)) Yes 326, 331, 332
333. (87 () M (A+)) Yes 261, 339, 345, 461, 609
334. (S? () M (A+) Yes 333, 340, 346, 462, 5610
336 (S? (O M (A+ - IN)) Yes 334, 335, 341, 347, 463, 511
336 (82 () M (A+ (N) Yes 333, 336, 342, 348, 464, 512
337 (8?7 () M (A+ IN) Yes 336, 343, 349, 465, 513
335. (S? () M (A+ IN IN)) Yes 337, 338, 344, 360, 466, 514
339 (S? () M (IN A+)) Yes 262, 339, 351, 467, 615
340 (S? OM(UNAe -)) Yes 339 340, 352, 468, 616
341. (8?7 O M (IN A+ - (N)) Yes 340, 341, 353, 469, 517
342 (S? () M (IN A+ IN)) Yes 339, 342, 354, 470, 618
343 (S? () M (IN A+ IN) Yes 342, 343, 365, 471, 519
344 (S7? () M (LN A+ [N - IN)) Yes 343, 344, 356, 472, 620
345 (S? (IN) M (A+)) Yes 263, 333, 345, 361, 485, 633
346. (S? (IN) M (A+) Yes 334, 345, 346, 352, 486, 534
347 (S? (IN) M (A+ - IN)) Yes 335, 346, 347, 3563, 487, 535
348. (S? (IN) M (A+ IN)) Yes 336, 345, 348, 3564, 488, 536
349. (S? (IN) M (A+ IN) Yes 337, 348, 349, 3566, 489, 637
350. (S? (IN) M (A+ [N - IN)) Yes 338, 349, 350, 356, 490, 5638

240.

Appendix B: Correctness of the Membership Protocol

Pem iy

Table B.1: Membership Protocol Link Conditions
Is Link

Number Link Condition In Tree? Successors
351. (8?7 (IN) M (IN A+)) Yes 264, 339, 351, 491, 539
352. (S? (IN) M (UN A+ 1)) Yes 340, 351, 352, 492, 540
353. (S? (IN) M (IN A+ - IN)) Yes 341, 362, 3563, 493, 541
354, (S? (UIN) M (IN A+ LN)) Yes 342, 351, 354, 494, 542
365, (87 (IN) M (IN A+ [N -)) Yes 343, 364, 366, 495, 643
356. (87 (IN) M (IN A+ [N - IN)) Yes 344, 355, 3566, 496, 544
357 (S? (A+ ¢) M? () Yes 301, 358, 361
358. (82 (A+ «) M2 (LN)) Yes 302, 357, 358, 362
359 (S? (A+ IN +) M? () Yes 303, 360, 363
360. (S? (A+ IN +) M? (IN)) Yes 304, 369, 360, 364
361 (S? (IN A+ +) M? () Yes 305, 361, 362
362. (S? (LN A+ +) M? (IN)) Yes 306, 361, 362
363. (S? (IN A+ IN +) M? () Yes 307, 363, 364
364. (S? (IN A+ [N +) M? (IN)) Yes 308, 363, 364
365. (8?7 () N! (- A+)) Yes 269, 377, 389
366. (S? () N! (- A+) Yes 365, 378, 390
367. (S? () N (- A+ IN)) Yes 366, 36/, 379, 3N
368. (S? () N! (- A+ [N)) Yes 365, 368, 380, 392
369. (S?7 () N (- A+ (N) Yes 368, 381, 393
370. (8?7 () N! (- A+ IN -~ IN)) Yyes 369, 370, 362, 394 i
371 (S? () N!' (- IN A+)) Yes 270, 383, 3956
372 (S? () N (- IN A+) Yes 371, 384, 396
373 (S?7 ()N (- IN A+ - [N)) Yes 372, 373, 3856, 397
374 (S? () N (- [N A+ [N)) Yes 371, 374, 386, 398
3765 (87 () N! (- [N A+ IN -)) Yes 374, 387, 399 .
376. (S? () N!' (- (N A+ I[N - IN)) Yes 375, 376, 388, 400
377. (S? () Nt (UN Ae)) Yes 271,377, 401
378. (S? () Nt (IN - A+) Yes 377, 378, 402
379 (S?7 ()N (UIN A+ IN)) Yes 378, 379, 403
380. (87 () Nt (LN - A+ IN))_ Yes 377, 380, 404 -
381. (87 () N! (UIN - A+ IN) Yes 380, 381, 405
382. (S?7 O N (UN - A+ (N - IN)) Yes 381, 382, 406
383 (S? () N! (IN [N A+)) Yes 272, 383, 407
384. (8?7 () N! (UN - (N A+) Yes 383, 384, 408
385. (S7 () Nt (LN - LN As - LN)). Yes 384,385,400
386. (S? () N! (IN - IN A+ [N)) Yes 383, 386, 410
387. (8?7 () N (UN - IN A+ IN) Yes 386, 387, 411
388. (S? () N! (IN - IN A+ IN - [N)) Yes 387, 388, 412
389. (S? (IN) N! (- A+)) Yes 273, 365, 389, 401
390. (S? (UN) N (- A+ -) Yes 366, 389, 390, 402
391. (S? (IN) N! (- A+ - [N)) Yes 367, 390, 391, 403
392. (S? (UN) N! (- A+ IN)) Yes 368, 389, 392, 404
393 (S? (IN) Nt (- A+ IN -)) Yes 369, 392, 393, 405
394. (S? (IN) N! (- A+ IN - IN)) Yes 370, 393, 394, 406
395. (87 (IN) N! (- LN A+)) Yes 274, 371, 395, 407
396. (S? (IN) N! (- IN A+) Yes 372, 395, 396, 408
397. (8?7 (IN) N! (- IN A+ - IN)) Yes 3/3, 386, 397, 409
398. (8?7 (IN) N! (- LN A+ LN)) Yes 374, 395, 398, 410
399. (8? (IN) N! (- IN A+ IN -)) Yes 375, 398, 399, 411
400. (S? (IN) N! (- LN A+ LN - IN)) Yes 376, 399, 400, 412

Section B.1:

Local Properties of the Membership Protocol

241,

Table B.1: Membership Protocol Link Conditions
Is Link
Number Link Condition In Tree? Successors
401. (S? (IN) N! (LN - A+)) Yes 275, 377, 401
402. (S? (LN) N! (LN - A+) Yes 378, 401, 402
403. (S? (IN) N! (LN - A+ - LN)) Yes 379, 402, 403
404. (S? (LN) Nt (LN ~ A+ [(N)) Yes 380, 401, 404
405. (S? (LN) N! (IN - A+ IN -)) ~Yes 381, 404, 405 RETEL S
406. (S? (LN) N! (IN - A+ IN - (N)) Yes 382, 405 406
407. (S? (LN) N! (LN - LN A+)) Yes 276, 383, 407
408. (S? (IN) N! (IN - IN A+ -)) Yes 384, 407, 408
409. (S? (LN) Nl (LN - LN A+ - LN)) Yes 385, 408, 409
410. (S? (IN) N! (IN - LN A+ (N)) ~_Yes 386, 407, 410 Ly e
411, (S? (IN) N! (IN - IN A+ IN -)) Yes 387, 410, 411
412. (S? (IN) N! (IN - LN A+ LN - IN)) Yes 388, 411, 412
413 (8?7 () N7 (- A+)) No 277,425, 437, 509
414. (S? () N?2 (- A+) No 413, 426, 438, 510
415 (S? O N? (- A+ - (N)) No 414, 415, 427, 439, 611
416. (S? () N2 (- A+ IN)) No 413, 416 428, 440, 612
417. (S? () N2 (- A+ LN) No 416, 429, 441, 513
418. (S? () N? (- A+ [N - ILN)) No 417, 418, 430, 442, 514
419. (S7 () N? (- LN A+)) No 278, 431, 443, 615
a20 (S”_(_)_!J"»(__rll_l A+ __)7)__ yr AT No 419, 43? 444, 616 A
421, (S? () N? (- IN A+ - [N)) No 420, 421, 433, 445, 517
422. (S? () N2 (- IN A+ [N)) No 419, 422, 434, 446, 518
423. (S?7 () N? (- IN A+ [N -)) No 422, 435, 447, 519
a424. (S? () N? (- IN A+ LN - IN)) No 423, 424, 436, 448, 520
425 (S? ON? UN - A+)) _No 279, 425, 449,621 ==
426. (87 () N? (IN - A+) No 425, 426, 450, 522
427. (8?7 () N2 (IN - A+ - IN)) No 426, 427, 451, 523
428. (8?7 () N? (IN - A+ [N)) No 425, 428, 452, 524
429. (S? () N? (IN - A+ IN -)) No 428, 429, 453, 525
430. (S?7 () N? (UN - A+ IN - IN)) No 429, 430, 454, 526
431 (S? () N? (IN - LN A+)) No 280, 431, 455, 527
432. (S? () N? (IN - LN A+) No 431, 432, 456, 528
433. (S? () N2 (IN - IN A+ - IN)) No 432, 433, 457, 529
434. (S” () N2 (IN - LN A+ IN)) No 431, 434, 458, £30
435 (S? O N? (UN - INA+IN -)) No 434, 435, 459, 631
436. (S? () N? (IN - LN A+ [N - [N)) No 435, 436, 460, 532
437. (S" (IN) N? (- A+)) No 281,413, 437, 449, 533
438. (S? (IN) N? (- A+) No 414, 437, 438, 450, 534
439. (S? (IN) N? (- A+ - IN)) No 415, 438, 439, 451, 535
440. (S? (IN) N? (- A+ LN)) : ~__No 416, 437, 440, 452, 536
441. (S? (IN) N? (- A+ IN -)) No 417, 440 441, 453, 537
44?2, (S? (IN) N? (- A+ IN - IN)) No 418, 441, 442, 454, 538
443. (S? (IN) N? (- LN Ae)) No 282, 419, 443, 455, 5639
414, (S? (UIN) N? (- LN A+) No 420, 443, 444, 456, 540
445. (87 (IN) N? (- LN A+ - IN)) No 421, 444, 445, 457, 541
A46. (S? (IN) N? (- LN A+ IN) No 422, 443, 446, 458, 542
447. (S? (IN) N2 (- IN A+ [N) No 423, 446, 447, 458, 543
448. (S? (IN) N? (- LN A+ LN - IN)) No 424, 447, 448, 460, 544
449. (8? (IN) N? (IN - A+)) No 283, 425, 449, 545
450. (S? (IN) N? (IN - A+) No 426, 449, 450, 546
242. Appendix B: Correctness of the Membership Protocol

Table B.1: Membership Protocol Link Conditions
Is Link
Number Link Condition In Tree? Successors
451, (8?7 (IN) N? (UN - A+ - IN)) No 427, 450, 451, b47
452. (S? (IN) N? (IN - A+ LN)) No 428, 449, 452, 548
453. (S? (IN) N? (IN - A+ IN)) No 429, 452, 453, 549
454. (S? (IN) N? (LN ~ A+ IN - LN)) No 430, 453, 454, 550
455. (S? (IN) N? (IN - LN A+)) No 284, 431, 4565, 661
456. (S? (IN) N? (IN - LN A+) No 432, 46‘3 456, 552
457, (S? (IN) N? (LN - LN A+ - IN)) No 433, 456, 457, 553
458. (S? (IN) N? (IN - LN A+ [N)) No 434, 455, 468, 554
459 (S? (IN) N? (IN LN A+ (N) No 435, 458, 459, 555
460. (S? (IN) N? (IN - LN A+ [N - [N)) No 436, 469, 460, 666
461. (8?7 () S (* A')) Yes 285, 473, 485
462. (S?7 () S (+ A+) Yes 461, 474, 486
463. (8?7 () S (+ A+ - [N)) Yes 46?. 4€3, A75, 487
464 (S? () S (+ A+ IN)) Yes 461, 464, 476, 488
465 (S? () S (+ A+ [N -)) Yes 464, 477 489
466. (S? () S (+ A+ IN - IN)) ves 465, 166, 478, 490
467. (S? () S (+ IN Ae)) Yes 286, 4/9, 491
468. (S? () S (+ IN A+) Yes 467, 480, 492
469. (S? () S (+ IN A+ - IN)) Yes 468, 469, 481, 493
470 (S? () S (+ IN A+ lN)) e Yes 467,470, 482, 494
a71. (S?2 () S (+ IN A+ IN -)) Yes 470, 483, 495
472 (S? () S (+ (N A+ [N - (N)) Yes 471. 472, 484, 496
473. (S?7 () S (IN + A+)) Yes 287, 473, 497
474 (S? () S (IN + A+) Yes 473, 474, 498
475 (8?7 () S (IN + A+ - IN)) Yes 474, 475, 499)
476. (S? () S (LN + A+ [N)) Yes 473, 476, 500
477. (8?2 () S (UIN + A+ (N -)) Yes 4/6, 477, 501
478. (S? () S (IN + A+ IN - IN)) Yes 477, 478, 502
479 (S? () S (IN + IN A+)) Yes 288, 479, 603
480. (57 OSUNSINA+ -)) ~ Yes 479, 480, 504 A
481 (S? () S (IN « IN A+ - [N)) Yes 480, 481, 505
482. (S? () S (IN + LN A+ IN)) Yes 479, 482. 506
483. (S? () S (IN + IN A+ [N) Yes 482, 483, 507
484. (S? () S (LN + [N A+ IN - IN)) Yes 483, 484, 608
485. (S? (IN) S (+ A+)) ____Yes 289, 461, 485, 497
486. (S? (IN) S (+ A+ -)) Yes 462, 485, 486, 498
487. (S8? (IN) S (+ A+ - IN)) Yes 463, 486, 487, 499
488. (S8? (IN) S (+ A+ (N)) Yes 464, 485, 488, 500
489. (S? (IN) S (+ A+ (N V) Yes 465 488, 489, 501
490. (S? (IN) S (+ A+ IN - IN)) ~__Yes 466, 489, 490, 502
491. (S? (IN) S (+ LN A4)) Yes 290, 467, 491, 503
492. (S? (IN) S (+ IN A+) Yes 468, 491, 492, 504
493. (S? (IN) S (+ IN A+ - [N)) Yes 439, 492, 493, 505
494. (S? (IN) S (+ LN A+ [N)) Yes A70, 491, 494, 506
495. (8? (IN) S (+ LN A+ IN -)) Yes 471, 494, 495, 607
496. (S? (IN) S (+ IN A+ [N - IN)) Yes 672, 495, 496, 508
497. (S (IN) S (IN + A+)) Yes 291, 473, 497
498. (S? (IN) S (IN + A+) Yes 474, 497, 4956
499. (8? (IN) S (N + A+ - [N)) Yas 475, 498, 499
600. (S? (INV) S (IN + A+ IN)) Yes 476, 497, 500
Section B.1: Local Properties of the Membership Protocol 243.

P

Table B.1: Membership Protocol Link Conditions
Is Link

Number Link Condition In Tree? Successors

6501. (87 (LN) S (IN + A+ [N -)) Yes 477, 500, 601

502. (S?7 (IN) S (LN + A+ LN - LN)) Yes 478, 501, 5602

503. (S? (IN) S (IN + (N A+)) Yes 292, 479, 603

504. (S? (IN) S (IN + LN A+) Yes 480, 503, 604

506. (S? (IN) S (IN + IN A+ - IN)) Yes 481, 604, 6065 B i
i 606. (8?7 (IN) S (IN + LN A+ (N)) Yes 482, 603, 5606

507. (S? (IN) S (IN + LN A+ (N -)) Yos 483, 606, 507

508. (S? (IN) S (IN + LN A+ LN - IN)) Yes 484, 607, 608

509. (8?7 () X? (- A+)) No 293, 413, 533

510. (8?7 () X? (- A+ -)) . No 414,500, 534 gty

511, (8?2 () X2 (- A+ - IN) No 415, 610, 511, 6356

6512 (S? () X7 (- A+ LN)) No 416, 509, 612, 636

513 (S?2 () X?2 (- A+ (N -)) No 417, 612, 637

514. (S? () X7 (- A+ (N - IN)) No 418, 513, 514, 638

5156, (8? () X? (- LN A+)) ‘ No 294,419,630

616. (S? () X? (- IN A+ -)) No 420 616 6540

517. (8?7 () X2 (- LN A+ - IN)) No 421, 616, 517, 641

6518, (S? () X?2 (- LN A+ IN)) No 422, 615, 618, 6542

519. (8?7 () X? (- LN A+ LN -)) No 423, 518, 543

520 (S? (_) X? (LN A+ IN - VL[!)“).‘ T __No 4?4 519 _§2.0 ‘)44_____'#_*

6§21 (8?2 O X7 (IN - A+)) No 295 425, 545

522 (8?7 () X2 (IN A+) No 426, 621, 646

523. (S? () X? (IN - A+ - IN)) No 427, 622, 623, 547

524. (S8? () X? (IN - A+ IN)) No 428, 5621, 524, 5648

625 (S?) X? (IN - AsIN-)) _ No 429,624,549

626. (8? () X2 (IN - A+ IN - IN)) No 430, 525, 626, 550

627. (S? () X? (LN - LN A+)) No 296, 431, 661

628. (S? () X? (IN - LN A+) No 432, 527, £§52

529 (87 () X? (IN - LN A+ - [N)) No 433, 628, 529, 653

530 (8? O X? (UN - IN A+ INY) ~No 434, 627, 530, 654

6531, (S? () X? (IN - IN A+ (N -) No 435, 830, 555

632. (8?7 () X? (IN - LN A+ [N - LN)) No 436, 631, 5632, 6566

533 (S? (IN) X7 (- A+)) No 297, 365, 389, 437, 533

534. (S? (IN) X7 (- A+) No 366, 380, 438, 633, 634

6535 (87 (IN) X? (- A+ - LN)) No 367, 391, 439, 5634, 6356

536. (S? (LN) X? (- A+ IN)) No 368, 392, 440, 533, 536

6537. (S? (IN) X? (- A+ (N -)) No 368, 393, 441, 536, 537

638. (87 (IN) X? (- A+ (N - (N)) to 370, 394, 442, 637, 638

539 (S? (IN) X? (- LN A+)) No 298, 371, 395, 443, 5639

540. (S? (IN) X? (- IN A+ -)) 5 No 372, 396, 444, 539, 540

541, (8? (IN) X? (- LN A+ - [N)) No 373, 397, 445, 540, 641

642, (S8? (IN) X? (- LN A+ (N)) No 374, 308, 446, 639, 542

543. (S? (IN) X? (- LN A+ [N -)) No 3756, 399, 44,, 642, 643

544 (8™ (LN) X? (- LN A+ LN - (N)) No 376, 400, 448, 543, 544

545 (8?7 (IN) X? (IN - A+)) No 299, 377, 401, 449, 645

546. (S? (IN) X? (IN - A+ -)) No 378, 402, 450, 545, 5646

547 (87 (L) X? (IN - A+ - IN)) No 379, 403, 451, 6486, 647

548. (S? (IN) X? (LN - A+ [N)) No 380, 404, 452, 5645, 548

549 (8? (IN) X? (IN - A+ IN -)) No 381, 405, 453, 548, 549

650. (S? (IN) X? (LN - A+ [N - LN)) No 382, 406, 454, 649, 650

244, Appendix B: Correctness of the Membership Protocol

Table B.1: Membership Protocol Link Conditions

Is Link
Number Link Condition In Tree? Successors
551. (S? (UN) X? (IN - LN A+)) No 300, 383, 407, 455, 5561
652. (S? (IN) X? (LN LN A+) No 384, 408, 456, 651, 652
653. (8?7 (IN) X? (IN - (N A+ - (N)) No 385, 409, 457, 652, 663
554, (S? (IN) X? (LN - LN A+ LN)) No 386, 410, 458, 551, 554
6656. (8?7 (IN) X? (LN - LN A+ LN -)) ~_No 387, 411, 459, 6564, 655 {
556. (S? (IN) X2 (IN - LN A+ IN - IN)) No 388, 412, 460, 655, 656 1
557, (X () M2 (+)) No 222, 265, 658
658. (X () M2 (IN +)) No 223, 266, 658
559. (X () N () No 224, 5567, 560
660. (X () X () No 5589

We can prove directly from Table B.1 that our protocol has the desired closure
and consistency properties alluded to at the beginning of this section. For closure,
we note that there is no configuration in the table In which a processor is
presented with a message it cannot handle in its current state. For consistency,

we note that the only quiescent link conditions are our original five:

XOXO)) (XONO) (NONOD) COLO)) (SOMQO)

and that each of these has the desired status of the link as being in or out of the

refarence tree.

B.2: Global Properties of the Membership Protocol
Determining additional properties of the membership protocol requires combining

the data presented in this section with a little graph theory. For our purposes, we

make the following definitions:

Section B.2: Global Properties of the Membership Protocol 245.

b,

Definition B.2:

An undirected graph is an ordered pair (N,A), where N is a subset of the set N

of nodes, and A is a set of arcs {m.n} such that mn e N.

Intuitively, for every arc drawn between nodes m and n in an undirected graph

(N,A), A contains a doubleton set {m,n}.

Definition B.3:
A node n is a leaf node of the undirected graph G = (N,A) iff n € N and there is
exactly one node n' such that {n,n'} € A. A node n € N is an rsolated node of G ift

nd afor any a€ A

The concept of a leat node is the familiar one of a node with exactly one arc

attached; an isolated node is a node with no arcs attached to it.

Definition B.4:
A reference tree transformation ot an undirected graph G = (N,A) is one of
1. the original graph G, or
2. a new graph G’ = (Nu{(n},A/{{m,n}}) where m and n are nodes such that
me Nand nd N, or
3. a new graph G’ = (N-{n} A-({m.n}}) where ’n.n € N, nis a laaf node of

G, and {mn} € A

Intuitively, a reference tree transformation of a graph G is, if G is expanded, a
graph with a new node such that the new rode is a leat node and is connected to
some other node already in G, and if G is contracted, @ new graph minus one of the
leaf nodes in G (and also minus the associated arc). The purpose of defining refer-

ence tree transformations is to introduce

246. Appendix B: Correctness of the Membership Protocol

Lemma B.5:
If the set of processors and links that are members of a reference tree is
viewed as an undirected graph, the membership protocol performs only reference

tree transformations on reference trees.

proof follows from the information presented in Table B.1, with some elaborations.
Our strategy is to examine the transformation effected by each kind of transition
from one link condition to another.

case 1: No change occurs in the membership status of processors or links. This
is a valid reference tree transformation, by clause 1 of Definition B.4.

case 2: One of the processors undergoes the transition X:R+/L+:S or X?:(N/:N.
In this case both the link and the processor undergoing the transition join
the reference tree. In all cases where this happens, the processor at the
other end of the link is already in the reference tree, making this an

] instance of clause 2 of Definition B.4, assuming that no other links join the

reference tree at the same time. This assumption is valid because the

other link states of the processor joining the reference tree will simultane-
ously undergo either the transition X:/:N or the transition X?:/:N?, neither of
which causes any of these links to join the reference tree.

case 3: One of the processors undergoes the transition X:/:N or X?:/:N?. In
this case the prosessor joins the reference tree but the link does not. If
some other link attached to the processor simultaneously joins the reference
tiee, as in case 2, above, then the resulting transformation is a valid refer-
ence tree transformation. It would be possible, though, to imagine a situa-
t'on in which a processor spontaneously decided to join an object’s refer-
ence tree, say, by undergoing the transition X:/:N for all attached links.
1his would not be a reference tree transformation becsuse a processor
would ioin the "tree" without any corresponding link also joining. This
scenario is ruled out, however, by the restrictions on the applicability of
these transitions discussed at the head of this appendix.

case 4: One of the processors undergoes the transition M:/-:X?. In this case
both the link and the processor undergoing the trensition leave the refer-
ence tree. This transition is only allowed if the processor's state for every
other link is either N or N?, which (as can be determined from examination
of Table B.1) ensures that no other link attached to that processor is in the
reference tree. Hence the processor undergoing the transition is a leaf
node of the reference tree, making this a reference tree transformation of
the kind described in clause 3 of Definition B.4.

case H: One of the processors undergoes the transition N:/:X or N?:/:X?. This
can only happen if on some other link the processor is undergoing a trans:
tion of *the type discussed in case 4. Therefore this cese, too, satisfies

Section B.2: Global Properties of the Membership Protocol

clause 3 of Definition B.4.

These five cases exhaust the kinds of changes that occur between link conditions
that appear as successors of each other in Table B.1.

We now proceed to develop some more terminology.

Definition 8.6:
A path from node n to node n' in an undirected graph G = (NA) is a set
P = {ag.ay...a,) ¢ A such that
1. there exists a sequence Moy My € N such that for O </ s Kk,
a; = (mpm; .}
2.it i 2 J, then a ¢ al; and

3. m0=nandm”‘ =n.

A path between two nodes is thus a set of arcs, with no arc used more than once,

which connects the two nodes.

Definition B.7:
An undirected graph G = (N,A) is connected ift for any m,n € N, where m ¢ n,

there exists a path from m to n in G.
Definition B.8:

An undirected graph G = (N,A) is acyclic iff for any m,n € N, where m # n, there

is at most one path from m to n in G.

248. Appendix B: Correctness of the Membership Protocol

Some subsidiary lemmas help support the main result of this section:

Lemma B.9:
If an undirected graph G = (N,A) has the property that |N| = 1+]|A|, then either

G has a leaf node or G has an isolated node.

proof by contradiction: Assume G has no leaf node or isolated node. Then for
every node n ¢ N, there are at least two arcs a € A such that n e a Since all arcs
are doubleton sets, the total number of arcs must be at least as great as the tota!
number of nodes. Thus |N| < |4, contradicting the assumption that [N| = 1+]4].

Lemma B.10:

It an undirected araph G = (N, A) is connected and |N| = 1+|A|, then the graph G

i1s acyclic.

proof by induction on |4|

basis: |A] = 0. Then there is only one node in G and Definition B.& is satisfied
vacuously

induction Assume the lenma for |A| = k. If [A] = k+1 then G has at least two
nodes. Since G i1s connected, there must be a path between any node in G
and any other. No node in G can be an isofated node, for there can be no
path from an isolated node to any other node. Therefore by Lemma B.Q, G
must have at least one leaf node n. Let {mnn} ¢ A be the one arc connect-
ing to node n. Then the graph G' = (N-{n},A-{{m,n}}) s the graph G minus
the leaf node n and its connecting arc. By the induction hypothesis, G' is
acyclic. Since nis a leaf node of G, the only paths in G that include the arc
{m.n) are those that start or end on n. In order for G to be acyclic, there
must be at most one path between any pair j k, of distinct nodes in G. Two
cases can be distinguished.

case 1. j ke G Then ; # n and k # n, hence no path from ; to k in G could
include the arc {m.n} Thus any path between ; and Kk in G is also a path
between ; and k in . By the induction hypothesis, there can be at most
one of these.

case 2 [= pnor k - . Without loss of generality, we can assume that j = n.
The. any path from ; to X in G must begin with the arc {mnn}. If k = m, this

Section B.2: Global Properties of the Membership Protocol 249.

_ S — .

n .

arc is the unique path from j to k. It Kk # m, a path from j to kK must be the
union of {m,n} and a path from m to kK in G. Since m,k € G', any path from m
to A in G Is also in G By the induction hypothesis, there is at most one
path from m to Ak in G'. Hence there 1s at most one path from ; to k in G.

Lemma B.11:

"

It a graph G = (N A) has the property that |[N| = 1+|A| then any reference tree

transformation G" = (N',A°) of G has the property that |N'| = 1+|A4"].

proof: Fach of the three cases of Definition B.4 adds or subtracts the same
number of elements to or from N and A, tnus reeping constant the difference
between their cardinalities

Lemma B.12:
If a graph G = (N,A) is connected, then any reference tree transformation
G = (N &) of G is also connected.
proof by cases:
case 1: G = G. Then G’ s obviously connected if G is.

case 2: G = (MN(n}).A{({mn})}) where m and n are nodes such that m ¢ N and
nd N. Then G is connected if there exists a path in G’ between every two
distinct nodes j.x in G' if j k¢ N then there exists a path from j to k using
only arcs in G, all of which are also present in G°. Otherwise either j = n or
k = n. Without joss of generality we may assume ; =n. Then, if Kk = m,
{{m.n}} is a path from j to k in G'. Otherwise, if £ is a path from m to k in
G, then Pu{{m,n}} is a path from j to k in G. Hence G’ is connected if G is

case 3: G' = (N-{n}.A-({m.n})) where mne N, n is a leat node of G, and
{m.n} € A. Since n is a leaf node of G. no path between nodes j and A in G,
where j # n and k # n, could include the arc {mn)} Thus any such path
between nodes j and A in G is also a path between j and kK in G°. Since any
pair of nodes in G’ falls into this category, and since G is connected, G’ must
be connected.

250. Appendix B: Correctness of the Membership Protocol

Lemma B.13:

It a graph G = (N,A) is connected and has the property that |N| = 1+|4|, the
result G' = (N A') of pertorming any number of successive reference tree transfor-

mations on G is also connected and has the property that [N'| = 1+|4’|.

proof by induction on the number k of reference tree transformations applied:
basis: A = 0. Then G = G' and the lemma is trivially true

% induction. Assume the lemma for K = n successive reference tree transforma-

tions. To show the result for k+1 transformations, consider the graph

G" = (N",A") resulting at the end of the first k transformations in the

sequence. By the hypothesis, G” is connected and has the property that

IN“] = 1+|A“|. Then one more transformation on G" will produce G'. By Lem-
mas B.11 and B.12, G' is connected and has the property that |N'| = 1+|4’|

F Theorem B.14: |
Any number of successive reference tree transformations on the initial graph

G = ({n}.{}) will always yield a connected, acyclic graph.

proof. G = (NA) is connected and has the property that |N| = 1+|4]. Thus by

lemma B.i3 any graph G' = (N A') produced from G by any number of successive

reference tree transformations is connected and has the property that |N'| = 1+]4°|.
By Lemma B 10, this means that G' is acyclic as well as being connected

o]

Since every object’'s refarence tree starts out including just the single proces-

sor where the object was created, Theorem B.14 assures us that no reference

tree will ever become disconnected or come to include cycles.

Section B.2: Global Propearties of the Membership Protocol 251.

S o

B8.3: Summary

This appendix first recapitulated the workings ot the reterence tree member-
ship protocol, including the various restrictions on the applicability of some of the
state transitions. This protocol was then analyzed tor the local properties of clo-
sure and consistency, and the global properties of resistance to disconnection and

resistance to forming cycles. Conclusions of the analysis were as follows:

® closure — every message that can arrive at a processor in a particular state

can be handled by the processor in that state.

® consistency — our assignment of link status (as being in or out of the refer-
ence tree) to link conditions is consistent both with our assumptions about
when processors enter and leave the tree and with the link status desired
to accompany each quiescent link condition (condition in which no messages

are in transit).

® resistance to disconnection — reference trees do not become disconnected.

® resistance to forming cycles — cycles do not form in reference trees.

252. Appendix B: Correctness of the Membership Protocol

mﬂf.: -

OFFICIAL DISTRIBUTION LIST

Defense Documnentation Center
Cameron Station
Alexandria, VA 22314

12 covies

Office of Naval Research
Information Systems Program
Code 437
Arlington, VA 22217

2 copies

Office of Naval Rescarch
Rranch Of fice/Boston
Building 114, Section D
666 Summer Strect
Boston, MA 02210

1 copy

Office of Naval Rescarch
Rranch Of fice/Chicago
536 South Clark Strect
Chicago, 1L 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

Now York Area
715 Broadway - 5th floor
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
washington, D. C. 20375

6 aypies

Assistant Chief for Technoloay
Office of Naval Resecarch
Code 200
Arlington, VA 22217
1 copy

Of fice of Naval Research
Code 455
Arlington, VA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Alvisor
Commandant of the Marine Corps
(Code RD-1)
washington, D. . 20380

1 copy

Of fice of Naval ke<oareh
Code 458
Arlinaton, VA 22217

I copry

Naval Ocean Systoms Center,Cocde 9]
Headquarters-Corputer Sciences &
Simulation Department

San Dieqo, CA 92152

Mr. Lloyd Z. Maudlin

1 copy

Mr. E. H. Gleisuner
Naval ship Rescarch § Dovelopeent Center
Camputation & Math Department
Bethesda, MD 20084
1 copy

Captain Grace M. lopper (008)
Naval Data Autamation Command
washington Navy Yard
Baiding 166
Washington, D. C. 20374

1 copy

Mr. Kin B. Thampson
Technical Director
Information Systems Division
(OP-917)
Office of Chief of Naval Operations
Washington, D. C. 20350

1 copy

Captain Richard L. Martin, USN
Cammanding Of ficer

USS [rancis Marion (LPA=249)
FPO New York, N. Y. 09501

1 copy

