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1. INTRODUCTION 

The primary motivation of the present study is to gain some basic understanding 
of the anomalous heating experienced by many tactical missiles flying at supersonic 
speeds, generally known as the shock-interference heating. When an extraneous 
shock wave impinges on a body in supersonic flight, it interferes with the basic 
bow shock of the body. This interference is believed to be responsible for the 
severe heating and sharp pressure rise observed in the experiments (see, for 
example, References 1-5). The incident shock may originate from an external source, 
or it may be generated within the flow field of the aerodynamic body itself, such as 
the shock caused by boundary-layer separation ahead of a compression ramp. The 
problem is obviously of practical importance because most aerodynamic configurations 
in practical use are, to a varying degree, susceptible to such interference 
phenomena. Examples include space shuttle, winged bodies, missile with control 
fins, etc. 

After a careful and extensive experimental study of the problem, Edney(l) has 
classified the shock-interference patterns into six possible types depending on 
the orientation of the incident shock and the position of the impingement point 
relative to the basic bow shock. Among them, the type IV interference is found to 
lead to the most severe heating and pressure peaks. A peak heating rate as high as 
17 times the interference-free stagnation point value together with a peak pressure 
of about 8 times the free-stream pitot pressure has been measured by Hains and 
Keyes< 2) in a configuration where the type IV interference pattern is expected to 
occur. Characteristic to the type IV interference is the impingement of a super
sonic jet on the body where the jet is produced by the interference between the 
impinging shock and the bow shock. 

It is therefore clear that a good understanding of the supersonic jet
impingement problem is essential to the understanding of the overall aerodynamic 
heating associated with the shock-interference phenomena. In the present project, 
effort was first expended in developing a simple, approximate theory for the flow 

1. Edney, B., "Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies 
at Hypersonic Speeds in the Presence of an Impinging Shock," FFA Report 115, 
The Aeronautical Research Institute of Sweden, Stockholm, 1968. 

2. Hains, F. D. and Keyes, J. W., "Shock Interference Heating in Hypersonic Flows," 
AIAA Journal, Vol. 10, No. 11, Nov 1972, pp. 1441-1447. 

3. Heirs, R. S. and Loubsky, W. J., "Effects of Shock-Wave Impingement on the Heat 
Transfer on a Cylindrical Leading Edge," NASA TN D-3859, Ames Research Center, 
Moffet Field, Calif., 1967. 

4. Kaufman, L. G., III, Karkegi, R.H. and Morton, L. C., "Shock Impingement 
Caused by Boundary Layer Separation Ahead of Blunt Fins," ARL TR 72-0118, 
Aerospace Research Laboratories, WPAFB, Ohio, 1972. 

5. Gillerlain, J. D., Jr., "Experimental Investigation of a Fin-Cone Interface 
Flow Field at Mach 5," NSWC/WOL/TR 75-63, Naval Surface Weapons Center, White 
Oak Laboratory, Silver Spring, Md., 1976. 
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associated with the supersonic jet impingement on a flat plate. The flow was 
assumed inviscid and the jet was assumed to be uniform and isentropic. A detailed 
description of the theoretical work can be found in Chien(6). 

The present report contains the detailed results of an experimental study of 
the jet-impingement flow field. The experiment was intended as a verification of 
the approximate theory. The jet was produced by two simple wedge-nozzles at two 
design Mach numbers of 1. 75 and 2.75, respectively, and the experiment was 
conducted in a two-dimensional configuration. Results reported here include the 
survey of the free jet, surface pressure distribution on the plate, and schlieren 
photographs of the shock wave pattern. Comparison with theory is made whenever 
appropriate. Although the results are mainly presented and discussed for the case 
of an isentropic jet, some surface pressure measurements made with underexpanded 
and overexpanded jets are also reported here. 

Related experiments of supersonic jet impingement flows previously reported 
include the work of Hunt and othersC7,8) for the axisymmetric jet and Pollard 
and BradburyC9) for the two-dimensional jet. The work of Ref. (9) was carried out 
in relation to V/STOL applications, and the emphasis was placed on the case of 
relatively large nozzle-to-surface distances when turbulent mixing and viscous 
entrainment by the jet were important. On the other hand, we are concerned with 
the situation where the ratio of the nozzle-to-surface distance to the nozzle exit 
width is about unity and the viscous effects are believed to be of secondary 
importance. 

It is noted here that the highlights of the results included in this report 
were presented earlier as Ref. 10 where a brief description of the theoretical 
work was also given. 

6. Chien, K.-Y., "Normal Impingement of a Supersonic Jet on a Plane--A Basic Study 
of Shock-Interference Heating," NSWC/WOL/TR 75-195 , Naval Surface Weapons 
Center, White Oak Laboratory, Silver Spr i ng, Md., 1975. 

7. Gummer, J. H. and Hunt, B. L., "The Impingement of a Uniform, Axisymmetric, 
Supersonic Jet on a Perpendicular Flat Plate," The Aeronautical Quarterly, 
Vol. 22, Pt. 4, Nov 1971, pp. 403-420. 

8. Carling, J. C. and Hunt, B. L., "The Near Wall Jet of a Normally Impinging, 
Uniform, Axisymmetric, Supersonic Jet," Journal of Fluid Mechanics , Vol. 66, 
Pt. 1, 1974, pp. 159-176. 

9. Pollard, D. J. and Bradbury, L. J. S., "Impingement of a Two-Dimensional 
Supersonic Jet upon a Normal Ground Surface," AIAA Journal, Vol. 14, No. 8, 
Aug 1976, pp. 1095-1098. 

10. Zien, T. F., Chien, K.-Y. and Driftmyer, R. T. , "Two-Dimensional Supersonic 
Jet Impingement on a Flat Plate," AIAA Paper 78-208, AIAA 16th Aerospace 
Sciences Meeting, Huntsville, Alabama, Jan 1978 . Also, AIAA Journal, Vol. 17, 
No. 1, Jan 1979, pp. 4-5. 

8 
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2. DESCRIPTION OF EXPERIMENT 

2.1 EXPERIMENTAL HARDWARE AND SETUP. Two stainless steel wedge nozzles were 
manufactured at the design Mach numbers of 1.75 and 2.75, respectively, to provide 
for the supersonic jets used in the experiment. The aerodynamic design of the 
nozzle was based on the simple inviscid, one-dimensional flow model for air 
(perfect gas, y = 1.405). The nozzles have the same exit width of 3.81 cm (1½ in.) 
and the same exit area of 3.81 cm x 5.08 cm (1½ in. x 2 in.). The semi-wedge angle 
was 2° 13' for the Mach 1.75 nozzle, and 5° 34' for the Mach 2.75 nozzle. A 
sketch of the nozzle is shown in Fig. 1, and the drawing of the Mach 1.75 nozzle 
block holder is shown in Fig. 2. 

The test plate used in the jet-impingement experiment was made of stainless 
steel, and instrumented with a row of five pressure taps evenly spaced across a 
2.54 cm (1 in.) span in the center portion of the plate (entire plate width= 
5.74 cm (2.26 in.))*. The pressure taps were aligned in the depth direction of 
the nozzle block in order to determine the two-dimensionality of the impingement 
flow field in the experiment. The end view of the test plate showing the pressure 
taps is given in Fig. 3. Two glass ported side plates were rigidly fixed to the 
edges of test plate to constrain the flow in order to achieve the desired two
dimensionality. These side plates were made of schlieren quality glass so that 
photographs could be taken of the impinging jet and the associated shock system. 
The clearance between the outside of the nozzle block holder and the inside of the 
glass ported side plates was on the order of the thickness of a sheet of tablet 
paper. The entire test plate/side plates assembly was connected to an axial 
traverse mechanism with controlled translational motion, and the assembly was made 
to slide relative to the (stationary) nozzle during the measurement. A continuous 
pressure signature on the test plate was thus recorded. Because of the relative 
motion between the walls of the nozzle block and the glass side plate anticipated 
in the run and the small clearance in the contact surfaces, special care was 
exercised in aligning the nozzle block with the side plates to ensure a non
interfering relative motion. The plate/nozzle package used in the experiment is 
shown in Fig. 4a (only one side plate is shown). Also shown in Fig. 4a are two 
static pressure probes in their respective positions during the run. There were 
two pairs of such probes located symmetrically with respect to the nozzle symmetry 
plane. Pel measured the exit pressure of the jet, and was used in determining the 
exit conditions (isentropic, underexpanded, or overexpanded) of the jet, and Pe2 
was taken also to give some idea of the pressure gradient existing in the test 
chamber during each run. This pressure gradient is significant in interpreting 
the experimental data because it is indicative of the nonunifcirmity in the 
ambient conditions unaccounted for by the theory. The nonuniformity was expected 
especially in the surface pressure tests where it was conceivably difficult for 
the semi-confined flow field to accommodate the added mass of air from the jet 
while maintaining a constant and uniform ambient condition as required by the 
theory. A more complete view of the nozzle-mate-side-mate assembly is shown in 
Fig. 4b. 

*The plate width was made to be the same as the nozzle block depth which was 
necessarily larger than the nozzle exit depth (5.08 cm) because of the thickness 
of the block. Only a minor three-dimensionality of the impingement flow near 
the edges of the test plate is expected, and this will be discussed in light 
of the experimental results (Section 3). 

9 
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The nozzle/plate assembly was installed in the test section of the Supersonic 
Wind Tunnel No. 2 at the Naval Surface Weapons Center with the nozzle axis aligned 
in the vertical direction perpendicular to the (horizontal) test plate. An overall 
view of the experimental apparatus is shown in Fig. 5. We note that the primary 
reason for choosing this facility to conduct our experiment was to take advantage 
of the existing vacuum capacity of the tunnel to control the back pressure of the 
jet. Other mechanical and optical accessories for routine tunnel operations 
provided the additional convenience, but the original aerodynamic characteristics 
of the wind tunnel were largely irrelevant to the present experiment. 

The test air was supplied from bottle-filled air normally stored at pressures 
up to 3000 psia. The stagnation chamber pressure in this experiment was controlled 
by a dome loader control valve located outside the wind tunnel test cell. In the 
Mach 2.75 test series, an electric resistance heater was installed in the piping 
system between the control valve and the stagnation chamber so that the stagnation 
temperature of the air could be raised sufficiently to eliminate possible condensa
tion problems in the expansion through the nozzle. 

A pitot rake assembly was designed and manufactured with five 0.159 cm 
(1/16 in.) O.D. stainless steel tubes as pitot probes. The five probes were 
aligned in the same direction as the pressure taps on the test plate. The probes 
extended vertically upward and were spaced 0.635 cm (1/4 in.) apart, center to 
center. The pitot rake was used to survey the free jet, in the absence of the 
test plate/side plate package. When surveying the free jet, the rake was fastened 
to the axial traverse mechanism of the wind tunnel, and was moved across the width 
of the nozzle exit in a controlled manner. 

All pressure measurements were made with the strain gage type pressure 
transducers. The stagnation temperature was measured with a copper-constantan 
thermocouple referenced to 0°C. 

2.2 EXPERIMENTAL PROCEDURE 

2.2.1 Pitot Survey. The experiment with each nozzle began with a pitot 
survey of the free jet, using the pitot rake described in section 2.1, to establish 
the actual Mach number and to determine the uniformity and quality of the two
dimensional jet. The survey was made at two distances downstream of the nozzle 
exit, ~2 = 0.3175 cm (1/8 in.) and ~2 = 2.54 cm (1 in.), in an effort to determine 
any possible changes in the properties of the jet during its passage through the 
quiescent air. 

In the pitot survey of the free jet, the test plate and the side plates were 
removed, and the pitot rake was carefully installed at the desired distance below 
the nozzle exit plane. The jet was free to expand and exhaust into a large 
opening. The stagnation chamber pressure was first set at a desired value, and the 
vacuum pump was turned on to reduce the pressure in the test cell of the wind tunnel 
until the reading of Pel reached the value approximately equal to the exit pressure 
for an (one-dimensional) isentropic expansion of the stagnant air to the design 
Mach number. Po and Pel were held constant when the rake traversed the width of the 
nozzle exit at a speed of 1.905 cm/min (0.75 in./min). The survey was conducted at 
two values of the stagnation pressure, Po, for each value of ~2· The test cell was 
then opened, and the rake was moved manually to a new position corresponding to the 

10 
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second value of ~2· The stagnation pressure, Po, was reset and the vacuum 
operation was repeated in preparation of the pitot survey at the new value of ~2· 
The pitot traverse covered the entire width of the nozzle exit plane, i.e., 
3.81 cm (l½ in.) for each value of ~2 , and schlieren photographs were taken at 
selected positions of the pitot rake during its traverse. 

2.2.2 Surface Pressure Distribution. Upon completion of the pitot survey of 
a wedge nozzle, the pitot rake was removed from the test cell of the wind tunnel, 
and the test plate/side plate package was carefully assembled and installed in the 
test chamber. The distance between the nozzle exit plane and the surface of the 
test plate, ~l, was predetermined using the theoretical predictions of Ref. (6) as 
a guide. The value of ~l was selected such that the plate shock would appear 
within the distance ~l· Note that too large a value of ~l would introduce unwanted 
complications into the jet-impingement flow field, such as viscous entrainment, 
and hence caused unnecessary difficulties in analyzing the data. For each jet Mach 
number, two values of ~l were used in the surface pressure measurements. The 
adjustment of ~l was achieved by moving the stagnation chamber-nozzle block 
assembly along a vertical slot located in the stagnation chamber mounting bracket 
while the test plate remained in its fixed elevation . 

An important parameter of the test is the pressure ratio, TI, which determines 
the exit condition of the jet. It is defined as the ratio of the nozzle exit 
pressure for isentropic exit condition, (Pe)isen, to the actual pressure maintained 
at the nozzle exit during the test, (Pe) actual• i.e. 

As mentioned in section 2.1, Pel was taken to be (Pe)actual in our experiment. 
Thus, TI = 1 corresponds to the case of an isentropic jet, whereas TI > 1 and TI < 1 
correspond to underexpanded jet and overexpanded jet , respectively. 

In the present experiment, surface pressure measurements were taken for all 
three types of the impinging jet. Detailed results will be presented only for the 
case of a nearly isentropic jet in this paper , as the theoretical analysis of the 
problem was made only for this case. A brief discussion on the results of 
impingement of a non-isentropic jet will also be given. 

Nozzle No. 1 (designed Mach number= 1 . 75) was used in the first test series. 
The value of ~l was first set to be 5.08 cm (2 in.) for which extensive surface 
pressure data were taken. The nozzle block was then lifted to give a value of 
~l = 6.35 cm (2½ in.), and some pressure data were recorded. In this series of 
experiment, it was relatively easy to adjust the stagnation pressure, Po, and the 
exit pressure, Pel, independently to yield the desired values for TI . 

In the experiment with nozzle No. 2 (designed Mach number= 2.75), two series 
of tests were run. In the first series, some good schlieren photographs were 
obtained but, unfortunately, no surface pressure data were recorded due to a 
mechanical failure. Only the readings of Po and Pel (and also Pe2) were available, 
and the photographs were used to provide the data of shock shape and location. A 
second series had to be run using the same nozzle to obtain the surf ace pressure 
distribution. Although both photographic data and pressure data were obtained in 
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the second series, the quality of the photographs was not sufficiently good to 
allow for a quantitative analysis. It was then decided to present the photographic 
data of the first series and the surface pressure data of the second series in this 
paper. Since both series were run with the same nozzle, the photographic data of 
the first series should correspond to the jet Mach number determined by the pitot 
survey of the second series. 

It is noted here that in the course of the experiment with the second nozzle, 
difficulty was encountered in obtaining the correct exit pressure, Pel (and Pe2), 
for an isentropic jet ( TT = 1) at a given Po when the nozzle-to-plate distance, ~1, 
was smaller than 4.445 cm (1 3/4 in.). It was not possible to bring the Pel 
reading down to the desired value for a fixed Po setting. For example, in the 
first test series when 61 was set at 3.175 cm (1¾ in.) and Po at 1598 mmHg, the 
lowest Pel we could get was 128 mmHg, (Pe2 = 17 mmHg) corresponding to TT~ 0.48, 
even when a more powerful vacuum pump was turned on; Pel seemed to be controlled 
by Po and could no longer be adjusted independently. At a larger separation 
distance of ~2 = 4.445 cm, it was again possible to adjust the values of Po and Pel 
independently to give any desired values of TT , including the case of special 
interest, i.e. TT ~ 1. Since the impinging jet was supersonic, and the test plate 
and the nozzle exit was separated by a visible plate shock, the apparent influence 
of the plate on the (upstream) condition at the noz zle exit was not expected from 
a theoretical standpoint. However, since the flow field was semi-confined (as 
opposed to infinite) in the experiment because of the presence of the side plates, 
the added mass from the air jet to the confined space was likely to build up the 
pressure near the nozzle exit. Increasing 61 implies an increase in the flow field 
dimension, and should therefore alleviate the dif f iculty. 

The surface pressure measurements associated with the second nozzle were made 
with 61 = 4.445 cm (1 3/4 in.) and 61 = 5.08 cm (2 in.). 

All the pressure data were recorded on tape using the existing data acquisition 
system. The recording rate was 8 samples per second. The pressure transducers were 
calibrated using a mercury manometer with photo-electric detector equipment to set 
the pressures. At least five pressures were set for each pressur e calibration. 
A least-square-fit was then applied to the data, and a linear calibration curve 
was obtained for all cases. Tare values were taken before and a f ter each run to 
account for any transducer shifts. 

3. EXPERIMENTAL RESULTS. 

3.1 NOZZLE NO. 1 

3.1.1 Free Jet Pitot Survey. Four runs were made to survey the jet at 
two different stagnation pressure settings, Po, and two different distances from 
the nozzle exit, ~2, using the pitot rake described in section 2.1. The test 
matrix is shown in the followin g table. 

12 
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Table 1. Pitot Survey of Free Jet - Nozzle No. 1 

Run No. p (psia) p (psia) 1:,
2 

(in) (M. )Ave. 
0 e J 

13 9.26 1. 64 1 1.85 

15 6 . 09 1.10 1 1.83 

17 6.13 1.09 1/8 1.84 

19 9 . 70 1. 74 1/8 1.85 

During these free jet survey runs, the back pressure inside the test chamber 
was set at approximately the value corresponding to the isentropic exit pressure 
for the design Mach number of 1.75. 

The pitot pressure variations measured in Runs 19 and 15 are shown in 
Figs. 6 and 7, respectively. Here, variations of the total pressure in both the 
width direction and the depth direction are shown. The Mach number variation can 
easily be deduced from the pitot pressure distribution by means of the tables of 
Ref. (11) assuming that the total pressure upstream of the normal shock of the 
pitot tube is the same as the stagnation pressure, p0 • The Mach number variations 
corresponding to Figs. 6 and 7 are shown in Figs. 8 and 9, respectively. In 
addition, the free jet Mach number distributions corresponding to Runs 17 and 13 
are also obtained, and shown in Figs. 10 and 11. 

Schlieren photographs of the pitot survey were taken during each run, and 
representative photographs corresponding to Runs 13, 15, 17 and 19 are reproduced 
and shown in Figs. 12-15, respectively. 

From the results of the survey, a reasonable assessment of the quality of the 
jet produced by the simple wedge nozzle can be made. As shown in Fig. 6 the total 
pressure measured by the middle three pitot probes (i.e. pitot Nos. 2, 3 and 4) 
was uni{orm to within 5% across the most part of the nozzle width, except near the 
edges (x ~ ±1) where some three-dimensional effects were expected. The variation 
of the total pressure in the depth direction was also limited to about 5% with the 
maximum variation occurring near the symmetry plane(~ = 0). The corresponding 
Mach number variation (Fig. 8) was found roughly the same as the total pressure 
variation. The Mach number variation measured near the exit plane but at a lower 
p0 , i.e., Run 17 was in very close agreement with that of Run 19, (see Fig. 10). 
The average free jet Mach number, Mj, for nozzle No. 1 was thus determined to be 
1.85. However it should be borne in mind that the local values of Mj near the 
exit plane actually varied from 1.82 to 1.92, excluding the values near the edges 
of the nozzle width where the rapid expansion around the corner apparently resulted 
in much higher Mach numbers. 

11. Ames Research Staff, "Equations, Tables, and Charts for Compressible Flow," 
NACA Report 1135, 1953. 
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In a distance of 1 in. downstream of the nozzle exit, the free jet Mach 
number stayed practically the same, as a comparison between Figs. 8, 10 and Figs. 
9, 11 suggests. We also note that the nozzle boundary layer apparently had very 
little effect on the jet, as the Mach number distribution near the nozzle exit was 
essentially the same for the two runs with different stagnation pressures (there
fore difference Reynolds numbers) based on a comparison between Figs. 8 and 10. 

A mild drop in Mj in the vicinity of the symmetry plane (Fig. 8) is perhaps 
attributable to the oblique shocks originated inside the nozzle, which are 
faintly visible as a small triangle near the center of the nozzle exit in Figs. 
12-15. However, the shocks if indeed existed, seemed too weak to warrant any 
concern. Note also that the hump flattens out when the pitot measurements were 
taken outside the small triangular region, as shown in Fig. 11. 

3.1.2 Surface Pressure Measurements: TI ~ 1. Fig. 16 summarizes the surface 
pressure data obtained in the test with Nozzle No. 1 for TI ~ 1. The surface 
pressure was measured by five pressure taps, Pi through P5, along the depth of 
the nozzle. Characteristically, the readings of the three middle taps, P2, P3 and 

~ 
P4 agreed to within about 3% in the region of interest, -1 ~ x ~ 1, and the 
readings of P1 and P5 generally differed by 6~10% from the three middle ones in 
this region. This suggests that some three-dimensional effects were still present 
despite the use of the side plates. Therefore, it was decided to disregard the 
readings of P1 and P5 , and use the average readings of P2, P3 and P4 for the 
surface pressure data. This was the procedure used in the data analysis for both 
nozzles. 

It should be noted here that if the readings of the two end pitot probes were 
also disregarded in evaluating the average jet Mach number in consistence with the 
procedure used in reducing surface pressure data, the value of Mj would be about 
1.82, and the values for TI under the listed test conditions would be very close 
to one. It is therefore felt that the results in Fig. 16 correspond to a nearly 
isentropic jet. 

The pressure data of the three different runs with 61 = 5.08 cm are seen to 
agree very closely, and the expected symmetry in the data with respect to the 
nozzle symmetry plane is clearly visible. Therefore, the good quality of the 
experimental results and their high reproducibility seem assured. The data with 
61 = 6.35 cm are also included in Fig. 16 to indicate the effect of 61 on the 
surface pressure distribution. Note that in the ideal case of a uniform, isentropic, 
inviscid jet as assumed in the theory, 61, should have no effect on the flow. 
However, in the experiment, the effect seemed to exist as the data showed a 
distinct, though slight, deviation from those of the other three runs. The effect 
of 61 on surface pressure apparently becomes more pronounced for an underexpanded 
jet ( TI> 1) as will be discussed later. 

We note here that in the course of this series of experiment, the second 
static pressure probe near the nozzle exit was not installed and therefore 
readings of Pe

2 
were not available. 

3.1.3 Plate-Shock Measurements. Schlier~n photographs were taken of the 
impingement flow which showed the position and the shape of the impingement shock 
wave, referred to here as the plate shock. The photographs of Run 23 and 37 show 
the shock wave clearly, and were used to measure the shock shape and shock position 
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relative to the plate. These two photographs are reproduced in Fig. 17 (Run 23) 
and Fig. 18 (Run 37). The shock location was measured from these photographs, and 
the results are shown in Fig. 19 where ~sis the vertical distance of the shock 
measured from the plate surface. The results of the two runs appear to be less 
consistent than the results of surface pressure for the corresponding runs. 

3.1.4 Surface Pressure Measurements: TT> 1. Two runs (No. 41 and No. 63) 
were made with the back pressure maintained at a substantially lower value than the 
corresponding value for isentropic expansion so that the exit jet was in an under
expanded condition. The degree of expansion was chosen to be roughly the same 
(TT ~ 3.9 based on M· = 1.85) whereas the values of ~l were different (5.08 cm for 
Run 41 and 6.35 cm lor Run 63). The effect of ~l on the surface pressure can thus 
be determined. The results are shown in Fig. 20. It is clear that the plate-to
nozzle distance has a considerable influence on surface pressure, as opposed to 
the case of a nearly isentropic jet (Fig. 16). The effect appears particularly 
pronounced in the region near the stagnation point. 

A plausible explanation of this result can perhaps be given in terms of the 
interaction of the expansion waves emanating from the nozzle edges due to the 
severe underexpansion of the jet. At a larger value of ~l (Run 63), the plate 
shock is expected to be farther away from the nozzle exit plane, allowing the 
expansion waves from the two edges to interact near the symmetry plane upstream of 
the plate-shock. The interaction results in an increased jet Mach number and 
hence a stronger shock. As a consequence, the normalized surface pressure in the 
region near the stagnation point is lower than that for a smaller ~l (Run 41). 
This finding is in accordance with that of Gummer and Hunt(l2) in their study of 
the underexpanded axisymmetric jet impingement problem. 

The surface pressure results corresponding to a slightly underexpanded 
impinging jet (TT ~ 1.3) at two values of ~l are shown in Fig. 21. In this case of 
minor underexpansion, the interaction between the expansion waves mentioned above 
is apparently too weak to change the flow field structure, and the normalized 
surface pressure near the stagnation point is practically the same for the two 
values of ~1- On the other hand, the viscous effects here apparently dominated 
the inviscid effects of wave interaction. In Run 59 where ~l = 2 1/2 in., the 
jet traveled a longer distance upstream of the shock than the jet in Run 44 (~1 
2 in.) and the viscous effects appeared to have decreased its effective Mach 
number more, resulting in a slightly weaker shock (and thus slightly higher 
normalized surface pressure readings). However, it must be noted that a quantita
tive assessment of these effects is not possible with the presently available data. 

3.1.5 Surface Pressure Measurements: TT< 1. In this series of measurements, 
the case of the impingement of an overexpanded jet was also studied in which the 
jet exit pressure was maintained at a value higher than that required for isentropic 
exit condition. Here, a system of complicated shock waves was expected near the 
nozzle exit, and the associated impingement flow becomes extremely complex. The 
results of surface pressure measurement of one run at TT ~ 0.46 are shown in 

12. Gummer, J. H. and Hunt, B. L., "The Impingement of Non-Uniform, Axisymmetric, 
Supersonic Jets on a Perpendicular Flat Plate," Israel Journal of Technology, 
Vol. 12, 1974, pp. 221-235. 



NSWC TR 79-289 

Fig. 22. While results are not extensive enough to show the effects of various 
parameters, the figure does suggest that the Mach number of the impinging jet was 
somewhat lower than that of the case where TT~ 1, because the surface pressure at 
the stagnation point in this case was the highest among all ranges of TT studied. 
The lower value of the jet Mach number is, of course, attributable to the presence 
of various shock waves upstream of the plate shock. Perhaps coincidentally, the 
"effective" jet Mach number in this case based on the stagnation pressure on the 
plate was roughly the same as the design Mach number of the jet, 1.85. 

3.2 NOZZLE NO. 2 

3.2.1 Free Jet Pitot Survey. As in the test series of Nozzle No. 1, four 
runs were made to survey the free jet using the pitot rake described in section 2.1. 
The test matrix is shown in the following table. 

Table 2. Pitot Survey of Free Jet - Nozzle No. 2 

Run No. p (psia) T (OR) p (psia) 6. 2 (in.) (Mj) Ave. 0 0 e 

5 20.2 537 o. 722 1/8 2.78 

6 15.11 547 0.535 1/8 2. 77 

9 20.1 540 o. 725 1 2.87 

10 14.98 552 0.554 1 2.87 

Pitot results for Run 5 and Run 9 are shown in Fig. 23 and Fig. 24, 
respectively, and the corresponding Mach number distributions are deduced using the 
tables of Ref. 11, as in Section 3.1.1. The Mach number variations for the four 
runs are shown in Figs. 25-28. Generally speaking, the degree of uniformity of 
the free jet is roughly the same as that of the Nozzle No. 1 jet. Disregarding the 
readings of the two end probes (i.e., No. 1 and No. 5) as in the case of Nozzle 
No. 1, the Mach number variation across the nozzle~width near the exit plane . 
(Figs. 25 and 26) was about 3% or less for 0.8 < lxl < 1. Again the characteristic 

~ 

drop of Mj away from x = 0 as discussed in Section 3.1.1 is visible, suggesting the 
possible existence of weak oblique shocks originated inside the wedge nozzle. We 
note that in Figs. 25 and 26, and also in Figs. 24, 27 and 28, the readings of the 
pitot probes No. 2 and No. 4 are not shown, because they are very close to those 
of the center probe, No. 3. This implies that the uniformity of the jet in the 
nozzle depth direction was also very good. It should be noted here that the jet 
appeared to have gone through a noticeable expansion in a distance of 1 in., as 
the average jet Mach number changed from 2.77 to 2.87 between a distance of 1/8 in. 
and 1 in. from the exit plane (see Table 2). This percentage increase in Mj, 
though still within the percentage variation in the jet width and depth directions, 
was not observed in the free jet of Nozzle No. 1. It was perhaps due to the 
larger wedge angle of this nozzle (8w = 5°34' compared to 2°13' of Nozzle No. 1). 

3.2.2 Surface Pressure Measurements: TT~ 1. Fig. 33 shows the results of 
the surface pressure measurements for a nearly isentropic jet. Three runs were 
made at different stagnation pressures and a fixed plate-to-nozzle distance, 
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t 1 = 4.445 cm (1 3/4 in.). As in the case of nozzle No. 1, the readings of the 
two end pressure taps Pi and P5 were discarded because of their excessive deviation 
from the readings of the three middle taps. The deviation seemed considerably 
larger in this series of test (lower than the middle readings by as much as 25%) 
than in the series of nozzle No. 1. However, the agreement among P2, P3 and P4 
continued to be very good (typically, 3-5%). 

The readings of Po, Pel and Pe2 all remained practically constant during all 
runs. However, a considerable difference in the readings of Pel and Pe2 was 
always present in each of these runs, indicating the existence of nonuniformity in 
the ambient conditions. 

As can be seen from Fig. 33, the expected symmetry of the surface pressure 
distribution and the close agreement among the data of the three runs at different 
stagnation pressures continued to exist in this series of test. 

Another set of surface pressure measurements was taken at a larger plate-to
nozzle, t 1 = 2 in., but with the jet still at approximately isentropic exit 
condition. The results are shown in Fig. 34. The effect of t 1 on surface pressure 
distribution at this Mj is similar to the previous series with Mj = 1.85, except 
that it appears more pronounced at this higher Mj. Here, the stagnation point 
pressure (non-dimensional) is appreciably lower than that with t 1 = 1 3/4 in., 
suggesting the presence of a continuing expansion of the jet after the nozzle 
exit. This finding is consistent with the speculation made on the basis of free
jet pitot-survey results in Section 3.2.1. 

3.2.3 Plate-Shock Measurements. Schlieren photographs of the impingement 
flow field were obtained in a separate (first) series of experiment where no 
surface pressure data were recorded due to a mechanical failure of the data 
acquisition procedure. Two representative schlieren photographs, Run 135 and 
Run 145, are reproduced in Figs. 35 and 36, both being at nearly isentropic jet 
condition (n ~ 1): 

Run 135: Po= 21.8 psia, Pel 

Run 145: P0 21.1 psia, Pel 

0.81 psia, Pe2 = 0.67 psia, t 1 

0.77 psia, Pe2 0.62 psia, t 1 

1 3/4 in. 

1 3/4 in. 

We note that although schlieren pictures were also taken of the second series 
of experiment with Nozzle No. 2, those pictures were not of good enough quality 
for use in quantitative analysis of the shock waves. The shock measurements for 
the Nozzle No. 2 experiment were thus entirely based on the pictures of the first 
series, i.e., Run 135 and Run 145. 

The result of the shock measurements is shown in Fig. 37. Again, we see that 
the agreement of the shock wave measurements between the two runs is not as good 
as the surface pressure results. The maximum discrepancy was found to be in the 

~ 

vicinity of the symmetry plane, x = 0. 

3.2.4 Pitot Survey of the Impinging Jet. The properties of the impinging 
jet in the presence of the test flat plate and the two side plates during the 
measurement of surface pressure distribution might be different from those 
measured in the open configuration of a freely expanding jet where the test plate 
and the side plates were removed. The difference was suspected when the surface 
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pressure results of both nozzles were analyzed, as the stagnation pressure on the 
plate surface indicated a Mach number considerably different from that of the 
corresponding free jet. It was therefore decided to conduct a pitot survey of the 
impinging jet in the impingement configuration. 

A single- tube pitot apparatus was used in this experiment, and a view of the 
arrangement is included in Fig. 4. The tube was fastened on a flat plate which was 
in turn clamped onto the test plate during this series of the measurement . The axial 
traverse mechanism thus provided the controlled movement to the tube as it traversed 
the nozzle width. The distance between the surface of the new plate and the nozzle 
exit plane was set at 61 = 1 3/4 in. The pitot tube was first set at a distance 
1 / 8 in. downstream of the nozzle exit (62 = 1 / 8 in.). It was then cut from the tip 
after each run to provide the surveys at different values of 62 , while the values 
of P0 and Pe were maintained at approximately the same for all runs in this series. 
The experiment was designed to provide qualitative information only, and the 
measuring device was not nearly as precise as that used in the previous measurements. 
We note here that the plate shock, in the absence of the single pitot tube, was 
~xpected to be at a distance of about 1 in. from the plate at the center line 
x = 1, according to the plate shock measurements of Section 3.2.3. This means that 
for 62 < 3/4 in. in this series of experiments, the measurement should indicate a 
uniform jet under ideal conditions. 

Results of the survey are shown in Figs. 38a - 42 for 62 = 1/ 8 in. , 15/32 in., 
3/4 in., 15/16 in . and 1 7/16 in. , respectively, with the corresponding schlieren 
photographs shown in Figs. 38b - 41b (no schlieren picture was taken of the last 
experiment with 62 = 1 7/16 in.). 

At 62 = 1/8 in. (Fig . 38a) , the imping~ng jet appeared to have roughly the 
free jet Mach number , i.e., Mj = 2.77 near x = 0, because the pitot readings were 
about the same as those of Run 5 and Run 6 of the f ree-jet pitot surveys. However, 
it is important to ~oint out that unlike the case of a free jet, this value of Mj 
prevailed only in !xi < 0.3,outside which Mj appeared to have decreased rather 
substantially . Simila r observations can be made from the results in Fig. 39a, 
(62 = 15/32 in . ) which shows the situation further downstream of the exit . Here 
the region of uniform flow (near the center) is even narrower. As 62 increases 
further (beyond 3/4 in . ), the plate shock (in the absence of the pitot tube) 
would appear upstream of the pitot tube, and the interpretation of the pitot 
results becomes very dif f icult. 

The above discussion of the pitot results is , at best, qualitative, and it is 
obviously ba s ed on the tacit assumption that the existence of the pitot tube in 
the flow field would not cause any noticeable change in the basic structure of the 
original impingement flow. The assumption becomes increasingly questionable when 
the pitot tube is imbedded in the impingement flow field, i.e. downstream of the 
plate shock. 

4. DISCUSSION AND CONCLUSION 

The measured surface pressure distribution and shock wave patterns of the 
impingement flow field associated with a nearly isentropic jet are all compared 
with the theoretical calculations(6) in Figs. 16 , 19 , 33 and 37 . 
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In the comparison of the surface pressure results (Figs. 16 and 33), it is 
clear that the agreement is rather unsatisfactory if the theoretical results are 
based on the average Mach number of the free jet, }1j = 1. 85 and Mj = 2. 77, 
respectively, determined from the pitot surveys of the f~ee jets. In particular, 
the measured surface pressures at the stagnation point, x = 0, do not correspond 
to the total pressure behind the normal shock at the respective free jet Mach 
numbers. 

4.1 CORRECTION FOR EXPANSION OF JET AFTER EXIT. To account for this 
discrepancy, a simple analysis was first carried out to determine the "corrected" 
jet Mach number which takes into account the "radial" expansion of the jet after 
the exit plane. The analysis was based on a source flow model for inviscid air. 
The results are shown in Figs. 43 and 44 for Nozzle No. 1 and 2 respectively. The 
corrected Mach number, Mjc, plotted as a function of the distance from the exit 
plane, 6, nondimensionalized by the half nozzle exit width, R. 

In Nozzle No. 1 experiments with 61 = 2 in., the plate shock was approximately 
located at 6s = 1 1/2 in. (see Fig. 19), which means 6 ~ 1/2 in., as 6 /R ~ 2/3. 
The corrected jet Mach number from Fig. 43 is about 1.87. The correction based 
on the inviscid source flow model is therefore seen to be not nearly enough to 
account for the discrepancy between theory and experiment. In the case of nozzle 
No. 2, with 61 = 1 3/4 in., the plate shock was approximately at 6s = 1 in. 
(Fig. 37) which gives 6 ~ 3/4 in., or 6 /R ~ 1. Mjc in this case would be 2.86 
which again fails to bring better agreement between theory and experiment. 

4.2 "EFFECTIVE" JET MACH NUMBER. The difficulty is thus believed to be due 
to the complicated conditions under which the experiment was conducted, as opposed 
to the idealized conditions assumed in the theory. It is almost impossible to 
account for these complications in the experiments, and the introduction of an 
"effective" Mach number becomes necessary. 

(Mj)eff is based on the measured surface pressure at the stagnation point, 
assuming isentropic flow between the plate and the downstream side of the shock 
caused by the plate. In fact, Gummer and HuntC7) based the determination of their 
jet Mach number on such a pressure measurement in their axisymmetric jet impinge
ment experiment, in the absence of a pitot survey of the free jet. The "effective" 
jet Mach number was found to be 2.10 in the experiment with the first nozzle and 
2.60 in the experiment with the second nozzle. The theoretical surface pressure 
distributions based on (Mj)eff show reasonably good agreement with the measured 
distributions, especially near the stagnation point where the most severe heating 
is expected to take place. 

In view of the uncertainties and nonuniformities existing in the ambient 
conditions of the experiment, notably the difficulty in maintaining a uniform back 
pressure in the semi-confined configuration used in the surface pressure measure
ment, it is difficult to expect that the impinging jet had a constant and uniform 
Mach number equal to that of the f reely expanding jet. Other complications such 
as viscous effects which could become more pronounced in a confined space than in 
an open space could also contribute to the deviation of the Mach number of the jet 
from its free expansion value. Therefore the use of (Mj)eff in lieu of Mj in the 
comparison between theory and experiment does not seem unjustified. Note that 
(Mj)eff differs from Mj only by about 7% in the Mach 2.77 experiment, although the 
difference is in the reversed direction relative to that in the Mach 1.85 experiment 
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4.3 SHOCK PATTERNS. The comparison of the shock location is shown in 
Figs. 19 and 37. Here the experimental data are not as consistent as the surface 
pressure data, and a considerable data scatter can be seen. The scatter reflects, 
among other things, the optical difficulty in photographing a flow field of a 
depth of 5.74 cm (the width of the test plate). The shock trace a.s shown in the 
schlieren photographs can, at best, be taken as the projection of the shock 
envelope averaged over the field depth. 

The measur~d shock height is greater than the theoretical predictions based 
on the free jet Mach number, and the trend persists in the experiments with both 
nozzles. The use of the effective Mach number would improve the agreement for the 
Mach 2.77 case, but further deteriorate the agreement for the Mach 1.85 case. In 
light of the large scatter among the experimental data themselves, the comparison 
between theory and experiment on the shock shapes and locations must be viewed as 
inconclusive at present. It provides insufficient grounds either to affirm or to 
negate the concept of effective jet Mach number. 

4.4 CONCLUSION. In conclusion, we enumerate the following observations based 
on the present study: (1) the simple wedge nozzles appear adequate for providing 
two-dimensional free jets of good quality; (2) the two-dimensionality of the plate 
pressure distribution in the jet-impingement experiment was achieved in the center 
portion of the plate in the present semi-confined configuration; (3) the semi
confined configuration apparently caused the Mach number of the impinging jet to 
deviate from its value based on the free expansion condition, and the "effective" 
jet Mach number of the impinging jet could be determined from the surface pressure 
at the stagnation point; (4) the simple approximate theory seems adequate to predict 
the pressure distribution on the plate surface; and (5) the considerable scatter 
in the measured shock shape and location makes it difficult to draw any definitive 
conclusions from the comparison between theory and experiment regarding the 
accuracy of the theory in predicting the shocks. 
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