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wWhile numerous articles have appeared in the literature which describe
the one-parameter logistic model and i application in a tailored testing
setting, little or no research onducted on the operational
characteristics of the procedure when program parameters and item pool
attributes are varied. The primary objective of this investigation was
to determine the effects of varying the program parameters, stepsize and
acceptance range, as well as the item pool attributes, size and shape, on.
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t)the bias and standard error of the maximum likelihood ability estimates
obtained from tailored tests. Specifically, two main research questions
were addressed. First, what values of stepsize and acceptance range
provided the least bias and smallest standard error of ability estimates?
The stepsize program parameter controlled the magnitude of movement thro

the item pool during the initial item selection phase of tailored testing

The acceptance range program paramet <svetTTTEaphow deviant the selected
item's difficulty value could be f¢om the requested item difficulty and
still be chosen for administration.) Secondly, what shape and <ize of

ttem difficulty distribution provided the least bias and standard error

of ability estimates across the range of the latent trait? - Two FORTRAN pro-
grams were used for investigating the effects of program parmameters and item
pool attributes. Both programs took as input the stepsize,
range, i1tem difficulty values for the various sizes and sha
pools, and the true abilities for which estimates were to
f\rst _program, TREEP, produced the propensity distributi

provided output of the E() and /VAR(%). The other
developed to overcome the limitation on the size
be investigated at a reasonable cost using t
program provided output of the X, of abtlity estimates of

a specified number of simulated ia ed tests assuming a given 0. The
results of the study were drawn frbm tables which summarized the output

of the TREEIP and SIMIP programs. XIn addition to the recommendations
regarding the research questions stated above, an effort was made to discuss
the interaction of the variables of stepsize, acceptance range, item pool
size and the shape of the distribution of item pool difficulties. Results
suggested that each of these variables played a substantial role in affect-
ing the magnitude of statistical bias and standard error at various points
along the ability continuum. were presented as a gquide for
those involved in setting up a tailored testing pro 3> The intent

was to provide figures and tables to facilitate applications of tailored
testing procedures such that a minimum of bias and standard error of ability
estimates could be attained.

/Y

1tem pool which could
EE1P program. The SIMIP
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PERATIONAL CHARACTERISTICS OF A ONE-PARAMETER

TarLonen TESTING PROCEDURE

Tavlored testing, the selection and scoring of test items adminis-
tered 1n an anteractive fashion to 'ndividual examinees, has within the
past decade vecome the spearhead for application of latent trait models
to achievement and ability measurement. The availability of improved
computer technology nas contributed greatly to the increase in the number
of systems presently ‘n operation which administer tailored or adaptive
tests. It should be noted that tailored testing as presented here is
Synonomous «1th many otner assigned names such as adaptive testing,
response contingent testing, or sequential testing. Of the many proce-
dures avarlavle for tailored testing, one of those used at the University
of Miscouri 15 based on the one-parameter logistic model.

anile numerous articles have appeared in the literature which describe
the one-parameter logistic model and its application in a tailored test-
ing setting (see, for example, Peckase, 1974, Weiss, 1974, Patience, 1977),
little or no literature has been written discussing operational character-
istics of tne tailored testing procedure when program parameters and item
pool attritutes are varied. For this report, operational characteristics
refer to how well the tailored testing procedure estimates a given true
ability. Program parameters refer to those program options (such as the
1tem selection rule) that must be selected before the program can operate.
item pool attributes refer to the size, distribution, and quality of the
item pool. The operational characteristics, item pool attributes, and
program parameters will be described in detail shortly.

Although no literature was found which addressed the effects of vary-
ing prograr parameters, a few studies have appeared in the literature
which investigated effects of item pool attributes on tne operation
of tailored testing. Jensena (1975), for example, has investioated the
influence of iten pool size and item characteristics on a Bayesian tailored
testing procedure. In qeneral, Jensema found that when items are of ade-
quate quality, 1t 15 not necessary to have very large item pools. Reckase
(1976) concurred with Jensema in recommending a rectangular distribution
of iter pool difficulty values. In this latter study, the tailored testing
procedure was based on an empirical maximum likelihood estimation of the
ability parameter of the simple logistic (Rasch) model. Issues worthy
of further investigation have surfaced in addition to item pool attributes,
such as the effects of program parameters on the bias and variance of
ability estination,

Several articles have appeared in the literature which use the phrase
"bias of tailored testing ability estimation" to mean procedural bias
toward subgroups of an examinee population such as minorities (see, for
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example, Pine and Weiss, 1978). The research reported here did not add-
ress this tyvpe of bias. Rather, ability estimate bias, as investigated

by this paper, was concerned with whether the expected values of the maxi-
mum Tikelihood ability estimates were equal to the known true ability.

In this sense, the attempt was to identify values for the program para-
meters and the i1tem pool characteristics which would provide the least
statistical vias in ability estimation. The variance of ability estimates
was the squared standard error of the ability estimates for a known true
ability. The desire was to minimize this standard error. These two
dependent measures provided the criteria for judging how well the tailored
testing procedure estitated known abilities when the program parameters
and 1ter pool characteristics were varied,

Purgose ;

The primary purpose of the research described herein was to deter- i
mine the operational characteristics of a one-parameter tailored testing
procedure when program paraneters and item pool attributes were varied.

The program parameters investigated were the stepsize and acceptance
range. The stepsize parameter specified the magnitude of movement of the
ability estimate during the initial item selection phase of tailored
testing. After the initial pnase, maximum likelihood ability estimation
was usec¢. Tne acceptance range parameter determined how deviant the
selected item's difficulty value could Le from the requested item diffi-
culty and still be acceptable for administration. In the tailored test,
items were requested by the procedure to match the ability estimate computed
based on previous iter responses. The item pool attributes varied were
s1ze, shape, and quality. tach of these variables will now be described
more specifically.

The preriise of tailored testing 1s that when an examinee answers
an i1tem correctly, the next item administered should be more difficult,
ind when an examinee answers an item incorrectly, the next item should
ve less difficult., The stepsize program parameter initially controlled
v much more difficult or easy was the next item administered. The
selection of 1tems was controlled by the fixed stepsize until the examinee
Naa answered 1tems both correctly and incorrectly. After both a correct
and incorrect response nad been obtained in the response string, a maxi-
mum likelihood ability estimate was obtained using an iterative search for
the mode of the likelihood distribution. For a more complete description
of the item selection and ability estimation components of this maximum
Tikelihood tailored testing procedure see Patience (1977). In the past,
arbitrary values have generally been chosen for the stepsize. One of
the primary goals of this research was to empirically investigate the
effects of stepsize values on the bias and standard error of ability esti-
mates. In 50 doing, the intent was to determine the optimal stepsize
value which would minimize the bias and standard error of ability estimates,

"

The second program parameter investigated was the acceptance range.
The acceptance range specified the amount of deviation in difficulty an
administered item could have from the requested item difficulty and still
be acceptable for administration. The acceptance range parameter monitored
the appropriateness of items selected throughout the tailored test, i.e.,
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both during 1tem selection based on the fixed stepsize until both correct
and incorrect responses had been obtained, and also during item selec-

tion to maximize the information function for a maximum likelihood ability
estimate. [f more than one item were within plus or minus the acceptance
range of the desired item, the item with a difficulty value nearest the
requested value was chosen. If no item were available from the pool within
the specitied acceptance range of the difficulty requested, the tailored
test was termnnated. The prinary aim regarding the acceptance range, tnen,
was to determine what value or range of values yielded the least bias

and standard error of ability estimates. Clearly, a small value for the
acceptance range would have insured that items very near the desired item

1 difficulty would be administered. On the other hand, too small an accep-
tance range value would have increased the chance of premature termination
of the tailored test, which would have induced bias of the ability esti-
mate. It should be noted that both stepsize and acceptance range interact
#ith item pool attributes and, therefore, a choice of what values are
optimal may not be made assuming independence of these controlling factors.

The 1ten pool attributes studied in this research included size, shape,
and quality. Swwlated 1term pools used in this investigation ranged in
size from nine to 181 items. Shapes of iten pool distributions were normal,
rectangular, bitodal, and skewed. [tem pool quality referred to the con-

‘rast between actual and idealized pools. Idealized pools consisted of
ttem difficulty parameters equally spaced from -3 to +3.

Actual pools consisted of item difficulty values (minus one times
each of the iten easiness values) obtained from calibration runs using
the sright and Panchapakesan (1969) calibration program based on the Rasch
iwodel. In these pools, items were not equally spaced on the difficulty
scale. OUne of the actual item pools contained 72 items while the other
had 180 1tems. The 72 item pool consisted of item difficulty parameter
estimates from the calibration of three vocabulary tests. This pool was
labeled VCIPL. The other pool was constructed using item difficulty para-
meter estinates from the calibrations of tests covering the evaluation
techniques portion of an introductory measurement and evaluation course.
This pool was labeled ETIPL. The distributions of item difficulty for
VCIPL and ETIPL were araphed and appear in Appendix A. It should be noted
that i1tem pool attributes played a substantial role in the utility of
the tailored testing procedure.

Programs

Two FORTRAN programs were used for investigating effects of program
parameters and item pool attributes. The input variables for both pro-
grams included: a) acceptance range, b) stepsize, c¢) item pool size,

d) item difficulty values for the various sizes and shapes of item pools,
and e) the true abilities for a set of hypothetical examinees. Both pro-
grams output the mean anc standard deviation of the estimates of each

true ability provided. These served as dependent measures for determina-
tion of the quality of estimation for the specific values of the acceptance
range, stepsize, and item pool parameter set.
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Tne first prograi, tne TREEIP, was based on the concept of a propensity
distribution, A propensity distribution in this context was defined as
the probability distribution for observed ability estimates given a true
ability, P(u|a) (Lord and lovick, 1968). The concept of a propensity
distribution was extended from i1ts use in true score theory to the context
of latent trait abnlity estimation. The TRELIP program determined the
propensity distribution for a given true ability, 4, analytically from the
properties of the tailored testing model.

oriefly, the TREEIP program operated as follows. Initially an item
of average difficulty was administered to the simulated examinee with
known true ability., Based on the probability function for the simple
logistic nodel,

(‘( - 0)

B st )

1 + e

where . 15 the 1tem score (0 or 1), b 1s the item difficulty parameter,

and =+ 1s the ability parameter, the probability of a correct and the pro-
babrlity of an incorrect response were obtained. If the response were
correct, tne ability estinate was increased by the stepsize. If the response
were 1ncorrect, the ability estimate was decreased by the stepsize. Thus
after one 1ter was administered, two paths or branches were present on

the "tree”. (The tree diragram from probability theory was employed to
represent the propensity distribution in this study.) based on these

first pessible ability estimates, the closest items to each of the two
estirates was selected for administration with the constraint that the
difficulty of the 1ters must nave been within plus or minus the acceptance
range from the present avility estimates. If no i1tems were available,

that branch was termiinated at that point. However, assuming items were
avatlable, tnere existed four possible paths after the second item had

been administered. As long as all correct or all incorrect responses

were obtained on a given patn, tne ability estimates continued to be increased
or decreased, respectively, by the stepsize. However, when both a correct
and an incorrect response were present on a particular path of the tree,

a maximum-likelihood ability estimation procedure obtained an ability esti-
mate using an iterative search for the mode of the likelihood distribution.

To partially 11lustrate how the propensity distribution was determined
Dy the TREEIP, Fiqure 1 shows a diagram representing the operation of the
procedure on a nine i1tem rectangular pool. The stepsize used for this
illustration was 1.0 and the acceptance range was 0.3. The & for this
analytical derivation of toe propensity distribution was set at zero.
As was pointed out above, the procedure began by administering an item
of average difficulty from the pool, i.e., the item with the difficulty
parameter 0.0. The probability of a correct response, as determined by
the probability function given above for the simple logistic model, was
0.5 and the probability of an incorrect response was 0.5.

After a correct response the ability estimate was increased by the
stepsize, or after an incorrect response, it was decreased by the step-
size. Thus after one item, the ability estimate was either 1.0 with
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Figure 1

Procedural Operation of TREEIP
on a Nine [tem Pool with
Stepsize = 1.0 and Acceptance Range = 0.3

ten Probability Lstmate Probabirlity fstimate
Parameters of Response (lten Selected) of Response (1tem Selected)
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ote. The * 1ndicates that no iter was available in the pool within ¢
the acceptance range.

probavility of 0.5 or -1.0 with a probability of 0.5. This procedure was
followed so that finite ability estimates would be available after each
1tem response, rather than the ¢+ =~ value given by the maximum-1ikelihood
procedure. The expected value of the distribution after one item was

0.0 and the standard deviation was 1.0.

Sased on these first possible ability estimates the closest items
were selected from the pool with the restriction that their difficulties
must have been within plus or minus 0.3 of the requested difficulties.
Thus, as Figure 1 illustrates, items with parameter estimates of plus
and minus 0.75 were administered to the estimated abilities plus and minus
1.00 respectively. On the upper branch of the tree, a correct response
yielded an ability estimate that was again increased by the stepsize,
since a maximum-1likelihood estimate could not be determined without both
a correct and incorrect response. Now, the ability estimate was 2.0.

The probability of this correct response to the item with the 0.75 diffi-
culty parameter was 0.32. The bottom branch of the tree was the same
except for the change in sign of the item parameters and ability }




s

estimates. When the item pool distribution being considered was symmetric,
tne results of the analyses were the same above the zero point as below
the zero point except for the change in sign.

Following the middle branches of the tree, an incorrect response to
the 1tem with difficulty 0.7% yielded an ability estimate of 0.375 from
the maxiouw-l11kelihood technique. The probability of this response was
0.68 Lased on the model. When the first item was missed and the second
answered correctly, the probability of the second response was also 0.68.
by the local independence assumption of the model, the probability of
either a + 2.0 estimate was 0.5 X 0.32 = 0.16 while the probability of
+ 0.375 was 0.5 X 0.68 = 0.34. In this manner the propensity distribution
could be obtained atter two items had been administered. As noted at
the bottom of Figure 1, the expected value was still 0.0 and the standard
deviation (which was determined as the square root of the VAR(#)) was
1.174,

Tne tree developed further in this same manner whenever items within
the acceptance range were avallable, If all correct or incorrect responses
were present, the fixed stepsize was used to make ability estimates.

Jnce a mixture of correct and incorrect responses was present, the maxi-
mum-Tikelihood ability estimate procedure was used. MNote the "branches"
of Figure 1 were "live" at ¢+ 2.00 ability estimate but no items existed
in the pool within + 0.3 of the ability estimate + 0.375. Therefore,
those branches terminated.

The tree continues to develop by following all "live" paths. The
program 15 finished after all branches are terminated by the condition
that no 1tems of appropriate difficulty are available in the pool. One
may well iragine that as the number of items in the pool gets larger,
the procedure 15, practically speaking, bounded by the storage capacity
of the computer facility and magnitude of one's computer budget. For
the 1tM 370/168 system on which the TREEIP program was run, it was found
that sixty-one 1tems was the practical upper limit on the number of items
the pool could contain for any particular run of the various combinations
of stepsize, acceptance range, and shape of the item difficulty distri-
bution.

Oue to the limitation on size of the item pool which could be investi-
gated with the TREEIP program, the second computer program, SIMIP, was
developed. This program was adapted from the tailored testing procedure
based on the Rasch model which was already operational. This particular
tailored testing procedure has been described thoroughly elsewhere (Reckase,
1974), so only the details pertinent to this research have been presented.
The SIMIP program followed only one path for any given 2 in contrast to
the TRELIP. A particular path was selected using Monte Carlo simulation
techniques. It provided for investigation of the properties of bias and
variance of ability estimation with much larger item pools since the required
storage and computation were substantially reduced as compared to the
TREETP program.

The following values served as input to the program: the stepsize,
acceptance range, item pool difficulty values, &, and number of simulated
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tests to be admnistered by the tairlored testing procedure. The proce-
dure mmitially administered an i1tem of average difficulty from the pool
ot 1tems provided. [f a correct response were obtained, the ability was
increased by the stepsize. If an incorrect response were obtained, the
abihity was decreased by the stepsize. The appropriate item for the new
aut ity was administered. This fixed stepsize up and down procedure con-
tinued untrl botn a correct and incorrect answer had been obtained in the
response string.  Then the procedure switched from the fixed stepsize
procedure to maximum-likelihood ability estimation. In both cases, items
were selected to maximize the item information (Birnbaum, 1968). Ability
estination was accomplished after each item was administered (provided
correct and ncorrect responses had previously occurred) by the maximum-
Tikelthood estimation procedure using an iterative search for the mode

of the likelihood distribution. The items administered had to be within
plus or minus the acceptance range from the requested item difficulty.

if no i1tems were available within this range of the estimated ability,
the procedure stopped. The only other stopping rule was based on a preset
maximum numoer of i1tems that was to be administered.

items were scored correct or incorrect by the SIMIP program utiliz-
ing an interpal random number generator. First, the probability of a
correct response was computed using the formula for the probability func-
tion of the simple logistic model stated earlier. The 8 for this computation
(as the tryue o that was 1nput into the program, and the difficulty para-
meter, b, was that of the iten just administered to the simulated examinee.
After this probabi)ity of a correct response had been determined, the
randoit number generator selected a number between zero and one from a
rectandular distribution. [f this randomly selected number was less than
or equal to the probability of a correct response, the item was scored
correct. If the randomly selected number was greater than the probability
of a correct response, the item was scored as incorrect. An ability esti-
mate was then obtained and the next item to be administered was selected
to maximize information for this estimated ability. This procedure continued
until one of tne stopping rules was encountered.

The major controlling program parameters for both the TREEIP and
SIMIP were the stepsize and acceptance range values. The stepsize para-
meter controlled how quickly the procedure would move through the item
pool while the acceptance range parameter specified how discrepant items
could be from those desired and still be administered. The acceptance
range also indirectly determined the number of items from the pool which
~were available for administration. Clearly, the wider was the acceptance
range, the greater was the number of items that could have been chosen
for administration.

The TRELTF and SIMIP proqrams used in this study for determining
the optimal stepsize, acceptance range, item pool size, and item pool
distribution were similar in that both output the mean and standard devia-
tion of ability estimated for each true ¢ input. However, they differed
'n the sanper in which the mean and standard deviation were determined. 7
while the TREEIP pursued all possible paths through the item pool, the
SIMIP followed only the path that was the result of the simulated inter-
action of an examinee with the tailored testing procedure. The mean and




-8-

standard deviation from the TREEIP were actually expected values and square
roots ot variance computed from probabilities arising from the one-parameter
model and ability estimates arising from the maximum-1ikelihood estimation
technique. The SIMIP proaram provided a mean and standard deviation of

the set of ability estimates obtained for each of the ¢'s specified.

Rg}gg[gghpes\gn

To investigate the optimal stepsize, acceptance range, item pool
s1ze, and 1ter pool shape, nearly all possible combinations of the follow-
1ng were input into the TRELIP and SIMIP programs for true abilities -3,
-2, -1, 0,1, 2, and 3. The stepsize values used were .3, .4, .5, .6,
.693, .8, .9, 1.0, 1.5, 2.0, and 3.0, while acceptance ranges were .1,

.2, .3, .4, and .5. Item pool sizes were 9, 13, 25, 31, 61, 72, 180,

and 181. [Item pool shapes investigated were normmal, rectangular, bimodal,
and skewed, with difficulty values constrained between plus and minus
three. lIdealized item pools (difficulty values in the above shapes with
spacing dependent on shape and size of item pool) were constructed and
ised as input to the programs, as well as actual item pools (test items
calibrated and formed into pools with no constraint on the spacing along
the difficulty scale).

The vanner in which i1ter pool size effects were investigated using
simulations was to run the TREEIP and SIMIP programs on the various sized
pools mentioned above. With the resulting data, plots and projections
were made to estimate the i1tem pool sizes needed for various accuracies
of ability estimation. The relationships between the item pool size,
0135, and the standard deviation were determined.

The comparisons to determine the optimal combination of independent
variables were based upon the mean and standard deviation of twenty-five
sirulated administrations of a tailored test to each « using the SIMIP;
wnere for the TREEIP program, the comparisons were of the expected value
of ¢, £(2), and the standard deviation of &, vVar(a). Values of these
dependent variables were compared across program runs using various sized
item pools, holding stepsize and acceptance range constant., They were also
compared from runs using various shapes of item pools, holding size of
1tem pool, stepsize, and acceptance range fixed. Additionally, compari-
sons were made of the dependent variables, first varyina stepsize with
all other variables fixed, and then varying the value of the acceptance
range while holding all other variables constant. Since the TREEIP pro-
gram was considered to yield the most accurate values, 1.e. E(¢) and
Varl ) based upon the propensity distribution, another comparison was
deemed 1mportant. Because the SIMIP means and standard deviations were
subject to sample variation, they were validated against values of the
TREETP for various runs on the sixty-one item pool. Also, the number
of estimates of the true ability, i.e. the number of tailored tests admin-
istered to each simulated examinee by the SIMIP program, was varied. This
was done to check whether an appropriate number of administrations had
been used.
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Results

The results of this <tudy were to a great extent drawn from tables
whtich summarized the cesults of the TREEIE and SIMIP programs. One issue
to be anvestigated was the type ot daisteibution of atem pool ditficulty
paraneters that yielded the Teast bias and standard error of ability
estivates across the range of abilaty from -3 to +3. Another 1mportant
question was how large an item pool was necessary to accomplish the goal
nf accurate ability estimation., Thirdly, a determination of the preferred
cagnitude of the stepsize parameter was desired. The fourth outcome of
th1s study was to decide upon the approximate value of the acceptance
range program parameter which would provide ability estimates with the
least bilas and standard error. These were the primary targets of the
study.

Secondary qoals of the study included a comparison of the performance
of actual versus ideal 1tem pools. Another secondary objective was to
compare the results of the TREEIP and SIMIP programs. In this regard,
twO concerns were investigated. OUne pertained to how close the SIMIP
estimates of the means and standard deviations of ability were to the
£(+) and Var( ') determined by the TREEIP. The importance of this par-
ticular concern related to how well the SIMIP analyses on larger item
pools provided accurate data on the primary questions of this study.
1t should be recalled that the motivation for development of the SIMIP
program was to investigate the research questions of the study on larger
iten pools than the TREEIP program would realistically accommodate. The
second concern subsumed under comparison of the TREEIP and SIMIP programs
was to decide whether or not 25 estimates of each ability by the SIMIP
was an adequate number. Several analyses were run using the SIMIP program
on various i1tem pools from which data had already Leen obtained from the
TREEIP. By running the SIMIP on these pools and holding all other variables
fixed except the number of test administrations, data were obtained per-
taining to the adequacy of the SIMIP estimates of the means and standard
deviations., Anotner matter along this same line was investigated with
runs of the SIMIP on some of the larger pools. This was the question
of whether or not 20 1tens was an adequate upper limit on the number of
tters administered by the tailored test.

Iten Pool Shape
e s . s o il

The TRLEIP program (propensity distribution technique) was used to
evaluate tne effects of varying the shape of the item pool difficulty
distribution on ability estimation, Four shapes of item pools were studied:
rectangular, nortal, birodal and skewed. The rectangular item pools were
outained simply Ly selecting equally spaced items between +3.0 and -3.0
inclusive. The normal 1tem pools were constructed such that the items
were equally snaced in probability. That is, the area between item posi-
tions was kep’ constant in the range from +3.0 to -3.0 standard deviation
units 1n the norual distritbution. This procedure for producing the normally
distriouted pools had the effect of selecting more items around the diffi-
culty value of zero and fewer 'tems at the extremes. A similar procedure
was used 1n selecting the item parameters for the bimodal pools as was
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used for selecting the normal pools. The necative half of the pool was
centered around -.693 and the area under the normal distribution was used
to place 1tems around this point up to zero and down to -3.0. The same
was true for the positive half of the pool. The reason +.693 were chosen
as the two modes of the bimodal distribution was that, prior to the con-
struction of a bimodal pool, .693 had appeared promising as a stepsize
value. Therefore, after the first item was administered at 0, the step-
s1ze of 693 would move the ability estimate out to one of the more dense
regions of the pool depending upon whether the examinee correctly or incor-
rectly answered tne first i1ter. The skewed item pool distribution of item
parameters was constructed via a similar procedure to that for the normal
and bimodal pools. That 15, the 1tems divided the distribution into equal
areas. For the skewed pool, tables of tihe Pearson Type Il distribution
were used. The pool constructed was positively skewed (skewness = .5).

[t should ve noted that in the tables included in this report, a skewed
drstrabution always indicates a positive skew. However, the results would
generalize to negatively skewed pools.

<esults concerning the shape of the i1tem pool distribution may be
seen an Tavles 1-6 for different cor®inations of values of the other var-
1ables. ‘owever, Tables 1 and 2 point out the more general trends of the
‘tem distribution study. In Table 1 the comparisons of the normal and
rectangular pools of 25 1tems are shown for only acceptance ranges of 0.
and 0.3 when paired with stepsizes of 0.5 and 0.7 respectively. These
values of acceptance range and stepsize were chosen because they appeared
to yleld sowe of the least bias and least variance estimates. Specifically,
the acceptance range of 0.1 was chosen to check whether the more dense
1tem parameters near the middle of the normal distribution would make the
use of the smaller acceptance range desirable.

Table 1
Comparison of TREEIP Results from
25 item Rectangular and Normal Item Distributions

Ability Level

Acceptance Step Distribution
P 0.0 5
kKange Size  Shape 0 1.0 2.0 3.0

0.

Efo} S, Elej & - Ele) 5. sl % B} S

3 0.5 R -0.001 0.918 0.470 0.927 0.944 0.943 1.893 0.968 2.764 0.884
N -0.009 0.951 0.522 0.904 0.980 0.762 1.468 0.426 1.555 0.251
3 0.7 R -0.013 0.787 0.430 0.824 0.911 0.893 1.986 0.984 2.933 0.773
N -0.000 0.959 0.623 0.922 1.169 0.821 1.877 0.491 2.093 0.231

As can be seen from Table 1, the normal distribution appears to be
inferior to the rectangular item distribution in almost all cases. Except
for the 0.1 acceptance range data at 0.5 and 1.0 ability levels, either
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t cpected values dovrate nore from the true ¢ or the standard devia-
tions are larger, or tho It s interesting to note that even the estimates
at ability ire not a0 good for the normally distributed pool as for

pool, even though more items are present for estimation
1 "t t normal nool.

”

Table 7
criues oand Standard Deviations
TREEIP on Various Shaped Item Pools

Arlity Level

/

! 2 3

SE IS - e R !
norma -0,00 66 1.5 0.873 2.267 0.693 2.840 0.543
bimodal .0 57 1.245 0.876 2.281 0.688 2.852 0.525
61 1.008 0.677 2.138 0.805 3.111 0.566
),040 O 1.282 0.858 2.257 0.670 2.801 0.561
with 61 items with the stepsize and accep-
irameters set at 0.693 and 0.30 respectively.

tres werp presented since the results are

Y L yround 7 veent for the skewed pool.

ted values and standard deviations from the
tanqgular, and positively skewed pools,
vty-one 1tems,  The stepsize was fixed at 0.693,
and tail carc was held at 0,30 for all runs. Again the rec-
tanaula orf overall than did the other shapes of item
true abilities zero and one, the standard
ttes, as well as the bias of the estimates, was
joing the rectangular pool. At the ability levels
itar pool yielded estimates with less bias
larger standard deviations than the other

“atnes from o the TREEIP would have been the same for
fotee atality continuum when the pools were symmetric.
Ty the poaative values of ability were run for the normal,
fangular, and tarodal pools. However, for the skewed pool containing
ty e i ks ive ability values of -1, -2, and -3 were run
35 1 the e Progs parameters as were indicated in Table 2. The results
ere as follow Fo , the B(9) = <1189 and Sa = 0.836. For -2, the
{ .249 and { ror -3, the E(¢) = -2,935 and Sy = 0, 577
Eve nsidered this skewed pool as being better suited for ability
Tevels sround Sinus two to minus one, since it contained more items around
that region, it did not perfomm botter than the rectangular pool.




ltem Pool Size

The criteria for judging how large an item pool was needed for good
ability estimation using the tailored testing procedure were again the
bias and standard error of ability estimates. The results of the simu-
lations using both the TRELIP and SIMIP programs have been condensed,
and the general trend has been illustrated in Figure 2. The values of
the E(2) and S. which have been plotted for item pools of size 9, 13,
25, 31, and 6) were obtained from the TREEIP., Each of these pools had
a rectangular distribution of item difficulty parameters. The means and
standard deviations of ability estimates on the SIMIP runs on VCIPL and
ETIPL (described earlier) have been included in the plots of Figure 2.
Each analysis represented in this figure had ¢ set equal to 1.0, the step-
size fixed at 0.693, and acceptance range equal to 0.30.

The top graph of Figure 2 11lustrates that as item pool size reaches
61 for this particular set of analyses, the E(¢) is equal to . The bias
of the ability estimates is essentially zero. The bottom graph of Figure
2 shows that as item pool size increases, the standard error decreases.
while these plots should be considered as rough approximations of the
relationship between item pool size and ability estimate bias and stan-
jard error, the indication appears to be that with a uniform distribution
of 1tem difficulty, @ = 1, and the program parameters equal to the values
used here, one could expect very little bias and a standard error of about
0.3 with an 1tem pool consisting of around 200 items. More will be presented
on 1tem pool size in the discussion section of this report.

Stepsize

The results of the study of the preferred magnitude of the stepsize
program parameter may be seen in Tables 3, 4, 5, and 7. Tables 3, 4, and
5 give the £(3) and S, from TREEIP analyses of @ = 0, 1, 2, and 3 using
1ten pools of size 9, 13, 25, 31, and 61 for the rectangular, normal, and
bimodal distributions of 1tem difficulty parameters, respectively. Table
7 presents the results of the SIMIP analyses on the ETIPL item pool for

= -3, -2, -1, 0,1, 2, and 3. Negative © values are not shown in Tables
i1, 4, and 5 since the results of the TREEIP on the pools used are the
sare as for the positive @ values except for the change of sign. This
#as expected since the item pool distributions of item difficulty are
syrmetric around zero. The acceptance range for all analyses for Tables
3, 4, and 5 was 0.30. For the SIMIP analyses of the ETIPL, a substantially
larger item pool, a smaller acceptance rance, 0.25, was used as is noted
at the bottom of Table 7. Another variable recorded in Table 7 is the
mean number of items administered for the 25 tests simulated by the SIMIP

for each ability level. The maximum number of items per simulated test
was 20 for these SIMIP analyses.

In general, results presented in Tables 3, 4, and 5 suggest that
stepsizes between 0.5 and 1.0 give fairly unbiased estimates, and also
have the smallest standard errors. Larger stepsizes tend to have a posi-
tive bias and larger standard errors. From several araphs like the ones
presented in Figure 3, the stepsize value of 0.693 appears to be the best
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Table 3
Expected Values and Standard Deviations
from TREEIP on Rectangular Item Pools
Varying Pool Size, Stepsize and Ability Level
Ability Level
Pool Size Stepsize 0 1 2
g(s) 5, E(e) S, E(6) SG E(a) Se

0.5 -0.000 0.645 0.405 0.603 0.709 0.482 0.877 0.335
9 0.693 -0.001 1.025 0.756 1.113 1.593 1.217 2.388 1.139
1.0 -0.001 1.155 0.821 1.213 1.685 1.298 2.548 1.286
V.5 -0.001 1.182 0.934 1.268 1.966 1.439 3.016 1.423
0.5 -0.001 0.765 0.655 0.937 1.577 1.219 2.599 1.201
13 0.693 -0.001 0.976 0.733 1.056 1.587 1.217 2.454 1.168
1.0 -0.001 1.187 1.037 1.150 1,995 1.085 2.822 1.005
1.5 -0.006 1.125 0.899 1.249 1.960 1.463 3.045 1.424
0.25% -0.001 0.547 0.584 0.809 1.606 1.200 2.783 1.190
0.5 -0.001 0.736 0.857 0.842 1.933 1.000 2.964 0.809
0.6 0.001 0.744 0.896 0.888 1.986 1.004 2.955 0.788
0.693 -0.013 0.786 0.910 0.892 1.984 0.980 2.925 0.765
25 0.8 -0.013 0.801 0.931 0.934 2.047 1.042 3.045 0.845
0.9 -0.001 0.845 0.996 0.895 2.061 0.972 2.996 0.784
1.0 -0.00) 0.829 0.990 0.901 2.099 1.036 3.135 0.867
1.5 -0.001 0.972 1.109 1.086 2.318 1.221 3.389 1.040
1.7 -0.001 1.473 1.329 1.417 2.477 1,116 3.143 0.614
2.0 -0.001 1.551 1.389 1,553 2.673 1.348 3.535 0.846
3.0 -0.001 1.555 1.361 1.74) 2.863 1.930 4.248 1.750
0.5 0.004 0.726 0.949 0.788 2.022 0.902 3.018 0.725%
31 0.693 -0.003 0.742 0.973 0.826 2.068 0.907 2.997 0.672
1.0 -0.003 0.776 1.009 0.866 2.140 0.995 3.183 0.817
1.5 -0.005 0.925 1.116 1,050 2.002 1.388 3.382 1.023
0.5 -0.001 0.598 0.989 0.657 2.116 0.804 3.133 0.593
61 0.693 -0.001 0.610 1.008 0.677 2.138 0.805 3.111 0.566
1.0 -0.000 0.641 1.039 0.745 2.229 0.915 3.239 0.689
1.5 -0.001 0.734 1,100 0.894 3.560 0.899 3.560 0.899

lote. Acceptance Ranae = 0,30
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Table 4
Lxpected Values and Standard Deviations
trom TREEIP on Normal Item Pools
Varying Pool Size, Stepsize and Ability Level

Ability Level

Pool Size Stepsize 0 ] 2 3

E(s) S, E(e) S, E(e) S, E(e) S

1]

0.5 -0.001 1.018 0.848 0.847 1.318 0.491 1.463 0.226

9 0.693  -0.001 1.098 0.960 0.966 1.601 0.655 1.898 0.382

1.0 -0.001 1.269 0.880 1.084 1.641 0.632 1.877 0.334

1.9 0.000 1.500 0.693 1.330 1.142 0.972 1.358 0.638

0.5 -0.001 1.028 1.062 0.866 1.697 0.514 1,922 0.237

13 0.693  -0.001 1.101 1.002 0.942 1.648 0.628 1.932 0.358
1.0 -0.000 1.273 1.146 1.020 1.760 0.548 1.946 0.231

135 -0.001 1.439 1.272 1.282 2.219 1.188 3.031 1.258

0.25 -0.001 0.847 1.110 0.853 1.969 0.576 2.210 0.408

0.5 -0.001 0.891 1.184 0.837 2.016 0.572 2.359 0.278

0.6 -0.001 0.980 1.203 0.847 1,965 0.528 2.263 0.266

0.693 -0.000 0.956 1.174 0.811 1.871 0.482 2.079 0.227

25 0.8 -0.001 1.009 1.234 0.871 2.004 0.539 2.292 0.253
0.9 -0.001 1.052 1.290 0.964 2.223 0.784 2.818 0.658

1.0 -0.001 1.055 1.295 0.979 2.263 0.858 2.949 0.820

1.5 -0.001 1.327 1.384 1.186 2.394 1.070 3.167 1.114

1.7 -0.001 1.536 1.521 1.363 2.549 0.968 3.047 0.628

2.0 -0.001 1.738 1.653 1.600 2.845 1,248 3.492 0.884

3.0 -0.001 1.792 1.627 1.749 2.928 1.814 4.045 1.883

0.5 -0.000 0.869 1.218 0.805 2.046 0.557 2.385 0.277

3 0.693 -0.001 0.964 1.268 0.880 2.192 0.734 2.778 0.607
1.0 -0.001 1.018 1.323 0.951 2.300 0.823 2.969 0.787

1.5 -0.001 1.307 1.404 1,155 2.410 1.043 3.176 1.092

0.5 -0.000 0.753 1.201 0.797 2.132 0.541 2.465 0.254

6 0.693 -0.000 0.866 1.256 0.873 2.267 0.693 2.840 0.543
1.0 -0.000 0.915 1.298 0.944 2.361 0.774 3.010 0.711

1.5 -0.000 1.232 1.399 1.141 2.473 1.004 3.227 1.044

“ote. Acceptance Ranae = 0.30




Pool Size Stepsize

Table S5
Expected Values and Standard Deviations
from TREEIP on Bimodal [tem Pools
Varying Pool Size, Stepsize and Ability Level

Ability Level

E(s) 5, E(s) E(e) s, E(e)
0.5 -0.004 1.020 0.231 0.443 1.312 0.495 1.473 0.245
9 0.693 -0.004 1.095 0.951 0.968 1.601 0.666 1.903 0.383
1.0 -0.001 7.264 1.036 1.042 1.639 0.628 1.876 0.331
1.5 -0.001 1.442 1.216 1.326 2.187 1.252 3.027 1.29]
0.5 -0.001 1.006 1.009 0.903 1.671 0.579 1.917 0.275
13 0.693 -0.001 1.104 1.001 0.945 1.647 0.630 1.932 0.358
1.0 -0.000 1.267 1.143 1.011 1.754 0.551 1,946 0.238
1.5 -0.000 1.436 1.274 1.276 2.217 1.181 3.029 1.252
0.25 -0.000 0.920 1.102 0.855 2.001 0.623 2.264 0.42)
0.5 -0.001 0.870 1.152 0.867 2.024 0.594 2.373 0.278
0.6 -0.001 0.951 1.173 0.875 1.976 0.536 2.271 0.242
0.693 -0.001 0.964 1.207 0.933 2.174 0.768 2.774 0.612
25 0.8 -0.001 0.953 1.183 0.887 2.020 0.589 2.335 0.272
0.9 -0.002 1.025 1.260 0.994 2.246 0.780 2.833 0.631
1.0 -0.001 1.017 1.257 1.002 2.280 0.860 2.969 0.79]
1.5 -0.001 1.294 1.350 1.192 2.396 1.064 3.176 1.091
Vot 0.002 1.491 1.483 1.362 2.543 0.959 3.047 0.612
2.0 -0.000 1.717 1.609 1.592 2.831 1.235 3.485 0.87)
3.0 -0.001 1.761 1.601 1.763 2.953 1.803 4.070 1.857
0.5 -0.000 0.796 1.145 0.816 2.060 0.621 2.476 0.406
31 0.693 -0.000 0.924 1.229 0.912 2.218 0.741 2.814 0.585
1.0 -0.000 0.957 1.262 0.956 2.298 0.832 3.004 0.758
1.5 -0.002 0.968 1.284 1,049 2.446 1.080 3.338 1.015
0.5 0.006 0.726 1.174 0.800 2.246 0.692 2.903 0.572
61 0.693  -0.000 0.857 1.245 0.876 2.281 0.688 2.852 0.525
1.0 0.033 0.867 1.221 0.897 2.356 0.820 3.107 0.714
1.5 0.185 1.128 1.249 1.003 2.497 1.050 3.407 0.949
llote. Acceptance Range = 0,30
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Table 6
Means and Standard Deviations
from SIMIP on a Bimodal and
Skewed ltem Pool Varying
Number of Test Administrations

Shape of Poo)

Humber of Tests

Adninistered bimodal Skewed
X S X S
8 ] 9 &
25 2.207 0.627 2.193 0.622
50 2.242  0.634 2.225  0.627
75 2.262 0.645 2.216  0.603

Note. All runs made with 20 item upper limit, stepsize
: = .693, and acceptance range = 0.30. The true
ability was set at 2.0, OCoth the pools had 6!
1tens .,

Table 7
“eans and Standard Deviations
from SIMIP on ETIPL Item Pool
Varying Stepsize

o —— —

Ability Level
stepsize

-3 -2 -] 0 ) 2 3

v -2.886 -2.145 -0.992 -0.050 1.13% 1.991 3.331
] S 0.715 0.728 0.486 0.534 0.502 0.627 0.788
MAi® 13.04 15.88 19.24 20.00 20.00 19.84 18.40

X =209 - =2.230 =1.132 0.129 0.952 2.009 2.972
Sa 0.491 0,681 0.550 0.461 0.374 0.515 0.857
Mni*  12.24 13.96 19.68 20.00 20.00 19.76 18.24
X -3.157  -2.139  -1.134 0.064 1.018 2.055 3.213
o3 Sq 0.652 0.645 0.800 0.503 0.363 0.516 0.844

"ni*  10.04 14.48 18.56 20.00 19.92 19.56 16.08

X, -3.168  -2.250 -1.052 0.001 1.070 1.987 2.910
4 Sq 0.611 0.782 0.547 0.518 0.444 0.531 0.554
Mni® 9.56 17.04 19.24 20.00 20.00 19.48 18.12

i -2.762 -2.096 -1.,122 -0.070 1.136 2.076 3.053
So 0.539 0.619 0.700 0.539 0.562 0.548 0.718
Mni® 9.20 14.72 18.12 20.00 20.00 19.40 16.28

“ote. Al runs made with 25 administrations per ability level, 20 item upper
limit, and acceptance range = .25.
*Mni = mean number of items administered.
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Table 7 (Cont.)
Means and Standard Deviations
from SIMIP on ETIPL [tem Pool
Varying Stepsize

Ability Level
Stepsize .

-3 -2 -1 0 1 2 3

Xa -3.061 -2.175 -1.026 -0.065 1.029 1.950 2.913
ad Sg 0.561 0.460 0.573 0.469 0.516 0.696 0.533
Mni* 7,80 13.12 18.92 20.00 20.00 19.16 15.92

Xy -3.134 -2.271 -1.241  0.094 0.959 2.029  3.310

.9 S 0.499 0.790 0.898 0.419 0.380 0.531  0.799

Mni* 592 11.40 16.96 20.00 19.84 19.20 13.28

X3 -3.739  -2.501 -1.389  0.101 1.035  2.437  3.239
1.5 S 0.876 0.961 0.910 0.598 0.792 1.118  1.010

Mni* 5.32 10.80 18.04 20.00 19.32 16.16  12.72

-3.683  -2.972 -1.482 -0.329 1.100 2.032  3.63)

, 2.0 % 0.514 1.084 1.194 1.175 0.450 0.913  1.345
f Mni*  4.24 8.76 16.5% 18.5% 1996 18.48  13.36
ﬁ X -4.530 -2.942 -1.751 -0.082 1.230 2.51 4.4
3.0 S 1.59] 1.494 1,916 0.465 1.117 1.556  1.519

| Mni* 504 10.68 16.52 20.00 19.28 17.04 8.60

Note. All runs made with 25 administrations per ability level, 20 item upper
limit, and acceptance range = .25.
*Mni = mean number of items administered

overall compromise value which achieves less bias while holding the stan-
dard error down. Figure 3 shows the E(8) and S, for the 31 item rectangular,
normal and bimodal pools when @ = 1.0 and the acceptance range equals

0.30 for various stensizes.

Table 7, which reports the results of the SIMIP on the ETIPL pool,
presents information that suggests a stepsize between 0.4 and 0.7 yields
less bias and a smaller standard error. It should be recalled that the
SIMIP is subject to sample variation, but in general, the results seem
to suggest that a stepsize of about 0.7 is appropriate. However, a trend
which should be investigated further is that larger item pools seem to
do better with smaller stepsizes and conversely.

Acceptance Range

The results of the acceptance range study are given in Tables 8,
9, and 10. Table 8 presents the E(o) and Sg for stepsizes 0.5, 0. 693
1.0, and 1.5; acceptance ranges 0.1, 0.2, 0.3, and 0.4; and ability levels
0.0, 1.0, 2.0, and 3.0 from TREEIP analyses All of the results in Table
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8 are based on the 25 item rectanqular pool. From Table 8 it can be seen
that in most cases, as the acceptance range increases, the standard devia-
tion decreases. This is a reasonable result since more items are available
for administration with a larger acceptance range. However, there is

also a trend of increased bias in estimate as the acceptance range increases,
particularly at the higher ability levels and for the larger stepsizes.

Table 9 shows the results of the SIMIP on the VCIPL pool using 25
test administrations per ability level,; 20 item upper limit, stepsize
- .693; and + = -3, -2, -1, 0, 1, 2, and 3. The mean number of items
15 also indicated. These results indicate that an acceptance range of
0.30 is probably the best compromise value for minimizing bias and stan-
dard error of ability estimates across the range of 6. Table 10 shows
the results of the SIMIP on the LTIPL pool using 25 test administrations
per ability level; 40 iter upper limit; stepsize = .693; and ¢ = -3, -2,
-1, 0,1, 2, and 3. Again, the mean number of items is indicated. These
results on LTIPL are somewhat more ambiguous although the extreme accep-
tance range values are clearly inferior to the more moderate values of

Table 8
Expected Values and Standard Deviations
from TREEIP on 25 Item Rectanqular Pool
by Step Size and Acceptance Range

Stepsize

Ability Acceptance -
Level Range 0.5 0.693 1.0 1.9

o) s, E() S, E(s) 5 E(e) S,

B -0.00 0.92 -0.00 0.84 -0.00 1.04 -0.01 1.07

, W -0.00 0.81 -0.02 1.01 -0.00 0.88 -0.00 1.06
| 0.0 o -0.00 0.74 -0.01 0.79 -0.00 0.83 -0.00 0.97
} 4 -0.00 0.76 -0.01 0.78 -0.00 0.81 -0.00 0.93
‘ B 0.94 0.94 0.550.80 1.08 1.06 0.89 1.23
2 0.89 0,87 1.00 1.08 1.00 0.94 0.90 1.22

1.0 3 0.86 0.84 0.91 0.89 0.99 0.90 1.11 1.09

.4 0.94 0.81 0.96 0.83 1.00 0.89 1.10 1.07

1 1.89 0.97 0.97 0.66 2.09 1.03 1.99 1.45

2 1.92 0.99 1.88 0.97 2.08 1.04 2.00 1.45

2.0 3 1.93 1,00 1,98 0.98 2.10 1.04 2.321.22

4 2.0 0,92 2.030.97 Z.12 1.02 2.33 1.2\

A 2.76 0.88 1,21 0.46 2.93 0.93 3.09 1.39

2 2.890.85 2.74 0.89 3.08 0.91 3.101.39

3.0 2 2.96 0.81 2.92 0.76 3.14 0.87 3.39 1.04

4 3.00 0.74 2.97 0.72 3.16 0.84 3.42 1.0
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Table 9
“eans and Standard Deviations
trom SIMIP on VCIPL Item Pool
Varying Acceptance Range
Ability Level

Acceptance

e e et t—— ——— i

Range
-3 -2 -1 0 | 2 3
¥ -1.938 -1.713 -0.994 -0.49] 1.101 1.873 2.913
= Se 0.430 0.794 0.573 0.810 0.976 0.676 0.447
Hni* 3.64 5.56 6.84 8.52 13,12 9.72 6.24
e -2.747 -2.133 -1.193 -0.152 1.208 2.268 2.889
e 3 0.790 0.%20 0.779 0.544 0.739 0.686 0.540
ni* 6.96 8.88 12.56 14.44 15.44 10.56 7.20
! -2.955 -2.085 -1.311 -0.02) 1026 2.229.° 3.109
' }.823 0.555 0.943  0.385 0.5/8 0.58) 0.510
Mni* 7.00 10.00 11.24 16.96 17.28 12.96 7.68
-3.171 -2.404 -1.346 -0.007 0.869 2.234 2.950
4 S 1.690 0.538 0.681 0.344 0.399 0.775 0.579
Mni* 7.08 8.08 14.60 18.44 19.72 14 .64 9.64
Xa «3.187 =&.242 ~1.05) 0.160 0.941 2.380 3.117
5 Sa 0.606 0.791 0.619 0.755 0.546 0.780 0.497
Mni* 8.16 11.40 17.04 18.64 19.28 14 .32 9.48
“Wte. All runs made with 25 administrations per ability level, 20
item upper linit, and stepsize = .693.
*Mn1 = mean number of 1teis administered
.2 to .4. In cases such as this, one should consider a combination of

tne density of the i1term pool across the range of @ and whether a parti-
cular = range should be estimated more precisely than others, in order
to decrde on the best acceptance range value. Decisions regarding the
vest value of prograrm paraneters cannot be imade independent of consider-
ations such as the size and snhape of the item pool to be used.

secondary Results

Secondary results include the comparison of the performance of actual
versus ideal 1tem pools previously discussed. Table 11 shows this compari-
son, and overall, the 1deal pool did not perform much better than the
ETIPL pool.

Another comparison was of tae SIMIP and TREEIP programs on the same
pools using tne same program parameter values. 3y looking at Table 2
and Taole 6, one may see tnat the SIMIP did a reasonably good job of
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Table 10
Means and Standard Deviations
trom SIMIP on ETIPL [tem Pool
Varying Acceptance Range

Ability Level
Acceptance

Range
-3 -2 -1 0 ] 2 3
X, -2.528 -2.200 -1.174 -0.111 0.974 2.001 3.299
I 5 0.559 0.667 0.700 0.569 0.903 0.471 0.781
Mni* 6.64 9.24 17.16 26.60 27.80 16.44 11.16
£, -2.989 -2.159 -1.144 -0.016 0.926 2.152 3.45)
2 5 0.491 0.559 0.731 0.332 0.362 0.464 0.765
Malx. 7.20 14.52 22.40 31.60 33.60 22.36 13.40

X -3.103 -2.475 -1.162 0.005 1.016 2.161 2.024
T ).576 n.594 0.630 0.239 0.401 92.410 0.°47
“nit 7.50 12,49 27.96 36.72 37.88 25.32 18.16

~3.068 -2.359 -1.121 -0.094 1.043 2.073 23.054
615 ).315 J.582 0.261 0.316 0.336 0.520
n* 10.20 13.00 31.40 39.00 39.36 31.52 20.12

I
£ U =|

g ~3.378 -2.465 -1.088 0.031 0.993 1.920 3.195
o 38 9.716 ).715 ).510 0.394 0.35 0.389 0.584
"ni* 10.24 15,48 35.08 39.80 33.48 35.12 20.75

‘ote. ~11 runs made with 25 administrations per ability level, 40
1tem upper 1imit, and stepsirze = .693.
*ny = ean nurber of i1ters adrinistered

approx mating the TREEIP results at &« = 2 for the birodal and skewed pools.
Also, from Table 6, it can be seen that increasing the number of tests
administered by the SIMIP did not dramatically change the means and stan-
dard deviations. Tnerefore, 25 administrations seemed adequate.

Finally, by comparing cells of Tables 7 and 10, one can see that
increasing the maximun number of items administered from 20 to 40 does
not substantially change the rmeans and standard deviations from the SIMIP.
This comparison is not exact because the acceptance ranae of 0.25 used
for analyses in Table 7 does not precisely equal the value of 0.2 or 0.3
for acceptance range in Table 10. HNeither is the stepsize of 0.7 in Table
7 exactly equal to 0.693 used in Table 10. However, the values seemed
close enough to make a comparison, and the result of this comparison seemed
to indicate that 20 iteis as an upper limit was adequate. Note that the
mean number of iters recorded in both tables illustrated that the proce-
dure approached the upper limit in the middle range of ¢.
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Table 11
Means and Standard Deviations from
SIMIP on ETIPL Item Pool and Comparable
Ideal Item Pool

Ability Level

-3 -2 2 0 ] 2 3

EneL X -3.061  -2.175 -1.026 -0.065 1.029 1.950 2.913
Poosl S 0.561  0.460  0.573  0.469 0.516 0.696 0.533
ideal X -3.036 -2.404 -1.037 -0.017 1.148 2.222 3.070
Pool S/ 0.441  0.703 0.652 0.462 C.787 0.718 0.460

iote. All runs made with 25 administrations per ability level, 20
item upper 1imt, stepsize = 0.70, and acceptance range = 0.25.

Discussion

it should be recalled that the basic emphasis of this study was to
investigate the operational characteristics of a one-parameter tailored
testing procedure when the item pool attributes {shape and size) and
the prograr parameters (stepsize and acceptance range) were varied. In
so doing, suggestions regarding the most preferred item pool and program
parameter values were found based upon analyses of the tailored testing
procedure’'s ability estimate bias and standard error at various points
along the ability continuum. This strateqy for investigating bias and
standard error was motivated by the need to determine these values at
several levels of ¢ across the continuum, since overall efforts on the
project were directed toward developing a criterion-referenced tailored
test. In criterion referenced testing, it is essential to identify effects
of ability estimate bias and standard error on decisions made at several
points along the ability scale. The research presented here, which was
designed to determine optimal item pool attributes and program parameters
to minimize bias and errors of measurement, provided a necessary foundation
for furtuer research and development of the criterion-referenced tailored
testing strategy.

Item Pool Shape

Overall conclusions about the most preferred item distribution were
that the rectangular pool was niost apt to yield the least bias and smallest
standard error of ability estimates across the ability scale. One impor-
tant caution was suggested by some of the results. When setting up an
1tem pool for use with tailored testing procedures (especially those proce-
dures having a parameter comparable to the acceptance range), it is important
to look carefully at the frequency distribution of the item difficulties
to be assured that no substantial gaps exist in any area of the continuum,
Otherwise, one may expect poor estimation of ability at that region on




the continuum. In this regard, one should view the estimates of true
ability +3.0 as understandably limited, in as much as the item pools did
not have any items beyond difficulty +3.0. For "est estimation of ability,
the pool should have a dense uniform distribution of items around the
ability ievel to be estimated.

Item Pool Size

The methods employed for the investigation of the effects of 1tem
pool size on the operation of the one-parameter maximum likelihood tailored
testing procedure were sinulations, but theoretical methods have also been
proposed. Lord (1970) suggested a formula for the number of items required
tor a fixed stepsize procedure (selecting items more difficult by the
stepsize when correct responses were qiven and vice versa). The formula
is

N=(1+R/d) (n - R/2d) (2)

where *R is the range of 1tem difficulties desired, d is the stepsize

and a submultiple of R, and n is the maximum number of items to be admin-
1stered. Ffor example, 1f R were plus three to minus three, d were set

at 0.5, and n were twenty, the formula would give

119 = (1 + 3.0/0.5) (20 - 3.0/(2 x 0.5)). (3)

with this set of values, 119 items would be required if the exact item
requested were to be available.

This formula does not directly apply to some tailored testing proce-
dures which use a variable rather than a fixed stepsize. Also, most
testing procedures allow administration of slightly discrepant items from
those requested by the procedure (the acceptance range specified how dis-
crepant). Procedures using a vartable stepsize tend to require more items
because, as the procedures converge to an ability estimate, the stepsize
noeffoect becomes smaller and smaller. Allowing 1tems to be administered
wnicn drffer slightly from the requested item compensates to an extent
for the increase 1n number of items caused by the variable stepsize.
Another lTimitation of the formula 15 that several tailored testing procedures
administer 1tems until a specified precision is reached instead of using
a preset maximum number of items as a stopping rule. 3

Another theoretical method of estimating how large an item pool should
be (C11ff, 1975) 15 to determine the number of items required to reach
a specified precision of ability estimation, given that equally spaced,
perfectly discriminating 1tems are available. With these ideal or optimal
circumstances, the precision uf an ability estimate is equal to the difference
between adjacent items., Ffor example, an item pool with seven equally
spaced items from -3.0 to *3.0 would classify examinees into categories
1.0 scale unit apart. The number of item responses required to make the
classification would be

K= logzn (3)
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where n 1s the size of the i1tem pool, since 2k is the number of branches
in the tree diagram after k 1tems are administered. By specifying the
precision desired, e, the minimum item pool size can be determined by
the range of ability, K, divided by e, plus one.

n -R——0 ] (4)

The miniour number of 1tems administered to classify all ability levels
n the tailored testing situation 1is

k = logqlg + ). (5)

Some results obtained by the application of the formulas based on
tne theoretical method tor estimating the number of items neecded in a
pool, given the precision desired, have been indicated in Table 12. The
requirenents for pool size were computed for the range of ability, -3.5
to +3.5, given the desired classification interval size. As has been
pointed out, these results are for a rectanqular pool of hypothetical
1tems with perfect discrimination and zero quessing probabilities. With
these restrictions, the i1ter pool sizes shown must be reqarded as lower
Timits., The mintium session length indicates the fewest number of items
that would have to be administered in order to classify an ability level
within the capabilities of the itew pool. These also are based on hypo-
thetically perfect ites and 1ten pools, and should be considered as lower
limits. The values in the column labelled simulated length are the number
of items required to reach a best estimate using the most likely response
pattern simulation. A1l results in this column are based on ¢ = 0.0.

Table 12
“inirum [tem Pool Requirements
for a Rectanqular ldealized Pool Given
Classification Interval and Ability Range

bility Classification Pool “inimum Simulated

Fange Interval Size Size Session Length Length*
{=3.5; 3.5) 0.5 15 3.9 2
(=3.5; 3.5] 0.25 29 a9 4
{-3.5, 3.5} 0.125 55 5.8 8
(3.5, 3.5) 0.0625 113 6.8 8
{*3.5, 3.9} 0.0312% 225 7.8 z

e e . e AR e B e

*Note. HNumber of items administered to closest approximation of ¢
value within classification interval,

In some cases the simulated session length is less than the minimum
predicted length because of the choice of ability level. Setting the




stepsize equal to 0.693 tends to keep the process near the middle of the
item pool, speeding uv convergence for abilities near 0.0. If an ability
of 3.0 had been used, the session length for classification interval .5
would have been 6, well over the minimum predicted values. Thus, the mini-
mum session length refers to the number of items needed across the ability
range, and under specified circumstances fewer items may be required.

These results using simulated tests have been compared to actual
tailored testing convergence plots and found to be fairly good approxi-
mations (Reckase, 1976). One observation of importance is that, from
convergence plots, 1t can be seen that giving too many easy items causes
bias in ability estimation. Reckase (1975) has discussed this effect
in detail.

stepsize

The investigation of the stepsize program parameter suggests that
tor tailored testing procedures using a fixed stepsize prior to having
correct and incorrect responses in the examinee's response string, a value
in the range of .5 to 1.0 is most apt to minimize ability estimate bias
and standard error. To determine the precise stepsize value to use when
setting up a tailored testing procedure, one should look carefully at
the distribution of item difficulty of the particular item pool to be
used. The testing procedure should select the first item from the middle
0f the pool. This item may not coincide with the most informative item
for @ = 0, since the median difficulty for the pool may not equal 0.
The next step is to tentatively set the stepsize equal to 0.7 and deter-
Tine whether items exist within the acceptance range at +1, +2, +3, and
+4 stepsizes away from the median difficulty item that the procedure
administered first. The purpose here is to avoid setting the stepsize
at a value which will induce ability estimates during initial testing
which will "fall through" the item pool (i.e. premature termination of
testing when no ttems exist within plus or minus the acceptance range of
the ability estirate). [f the item difficulty distribution is uniformly
dense across the range of difficulty this will not pose much of a problem,

Another consideration when setting the stepsize value is to make
1t small enough to assure that items exist within an acceptance range of
+4 stepsizes away from the median difficulty item in the pool. This will
make the minimum number of items that would be administered equal to 5
for those who get all the items right or all the items wrong. Depending
on the above considerations, the stepsize value may be set lower or higher
than the recommended 0.7. As can be seen, the item pool size and diffi-
culty distribution, acceptance range, and stepsize interact in determining
the adequacy of the testing procedure.

The reason for including 0.693 as a potentially optimal stepsize in
this study was that when the first Rasch procedure, using raw ability, was
set up at the University of Missouri, a multiplicative stepsize equal to
2 was used with good results. When the procedure was changed to operate
on log ability, an additive stepsize equal to loge2 seemed promising.

This study suggests that indeed 10ge2 = 0.693 was justifiably chosen for
the stepsize in the one-parameter tailored testing procedure.
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Aij;}gngg Range

A5 has been indicated in the discussion of stepsize, setting the
values of the program parameters (stepsize and acceptance ranae) should
¢ pertormed in accord with the item pool attributes of the pool to be
ased for testing, If the item pool has a uniform density of item diffi-
cultios, one ay set the acceptance range at a fairly low value (say 0.2).
However, 1t gaps” exist along the difficulty continuum, the acceptance
range should be set large enough to avoid terminating the test due to
v lack of any item within an acceptance range of the ability estimate.
in general, an acceptance range equal to 0.3 appeared to satisfy the con-
frtions of avording premature termination of testing and also minimizing
Dias induced by administering inappropriate items,

e program parameter denoted acceptance range is equivalent to

: (fying a minimum item information cutoff. Table 13 indicates the
comparable 1tem information cutoffs for the acceptance ranges investigated
for tnis report. Many of the tailored testing systems presently in oper-
ation compute the 1tem information for each item in the pool given the
Jresent ath lity estimate,.  For the one-parameter model, the information
function 15 maximized when the difficulty of the selected item equals

the ability estimate. For a discussion of information functions see
trnbaum (1968).

Table 13
Comparable Information Cutoffs
for Acceptance Range Values

Acceptance Range Information Cutoff
ol .249
" .248
3 .244
A .240
.5 235

pousible explanation for the larger standard deviation given by
analyses run on the rectangular pool at the more extreme values of the
ability continuum was suqgested by a close look at the development of
the propensity distribution by the TREEIP for the various shaped item

pools.

A property of the TRELIP and the manner in which it developed the
propensity distributions was that the standard deviation actually increased
as tore bLranches or levels resulted from items administered to more and
more possible ability estimates. This increase of the standard deviation
of ability estimates stabilized for the smaller item pools as the paths
or Lranches of the "tree” terminated. For the larger pools (especially
the 61 iten pools), the standard deviation inftially increased but as
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branches were terminated the standard deviation came down. Fiqure 4
illustrates this property of the TREE1P when it was run on the 61 item
rectangular pool with & set equal to zero, stepsize equal to 0.693, and
acceptance range equal to 0.30. This pattern of increasing standard
deviation of ability estimates during the early formulation of the pro-
pensity distribution was evident for all shapes of the distributions of
items in the pools.

However, the patterns of convergence to the final standard deviations
ytelded by the TREEIP were different for the various shapes of item pools
at different ability levels. Tables 1, 2, and 3 show a general tendency
for the standard deviations of ability estimates of the true abilities
zero and one to be larger for the normal and bimodal pools than for the
rectangular pools. But for ability levels two and three, the standard
deviations of ability estimates were generally larger for the rectangular
pools than for the normal and bimodal pools. This trend was consistent
across most of the TREEIP analyses. The explanation proposed was that,
because more items were available for administration to the more extreme
levels of ability (i.e. @ = 2 and & = 3) when the rectangular pool was
used, the standard deviation of ability estimates was larger since the
standard error was more accurately estimated. The standard deviations
of the estimates from the normal and bimodal pools for these true ability
levels were smaller, since paths or branches were often terminated because

no items were available within the acceptance range of the estimated abilities.
In short, when fewer items were in the pool around a particular true ability,

there were fewer paths allowed to develop in the propensity distribution
due to the stopping rules. Therefore, the standard deviation of ability
estimates at that particular level was an underestimate. A loqgical check
for this phenomenon was the prediction that when the acceptance range
was made smaller, the drop in standard deviations for the more extreme
ability levels would be more pronounced with the normal pool than for the

rectangular. This did appear to be the case. The point is that the smaller

standard deviations for ability levels 2 and 3 yielded by the TREEIP when
normal or bimodal pools were used probably should not be weighted too
heavily, as the tendency appears to be somewhat of an artifact of the
procedure. The values obtained for the rectangular pools may well be
more realistic.

SIMIP

SIMIP was designed to score and administer items in the manner pre-

viously described based on the rationale that this approach was a reasonable

simulation of the behavior of an examinee when interacting with a tailored
test. The pseudo examinee with some specified true ability was presented
an item of average difficulty from the pool, because, given we have no
prior information about his ability, the best guess of an item appropriate
for the examinee was one of average difficulty. Scoring of each item

by determining the probability of a correct response using the examinee's
2 in the one-parameter formula and then comparing this probability to a
random number selected from a rectangular distribution between zero and
one was deemed a reasonable simulation, assuming the one-parameter model
was correct. Clearly, the larger the probability of a correct response
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was, the greater the chance was that the random number generated was

less than or equal to the probability specified by the model of a correct
response. However, there was ample provision for the reality that occasion-
ally an examinee with adequate ability to answer an item correctly will
still respond incorrectly and conversely. While the probability of a
correct response was computed using the examinee's true ¢, item selection
procedures used the fixed stepsize until correct and incorrect responses
were present, and then selected items maximizing information for the
estimated ability. This approach constituted the simulation of the inter-
action between examinee and tailored test with respect to the SIMIP,

Summary and Conclusions

It should be kept in mind tnat this report focused primarily on
program parameters and item pool attributes as they interacted with the
one-parameter maximum likelihood tailored testing procedure currently in
operation for this research project. Clearly, the inferences drawn from
the results should generalize to other tailored testing applications using
similar conceptual formulations of operation. In this sense, the results
of this study were intended not as isolated studies of item pool size and
shape, stepsize magnitude, and value of the acceptance range, but rather
intended to generalize to fairly concrete statements about the preferred
operation of a one-parameter tailored testing procedure. As was expected,
item pool attributes and program parameters interacted to a great extent
in the determination of the degree of bias and amount of variance in
ability estimation. The intention in drawing up the numerous tables and
figures of this report was to illustrate trends of interaction among these
variables. These trends, in large part, were the primary thrust of this
report. They should be helpful in applying tailored testing procedures
in which some of the variables, such as item poo)l attributes, have been
fixed by practicality. An important consideration when using actual item
pools is that calibration of actual items provides estimates of item
parameters. Often these parameters have been obtained from a linking
performed on several separate analyses in order to get larger samples and
therefore more stable estimates of the difficulty values. (For a discussion
of linking techniques see Reckase, 1979.) When implementing tailored
testin?. it must be assumed that the estimates of item difficulties contain
minimal error. [f this assumption is not met, obviously error will
be introduced into the ability estimates based on these estimates of item
parameters. At least two major concerns influence the error in parameter
estimates, sample size and factorial complexity of the test. For the
vast majority of analyses in this report the item parameters have been
assumed to be known,

in conclusion, this paper was intended as a guide for those setting
up a tailored testing procedure. The paper does not, by any means, exhaust
all the inferences that could be drawn from this set of data. The numerous
tables have been included with the intention that they might serve as
aides in guiding the development of one-parameter tailored testing systems.
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