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_INTRODUCTION

1.1 General

NCAP is an acronym for the Rome Air Development Center's
Nonlinear Circuit Analysis Progranm. It is a user-oriented
computer code for determining the nonlinear transfer functions of
electronic circuits. By utilizing a standard set of circuit
elements, NCAP can analyze networks made up of interconnections
of these elements.

NCAP is written in ANSI Standard FORTRAN and can analyze
networks containing up to approximately 580 nodes. Sparse matrix
troutines are used to decrease core storage requirements and
increase corputational efficiency of the program,

Structurally, NCAP solves the nonlinear network problem by
forming both the nodal admittance matrix (Y matrix) for the
entire network, and the first-order generator (current-source)
excitation vector, for all of the linear sources in the entire
network. The generators can be located at any node in the
network, and can have any desired freguency, amplitude and phase.
Using Gaussian elimination with the admittance matrix and the
current vector results in the first-order nodal voltage vector
for the network, the elements of which are the first-order
transfer functions at all nodes in the network at the given
excitation freouency. When there is more than one generator at a

aiven freauency, the first-order transfer function will be the
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total transfer function due to the superposition of the
generators since the first-order transfer function is a iinear
function. The higher-order transfer functions are solved
itera;ively. using techniques described in Volume I, Section II.

NCAP is relatively simple to enploy. The user enters a
description of the circuit to be analyzed. NCAP interprets the
input statements, performs the nonlinear analysis, and outputs
the results in printed form. There are several types of input
statements which are needed to analyze a given circuit. The
input statements define the topology of the circuit, the circuit

element values, the linear and nonlinear devices used in the

circuit, the circuit excitation and the order of the analysis,

the desired output, the data modification and sweeping

descriptions.
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1.2 CRCANIZATION OF THE DCCUMENT

This docurent consists of three volures. Volume I, the
Fraineering Manual, contains introcductory remarks on the history
of NCAP, a review of the Volterra analysis technique, a
rresentation of the circuit ecuations programmed in NCAP, ard
detailed discussions of the active NCAP circuit element models as
well as. experimental techniques for determining the model
parareters. Volume II, the User's Manual, contains an
orerational introduction to the NCAP program and Volume III, the
Programmer’s Manual, contains narrative descriptions of the NCAP
subroutines, functional flow diagrams depicting the genétal flow
of logic through the program, and trace maps which identify the

subroutine linkages.
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1.3 PACKGROUND

The Rome Air Development Center (RADC) has been tasked with
the development of analysis techniocues for weapon system
electromagneéic compatibility (EMC) assurance. This development
effort is forrally known as the Air Force Intrasystem Analysis
Program (IAP). The IAP concept, initiated within the Air Force

in the early 1978's, presently consists of a collection of

computer-aided analysis routines for addressing various aspects

of intrasystem EMC. The analysis routines range in applicability
from an overall system (aircraft, satellite, etc.) level EMC
model to detailed wire coupling and circuit analysis models
(NCAP). The intent is to provide the FEMC analyst and syster
designer with an assemblage of technicques for solving EMC
problems which often present themselves in varying degrees of
complexity. NCAP, under the general framework of the IAP, could
be arnlied after a more coarse analysis has indicated a potential
EMC problem at the circuit level. At this point NCAP could be
used to examine in more detail, the nonlinear effects which are
often encountered in practice and can severely degrade syster
performance. It c¢an be shown that many imrportant nonlinear
interference effects such as desensitization, intermodulation,
and cross modulation can be specified in terms of the nonlinear
transfer functions, functions computed by NCAP. A knowledge of
the magnitude of these effects could be very valuable in the

early stages of system design.
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1.4 APPROPRIATE CLASS OF_ PROBLEMS

NCAP is applicable to a specific class of nonlinear
problemrms. Although considerable progress has been made in the
development of analytical techniques, there is no general
solution technicue available for all classes of nonlinear
problems. NCAP is devoted to the class of nonlinear problems
known' ' as "weakly nonlinear". The nonlinearities in this type of
problem are characterized by gradual, rather than abrupt,
variations. Weakly nonlinear systems encompass an extensive
class of practical systems. They include small-signal mixers and
square-law detectors as well as the large class of "quasi-linear"
circuits. By quasi-linear, we mean those circuits designed to be
linear, but in fact, exhibit nonlinear behavior over some region
of operation. An example would be the amplification region of a
transistor amplifier. Althouch designed to linearly amplify
input signals, close inspection will show that this is not the
case: and indeed, the output wave form is not an exact replica
of the input. The extent of this "degradation" is often of
serious concern and can limit amplifier, and consequently, system

performance.
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SECTION 2: THE_NONLINEAR_TRANSFER FUNCTION APPROACH

2.1 Introduction

The analysis of nonlineét.;ysteﬁs is complicated by the fact
that no single analytical tool ;s generally applicable. However,
various approaches are available for specific classes of
nonlinear systems. For the special case of weakly nonlinear
systems the Volterra functional series, otherwise known as the
nonlinear transfer function approach, has proven to be an
effective analysis method.

Consider a weakly nonlinear circuit with input x(t) and
output y(t). The nonlinear transfer function approach wodels the
circuit as shown in Fig. 2.1. This model consists of the
parallel combination of N blocks with each block having, as a
common input, the circuit excitation x(t). The output of the nth
block is denoted by vy, (t); n=1,2,...,N. The total system
response is obtained by summing the outputs of the individual
blocks so as to yield

N
y(t) = y,(t) + y,(t) + ... 4y (t) = nﬁl y,(t). (2.1-1)
The nth block, characterized by the nth-order nonlinear transfer
function H,(f,, f5, ..., f,), 18 of nth order in the sense that
multiplication of the input x(t) by a constant A results in
multiplication of the output yo(t) by the constant al,

Thus, the nonlinear transfer function approach represents

the output of a weakly nonlinear system as a sum of N individual

1-12
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responses. The linear portion of the circuit, characterized by
the conventional linear transfer function Hl(fl). generates the
first-order component of the response. The quadratic portion of
the circuit, characterized by H 2 (£, €5 ), generates the
second-order component of the response. Additional responses are

generated in a similar manner. Blocks above Nth order are not
included in the model because it is assumed they contribute

negligibly to the output.

A weakly nonlinear system is completely characterized by its
nonlinear transfer functions. Once these are knownr, the system
output can be determined for any given input. This is analogous
to the case of linear systems where knbwledge of the linear
transfer function is sufficient to completely specify the

input-output relatijon.
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' 2.2 Sinusoidal Steady-State Response of Weakly Nonlinear Systems

| ¢ : d tate Respo
The sinuscidal steady-state response of weakly nonlinear
systems is considered in this section. Let the input in Fig. 2.1
Sonsist of the ¢ sinusoidal tones given by
| . (2nf t + 6 )
x(t) = I | Xg | cos (anf, a (2.2-1)
q=1
where the frecuency, amplitude, and phase of the gth tone are
denoted by fq, ]qu. and eq' respectively. In order to express
(2.2-1) a8 a sur of complex exponentials, the complex amplitude
of the qth tone is defined to be
Xg = x| exp [30.]. (2.2-2) '
’ The input can then be expressed as
e # .
[ x(t) = 3 I X_explj2nf_t] (2.2-3)
g=-Q@ @ q

where it is understood that

£ = -f , X = X , X = 0, (2.2-4)

In (2.2-4) the asterisk denotes complex conjugate. Whereds
(2.2-1) involves only positive input frequencies, (2.2-3)

suggests an interpretation whereby both positive and negative

el N s

frequencies are contained in the input.

1-13
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It is well known that the response of a system to a sum of
sinusoids is & sum of sinusoids whether the system be linear or
nonlinear. However, whereas the response frequencies of a linear
system are identical to the input frecuencies, new frequencies
not present in the input are generated in the response of a
nonlinear syster. with reterénce to (2.2-3), the frequency
content of x(t) consists of the 2¢ freauencies 'fQ"fQ-l"°"'f1,
fl"“'fo-l'fo . The output of the weakly nonlinear circuit of

Fia. 2.1 contains freouencies of the form

m_Qf_Q oot m L Fmf, 4ot meQ

(2.2-5)
= (my-m_)) £y +...+(mg=m_o)fq

where the coeffic.ents Py’ ka=C,.40,=1,1,...,0 are nonnegative
integers. For a epecific output freouency contained in the nth -

order portion of the response yn(t). it is required that

Mgt eee ¥Ry +m + 00+ my = 0, (2.2-6)

In general, the freouencies of y, (t) are generated by all
rossible cho.ices of the nonnegative coefficients LN such that the
constra.irt given by (2.2-G) is satisfied.

Fach separate choice of the coefficients Kk in (2.2-5)
results in a different frecuency mrix. To characterize the
various freocuvency rixes, it is convenient tp introduce the

frecuency mix vector

1-14
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m = {m_Q peeey m_l, ml,..., mo}. (2.2-7)

For example, with two sinusoidal inputs, Q=2 and m={m_,,m_,,
™ 1'“‘2}' The vectors {1,0,1,0} {1,1,1,0}, and (0,0,0,2} then
correspond to the frequency mixes (-f2+f1), (-f2-£1_+£ 1), and
(2f2), respectively.

When the input x(t) consists of O sinusoidal components, the
number of distinct frequency mix vectors m associated with Yn (t)
is given by

(20 + n - 1)1
n! (20 - 1)1 . , (2.2-8)

For example, with 0=2 (i.e., two sinusoidal inputs), there are
four distinct frequency mixes associated with yl(t), ten distinct
freauency mixes associated with y 2(t), and twenty distinct
frequency mixes associated with y3(t). The various frequency mix
vectors and the corresponding fregquency mixes are tabulated in
Table 1. Note that ‘the elements of each vector sum to the order
n. This sum is referred to as the order of the frecuency mix,
For example, {2,1,0,2) corresponds to a frequency mix of order 5.

Frequencies that result from a frequency mix are termed
intermodulation frequencies. The same intermodulation frequency
can be generated by several different freauency mixes. For
example, the different freguency mixes represented by ({&,1,0,2},
{1,1,0,3}, and (0,2,1,2} all generate the same intermodulation
frequency 2f_-f . For clarity of discussion, frequency mixes,

2 1

such as (-f2 -f]_+3£ ), are enclosed in parentheses whereas

2
1-15
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E _aM_y Py e % Frequency {m_,,m_,,m, ,m,} Freauency
Mix Mix
n=1 T T
(1,0,0.0) (-£,) {0,0,1,0} (£)
{e,1,0,0) (-£,) {e,0,0,1} (f5)
n=2

(1,1.0,0) (-f-fy) {0,€,1,1} (£,+5)
{1,0,1,0} (-f +fy) {0,1,0,1)} (-fl+f2)
{1,0,0,1) (- +f3) {0,1,1,0) (-£1+£))

' {2,0,0,¢) (-2f,) {@,0,0,2) (2£,)
{0,2,¢,0} (-2£y) {e.,0,2,0) (2£,)

| n=3
(1,1,1,0)  (-f,-£,46))  {0,1,1,1) (<€) 4, +£,)
{1,1.0,1) (=f,-£,+f,) {1,0,1,1]} (=f,+£,+f,)
{2.1.8,0) (-2£,-£)) {0,0,1,2) (£,42£,)
(e,2,1.0) (-2f)+£y) {0,1,2,0) (-£y+2f,)
{1,2,e,0) (~f5-2f;) {0.0,2,1} (2f) +£,)
(2,0,0,1) (-2f5+£3) {1,0,0,2} (-f+2f,)
{2,0,1,0} (-?f2+fl) {8,1,0,2} (-f,+2€,)
{0,2.¢,1)} (-2f, +f,) {1,6,2.0} (=f,+2f,)
{3.0,0,0) (-3f,) {0.,0,0,3} (3£,)
{0,3,0,0) (-3f1) {a,0,3,0} (3f1)

TADLE 2.2-1

intermodulation frequencies, such as 2f2-f1, are not.

Realization of { n_z,m_l,ml,mz} for n=1,2, and 3

1-16



From (2.2-8) it is obvious that M, the number of distinct
frequency mix vectors associated with y (t), becomes large even
for moderate values of (¢ and n. Fortunately, in most
applications it is not necessary to evaluate all of the M
resulting responses. In general, we are interested in only those
frequency mixes which generate intermodulation fregquencies that
fall close to or within a system's pass band. Components that
fall out of band are strongly attenuated and are not wusually
cause for concern, For example, consider a system tuned to 50
MHz with a 1] MHz bandwidth. Assume the input to consist of two
out-of-band sinusoidal tones at f; =46MHz and f,=48MHz. The
frequency mix vectors associated with y,(t), vy, (t), and y3(t)
are listed in Table 1. For the specified values of t‘1 and
f2 intermodulation freguencies in yl(t),arranged in numerically
increasing order, are -48, -46, 46, and 48 MHz. All of these are
out of band and need not be considered. Similarly, the
intermodulation freguencies in yz(t) are -96, -94, -92, -2, 8, 2,
92, 94 and 96 MH?. These also fall outside of the system pass
band and need not be considered. Finally, the intermodulation
frequencies in y3(t) are -144, -142, -140, -138, -50, -48, -46,
-44, 44, 46, 48, 50, 138, 146, 142, and 144 MHz. Of these 16
intermodulation frequencies only those at =50 and 50 MHz fall in
band. Hence, it is necessary to consider only the two responses
of y3(t) associated with the frequency mix vectors {2,0,1,8} and
{0,1,0,2}.

The next step is to evaluate the responses corresponding to

the fregquency mixes of interest. The nth-order transfer function

1-17
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Hn(fl""!fn ) plays a significant role in determining the
amplitudes and phases of the sinusoidal components in the
nth-orde:r portion of the response Yn(t). In particular, an
nth-order frequency mix characterized by the fregquency mix vector

m generates the response

cy (tim) = lYEI coslznfmt + OE] . . (2.2-9)

From (2.2-5) the response frequency is the intermodulation

frequency
IE = (ml - m-l)fl + s ¢+ (lno e m-Q)fQ L (202-16)

The response amplitude depends upon the input amplitudes as well
as the magnitude of the appropriate nonlinear transfer function.
Specificelly,

(n!)
o Tm_Ql) ...(m_l!) (mll) cos (le)

ol (2.2-11)

lH“ [r_q"il-l'f_ﬁ"ll"f_l". '."f-l'flr.‘.;flfl..'fQ'...'FQ)|.
— - ™ - e e

N— i -
.o "1 e | )
where
.o 21-n £y # 0
m = (2.2=-12)
2 7 £t =0 .
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Observe that the value of the constant qn depends upon whether or
not the intermodulation fregquency is 2zero. The exponents
associated with the input amplitudes are specified by the entries
of the frequency mix vector. The freauency mix vector also
determines the n arguments of the nonlinear transfer function.
Specifically, the frequency £ is used as an argument m  times:
k==0,.00,~1,1,...,C0. The total number of arguments is n because
of the constraint in (2.2-6). The order in which the n argurents
appear is actually unimportant because the nonlinear transfer
functions are symmetrical in their arguments. For example,

H3(f1,f2,f3) = H3(f1,f3,f2) = H3(f2'f1'f3) = H3(f2,f3,fl)
= r - (202-13)
Finally, the response phase angle is a function of the input

phase angles plus the phase angle of the nonlinear transfer

function. In particular,
n m m (2.2-14)

where

(2.2-15}

"E = !En(f_of-::oo.f‘_ql o‘ft'f-ll ..-._'f-l'f!.' of'-'flpnu.c'fop .o o'fQ)

Note that the manner in which the input phase angles combine in

1-19



(2.2-15) is identical to the way in which the input fregquencies
combine in (2.2-10). Also, the nth-order transfer function in
(2.2-15) is the same as that in (2.2-11).

For a specific ttequencg mix vector, Ya(tim) is readily
evaluated by straightforward abplication of (2.2-9) through
(2.2=15). For example, consider the second-order fregquency mixes
characterized by the vectors {0,0,0,2}, {(#,6,1,1}, and {1,0,0,1}.
The corresponding second-order responses are

1 2
¥att1(0,0,0,21) = 3 1x,]° Injte,.000 | comiantatye + 20, ¢ (o o 0 o))

yy(t1{0,0,1,1)) = |x1| Ile '"z“x"2’| coolzw(tlofz)t +0, 40,0
¥(0,0,1,1})
(2.2-16)
1

¥o(t:01,0,0,11) = 3 [X,]% [Hy(f,,£5) | coslvy o g 131
In general, nonlinear transfer functions associated with zero
intermodulation freguencies are real quantities. Hence,
*(IJLO,I}is either zero degrees or 180 degrees.

It is important to remember that the same intermodulation
frequency can be generated by several different frequency mixes,
Consequently, it is necessary to sum the responses of all the
frequency: mixes which generate a particular intermodulation
frequency. The total response gt frequency f is denoted by
yl(t:f). To 4illustrate this point, consider a weakly nonlinear
circuit for which the highest order response is of fifth order
(i.e., N=5 in Fig. 2.1), Let the input consist of two sinusoids
at frequencies fl and fé (i.e., 0=2). The outéut contains an
1nt§rmodulation fregquency at 2f2 -fl which is generated by the
three frequency mixes characterized by the frequency mix vectors
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{e,1,0,2}, {1,1,0,3}, and {0,2,1,2} . Hence, the total response

at 2f,-f, is given by

k
F y(ti2f, - £,) - y3(t:(o.1,o,2}) + ys(t;{1,1,0,3}) + ys(t:{0,2,1,2})
|

3 2
. =7 Ix 0 Ix,l |H3(-fl,f2,f2)|
: cos[2m(2f ,~f )t + 20, = 0) + Yo 5 g 5)]
¥
i S 4

1 Ix 0 Ix,] |H5(-f2,-f1,f2,f2,f2)|

COS[ZTT(Zfz - fl)t + 292 == el‘+ ¢{1'1'0'3}]

1 3 2

v 22010 %1% Ing(-£,,-£ 8 6,6, |
; cos[21r(2f2 - fl)t + 262 = 91 + w{o'z,l,g}l
) (2.2-17)
|
i In general, the angles w{o,l,o,z}' w{1,1,0,3}, and wfo'z'l'z} are

not equdl. The various terms in (2.2-17) combine as shown in the

g phase diagram of Fig. 2.2, Note that both magnitude and phase
r angles of the nonlinear transfer functions are important in
3
; determining the total :zesponse at a particular intermodulation
i frequency. For very small values of |X1| and |X2|. the
L response is dominated by the third-order term and the fifth-order

terms may be ignored. However, the fifth-order terms become
significant as the input .tones are increased in amplitude.
Finally, for very large values of lel and_szlk the response s

dominated by the fifth-order terms.
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Having demonstrated the role played by the nonlinear
transfer functions in the sinusoidal steady-state response of

weakly nonlinear circuits, the procedure used by NCAP to

determine the nonlinear transfer functions is discussed next.

*{o.z.n.z}

ys(n{o.z'.l.z}-l i O
75(';{l.l.0.3})

1,03}

ylti2z-1)

Ys u-.{o.n.o.z}
*{n.t.n.t}

\ 27 (212-t1)t+203 -0,

Fig. 2.2 Phasor diagram illustrating total response at the

intermodulation frequency 2:2-t1.
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2.3 NCAP Procedure for Determination of H (f, f,,...,f.)

The basic nonlinear circuit elements founa in NCAP are the
nonlinear resistor, nonlinear capacitor, nonlinear inductor, and
nonlinear controlled sources. These are adequate for modeling
the nonlinearities of most electronic devices such as diodes,
vacuum tubes, transistors, integrated circuits, etc. In weakly
nonlinear circuits electronié devices are typically operated over
a localized region of their characteristics. Therefore, it is
possible to expand the nonlinearities in power series about the
quiescent operating point in terms of incremental variables. The
series representations of the basic nonlinear circuit elements
are presented next.

Let e (t) and ir (t) denote the incremental voltage and
current associated with a nonlinear resistor. The incremental

current through the resistor may be expressed as

k
ir(t) = ) gk[er(t)] 5 (2.3-1)
k=1
Note that 9, is the conductance of the linear resistor normally
included 1in a linear incremental equivalent circuit. Similarly,
let ec(t) and ic(t) denote the incremental voltage and current

associated with a nonlinear capacitor. The incremental current

through the capacitor is given by

« K dQc(t)
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The term corrq‘ponding to k=@ is in the usual form for a linear

capacitor. Hence, C, is the capacitance of the linear capacitor
to be inserted into a linear incremental equivalent circuit." For

a nonlinear inductor the series representation of the current is

i, = £ U e (zf az* (2.3-3)

k=1
where e g (t) and 1l(t) are the incremental variables associated
with the inductor. T, is the reciprocal inductance of the linear

inductor that would be placed in a linear incremental equivalent

circuit.
The final nonlinear circuit elements to be discussed are the

nonlinear controlled sources. These occur frequently in
electronic device models and are two-terminal elements whose
terminal voltage or current is a nonlinear function of either the
control voltage e, or the control current ix from some other part
of the circuit. 1If the control variable pertains to a particular
circuit element X, this element is called the controlling

element. The series representations for the four types of

nonlinear controlled sources are:

a) Voltage - controlled voltage source

k
e.g(t) = kfl u le ()17, (2.3-4)

b) Current - controlled volitage source
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k
eesl) = I mgli o1t (2.3-5)

c) Voltage - contiolled current soutce

gt = I g le ()", (2.3-6)

d) Current - controlled current source

lglt) = I ak[ix(t)]k g (2.3-7)
k=1

The lirear term in each expansion defines thé linear cgntrolled

source to be used in linear incremental eauivalent circuits. The

linear coefficients Mp s t)gr 9)gr and 0y, are referred to as the

voltage amplification factor, the mutual resistance, the mutual
conductance, and the current amplification factor, respectively.

The procedure employed by NCAP to solve for the nonlinear

transfer functions makes use of nodal analysis. This apptoach

was chosen, as opposed to loop analysis, because electtonic

circuits tend to have many fewer nodee than loops. Assume the

g circuit to be analyzed contains K+1 nodes. One of the nodes,
| usually the around connection, is assigned to be the reference ot

datum node. Node-to-datum voltages are then defined for each of

the remaining K nodes. Let v j(t.) denote the node-to-datum

voltage for node j* j=1,2,...K. (A superscript is used to avoid

confusion with subscripts which are reserved fcir the designation
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of order.) The nth-order transfer function at the jth node is
denoted by Hg(fl""'tn)' Hence, the 3jth node has associated
with it a set of nonlinear transfer functions of order 1 to N.
The excitation is assumed to be a voltage source \rg(t) with
generator impedance 2 g(f). For,Fonvenience of discussion, let
the source be connected between node 1 and the reference node.

The first step in the procedure is to write Kirchhoff's
current law at each of the K nodes, other than the reference
node. The current through each nonlinear circuit element is then
expressed in a power series where the series variables are
node-to-datum ' voltages. The 1linear term in each series can be
represented by a linear circuit element. These are 1lumped with
the linear portion of the network to form the augmented linear
network. In terms of the K Kirchhoff current law equations, this
latter step is accomplished by rearranging the equations such
that only terms linear in the node-to-datum voltages appear on
the left hand side. The right side of the equations then contain
only the source term and the nonlinear terms from the power
series expansions of the nonlinear circuit elements.

The solution procedure 1is recursive in nature, The
augmented linear circuit is first excited by allowing vg(t) to be
the single complex exponential expl j2nf1t | This permits
determination of the linear transfer function. Then the sum of
two complex exponentials, given by vg(tf = exp[jbmlt] +
exp| j2n£2t ], is applied. This yields the second-order transfer
function in terms of the linear transfer function. The procedure

continues with one additional complex exponential being added to
1-26



the input at each step. Therefore, at step n, the input consists
of the sum vg(t)-exp[ ijflt] + cee + exp(jznfnt J]. The nth -order
transfer function is then found to be constructed from all cf the
previously .deternincd lower order nonlinear transfer functions.

Let the admittance matrix of the augmented linear network be

denoted by [Y(f)]. Also, define the nth-order nonlinear transfer

function vector to be

(.1
Ho(£,, ...,fn)‘!

2 |
"n(tl'...'fn) l )
- . I (203-8)

ﬂn(tl'ooc'fn)

K L]
Hn(fl,...,fn)l
|

e

The first-order transfer functions for the various node-to-datum
voltages are simply the conventional linear transfer functions

and are obtained by solving the matrix ecuation

[ Y(g) 1 8,(£) = Tl ¢ U e 8 (2.3-9)

wvhere T denotes the tfanspone operator.

The second-order nonlinear transfer functions are determined

next and the procedure continues :eéutsively for each of the

higher transfer functions. In general, the nth-order transfer

functions are solutions to.the matrix eguation

[ yeg, + oo ¢ £) 1B (£1,000,f) = I (£,,...,£) (2.3-10)
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where the nth-order source vector, 1n(t1.....£n), is a function
of the lower order nonlinear transfer functions. At each stage
of the solution, note that it is the admittance matrix of the
augmented linear network which is evaluated at the appropriate
frequency and then inverted.

The jth entry in the nth-order source vector arises from the
nth-order currents associated with the nonlinear circuit elements
connected to node j. Evaluation of these entries becomes
increasingly tedious as n grows in value. The situation is aided
by means of a recursion relationship which hc: ° .en developed for
this purpose. The exact form of the relationship depends upon
whether the nonlinearity is a zero-memory nonlinearity (i.e., a
nonlinear resistor or a nonlinear controlled source), a
capacitive nonlfnearity, or an inductive nonlinearity. The
zero-memory nonlinearity is discussed first.

Consider a zero-memory nonlinearity of the form

i(t) = 1 ak[v"(t)lk

where v P (t) denotes the node-to-datum voltage for node p. The
linear term has been omitted in (2.3-11) because it is included
with the augmented 1linear network. If the nonlinear circuit
element is connected to node j, the jth entr9 of the nth-order

source vector is given by
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3 oy
xg (£y0eef) = V2 (£yh00008) (2.3-12)

where the overbar is used to denote the arithmetic average of the
nl terms goneiated by all possible permutations of the n

frequencies. For example,

3 ' 1
13 (5,8, = v (£1,6,€) = (v (£1,E,,£) + vg (£1£5,£,)

J j
+
(2.3-13)
The quantity th‘ (f1s0..0f,) may be expressed as
Vj ' £
2 (Epeeenf) = Z % MY k(Epreeeif) (2.3-14)
where a recursion relationship for HP (f ,...,f ) is
nk 1 n
; n-k+1
R P
'Hﬁ,k(fl""'fn) fi Hi(fl"°"fi) Hg-i,k-l(fr+1""'fn) =
(2.3-15)

Recall that the ith-order transfer function at the pth node |is
denoted byluf (fl.!""fi)' '*s,k (fl..;..fn) has the properties
that

P s k=
Hn(fl,...,fn) : 1
R ',:(fl'..."f1) =

(2.3-16)
0 ; k>n'o
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Because of the permutations implied by the overbar in (2.3-12),
the order in which the n freguencies are assigned .. H g( ) and

}iﬁ_i, k-3 ( ) in the sum of (2.3-15) is immaterial as long as
each frequency appears once and only once. For the sake of
consistency, let the freguencies. be assigned consecutively
beginning with the factors requiring the'fewesé arguments.

By way of example, the following results are obtained

throuah application of (2.3-15) and (2.3-16):

Hy, 1 (£) = HY(Ey)
HD ) (£1,6;) = HO(£),£5) ﬁg'z(fl,fz) = oY (£,) HE(E,)
HY (61065085 = HO(E) 6,80 , HE (£, £, 60 = 2(E) WOLE..£5)
Hy 3(£),65,89) = HE(E) BD(E,) WD(ey)
HE,1 (6 80808 = WRUE), 65, E3,80) o MY H(£),E, 85,8 = [MB(E),£)) HB(£4,E)
+ D (£,) WE(E,, 84,601 ,
Wy 3(E1/E50E50p) = 3E(E) HI(E,) WDIEL, €
He 4 (E10E50E5,6) = HO(£)) BY(E,) HD(E,) mE(g,)

(2.3-17)
From (2.3-12) and (2.3-14), it follows that the jth entries of

the nth-order source vector for n=2,3, and 4 are
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3
(.8 = a, W (f) H (£,

b WP 1P P P wP
I3(£,.£,,£5) = 2a, H(f)) Hy(f,,£3) + a; H{(f) Hi(f,)) K {(f,)

3 v P
I3(E) £, E5,8) = al(e, 6,0 Wi £ + 2R(e) W(5,,£,,8,)]

+ 3a; HO(£)) HE(E,) BUE,,£,) + a, HI(E) H(£,) H(£) HP(E

Observe that the nth-order entry involves only nonlinear transfer

functions of lower order.
A nonlinear capacitor is now assumed to be connected between

nodes j and p. Let the nonlinear portion of the current through

the capacitor be given by
&Pw) a4 )] ® G
= k
a& * & kEZ X< PR} (2.3-19)

i®) = I vP(p1*
k=1 ck

where, as in (2.3-11), the linear term has been omitted. The

voltage across the capacitor is

Py = Vi -+ . (2.3-280)

The jth entry in the nth-order sgource vector is given by

(2.3-12). However, now

vie £) = j2n(f, + + £) 'r: ol wlP (¢ £
n'*1’°"* ' n 17 T L, Tk mkTLeT R (2.3-21)
where
#P (£.,...£) = n) (£ €) -HP (f £) :
k1 Hn,k 1’°°°'*n nk 1’ n’ (2.3-22)
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The recursion relation in (2.3-15) may, once again, be used with
the superscript p replaced by jp. For example, application of
(2.3-12), (2.3-21), and (2.3-15) for n=3 results in

. c
) > 1 o 3
(L, £, f5) Joam(g) + £, + £3) [2 5 ulp (£,) uzp (£,,£5)
(2.3-23)

C
+ 5 uP (e wP (e WP (£9)
The differences between the expressions in (2.3-18) and (2.3-23)
for 1 g(fl,fz,f3) should be noted carefully.
Finally, assume a2 nonlinear inductor is connected between
nodes Jj and p. The nonlinear portion of the current through the

inductor is

o t ) k
i(t? = xiz Ty ['__ viP (z) az]™ . (2.3-24)

As with the zero-memory nonlinearity and the nonlinear capacitor,

the jth entry in the nth-order source vector is given by
(2.3=-12). However, now

e . o =
vn(flpo-a'fn) kfz rk G?‘?k(fl'...'fn) (2.3-25)

ip

where a recursive relationship for G 'y (fy,...,f,) is

" i
Glj\pk(flv-oopfn) = g ’}?1 - Hi (fl'...'fi)
¥ i=] j21r(f1 + ...+ f

ip
Gn-i'k‘-l(fi+lpou [ 'fn) [

i
(2-3-26)
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Gjp (fl.....f ) has the properties that

Jp
[ HE (£),00008)

(g + oo+ £) i kel

v ) x =

.0 : kon

i \
As with (2.3-15), let the n frecuencies in the sum of (2.3-26) be

assigned consecutively beainning with the factors recuirina the

fewest arguments.

As an illustration of (2.3-26) ané (2.3-27), note that

) )
' o i, HP (£))
1,17 jant,
| aP(e. ,£.) wiPe)  mIP(e,)
Ggpl(fl,fz) -t 22 Gjp SE.E) = 1 1 1 2
' jan(ey + £,) jane, o gt
B
i : Ip ip
- wP (£ ,£,£) #IP(£.)
| P e),6, e = 2223 6P ,r,,0 = 222
1 ' jam(£) + £, + £q) s jarf,
b

ip ip ip
By (£) BP(E,) HP(EY)

ip
By (f,,£,)
2 253 i g

j2ﬂ(f2 + f3) 2 jZﬂfl j2ﬂf2 j2nf3

(2.3-28)

The jth entry in the nth-order source vector is obtained by a

straightforward application of (2.3-12) and (2.3-25). For
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example, with n=3 )

Ip ip Ip ) 3
3 HP(£)  ByP(E,,£q) Hi“(£,) HP(E) nlpgfs)
jane)  jan(e, + £ jane)  gome,  jome,
‘203-29)

we see, therefore, that the entries for gn(fl,...,ﬂn are readily

obtained. The key step in the procedure involves use of the

recursion relations given yy (2.3-15) and (2.3-26).

The procedure used by NCAP to determine the nonlinear
transfer functions is now illustrated by means of an example.
Consider the weakly nonlinear incremental circuit shown in Fig.

2.3.

viit) l VZ(” Vs(”‘
|
; "{l "25?5Z7\‘ (.)

it
ip (1)

Zg(t)
9 T
% % ( )liestt

|
|

uq{il

Fig. 2.3 Weakly nonlinear incremental circuit.
Enclosed in boxes, to distinguish them from linear elements, are
a nonlinear capacitor, a nonlinear resistor, and a nonlinear

inductor. The circuit also contains a nonlinear
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voltage=-controlled current source which is designated by 1c' (t).

The series expansions for the incremental currents through the

nonlinear elements are

L
i = & ghvie - Bek (e - v3(8))
k=0 at

1.(t) = 3 g [V (1%
(2.3-3’)

{0 = 50N - Vi ank
w1

| 1l k
1 g(t) = kfl gk.[v (t)] 4

For nodal analysisg it is convenient to convert the independent
voltage source Vg (t) into a equivalent current source 1N(t) by
means of Norton's theorem. 1In addition, separating each power
series in (2.3-30) into a linear term plus second-and
higher-order terms, each nonlinear circuit element may Dbe
replaced by a linear circuit element in parallel with a nonlinear
voltage-controlled current source. This is shown in Fig.4 for
the circuit of Fig. 3. with this interpretation, the
nonlineari€ies manifest themselves as controlled sources driving
the augmented linear network. In Fig. 4

vlz(t) - vl(t) - vz(t)
(2.3-31)

v23(t) - vg(t) - v3(t) .
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The admittance matrix of the augmented linear network is

= =
+ + 32 =
Z (5) 9a janfc, jantc, 0
g
. n r
(¥(£)] = -janfc, g, + J2nEC, + -1 [
jenf jerf
|
-918 - rl gb+ rl ".
3 jont jonf |
A
(2.3-32;

The linear transfer functions are obtained by'solving the mafri;
equatien (2.3-9) while the higher order nonlinear transfer
functions are solutions to the matrix equation (2.3-10). For n=2

and 3 the nth-order source vectors are given by (2.3-34) where
12 .1 2 _
Hn (fl'...'fn) = fﬁn(fl'.-o'fn) 3 Hn(fl'...'fn)
23 2 3
Hn (fl'...'fr’.> = Hn(fllooo'fn) - Hn(fl'o.o'fn) .

(2-3-33)
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cgane, o g o Wiy wiiey
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h(llofz) o { 3, "1(!1) “1(22) =Ty W m + jh“l +t) T
mie,) m2e,) )
mm—— TN
3 3
tr ML U € o e M (2 ML) )
Lz?‘ﬁ!—l I, 928 M1 1) M1
)
(2.3-34)
l‘. ')
p— b
2wl w2 2 m3e) nidie,) widey) |
(~l29, Wi(e) Mgty + g, wie) wiey) Wiey)
ey w0y mhe)  we)  wey
L,(flofzofs) - 'nrzjm;- m + P3 W 3 3!;!3— l
C.
1 QL2 12 2.0,
+ mul st ety (23w whieen « 3 w2 w2y wle |
3 3 3 3
P g ";'f;’ u’ (z) ey Wiy :
. 3"-‘! 1 Iy IR
. 4
o whie,) whie, g0 + g9, () Hi(e)) Hyteg1) :
i
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Note that the jth entry in the Nth-order source vector consists
of the sum of the contributions from the currents through each of
the nonlinear circuit elements connected to node j. Also, the
sign of each contribution is positive or negative depending upon

whether the chrrent flows into or out of the jth node.

1-39



—r

e A L o+ o SRS

t
'
K

2.4 Introduction to Electrical Device Modeling

The nonlinear analysis of an electronic circuit requires
that each electronic device be replaced by an equivalent
ﬁonlinear circuit model. Most of the nonlinearities encountered
in electronic devices are capable pf being modeled by various
combinations of nonlinear resisiors, capacitors, inductors,
and/or controlled sources. Several different circuit models are
typically available for each device. Some are guite elaborate
while others are relatively crude. Models which are highly
accurate over large ranges of amplitude and fregquency tend to be
rather complicated and computationally inefficient Furthermore,
their complete description frequently entails a considerable
arount of effort in order to obtain values for the large number
of model parametérs typically recuired. Less sophisticated
models tend to be more efficient and easier to specify. However,
since they arise by either neglecting or approximating various

physical effects, they are 1limited in their usefulness.

Nevertheless, simpler models can provide acceptable results in

maay situations.

NCAP provides stored nonlinear circuit models for the
gsemiconductor diode, the bipolar junction transistor (BJT), the
junction field-effect transistor (JFET), the vacuum-tube diode,
the vacuum-tube triode, and thé vacuun-tube pentode. Althodgh
the models useé are not the most sophisticated, they have been
shown to yield good results in practice. The circuit models are

presented in the following sections. Where possiﬂle, analytical
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expressions based upon the physics of the devices are given for
the nonlinearities. Otherwise, empirical relations are utilized.
The parameters associated with each device are defined. Finally,
power series expansions of the incremental currents through the
nonlinear cifcuit elermente are rrecented.

The operation of electronic devices is usually depicted in
terms of their static characteristics., These are rlots relatinag
a deviéc's terrinal veltaces and currerts as obtained fror
measurements performed under dc or very slowly varyina
conditions. Therefore, the static characteristice of actuel
devices do not include the effects of energy-storage elerente and
frecuency-dependent raraneters. Hence, the approach used to
develop the incremental nonlinear eauivalent circuit models was
to first obtain a dc resistive equivalent circuit to model the
static characteristics. Capacitors and inductors were then added
at one or more strategic locations to account for the device's
frequency behavior.

The region of operation for an electronic device is
established by employing a dc biasing circuit which determines
the dc or gquiescent operating point. The application of
additional signals then results in the device voltages and
currents varying in some neighborhcod about the operating point.

It is irportant to distinguish between total, dc, and incremental

"variables. In this manual total variables are denoted by lower

case symbols with upper case subscripts. For exarnple, iD and

v, represent the total current and voltage, tespectiveli, of a

D
diode. The dc value of a variable is denoted by an upper case
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symbol with an upper case subscript. For a diode the dc¢ current
and voltage are denoted by I and Vp, respectively. Incremental
variables are represented by lower case symbols with lower case
subscripts and are defined to be the difference between the total
and dc variables. For the diode the incremental current and

voltage are aiven by

g = H -5 /f
i
(2.‘-1)
Va = Y% - Y% .

In the following sections both global circuit médels, involving
total variables, and incremental circuit models, involving
incremental vari;bles. are presented. Inathe schematic diagrams
boxes aré places around resistors and capacitors to denote

nonlinear circuit elements.
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Q) 2.5 Semiconductor Diode Model

A global model for the semiconductor diode is shown in Fig,

2.5. . ip
° >
+v R R = R g [
t
&

Fig. 2.5 Global model for semiconductor diode.

The four circuit elements in the global model are:

1) R, the junction leakage resistance.

b 2) Rj, the nonlinear resistor due to the diode junction.
Its current-voltage relationship is given by
! p
i = I -t a d
- 3 s lowl v B, (2.5-1)
|
3) Cg s the nonlinear transition capacitance of the

depletion layer, also known as the barrier capacitance or the

space-charge capacitance. It is given by

- - -u :
El C, K (v r V<0 .

(2.5-2)
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4) Cg4 the nonlinear diffusion capacitance whose value
depends linearly on the junction current in accordance with the
relation.

'

@ * % L (2.5-3)
The parameters which appear in (2.5-1), (2.5-2), and (2.5-3) are
defined as follows:

Ig= diode saturation current,

g = electron charge = 1.6 x 16-19 coulombs,

k = Boltzmann's constant = 1,38 x ll-23jou1e3/degree Kelvin,

T = junction absolute temperature in degrees Kelvin,

' n = diode nonjideality factor,

K = transition capacitance.at 1l volt reverse bias,

¥ = junction grading constant,

Cj- diffusion capacitance constant.

Near room temperature (T=290° K) kT/q is approximately 25
millivolts.

The global model may be simplified when the diode is either
forward-or reverse-biased. We first consider forward-biased
conditions for which Wb >@. Since the forward resistance of Ry is
then much smaller than that of R, negligible current flows
through R and the leakage resistance may be ignored. Also; when
the diode is forward biased, vp i8 essentialiy constant relative
to the 3junction current iJ " Therefore, the transition
capacitance Cs may be treated as a constant which is denoted by

Cj' A giobal model for the diode, in forward bias, is shown in
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Pig. 2.6.

¥

AN
O
ol

O

Fig. 2.6 Forward-.biased global model for the semiconductor

diode(vD >0).,

The incremental current through Rj may be written as

k
ij(t) = kfl gk[vd(t)] (2.5-4)
where
= nkT [
9 T, (2.5-5)
and
% = R 9 %
kK, "1 k-1 - (2.5-6)

Recall that ID is the dc diode current. The linear incremental
resistance of the diode, denoted by Fqe is the reciprocal of the
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conductance g9,. Note that ry is inversely proportional to I, .

The series expansion for the incremental current through 91"

- C
- dk d k+l -
iqﬂt) );; ™ x {[Vdﬂﬂ] } (2.5=7)
where
'
! Cao = cj I (2.5-8)
and
’
Ca = Cj % . (2.5-9)
The coefficients in the expansion for the diffusion capacitance ‘;)

are seen to be intimately related to those in the expansion for

R.. The forward-biased nonlinear incremental equivalent circuit
for the semiconductor diode is shown in Fig. 2.7. Note that only l

<
(-9
™
(-]
x
| |
<
[- Y
-~
-
w1
=
a———
AAA.
v
o
J |

T i e )

Fig. 2.7 Forward-biased nonlinear incremental equivalent

circuit for semiconductor diode.

incremental ‘variables appear in the model. Nevertheless Tyo cdo Q
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and the series coefficients are functions of the quiescent
operating point. The 1linear incremental equivalent circuit
consists of rq cj. and C40 all in parallel.

The diode is reverse biased when the diode voltage |is
negative. The junction current {J and the diffusion capacitance

Cd becomes negligibly small when vt)<ﬂ. Therefore, under

‘reverse-biased conditions, the diode global model is approximated

by the' circuit shown in Fig. 2.8. Cqy is now the only nonlineat

element contained in the model.

ip
r

y. ¥
w

Pig. 2.8 Reverse-biased global model for the semiconductor

diode (vb<l).

The incremental current through Cg is

c

tg®) = I = Clygen™h (2.5-10)
where X

B B (‘.vD')'" (2.5-11)

1-47




and

o ftu-
Cax “Yp Catc-0 (2.5-12)

3
V’D, of course, is the dc diode voltage. The reverse-biased
nonlinear incremental egquivalent circuit for the semiconductor
- ! diode is shown in Fig. 2.9. In practice, only a finite number of
4 i
terms from theiinfinite sum are needed.
] . 4
' o =
© ¢
- T 8 -‘L{["am] }
. A R 1~Cqo l"" kei dt
i d
| |
1
-
[, —

Fig. 2.9 Reverse-biased nonlinear inccremental equivalent circuit

for semiconductor diode.
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‘2.6 Bipolar Junction Transistor Model

Weakly nonlinear effects are of concern primarily when the
transistor is wused as an amplifier. Consequently, attention in
this section is confined to apglications where the transistor
operates solely in the amplification region. A global model for
the bipolatr junction transistor in the amplification region
is presented in Fig. 2.10. The terminals denoted by E, B, and C
ate referred to as the emitter, base, and collector,
respectively. Loosely speaking, a bipolar junction transistor
may be viewed as two p-n junctions coupled back-to-back. In the
amplification tegion the emitter-base junction is forward biased
and the collector-base junction is reverse biased. The model of
Fig. 2,10 can also be used for a pnp transistor except that all
variables are reversed in polarity..

The seven elements in the 4lobal model are:

1) rp, the base bulk resistance

2) Rje' the nonlinear resistor due to the emitter-base

Junction. 1Its current-voltage relationship is given by

Ve
1JE = IS [exp (—nﬁ) - 1] . (2-5"1)
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Fig. 2.10 Global model for the npn bipolar junction transistor in
the amplification region.

3) C., , the base-emitter junction diffusion capacitance.

je
d'
capacitance whose value depends linearly on the emitter-base

4) C the nonlinear emitter-base junction diffusion

junction current in accordance with
(206-2)

5) a(ic)MiJE, the collector current-controlled current
source. Note that the control variable 1JE 'is the emitter-base
junction diode current.

6) r the collector-base junction leakage resistance. .
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7) C the nonlinear collector-base junction space charge

.'
capacitance which is given by

& ~H
C. K VEB ' Vo >0

(2.6-3)
The parameters which appear in the controlled source and in

(2.6-1), (2.6-2), and (2.6-3) are defined as follows:

I = reverse saturation current of the emitter-base diode,
qe= elcctron'charge = 1.6 x 10-19 coulombs,

k = Boltzmann's constant = 1.38 x 10 2

: joules/deqgree
Kelvin, |

T = junction absolute temperature in degrees Kelvin,

n = emitter-base diode nonideality factor,

C, = emitter-base junction diffusion capacitance constant,

a(Ic) = common-base normal-mode dc current gain = -I~/Ip.

‘The dependence on collector current is given by

P

C(jc) = T
2 C (206"‘)
1+ + a log,, ¢ )
& 10 1__9
where h is the maximum dc current gain P is the
FE . 9 /1y Cmax

collector current at which &yza is a maximum, and a is a
constant,
M = the avalanche multiplication factor given by
M = (1-(;‘2-)“1'1 (2.6-5)
» CBO
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where V&0 is the avalanche voltage and n is the avalanche )

exponent,

K = collector-base junction space charge capacitance at 1
volt collector-base voltage,

v = collector-base junction grading constant.

i To obtain the nonlinear incremental equivalent circuit for
the bipolar junction transistor, it is necessary to expand in
power series the incremental currents through the nonlinear
elements Rje'-cd' Cgr and a(iC)MiJE. Since NCAP is based upon

nodal analysis, all of these expansions must be in terms of

incremental voltages.
The incremental current through Rje may be written as : -T)
i
I
& k
ijﬁ(t) = kfl gk (V_‘e(t)] (2.6"6) i
& where the linear incremental emitter resistance of the transistor !

is defined to be

0 1 nk'r (206-7)

and
% T g 09 %A (2.6-8)
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The series expansion for the incremental current

Cax

BT & lywI™)

£ (t) = I
od k=0

where

and

where

s0

and

(k + u=-1)
Cx = —— Cak-1) °

cB

The final series to be presented is
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through Cd is

(206-9)

(206-10)

(206-11)

(2.6~12)

(2.6-13)

(206-1‘)

that for the
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current-controlled current source °(‘c’“1aﬁ' This is obtained Sy
expressing the currents 1C and iJE in terms of the voltages vy

and v It follows that the incremental current through the

JE °
controlled source may be written as

i(8) = kfl q, vy (v, vje(t)] (2.6-15)

where the first three terms are given by

Y VgrVye) = I ™ Ve, + 1T 9 Yie
' : 2 2 2
BVyVye) = (5 Ip My + < Ip ™) vy,
(e 4 A pmy™e) VaVse
22 2
+olmg, + M9y Vie
(Va,ve) = (I + 212 + «13md) o3
BV 'Vye 1°9E™ 2t ™M™ 3P gE™’ Vs
+o(emgy + 2,Iommg + 2o ndg) ":b"je
2
* o (smgy + 2%Ipmymg, + 2¢mymg)) "da"i
2 33 3
* (=mygy + 2%M@ig; + S9) Vie o

(2.6'16)

In (2.6-16) the coefficients Gye 0o and ay are associated with

©




the g(ic) nonlinearity of (2.6-4). They are given by

‘1.1 mz(ic)zm(?)l
¢ valogyy (o) +2alogy, (=) logye
h“'iumx G Coax

1(:'

3 8 loge -

e, T

2 “1%2 < a 1°9§o°
L S
Py I

Also, in (2.6-16), the coefficients Mge My, my, and mg are

generated from the avalanche nonlinearity of (2.6-5). They are

v
ol 1. (g2t ,
"o CBO
{
; n 2 n-1
" F v ™ Ve '
B0
(2.6-18)
2
n (n-l)m1
- — + ’
, "2 N Vs
|
/ : 2
| 2 [ -n=1 M| ™ n-1
= —— +* - +* s
| I Y ol I S 2 L

When the transistor is biased well outside of the avalanche

region (i.e., Va<<emo)+ My is approximately unity while Mo My,
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The terms in (2.6-16) involving ,i)
Ny

and m, are extremely small.

can then be ignored.
ar jncremental

transistor is shown in rig.

¢ circuit for the npn
2.11., This model is
and Vg, are

Ve
equivalen

The nonline

bipolar junction

suitable for noda oltages V4o

1 analysis because the Vv

trms of node-to-datum voltages.

readily expressed in te

o
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r
)
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,,’,'l[l-"{] I I" '-IL%*‘«»C O} Bawr u{[ '("]m}

® —

Fig. 2.11 Nonlinear incremental eguivalent circuit for npn
bipolar junction transistor in the amplification

region.
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2.7 Junction Field-Effect Transistor Model ) f

When used as an amplifier, the junction field effect
transistor is biased to operate in a region of its static
characteristics known as the saturation region. This is a region

where weakly nonlinear effects are of considerable interest. 1In

the saturation region a global model for the n=-channel  junction
field-effect transistor is shown in Fig. 2.12. The source, gate,
and drain terminals are denoted by S, G, and D, respectively.
v ‘5\*
—— WO LIL‘?
3
l/n o
G O- - 1 = o O (:)
60 ilva,)
il '
+
J
Y6y o
- +
L ‘os '
+ Ves_ -_’/..
¥ S

Fig. 2.12 Global model for the n-channel junction field-effect

transistor in the saturation region.

The' p-channel junction field-effect transistor has the same
global model except that all voltages and current are of opposite

polarity. 1-58




The four elements in the global model are

1) Rg, the source bulk resistance.

2) 1(v&). a nonlinear voltage-controlled current source,
Note that the control variable Vay is the voltage be-
tween the gate ferminal and the internal node denoted by
J. In the saturation region an analytical expression

‘for 1(VGJ) is

3
=I =
ilvg) = 31, }ﬁz— (-% ‘\/'—r!--) +4(3-- (W '3'(-9'—-) }

max
(207-1)
3) CGS' the nonlinear gate-to-source capacitance which
is given by
K (-Vo - VG’)-m ; Vay €0 - (2.7-2)

4) Cgp. the gate-to-drain capacitance.

The parameters which appear in (2.7-1) and (2.7-2) are defined as

follows:
I = drain current at maximum dc current gain,
Drax
Vp = pinchoff voltage, _
v = JFET barrier potential,
I = JFET parameter given by
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I = !:-:E; (2.7-3)

Where E. is a critical field value associated with the mobility

and Lg is the gate length,

vo- gate-to-source capacitance built-in voltage,
K = gate-to-source capacitance for 'vo"’(‘J'l'

m = gate-to-source capacitance exponent.

The incremental current through "the nonlinear controlled

source i(vgy) may be expressed as

. s | K
) = % % [”bj“”]' (2.7-4)

i(v
g3 k=l

To simplify the expressions for the coefficients, let

1-e

B = — 7 (2.7-5)

1-60

Y il e el s | e @

e




e T .

The first three coefficici . are then givoﬁ by

1
oy T PR
S A T 5
A
1 1
. 3 P ¥ i
h _,Iom w2 4l + B9)2 (2.7-6)
TR é
P A
3 1 1 1
[} - &
" & IDmnx -1\2Bf - E[-1+B§]+48[-1+B§]3
T T -3
P A

The series expansion for the incremental current through the

gate-to-source capacitance is

1 () = ¢ C d kel (2.7=7)
oIS k=0 ‘&'{' X {ng(t) }
where
=M .
Coso = M-V, - Vgy (2.7-8)
and
c L (k+m-.) c
gk "kTV_- gs (k=1) (2.7-9)

The nonlinear incremental equivalent circuit for the n-channel
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t Fig. 2.13 Nonlinear incremental equivalent circuit for the n-
channel junction field-effect transistor in the satur- k:)

3 i ation region,
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The simplest vacuum tube is the vacuum-tube diode which
con:ists of two electrodes enclosed in a vacuum. A global model

for the vacuum-tube diode is presented in Fig. 2.14. The plate

! I
]
silee
M) AT~ Con é "o
v
K O

Fig. 2.14 Global model for vacuum-tube diode, eB>0.

and cathode electrodes are denoted by P and K, respectively. The
two elements in the global model are

1) RD' the nonlinear plate-to-cathode resistance. 1Its

current-voltage relationship is given by
3
V]
:LR - GeB - ey >0 . (2.8-1)

2) C‘*, The plate-to-cathode capacitance.
The parameter which appears in (2.8-1) is defined to be
G = perveance.

The incremental current through the nonlinear resistor can

be written as
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e
[ ]
k
L o= I % [eb(t)] (2.8-2) )
k=1
where the lineat incremental resistance of the diode is
3
1 3 -1
, rd = —-é-I = (IGEB ) (2.8'3)
i
and
3 3 k -1 Kl |
% = %X | 7T T - | By k-1 (2.3-4)
r incremental equivalent circuit for the vacuum-tube
)

The nonlinea
linear L

2.15. Note that the

diode is presented in Fig.
incremental i
—_—t
P O—

+ .-L-c 0 "
ks

K O—
Fig. 2.15 Nonlinear incremental equivalent circuit for the

vacuum-tube diode, eg>f.

circuit consists simply of the capacitor Qp( in parallel with the ~;)

resistdor rye
& 1-64




-

T

b b e g e U ARG A e

2.9 Vacuum-Tube Triode Model

Assume the vacuum-tube triode is biased to operate "in its
anpllficatioﬂ region. A globad model suitable for the
amplification region is shown.in Fig. 2.16. The grid, plate, an’
cathode

,_1(

Cpe

‘T—

1]
IG -0
+ - .
4 -

= -

Fig. 2.16 Global model for vacuum-tube triode in the amplifi-

cation region.

electrodes are denoted by G, P, and K, respectively.
The four circuit elements in the global model are:
1) Cgxs the grid-to-cathode capacitance.

2) C the plate-to-grid_capacitance.

ml
3) Cocr the plate-to-cathode capacitance.
4) g(qG,eB), the voltage~controlled current source

representing the triode space current which is given by
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,mm

—r =

3
eB 7 (209-1)

e
g(eG'eB) = GO [1 = E g .] (GG‘.‘ 0 + u—)

The parameters which appear in (2.9-1) are defined as follows:

Go = perveance for eg=0,

l-:cmax = grid-to-cathode voltage for perveance equal to zero,

¢ = offset voltage due to space charge effects,

uw = triode amplification factor.

Since g(eG,eB ) 1is a function of two variables, the
incremental spaée current 1is obtained from a two-dimensional
Taylor seties'expansibn about the quiescent operating point. The

desired expansion may be written as

glegie) = mi-o : ;z;-o K, ,m, CYRYS b I CRPRY b (2.9-2)
(my = m, # 0)

The e.:pression for the coefficients is simplified by defining
e
S

Gleg = Gy [1-g—2-

Crmax

3 (2.9-3)
VTR -
f(eG,eB) = (e + ¢ T

It follows that
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&-. 1 é :"1 (q)*q,y)? tql‘ Glog) Oqz..zf(oc.on)
& WY QY @, -
oy oy "I (ql-o qz-o) . Sl ,.:1 a.:’ “:z 0,- g,
4+ -
LM Rt o g
(209-‘)
In (2.9-4) the constraint, q1'+q2-ml, indicates that only terms
for which the indices sum to m, are included in the double
summation. The first several coefficients are given by
1
" )
3G G H ’
ol R e Tl &
1 3
® By By
3Go G Z__G By 2
Kl,o -T [l-EC ][EG+¢+ u] Ec [EG+¢+
max max
E -
3Go G B3
K0,2-;T[1-r_][EG+¢+_u]
{ M Cmax
fo, a5t ; |
& G | R - m {
xl,l ru[1 B ,[EG+¢+ u] TS [EG+¢+—] |
Crax
1 1
E - N
3o G BT 3o '8, 7
K0 =T B-g 1 Bgt o+ = [g+ 0+
cmax 'inax (2.9_5)
The degree of a term in (2.9-2) is the sum of its exponents.
Hence, Knl'm2 is the coefficient of a term having degree (m +
m2). It is convenient to denote by 9k(°g'°b ) the sum of all
terms in (2.9-2) having degreée k. Then (2.9-2) may be expressed
as
¢ND
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g(eg.eb) « I % (eg,eb) (2.9-6)

[

k=l
where the first three terms are given by
= = 1
e2

. ’ 2
gplegq,) = Kyoe + K ye 8 + ko

' - 3 g - < 2 3
93(egey) 0,3% * F1,2% % * K199 + kjqe

The nonlinear incremental equivalent circuit for the vacuum-tube

triode 1is shown in Figy. 2.17. Note that Kgn : 3 is the
P
reciprocal

117 g b e T

Fig. 2.17 Nonlinear incremental equivalent circuit for the

vacuum-tube triode in the amplification region.

of the triode plate resistance while Kl'o = 9. is the triode
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transconductance or mutual conductance.
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2.10 Vacuum-Tube Pentode Model

For the vacuum-tube pentode, attention is also focused on
the amplification region. A global model suitable for this
region is shown in Fig. 2.18. The control grid, screen gria,

suppressor grid, plate, and cathode terminals are denoted by G .,

Il
ar

Cpo
o2
- |lo2 . :
e ik =
= ! ==C
_'Il qu']' l”lmltﬂ!lt.l """“'e_: lmﬁ,.nnln.l pk I—
a3 K.Gy

Fig. 2.18 Global model for vacuum-tube pentode in the amplifi-

cation region.

G2, G3, P, and K, respectively. Since the suppressor terminal Gy

8 typically tied to the cathode K, the two electrodes are shown.

as a single terminal in the figure. The interelectrode

capacitances are represented by Cgk' Cglgz. _ngk ’ 9,p ' %( » and

C%g. The remaining two circuit elements in the global model are:

1) f(ecl' o eB). the voltage-controlled current source
repteéenting the space current between the cathode and screen

which is given by
1-7¢
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O

°6) %, g’ %
(e, s, 1&) = Gy (1 - ] (e. + ¢+ =9
G, G 0 E G
' Cinax éﬂ*if:ji)m
2
(2.10-1)

2) gl(e ar %2’ eB). the'voltage-controlled current source

representing the space current between the cathode and plate

which is given by

e e 3 (-:E-)m
%y Gy, 7 %
g(QG IeG 'OB) '~G0 [1- E__] (QG + ¢+ T) 2 .
1 Ciax 1 1l s .m
pt (g
Gy
(2.10-2)

The parameters which appear in (2.108-1) and (2.10-2) are defined

as follows:

G_ = perveance for eGl"'

o
Emlnx = control grid-to-cathode voltage for perveance equal to
zero,
¢ = offset voltage due po space charge effects,
¥ = control grid amplification factor,
D = gpace current division constant;
m

= gpace current division exponent.

A nonlinear incremental equivalent circuit for the pentode,

which is appropriate in the amplification region, is obtained by
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expanding f(eg, ez, ep) and gley;, eq ey)  “in
three-dimensional Taylor series about the guiescent operating

point. 1In particular,

= e by . nl _.n2 _n3
Elegrregarey) = (I Io 3o nl'n2'n3 Sgl ®g2 ®p  (2.18-3)
nl=n2=n3 # 0
and

] ) %
’ nl n2 _n3
g(egl,egz.eb) gnlio nzio n3£0 ®n1'n2'n3 ®q1 g2 (E.58=8)
nl=n2=n3 # 0

where the coefficients Anl' n2’ n3 and Bnl'nZ',n3 are given by

. e_..=E
. .a(nl+nz+n3)f(e L 0nn,0n) Gl Gl
Anl'n2'n3 = 1 ) Gl’ G2' B [(eg,=Eg,
(nIN) (n21) (n3!1) senl N2 5en3 e =E
- Gl °%G2 °©B B ~Ep
(2.10-5)
and
(nl4n2+n3) es1"Eg)
3 g(e.,,€.qs€5)
B = 1 G1'%62'®8’ |e..=E
nl’n2’n3 G2 G2
ekl AL 2eDL 9ehZ el e, =E
- Gl °®c2 °°B B "B
(2.16-6)

Because of the complexity of (2.10-5) and (2.10-6), explicif
expressions for the coefficients are not used by NCAP for their
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evaluation. Instead the partial derivatives are carried out
numerically. Recall that Apl, n2, n3 and By, n2 , n3 are
coefficients of terms having degree (nl + n2 + n3). It is
convenient to denote by fy(e o), e g2, &,) and gx(ey) » &2, &) the
sum of all terms in (2.18-3) and (2.10-4), respectively, having
doqrc§ k. Then (2.18-3) and (2.10-4) may be expressed as

[}
f(‘gl'.QZ"b) ‘- z fk(egl'egZ 'eb)

k=1 (2.10-7)

and

9(‘91"g2"b) = kfl 9k(°gl'°gz'°b’ (2.10-8)

The nonlinear incremental equivalent circuit for the vacuum=-tube

pentode is shown in Pig. 2.19.
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Fig. 2.19 Nonlinear incremental equivalent circuit for the
vacuum-tube pentode in the amplification region. °

Typically, the-screen grid G, is connected externally to the

cathode through an impedance which behaves as a short circuit at

the signal frequencies of interest. As a result, eg, remains

approximately fixed at the dc value E g and the incremental

voltage e is approximately zero. Under this assumptior, the

g2
generator f(e;, ,es, , ep) is incrementally shorted out and need

not be considered in the incremental equivalent circuit. In

addition, the generator g(e;; , €y, eg) becomes

(g

( ) n ec;11( E—G-?ag 2
gleg seg) =G, Il - ¢ &, * ¢+ 1 € m
1 Cmax 1 -6'0'( EE‘)

2

(2.106-9)

The incremental current corresponding to (2.18-9) is represented

by the. two-dimensional Taylor series
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© ® nl nz ; ( )
- z z e = e ’
9 (leoeb) nl-O n2=-0 n, Ny 9 % k=1 gk 91 eb
(n1 =n, x 0)
(2.10-10)

vhere g, (e gl 4,) denotes the sum of all terms in (2.18-9) having

degree k and the coefficients Knl’ n2 are given by

(ny+n,) A
Kn » 1 1 1l 1l
1M (n1 1) (n2 1) n, n,
9 °, dey e =Fy
(2.10-11)

Recognizing that 1) chk is shorted out, 2) Cq‘ is in parallel
with Cglg2 , and 3) ngp is in parallel with Cpk+ the nonlinear
incremental equivalent circuit for the vacuum-tube pentode
becomes that shown in Fig. 2.20. From Fig. 2.20 it is apparent
that
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B = 1.

g = Cgk ()l“ ", p l I gkleg,ed) Con — %

. U’ . |
K'GZ'GS . i aK,Gz.G;

Fig. 2.20 Nonlinear, incremental equivalent circuit for the
vacuum-tube,pcntode.in the amplification region {¢>

under the assumption that the screen grid is

.incrementally shorted to the cathode.
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