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FLUID DYNAMIC ASPECTS OF WIND ENERGY CONVERSION

by

0. de Vries

National Aerospace Laboratory NLR,
Anthony Fokkerweg 2
1059 CM AMSTERDAM

The Netherlands

SUMMARY

A review is made of the fluid dynamic aspects of wind energy conversion. A short survey of the total
framework of wind energy conversion is given to bring the fluid dynamics aspect in its proper dimensions.
Next, the several wind concentrator concepts are discussed, while the main body of the report is formed by
a discussion of the theory of wind-driven turbines, including both the horizontal-axis and the vertical-
axis turbines.

*rhe report concludes with a survey of inhomogeneous flow and turbulence effects, turbine control and
wake interference effects.

FOREWORD

There has been in recent years a dramatic revival of interest in harnessing the energy contained in
terrestial winds. Wind energy conversion systems are being developed now in many countries, meetings and
symposia are being organized at an ever increasing frequency, and hundreds of journal articles, company
reports, papers in conference proceedings and official government publications are being issued all over
the world. Scattered among all these sources are various bits and pieces of information about the most
fundamental aspects of wind energy conversion, the prime force that makes it all work, THE FLUID DYNAMICS
of such a process. At the present time no single, generally accessible source exists that could provide a
comprehensive summary of the fluid dynamics foundations of the great variety of wind turbines that now are
being corstructed or proposed. To fill this gap, the Fluid Dynamics Panel of AGARD has decided to sponsor
the preparation of the present review. Since the fluio dynamics processes involved in wind energy conver-
sion are not too dissimilar from those occurring in flight bf various types of aerospace vehicles, it was
considered pacticularly appropriate that such a review be undertaken under the auspices of an aerospace
advisory group and that it be performed by an aerospace or-ganization. In this regard the Panel was most
fortunate to secure the cooperation of the National Aerospace Laboratory of The Netherlands, one of the
best known aerospace research organizations in the world, which kindly undertook to perform this work. It
is hoped that this volume will find its way into the hands of the many designers of modern wind turbines
and that it will facilitate their difficult task by providing a comprehensive review of the fluid dynamics
methods and data on which their designs have to be based.

Ottawa, 8 December 1978 Kazimierz J. Orlik-Ri1ckemann,
Deputy Chairman,
Fluid Dynamics Panel.
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1 GENERAL INTRODUCTION

1.1 Wind energy development in the past

The very idea to make use of the power of the wind flowing over the earth surface is a very old one.
It was put into practice already in ancient times for ship propulsion, but also the conversion of wind
energy into mechanical energy (grinding, wood cutting, water pumping) was used centuries ago. One has only
to recall the well-known satirical romance by Miguel de Cervantes (1605), where Don Quixote, the hero of
this romance, once fighted windmills.

Windmills were extensively used up to the beginning of the industrial era, which started with the in-
vention of the steam engine, soon followed by the invention of the electric motor/generator and the inter-
nal combustion engine. Because of the ready availability of coal, oil and natural gas (improved transport
systems) and because of the capacity of engines to generate a large amount of power in a small volume at
any required instant, the windmills soon became obsolete.

During the Second World War and shortly afterwards, there was a relatively short-lived revival of
interest in wind power, with an emphasis on the generation of electricity by a large-scale wind turbine.

Without the intention to be complete, some names and projects may be mentioned here, such as Ulrich
4Utter (Refs 1.1, 1.2 and 1.3) in Germany, the studies and practical experience of the Electricit6 de
France (EDF, Ref. 1.4) and Neyrpic (Ref. 1.5) in France, Golding (Refs 1.6, 1.7 and 1.8) in the UK, the
Gedser windmill in Denmark and, last but not least, the Putnam turbine at Grandpa's Knob (Ref. 1.9) in the
USA.

The decline of interest in wind power in the post-war years was mainly due to the abundance of low-
priced oil, the growing insight that wind energy is a relatively expensive form of energy, and the tech-
nical problems with some of the turbines (fatigue).

1.2 Recent developments

The energy-crisis of 1973-1974 and the growing acceptance of the idea that fossil fuel resources are
not unlimited ended the euphoric era of rapid industrial expansion and increasing rates of economic
growth, and led to a renewed and probably lasting interest in alternative energy resources, such as solar
energy and wind power.

The wider acceptance of studying alternative energy sources led to long-term research projects spon-
so ed by government agencies, in contrast with the more limited wind energy projects in the post-war
years. In this respect, the Energy Research and Development Administration (ERDA) and their Biennial
Workshops on Wind Energy Conversion Systems (Ist in June 1973) in the USA, have to be mentioned first.
Also Sweden made an early start with their National Program on Wind Energy Conversion (Swedish Board for
Technical Development, STU) and organized a Workshop in Stockholm (29-30 August 1974). The Netherlands
started a National Program in March 1976, while research programs were started also in Germany and
Denmark. These last two countries do not yet have an official National Program; neither does the UK,
where general studies are carried out at several univ,--ities and institutions, such as e.g. the Central
Electricity Generating Board (CEGB). Canada stands out with its vertical-axis turbine project and allied
studies of the National Research Council (NRC, Refs 1.10 and 1.11), whereas in several other countries in
the world investigations are under way in universities and other institutions.

Moreover, in 1973/1974, the then US Foreign Minister Dr. Kissinger convened an energy conference in
Washington D.C., which was contirued in the so-called "Energy Co-ordinating Group" and resulted in an
"Agreement on an International Energy Program" (IEP), in which 18 countries participated. To execute IEP,
the "International Energy Agency" (lEA) was founded with its residence in Paris at the Organization for
European Economic Co-operation (OEEC).
The Governing Board of IEA is assisted by 4 Standing Groups. Each Standing Group set up a number of Sub-
Groups. The Sub-Group for Energy R&D set up a number of so-called "WorKing Parties". The Woiking Party on
Wind Power was inaugurated in March, 1976, with The Netherlands as "lead country".

Other landmarks of the growing interest in wind power are the International Symposia on Wind Energy
Systems (Ist ISWES, 7-9 Sept. 1976, 2nd ISWES, 3-6 Oct. 1978) organized by the British Hydromechanics
Research Association (BHRA), the growing number of articles on wind power in the "Journal of Energy" (USA),
the establishment of a jouinal devoted to a large extent to wind power, v;z. "Wind Engineering" (UK) and
the establishment of the "Wind Energy Society of America" (USA).

1.3 Scope of the present report

The entire field of Wind Eneryg Conversion Systems (WECS) is a very extensive one. Most National Pro-
grams are devoted to large-scale ,pplications of wind turbines to generate electricity which could be fed
into the public grid, but there ,s a growing tendency to consider also decentralized application of wind
power (each farm its own turbine, possibly combined with solar energy), especially in scarcely populated
areas.
Furthermore, the application of wind power in developing countries has problems of its own, ranging from
rather simple approaches (Ref. 1.12) to the more fundamental ones, as covered by the "Dutch Steering
Committee for Wind Energy in Developing Countries" (SWD, Refs 1.13 and 1.14).
Finally, thete is the already well-established field of small-scale wind turbines for pumping water in
rural areas and for special purposes, such as radio and light beacons that have to operate unatterded for
very long periods (Ref. 1.15).

Giving an overview of the entire field of wind energy conversion systems is only possible by foming
a staff of contributors. Therefore, it was decided to limit the study to fluid dynamics aspects only,
which still is an extensive field to discuss, due to the rather exponential growth i the number of

Of
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publicationq of recent years.

In order to put the rather extensive aerodynamic discussions in its proper pe'spective, it was
decided to start with a short survey of the different aspects of wind energy conversion (Chapter 2). The
discussion being far from complete, an emphasis is laid on large-scale turbines.

Since the discovery of the Betz limit (Ref. 1.16; 1926 aid Section 3.2), which states that an iso-
lated wind turbine of a given size can extract only a part of the energy flux offered by the wind stream,
there have been many proposals foi so-cdlled "wind concentrators", to get more power from a turbine with
given diameter than indicated by the Betz limit. A number of these proposals is discussed in Chapter 3.
Although it can be shown that the power output of a turbine with a given diameter can indeed be increased
above the Betz limit by several of the proposed devices, it is the belief of the author that the cost-
increase due to the added structures outweighs the power-increase, with the exception of some special
cases (e.g. Trade-wind areas).

Chapter 4 discusses the aerodynamic theory of the wind-driven turbines. It constitutes the main body
of the report and is limited to the discussion of a turbine in a steaoy, non-turbulent homogeneous flow.
One of the most intriguing results is that, though a wind turbine is subjected to large aerodynamic l:ft
forces, only a small component of that lift force is used to drive the turbine. Most of the existing
theories are based on momentum considerations and a blade element theory, but more elaborate computer
codes including trailing vortex wake calculations and lifting surface theory are under way. Although the
more complicated computer codes give a better prediction of the induced velocities in the plane of rota-
tion of the rotor, ,t might be questioned whether they could predict the small comoonents of the lift
force (leading-edge suction peak) with a significantly greater accuracy. This applies especially for the
vertical-axis (Darrieus) turbine, where higher accuracy probably cannot be achieved without including
effects due to unsteady aerodynamics and stream curvature.
Furthermore, a wind turbine is submerged in a non-homogeneous, unsteady and turbulent flow (atmospheric
boundary layer), the effect of which on the turbine performance is difficult to assess. This is also the
reason why the feasibility of developing very extensive turbine-performance computer codes is still ques-
tionable.

The inhomogeneous flow and turbulence effects are briefly discussed in Chapter 5, together with a
short discussion of the aerodynamic aspects of turbine control and the effect of putting a large number of
turbines together in a so-called wind turbine "farm" (wake interference effects).

;n the discussion of the subjects in this report the basic assumptions are stronger underlined than
specific results obtained with the theory. The choice of the subjects to be discussed and the depth of
exposition of some details reflect the author's prejudice, which seems inevitable in such a new field of
research.

It is hoped that this review summarizes the present state-of-the-art to such an extent that it will
have a function in the dialogue with respect to the feasibility of using wind power to alleviate future
energy shortages.

1.4 Acknowledgement

The constant encouragement during the preparat:on of this report by Dr. K.J. Orlik-RUckemann (NRC,
Canada) and Dr. B.M. Spee (NLR, The Netherlands) is gratefully acknowledged.
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2 SURVEY OF ASPECTS PERTAINING TO WiND ENERGY CONVERSION

List of symbols

a axial induction factor C)
B number of rotor blades -)
c chord length of rotor blade (m)
CI  lift coefficient of aerofoil section (-)
C p = P/jpU

3
Sre f = power coefficient H

Cp = P ideal/pU3Sre f = 16/27 = theoretical maximum power coefficient according to Betz C-)
ideal ida rf

CQ = Qj0U2SrefR° . Co I A torqut coefficient (-)
g acceleration of gravity (m/s

2)

H height above the ground (m)
H height of rotor (m)
Hf height at which the reference wind velocity is measured (m)

P power (W)
P annual average power based on wind statistics (W)average

Pdesign design power or installed power (W)

Pideal theoretical maximum power according to Betz (W)

P(U.) probability of occur.ince of a wind velocity in the velocity class U.(-)J J
annual energy at wind velocity class Ui

total wind energy in a year
Q torque (Nm)
r local radius (m)
R° 0 maximum radius or tip radius (m)

s arc length of rotor blade (m)
Sref reference area of the turbine; area swept by the rotor perpendicular to the wind velocity m2 )

t time (s)
t profile thickness (m)
T integration time for determination of average (s)
U wind velocity or undisturbed velocity (m/s)
0 average wind velocity, depending on integration time T (m/s)
u = U - 0 = wind velocity fluctuation (m/s)
UI,U. average wind velocity in wind velocity class i or j, e.g. U. = 10 m/s when 9.5 < Uj < 10.5 m/s

Uref average wind velocity at reference height Href (m/s)

U50 0  average wind velocity at a height of 500 m (m/s)

V/ 7'/O root-mean-square value of wind fluctuation divided by the average wind velocity; turbulence
intensity (-)

x axial deflection of rotor blade (m)
a exponent of power-law wind-velocity distribution C-)
X = OR /U = tip speed ratio C-)
p air density (kg/m 3)

PM density of rotor blade material (kg/m 3)

o = Bc/R o = solidity ratio of Darrieus turbine or a drum-type vertical-axis turbine C-)
s

0 = B/Sref f c ds = solidity ratio definition valid for both horizontal and vertical-axis
o turbines C-)

ab bending stress (N/m2 or N/nm ?)

at  ten,;ile stress (N/m
2 or N/mm

2 )

material area of blade cross-section
blade thickness times chord length

R angular velocity of the rotor (radians/s)
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2.1 Introduction

When the discussion of wind energy conversion is restricted to fluid dynamics aspects, only the top
of an iceberg is revealed. A complete study should include a large number of aspects, some of which are
listed below:
- Meteorology
- Aerodynamics
- Structures (aeroelasticity)
- Energy conversion (e.g. mechanical energy to electricity or heat)
- Energy storage
- Distribution of energy to the consumer
- Economy

- Environmental effects.

An authoritative review of all these areas is beyond the scope of this report, but some background
information about these areas is indispensable to appreciate a discssion of the fluid dynamics aspects.

The practicability of small-scale conversion systems is already iully recognized. On the other hand,
large-scale systems that may have significant economic potential are naw being studied in many countres,
but their feasibility has not yet been fully demonstrated. In order to assist in such studies, the empha-
sis of the present review is placed on large-scale rather than small-scale systems.

The kinetic energy of the atmosphere of the earth is enormous. Although it is an open question at
which rate this energy can be extracted from the atmosphere without changing the weather system, it is
evident that a very interesting amount of energy is present for this purpose.

A possible optimistic prognosis that might be based on this precognition is changed drastically by
the fact that, on practical grounds, direct energy conversion is only possible up to heights from 50 to
150 m above the ground (the maximum height of wind turbines that can be envisaged). A further reduction is
caused by the vertical wind gradient. Due to the friction with the surface of the earth, the wind velocity
above the surface is reduced and an atmospheric "boundary layer" is formed. The height of this boundary
layer ranges up to several hundreds of metres, dependi43 on the "roughness" of the surface of the earth.
The energy conversion, therefore, takes place in the lower part of the boundary layer with a correspond-
ingly reduced energy content.

Geographical factors 9.Dd practical limitations on the height of the turbines are, however, not the
only f~ictors that limit the usuable amount of wind energy. There is a kind of implicit economic reasoning,
which leads to converting only a pnrt of all available wind energy (cut-in speed, design speed). Also the
choice of the type of turbine and its mode of operation is strongly connected with economic considerations.

The structural lay-out of a wind turbine is determined by a large number of factors, of which static
strength, fatigue lifetime and cost-efficiency are the main points. They depend strongly on the total
wind energy conversion ,ystem considered, i.e. the type of turbine, the conversion system, the mode of
operation, etc. It is inpossible to reveal in brief all the interrelations between the several factors in
a proper way. The discussion of structural aspects will, therefore, be restricted to the effect of the
shape of the rotor blae for HtA (horizontal-axis propeller type) and vertical-axis (VA) Darrieus*) wind
turbines. Also the aerodynamic loads and the aeroelastic instabilities (divergence, flutter) will be dis-
cussed briefly. Structural aspects of wind concentrators (shrouds, vortex augmentors, etc.) are little
studied up till now and will, therefore, not be discussed. The cost-effectiveness of a structural design
will also not be discussed explicitly.

The above-mentioned aspects were all connected with the technical feasibility to build a wind turbine,
although some cost-effectiveness aspects were implicitly involved. A next important item is, however, how
one wants to use this energy, because this has a strong feed-back to the lay-out of the complete wind
energy conversion system. Short comments will be given on the type of conversion (i.e. to mechanical
energy, to heat, or to electricity), on the storage, and on the distribution of energy to the consumer.

The survey of aspects pertaining to wind energy conversion will be concluded by a short survey of
cost inalyses found in the literature, and of environmental effects.

2.2 Available amount of wind energy

2.2.1 Data from weather stations

Most studies on the available amount of wind energy start with a kind of wind energy "prospecting"
close to the ground, based on available meteorological data. In most countries, weather stations possess
wind velocity recordings over a number of yea's. From such recordings, a first order-of-magnitude estimate
of the available amount of wind energy can be made. In such a survey, the distribution of the velocity
over the wind directions is neglected, because this aspect can only be considered by taking the character-
istics of the wind turbine into account.

In the interpretation of the meteorological data, a number of factors has to be considered.
The first factor is the height above the ground where the wind velocity is measured. The present-day

meteorological standard height is 10 m, but various heights may occur due to local circumstances. For a

T The reader must notice, that in this report the term "Darrieus turbine" denotes a curved-blade VA wind
turbine. Darrieus actually invented several types of wind turbines and in his 1931 US patent he
covered both curved and straight-bladed configurations.
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proper site selection, it is necessary to compare wind velocity data at the same height (e.g. 30 or 60 m).
The translation of the weather-station data to a larger height (wind shear) will be discussed in Sect.
2.2.2.

When wind data of different stations are compared, it is necessary to correct the data for local
effects. These local effects may be due to a kind of "wind shadow" from neighbouring obstacles at certain
wind directions or due to locally different surface roughnesses at some distance from the station.

In corrugated terrain, a kind of wind energy "concentration" might be possible (see e.g. Ref. 2.1),
but this will not be discussed here.

Another factor is the influence of the wind velocity sampling method on the estimation of the annual
average energy flux. This will be discussed here at some length, because some confuision can be observed
in the literature.

The variation of the wind velocity due to a variation of the weather system is relatively slow
(except in case of a thunderstorm). The wind velocity is measured, however, in the lower part of a turbu-
lent boundary layer, and the instantaneous wind velocity fluctuates st'ongly. The meteorological wind
velocity is, therefore, measured as an average over a certain time interval, say half an hour or one hour.
When the time interval is denoted by T, the average wind velocity is defined as:

T
= 0 Udt. (2.2.1)

T0

When the velocity fluctuation within that interval is denoted by:

u = U - U,

the average of the fluctuation in that interval is zero:

IT

= f (U-O)dt 0 0. (2.2.2)

The average energy flux in that interval is proportional to:

=y T (0+u)3dt = 03 + 3 30 + . (2.2.3)
0

Some remarks can be made about the right-hand terms of Eq. (2.2.3), viz.:

302u = 0, because ; = 0

3U0 0, because 7 0

- 0, if the probability distribution of u is symmetrical,1.0 0, if the probability distribution of u is skew.
Eq. (2.2.3) can, therefore, be written as:

U2 uY
1+33(-+3 ) (2.2.4)

The difference between F and 03 , i.e. the difference between the true average energy flux and the energy
flux estimated from the average wind velocity, depends strongly on the integration time T.

At small time intervals, e.g. T = I or 2 minutes, the contribution to u come,. from the high-frequency
turbulent fluctuations of the atmospheric boundary layer. In that case, the skewness of t'e probability
distribution is small and the last term in Eq. (2.2.4) can be neglected. The turbulence intensity

(V2/0) in the lower part of the atmospheric boundary layer (referred to as the local wind velocity) may
be of the order of 20 percent. In that case, the difference - and 03 is 12 percent, viz.:

U3 = 03[1+3(0.2)2] = 1.12 03

At very large time intervals, e.g. T = I year, the fluctuations from the average become very large
and the probability distribution becomes skew, so that the third term in Eq. (2.2.4) is significant. In
such a case, the ratio of U7and 03 may amount to a factor 3 or 4.

When hourly averages (T = I hour) are used, the value of the factor is between the two values quoted
above. In most cases, the contribution of the skewness is no large, and the factor does not differ sig-
nificantly from the factor quoted for the small time intervals (1.12).

The data gathered at weather stations ccntain much more relevant information, e.g. the frequency
distribution of the duration of a calm (no wind energy available) or the frequency distribution of the
duration of a wind velocity within a certain velocity interval (duration of a certain energy production).
This information is important in the discussion on energy storage.

2.2.2 Wind shear

The wind velocity increases with height. Greater heights possibly mean larger rotor diameters and, in
that case, the wind velocity varies across the rotor area and the annual energy flux has to be averaged
also over a certain height (Ref. 2.2).

The increase of the wind velocity with height (wind shear) can be described in two different ways,
viz. with a power-law formula or with a logarithmic formula. Meteorologists often prefer the logarithmic
formula, because it can be derived theoretically. The power-law description is used in this Section
because of its simplicity and because it is used in Ref. 2.3.

4¥
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The effect of the wind shear has been rather extensively studied in Sweden (Ref. 2.3). The wind shear

depends on the wind direction, the wind velocity, and the stability condition of the atmosphere. The in-

stantaneous velocity profile can be defined by an exponent a (see also Fig. 2.1):

u/u ref = (H/H ref)a  (2.2.5)

Table 2.1 shows some results of Ref. 2.3.

Site U (m/s) L Remarks

H = 50 m I_________

Oskarshamn 2.3 0.87 night wind from sea
5.5 0.63 ditto

9 - 10 0.31 wind from land
10 - 15 0.12 wind from sea

Marviken 2.0 1.; night wind from sea
3.5 0.9 ditto
4.5 0.38 wind from land
7 - 12 0.36 ditto

_ 7 - 12 0.13 wind from sea

Table 2.1: lnstan,.aneous wind shear data (Ref. 2,3)

The difference in neasured wind shear between wind from land or from sea is caused by the difference
in "surface roughness". Large differences in wind shear at low wind velocities are possibly due to differ-
ent stability conditions of the atmosphere. Because wind velocities below 4 or 5 m/s are negligible with
respect tc their contribution to the annual average energy flux (cf. Sect. 2.3), these large variations in
wind shear are not too interesting from the point of view of wind energy conversion.

In a statistical-average sense, the wind shear at the higher wind velocities depends only on the
"surface roughness" in the wind direction. When a measured wind velocity at a small height is translated
into a velocity at larger height, the wind direction has to be taken into account, when the surface rough-
ness varies appreciably between the various wind directions.

In a sense Fig. 2.1 is somewhat misleading, because the wind profiles are given at the same Uref
(velocity measured by weather station). Under the same weather conditions, the wind velocity at a Uarge
height is almost independent of the surface roughness; since the effect of the surface roughress is a
slowing down of the wind approaching the ground. At the other ha-d, Fig. 2.1 shows clearly how important
it is to correct the wind velocity data measured in inland weather stations for the effective height of
the wind turbine. Table 2.2 shows the influence of the wind shear on the energy flux OU3 (W/m2).

height (m) 10 1 20 1 30 1 40

energy flux (W/m
2 )

0 500 m = 15 m/s

wind from sea 507 51 753 3
a = 0.12
wind from land 54 104 151 198
a = 0.31

Table 2.2: Influence of wind shear on energy flux at low level
with a constant velocity at large height (500 m)

2.2.3 Wind energy flux

In the literature, many estimations of the annual average energy flux have been given. The magnitudes
depend strongly on the geographical location, but the factors discussed in the Sects 2.2.1 and 2.2.2 cer-
tainly also affect the values given.

Without starting an extensive survey of the literature, it seemed useful to give at least some
figures, to illustrate the low density of wind energy and the consequently large turbine areas necessary
to obtain a reasonable amount of energy from the wind.

Conditions Annual average
Country Ref. height site velocity energy flux

(M) (m/s) (kW/m
2
)

Canada 2.4 33 coastal ? 0.3 -0.4
inland 7 0.1 -0.2

France 2.5 70 coastal ? 0.35-0.55
inland ? 0.34

The Netherlands 2.6 14 coastal 6-7 0.47
Sweden 2.3 50 coastal 7.7 0.-3

_ _ __ inland 5.6 0.22

USA 2.7 ? coastal -7 0.15-0.2
inland*) 7.8-8.6 0.3 -0.4

V Great Plains
Table 2.3: Average annual energy flux at several countries

There are, of course, large climatological differences between the countries listed, but in general
coastal areas reveal higher energy fluxes than inland areas, with the Great Plains in ti,. USA as a notice-
able exception.

The wind energy flux above sea might be interesting, but information is scarce, and there are addi-
tional problems connected with wind energy "harvesting" on sea (platforms, maintenance).
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2.3 Useable amount of wind energy

2.3.1 Design power, cut-in speed

It seems advantageous, from the point of view of economics, to limit the wind energy conversion at a
certain maximum wind velocity (see e.g. Ref. 2.8). TFis (maximum) design power determines the costs
(investments) of the WECS (Wind Energy Conversion System) to a large extent.
In rural applications, such as pumping of water, it is often desirable that the wind turbine starts its
operation at a wind velocity as low as possible. From the point of view of the annual energy production,
such a low "cut-in" speed is not necessary, as is easily demonstrated by considering a wind velocity pro-
bability curve (Fig. 2.2).

When the probability of occurrence of a wind velocity within a certain interval is denoted by P(U.)
the dimensionless distribution of energy, corresponding to a wind velocity interval U., can be calculaied
from

U P(Uj)

P(E,U.) = U (i ranging over all classes) (2.3.1)

The denominator corresponds to the area below the P(E,U)-curve in Fig. 2.2 and is, except a numerical
factor, equal to the annual wind energy flowing through an area of I m2 . The example given in Fig. 2.2
corresponds to an annual energy of 4.37 MWh/m 2/year.

It follows directly from Fig. 2.2, that low wind velocities have such a low energy flux that, not-
withstanding their high probability, the contribution to the annual energy is negligible (shaded area at
the left-hand side).
Very high wind velocities have a high energy flux, but, due to the low probability, their contribution to
the annual energy is also low. When the excess power is destroyed partially (e.g. by blade-pitch control),
in order to continue the energy production at wind velocities above the design speed, the corresponding
power loss is even smaller than the shaded area at the right-hand side of Fig. 2.2.

The arguments for accepting a reduced annual energy production in order to reduce the design power
(costs) ae demonstrated more clearly in Fig. 2.3.

When a power coefficient

C= P =0.4
PU3S ref

is assumed at wind velocities below the design speed, and a constant power above the design speed, it is
possible to calculate the annual energy production, using t;ic wind statistics of Ref. 2.6 as an example.

Fig. 2.3 shows, that the annual energy production increases very slowly at design speeds above say
15 m/s. Also shown in Fig. 2.3 is the ratio of the design power to the avcraqe annual power, which is a
kind of "costs benefit"-ratio. The figure reveals a rapid increase of this ratio with design speed, which
emphasizes the choice of a lower design speed.

2.3.2 Turbine characteristics

The useable amount of wind energy is further restricted by some characteristics of the wind turbine,
viz. the performance characteristics and the effect of the operating mode (control).

One aspect pertaining to the performance characteristics of the wind turbine in connection with the
u,,eable amount of energy, is the possibility to convert also the energy from the turbulent component of
the wind into mechanical energy. As mentioned in Sect. 2.2.1, this turbulent energy could possibly amount
up to 12 percent of the energy, calculated from half-hourly or hourly mean values.

The possibility to convert turbulent energy with a win,! turbine depends on the scale of the turb;ne
with respect to the "scale" of the atmospheric ttrbulenr.. A very small turbine reacLs on almost every
fluctuation, but a large wind turbine only reacts o., low-frequency (large-scale) fluctuation. high-
frequency (small-scale) fluctuations are "integrated" along the rotor blade span and possibly contribute
nothing to (or even deteriorate) the driving force on the rotor blade, in the same way as there is no
turbulence signal from a very long hot-wire. In Sect. 5 these effects will be discussed in more detail.

It is still questionable whether the development of a special large-scale quick-responding turbine
is feasible, because the whole Wind Energy Conversion System (WECS) has to be attuned to it, and the
extra amount of energy obtained is not very large.

In this context, it is perhaps worthwhile to mention the difference between Horizontal-Axis (HA) and
Vertical-Axis (VA) turbines. The HA turbine has to be set into the wind direction to operate at maximum
efficiency, whereas the VA turbine operates independently of the wind direction. Because a large HA
turbine can only be yawed slowly, it is impossible to follow quick variations in wind direction, which
possibly results in a reduction in energy production.

Betz (Ref. 2.9) showed long ago, that any wind turbine cannot extract more than a certain amount of
energy from a given (steady) wind energy flux (see also Section 3.2.1), viz.:

Cideal ideal =1-; 0.59 (2.3.2)
i pU3Sref

with

FrI
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Pideal = theoretical maximum power of turbine (W)

IpU3  = wind energy flux (W/m2 )

0 = air density (kg/m
3)

U = steady or average wind velocity (m/s)
Sref  = area perpendicular to the wind stream, swept by the rotor of the turbine (m2).

The actual power coefficients of existing wind turbines are still lower than the ideal power :2fficient
given by Betz, because of rotation (vortices) left in the wake behind the rotor and because of viscous
losses (profile drag). These aerodynamic losses depend on the type of wind turbine considered and will be
discussed extensively in Sect. 4. Suggestions to increase the poter coefficient above this Betz limit by
so-called "wind concentrators", will be discussed in Sect. 3.

The variation of the power coefficient Cp with the operating conditions of a given turbine also plays
an important role. The performance characteristics of a wind turbine are described by the variation of the
power coefficient Cp and the torque coefficient CQ with the tip-speed ratio X. These quantities are
defined as follows:

X SIR o/U ,(2.3.3)

with Q = angular velocity of the rotor (rad/s)
R = maximum radius of the rotor (m);

P (2.3.4)C pU3S
p3re f

C (2-3,5)

Q jpU 2S refRo 

(with P = aerodynamically generated power (W)
Q = aerodynamic torque (Nm).

Because of the relation between power and torque

P = f Q I

there is a relation between the power and torque coefficients, viz.:

C = X CQ (2.3.6)

Therefore, when the CP-vs-X curve is given, CQ-vs-X can easily be calculated by Eq. (2.3.6).

Figure 2.4 gives examples of the characteristics of HA and VA turbines, which, however, are perhaps
not fully representative of a modern design. An important parameter that determines the X-range in which
the turbine operates is the so-called solidity ratio, i.e. the rato of the total rotor blade area to the
area swept by the rotor blades.

In case of the VA turbines one also often applies a solidity ratio defined by:

o = B c/Ro  , (2.3.7)

with B = number of blades of the rotor H,
c = chord oy the rotor blade (i).

The general definition of the solidity ratio is

5

= B/Sref 0 c ds , (2.3.8)
0

with ds blade-element length, measured along the span (m);
s = total blade length, measured along the span (m).

For a constant Cp, a high solidity ratio means a low X (Fig. 2.4) and, because of Eq. (2.3.6), a relatively
high C Sometimes a high torque is wanted at a relatively low angular velocity (e.g. when a water pump is
to be Sriven). In such a case, a multi-bladed HA turbine (so-called American windmill) or a Savonius
trbine (VA turbine, a 2) can be applied. Both types are also "self-starting", i.e. they start rotating
from standstill at a sufficiently high wind velocity.

A low solidity ratio means a high X and a relatively low CQ. In most WECS designs, the low-solidity
turbines are preferred because of the higher angular velocity and the lower torque, which reduces the
costs of the gear-box.

The VA Darrieus turbines are only weakly self-starting, with the torque being slightly positive for
most parked positions. Usually, they have to be started by using the generator as a driving electric motor
or by combining them with a Savonius rotor (see Ref. 2.7).

A low-a HA turbine shows a rather flat-topped Cp-vs-X curve. Therefore, the turbine can be operated
at almost constant Cp over a rather large range of X. This range of X at almost constant Cp can even be
incr.ased by giving the blades a pitch control, i.e. by changing the bOade setting angle during operation.

The Darrieus turbines show a much stronger variation of Cp with X. hoQever, the effect of the turbine
characteristics on the annual energy production also depends on the operating modc, together with the wind
statistics (Fig. 2.2). The choice of the operating mode of the turbine, viz. ope,?ting at X = constant or

= constant, has important consequences, which will be discussed below. Little is tcmnd in the literature
about matching the torque vs angular velocity curves of turbine and generator. This wili, therefore, not
be included in the discussion below.

X = constant
It is clear from the outset, that a maximum amount of energy is extracted from the wind at every wind

velocity, when the turbine always operates at the value of the tip-speed ratio A corresponding with the

I



optimum power coefficient. In that case the angular velocity of the turbine sl is proportional to the wind
velocity U, the torque Q is proportional to U2 , and the power P is proportional to U3 . When the case of
converting mechanical power P of the turbine into electrrc power is considered, it is often suggested to
operate the generator at constant RPM, which requires much from the gear-box (variable gear-ratio).

= constant
When the turbine operate at constant angular velocity, X varies proportional to I/U and the gener-

ated oower P and torque Q depend on the Cp-vs-X curve, which is determined by the type of wind turbine
considered.
Figure 2.5 shows idealized Cp-vs-X curves for a HA and a VA turbine, together with corresponding Cp-vs-U
curves for Q = constant.

A careful choice of sl in case of a HA turbine results in a large range of wind velocities with an
almost constant Cp equal to the optimum of Cp. The decrease of Cp at high and low U does not affect the
annual energy production appreciably (cf. Sect. 2.3.1 and Fig. 2.2). It is also clear from Fig. 2.5, that
special aerodynamic means are necessary to limit the power at high wind velocities to the design power
(pitch control or spoilers for a HA turbine).

LAt sl = constant the Darrieus (VA) turbine shows some favourable features. The choice of s determines
automatically the cut-in speed by Cp = 0 at high X. Even more important is the decrease of Cp at high wind
velocities (low X), at which the generated power (proportional to CpU 3) shows a maximum, i.e. the design
power can be fixed by chosing a proper value of il. When the Darrieus turbine is optimized by selecting a
value for 9 and a value for the solidity ratio a, also using e given wind velocity probability distribu-
tion, the annual energy production will be found to be not much lower than the same turbine operating at
X = constant and at the same design power. The loss in annual energy production has to be balanced against
a reduction in costs by using a simpler (less expensive) gear-box (see also the discussion in Ref. 2.10).

2.4 Structural aspects

2.4.1 Shape of the rotor blade

The large-scale wind turbine tends to be of a low-solidity type (higher angular velocity, lower
torque) with relatively slender blades (small chord with respect to blade span). The bending stiffness of
the blade is limited because the thickr.-ss-chord ratio of the profile has to be small (profile drag). To
alleviate the bending stresses in the blade, special blade shapes have been developed. A typical example
is the Darrieus turbine, where the bending stresses due to centrifugal forces have been avoided entirely
(see also Appendix D).

From an aerodynamic point of view, a vertical-axis turbine with straight blades is advantageous,
because the full span of the blade is aerodynamically active in generating power, whereas the extreme
parts of the curved blades of a Darrieus turbine are aerodynamically less active. On the other hand, the
Darrieus turbine has a structural advantage (shown in Fig. 2.6) when it is compared with the straight-
bladed vertical-axis turbine. In addition, the Darrieus turbine can operate at substantially higher cir-
curmferential velocities than the straight-bladed vertical-axis turbine at an equal stress level, which is
advantageous in view of the lower torque and lower gear-ratio of the gear-box.

The rather simple estimate of the stress in the blades of a Darrieus turbine due to centrifugal
forces is possible when a constant chord and mass distribution along the span is assumed, because the
blade mass is proportional to the material cross-section of the blade, which cross-section is also used to
calculate the stress and, therefore, drops out of the formula. For the calculation of the bending stress
in a straight-bladed vertical-axis turbine, however, a t/c-value has to be assumed and the radius of
gyration of the section is chosen equal to It (Appendix 0).

Figure 2.6 shows the large influence of the blade support on ob for a straight-bladed vertical-axis
turbine, but even the multiple-supported blade is inferior to the curved Darrieus rotor blades. Details
about the so-called "troposkien" blade shape of the Darrieus turbine can be found in the Refs 2.11 and
2.12 (the name troposkien was coined by Blackwell and Reis as a greek transliteration of "skipping rope",
i.e. "tropos" = turn and "schoinion" = rope).

The centrifugal acceleration exerts pure tensile forces in the blades of a horizontal-axis turbine.
The tensile stress is a function of the tp speed (XU) and the taper ratio of the blades, when a mass per
unit length is assumed that is proportional to chord times thickness (t c). Results of such an estimation
are shown in Fig. 2.7 (for details see App. 0). Comparison between the Figs 2.6 and 2.7 reveals that the
horizontal-axis turbine can withstand even higher tip speeds than a Darrieus turbine at an equal stress
level.

The shape of the aerodynamic load distribution on a curved-bladed vertical-axis turbine differs
slightly from the shape of.the centrifugal load distribution. Therefore, small bending moments may remain
in a troposkien-shaped rotor blade. It should be possible to modify the troposkien in such a way, that the
bending moments due to a given aerodynamic loading would be exactly zero, but this has little practical
significance.

In the case of a horizontal-axis turbine, the blade shape can be chosen in such a way that the nend-
ing moments due to the combined action of centrifugal and aerodynamic load are exactly zero. This can only
be realized, however, at one value of X = QR0/U.

Figure 2.8 shows an estimation of the required shape of the blade, i.e. such a shape that the result-
ant of the centrifugal and the aerodynamic load is always parallel to the blade span. The aerodynamic load
is estimated for an optimum turbine according to the theory of Glauert (Ref. 2.13), neglecting tip losses.
Therefore, the displacement (x/Ro ) at the tip is slightly over-estimated. The data of Fig. 2.8 apply to
a rather heavy rotor-blade construction; light-weight constructions are not considered here, because such
constructions lead to large displacements and thus to unrealistic blade shapes (for details see App. D).
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So far, the influence of gravity was neglected in the discussion of the blade shape. It can be shown,
that the influence of gravity on a troposkien depends on the ratio of centrigugal acceleration to the
acceleration of gravity, thus 02R0 /g. Oarrieus turbines of similar shapes but different sizes operate at
equal tip speed ratios X = 11R0/U. The above-mentioned ratio can, therefore, be written as X2U2 /gRo. This
ratio decreases with increasing size of the turbine, which suggests that the weight of the rotor blades
may not be neglected when a large-scale Darrieus turbine is considered. The ratio of the maximum tensile
force ir the rotor blade due to the centrifugal load and the weight of the rotor blade is a good indicator
whether gravity can be neglected. This ratio is shown in Fig. 2.9.

In case of a large-scale Darrieus turbine, the weight will cause bending moments in the blade. It is
possible to modify the troposkien in such a way, that bending moments due to weight are avoided too. This
is, however, only possible at one chosen value of 1Ro/g, i.e. only when the turbine operates at
= constant.

The influence of the weight on the blade loading of a horizontal-axis turbine is somewhat more com-
plicated. The load varies during a revolution of the rotor and can, therefore, not be compensated by a
modif;cation of the shape of the rotor blade.
The variation in tensile force depends on the ratio between maximum centrifugal force and weight of the
blade. For a blade with taper ratio 0.5, this amounts to

centrifugal force
weight 0 0

which differs from the values given in Fig. 2.9 for the Darrieus vertical-axis turbine by not more than a
factor 0.6.

When the blade of a horizontal-axis turbine is in a horizontal position, the bending moments due to
the weight will be maximal. Because of the blade twist, there will be a component of the bending-moment
vector parallel to the blade chord at the blade root. The blade thickness is always smaller than the
chord, and the bending stresses due to weight at the blade root may, therefore, become significant.

From the preceding discussion, it can be concluded that a careful consideration of the shape of the
rotor blade is helpful in alleviating blade stresses.

In case of a vertical-axis turbine, bending moments due to centrifugal forces can be avoided by
applying a troposkien blade shape. Under operation at Q = constant, the bending moments due to weight can
also be avoided by modifying the troposkien. Bending moments due to the aerodynamic load cannot be avoided
completely, but are of little practical significance.

In case of a horizontal-axis turbine, centrifugal forces only induce tensile stresses. When the
turbine operates at A = constant, the rotor blade can be bended in such a way, that bending moments due to
the aerodynamic load are avoided. Variation in tensile and bending stresses due to weight cannot be alle-
viated by changing the shape of the rotor blade.

2.4.2 Aerodynamic loads on a wind turbine

In the preceding Section, the aerodynamic load on a rotor blade was already mentioned. That load was
thought to be due to a steady homogeneous wind stream. An actual wind turbine is immersed, however, in a
highly turbulent wind stream with a more or less steady vertical wind gradient or wind shear.

A detailed discussion of the aerodynamics of rotors will be given in Section 4, whereas the influence
of wind shear and turbulence will be discussed in Section 5.

It seems adequate to point out here the importance of the scale of the wind turbine with respect to
the "scale" of the turbulence of the atmospheric boundary layer. A small-diametei turbine (say, 1 m),
r~sponds to more or less rapid variations of wind velocity and wind direction, whereas a large diameter
turbine (say 50 m) responds only to relatively slow variations in win velocity and direction and does not
respond to rapid variations, because they act only on a part of the whole rotor. The quintessence of this
'emark is the change in character of the fluctuating aerodynamic load due to turbulence with the scale of
the wind turbine.
Also important to notice is the different behaviour of a VA and a HA turbine in wind shear and turbulence.

A wind shear induces a stationary load distribution along the span of the blade in case of a VA
turbine, but in case of a HA turbine, a wind shear induces aerodynamic load variations during a revolution.
With other words, wind shear contributes to the fatigue load in the case of a HA turbine.
Variations in wind direction that are slow with respect to the time needed for one revolution of the rotor
do not affect a VA turbine, whereas such variations lead to fluctuating aerodynamic loads in case of a HA
turbine, because it cannot be yawed fast enough to follow the variations in wind direction. The faster
variations in wind velocity and direction contribute to the aerodynamic fatigue load for both the HA and
the VA turbine.

Another important fluctuating load source stems from the aerodynamic blade-tower interference, i.e. a
load variation due to moving the rotor blade through the wake of the tower. Such an interference is always
present in case of a VA turbine, but the interference is relatively mild, because the effective part of
the rotor blade is at a relatively large distance from the tower. In case of a HA turbine, such an inter-
ference is only present with a rotor downstream of the tower. The interference is strong in that case,
because of the short distance between blade and tower.

A significant static load case is the stopped rotor during a heavy storm. In such a case, the pre-
stressing action of the centrifugal forces disappears and the bending moments increase strongly.

Templin and South (Ref. 2.14) discuss the blade buckling in case of a Darrieus wind turbine. I. case
of a HA turbine, it is often proposed to feather the blades in case of a heavy storm.

anas and Sullivan (Ref. 2.10) discuss the favourable fedLure of operating a Darrieus VA turbine at
= constant, because of the decrease of the torque above a errtain wind velocity (by blade stall), which

does not necessitate the stopping uf the turbine at a heavy storm. The pre-stressing effect of the centri-
fugal forces diminishes the danger of blade buckling in that case.

L_ 
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Since the rotor blades are connected to the tower in one way or another, the aerodynamic loads on the
blades are transferred to the tower. In case of a HA turbine in a steady wind, this results in a constant
force downstream, the so-called "rotor drag" force. A VA turbine in a steady wind also experiences this
rotor drag in a time-average sense, but the instantaneous force varies during a revolution in case of a
one- or two-bladed rotor. In case of a three- or more-bladed rotor, the rotor drag is almost time-
independent.

When we sum up this Section, it can be stated that a wind turbine is subject to varying loads, which
determine the fatigue lifetime of the structure, especially that of the rotor blades.

Turbulence of the atmospheric boundary layer contributes to the fatigue load in case of both the VA
and the HA turbine. An additional fatigue load comes from the periooic lift variation during a revolution
in case of a VA turbine, but also a HA turbine shows additional fatigue loads due to wind shear, due to
the fact that it is not properly aligned with the wind direction, and due to blade-tower interference in
case of a downstream-placed rotor.

Notice, that the gravity forces cause fluctuating blade forces :n case of a HA turbine also (cf.
Sect. 2.4.1).

2.4.3 Aeroelastic effects

In the preceding Sections, external loads and their relation with the turbine configuration have been
mentioned. The severity of the loads can only be. judged by calculating the stresses induced in the struc-
ture by these loads.

From the more or iess steady external loads, the stresses in the structure can be estimated in a
rather straightforward way, although in case of a statically indeterminate structure, it might be neces-
sary to apply a finite-element computation metho-d.

The estimation of fluctuating stresses due to fluctuating external loads is often less straightfor-
ward. Only in the case of low-frequency fluctuations, a quasi-steady calculatioo of the stresses might
make sense, but if frequencies occur approaching some of the eigea, requencies of the structure, this might
lead to strong discrepancies. This means, that the wind turbine has to be considered as an elastomechanic
structure and that the various responses to fluctuating loads have to be calculated. When these calcula-
tions have to be preferred, the specialized field of vibrations and aeroelasticity is entered.

It is obvious that a H turbine and a helicopter rotor have much in common, and the experience from
helicopter industry should be valuable. There are, however, differences which make that these results are
not directly applicable to a wind turbine, and that the aeroelastic modeling of a wind turbine has to be
formulated from the basis, as is discussed in Ref. 2.15.
The VA turbine reveals some characteristics differing from the HA turbine, which necessitate an alterna-
tive formulation (see e.g. the discussion in Ref. 2.16). The flutter boundary for a VA turbine, using a
blade flutter and a mass parameter, has been discussed in Ref. 2.14.

In general terms, the aeroelastic modeling of a wind turbine starts with setting up the equations of
motion of the rotating elastomechanic structure.
Solving these equations of motion is largely facilitated by chosing such a co-ordinate system, that the
coefficients of the differential equation are time-independent. In that case, the solution procedure boils
down to a system of linear eigenvalue equations, from which the stability of the system can be studied
more easily. Some remarks have to be made on the choice of the co-ordinate system, in order to obtain
time-independent coefficients in the dif4.rential equation.

A rotating three- or more-bladed rotor described in a co-ordinate system fixed to "earth" reveals a
kind of polar symmetry, which leads to tima-independent coefficients. This is no longer true for a one- or
two-bladed rotor. In that case, the co-ordinate system has to be fixed to the rotor instead of to earth.
It is here that an important difference appears between VA and HA turbines. A one- or two-bladed turbine
with a co-ordinate system fixed to the rotor describes the "tower" or "base" - a structure rotating in
the co-ordinate system, and time-independent coefficients can only be obtained when the tower or base has
a polar symmetry with respect to the "rotor-fixed" co-ordinate system. Such a polar symmetry can only be
expected with a VA turbine, not with a HA turbine. With a view to the cost-effectiveness, there is a pref-
erence for a two-biaded HA turbine, which leads to differential uquations with time-dependent coefficients
and a correspondingly increased computational labor to solve these equations (Ref. 2.15).

When only inertial forces are considered, the stability calculations reveal the dynamic stability of
the wind turbine (e.g. the existence of a "critical" RPM).

When so-called "self-induced" aerodynamic forces are included, i.e. aerodynamic forces due to vibra-
tory motions, importart flutter cases can be disclosed. Because of the rotation of the rotor, even in
still air a high velocity relative to the rotor blade exists and small angle-of-attack variations due to
the vibratory motion induce appreciable aerodynamic force variations. This explains why the flutter bound-
aries of Ref. 2.14 are almost independent of the wind velocity.

The aerodynamic forces due t3 a steady wind velocity are almost constant for a HA rotor and period-
ically varying for a VA rotor. These aerodynamic forces might induce flutter in case of a VA turbine, but
such a behaviour has not been reported at present.

The calculation of the response of the elastomechanic structure to fluctuating external loadst such
as blade-tower interference, turbulence (gusts), non-harmonic aerodynamic forces due to the wind, and
weight (HA turbine), is more complicated thin a stability calculation and it is necessary to obtain re-
I;able estimations of the fatigue loading. The main problem is the estimation of the external load fluc-
tuations (Sect. 2.4.2).

Rather simple considerations can lead to the advice to design the rotor blade cross-section in such a
way, that elastic axis, centre of gravity and aerodynamic centre almost coincide, in order to decouple
bending and torsion modes of the rotor blade (Ref. 2.10). In Ref. 2.17, however, only a minor effect of
blade cross-section mass balancing on the presence of instabilities is mentioned. It is not clear whether

wo,
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such a conclusion is also valid for a HA turbine.
In reference 2.14 it is stated that sufficient bending and torsional stiffness of the curved rotor

blade of a Darrieus turbine is necessary to avoid instabilities, togethet with sufficient torsional stiff-
ness of the tower.
Sufficient bending stiffness seems sometimes only obtainable by bracing the blades to the tower with
struts. The bending stiffness of the tower is increased by guy-wires. In reference 2.17 information is
given about the static and dynamic behaviour of guyed masts, together with a reference to the literature.

A two-bladed VA turbine shows a large variation of the torque during a revolution of the rotor,
similar to the variation of the rotor drag mentioned in Sect. 2.4.2. In reference 2.14, however, it is
stated that this torque "ripple" is larguly attenuated by the elasticity of the rotor and the slip charac-
teristics of the induction-type generator, which lead to a tolerable output voltage ripple. The study of
the transfer function between the aerodynamic torque (input) and the generator voltage (output) seems,
therefore, an interesting subject.

In the case of a HA turbine, a flexible blade hinge is effective in reducing fluctuating blade stress
levels (see e.g. Ref. 2.18; hingeless, teetering, coning, gimbaled, or fully articulated). The minimum
clearance between bladc and tower depends on the coning angle and the dynamic response of the blade on
sudden gusts (bending). This clearance is a larger problem in case of a rotor upstream of the tower, but
might be reduced by tilting the rotor (Fig. 2.10).

The downstream rotor has the disadvantage of the fatigue load due to blade-tower interference, wnereas
the tilted rotor shows the disadvantage of fluctuating loads due to the fact that it is not aligned with
the wind direction. A tilted rotor might, however, alleviate the fluctuating loads due to wind shear (ver-
tical wind gradient). Sufficient blade-tower cleaiance in case of 3n upstream rotor is also obtained by
using a swept-forward tower, with the additional advantage of lower bending moments in th-. tower (Fig. 15
of Ref. 2.19), but the disadvantage of yawing a large part of the tower, together with the rotor into the
wind direction.

The problem of calculating the aeroelastic response of a wind turbine to external load variations, in
order to estimate fluctuating stress levels (fatigue), is related to the problem of the dynamic response
of the whole wind energy conversion system to "gusts". Such a dynamic response can, for instance, be used
to estimate fluctuations in electric output (voltage ripple).

Reference 2.20 suggests the use of aeroelastic effects of the rotor blades in the conversion of the
energy contained in gusts by a quick aeroelastic response, instead of using a slower mechanical pitch-
regulating device.

An intercstinq problem is the question whether aeroelastic problems increase with increasing scale of
the wind turbine. In case of geometrically similar wind turbines, the reduced (dimensionless) eigenfre-
quencies of the structure dre almost independent of scale, which is also the case with the stresses due to
aerodynamic and centrifugal forces (Refs 2.14 and 2.18). This seems to indicate that aeroelastic instabil-
ities dre almost independent of scale, but the assumption of a eometrically similar structure is probably
not valid when the size of the turbine increases drastically.

Such a change ii the structure might be due to the inc-ease of stresses with an increase of the scale
of the turbine, caused by gravity (Ref. 2.18, see also Sect. 2.4.1). The change in the stress levels,
caused by a change of ,he ratio between the rotor diameter and the "scale" of the atmospheric turbui,ice
(cf. Sect. 2.4.2), might also give rise to different structural designs for large-scale turbines.

Moreo'er, from cost-effectiveness considerations, the tower and blade structure of a small-scale wind
turbine is relatively rigid, because it becomes expensive to develop a special light-weight structure at a
small scale On the other hand, such a development becomes a must at large scale, and the relative stiff-
ness of the structure will bi correspondingly reduced.

2.5 Conversion, storage and distribution to the consumer

The kind of conversion chosen for the wind energy conversion system has a strong influence on the
choice of the type of wind turbine and gear-box (speed increaser). The direct use of the mechanical energy
of the wind turbine can be envisaged in small-scale rural applicdiions, such as pumping water for irriga-
tion. For that purpose often a low-) type of wind turbine is chosen (large torque, low RPM); the RPM
regulation is then of minor importance.

Using the mechanical eneryy for driving machinery, as in ancient times, does not seem feasible any
more.

Conversion of the mechanical energy into a lower-graded kind of energy, e.g. heat, seems feasible
when the distance between turbine and consumer is not too large, but even in that case it is often pro-

posed to produce electricity as an intermediate step. Also electrolysis is proposed to produce hydrogL.
gas, but, as a matter of fact, almost every proposal today is directed towards the production of electric-
ity.
Conversion of the mechanical energy into electric energy, which has to be fed directly into the public
utility network, puts a high demand on the output frequency and voltage, and it is often suggested that an
almost constant generator RPM facilitates this task appreciably. This implies using a gear-box with a var-
iable gear-ratio or operating the wind turbine at constant RPM. Reference 2.21 gives an appealing but not
searching review of possible applications.

Considerations about pros and cons of DC or AC conversion are too specialized to be mentioned here.
Some related information is given in the Refs 2.22 through 2.28.

A disadvantage of wind energy is the variance between supply and demand. Energy storage seems a log-
ical answer to this problem, but the feasibility of storing a large amount of energy is still questionable,
apart from some special applications.

Storage of electric energy in batteries is only feasible in small- to medium-scale applications, and
the high costs of a battery bark are only acceptable when no alternative energy sources are available



(e.g. in remote areas).
En,.rgy storage by electrJlysis of water and recuperation in a fuel cell or by mixing the hydrogen gas

with natural gas, is sometimes proposed (Refs 2.29 through 2.31).
Storage of pumped water depends on local conditions: see e.g. Ref. 2.32, where it is reported that

water is pt-mred out of a cavity in a salt layer and the energy is recuperated by dumping the water into
the cavity via a hydro.curbine.

Storage by compressed air is proposed in Ref. 2 33, whereas energy storage in flywheels is also
studied (e.g. Ref. 2.34). Energy storage in heated water is a possibility in case of space heating (Ref.
2.21).

It is cha-octeristic for the change in attitude towards energy storage, however, that six papers
dealing with energy storage were presented at the First Workshop on Wind Energy Conversion Systems in the
USA in 1973, whereas only one paper was presented at the Second Workshop in 1975.

The distribution of the energy to the consumer is no direct problem when the wind turbine and con-
sumer are nearby, as is mostly the case in small-5cale applications. For large-scale applications with an
extensive array of wind turbines, the energy production can be so large, that the energy has to be trans-
ported over hundred ki~ometers or more.

The distribution of energy from an array of wind turbines to a number of dispersed consumers is made
possible by converting the energy into electricity or hydrogen gas. To by-pass the high costs of a distri-
bution network of power-lines or pipe-lines, it it, frequcntly proposed to use existing public utility
networks.

In case of electricity, because storage is difficult in large-scale applications, the electric power
has to be fed directly into the public utility network (standard voltage and frequency). To overcome
losses at larger transport distances, the output voltage has to be transformed into higher values before
putting it on the power line.

In existing networks and power stations, special measures have to be taken to balance demand and
supply. Because of the fluctuating supply in case of wind power, these measures become more complicated.
In reference 2.35 it is suggested to couple several arrays of wind turbines across a whole country in
order to smoothen out the fluctuations in wind power supply. When wind energy delivers only a fraction of
the total electric power in the network, the circulating energy fluxes in the coupled networks remain
small and are perhaps acceptable.

Studies about these operational problems are progressing in several countries today, but results have
not yet appeared in the open literature.

2.6 Cost analyses

When the wind statistics of a country, or a part of it, look promising, when the industrial capabil-
ity is sufficiently developed to design and construct a wind energy conversion system, and when there is a
market for wind-generated power by selecting a suitable conversion, storage and distribution system, a
very difficult question remains to be answered, viz. what is the price of wind energy in that particular
case.

It is certainly true that the wind energy price (e.g. US dollar cents/kWh) is not an absolute cri-
terion for the feasibility. In remote and isolated regions, the prices for the traditional forms of
energy are much higher, and a wind energy price that was too high for a densely populated and industrial-
ized region might be acceptable there (Refs 2.36 and 2.37). Moreover, when diversification of energy
sources is considered in order to become less dependent upon fossil fuel imports in the long run, it might
be a policy to accept a relatively high price For wind energy. The feasibility of wind energy with respect
to the wind energy price is also intimately connected with the future development of the price of fossil
fuels.

It takes an expert to judge the results of several cost analyses appearing in the literature. A direct
comparison is often difficult, due to various assumptions about inflation and interest rates and about
that part of the system that had to be included into the cost calculation (R&D costs, costs of adaptation
to public utility network, etc.). Furthermore, a comparison of the calculated wind energy prices is hin-
dered by differences in the assumed amount of wind energy (wind climate) and other external factors. In
order to compare the cost effectiveness of different wind energy conversion systems, it has been suggested
to formulate standard data as a basis for such a comparative cost analysis.

A breakdown of the costs of a wind energy conversion system is interesting, because it signalizes
that part of the systm, that looks most promising for R&D in low-cost design. In case of the Putnam 1500
kW horizontal-axis wind turbine, the rotor accounted for almost 43 % of the total cost (Ref. 2.38). In
reference 2.39 a cost br'akdown is given for a 4 kW vertical-axis wind turbine and in reference 2.40 for a
1000 kW horizontal-axis turbine. Both breakdowns, though not fully comparible, are shown below.

Ref. 2.39 Ref. 2.40 Z
rotor 26 % rotor 28 %

bearings 11 % pintle + drive 9 %
tower 23 % tower 18 %
gear-box, generator, etc. 40 % electric system 14 %

controls system 2 %
installation 4 %
site + support fac. 4

Table 2.4: Cost breakdown of a small-sca!e VA (Ref. 2.39)
and a large-scale HA (Ref. 2.40) wind turbine.

Modern blade-manuacturing concepts seem to have reduced the rotor costb already from 43 % to 28 %.
It must be mentioned in this context, that in Ref. 2.39 the conclusion is drawn that above 20 kW a verti-
cal-axis turbine becomes less economic than a horizontal-axis turbine.

I
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In figure 2.11 a num!er of energy cost estimates found in the literature is compared. There is indeed
a tendency that large vertical-axis turbines become less economic than ldrge horizontal-axis turbines. The
variance between the several estimations is, however, large.

According to Ref. 2.32, a storage system almost doubles the price of the WECS. Whether the availabil-
ity of a more regular flow of energy is worth such an extra investment is difficult to assess.

2.7 Environmental effects

When the technological and economi;'l problems are solved, some problems remain in the area of envi-
ronmental effects and public acceptance.
Although wind energy (and also solar energy) is a non-polluting kind of energy production in a strict
sense, there are phenomena that might be unacceptable in some situations, e.g.:
- Visual pollution, i.e. a large array of wind turbines might be harmful to an attractive landscape.
- Interference with FM radio and TV transmission due to large rotating metal rotor blades. When fibre
glass and epoxy are used as constructing materials, these problems might be overcome.

- Interference with bird migration routes, which might cause an unacceptable high rate of bird collisions.
- Deterioration of the climate due to a reduction of the~wind velocities. A variation in the weather

system dua to an increased "surface roughness" caused bi large arrays of wind turbines seems improbable,
but an influence on the "micro" climate might be possible.

- Land use. Oue to the necessary spacing of the turbines, and due to the safeguarding and access roads, a
substantial area will be needed for a wind turbine array.

The above-metioned situations may differ from country to country. In a densel] populated country as
The Netherlands, visual pollution and iand use mean strong limitations to the pos.ible use of wind power
(Ref. 2.41), whereas these factors migit be less restrictive in other countries with large uninhabited
areas.
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3 WIND CONCENTRATORS

List of symbols

A = Se/Sref = diffuser area ratio (-)

B number of blades (-)

B = I - nd(l - A 2 ) = diffuser factor (-)

b span of tip vane (m)
c chord of rotor blade (m)

CD D/1p2Sref " rotor drag coefficient (-)

Cd drag coefficient of aerofoil section (-)

CD  = D axial/PU2 Sref = axial force coefficient -)
Daxiai xa e

CD = Ds/j0U 2 S ref = axial force coefficient on shroud (-)
s

CL  lift coefficient of a three-dimensional wing (-)

CI lift coefficient of an aerofoil section -)

CP = P/ pU3Sref = power coefficient (-)

C = (po-Pe)/ iU2 = pressure coefficient at diffuser exit (-)
pe

CP ideal = P ideal/pU 3Sre f = 16/27 = theoretical maximum power coefficient according to Betz C-)

cs  chord length of shroud (m)

cv chord length of tip vane (m)

D drag force (N)
O axl axial force (N)

Di  induced drag force of three-dimensional wing (N)

Dr  rotor drag or rotor axial force (N)

0 s axial force on shroud (N)

k = (pl-P 2)/jpU2 = screen resistance factor C-)

P power (W)
Pideal theoretical maximum power according to Betz (W)

Pe static pressure at diffuser exit (N/m
2 )

Po undisturbed or free-stream static pressure (N/m
2 )

Pl static pressure in front of actuator disk (N/m
2 )

P2 static pressure behind actuator disk (N/M
2)

Pt free-stream total pressure (N/m
2 )

0
pt total pressure behind actuator disk (N/m

2)

Ap = pl-P 2 = pressure drop over actuator disk (N/m
2)

r local radius of rotor blade (m)
R radius of shroud (m)
Ro  maximum radius or tip radius of rotor (m)

S exit area of diffuser (m
2)

e

Sre f  reference area of the turbine; area swept by the rotor blades (m2 )

U wind velocity (m/s)

a = U + D = sum of wind velocity and average self-induced velocity inside shroud (m/s)
a average induced velocity inside shroud (m/s)
Ue velocity in exit area of diffuser (m/s)

Ur velocity through actuator disk (m/s)

v induced velocity component in y-direction (m/s)
w induced velocity component in z-direction (n,/s)
r circulation (m2/s)
rb circulation around rotor blade; bound circulation (m

2/s)

rs  circulation around shroud or annular wing (m
2 /s)

r v  circulation around tip vane (m
2/s)

Yb vortex sheet strength at wake boundary (m/s)

"be ditto far downstream (m/s)

vortex sheet strength at shroud (m/s)

X = 0R /U = tip speed ratio C-)

d  P (po-P2)/[p(U2 - U2)] = diffuser efficiency (-)

d 0 r
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0 density of air (kg/m
3)

0 - (B/Sref) f c dr = solidity ratio of turbine (-)
0

angle of wake divergence (degrees)
tilt angle of tip vane (degrees)
angular velocity of the rotor (radians/s)



3.1 Introduction

It was recognized by Betz, as early as 1926 (Ref. 3.1), that there was a theoretical upper limit to
the amount of energy that can be extracted from the wind energy flux which is available to a wind turbine
of given dimensions.

His simple theory was amended by taking into account the influence of rotation left behind in the
wake of the wind turbine (e.g. Glauert in Ref. 3.2), but this reduced the attainable amount of wind energy
even further, not to mention the inevitable friction losses (profile drag).

Also due to the low energy density of the wind (Sect. 2.2.3), wind turbines of very large diameters
have to be applied to produce a significant amount of energy. In order to get around this limitation, a
number of devices have been proposed, with the purpose to concentrate the windstream to a smaller area
(increased mass flow). The increased energy cutput for a given diameter has then to be weighed against the
cost increase due to the added structural elements.

The purpose of this Chapter is to discuss the various concepts of increasing the power output. It
appeared from Sect. 2.6 that :t reliable cost analysis is very difficult. Therefore, the cost-effectiveness
of a wind concentrator will not be discussed, but the possible adverse effects of the additional costs on
the feasibility of a wind concentrator concept has to be kept firmly in mi,,d.

Because of the vital place of the Betz limit in this discussion, his formula will be deduced in full
detail. It must be noticed that the Betz limit applies to horizontal-axis as well as to vertical-axis wind
turbines. Most of the wind concentrator concepts are, however, proposed for horizontal-axis turbines.

From the discussion of the Betz limit it follows that the power output of a wind turbine with a given
diameter may exceed this limit, when it would be possible to increase the mass flow through the turbine.
An increased mass flow can only be realized by a further reduction of the pressure in front of the turbine
and a consequently increased pressure recovery towards the free-stream pressure behind the turbine. By a
number of investigators it was found that the application of a diffuser behind the wind turbine should
have the desired result (Refs 3.3 through 3.8).

The original ideas were concentrated on the conventional diffuser, but it was realized that, in order
to limit the size of such a device, an annular wing or "shroud" could operate more efficiently, especially
as regards he costs of the structure. In this respect it has to be noticed that a diffuser-type augmentor
has to be put into the wind direction, though a "bell-mouth" intake in front of the turbine alleviates
this restriction substantially (Refs 3.3 and 3.7).

The diffuser augmentor could be used in combination with a vertical-axis turbine, but, in that case,
the wind-direction independence of the vertical-axis turbine is lost and the additional advantages of a
shrouded horizontal-axis turbine, such as a reduction of tip losses, cannot be obtained.

The tip-vane concept appeared already some years ago (Refs 3.9 and 3.10), but was first published in
the open literature in 1976 (Ref. 3.11).

It seems premature to formulate an opinion about the feasibility of the tip-vone concept because a
joint Netherlands-USA research program on the subject (Delft Univ. of Techn. and the Aero Vironment Inc.)
has been started in the end of 1976. Therefore, only the basic idea will be discussed in this Chapter. For
a more mathematical approach to the concept, the references mentioned before may be consulted.

Finally, the vortex-augmentor concept will be briefly discussed. The practicability of the concept
seems still questionable and the fluid dynamics processes involved are very complicated.

3.2 The Betz limit

3.2.1 Derivation of the formula

The Betz formula can be derived from three conservation laws, viz. the conservation of energy, axial
momentum and mass, which laws are applied to a one-dimensional flow, in order to simplify the calculation.

The wind turbine is replaced by an "actuator disk" (Fig. 3.1), which means that the velocity Ur is
continuous through the rotor area (conservation of mass), but that the static pressure shows a drop from
P1 to P2 (energy absorption by the turbine). It is assumed, that the energy absorption only takes place
when air passes through the actuator disk and the pressure drop is constant across the actuator disk (one-
dimensional flow). This assumption implies that the total pressure in the wake is constant (differing from
the total pressure outside the wake by p1 -P2) and the Bernoulli equation can also be applied in the wake.

The pressure difference across the actuator disk gives rise to a drag force

D (pl-P2)Sref (3.2.1)

Applying the Bernoulli equation in front of and behind the actuator disk leads to

o = (p- ref = p(U2 -U)Sref (3.2.2)

Applying the axial momentum equation to the situation sketched in Fig. 3.1 leads to

D -pUrS (U-U) (3.2.3)
r ref e

Comparing the Eqs (3.2.2) and (3.2.3) shows that

= (U+Ue) (3.2.4)

Ae

ti
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The velocity through the actuator disk is the arithmetic mean of the velocity far in front and far behind
the actuator disk.

lhen energy is absorbed by the turbine, Ue is smaller than U, and it follows from Eq. (3.2.4) that
Ur < U, which means that the mass flow through the turbine pUrSref < re.
The quintessence of the Betz limit is that the absorption of energy from tfe wind stream is connected with
a reduction of the mass flow through the turbine, in that way limiting the maximum amount of energy that
could be extracted from the wind.

The power absorbed by the turbine is equal to the energy loss of the mass flow through the turbine,
thus

P = 1PU S (U2-U_) (3.2.5)r re, e

Substituting Eq. (3.2.4) into Eq. (3.2.5) and using the definition of the power coefficient (Eq. (2.3.2))
leads to

C = P /pU 3Sre f " 4(ur/U)
2 (l - Ur/U) (3.2.6)

It is easily seen that the maximum or ideal power coefficient is obtained when U r/U - 2/3 and U e/U = 1/3,
thus

CPideal =2 (3.2.7)

The main source of the power output reduction is due to a reduced mass flow through the turbine (factor

2/3), whereas the influence of incomplete energy absorption is less, viz. a factor 1-(1/3)2 = 8/9.

3.2.2 Discussion

Though the actuator disk suggests a horizontal-axis wind turbine, Eq. (3.2.6) is equally valid for a
vertical-axis turbine (within the restrictions of the assumptions applied).

The rotor drag coefficient C0 can be calculated from the rotor drag (Eq. (3.2.2)), viz.:

¢D 
= 
D/ pU2Sref = 

4
(Ur/U) ( - Ur/U) (3.2.8)

Figure 3.2 shows the variation of Cp, CD and Ue/U with Ur/U, calculated from the Eqs (3.2.4), (3.2.6) and
(3.2.8).
An increasing retardation of the flow through the actuator disk increases the rotor drag, decreases the
velocity in the far wake, and initially increases the absorbed power.

At U,./U = 0.5, the velocity in the far wake becomes zero, and the absorbed power is already beyond
its optimum value. Still lower values of U /U lead co negative velocities ;n the far wake, which violates
tIhe continuity equation (mass conservation) in one-dimensional flow.

The simple axial momentum theory cannot cope with Ur/U < 0.5. In that range,a real horizontal-axis
turbine may opt-rate in the so-called "turbulent wake state" and "vortex ring state", i.e. a return flow
exists across ! part of the actuator disk, and it is clear that one-dimensional flow theory can, be
applied (Ref, 3.12 and 3.13, see also Ref. 3.14).

Refereice 3.15 suggests CD = 1.0 = constant in the range 0 < Ur/U < 0.5, but in view of the very com-
plex flow, where a turbine operates in a turbulent wake state, the simple momentum considerations do not
look very convincing (see also Ref. 3.13).

In reference 3.14 it is inferred from helicopter tests that CD > I when Ur/U < . The question remains
also whether modifications in the theory for this part of the operating range of a wind turbine will
yield a modified value for the maximum obtainable power coefficient.

Glauert (Ref. 3.2) includes in his discussion of the horizontal-axis wind turbine the rotation left
behind in the wake (trailing vorticity of the rotor blades, torque and angular momentum). The tangential
velocities due to this rotation, contribute to the kinetic energy left in the wake and decrease the maximum
attainable power coefficient. The inclusion of the tangential velocity components has also a small in-
fluence on the value of Ur/U at which the optimum Cp is reached (see, however, Appendix C).

HUtter (Ref. 3.12) draws attention to the possibility tha, the strong diverging streamlines at and
behind the actuator disk and also the mixing layer at tha wake bo.ndary might lead to a higher optimum
value of Cp than that obtained fror. the simple axial momentum theory.

A large wake divergence might lead to a larger total velocity through the rotor (Ur/cos r instead of
Ur; Fig. 3.3) and thus to a larger kinetic energy at the rotor, but not to a larger mass flow. The wake
divergence and turbulent mixing might also result in a lower value of Ue, but this is more difficult to
visualize. Farther behind the turbine, U is larger than Ue, due to turbulent mixing (wake decay, Sect.
5.3.2).

HUtter states that the theoretical optimum of Cp might be increased with 4 to 13 % by wake divergence
and turbulent mixing.

. ', .k__ _ _ _ _ _ _ _



3.3 The diffuser augmentor

3.3.1 Simple diffuser

The gist of diffuser operation can be shown by one-dimensional flow calculations, almost similar to
those leading to the Betz limit.

The axial momentum equation is not convenient in this case, because the external forces on the dif-
fuser are difficult to estimate. The pressure recovery in the diffuser, defined by the diffuser efficiency

nd, can uc used instead.
It is assumeo that energy losses only take place at the turbine (p,-p 2 ) and in the diffuser. It is assumed
that the free-stream static pressure po is present at the diffuser exit. A lower pressure at the diffuser
exit has an important effect on the mass flow, but complicates the demonstration of the principal action
of a diffuser.

The pressure recovery over tht diffuser can be calculated from the diffuser efficiency (for notation
see Fig. 3.4)

Po- jO( 2_U2oP2 nd Ur Ue ) (3.3.1)

It follows from mass conservation in incompiessible flow that

Ue = (Sref/Se)Ur = Ur/A , (3.3.2)

with A = diffuser area ratio.
When it is assumed that the inlet flow towards the turbine is friztionless, thus:

pP P= jp(U
2
-U

2
)

then the pressure drop over the turbine can be written as

pI-P2 = rpU
2- pU [1 - nd(1-A-

2)] -,

= jOU
2
[I - B(Ur/U)

2] (3,3.3)

with B I - nd[l-A-
2]

The power absorbed by the turbine is

P = UrSref(PlP 2 ) = pU2 UrS1ref[1 - B(Ur /U)2 ]

and the power coefficient, defined on the area swept by the turbine blades (Sref)' becomes

Cp = P = (Ur/U) [I - B(Ur/U)2] (3.3.4)
pU3S ref

For a given diffuser (area ratio A and efficiency nd) , i.e. a given value of B, Cp obtains an optimum at a
given value of Ur/U, viz.:

Ur/U = (3B) -  
(3.3.5)

The corresponding value of Ue/U follows from Eq. (3.3.2), viz.:

Ue/U = A'1(3B) , (3.3.6)

and the optimum power coefficient is

C = 1 (3B)
0

1 (3.3.7)
opt.

An ihteresting limit is nd = 1, i.e. a frictionless diffuser, which corresponds to a value B = I/A2 . In
that case
Ur/U = A//i, thus proportional to the diffuser area ratio,
Ue/U = l/ r, thus constant and the optimum power coefficient is

Cp =. A 3 (3.3.8)
opt.

The ideal turbine without diffuser, discussed in Sect. 3.2.1, shows in the optimum situation an effective
diffusing ratio

Se/Sre f = Ur/U e = 2

which diffusion is also assumed to be frictionless.
When both optimum power coefficients are compared at the same value A = 2, viz. 16/27 = 0.5926 with

4/r3/9 = 0.7698, the frictionless solid-wall diffuser shows a larger power output than the wind turbine
with a so-called "frictionless free-streamline diffusion".
This difference can be explained by considering the momentum equation, which reveals that the solid-wall
diffuser increases the axial drag force, even in case of an inviscid flow (d = 1). An analogous situation
is discussed in Sect. 3.3.2 (see Fig. 3.10).

Figure 3.5 shows the optimum power coefficient for the turbine-diffuser combination, according to the
simplified theory of Eq. (3.3.7). The deteriorating influence of a low diffuser efficiency is clearly
demonstrated. It must be noted, however, that nd and A are coupled and cannot be freely chosen.
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To visualize the relative benefit of the large structure that has to be built around the turbine, the
power output of a turbine without diffuser has been plotted in Fig. 3.5 (dotted line) for the case of a
turbine with a diameter equal to the exit diameter of the diffuser.

Even an ideal diffuser (nd 1 1) does not generate a comparable amount of energy. This difference can-
not be nullified by taking the tip losses of the turbin,. without diffuser into account.

The pros & cons of a simple diffuser cannot be we ahed objectively without a proper cost analysis,
but this figure shows that a simple diffuser is not a panacea for overcoming structural problems in design-
ing large-scale WECS.

Figure 3.6 shows the increased mass flow due to the diffuser (Ur/U), together with the velocity at
the diffuser exit (Ue/U). It is clear that the increased mass flow is entirely responsible for the augmen-
tation of the power output.

In wind tunnel experiments on models of wind concentrators, the power absorption is often simulated
by a wire screen. The pressure drop over a screen at the plane of the rotor is

p l P 2 = k p U 2 ( 3 3 9 )

with k = resistance factor of the screen.
The simulated power absorption is

P = (pl-p 2) UrSref = pUkSref

and the corresponding power coefficient

= k(U /U) 3 (3.3.10)P r

It follows from the Eqs (3.3.10), (3.3.5) and (3.3.7) that the optimum Cp can only h, simulated with one
specific screen, viz. with

k = 2B . (3.3.11)

Figure 3.7 shows the necessity to use a series of screens in model tests, in order to determine properly
the optimum.

Investigation of a diffuser in a wind tunnel revealed an aspect of the influence of the external flow
around the diffuser on the internal flow in the diffuser (see e.g. Refs 3.5 and 3.7). The external flow
might cause a static pressure at the diffuser exit Pe which is smaller than po. Denoting the dimensionless
pressure difference at the diffuser exit by

Cpe = (po-pe)/ pU2 ,

the power coefficient becomes (instead of Eq. (3.3.4))

Cp = (Ur/U)[I+Cpe-B(Ur/u) 2] , (3.3.12)

and the optimum power coefficient

Cp = .(l+C ) (l+Cp)/3B3 (3.3.13)
op. 3 pe peopt.

Figure 3.8 shows power coefficients obtained from wind tunnel experiments on models of diffusers, compared
with values obtained from Eq. (3.3.13). The calculations can only be used as an illustration, because the
values of nd and Cpe obtained at the experiments are not known precisely. The experiments of reference
3.7, designated "with flaps", have been performed with an annular wing (flap) around the diffuser exit, in
order to reduce the static pressure at the diffuser exit. When these results are compared with the experi-
mental results "without flaps", the influence of the flaps is shown to be considerable.

These results can also be interpreted in another way (Refs 3.6, 3.7 and 3.8), viz. that using the
diffuser behind the turbine to boost the "free-streamline diffusion" is far more effective than using it
as a plain solid-wall diffuser. Moreover, it is possible to reduce the dimensions of the diffuser in that
way.

When this aspect is elaborated further, it boils down to the long existing idea of a shrouded turbine,
which will be discussed in the next Section.

3.3.2 Shrouded turbine

The concept of a shroided turbine was originally proposed for a propeller (e.g. propeller of a ship),
but it is also applicable for a wind turbine. It is based upon the increase of the mass flow through the
turbine. An additional advantage is the increased efficiency due to the avoiding of the tip losses, when a
small enough tip clearance can be applied.

The increased mass flow due to the shroud can be visualized by considering the shroud as an annular
wing in axisymmetric flow (Fig. 3.9). The sectional lift on the annular wing has to be directed towards
the axis of symmetiy (over-all lift zero), and the corresponding circulatory flow around the wing section
of the annular wing induces an increased velocity through the area enclosed by the annular wing (like a
vortex ring).

An annular wing in axisymmetric potential flow does not absorb energy from the flow. It follows from
the axial momentum equation, that the resultant axial force on the annular wing has to be zero. The only
forces on the annular wing then are the purely radial section lift forces (Fig. 3.9).

When an energy-absorbing actuator disk is placed inside this annular wing, the axial momentum is
changed, which must be equal to a resultant axial force on the turbine (Dr) and possibly on the shroud
(D,) also.
When assumptions similar to those of Sect. 3.2.1 are used, an expression for the axial momentum can be
given:

wd
- .~ ~ ~ ,~l~WJ ~~
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=r+Os = PUrSref(U-Ue) (3.3.14)

and for the drag force on the turbine (cf. Eq. (3.2.2))

Dr ' p(U2 -U2)Sref (3.3.15)

This gives an expression for Ur (cf. Eq. (3.2.4))

D
Ur a (U+Ue) + P(UUe)S (3.3.16)

e ref

Eq. (3.3.16) shows, that Ur reduces to the value of the turbine without shroud, in the case Ds  0. Al-
though the increased mass flow through the turbine could be calculated from the circulation of the annular
wing (see App. A), an increased power output with a shrouded turbine is only possible (within the range of
applicability of the simple axial momentum theory), when an axial force on the shroud is present.

The power coefficient for the shrouded turbine can be calculated from the Eqs (3.2.5) and (3.3.16)

Cp [I-Ue/U)1 [l+(Ue/U)] 2+2CD [1+(Ue/U)] , (3.3.17)

with C = 0s/ pU
2S

D s refs

The optimum Cp will be obtained, when

(Ue/U)p 10 +3C D )3J8UeUc = - - + .(3C (3.3.18)

opt.

The optimum is determined with Ds/oU2 Sref = constant.

Figure 3.10 shows Cp and Ur, as a function of Ue and the axial force Ds on the shroud. At Ue/U = 1,
no energy is absorbed from the wind stream. However, Cp J 0 when Ds 1 0 in that case. This is caused by
Ur - when Ue -* U and Ds 0 0 (see Eq. (3.3.16)), which is physically impossible.

These strongly simplified considerations do not offer a basis for calculating a shrouded wing turbine,
but render some insight into the rather large axial forces that have to be created by the shroud, in order
to obtain a significant power augmentation.

The calculation of a shrouded wind turbine is very complicated and will not be discussed here. How-
ever, it seems possible to get some insight into the problems involved, by considering parts of the com-
plete calculation.

In Appendix A, the mass flow increase through an annular wing has been estimated for a wing section
with given circulation. The results described in Appendix A will be summarized below.

Approximating the annular wing by a ring vortex (a kind of lifting line approximation) leads to an
intinite mass flo through the annular wing. The infinity can be circumvented by excluding a "vortex core
radius" from the calculation of the mass flow, but the choice of such a radius is rather arbitrary.

Distribution of the circulation over a finite chord length results in a finite mass flow. Also the
distribution of the axial velocity along the radius becomes more constant (an infinitely long cylinder
with a constant strength of the vortex sheet induces a constant velocity inside this cylinder).

The mass flow is proportional to the circulation r; it also depends on the chord/radius-ratio. The
circulation cannot be increased arbitrarily (r - C c). An increasing chord length increases r at fixed
Cl, but the mass flow decreases with increasing c/& at fixed r. This leads to an optimum value of c/R.

The calculation is further complicated by the fact that an annular wing induces an axial velocity
along its own chord, which increases the effectiva velocity, from which the lift coefficient has to be
calculated for a given circulation (C1  r/0, wit) 0 = wind velocity + self-induced velocity).

Figure 3.11 shows the results of the calculations of Appendix A. Though the numerical results given
in this diagram are not very accurate, it clearly demonstrates the need for attaining high values of C1
(flapped aerofoil sections, Refs 3.7 and 3.8) and rather large values of c/R (from 2 to 6, depending on
CI). The very large values of the mass flow increase calculated at C1 - 4 and c/R P 4 to 6 correspond to
extreme high values of r. That still acceptable Cl-values are obtained is due to the very strong self-
induced velocities along the chord, but it can be questioned whether such a situation is realisticallyi predicted by the approximations used in the calculations (inaccuracies increase at c/R > 2).

This discussion of the shrouded wind turbine will be concluded by sketching a method that gives some

insight into the shroud-turbine interaction.
Figure 3.12 shows an annular wing with an actuator disk, which absorbs energy from the flow and in

that way causes a constant pressure drop Ap across the actuator disk. Behind the disk originates a wake
with a constant but lower total head, bounded by a vortex sheet (velocity discontinuity) with zero pressure
difference across it.

For a given shape of the annular wing and a given pressure drop Ap, the exercise consists of deter-
mining the shape of the discontinuity layer and the vortex strength distribution on wing (yc) and discon-
tinuity layer (Yb) under the following constraints:
- the normal velocity has to be zero on the wing contour and on the surface of the discontinuity layer;
- the tangent to the discontinuity layer at the trailing edge of the wing must coincide with the bisector
of the tail angle of the profile;

- the pressure difference across the discontinuity layer has to be zero;
- the pressure in the wake at infinity is equal to po, which determines the-constant velocity in the wake

at infinity

jpU 2 = jpU 2
- Ap , (3.3.19)
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and the strength of the vortex sheet at infinity

Ybe U - Ue  , (3.3.20)

because the flow at infinity is two-dimensional.
The width of the wake at infinity is determined by the mass flow increase through the annular wing

(unknown value of ys) and the pressure drop Ap and is, therefore, a part of the problem. The existence of
the discontinuity layer depends diiectly on the existence of a pressure drop Ap across the actuator disk
and shows the interaction between shroud and turbine.

Due to the difference in total head in the wake, the above sketched problem is not a potential flow
problem. However, it can easily be transformed into one by adding a static pressure equal to Ap in the
wake area. The discontinuity surface of the actuator disk disappears, the static pressure in infinity in
the wake is now equal to po + Ap, and the pressure difference across the surface of discontinuity is no
longer zero but constant and equal to Ap (see Fig. 3.12, bottom).

This second problem can be solved by potential flow methods, in which the shape of the vortex sheet
of the wake boundary is calculated by an iteration procedure. The solution of the original pioblem can be
obtained by subtracting Ap from the static pressure in the wake area and from that on the inside area of
the annular wing tip to the location of the actuator disk.

It must be noticed that such a calculation only refers to a strongly simplified model of a shrouded
wind turbine, viz. the representation of the wake of the turbine by a potential flow region enclosed by a
surface of discontinuity.

Considering the results of measurements found in the literature and considering the order of magnitude
calculations of Appendix A, one can conclude that optimum values of the power coefficient of about Cp . 2
can be obtained, but a rather large structure around the wind turbine is needed (c/R > 1).

It can be concluded that in the literature a number of advantages of a diffuser or shroud has been
mentioned, viz.:
- increased energy output at a given turbine d;ameter, due to an increased mass flow, a small increase of

the allowable pressure difference across the turbine, and a higher turbine efficiency (less tip losses);
- less sensitivity of the energy output to yaw;
- lower fluctuating blade loads due to the damping effect of the shroud on the fluctuations of the wind
direction;

- higher turbine RPM due to higher mass flow and a consequently reduced gear-ratio of the gear-box.
A disadvantage is:

- Increase of costs due to the large structure around the turbine which has to be put into the wind direc-
tion. This last point is less restrictive in areas with a trade wind.

3.4 The tip-vane concept

3.4.1 The basic idea

It was discussed in Sect. 3.3.2, that a vortex ring around a wind turbine could increase the mass
flow through the turbine and in that way increases the power output.
This "vortex ring" could be created by an annular wing, but this leads to a rather large structure around
the turbine, which seems not always practicable.

A tip vane, however, is a relatively small lifting surface, attached to the tip of the turbine blade
(Fig. 3.13).
Figure 3.13 tries to clarify how tip-vanes can create a vortex ring. When the tip vane is replaced by a
horseshoe-vortex, the tip vane, with a lift force directed towards the axis, generates a pair of tip vor-
tices with a sense of rotation as indicated in Fig. 3.13. At a certain tip speed ratio X = PRO/U, the
clockwise and counter-clockwise rotating tip vortices originating from different tip vanes coincide and
cancel. The remaining parts of the tip vortices between the tip vanes for.n a vortex ring with such a sense
of rotation, that the mass flow through the turbine increases.

3.4.2 Discussion

That a relatively small tip vane, moving with the turbine blade does the same job as a large fixed
shroud around the turbine can be explained along the following lines. The circulation of the shroud (rs )
depends on the chord (c.) and the wind velocity (U), thus

r U c5  (neglecting the influence of c/R).
s

The circulation of the tip vane (rv) depends on the chord (cv) and the relative velocity, which, at high
values of X, is almost equal to RRo, thus:

v 0 v

The ratio of these two values is proportional to

rvlrs '(PRo/U)(Cv/Cs) = A(cv/cs)

At high values of X, cv can be made much smaller than cs and still result in the same value of r.
The following relation has to be fulfilled (Fig. 3.13), when the respective tip vortices should can-

cel:

'A i
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with B = number of turbine blades.
The ratio of the total tip-vane area and the area uf the shroud, at equal values of 1', is proportional

to

Bcvb/(2nRc) = (B b/2rRo)(cv/Cs ) . X-
2

This area ratio is small at a high value of X.

A wing with a finite aspect ratio experiences a drag force that is composed of a profile drag (fric-
tion drag) and an induced drag (drag due to the tip vortices). The tip vane is a wing of finite span and,
therefore, experiences also a drag, which reduces the power output. Due to the mutual cancelling of the
tip vortices (Fig. 3.13), the inJuced drag Is strongly reduced (analogous to drag reduction of airplanes
in formation fl.ght). In Ref. 3.9 the possibility to develop a special spanwise loading is considered,
which gives the largest induced drag reduction due to vortex cancellation.

The power output reduction due to a drag coefficient (Cd) of the tip vane is easily calculated, viz.:

AC= - Bp(XU)2 C c bRo1/( pU1Sr) = -Cd(Bcvb/S )X3  (3.4.1)

Pd v 0/ ref =Cd v ref

This clearly illustrates the necessity to choose the tip-vane area as small as possible and to develop
special low-drag aerofoils. The power loss increases with the third power of the tip-speed ratio, which is
especially unfavourable, because the mass flow increase of the tip vanes is connected with a high tip-
speed ratio.

It was pointed out in Sect. 3.3.2 that a mass flow increase through the turbine requires an extra
axial force, which, in case of tip vanes, has to be an axial force on the tip vanes. This axial force can
be generated by tilting the tip vand (see Fig. 3.14). This tilt angle is also necessary to let the tip
vortices interfere in a favourable way, because of the expanding streamtubes behind the turbine.

The axial force coefficient, which can be compared with the axial force coefficient CDs of Fig. 3.10
(see also Eq. (3.3.17)), can be calculated for the tip vanes from

CDaxial ' Daxial/( pU2Sref) - Bp(XU) 2 cVbC sin 0pA( U2S ref) = C1 sin r(Bc vb/S ref)X
2  

. (3.4.2)

The axial force is connected with the mass flow increase through the turbine and, therefore, with the
power increase (Fig. 3.10), and increases with the tip-speed ratio squared, the sine of the tilt-angle,
the lift coefficient, and the tip-vane area. In view of the power loss (Eq. (3.4.1)), the tip-vane area
has to be as small as possible, and it follows from Eq. (3.4.2) that the lift coefficient has to be as
high as possible (special low-drag-high-1ift aerofoils; Liebeck sections) in order to attain sufficient
mass flow increase. The velocity through the turbine can now be calculated from Eq. (3.3.16):

Ur/U = (1+(Ue/U)] + ICU axia/[-(Ue/U)] , (3.4.3)

and the corresponding power coefficient can be calculated from Eq. (3.3.17):

Cp= I-(Ue/U)] [+(Ue/U)]2 + ICDaxial [i+(Ue/)] (3.4.4)

The optimum value of Cp at a fixed value of COaxial is attained at a special value of Ue/U (cf. Eq.
(3.3.18)):

(Ue/U)p ="3 + 21 13 + jC 1ia] (3.4.5)

opt.

This optimum differs from the one found in Ref. 3.9, because in that case, the velocity increase is as-
sumed to be independent of Ue/U, whereas in Eq. (3.4.3) the velocity increase depends on Ue/U, but Coaxial
is kept constant. In Ref. 3.9 optimum values of Ue/U <-T are shown, whereas Eq. (3.4.5) shows optimum
values of Ue/U > 7.

It must be noticed that COaxial is a function of p (Eq. (3.4.2)) and, because of the yet unknown rela-
tion between r and Ue/U, COaxial is a function of Ue/U, i.e. the optimum of Eq. (3.4.5) is not an ab-
solute optimum. Furthermore, it is implicitly assumed, that the tip vane induces a constant velocity
across the rotor area, which is certainly not true.

The interaction between tip vane and energy-absorbing turbine is inciuded in Eq. (3.3.4) through the
tilt angle € implicit in CDaxia . This tilt angle has to be equal to the slope uf the streamlines in the
tip region of the turbine blades. This slope can only be calculated from vortex wake calculations
(cf. Fig. 3.12).

The optimum power output of in ideal wind turbine with tip vanes with a total area equal to 10 % of
the turbine reference area and a lift coefficient C1 = 2 is given in Fig. 3.15 as a function of the tilt
angle and the tip-speed ratio. Also the influence of the profile drag of the tipe vane (Cd = 0.01) has
been calculated from Eq. (3.11.1). The induced drag of the tip vanes is assumed to be zero.

The figure shows that already moderate tilt angles give an appreciable increase of the power output.
It is also clear that the turbine has to be designed for a high cip-speed ratio to attain sufficient power
increase from the tip vanes. Because Ue/U has to be smaller than I (otherwise no energy has been extracted
from the flow), CDaxial has to be smaller than 4, which is easily observed from Eq. (3.4.5).

The calculations of the Refs 3.9 through 3.11 show rather large tip vanes, viz. a total vane area of
the same order of magnitude as the rotor blade area of a low-solidity turbine (which could obtain the high
A values) and a span of the tip vane equal to half the span of the turbine blade has been assumed in the
calculations.

In Ref. 3.16 incidentally the T-inducer (tip-vane as discussed above) and the L-inducer are mentioned. The
latter is supposed to have no induced drag at all. It will be shown that this assertion is not completely
correct. It also brings about an interference effect between tip vane and turbine blade, which has to be
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studied carefully in developing the tip-vane concept.
Figure 3.16 shows very schematcally the vortex system in the tip region of a turbine blade without

inducer and with a T- and L-inducer. For reasons of simplicity, the tip vane is assumed to act like a per-
fect end-plate, i.e. the circulation of the turbine blade rb is completely carried over to the tip vane.
Comparison with Fig. 3.13 shows that the vortex cancellation of the tip-vane contribution to the t jiling
vorticity rv is not altered in case of 3n L-inducer. The situation sketched in Ref. 3.16 is obtained in
case rv = 0. There is a downward lift force on the L-inducer (due to rb), but the remaining tip vortex
induces only velocities opposite to the wind velocity, and no mass flow increase is generated.

Figure 3.16 also shows the antisymmetric lift distribution superimposed on the lift distribution of
the tip vane in case of a T-inducer, caused by the interference with the turbine blade. When the tip vane
is not a perfect end-plate, the tip vortex of the turbine blade complicates the vortex system, but basi-
cally does not alter the situation.

3.5 Vortex augmentor concepts

Several proposed wind concentrator concepts are based upon the energy-concentrating effect of tip
vortices or leading-edge vortices of wings (Refs 3.17 through 3.20).

The different proposals have in common tnat a wing (rectangular or delta) is placed at an angle of
attack to the wind, in that way generating a lift force on the wing. The wing planform is chosen such,
that most of the trailing vorticity is concentrated in the tip vortex (rectangular wing) or the leading-
edge vortex (delta wing). The axis of the energy-absorbing turbine coincides with the vortex core.

The combination of wing and turbine has to be turned into the wind direction. An example of such a
proposal is sketched in Fig. 3.17. Ref. 3.20 proposes a half-model of a rectangular wing placed vertically
and the turbine attached to the wing at some distance behind the tip.

There is a connection between the "kinetic" energy of the tip vortex and the "induced" drag Di of the
wing. Usually, drag is connected with a loss of energy of the flow, but the induced drag has a different
origin, which is not connected with a loss of flow energy.

In a potential flow model, a vortex sheet is left behind a lifting wing. Far downstream, in the so-
called Trerftz-plane, the vortex sheet only induces velocity components perpendicular to the undisturbed
velocity U, viz. v and w (in y- and z-direction). The bound vorticity on the wing is so far upstream of
the Trefftz-plane that it does not induce any velocity components in the Trefftz-plane and the velocity in
the x-direction is equal to the undisturbed velocity U.

Because no energy can be lost in a stationary potential flow (see App. B), the equation of Bernoulli
shows, that the vortex sheet induces a static pressure deficit in the Trefftz-plane, viz. (with
po = undisturbed static pressure)

P-po = -p(v 2 +w2 ) . (3.5.1)

Applying the axial momentum equation gives an expression for the induced drag:

01 f (p-po)dydz = p Jf (v2+w2 )dydz (3.5.2)

Trefftz-
plane

Close behind the wing, the velocity components v and w induced by the vortex sheet are one half of the
values induced in the Trefftz-plane, but the bound vortex induces extra w-components.

In a way similjr to the diffuser, the vortex sheet also creates kinetic energy at the expense of the
static pressure, but the induced velocity components are perpendicular to the main stream and do not in-
crease the mass flow through the turbine.

The kinetic energy of a vortex sheet is spread over still a large area. However, due to boundary
layer effects on the wing and due to instability of the vortex sheet behind the wing, a pair of tip vor-
tices are formed which contain already 60 to 80 % of the total trailing vorticity at a small distance
behind the wing. It is this rolling-up of the vortex sheet into tip.vortices which also concentrates the
kinetic energy into a smaller area.

An objection to the tip vortex concept is that boundary layer material is sucked into the vortex
core, which decreases the total pressure in the vortex core and thus reduces the energy content of the
flow through the turbine. In a leading-edge vortex, the same might take place, but in this case the effect
may be compensated by a large axial velocity in the vortex core (see Refs 3.17 and 3.18).

Loth (Ref. 3.20) estimates for a rectangu ar half-wing with an area of 9 times the ,-ctor area (Sref),
a rotor diameter of 0.6 times the wing chord an" a lift coefficient of the wing CL P 4(!) and
that the kinetic energy flowing through the re., r could be three times pU3 Sref, which is the energy flux
without concentrator. Such an estimate direct ly reveals the weakness of such a type of concentrator.

When a rotor solidity o = 0.05 is assumed, the above estimate means a stationary wing surface equal
to 9/0.05 = 180 times the rotor blade arc. The same amount of energy could be obtained with a free turbine
having a /3 times larger diameter, which means a three times larger rotor blade area.

The trade-off between a three times larger rotor blade area (to obtain the same increase in power out-
put) or a 180 times larger stationary wing area, which has to be turned into the wind direction and which
has to withstand the aerodynamic loads of a storm, is very likely to turn out in favour of the free tur-
bine.

There are more disadvantages connected with the wing-generated vortex augmentors, viz. the very com-
plex oncoming flow to the turbine and the large load fluctuations when the tip vortex is displaced with
respect to the turbine axis during a lateral gust.

Moreover, Loth (Ref. 3.21) discusses the change in static pressure d6ficit in the vortex, when a part
of the rotational energy is absorbed by the turbine and the corresponding limitations in energy-absorbing

7
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capacity of the system. Also the question could be raised whether the axial adverse pressure gradient
generated by the energy absorbing turbine might indtce vortex bursting, with the corresponding adverse
effect on the power output.

Ref. 3.22 suggests to use the low pressure in a vortex core to suck air through the turbine. The
vortex or "tornado" is generated by the wind flowing through a huge tower with vertical slots (which have
to be opened or closed, depending on the wind direction), a',i the vortex is assumed to be further ampli-
fied by thermal effects.

Also in this case, the trade-off between the costs of the structure of the tower with the large
movable "Venetian blinds" and the costs of a free turbine with an equal power output is unlikely to be in
favour of the "tornado"-type of concentrator. Moreover, sucking air close to the ground surface seems an
extra disadvantage, because of the loss of primary wind energy, a flaw that was also contained in the
design of the Enfield-Andreau turbine (see Fig. 4.1).

3.6 Concluding remarks

There are several other proposals for increasing the wind energy flux through the turbine disk than
those discussed in the preceding sections, e.g. ideas based on the increased velocity near large buildings
(Ref. 3.20), or based on the increased velocity due to irregularities in the earth surface (hills, ridges).
These proposals are too dependent on local circumstances to become generally applicable.

It seems possible indeed to augment the power output of a wind turbine of a given diameter. However,
in most cases the additional structure is so extensive (except possibly the tip-vane concept) and has to
be put into the wind direction (except possibly d;ffuser concepts in trade-wind regions), that it is still
questionable whether the increased costs are compensated by the increased power output.

The tip-vane concept seems to be the most promising, because the vanes are attached to the blades and
the additional structure possibly needs not be large with respect to the turbine blade area. There are
several aspects, however, which have to be studied further before the leasibility of this concept can be
shown unequivocally.
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4 THEORY OF WIND DRIVEN TURBINES

List of symbols

A C'C cos 0/(4 sin 2 o) = factor in Eq. (4.4.34) and Eq. (4.4.44) (-)

a amplitude of vertical displacement in Eq. (4.3.2) (m)
a axial induction factor (-)
al tahgential induction factor (-)
B number of rotor blades (-)
b' location of axis of rotation in Eq. (4.3.3) m)
b wing span in Sect. 4.3.2 (m)
C = cos O(cos 0 - X sin a) = factor in Eq. (4.4.47) (-)

c chord length of rotor blade (m)
C drag coefficient of three-dimensional body, e.g. in Eq. (4.2.2) (-)

C D/( pO2S rotor drag coefficient (-)

Cd drag coefficient of aerofoil section (-)

(Cd)m n  minimum profile drag coefficient (-)

Cdo profile drag coefficient taken as a constant at the low-angle-of-attack approximation (-)

Chub blade chord at hub radius (m)

CL lift coefficient of flutter rrichine (-)

C1  lift coefficient of aerofoil section -)

(C) design section lift coeffirient at Xopt H

(C )max maximum lift coefficient H

C = aCL/3a = slope of lift curve (degree- 1 or radian - 1)

C1  = acI/aa = slope of lift curve (degree
- 1 or radian

1)

CL - aCL/36 = lift increase due to flap deflection in Eq. (4.3.11) (radian "1)

Cm = pitching moment/( pU
2c2) = pitching-moment coefficient of aerofoil section in Eq.

(4.3.5) C-)
C , = mass flow through rotor/(pU2R) = mass-flow coefficient in Fig. 4.39 ()

C zero-lift pitching-moment coefficient in Eq. (4.5.24) (-)ma

C P= P/( pU3S ref) power coefficient (-)

Cp = P/( pU3Bcb) - power coefficient of a B-bladed flutter machine (-)

Cp _P/( pU32RH) - power coefficient of a two-dimensional turbine with a vertical axis C-)

(Cp)opt  optimum power coefficient C-)

CQ Q.( pU2S refo = CP/ = torque coefficient C-)

cr chord length of flap in Eq. (4.3.15) (m)

Ct tangential force coefficient -)

"T tangential force coefficient averaged over a complete revolution C-)

C tip chord length at the tip (m)

D = 2R - rotor diameter (m)

D drag force or axial force (N)
d distance between vortex sheets in Fig. 4.13 (m)
d diameter of shaft in Fig. 4.21 (m)
dst element of vortex sheet in t-direction in Eq. (4.5.63) (m)

ds0  element of vortex sheet in 0-direction in Eq. (4.5.63) (m)

F tip correction factor due to Prandtl -)
F real part of the Theodorsen function in Eq. (4.5.29) (-)
f tip correction factor as a function of in Eq. (4.4.36) C-)
F*,F** higher-order tip correction factors in the Eqs (4.4.40 and 4.4.46) C-)
G imaginary part of the Theodorsen function in Eq. (4.5.29) ()
H height of rotor (m)
H - p + pU2 = constant of Bernoulli (N/m2)

i local blade setting angle (degrees)

i - (-1)1 = imaginary unit ()
J = U/nD = advance ratio of propeller C-)
J0,J1 Bessel function of the first kind in Eq. (4.5.29) C-)
k = wc/U = reduced frequency in Eq. (4.3.6) -)
k = c/R - reduced frequency in Eq. (4.5.28) (-)
k tip correction factor due to Goldstein or Lock and Yeatman -)
A moment averaged over one revolution of a vertical-axis turbine in Eq. (4.2.4) (Nm)
N normal force or axial force (N)
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n number of revolutions per second in Fig. 4.30 (sn)
P power (W)
p static pressure (N/m

2 )

Q torque of rotor (Nm)
R radius of two-dimensional vertical-axis turbine (i)W

r Z /c = dimensionless amplitude of vertical displacement in Eq. (4.?.6) (-)
0

r local radius m)
Re( ) real part of C I (-)
Rec = Urelc/ = Reynolds number referred to chord length C)

r hub hub radius (i)

R°  maximum radius or tip radius (i)

-rt  vector in t-direction in Eq. (4.5.58) (m/s)

r0 vector in t-direction ;n Eq. (4.5.58) (m/radian)

s arc length along troposkien (m)
s a X/c = dimensionless position of the axis of rotation in Eq. (4C3m6)

Sre f  reference area of the turbine; area swept by the rotor (m2 )

T tangential force (N)
t time (s)

U wind velocity (m/s)
u axial induced velocity in Eq. (4.5.14) (m/s)
Uax resultant axial velocity (m/s)

uav averaged axial induced velocity in Eq. (4.5.18) (m/s)

U n  velocity component normal to blade element in Eq. (4.5.49) (m/s)

U reI total velocity relative to blade element (m/s)

U tan resultant tangential velocity (m/s)

v velocity component in y-direction (m/s)
V gust velocity in Sect. 4.5.5 (m/s)
g

vR radial velocity component in Eq. (4.5.19) (m/s)
v azimuthal velocity component in Eq. (4.5.20) (m/s)

w Ltotal induced veloc'ty it the plane of the rotor in Fig. 4.9 (r./s)

X = er/U = Xr/R 0 = local .;p-speed ratio C-)

x co-ordinate in wii4 di ection Cm)
x distance along blao, clord (m)
Xhub = irhub/U = speed ra iU at the hub radius (-)

x 0location of the axis of rotation in Eq. (4.3.3) (m

x°  location of the point of attachment in Eq. (4.5.23) \.)

Ax displacement of vortex sheet during one revolution (m)

y horizontal co-ordinate perpendicular to the wind; lateral co-ordinate (m)
y = X/(l-a) = variable used in Sect. 4.5.2(-

z vertical co-ordinate (in)
Z 0amplitude of vertical displacement in Eq. (4.3.1) (i)

0 angle of attack (degrees or radians)
a angle of attack, determining the lift in a curved flow in Eq. (4.5.21) (degrees)
1,00 '50'

a'100 angle of attack at leading edge, mid chord and trailing edge in the Eqs (4.5.21) and (4.5.22)
(radians)

amax angle of attack at maximum lift or maximum dngle of attack during one revolution of a vertical-
axis turbine (degrees)

r circulation (m
2/s)

strength of vortex sheet (m/s)
slope of a troposkien blade shape (radians or degrees)

rb circulation of bound vorticity (m
2 /s)

strength of bound vortex sheet (m/s)

r. circulation around blade number i in Sect. 4.5.3 (.n
2/s)

io maximum circulation during a revolution of a blade number i in Sect. 4.5.3 (m
2/s)

r = B r. = maximum circulation of B blades during one revolution (m2/s)

YO = r0 /2rR (a/4n)CI (1-a)U = maximum strength of bound vortex sheet (m/s)

rr circulation around 8 blades at radius r (m
2/s)

r' circulation around one blade with B at radius r (m
2 /s)

Ys strength of shed vortex sheet (m/s)

Yt strength of trailing vortex sheet (m/s)

totA circulation at radius r for B - - (m2 /s)

flap deflection in Eq. (4.3.11) (radians)

-tr- Orr
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6 angle between UreI and the normal to the radius in Eq. (4.5.44) (degrees)

6 0amplitude of harmonic flap deflection (radians)

n aerodynamic efficiency of turbine in Sect. 4.4.6 (-)

n = H/2R0 = height-to-diameter ratio of rotor (-)

O angle between wind velocity and chord in Eq. (4.3.1) 
(radians)

0 angle between UreI and plane of rotation for a horizontal-axis turbine (degrees)

0 angle in cylindrical or spherical co-ordinates (degrees)

00 amplitude of harmonically varying 0 (radians)

9 blade pitch angle in the Figs 4.24 and 4.48 (degrees)

P p value of 0 at the tip of the rotor blade (degrees)

X QR/U or = R /U = tip-speed ratio of a two-dimensional vertical-axis turbine or of a three-

dimensional
0 vertical-axis and horizontal-axis turbine (-)

v kinematic viscosity of air (m
2 /s)

p density of air (kg/i
3 )

o Bc/R or Bc/R = solidity ratio of a two-dimensicnal or a three-daimansinnal 
vertical-axis

turbine (-)
R0

(B/Sref) r c dr = solidity ratio of a horizontal-axis turbine 
(-)

r hub

0' = Bc/2ir = local solidity ratio of a horizontal-axis turbine (-)

plase angle in Eq. (4.3.1) (radians)

* azimuth angle (degrees)
= - = negative phase angle in Eq. (4.3.9) (radians)

W(k) = (J0-iJ1) (F + iG) + iJ1 = Sears function (-)

phase angle in Eq. (4.3.2) (radians)

angular velocity of rotor (radians/s)

angular frequency (s
-
1)

W= VXU = curl i = rotation (s
- 1)

" s rotation of shed vorticity (s
- 1)

" t t-component of rotation in Sect. 
4.5.7.3 (s-1)

" xW yWz x-, y- and z-component of rotation in the Eqs (4.5.65) through (4.5.67) (s
-')

W0 O-component of rotation in Sect. 4.5.7.3 (s
-1 )

I

-~ -
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4.1 Introductory remarks

The very purpose of a wind turbine is to extract energy from the air flow and then convert it into
mechanical energy. The performance calculations of wind turbines are mostly based upon a steady flow, in
which the influence of the turbulence of the atmospheric boundary layer (unsteadiness, gusts) is neglected.

The loss of energy in a steady incompressible flow, is aerodynamically indicated by a decrease of the
so-called Bernoulli constant H, i.e. a decrease of

H _ p + pU2

where p = static pressure (N/mZ)
p = air density (kg/m 3),
U = velocity of the air (m/s).

The way in which such a decrease could be accomplished is discussed in Appendix B.
Viscous dissipation (transformation of flow energy into heat), e.g. by putting a screen perpendicular

to the flow (cf. Sect. 3.3.1, Eq. (3.3.10)), cannot be regarded as a useful form of energy extraction.
In a steady flow, the most powerful aerodynamic force (lift) cannot extract energy from the flow,

because the lift is always perpendicular to the fNow. It would be possible to drive a turbine with pure
drag forces, but a large part of the extracted energy would be dissipated into heat, which results in a
low efficiency. It is shown in Appendix B that the utilization of lift forces with the related small
viscous drag force is only possible, when the flow through the turbine is unsteady.

In Appendix B it has also been discussed that, although the flow through the turbine is unsteady in
an absolute (fixed-to-earth) reference frame, a steady flow could be obtained in the case of a horizontal-
axis turbine when the reference frame is fixed to the rotor blades. An energy loss in the flow can be
shown to occur in that case after modification of the equations of motion (adding centrifugal and Coriolis
forces). This brings about a fundamental difference in describing the flow through horizontal-axis
(propeller type) and vertical-axis (or cross-wind type) wind turbines.

A classification of wind turbines into devices utilizing drag or lift forces and into horizontal-axis
or vertical-axis turbines can be made from aerodynamic considerations. However, a large number of mechan-
ical devices has been invente,,, which can be called wind turbines, but cannot be classified according to
the above-mentioned scheme. Also, the nomenclature is not unequivocal, e.g. by a horizontal-axis turbine
is usually meant a turbine with its rotor-axis parallel to the wind. In case of a turbine with its axis
horizontal, but perpendicular to the wind, the name cross-wind turbine is sometimes used, but a vertical-
axis turbine can also be considered as a cross-wind turbine.

The discussion of the theory of wind-driven turbines will be limited to some types. The choice of
these types will be discussed from examples of turbines, given in the figures 4.1 through 4.4.

Figure 4.1 shows some examples of horizontal-axis turbines with the rotor-axis parallel to the wind
direction. The discussion of the theory will be limited to the low-solidity (high-angular-velocity) type,
because this type is most promising for large-scale applications. The multi-bladed type with its low
angular velocit/ and correspondingly high torque is mostly used for rural applications. The high mutual
interference between the blades of a multi-bladed rotor might be a challenge to the theorist, but an
accurate calculation is hardly worth the trouble, because of the kind of application for such a type of
turbine.

The Enfield-Andreau turbine and the tip turbines shown at the bottom of figure 4.1 have been invc;nted
to by-pass the difficulty to step up the low RPM of a large wind turbine to the high RPM needed for al
electric generator. The first one, which has actually been built, uses the hollow rotor blades as a cen-
trifugal pump, sucking air through the hollow tower, which drives a small turbine in the lower part of the
tower. The efficiency proved to be low and this type will not be discussed further. The second one uses
the high tip speed of a low-solidity wind turbine to drive small turbines. The additional problems of this
concept (blade loading, gyroscopic effects on the small turbine) are much larger than the original gear-
ing problem and, thus, this type will also be left out here.

Figure 4.2 shows two types of vertical-axis wind turbines. The Darrieus turbine, with its blades
curved to alleviate the bending moments due to centrifugal forces (cf. Fig. 2.6 and Appendix D), is an
intensively studied concept nowadays. The main advantage is the cheap blade construction, apart from the
more common advantage of insensitivity to wind direction (no yaw control, contrary to the horizontal-axis
turbine). The drum-type turbine is theoretically interesting, because the fictitious infinitely high tur-
bine is a two-dimensional analogue of the Darrieus turbine. The drum-type has also the possibility to vary
the blade setting angle during a revolution (e.q. RPM control), but this destroys the insensitivity to
wind direction. Therefore, the drum-type will be discussed only as a two-dimensional analogue of the
Darrieus wind turbine.

The types discussed above are primarily driven by a component of the lift force. Figure 4.3 shows
scme types that are primarily driven by a drag force. They are listed as vertical-axis turbine-, but will
operate also as a horizontal-axis turbine with their axes perpendicular to the wind (cross-wind types). In
that case, however, the insensitivity to the wind direction is lost. rhe cup turbine operates due to a
drag difference between the concave and convex side of the cup. It is actually used only as a wind velocity
meter and will not be discussed further. The example of the simple articulated panemone is given, because
it offers an occasion, by means of a rough performance estimate, to show the low tip-speed ratio and low
power coefficient inherent to all drag-driven turbines. In order to ..void the flapping blades of an artic-
ulated panemone, it is possible to shield one half of a fixed-bladed rotor from the wind stream, but in
that case the shield has to be rotated wheq the wind direction changes. The Savonius turbine is, strictly
speaking, not a drag-driven rotor. The rotor can be considered as a wing section with a S-shaped mean
line, rotating about its mid chord. At zero angle of attack, the S-shaped mean line causes a torque (zero-
lift pitching moment). At small angles of attack, the iift force, acting at the quarter chord point,
causes a torque (pitching moment about mid chord), whereas .t larger angles of attack the torque is due to
the drag difference between the convex and concave side or the rotor, Due to its simple and rugged con-
struction and because of its performance (high torque, not too low power coefficient), the Savonius tur-
bine is often seen in small-scale applications.
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Figure 4.4 shows two examples of horizontal-axis cross-wind turbines. Both of them could be operated
as vertical-axis turbines. This would be more logical for the drum-type (cf. Fig. 4.2), because a yaw
mechanism is avoided, but a flutter machine with a vertical axis has still to be put into the wind direc-
tion. The cyclic vertical motion of the flutter machine could be attractive for driving a water pump.
Whether this concept is feasible depends on the invention of a elegant solution for the mechanism that has
to produce the combined vertical and pitching motions of the wing.

In the next Sections, the performance of the simple articulated panemone and the flutter machine will
be discussed briefly. The theory of the horizontal-axis (particularly the low-solidity one) and the ver-
tical-axis (particularly the Oarrieus type) wind turbines will be discussed more extensively.

Comparison between theory and experiment is hampered by a lack of reliable experimental data, espe-
cially in case of the horizontal-axis turbine. For the vertical-axis Darrieus turbine, rather complete
sets of experimental results and comparison with theoretical calculations are available.

4.2 Drag-driven turbine

It is possible to drive a turbine by pure drag forces. The construction of the turbine then has to be
such, that elements of the turbine moving in wind direction have a high resistance, and elements moving
opposite to the wind have a low resistance. This can be realized by a number of different mechanisms, but
the mechanism sketched in Fig. 4.5 offers the possibility of a simple estimation of its performance. The
estimation, although rather crude, is useful because it leads to an overestimation of the power coeffi-
cients, when certain assumptions are made.

The following assumptions are made in the calculation:
1: At the lower half of the turbine, the blades are free from the stops, and the blades (hinged at the

nose) direct themselve into the relative wind direction, which is not necessarily parallel to the wind
direction U as drawn in Fig. 4.5. When the blades are fret! from their stops, the drag is neglected and
the blades do not contribute to the torque M.

2: At the upper half of the turbine, the blades are pressed against the stops, if

Iu sin f1 > SIR or Isin f1 > CR/U = X ; (4.2.1)

otherwise the blades are free from the stops and do not contribute to the torque M (see item 1). This
leads to the conclusion, that a positive contribution to the torque is only possible if X < 1.

3: The velocity through the rotor is assumed to be equal to the wind velocity U. Also the mutual inter-
ference between the blades (e.g. one blade entering the wake of a preceding blade) is neglected. This
means that the solidity of the rotor

o = Bc/R (with B = number of blades) (4.2.2)

is assumed to be low.
4: The normal force on the blade (N) depends on the component of the relative velocity normal to the Hlade

chord

U sin fl - R
and the normal force can be calculated from the corresponding drag coefficient for a flat plate normal
to the flow, thus

N - p(IU sin fl - fsR)2CDcH

= 1PU2 CDcH(Isin f1 - X)2.  (4.2.3)

with C0= drag coefficient (C0  2),

c - chord of the blade,
H = height of the rotor.

The average torque of one blade during one revolution of the rotor can be calculated from Eq. (4.2.3),
with the condition of Eq. (4.2.1), and with a = larc sin X1

A.L f 2JN R 0~=21
a

L pUC diR [(h2X2)(j arc sin X) - cos (arc sin X)]

I pU2C cHR F(X) (4.2.4)

The generated power can be calculated for a B-bladed rotor from
P = B ,

and the corresponding power coefficient from

C = P/ PU32RH = (o/27) Co XF(A) (4.2.5)

Figure 4.6 shows the power coefficient as a function of the tip-speed ratio, estimated with Eq. (4.2.5),
in which C = 2 and rather high values of the solidity ratio are inserted. Notwithstanding the high solid-
ity ratio chosen, the power coefficients obtained are low, and the optimum Cp occurs at X A 0.27.

The torque coefficient CQ (see Eq. (2.3.6)) is obtained from

CQ = Cp/ A (o/2m)C0F(X) (4.2.6)
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The torque is maximum at X - 0, viz.:

CQ= CD

and tends to zero when X ) I. The panemone is self-starting.

4.3 Flutter machine, used as a wind turbine

4.3.1 General remarks

It is known, that an elastic structure, e.g. the wing of an aircraft or the rotor-blade of a wind
turbine, might vibrate in such a vibration mode that energy is transferred from the airflow to the vi-
Drating structure (flutter). In case of insufficient methanical damping, the vibration may become so
violent, that the structure disintegrates.

The suspending of a rectangular wing in such a way, that a certain combination of vertical displace-
ments and rotations about an axis parallel to the wing span can be realized (cf. Fig. 4.4), might create a
possibility to extract energy from the flow and convert it into mechanical energy.

Energy considerations, including unsteady aerodynamic effects, were published for the first time in
Ref. 4.1. In the following Sections, estimates will be made of the amount of energy that can be extracted
from an airflow by a flutter machine, by applying quasi-steady aerodynamics. Possible mechanical solutions
for the translational and rotational motions and for the conversion of the motion of the wing into mechan-
ical energy will not be discussed.

The only purpose of the discussion is to show whether there is a potential feasibility to use the
flutter machine as a wind energy converter.

4.3.2 Energy extracted by a plain aerofoil

The aerofoil can rotate about an axis at a distance x behind the nose of the section (Fig. 4.7). The
axis can be displaced vertically (z). The displacements an the rotations vary harmonically with a phase
shift :

0 - 0 sin wt,

z = z sin (wt+) (4.3.1)

If the axis of rotation would be located at a distance b' behind the nose instead of at the distance x0,
the same motion of the aerofoil can be described by using different values of zo and *, viz. a and €
(assuming small rotations), thus:

0 = 00 sin wt,

z = a sin (wt+ ), (4.3.2)

with the conditions

a2 =z
2 + 2z(xo-b')0 ° cos + (xo-b')

202

z sin (
tg = zo cos 0 + (x -b') (4.3.3)

At low reduced frequency, i.e.

k = - c/U - I ,

lift and pitching moment can be calculated in a quasi-steady way, i.e. they can be calculated from the
instantaneous values of velocities and angles.

The usual approximation is applied, in which the aerofoil is replaced bj a discrete vortex at 4c, and
the relative velocity at ac, normal to the local mean line, has to be zero (see e.g. Ref. 4.2). This leadsI to

Ic -dz 1Xd
Cm = C 0 -I+L( - (4.3.)

Lt dt U(43)

Cm . Cd x (4.3.5)
m dTUT+ CL(cL)

When Eq. (4.3.1) is substituted into the Eqs (4.3.4) and (4.3.5), and when the abbreviations

k = Wc/U, r = Zo/c, and s = xo/c

are used, the following results are obtained

CL = CL [00 sin wt - kr cos (wt+ ) + k(Q-s)O ° cos wt] , (4.3.6)
a

C= - kO° cos wt + (s-)CL (4.3.7)Cm 0L

The extracted power P equals the energy during one period, times w/2v. The power is made dimensionless by
means of

6
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pU3cb (b = wing span)

which leads to

2 iT A) c dO 1 dz1

IpU3cb 2 0 1Umdt Ldt

The integral is evaluated for s b Other locations of tne axis of rotation can be considered, using
different values of r and 4 (see the Eqs (4.3.2) and (4.3.3)). For s = , the following result is obtained:

P = [(k0o) 2/161 (CL - ) - ICL kr(O o sin * + kr) (4.3.8)pU3cb 0LaLa 0

The maximum value of the lift slope is CL P 2t (two-dimensional); therefore, the first term in Eq. (4.3.8)
will be zero or small and negative. The second term can only be positive, when 4 is negative. When it is
assumed that CL = 2v and 4 = -,, the result is

P = -akr(Oo sin kr) = X (4.3.9)
oU3cb

The optimum of this function can be obtained from the requirement that the first and second partial
derivatives are zero, viz.:

aX -kr 0 cos I = O,

10

akr (o I - 2kr) = 0

This gives the stationary points (n/2, 0o/2) and (0, 0). The values of X in these points are

X(1/2, 00/2) = (m/4)02 or X(O, 0) = 0
0

the last value being not of physical interest here.

3ecause both

(a2X/a Z) > 0 and (32X/akr 2  = > 0
kr = /2

it is a proper maximum.

According to the quasi-steady theory (applicable when k << 1), the maximum extracted pow.er expressed
in 0° is

P T
PU3cb = 00 with 00 = 2kr 

(4.3.10)

4.3.3 Energy extracted by an aerofoil with plain flap

Next, a wing is considered which moves up and down and which is provided with a plain flap deflected
with the same frequency but a different phase. It has been assumed that the lift increment due to flap
deflection is independent of the angle of attack. It is possible to combine this motion with a variation
of 0 of the wing itself, but the realization of such a motion requires a complicated mechanism; the cal-
culation has, therefore, not been carried out.

The lift can be calculated from (cf. Eq. (4.3.4)):
I dz L

C C C C 6 (4.3.11)

When the displacement and flap deflection are written as

z = z0 sin wt,
0~~~sin (wt + 4,),( .. 2

the power P is made 6imensionless by oU cb and can be written as

P = kr(CL6 6 sin 4 - krCL) (4.3.13)pU3cb kL60 L 43-3

when the powei needed to drive the flap motion (hinge moment) is neglected. The optimum power can be cal-
culated in a way similar to Sect. 4.3.2 and is obtained when 4 = and 6o = 2krCL./CL6.
The optimum is

P = (C2/8) (CL 2c1 ) 62  (4.3.14)pU3cb Lo 8(L C

When the chord of the flap is denoted by cr, it can be calculated for a hinged flat plate, that

CL /CL = (2/r) (arc sin (cr/C)r + [(cr/c)( - cr/C)]&II (4.3.15)
6 c

The value of Eq. (4.3.15) depends on the ratio of flap chord and wing chord, but is always smaller than

.p -Is.. .
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one. When CL, = 2v, an expression similar to Eq. (4.3.10) appears viz.:

PUc = 2 / (4.3.16)
pU3cb 

o70('L/LJ

Although So might be chosen larger than 00, the Eq. (4.3.15) shows that the value of Eq. (4.3.16) is al-
most always smaller than the corresponding value of Eq. (4.3.10).

4.3.4 Estimation of power output

In order to estimate khe maximum possible amount of energy that can be extracted from the wind by a
flutter machine, the maximum possible values of the considered parameters have to be estimated. For the
plain aerofoil, one of the t.onditions is that the instantaneous angle of attack may not exceed a specific
value (stalling angle of tte aerofoil). The instantaneous angle of attack is

0 1 dz

U dt

According to Eq.(4.3.1),

a = 00 sin wt - kr cos (wt+ )

With the conditions for the optimum found in Sect. 4.3.2 v,z.:

= and 00°  2kr,

the angle of attack varies under optimal conditions as:

a 0 sin wt (4.3.17)

When a maximum angle of attack during a dynamic stall of about radian is assumed, Eq. (4.3.17) gives the
following conditions:

Oo 2 !
0 or kr . (4.3.18)

The maximum power output of a single plain aerofoil is

P IT 0.35 (4.3.19)
pU3cb 9

For the same value of the parameter 00 as that given in Eq. (4.3.18), it is also possible to compare these
results with the results given in Ref. 4.1. Contrary to the above given calculations, Ref. 4.1 uses the
complete unsteady aerodynamic equations, which give the following result

P 0.6 02 = 0.27 (4.3.20)
pU

3cb 0

A comparison of the Eqs (4.3.19) and (4.3.20) shows that the quasi-steady calculations overestimate the
energy output by 30 percent.

The dimensionless quantities given in the Eqs (4.3.19) and (4.3.20) cannot be compared directly with
the power coefficients Cp for a horizontal- or vertical-axis wind turbine. The coefficient for a flutter
machine is defined relative to the wing area, whereas the power coefficient Cp is defined by means of the
area perpendicular to the wind and swept by the rotor (e.g. vD2/4).

A horizontal-axis turbine shows a theoretical optimum power coefficient Cp = 0.59. When a low solid-
ity ratio (Eq. (2.3.8)) is applied, e.g. o Pj 0.1, the dimensionless power related to the rotor-blade area
becomes

P
= 0.59/0.1 = 5.9

pU3oS ref

This clearly shows that a flutter machine produces less power per unit area of the aerodynamic active
elements than a low-solidity horizontal-axis turbine.

It is conceivable to construct a flutter machine consisting of a cascade of B aerofoils with a mutual
separation equal to the chord c or less. In this case a reference area comparable with the reference area
for a conventional wind turbine may be defined, viz.

= Bcb
Sref

and the corresponding maximum power coefficient (when unf vourable interference effects are neglected)
becomes

PCp =e 0.27=pU 3Bcb

This compares less unfavourable with a conventional wind turbine than the coefficient referred to the
total blade area, but the solidity ratio is high, viz.:

o = Bcb/Sref = I

According to Ref. 4.1, the quasi-steady calculations are valid if

k < or (4.3.21)

3 7
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It is, thus, advantageous not to exceed :his value of k by choosing r not too small (see Eq. (4.3.18)). it
follows then from Eq. (4.3.18) that the related optimum value of 00 is obtained at r s 1, i.e. at a dis-
placement z0  

c.

A possible advantage of thib concept is the lower acceleration of the blade elements of a flutter
machine, compared with those of e.g. a horizontal-axis turbine. With - n/2, xo = c/2 and zo A c, the
maximum acceleration of a blade of the flutter machine is approximately

W2 c(cos Wt + sin wt)max A w2c

which can be written as

w2c = k
2U2/c

while the maximum centrifugal acceleration of a horizontal-axis turbine at high X is approximately

Q21R0  X2 (c/R0 )U
2/c XU2/c

The flutter mach~ne, therefore, reveals a potential feasibility to operate as a wind energy converter,
when an elegant construction for the rotational and flapping motion can be realized. The flutter machine
has to be considered, however, as a device with a high solidity ratio, which implies relatively high
manufacturing costs.

4.4 Horizontal-axis turbine

4.4.1 General remarks

At first sight, a strong analogy seems to exist between the aerodynamics of an airplane propeller, a
helicopter rotor and a horizontal-axis wind turbine. It could be expected then, that the performance cal-
culation of a horizontal-axis wind turbine can take advantage of the experience from airpla~ie-propeller
and helicopter-rotor theory and experiment.

An important difference between a propeller or helicopter rotor and a horizontal-axis wind turbine
is, that in the first case the th-ust or lift is the most important quantity and the torque somewhat less
important, whereas in the second ase the torque is much more important than the force in wind direction.
Moreover, the torque is more difficult to estimate, because it is composed of a component of the lift
force (critically dependent on the angle of attack) and the profile drag of the rotor blade.

A further important difference between an airplane propeller and a horizontal-axis wind turbine is,
that a propeller in cruise condition reveals small perturbation velocities with respect to the speed of
flight, whereas an optimally operating wind turbine shows perturbation velocities that are not small with
respect to the wind velocity. This appreciably affects the possibilities to formulate a mathematical model
for the vortex wake behind the rotor. In case of the propeller, a cylindrical wake with a periodic struc-
ture can be defined (slipstream contraction can be neglected), whereas in case of a horizontal-axis tur-
bine the vortex wake expands appreciably (cf. Fig. 3.3) and the vortex structure varies downstream, i.e.
the structure becomes a function of the induced velocities, which leads to a nonlinear wake structure and
thus to a complex iterative calculation procedure.

An airplane propeller in take-off conditions does have more in common with an optimally operating
wind turbine (large perturbation velocities, but a large slipstream contraction instead of a large wake
expansion). However, no detailed calculation method for this operating condition of an airplane propeller
can be found in the literature.

In some flight regimes of a helicopter, the aerodynamics of the rotor is more similar to-that of a
wind turbine, e.g. in autorotation. In this field new developments in calculation methods (enabled by the
development of the digital computer) can be found in the literature.

In the next Sections, the blade-element theory, the vortex theory for small perturbations (essentially
thp propeller theory), and the possible extension to large perturbation velocities will be discussed, with
an emphasis on the underlying assumptions. Some results of the theory will be reviewed and some remarks on
optimization procedures will be made. Comparison with experiments is hampered by lack of recent and accu-
rate test results.

The discussions will be limited to the case of a horizontal-axis wind turbine with its axis parallel
to the wind and immersed in a steady, homogeneous and non-turbulent wind stream, i.e. the effects of the
atmospheric boundary layer will be excluded.

4.4.2 Theory for an infinite number of blades

When the number of blades of a rotor tends to infinity, it is assumed that the circulation around an
elemental blade at radius r (r') tends to zero, while the total circulation of B blades (rr) remains
finite, thus 

d

r r  Lim B rr' finiteB 4m

r' 0r
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When B =, the flow is axisymmetric, i.e. independent of the azimth angle *. From -ech elemental-blade
trailing edge a vortex sneet springs, whose local strength depends on the local "bound" vorticity. For a
discussion of this vortex system see Appendix C.

The discussion in this Section is based on the theory of Glauert (Ref. 4.3). The induced velocities
are denoted by so-called "induction" factors. At the rotor, the axial and tangential velocity at a radius
r are:

Ua 'i-a)U , (4.4.1)
Uax

U tan (l+a')sr , (4.4.2)

with il - angular velocity of the rotor.
When a cylindrical wake is assumed (cf. App. C), the induced velocities far behind the rotor are

twice the values at the rotor.

U = (-2a)U , (4.4.3)

U tan = (1+2a')Qr (4.4.4)

When it is assumed that the momentum equations can be applied to the elemental annular streamtube with
radius r and thickness dr (cf. Appendix C), the axial momentum equation gives an expression for the normal
force on the annulus

dN - 4trpU 2a(1-a)dr , (4.4.5)

when the static pressure deficit due to the tangential velocities in the wake far downstream is neglected.
The tangential force on the rotor blade elements in the annulus (dT) gives rise to a torque

dQ = roT. When the equation for the angular momentu,., is applied and the wake expansion is neglected, the
total tangential force on the annulus is

dT = 4nr
2
pUsa'(l-a)dr . (4.4.6)

When the chord of the rotor blade is small with respect to the span of the blade, the chordwise pressure
distribution of a blade element at the annulus is identical to that of a two-dimensional wing section
(profile) with a relative velocity and angle of attack equal to those of the blade element. This means
that the local lift and drag of the blade element can be calculated from the data on two-dimensional pro-
files (C1 vs a, Cd vs a) and the local Urel and angle of attack a.

Because C1 is perpendicular to Urel and 
C d parallel to Urel, it follows from the velocity triangle

in Fig. 4.9 that in case of a B-bladed rotor

dN = pU2  C(C1 cos 0 + C sin O)dr
2 rel I d sn0d

= (lrpaC I-a)2U2 cos 0 [i+(Cd/C1) tg 0] dr , (4.4.7)

sin 2 0

dT = pU
2 
eC(C sin 0 - C cos e)dr2 rel I~ - d cs d

= (irpo'C1 (-a) 2 U2 sin 0 [1.(Cd/Cl) cotg 0] dr , (4.4.8)
sin

2 0

with a' = Bc/2nr = local solidity ratio. (4.4.9)

The induction factors a and a' can now be calculated from the Eqs (4.4.5)-(4.4.8). The induced velo-
cities at the blade element are generated, however, by vortices (lift forces) only and not by the profile
drag, because, within the small-chord approximation, the profile drag does not induce velocities at the
rotor blade itself. Therefore, Cd has to be set equal to zero, when the induction factors are calculated.
Thus the equations are

a/(1-a) = o'C I cos o/(4 sin
2 6) , (4.4.10)

a'/(1+a') = o'C/(4 cos 0) . (4.4.11)

When the relation, obtained from the velocity triangle (Fig. 4.9)

Xtg 1 (4.4.12)

is used, with

X = Rr/U = (Ro/U)r/R ° = Xr/R ° = local tip-speed ratio. (4.4.13)

Eliminating a and a' from the Eqs (4.4.10)-(4.4.12) gives

o C 4 sin 0 cos 0 - X sin 0 (4.4.14)sin 0 + X cos 0

Dividing the equations (4.4.10) and (4.4.11) and using Eq (4.4.12) leads to

a tg 0

which can also be written as

a--= tg 0

a " . . . .



As Fig. 4.9 shows, this means that the total induced velocity is perpendicular to the relative velocity.
This can be understood, because thu lift force is perpendicular to the relative velocity and the change
in linear momentum has to be in the direction of the applied force, which results in a total induced
velocity that is also perpendicular to the relative velocity.

The power generated by the blade elements can be obtained from

dP = QrdT,

and the power coefficient of the whole turbine from

RP 1
C = = f dP
P pU3nR2 pU3 TR2 rhb

Using the Eqs (4.4.8), (4.4.10) and (4.4.14) leads to

A
Cp r (8/X2 ) f sin 2 O(cos 0 - X sin 0)(sin 0 + X cos 0)(1-(Cd/CI)cotg O]X 2dX (4.4.15)

Xhub

For actual calculations, the angle of attack has to be obtained from (Fig. 4.9)

=0-i , (4.4.16)

and with this value of a, C1 and Cd can be obtained from the profile data.

The range of useful values of 0 will now be disctssed. From the velocity triangle follows, that a
wind turbine might operate in a O-range

0 0 900

The lower boundary is the condition U - 0, o 0 0, or a = 1; the upper boundary is the condition $ = 0,
r = 0 or a' = -1. When C1 = 0, the induced velocities are zero (a = a' = 0), and it follows from Eq.
(4.4.12) that

(tg O)CI=0 = I/X (4.4.17)

In order to satisfy the continuity equation (mass conservation), the velocity far downstream cannot be
smaller than zero (there cannot be any backflow). Such a condition can occur in a real flow (turbulent
wake state and vortex ring state; Ref. 4.4), but the equations cease to be valid in that case. It follows
from Eq. (4.4.3) that

With the equations (4.4.10) and (4.4.14), this can also be written as

a = cos O(cos 0 - X sin 0)

or {(tg 20)}a I/X (4.4.18)

In reference 4.3, the conditions for optimum power generation in the case that Cd = 0 are discussed.
Because of the assumed independence of different blade elements along the span, the integrand of Eq.
(4.4.15) can be optimized for each radial position (X) separately, for a given value of the tip-speed
ratio X, thus

a sin 2 O(cos 0 - X sin O)tsi.n 0 + X cos 0) = 0

which results in
= sin 0(2 cos 0 - 1) (4.4.19)

0 -CosO)(2 cos 0 + I)

or, when this is inserted into Eq. (4.4 14),

o'C1 . 4(1 - cos 0) , (4.4.20)

or, from the product of both,

2trXa'C = (X B-  C t Bv sin 0 2 cos 0 - 1 (4.4.21)J1 R 0  1 optimum '2 cos 0+ I

The distribution along the span of the optimum of 0 and the optimun of C1 c are shown in the figures 4.10
and 4.11. When the lift coefficient is chosen constant along the sp,.n, Fig. 4.11 reveals the chord distri-
bution along the span.

Also shown in the figures is the possible range of 0 and C1 c. A negative C1 might be tolerated along
a part of the span at certain off-design conditions, but too high values of C1 (or too low values of 0)
extend the formulae out of the range of validity. Figure 4.11 shows that, in the present theory, only the
turbine performance ove- a relatively narrow range at the high-lift side of the optimum can be calculated.

Ref. 4.3 also gives the optimum of Cp in case Cd = 0 (CI/Cd = "), whereas Ref. 4.5 gives the in-
fluence of CI/Cd on th,., optimum of Cp in case of Cl/Cd is constant along the blade span. The results are
shown in Fig. 4.12. This figure shows that, when a low value of X is chosen (which corresponds to a large
chord and many blades, according to Fig. 4.11), the optimum of Cp is appreciably reduced.

Usually, this power reduction at low A is explained by considering the work done on the air by the
torque of the rotor, viz.

AP - f a'Q dQ
It is argued, however, in Appendix C (Sect. C.5), that this power reduction is probably cancelled for the

-- _ , . . - .. . " + - -+ {+,+ -- _ - y_. .. . .. J
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greater part, when also the effect of the static pressure d6ficit in the wake is considered.
When we return to Fig. 4.11, it appears that the circulation at the tip is non-zero. This is caused

by the assumption of an infinite number of blades. In the next Section, the influence of a finite number
of blades will be discussed.

4.4.3 Tip correction theories

4.4.3.1 Linearized correction

With a finite number of blades, the circulation around the blade has to decrease continuously to zero
towards the tip, because of the possibility of a cross-flow around the tip, which decreases the pressure
difference between upper and lower side of the tip profile. This effect is analogous to that of an air-
plane wing of finite span, but the vortex calculations are more complex in case of a wind turbine.

Prandtl (Ref. 4.6) introduced a relatively simple method to estimate this so-called "tip-loss"

effect. He considered the helical vortex sheets behind the turbine (cf. Appendix C) to be rigid planes
moving with a velocity equal to the axial induced velocity aU with respect to the undisturbed external
flow. Because this was still a complex problem to solve, he simplified it further by considering a set of
equidistant parallel flat plates, with a mutual distance (Fig. 4.13) of

d = (21R /B) sin 0 z (21Tr/B) sin 0 , (4.4.22)
0 t

with 0t = helix angle at the tip.
With a conformal transformation, the reduc'ion in potential difference between two plates approaching

the tip could be calculated. It was assumed that this reduction in potential difference was equal to the
reduction of the circulation around the rotor blade. The reduction factor found by Prandtl was

F = (2/n) arc cos [exp - (7/d)(RO-r)]

= (2/) arc cos [exp - (B/2)(1-r/R0 )/{(r/R0 ) sin 0} (4.4.23)

When the circulation for a rotor with an infinite number of blades is denoted by r, the circulation for

a B-bladed rotor is then

' = F r. .(4.4.24)

r can be calculated from Sect. 4.4.2 (because of the axisynmetry) by considering the induced tagential

velocities far downstream, viz.

r. = 21r 2a'Qr = 41nra'Qr

Because the total induced velocity wt is perpendicular to Urel (Fig. 4.9), wt can be expressed in the
tangential velocity comonE,,r

w - a'sr/sin 0
t

or with the expression for r

wt = r./
4
nr sin 0

At a given value of e (thus a given value of wt), the circulation is reduced by the factor F (which also
depends on o) according to Eq. (4.4.24), and the equation for wt becomes

wt = r/4mrF sin 0

Because the total circulation of the B blades is

Br - -CicUre
21 ctrel

the formula for wt can be written as

wt . (o'CI/4F sin O)Urel 1 (4.4.25)

which can be regarded as the fundamental equation to calculate the turbine performance.

From the fact that wt is perpendicular to Urel, it follows that

U re sin 0 = U - w t cos 0

Together with Eq. (4.4.25), the following relations can be obtained

wt/U = [(4F/o'C I) sin
2 

0 + cos 0]
"
1 (4.4.26)

Urel /U = [(('TCl/4F)cotg 0 + sin 0]1  (4.4.27)

From the velocity triangle (Fig. 4.9), the re!ation

U -w t cos 1- (wt/U) cos 0

t r + _wt sin 0 
=

+ (wt/U) sin 0



follows, or, with Eq. (4.4.26):

cos 0 - X sin 0 (4.4.28)
o'Cl=4 F sin O + X cos 0

The power coefficient can be calculated from the tangential force, which leads to

Cp . (8/X21 f F sin 2 O(cos 0 - X sin 0)(sln 0 + X cos O) [1-(Cd/C 1)cotgO]X
2dX (4.4.29)

0 g

Apart from the factor F, this formula is identical to Eq. (4.4.15). Figure 4.14 shows the influence of the
tip correction on the local power coefficient (dCp/d(r/R )), when Cd = 0. The influence on the optimum 0
is small. This means that most of the conclusions drawn rom the theory for B also apply to a finite
number of blades.

It can be revealed from Fig. 4.14 that the tip loss decreases with increasing tip-speed ratio X (due
to the decrease of 0), which is also an argument to design a wind turbine with a high X.

4.4.3.2 Theory of Wilson and Lissaman

In Ref. 4.7, a theory for the tip correction is given that slightly deviates from the theory of the
preceding Section. It uses the momentum equation in the same way as that in Ref. 4.3 and has, therefore,
to interprete the correction factor F in terms of velocities.

When Fig. 4.13 and Ref. 4.6 are considered, the potential difference between the plates might also
be interpreted as the difference between wt and the average of the velocity between the plates wj times
the distance d. Deep inside the plates (r + 0), w' 0 or wt-w' - wt, i.e. the fluid moves with the vortex
sheet, whereas approaching the tip of the plates tr-+ Re), wt 4 wt or wt-wt + 0. This leads to the inter-
pretation that at the vortex sheets, thus also at the blade elements, the full induced velocities are
present (aU, a'or), but that between the vortex sheets the induced velocities are reduced and that the
average induced velocities could be obtained by the factor F, viz. aFU and a'Fslr.

To apply this concept to the momentum equations, the additional and more or less logical assumption
has to be made that far downstream similar arguments can be used, i.e. the average induced velocities far
downstream are 2aFU and 2a'Fflr. It must be noticed that, when the total induced velocity at the blade
element is perpendicular to the relative velocity at the blade element (X(a'/a) = tgo), the total average
induced velocity is also perpendicular to the relative velocity at the blade element.

In Ref. 4.7 then the assumption is made that the total circulation around the blade elements at
radius r,

=C cUre = -Clc(l+a')gr/cosO , (4.4.30)

2 1 rel 2 1

is equal to the circulation, calculated along a circle with radius r far downstream

r = 2rr 2a'Fslr . (4.4.31)

Such a relation is strictly valid only in axisymmetric flow, because, due to the radial velocities from
the cross-flow around the blade tips (Fig. 4.13), the stream surface becomes deformed and a radial trans-
port of vortic*ty may take place, which invalidates the assumption above.

Eq. (4.4.31) can also be interpreted as r = F r., used in the preceding Section. From the Eqs
(4.4.30) and (4.4.31) it follows that

a'F 'C1  (4432)
1+a' = 7 -cos 0

which can be compared with Eq. (4.4.11) for an infinite number of blades.

In Ref. 4.7 the axial momentum equation (Eq. (4.4.5)) is applied; but "a" is replaced by the average
value "aF", which ultimately leads to the following relation:

(1-aF)aF CI cos 0
=ja ) , ( 4 . 4 3 3 )

(I-a)2  4 sin 2 0

which can be compared with Eq. (4.4.10) for an infinite number of blades.

The linearized approach of the preceding Section should give a somewhat different left hand side of
the equation, viz. aF/(1-a). The inclusion of a higher-order term can be questioned (see Sect. 4.4.3.3),
but in Ref. 4.8 it is quoted, that it reduces appreciably the computation time for an optimalization cal-
culation.

The ratio of the Eqs (4.4.32) and (4.4.33), together with Eq. (4.4.12) gives

a' t -aF
a - atg0T- ,

which shows that neither th, local total induced velocity (wt) nor the average one (Fwt) is perpendicular
to the relative velocity at the blade element. This could also be rostored by including higher-order terms
in Eq. (4.4.32). This owuld lead to a left-hand term equal to

a'F(l-aF)
(l+a')(7-a)

The induction factors can be written explicitly, viz.
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a = {2A+F - [F
2 

+ 4AF(I-F)] ]/2(A+F)2 (4.4.34)

with

A = o'Cl cos 0/(4 sin
2 0)

and

a'- o'C1 /(4F cos 9 - o!CI) (4.4.35)

When F 1 1, i.e. B 4 or r/Ro ) 0, the result of Sect. 4.4.2 is found again.
When F - 0, i.e. r/Ro + 1, Cl + 0 (Eq. (4.4.33)) and the values for a and a' become indeterminate.

The values at the tip (r/Ro 1 1) are not important, however, and can be omitted.

The formulae obtained are too complicated to permit an elimination of a and a' in order to get an
explicit expression for o'C1 (cf. the Eqs (4.4.14) and (4.4.28)), and an iteration procedure is necessary
for the calculation.

4.4.3.3 Higher-order correction

In the Refs 4.7 and 4.8, the average values of the induced velocities are applied directly into the
momentum equations, which, strictly, is not correct. The variation of the induced veloc:ities with azimuth
angle (Fig. 4.15) has to be taken into account. In Re. 4.6, however, the variation with is not explic-
itly shon, and it is hard to obtain it from the formulae given. Therefore, a sinusoidal variation between
the rotor blades (and vortex sheets) is assumed (Fig. 4.15), viz.

(aU)f = (aU)F + (aU)(1-F) cos B@ , (4.4.36)

(a'r)f = (a'r)F + (a'fr)(1-F) cus B3 (4.4.37)

The same distribution has been assumed far downstream, but the mAximum interference factors than are 2a
and 2a'.

When the axial momentum equation is apdlied to an elemental streamtube through the rotor (Fig. 4.15),
and when the static pressure deficit in the wake far downstream is neglected, the contribution to the
normal force is

d(dN) = rddrp2afU(l-af)U - 2rd~drpU
2 (af-a2 f

2 )

Integrating over @ leads to

dN = 41TrpU
2
(aF-a

2
F*)dr , (4.4.38)

with
21T

F=L f fd , (4.4.39)
0

and

= f2d = F2 + 1(1-F) 2  
(4.4.40)

0

In a similar way, it can be found that

dT - 41r2 pQU(a'F-a'aF*)dr (4.h.41)

When F 1, i.e. B + or r/Ro . 0, F* -l and the formulae of Ref. 4.3 are obtained.
When F + 0, i.e. r/Ro -) 1, F* + , which expresses the fact that, when the average of the induced

velocities is zero, the average of the squares of the induced velocities need not to be zero.
From the above equations, it follows that dN and dT become negative when the tip is approached. This

seems physically unrealistic, but, as it is limited to values of r/Ro very close to one, it could be
accepted. It is an indication that, in spite of the apparently more accurate higher-crder terms, some
other effects have been neglected.

Effects possibly neglected in the calculation are the non-axisymmetrically distributed trailing
vorticity and the pressure term in the linear momentum equation (cf. the discussion in Appendix C in
case of an axisymmetric flow).

When the blade-element expression is equated to the momentum expressions, the following fo.mulde are
obtained

aF-a
2 F* o'C1 cos 0

(I-a)
2  4 sin

2 0

a 'F -a 'a F * 'C l( .4 4

(l+a')(1-a) = 4 cos 0 (4.4.43)

The ratio of these two equations, together with Eq. (4.4.12), leads to

X = artg

which shows that the total induced velocity is perpendicular to the relative velocity at the blade element
(cf. Sect. 4.4.2).

2,

*/
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Solving "a" from Eq. (4.4.42) gives

a - (A+ F)/(A+F*) - h[F2 + 4A(F-F*)]1/(A4F*) (4.4.44)

with

A = o'C1 cos 0/(4 sin 2 0)

When F -1 0, F* + and "A" has to be zero or negative, otherwise the square root becomes imaginary. This
means that C1 as well as "a" have to be zero or negptive.

When the energy equation averaged over an annular streamtube is applied,
2n 2r

f (1+a'f)nr d(dT) = f (1-af)U d(dN)

this yields

(a'F-a'aF*+a'2F*-a' 2aF**)X2 - aF-2a2r*+a 3F** (4.4.45)

with

F** L f3d F3 + 3 (1-F) 2  (4.4.46)
0

When a' = a tgO/X is substituted, this yields

a = 2 F-(0+C) - _W [F*2(1+C)2-4FF**C] , (4.4.47)

with

C = cos O(cos 0 - X sino )
When F - 0, then F* -) , F** + 0 and Eq. (4.4.47) becomes indetermi~4ate 0/0. C can be interpreted as the
induction factor "a" for F = I (i.e. for B = -). Because the argument of the square root should not become
negative, the possible range of F and C is limited. This limitation is not very important, because it is
in the range C > , which is also outside the range of applicability of the momentum equations (violation
of continuity eauation).

It seems possible to obtain solutions by putting Eq. (4.4.47) equal to Eq. (4.4.44), but the question
remains whether these complicated calculations attain a better agreement with experiment than the linear-
ized correction of Sect. 4.4.3.1.

4.4.4 Linearized vortex wake theory

Consider the wake behind a rotor with a finite number of blades. When the induced velocities are
small with respect to the wind velocity, the helical vortex sheets move downstream with a velocity almost
equal to the wind velocity. Therefore, the vortex sheets move downstream like a rigid body. Due to the
small induced velocititet, the wake expansion can also be neglected, which leads to a cylindrical wake.

Prandtl (Ref. 4.6) already made a simplified calculation, but Goldstein (Ref. 4.9) was the first who
calculated the induced velocities from the rigid helical vortex sheets. However, these results were
limited to the case of an optimum circulation distribution along the span of the blade. The optimum distri-
bution was such, that it revealed a minimum rotational energy in the wake at a given axial force on the
rotor (i.e. an optimum efficiency for an airplane propeller). Such an optimum distribution for an airplane
at cruise condition need not to be identical with the distribution for a maximum energy output in case of
a wind turbine.

In order to apply the calculations of Ref. 4.9 also to non-optimum conditions, the method of Lock and
Yeatman (Ref. 4.10) could be used. The underlying assumptions are:
- The total induced velocity at rad r depends solely on the circulation at radius r.
- The total induced velocity is perpendicular to the relative velocity at the blade element.

The total induced velocity could be calculated from

wt = r/41yrk sin 0 , (4.4.48)

with r - total circulation of B blades at radius r;
k = numerical factor, calculated by Goldstein as a function of r/R , sin 0 and B.

Because of the underlying assumptions and because of the identity of the Eqs (4.4.48) and (4.4.25), the
equations of Sect. 4.4.3.1 can be used, when the factor F is replaced by k.

Because the Eqs (4.4.48) and (4.4.25) are identical, it is to be expected that the tip correction
theory of Sect. 4.'..3.1 and the linearized vortex wake theory give similar results. Larger deviations
would be possible, when the induced velocities would also be calculated for non-optimum circulation distri-
butions.

It must be emphasized that the mutual independence of different blade elements along the span, when
the theory of Lock and Yeatman is used, stems only from the (implicit) assumption of a definite shape for
the circulation distribution.

When B = -, the flow is axisymmetric and the mutual independence of the blade elements can be proven
(when the wake expansion is neglected). Because the condition B - - is better approximated when X in-
creaseT, it is to be expected that the error due to the assumption of Lock and Yeatman will be rmoderate
also with a non-optimum circulation distribution at high values of X.

, V
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4.4.5 Extended numerical methods

It is possible to extend the existing calculation methods in various directions, but all these
e)%tensions consequently lead to a more complicated computer program than the relatively simple programs
discussed so far.

Possible directions to extend the calculation method are:
I: From lifting line to lifting surface.

The above--discussed calculation methods assumed the bound vorticity to be concentrated at the -chord
line, whereas the chordwise pressure distribution is assumed to be equal to that of a two-dimensional
wing section. This could be extended by several lifting surface approximations, like those of
Weissinger (Ref. 4.11) and Multhopp (Ref. 4.12), the acceleration potential method (e.g. Van Holten,
Ref. 4.13), or even a modern panel method (e.g. Ref. 4.14).

2: From a cylindrical towards an expanding wake.
The only direct calculation of induced velocities known in the literature is that for a cylindrical
rigid vortex wake with a given circulation distribution, belonging to an optimally operating airplane
propeller at cruise conditions (Ref. 4.9). In Ref. 4.15 a cylindrical wake is applied, but the circula-
tion is not given beforehand. The induced velocities are not given, therefore, a comparison with the
results of Ref. 4.9 is not possible. The influence of the wake expansion is discussed in Appendix C for
an axisymmetric wake, but could be investigated for a B-bladed rotor by a so-called "fixed-wake"
method. This means, that the shape of the wake is a part of the input data of the computer program and
does not follow from the calculations.
The ultimate goal wculd be the calculation with an expanding wake, the shape of which is determined by
the calculation method, using an iteration procedure (cf. the analogous but less complicated problem
for the wake of an aircraft wing, see e.g. Ref. 4.16). Such a method is o,,tlined in Ref. 4.15, but the
completion of the computer codes including all these features are still a long way ahead.

Because of a number of reasons, the "high-" wind turbine seems the most promising (cf. Sect. 2.4).
This leads to rather small chord lengtht. (small solidity ratio o') at tne most effective parts of the
rotor blade (r/Ro > 0.5). Therefore, the extension of the calculation method in the direction of a lifting-
surface theory does not seem to be urgent.

There are more doubts about the validity of the determination of the induced velocities (tip effects
and wake expansion). Because the induced velocities determine the angle of attack a of the blade elements,
which in turn very sensitively influences the local lift force on the blade, an extension in the direction
of item 2 seems to be the most urgent.

A very readable review of the state-of-the-art of rotor aerodynamics is given in Ref. 4.17. The
necessity to use these complicated calculation methods depends on the discrepancies between the results
obtained by the more or less "simple" methods and the expor:t

., - a , ,esults, which are, however, very
scarce. Wind tunnel tests often are performed at such a low Reynolds number, that the appropriate aerody-
namic data of the wing sections are missing, or the data are obtained from "field" or "free-air" measure-
ments, which can hardly be -ompared with calculations because of wind-shear and atmospher ,-turbulence
effects which are not accounted for in the calculation methods.

When it is considered that, at the one hand, the computer codes containing an expanding vortex wake,
finite chord-effects, etc., are very complex while, at the other hand the inhomogeneous and turbulent-flow
effects are neglected, the question can be raised whether such complex computer codes really make sense.
The implementation of inhomogeneous and turbulent-flow effects in the aerodynamic performace calculation
still is an unsolved problem (cf. Sect. 5.1).

4.4.6 Aerodynam:c optimization

In the case of a wind turbine, the aerodynamic optimization of a rotor means that the geometry of the
rotor blades is varied in such a way that the power output Cp becomes a maximum.

For a turbine with an infinite number of blades, such an optimization has already been discussed in
Sect. 4.4.2. In the case of a turbine with a finite number of blades, the optimum geometry cannot be given
explicitly. In Ref. 4.8, the aerodynamic optimization of a wind turbine is briefly discussed, and a
special part of that approach will be commented on below.

In Ref, 4.8, an aerodynamic efficiency for a ring element of a wind turbine is defined in analogy
with an airnlane propeller, viz.

n= Q dQ power output of rotor

(Tl-aU dN work done by air through axial force N

It is then stated, that n = nm1x is a necessary condition for an aerodynamically optimized design.

From the energy equation tcf. Appendix C, Sect. C.4)

dP l dQ = (I-a)U dN - a'l dQ

it follows for the above-defined efficiency, n, that

1 +a----

The highest possible n can be obtained b making a' as small as possible, i.e. by making Q as small as
possible. This can be obtained by choosing i as high as possible at a fixed power output. This conclusion
was also obtained for a rotor with an infinite number of blades (Sect. 4.4.2).

It must be noticed, that this conclusion is drawn fror, a theory that does not take the static pres-
sure deficit in the wake into account (Appendix C). There are indications that the power loss due to wake
rotation might be compensated largely by the influence of the static pressure d~ficit in the wake. At the
other hand, a turbine with a low X (slow-running turbine) shows a high solidity. It might be that the
present tip-correction theories do not properly represent the strong mutual interference of the blades in



the case of a high-solidity rotor.
For a rotor with a giken sl (or X), a' cannot be chosen independently and the use of n in an optimiza-

tion procedure does not seem very worthwhile.
The simplest and most direct way to obtain an optimum value of Cp is to require an optimum value of

dCp/d(r/Ro ) at each spanwise location. This procedure is admissible when it is assumed that the blade
elements are mutually independent.

The optimization has to be carried out for a fixed value of X and a fixed number of blades B. The
optimizatibn results in an optimum value of 0 and (c/R )CI at each spanwise station of the rotor blade.
The actual shape of the rotor blade is not completely ?ixed, because CI depends on a - 0 -i and because a
certain degree of freedom exists in the choice of the chord- and twist-distribution along the span.

In order to simplify the calculations, a fixed value of CI/Cd is assumed during the optimization pro-
cedure.

The formulae for the optimization will be sunned-up below for the different calculation methods, dis-
cussed in the Sections 4.4.3 and 4.4.4.

The formulae for the linearized tir correction and the linearized vortex wake are identical, using
only k instead of F in the latter.

X I

C . F sin 2 O(cos 0 - X sin 0)(sin 0 + X cos o)1-(Cd/C1) cotgO]X2 dX
Xhub

The condition for the optimum Cp is

(0)opt MAX [F sin 2 0(cos 0 - X sin 0)(sin 0 + X cos o)[l-(Cd/CI)cotgO3

X,X,Cd/CI const.

and the corresponding lift-times-chord distribution

(c ~ ~ n ) =[ .Fsn0Cos 0 - X sin 01 =OR I opt LBR s sin 0 + X cos 0 )

In the theory of Wilson and Lissaman, the formulae are

8 J
Cp = - J aF(l-aF) [tgO -(Cd/Cl)]X 2dX

Xhub

The condition for optimum Cp is

(O)opt - MAX [aF(I-aF)CtgO -(Cd/Cl)]]

X,X,Cd/CI = const.

with the additional formulae

X a I-aF t  ,
x=a' I-ag

a = {2A+F - (F2 + 4AF(I-F)] j/2(A+F)2

a'= o'Cl/(4F cos 0 - o'C1 ) ,

A = o'C1 cos 0/(4 sin
2 0)

Due to the complexity of the formulae, a double iteration cycle is necessary, which results in finding
the values of (0lop t and (oCI)opt. From the latter can be obtained

(oC i)opt = - -(O'Cl) 0 P= I optopt

The formulae for the higher-order correction theory are
8

C= 7 (aF-a2 F*)[tgO-(Cd/CI)JX 2 dX
X~hjb

The condition for optimum Cp is

(0) MAX [(aF-a2 F*)  /Cl)]
op tgo-(Cd/)J

X,X,Cd/Cl = const.

with the additional formulae

a = I L*-(l+C) - - [F*2(l+C)2-4FF*CJl

C = cos O(cos 0 - X sin 0)

F* = F
2 + (l-F) 2

F**= F3 + 3F(I-F)2

MZ-= -
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Despite its apparent complexity, only a single iteration cycle is necessary, which discloses the values
of (O)op t and (a)opt. From these values can be obtained that

[ci 8n r sin 2 0 aF-a
2F*1

[=- II 1a O0 opt B cos 0 ( (a,0)opt

Figure 4.16 shows some typical results, obtained by the above optimization procedures. The influence
of the different nethods on the value of (O)opt is very small. The influence on (cCu/Ro)oot is larger. The
higher-order tip-correction theory leads to an increased chord and/or increased lift coef icient at the
tip. It is, howevar, highly questionable whether this result is acceptable from an aerodynamic point of
view. Especially the assumption of the mutual independence of the blade elements might hb, violated in the
tip region, due to the radial displacement and "rolling-up" effects of the trailing vortex sheet.

The optimum shape is very close to the Glauert solution (Sect. 4.4.2) and leads to a rather imprac-
tical blade shape, viz. a strongly non-linear taper and a large blade twist, especially close to the blade
root.

A more practical blade shape debign requires a direct rather than an inverse method for a given blade
geometry. This will be discussed in the next Section for the linearized tip-correction theory.

4.4.7 Calculation method for a given blade geometry

4.4.7.1 Description of the method

In these calculations it is assumed that the blade geometry (c/Ro, i) is given, as well as the number
of blades B, the tip-spred ratio X and the aerodynamic profile data C1 = f(a) and Cd = f(a).

From Eq. (4.4.28) it follow that C1 = f(O), viz.:

8r/Ro css 0 - X sin 0 (4.4.49)
C1  Bc/R F sin 0 in 0 + X cos 0 (

with

F 2 arc cos [exp - (B/2)(I - r/Ro)/((r/Ro ) sin O)

From the aerodynamic data it follows that

CI  - f(a) = f(O-i) . (4.4.50)

The intersection of both curves in the Cl-vs-6 plane gives the operating point of the blade element under
consideration (see Fig. 4.17). There are some difficulties, which will be discussed below.

Generally, there is more than one point of intersection between the curves of the Eqs (4.4.49) and
(4.4.50).

An intersection with the dashed part of the curves in Fig. 4.17 means that the induction factor
a > . Consequently this solution has to be omitted (see discussion in Sect. 4.4.2).

The lift curve might intersect the full line part of the curve (a < ) twice (or even three times),
when the curves intersect in the stalling region. Though all the solutions are possible, the unstalled
solution will be precerred.

It is also possible that no solution can be found, i.e. the curve of Eq. (14.4.49) remains below the
curve of Eq. (4.4.50). This operating region is often designated as the "turbulent-wake" state, and is
beyond the scope of the calculation methods discussed above.

Figure 4.17 also shows that this turbulent-wake state is most easily reached with negative values of
the setting angle i, whereas large positive setting angles might lead to negative values of Cl, which
means a thrust or "propeller" state.

When the operating points (i.e. C I, 0, and, thus, Cd) have been obtained along the entire blade
span, the power coefficient Cp can be obtained Irom Eq. (4.4.29). The aerodynamic blade loading can also
quite easily be obtained.

Some results calculated with the above-described method will be discussed below. These results might
differ from results obta;ned with tne other calculation methods, but the general conclusions obtained
from one method will also apply to the results of a different method (see also Ref. 4.8 and the reports
quoted there).

4.4.7.2 The ideal rotor shape

The optimization procedure (Sect. 4.4.6) results in a 0- and Clc-distribution along the blade span at
a given value of A and Cl/Cd. When a constant C1 (thus constant a) along the span is chosen ((CI)design),
the corresponding c/Ro and i can be obtained. Figure 4.18 shows a specific result for B = 2, X = 8, and
three values of (Cl)design.

The blade terminates at rhub/Ro - 0.10 in this case. The blade shows a large non-linear taper and a
large blade twist, especially close to the hub.

Figure 4.19 shows the influence of the choice of the design lift coefficient on the Cp-vs-X curve. A
low value of the design lift coefticient leads to a broader operating range of X, mainly caused by the



larger available a-range from optimum towards stall.
The decrease of (Cp)opt is mainly due to the decrease of CI/Cd at the chosen value of the design lift

coefficient. Also the X at which the optimum is obtained changes by this effect.
Though the design lift coefficient has to be chosen equal to the C I value at which CI/Cd attains its

maximum, in order to obtain an optimum Cp, there may be structural, operational and cost considerations
for choosing a different value. These considerations are, however, out of the scope of this work.

The value of rhub/Ro = 0.10 is chosen rather arbitrarily. From a structural and costs point of view,
it might be favourable to increase rhub/Ro, because the largest part of the blade area and also the largest
part of the blade twist variation is concentrated near the hub (see Fig. 4.18). Figure 4.20 gives an im-
pression of the power loss due to increasing rhub/Ro, which, of course, has to be balanced against blade-
cost reduction.

The shaft between blade hub and rotor axis only produces drag, which means an additional power loss.
Figure 4.21 gives an estimation of the power loss. It shows that below rhub/RO F 0.30 the additional
power losses are insignificant.

The shape of the Cp-vs-X curve is also affected by the profile characteristics of the aerofoil section
chosen. Figure 4.22 shows the influence of the aerofoil data, characterized by the maximum lift coefficient
((Ci)max) and the minimum profile drag ((Cd)min). At a fixed value of the design lift coefficient, the
maximum lift coefficient determines mainly the value of X it which the blade stalls, whereas the minimum
drag coefficient mainly affects the optimum value of Cp.

4.4.7.3 More practical blade shapes

The aerodynamically optimized blade snape (Sect. 4.4.7.2) is a very complicated one to produce.
Therefore, the complexity of the shape has to be reduced as far as possible, considering the power-loss
penalties involved.

In this Section, results of calculations will be given for rotor blades with NACA 23012 aerofoil
sections (Cl)max P 1.79, (Cd)min u 0.0060, (CI/Cd)max F 125). A first simplification is to reduce the
non-linear taper to a linear chord distribution along the blade span. The twist distribution is given by
a power law (see Fig. 4.23) which approximates the optimum twist distribution rather closely, except near
the hub, where the twist is somewhat reduced.

Figure 4.24 gives the Cp-vs-X curves for a two-bladed rotor with twisted blades and linear taper for
a number of different pitch angles 0 (for the definition of Op, see Fig. 4.24). The optimum value of Cp
does not differ significantly from the value for the ideal blade shape. It must be remembered, however,
that for the ideal blade (CI/Cd)max = 100 instead of 125 in the present case. This means that avoidance
of the sudden chord increase near the hub and a slight reduction of the twist results in only a small
power loss.

Figure 4.25 shows the angle-of-attack distribution along the blade span as a function of the tip-
speed ratio X. For the sake of comparison, the a-distribution of the "ideal" shape is also given. Due to
the twist reduction near the hub, the spanwise a-variation is much stronger along that part of the blade
span. The chord reduction amplifies chis trend. The power losses at the :ptimum are mainly caused by devia-
tions from the optimum Ci/Cd-value along a part of the blade span.

A further simplification of the blade shape consists of omitting the twist altogether. The figures
4.26 through 4.28 show the Cp-vs-X curves for untwisted blades with different taper ratios but a constant
total rotor solidity (o). It also has to be noticed, that rhub/Ro is taken equal to 0.20 in this case, to
avoid that a part of the blade stalls early and in that way deteriorates the turbine performance.

Compared with the twisted blade design of Fig. 4.24, the optimum Cp is only reduced with 6 %, but the
reduction is stronger for the non-optimum values of Cp.

A remarkable fact revealed from these figures is the rather favourable performance of the constant-
chord design, which is in itself the ultimate goal of simplicity. The main cause of the power loss can be
discerned from Fig. 4.29. The very strong a-variation along the blade span at all values of X causes at
each X a deviation from the optimum CI/Cd and a premature blade stall near the hub, even at rather high
tip-speed ratios like X = 8.

When the main purpose is the design of a cheap wind turbine, an untwisted rotor blade with a constant
chord seems to be a good choice, with only limited power losses. This rather favourable behaviour is only
obtained at sufficient high Reynolds numbers (about 3x10 6), where amag is sufficiently high. For a small-
scale turbine, the untwisted rotor blade might behave badly, due to te premature stall, aggravated by the
low Reynolds number (low amax).

4.4.8 Concluding remarks

The calculation methods commonly used for a horizontal-axis wind turbine are based on a blade-element
theory (blade chord negligible with respect to blade span), where the induced velocities are determined
from momentum considerations combined with a tip correction factor (finite number of blades) or from a
linearized vortex-wake calculation, which can be shown to be almost identical with the momentum theory
including a tip correction.

A basic assumption underlying all blade-element theories is the mutual independence of different
blade elements along the span. This independence exists only in case of a rotor with an infinite number of
blades and a non-expanding (cylindrical) wake. It is difficult, however, to estimate the influence of the
wake expansion and of the finite number of blades.

It is showi in Appendix C that, in the case of a rotor with an irfinite number of blades, when wake
expansion and stetic pressure deficit in the wake (due to wake rotation,) are taken into account, the
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so-called power loss due to wake rotation is almost compensated. This power loss due to wake ri cation was
the main improvement by Glauert (Ref. 4.3) of the simple estimation by Betz (Ref. 4.18). The present con-
siderations show, however, that this improvement is at least questionable (see App. C). As far as experi-
ments indicate unfavourable power coefficients for a low-X high-Q (high-solidity) turbine, this might be
caused by mutual blade interference (cascade effect), which becomes significant at a igh-solidity turbine
and is neglected in the blade-element theories considered.

Apparently the best available estimate of the induced velocities in the case of a finite number of
rotor blades is given by a linearized vortex wake calculation (Goldstein, Lock and Yeatman, Refs 4.9 and
4.10). The calculation is based, however, on a specific shape of the spanwise circulation distribution,
which corresponds to the optimum distribution for an aircraft propeller in cruise condition (i.e. high
thrust, low torque). When the actual circulation distribution for a wind turbine differs from this optimum
propeller distribution, differences in the induced velocities can be expected.

Figure 4.30 shows the difference in circulation distribution between an optimally operating propeller
and a wind turbine at a comparable tip-speed ratio (or advance ratio in case of a propeller). At three
spanwise stations, the implicitly used circulation distributions to calculate the induced velocities have
been indicated, by scalirg the propeller-distribution up and down. The deviations between the circulation
distribution of the wind turbine and the corresponding circulation distributions of Goldstein are large.
Moreover, the wake expansion is also neglected.

Estimating the induced velocities from momentum considerations with a tip correction factor lead to
almost identical results. "Improvements" of the theory by using "higher-order" tip corrections are highly
questionable. The only way to improve the calculation method seems to be the application of ortex-wake
calculations, either a fixed-wake or a more complicated deformable-wake calculation (iterative procedure)
and inclusion of the influence of a finite blade chord (lifting-surface theory instead of lifting-line
theory), especially close to the hub.

Although there are enough theoretical indications that the blade-element theory needs further refine-
ment, lack of reliable experimental data makes it still difficult to decide whether more elaborate vortex
wake calculations have to be performed.

With the existing blade-element theories, a rotor blade can be designed which produces an optimum Cp
at a given value of the tip-speed ratio X.

A first condition to reach (Cp)opt is to choos the lift/drag ratio equal to (Cl/Cd)max of the profile
considered and to keep it constant along the entire ilade span, i.e. the corresponding Cl and, thus, also
the corresponding a has to be taken costant along the blade span. (CI/Cd)max has to be at least equal to
or larger than 100 (at A s 8), but a further increase, by choosing more sophisticated aerofoil sections,
results in only a slight further increase of Cp.

A second condition is that both a strongly varying blade chord length along the span and a strongly
varying blade twist are accepted, which leads to a very complicated rotor blade.

It is possible to approach the optimum very closely by taking a linearly tapered blade, but with
still a strongly varying blade twist.

Introduction of a rotor blade without twist results in a power loss penalty of about 6 to 10 % (at
the higher Reynolds numbers, i.e. for relatively large-scale turbines). This might be acceptable for a
single production unit (reduction of tooling costs), but looses its attraction in case of mass production.

Choosing an untwisted blade design, the constant-chord (untapered -) blade, seems rather attractive,
because the blade area in the hub region is reduced, where the blade stall starts at relatively high
values of A.

The blade-element theory predicts an increased Dower output when very high values of the tip-speed
ratio X are chosen, i.e. a very low solidity ratio, because:
- The power loss due to the tip-correction factor decreases with increasing X.
- The power loss due to wake rotation decreases with increasing X.

This tendency is opposed to the power loss due to the profile drag, which increases with X. Sophisti-
cated aerofoil sections have to be applied in that case to attain very high values of (Cl/Cd)max.

Because the power loss due to wake rotation is questionable, but is anyhow very small at X > 10, the

predicted preference for a low-solidity high-X turbine depends strongly on the accuracy of the tip correc-
tion factor applied.

More elaborate computer codes, including the effects of relaxed vortex wakes, rolled-up tip vortices
(instability of vortex sheets) and lifting-surface theories (finite blade-chord effects) are being
developed (Ref. 4.15), but the completion is still a long way ahead.

Considering the possibly large effects of flow inhomogeniety and turbulence (unsteadiness) of the
atmospheric boundary layer on the wind-turbine performance, the usefulness of such complicated computer
codes may be questioned.

4.5 Vertical-axis turbines

4.5.1 General remarks

An important aerodynamic difference between veitical-axis and horizontal-axis turbines is the appear-
ance of unsteady flow phenomena. During a revolution of the rotor of a vertical-axis turbine in a steady
wind stream, the flow direction and velocity relative to an element of the rotor blade vary in a cyclic
way, whereas, in the case of a horizontal-axis turbine, the flow relative to a blade element is steady.

Even more drastic for the set-up of a calculation method for a vertical-axis turbine is the impossi-
bility to relate the torque of the rotor to the change in angular momentum of the flow, even in time-
averaged sense (see iemark Appendix B). Momentum considerations, therefore, only deal with the induced
velocity components in the direction of the undisturbed wind velocity.

4€



For the same reasons as given for the horizontal-axis turbines, the theoretical discussion will be
limited to low-solidity rotors. A typical high-solidity vertical-axis turbine is the Savonius rotor (for
an extensive experimental survey of this type of turbine one is referred to Ref. 4.19.) The optimum values
of Cp are restricted to r 0.16, but its main feature is its high starting torque, almost linearly decreas-
ing wit increasing X. Ref. 4.19 includes an extensive list of references on the subject.

The discussion of a drum-type high-solidity turbine in Ref. 4.20 is interesting because of the
attempt to apply angular-momentum considerations. Ref. 4.20 also gives some experimental rc-ults.

The principal features of the vertical-axis turbine will be elucidated by considering a two-dimen-
sional rotor, i.e. an infinitely high turbine with a finite diameter.

Next, the three-dimensional vertical-axis turbine will be discussed with special emphasis on the
Darrieus type. Especially for the Darrieus type of vertical-axis turbine, experimental data on power and
torque coefficients are rather complete, which is in sharp contrast with the situation for horizontal-axis
turbines.

4.5.2 Two-dimensional momentum theory

When an element of a rotor blade of a vertical-axis turbine rotates with an angular velocity Q at a
radius R and the wind velocity U is reduced to (i-a)U by the induction factor a (cf. Sect. 4;.4.2), which
might be a function of the azimuth angle (when induced cross-flow velocities are neglected), the velocity
relat;ve to the blade element it (see Fig. 4.31)

u2  = {fR + (1-a)U sin 4}2 + ((-a)U cos 4}2tel

which can be written as

Urel /U = (HN + (1-a) sin 4,2 + ((,-a) cos 4}2] (4.5.1)

Figure 4.32 shows the influence of the tip-speed ratio X and a constant induction factor a on the relative
velocity. At the higher tip-speed ratios, Eq. (14.5.1) can be approximated by

U rel/U s X + (1-a) sin . (4.5.2)

When the chord of the blade element is perpendicular to the radius, the angle of attack of the blade
element can be calculated from (see Fig. 11.31)

a aarc tg (1-a)LCOS . (4.5.3)X ,- ar g l-a) sin "

At higher tip-speed ratios, this can be approximated by

a F (1-a) cos (4.5.4)

Figure 4.31 shows the influence of X and a on the angle of attack. At low X, there is a strong asymmetry
of e with varying . This asymmetry reduces with increasing X, but, even at X = 6, a certain asymmetry is
perceptible.

By analogy with the momentum theory for a horizontal-axis turbine, the force component on the blade
element in the direction of the wind can be related to the change in momentum in wind direction. The usual
assumption is made that the induced velocity far downstream is twice the induced velocity at the rotor,
i.e. (l-2a)U.

A difference with the theory for a horizontal-axis turbine is, that "a" might be a function of '.

Another diffetence is the neglect of cross-flow-induced velocities which are analogous to the tangential-
induced velocities at a horizontal-axis turbine.

The determination of the induction factor "a" is connected with the assumed functional dependence of
"a" with the azimuth angle 4. The simplest approach stems from Templin (Ref. 4.21), which will be called
the "single-streamtube" theory. In this approach, a is assumed to be independent of 4.

From the momentum equation, the force in wind direction D (per unit height) can be derived as

D = 2R p 2a(1-a)U
2

From the forces on the blade elements of a B-bladed rotor, averaged during one revolution, it follows
that

B 27
o = L f pU2  cC1 cos ( +a)d4

0

in which Cj = f(a) r C a at angles of attack below the stall. Here and in the sequel, it will be assumed
that in the vertical-axis turbines symmetrical profiles are applied, unless stated otherwise.

The above equations result in

a(1-a) = L f (Urel/U) 2 C, cos ( +a)d . (4.5.5)
0

Because a is implicitly contained in Urel/U and a,Eq. (4.5.5) cannot be solved directly, but an iteration
procedure has to be applied. Ref. 4.21 shows a way out, by the introduction of the variable

y = X/(1-a)

Then Eq. (4.5.5) becomes:
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+ o L L 1(y + sin ,)2 + cos 2 *} C1 cos + arc tg Cos s 0n d (4.5.6)
7-7 1 2+ 0 f IT Co Ji+ y + sin 11

For a given geometry of the turbine (Be/R) and a given value of y, the value of (1-a) can be calculated.
From that, the corresponding tip-speed ratio can be calculated, viz.

A = y(1-a)

The generated power is calculated from the tangential force, T, in which the profile drag is included (cf.
Sect. 4.2.2); thus

R - 2 PUel C(CI sin a - Cd cos a)d ,

0

or the corresponding power coefficient
21T

Cp = P/jpU 32R = (I/4n)(Bc/R)X f (U rel/U)2C I sin a [1-(Cd/CI)cotga]d . (4.5.7)
0

These formulae are still so complicated, that a numerical solution has to be chosen. To get some insight
into the behav.-ur, a strongly approximated solution will be given. Assume:

X«>>I
C I  CI  a,

a sts O a__ _ Cos << ,
X

cos ( +a) l cos

Applying this to Eq. (4.5.6) gives the following result
I = c I I Bc

- I Cl C (y + y I + - C y '

which can also be written as
1 Bc,
1 c X (3.5.8)

a

An approximate expression for the power coefficient can be obtained from Eq. (4.5.7) with

sin a c a,

cos a P I,

Cd F Cdo

This leads to

SBc (l-a)4  y2  - c X(l.a)2(y2+1)
p = R I X (y do

Because also y - 1, and with Eq. (4.5.8), this can be approximated by

C = 4a(l-a)2 • X3 (4.5.9)

When this result is compared with Eq. (3.2.6) and when it is reminded that Ur/U = 1-a, the above equation
shows that a vertical-axis turbine also approaches the ideal power coefficient derived by Betz, when the
profile drag is neglected and a constant ;nduced velocity 1s assumed across the rotor. Notwithstanding the
very crude approximations, which have been used to obtain the Eqs (4.5.8) and (4.5.9), some general in-
sight can be obtained with these formulae.

Figure 4.33 shows the Cp-vs-A variation with Cdo = 0 (dashed curves) for three values of the rotor
solidity Bc/R. The optimum Cp is always equal to the Betz value 16/27 (a = 1/3), but the value of % at
which this optimum is obtained is inversely proportional to tne rotor solidity.

As discussed in Sect. 3.2.2, the simple momentum theory breaks down, when a 1/2, which corresponds
with Cp = 0.5 (if Cdo = 0). This limit is also indicated in Fig. 4.33.

The profile drag affects the Cp-vs-A curves appreciably, especially at high A, as could be expected
from Eq. (4.5.9). When the profile drag is taken into account, the optimum Cp decreases with decreasing
rotor solidity. The limit a = 1/2, which is connected with a certain value of ABc/R, shifts to lower
values of Cp or even disappears from the operating range of the turbine at low rotor solidity.

The maximum angle of attack occurring during a revolution is also shown in Fig. 4.33, which can be
estimated from

Icamax I = (1-a)/x (radians)

The approximations used in the Eqs (4.5.8) and (4.5.9) are valid for small angles of attack, certainly
smaller than the stalling angle, which is .dicated in Fig. 4.33. Therefore, the calculated Cp-vs-A curves
have also a low-X bound, which is also indicated. This shows that, at a high rotor solidity, the X-range
that can be calculated ith this simplified theory is very narrow.

The values given in Fig. 4.33 must not be looked at too closely, because of the approximations applied.
The general trends, however, will be similar to those obtained with the complete Eqs (4.5.1), (4.5.3),
(4.5.5) and (4.5.7). The main advantage of the complete equations, besides a higher accuracy, is the possi-
bility to extend the calculations into the stalled region, when the full profile data are included. The
a = 1/2 limit, however, remains.



Another approach, called the "multiple-streamtube" theory and proposed by Strickland (Ref. 4.22),
assumes that the induction factor a varies in a direction perpendicular to U, but is constant in the
direction of U (see Fig. 4.34).

The force in wind direction on the elemental streamtube (dD) can be related to the change in momentum
in that elemental streamtube, thus

dD = R cos dO p 2a(I-a)U 2

Each blade element passes the elemental streamtube twice, viz. once downwind and once upwind. It follows
from Eqs (4.5.1) and (4.5.3) that Urel and lul are equal at and (c-€), which means that dD is equal in
both cases. The average force can then be calculated from blade element theory, viz.

2 +d
dO = B L f ;PU 2re Cc cos ( +a)d

Combining both equntions leads to

a(I-a) = (l/4r)(Bc/R)(U rel /U)2 CI Cos ( +a)/cos (4.5.10)

The power coefficient Cp can be calculated with the same Eq. (4.5.7), but now the induction factor a = a( ).
The trick to solve Eq. (4.5.10) directly by substituting y - X/(1-a) and bolving (1-a) cannot be done,
because y would vary across the rotor diameter. Therefore, Eq. (4.5.10) can only be solved by an iteration
procedure.

Also in this case some insight can be obtained by an approximate solution, similar to the method
leading to the Eqs (4.5.8) and (4.5.9). The result is

a P4 (/4r)(Bc/R)C 1  cos €(X+2 sin I)/[i + (I/41T)(Bc/R)C1  cos 2 sir =
I ai

P' (I/14n)(Bc/R)C1 X cos , (4.5.11) A

which is valid in the range - < +

This approximation shows some resemblance with Eq. (4.5.8). It is also clear from this equation that
a = 0 at = +900 and -900. Figure 4.35 shows the dependence of "a" from according to the multiple-
streamtube theory. At low values of the rotor solidity and high values of X, the variation is almost like
cos d, but, at higher solidity and lower X, the variation becomes asymmetric. This asymmetry is also found
experimentally (Ref. 4.23) and stems mainly foom the asymmetry in Urel (see Fig. 4.32).

Differences in the power coefficients between single- and multiple-streamtube theories can only be
discerned by taking higher-order terms into account. This is caused by the smoothing effect of the inte-
gration during one revolution. The differences between the theories will, therefore, be more clearly de-
monstrated by calculating the blade loading, i.e. the product of a and U2eI.

The Kaman Aerospace Corp. assumes a "bullet-shaped" velocity distribution across the rotor. The
parameters needed to quantify the velocity distribution are determined from an over-all momentum balance.
This assumption has a profound influence on the blade loading (Ref. 4.24), but the validity of this
assumption has not been demonstrated.

So far, only the variation of the induction factor "a" in a direction perpendicular to the wind
velocity has been considered. It it to be expected, however, that the induced velocity also varies in
wind direction between the upwind and downwind blade positions, which results in larger angles of attack
for the upwind blade position (€ = 1800) and lower angles of attack for the downwind blade position
4 = 0).

Within the scope of momentum theory, it is not possible to calculate the streamwise variation of the
induced velocity. The only possibility is to look for empirical information, which is not yet available.
The streamwise velocity variation is connected with a downstream divergence of the streamlines (continuity
equation), which implies velocity components perpendicular to the wind velocity.

The only way to overcome the above-mentioned problems in determining the induced velocities, is to
calculate them from the shed vorticity in the wake downstream.

4.5.3 Two-dimensional vortex theory

In the case of a steadily rotating two-dimensional vertical-axis wind turbine, the circulation r
around the blade varies with its azimuthal position. Due to this variation in time, vorticity is shed from
the blade. By the combination of the rotational motion and the downstream transport velocity, a cycloidally
shaped vortex sheet with varying vortex strength is formed (Fig. 4.36). The induced velocity components
from this vortex sheet deforms this cycloidal shape. Therefore, an exact determination of the induced
velocities and the corresponding shape of the vortex sheets is a very complex problem.

From Fig. 4.36, some remarks can be made, which prove useful in subsequent discussions of the vortex
wake. Each time the rotor blade passes a certain azimuthal position (e.g. €1), the circulation varies
from r, to fl+[(dr/d )Af]l and the amount of vorticity shed in the wake is -[(dr/d¢)t¢) 1. These "patches"
of shed vorticity are located downstream at the points of intersection between the streamline through the
azimuthal position €l and the corresponding parts of the vortex sheet. This streamline also coincides with
the "upwind" azimuthal position 02, where an amount of vorticity equal to -[(dr/d)A1 2 is shed into the
wake.

The vorticity distribution in the wake can, therefore, also be described as follows. On each stream-
line in the wake, a row of vortices is located. From each blade St,,,"b d double row of vortices, one from
the upwind and one from the downwind blade position. In case oi an infinite nunber of blades, the stream-
line consists of a continuous distribution of vorticity. This aspect has been elaborated by Holme (Ref.
4.25).
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Ref. 4.25 describes the method extensively. Therefore, only an outline of the method will be given.
When the circulation around one blade at orbital position is considered to be

rb(54) = ICI acU relI
a

the chord length can be expressed as a part of the rotor circumference 21TR, using the solidity ratio
o = Bc/R, viz.

c = 2 R)

Thus

b = t,_'1 U rel

In case of an infinite number of blades, there exists a continuous, but yet unknown distribution of bound
vorticity on a circle with radius R, which can be defined by a vortex sheet density

Lim b Lim b a (4.5.12a)
yb 2R/B = TT, IUrelB a

c- 0
o = constant

The streamlines in the wake are considered to be straight (non-expanding wake) and parallel to the undis-
turbed wind velocity. The strength of the vorticity on the part of the streamline inside the circle is
constant and depends on the graJient of the bound vorticity at the upwind intersection between streamline
and circle, whereas the strength of vorticity on the downstream part of the streamline outside the circle
is also constant, but with a strength which depends on the sum of the gradients at the upwind and down-
wind intersections of the streamline with the circle.

The strength of vorticity on the streamline depends also on the transport velocity, which is assumed
to be constant along the entire streamline, but depends also on the strength of the bound and shed vorti-
city.

From this bound and shed vorticity, the induced velocities at the bound vorticity (rircle) can be
calculated. After a linear relation between the local circulation and the local radial velocity has been
derived, a set of linear algebraic equations is obtained, when a Fourier series for the bound vorticity
distribution is assumed.

The determination of the average transport velocity, which determines the strength cf the shed vorti-
city as well, is still a problem. In Ref. 4.25 two "hypotheses" are given, viz.:
- the transport velocity is equal to the mean velocity of the mass flow through the turbine, and
- the transport velocity is determined by considering the momentum and energy balance.

Application of the two hypotheses leads to a difference in tip-speed ratio A of less than 0.5 %, arid
in Ref. 4.25 it is concluded tlhat the first hypothesis, being the simplest to apply, can be adopted for
future calculations.

Figure 4.38 shows the power coeffiLcnt aq calculated by Holme. Comparing this with the power coeffi-
cient given in Fig. 4.33 reveals a large similarity, bu, thele arc slight differences. The optimum invis-
cid (Cdo = 0) power coefficient is slightly less (8 %) than the Betz optimum 16/27, which also has its
effect oh the values of Cp with Cdo = 0.01. The stall boundary of Fig. 4.37 also differs slightly, due to
the larger angles of attack at the upwind blade positions.

Figure 4.39 shows a conparison of the results obtained with tht single-streamtube theory and the mul-
tiple-streamtube theory with the results of Ref. 4.25 for inviscid flow (Cdo = 0). In case of the stream-
tube theories, the complete equations (not the approximated ones) have been applied.

Besides the power coefficient, also the rotor drag coefficient CD and the mass flow coefficient L.
have been given. The last two are defined as

C force in wind directionCD  =OU oU
2
2R

C. mass flow through rotor area
m pU2R

The differences in the average mass flow between the three methods is small. The differences in total
rotor drag CD and power coefficient Cp are larger.

The multiple-str.amtube theory is closer to the vortex wake theory than the single-streamtube theory,
especially for the power coefficient.

The greatest achievement of the vortex theory of Ref. 4.25 is the prediction of the variation in
load between the upwind and the downwind blade positions. For a typical configuration, Ref. 4.25 shows,
that the maximum normal force at the upwind position is 1.5 times the maximum at the downwind position.
The maximum tangential load is in the upwind position even three times the maximum at the downwind posi-
tion. The momentum (streamtube) theories predict maxima that have equal magnitudes at upstream and down-
stream positions.

The induced velocities c.Iculated in Ref. 4.25 will be discussed somewhat furthei by considering a
fixed bound-circulation distribution.

It follows from the simplified momentum considerations (see approximations preceding Eqs (4.5.8) and
(4.5.9)), that a first-order approximation of the bound-circulation distribution is (see Eq. (4.5.12a))

"b a I-a) cos 1{ + (1-a) sin }UYb # iC IA

a (l-a)U cos = yo cos # (4.5.12b)
_0
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When the blades move from to +d , the shed vorticity is transported in wind direction over a distance

(1-a)U -

and covers a distance in y-direction of

dy= R cos 
d .I

The amount of shed vorticity can be expressed as (see Eq. (4.5.12b))

_d (y cos @ R d )d = y sin R(d )
2

The average shed rotation in the parallelogram is

YO sin R(d) 2  X sin €
s= [(1-a)/X] R d4 R cos d = 1-a o R cos @

The shed vortex sheet strength can then be expressed as

Ys 
= WsR cos do X a'yo sin * d (4.5.13)

The induced velocities can now be calculated from Ref. 4.25. The bound vorticity induces only radial velo-
city components on the circle, equal to

vR = Y sin ,

which leads to longitudinal and lateral components

u = vR cos = Yo sin cos , (4.5.14)

v = vR sin = 0 si 2 @  
, (4.5.15)

because of the symmetry about the wind direction, only azimuth-angles between 0 and n need to be considered.
The shed vorticity induces longitudinal components on the circle equal to

3 X ITu =- 0- Yocos , 0
IT

u =+ Y yoCos , 2 <' <' r" (4.5.16)

and lateral components equal to

v = -T Yo sin @ (4.5.17)

Taking the average u between the points @ and n- , i.e.

it follows from Eq. (4.5.12b) that

uav/U = - (X/4r)C I (Bc/R) cos . (4.5.18)

Inis ib equivlenit to Eq. (4.5.11), obtained from the multiple-streamtube theory, and demonstrates that,
in a first-order approximation, Lhe m mtiple-streamtube theory comes close to the vortex theory of Ref.
4.25, as was also seen in Fig. 4.39.

At the higher values of A for which the vortex theory of Ref. 4.25 is valid, it is clear from com-
paring the Eqs (4.5.14) and (4.5.15) with the Eqs (4.5.16) and (4.5.17), that the induced velocities due
to the bound vorticity are small with respect to the induced velocities due to the shed vorticity. This
vortex theory is valid for only a very large number of blades (B - =) and it seems interesting to look for
the influence of a finite number of blades. This is most easily done for the influence of the bound vor-
ticity, when an azimuthal variation like cos (see Fig. 4.40) is assumed, viz.

ri = r. cos B

When
r =Br. ,

A 0

the induced velocities at one blade by the remaining (B-i) blades are

B-I
vR = (r0/41TRB) Z cos (i2m/B)cotg(211/B) cos @ - 2 cos2 (ir/B) sin 41

SI  Sl1

B-I

v= - (ro/4hRB) Z [cos (i2v/B) cos @ - sin (i2T/B) sin
i=1

Sll lV

It can be shown that S = SV 0, that SII - -(B-2), and that Sill = -1. The induced velocities are,

when Yo = ro0 /2il is introduced for reasons of comparison,

X
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vR = I Y L- sin ,(4.5.19)

I Cos (vR = v= 0, if B = 1) (4.5.20)v = I Yo B o 
( . . 0

In the limit B 4 -, the results vl = y sin t and v = 0 of Ref. 4.25 are re-obtained.
From the above formulae, it is lear that, in case of a -,mall number of blades, large deviations from

the case B = can occur. For instance, if B = 2, then vR = 0 and v = 4 yo cos , in contradiction with
the case B * =.

The influence of a finite number of blades on the induced velocities of the shed vorticity is more
complicated and will not be investigated here.

Because the shed vorticity is discretized in the downstream direction by the finite number of blades,
it is more or less natural to discretize the continuous vortex sheet also in the azimuthal direction. This
leads to a fully numerical approach.

When a computer code is compiled for such a case, a logical extension is to vary the downstream
transport velocity (l-a)U with the azimuth angle. The solution of this problem necessitates an iteration
procedure, but it is still much simpler than the calculation of a fully relaxed wake (i.e. taking wake
expansion and thus flow retardation in the wake into account). Wilson et al. reported on such rela, ed-wake
calculations at the Third Wind Energy Workshop of September 1977 (Ref. 4.26). In Fig. 4.41 (Ref. 4.26) are
compared the angle of attack variation calculated with the relaxed-wake analysis for a one-bladed rotor,
the fixed-wake analysis of Holme (B = -), and the multiple-streamtube theory of Strickland for a common
value of the solidity ratio Bc/R = 0.2 and for a tip-speed ratio X = 3.54.

Though none of the methods leads to identical results, it is clear that both vortex methods indicate
a different behaviour between the upstream and the downstream blade position, which could not be obtained
from momentum considerations.

From this comparison, it is also clear that the difference in calculated power output will be less
than the differences in calculated blade load variation during one revolution, because of the smoothing
effect of the integration over one revolution, which is needed to obtain the power output.

Taking the finite number of blades into account has a special effect on the downwind blade positions
(2100< * <3000, notice the deviating definition of 4).

When B = -, v = 0 and VR 1 0, whereas with B = , v v, = 0. This large difference possibly is
responsible for ne differences in a between fixed-wake (B = and relaxed-wake (B = 1) results in the
range 150 < < 2100, shown in Fig. 4.11.

Relaxed-wake calculations have also been persued by Fannucci and Walters (Ref. 4.27) and Brulle et al.
(Ref. 4.28).

4.5.4 Stream-curvature effects

Several authors have indicated the influence of the stream curvature due to the rotational motion and
the finite blade chord (see e.g. Ref. 4.29).

In the preceding Sections, the lifting-line approximation was implicitly assumed, i.e. the chord
length was assumed to be very small with respect to the radius R. When c/R is not very small, the velocity
due to rotation (9R) is no longer parallel to the blade chord everywhere.

When the thickness distribution of the aerofoil section is neglected, the influence of the angle-of-
attack variation along the chord on the lift and pitching moment can be estimated from thin-aerofoil
theory (see e.g. Ref. 4.30), viz.:

C1 = 2r & , with E (O+C00) , (4.5.21)

and

C -(0 + 2050 - 3aOO) , (4.5.22)

where the subscripts at the angle of attack indicate the chordwise location at which the a is obtained
(see Fig. 4.42).

From Fig. 4.42, it follows that the point of attachment of the profile (xo ) has a direct effect on
the lift, but that the pitching moment is not affected by xo , viz.:

a = -(3/4 - x0 /c) c/R , (4.5.23)

C = (Tv/8) c/R (4.5.24)

Figure 4.43 shows that, for normally used values of xo/c = or , a negative effective angle of attack is
induced by the stream curvature. This means a lift increase for the upwind blade positions and a lift
decrease for the downwind blade positions. The pitching moment induced by the stream curvature is always
tail-heavy.

Because the vortex-wake theories (Sect. 4.5.3, Fig. 4.41) also indicate larger (negative) angles of
attack upwind and smaller (positive) angles of attack downwind, the stream curvature increases this effect,
which is important for the blade loading.

The influence of the stream curvature on the power output, i.e. the influence on the tangential force
T parallel to the blade chord c, is more difficult to estimate for an infinitely thin flat aerofoil.

It boils down to the determination of the finite suction force on the infinitely thin leading edge by
an infinitely low pressure on the leading edge (see Ref. 4.31).

During a revolution of the rotor, the external angle of attack varies with the azimuth angle approx-
imately as:

0. ..
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a -% cos ,

whereas the stream-curvature-induced angle of attack along the chord is constant during one revolution, viz.

(, - - (x/c -x0/c) c/R

The resultant angle of attack can be described as the superposition of an antisymmetric angle of attack
distribution il with respect to x/c = (second normalized distribution of Birnbaum) and a constant angle
of attack along the chord no (first normalized distribution of Birnbaum). The tangential force coefficient
Ct solely depends on (io (Refs 4.30, 11.31) and can be calculated from

Ct = 2ra
2 = 2n [a+(x /c - 1/2)c/R]2  (4.5.25)
0 0

In this case, the total lift force is Eqs ((4.5.21) and (4.5.23)):

CI = 2n(ot 1 i) = 21 [a+(x O/c - 3/1)c/R] , (4.5.26)

and it is shown, that

Ct Ct(a+&)

in case of stream curvature. The tangential force coefficient averaged during one revolution is a measure
for the power output. Using the approximatiun for e form Eq. (4.5.4), this average value is

C .. [[(l-a)/X] cos + (xo/c - l/2)c/R])d
2 1T -T

= 2T[(I1/2)(I-a) I/2 + (xo/c - 1/2)2(c/R)2]

The contribution of the stream!ine curvature to the average tagential force is always positive. This posi-
tive contribution to the power coefficient can be estimated for a B-bladed rotor from

ACp A BACt ip(RR)2cQR/ pU32R = Ct (Bc/R) X3

with

't = 2i(x o/C - 1/2)2(c/R)
2

This can also be vritten as

AC . (I/B
2
)(xo/c - 1/2)?(BcX/R) 3  

(4.5.27)

When the induction factor is taken from the approximate equation (4.5.8) (it should be remembered that
a = may be regarded as a maximum value in practical operating conditions), the range of BcX/R is

0 BcX/R < 4/n

Figure 4.44 shows the increase of the power coefficient oue to stream curvature. For the commonly used
values of xo/c between 4 and , the influence is not large, although not negligible.

The increase of the negative angle of attack at the ipwind blade positions initiates an early blade
stall, but, it is difficult to assess whether these stream curvature effects are adversely affected by
viscosity (boundary-layer effects).

Another remark is, that a possible improvement of the calculation methods by using lifting-surface
theories (e.g. panel methods) necessitates a carefull consideration of the leading-edge flow (i.e. a large
number of panels at the leading edge). The above considerations implicitly contain the conclusion that a
more accurate determination of the lift (blade loading) not always means a more accurate determination of
the tangential force (power output).

4.5.5 Unsteady effects

As remarked in Sect. 4.5.1, the vertical-axis turbine shows a cyclic lift variation during a revolu-
tion. In the preceding sections, quasi-steady aerodynamics has been applied throughout. Because the so-
called reduced frequency k is low for the commonly applied solidity ratios, viz.

k = l ref/Ure f ' Qc/RR = c/R , (4.5.28)

the neglect of unsteady aerodynamic effects seems warranted. Ashley (Ref. 4.32), however, drew attention
to the fact that the influence on the tangential force (suction peak) was larger than the influence on the
lift itself.

The unsteady effects can be estimated by considering simplified rotor aerodynamics, viz. (see Sect.
4.5.2)

1-a
Urel =SIR , a =-"-- cos € and s=flt

This can be regarded as an airplane wing moving through the air with a velocity SIR and subjected to a
periodic gust of magnitude

v = fla = (1-a)U cos €

The largest simplification is the assumption that the wake trails downstream as a straight line, whereas
in case of an actual turbine, the wake shows a more or less cycloidal shape. Also the mutual interference
between the blades (B ' 1) has been neglected. The quasi-steady wake etfects are included to a first order
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of magnitude in the induction factor "a". Therefore, the simplification is restricted to the unsteady
effects of the wake.

Ref. 14.33 calculates the sinusoidal gust effect on the lift. The result is

C - Re {fTc a R(l-a)ue *(k)} = 21T l-Releiat 4(k) I

with i(k) the so-called Sears function:

,:,(k) = (Jo-iJ 1)(F+iG)+iJI

This leads to

C1 = 2n a 
" 
[(JoF4JG) cos .t-(JoG-JF+J1 ) sin Qt (4.5.29)

In the quasi-steady case, the lift coefficient is

1-a (..0
(CI)qs = 2ir , cos Qt (4.5.30)

The tangentiai force coefficient has to be calculated from the suction force on the leading edge (cf. Sect.
4.5.4), which depends solely on the first normalized Birnbaum lift distribution. A careful analysis leads
to (see also Eq. (4.5.25))

CI 1-a { f (kt
a i Re ei t  k)%o 2n X

and thus

Ct 2o 2  2 2 [( oF+JlG) cos ,t - (JG-JF+J) sin t] (4.5.3

lI the quasirsteady case, the tangential force coefficient is

(C) qs = 2T (2_2)2 COS2 ft (4.5-32)

The instantaneous angle of attack is

1-a 1-a i~t
cos Qt or

This shows, that the coimon method to calculate Ct, viz.

C= C I a = 2ni (-a) Rele~~ ~(QkIRef e

leads to a result different from Eq. (4.5.31).

Figure 4.45 shows that the unsteadiness of the flow has a significant effect on the tangential force.
The influence on the lift is smaller, but cannot be neglected. The power output is proportional to the
tangential force coefficient averaged over one revolution, thus

=T f+T Ct d = 2,T() [(J F+J G2 + (J G-J F4J (4.5.33)

In the quasi-stead, case, the average value is

t)qs = 2v(1-a )2  (4.534)

The ratio of the Eqs (4.5.33) and (4.5.34) is a measure for the decrease of the power output due to un-
steady effects. The ratio of the Eqs (4.5.29) and (4.5.30), with Pt = = 0, is a measure for the decrease
of the lift amplitude due to unsteady effects. Both ratios have been given in Fig. 4.46 as a function of
c/R.

Though the profile drag has not been taken into account, which might change the power ratio still
further, it is clear from this figure that, for a commonly used value c/R - 0.10, the power is reduced by
16 % due to unsteady effects.

Ref. 4.32 gives a more complete discussion, which also includes the influence of the variation of the
relative velocity Urel during one revolution.

4.5.6 Two-dimensional vertical-axis rotor with variable pitch

An important difference between a vertical-axis and a horizontal-axis turbine is, that the blade
element of a horizontal-axis turbine operates under the same (optimal) conditions during one revolution,
whereas the olade element of a vertical-axis turbine cannot operate under optimal conditions during the
entire revolution.

It is obvious that several investigators looked for means to impiove the vertical-axis turbine in
this respect by applying variable pitch (see e.g. the Giromill, Ref. 4.28). Apart from the greater struc-
tural complexity, the pitch control has to follow the wind direction, i.e. the turbine loses its independ-
ence from the wind direction.

The driving force of the turbine is the component of the aerodynamic force perenjicular to the
radius. ihe main part of the aerodynamic force is the lift, which is perpendicular : Ure?. Therefore,
the driving force component is governed by the angle between Urel and the normal to cie rad:us, which is

Y", V4 .4 9e



mainl' determined by the wind velocity (only modified by the induced velocities) and changes sign at
* - +n/2 and -w/2. In order to generate a positive driving force during the entire revolution, the lift
force has to change sign in step with the sign of the angle between Urel and the normal to the radius.

An idealized case of such a variable-pitch turbine is represented by a pitch distribution which
keeps the lift constant during a revolution, only flipping from positive to negative lift at " - +1/2 and
from negative to. positive at 4 - -n/2, which necessitates an almost instantaneous Jump in pitch angle at
these values of 4.

In the case that B v =, the bound vorticity can be represented by

cos 4
Yb Yo [Cs

The shed vorticity only leaves the circumference of the turbine at 4 = +w/2 and + - -1/2 and, when a con-
stant transport velocity equal to (l-a)U is assumed, It can be represented by

Ys . 2 1'ao 

Figure 4.47 shows the vortex system of sucb an Idealized turbine.

The velocities on the circumferenc6 that are induced by the bound vorticity are symmetrical about x = 0
and y = 0 and can be calculated (Ref. 4.25) from

Lcos 0' dOs 0 o , (4.5.35)

yRo (+ Cos cotg (o-)doR( TI Icos -l

-- In T 2 (4.5.36)

The velocities induced by the shed vorticity are

uo [ (1-sin )dR (I +s I n )rI
UW 2 2o R

S(1-sin ()c2 + (l+sin 4)2 + (--cos *)2

-' i + arctg COS * + arctg Cs 4(] R 3)
= I-a 1-ISill I +sin j '(. .7

y ( -cos x (-Cos x

V() 2 0 [ (1-sin )2 + (j COS (I+sin R + (.n-cos 021

, - 0 I.o [I-sin (

I-a In l Jin (4.5.38)

JThe average axial velocity is

uav u() + u(n-)] " - , (4.'5.39)
a4 I-a '

which turns out .to be constant across the turbine. From Eq. (4.5.37), it can be shown that, when the lower
boundary is extended from 0 to --, far downstream in the wake

(uv) 2X Y (4.5.4o)
avw T-a Yo

which Is the rather obvious solution for the velocity between two vortex sheets of'constant strength and
extending towards infinity in both directions.

Because a ' -u /U, the value of the Induction factor can be obtained from Eq. (4:5.39), viz.av

a - - (t-4,Y0/U) . (4.5.41)

rypiying the energy equation (see e.g. Sect. 3.2.1) leads to the power coefficient

C - 4a(l-a)2 = 4[1 - (1-4Xo/U)1 [1 + (l-4Xyo/U) ]2

XLU l+R(l4X((4.5.42)
The total radial velocity due to the wind velocity U and the induced velocities VR( , u(W and v(f) are
calculated from

+ VR  UCos + VR(0)<+ U"( ) cos f + V( ) sln,0

From this, the tangentlai force can be calculated, viz.

T Py Cs vR Rdd'+' = P0 Icos 01 '

and thus also the powei coefficient:
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+11 vR

nR f dT 0 Cos dR= JU 2R f "ci' o U"

The result of the evaluation of the above integral is given below term by term
+ S rs C Cos sin 0 ,+7 s2 d =14 I

- os l Ih lcos I 1cos + sin j

+11 O2 C5 ~ C5)d.

f (arctg Cs + arctg Cos d 0
1-sin I-sin

because the sum of.the two arc tangents is

and the last integral

+71 Cos In I+sin sin d= 0

This leads to the result

C -L - (4-4  -- ) = 4a(1-a)2  (4.5.43)

because

Yo
a = -- (see Eq. (4.5.39)),

which is idential to Eq. (4.5.42) deduced from the energy equation.-When this is compared with the results
of Ref. 4.25 at zero profile drag (see Fig. 4.39), which result is derived with comparable approximations,
it can be shown that the variable-pitch rotor obtains only 8 % more power than the fixed-p!tch rotor.

The main advantage of the variable-pitch turbine lays in the possibility to.control the power output
at constant angular velocity and varying wind speed. In that respect, the blade pitch variation needed to
maintain constant lift during a revolution seemls to be interesting and will be considered below.

When the angle between the relative velocity and the normal to the radius is denoted by 6 and when it
Is assumed that Urel su fIR, this angle can be estimated (Figs 4.47 and 4.48) from

yR cs~_vR(O)_~) . v()
R cos c + + cos € + vR sin (4.5.44)PR X illR SIR

The blade-pitch angle op necessary to maintain a (constant) angle of attack a can be calculated from

6 -p6-a cos (4.5.45)

p Ices€1

When it is assumed, as before, that Ca = 2v, there is a relation between yo and a, viz. I'

Br b 8_ nZiacflR c.llO=2i = 211R = LR aR,

thus

S- 2Yo/[(Bc/R)flR] (4.5.46)

By using also the expression a = X(yo/U)/(-a), this leads to the following result

O p '-a(I-a) In rcos  0- sin @ a [[ + Cos C +

ffX2 L Cos € + si n ;X "TCo f + i cs

-sin lsin [ - 2a(l-a) 1o + c

(Eq+(145.36)) bt t I[ is I (Bc/R) 2 -1cos (

Notice, that the second term at the right-hand side can only be evaluated in the range 0 < /2
(Eq. (4.5.36)), but that VR(O) is symmetrical about x = 0 and y = 0.

Figure 4.49 shows some calculated results. Notwithstanding the crude approximations used, the calcu-
lations show the possibility of operating the turbine at optimum Cp(a a 1/3) at constant angular velocity
and variable wind speed (i.e. variable X). The strong blade-pitch variation in the range 80 < 1100
are mainly due to the velocities induced by the shed vorticity.

The above calculations are too crude to permit an actual performance estimation. Such an estimation
has to include a more refined method for the calculation of the induced velocities, and has also to In-
elude viscous effects (profile drag and blade stall). Ref. 4,28 is referred to for some results of such an
elaborate calculation.

Finally, still the question remains whether it Is worthwhile to increase the power output at constant
angular velocity by installing such an intricate blade pitch device.



4.5.7 Three-dimensional turlnes

4.5.7.1 Straight or curved blades

The choice between straight or curved blades (troposkien) is mainly determined by structural consider-

ations. This was already discussed In Sect. 2.4.2 and results of some simplified calculations have been
given In Fig. 2.6. The conclusion reached with these considerations was that the straight-bladed turbine
can only be applied in the case of lower angular velocities (thus lower X), contrary to a turbine with
curved blades.

The choice of the blade shape has also influence on the calculation method. In caie of a straight-
bladed turbine, two-dimensional theory (Sect. 4.5.2 and 4.5.3) can be used with only a slight modification,
viz. including a finite-wing theory to account for "tip-loss" effects. Though this Is a simplified
approach, leaving the curvature of the trailing vortex sheets out of consideration, it may be workable in
view of other intricate aspects, which are usually omitted, like stream curvature (Sect. 11.5.4) and un-
steady aerodynamics (Sect. 4.5.5).

In case of a turbine with curved blades (Oarrieus turbine), the deviation from two-dimensional
theory will be still larger. Up till now, momentum theories (single- or multiple-streamtube theories) are
the only succesfully applied performance prediction methods (Refs 4.21 and 4.22). Vortex theories become
very complicated in case of curved blades and, because of the magnitude of stream curvature and of un-
steady effects, the application of a three-dimensional vortex theory only makes sense when curvature and
unsteady effects are included.

Theoretically, the Darrieus turbine has a somewhat smaller power coefficient than the straight-bladed
turbine. Moreover, with a given height and diameter, the reference area of a Darrieus turbine is about
0.65 times the referenLe area of a straight-bladed design (slightly depending on the height/diameter
ratio). This means, that a straight-bladed turbine has a 1.5 times larger power output than a Darrieus
turbine with the same height and diameter. A straight-bladed design can be applied with a blade-pitch
control, which is almost impossible in case of a Darrieus turbine.

In the next Sections, the discussions will be restricted to the Darrieus turbine. The performance
prediction models of Templin (Ref. 4.21) and Strickland (Ref. 4.22) are chosen more or less arbitrarily
for the next discussion; similar models have been formulated by other investigators, see e.g. the Refs
4.7, 4.34, 4.35 and 4.36.

4.5.7.2 Momentum theories

The basic ideas are similar to those given in, Sect. 4.5.2. Because of the blade curvature, different
blade elements are oriented differently in space, which affects the magnitude of the relative velocity and
angle of attack of the blade elements. The blade curvature also causes the distance from blade element
towards the axis to be different from element to element. It is assumed, that only the velocity components
normal to the leading edge o 'he blade element affects the aerodynamic force; the velocity components
parallel to the leading edge have no effect. The equations for Urel and a can be derived as follows (see
Fig. 4.50).

The local wind velocity at the blade element, (1-a)U, can be decomposed Into a radial and a tangential
: component, viz.

(l-a)U cos * and (1-a)U bin 4.

The tangential component addo to the velocity due to rotation nr, which leads to a resultant tangential
velocity

U tan -nr+ (1-a)U sin € (4.5.48)

Of the radial component, only the component normal to the blade element affects the aerodynamic force
(Fig. 4.50), thus

U = (i-a)U cos * sin y (4.5.49)~n
This leads to the following equations for Ure I and a

Urel - t(nr + (l-a)U sin *)2 +((1-a)U cos 4'sin y)2]1

or

U rei/U - [[Xr/Ro + (1-a) sin f]2 + [(l-a) cos * sin y]?]' (4.5.50)

a - arctg r/R°0 + -a) sin ,here X - 11o/U (4.5.51)

For the case r/Ro w I and y= 900 (equatorial plane), the above equations reduce to the Eqs (4.5.1) and
(4.5.3).

The troposkien might be approximated by a parabola (Ref. 4.21), thus

r/Ro  1" (z/nR0 )2

with:
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rotor height H

diameter 2Ro

and with the angle between normal and vertical (y)

y = - - arctg [(2/n)(z/nRo )]

With the above formulae, the Eqs (4.5.50) and (4.5.51) can be used to gain insight into the influence of
the blade curvature on the distribution along the blade span of angle of attack and relative velocity. For
A = 3 and a constant induction factor a = 1/3, the.- distributions are shown in Fig. 4.S1 for some azimuth
angles.

The relative velocity is mainly affected by the reduction of the circumferential velocity when r/Ro
decreases (increasing z).

The angle of attack is nearly constant along a large part of the blade span. Blade elements close to
the axis, however, show large angles of attack, which leads to blade stall. Due to the small radial dis-
tance of these elements, the effect on the power output will be small.

The induction factor "a" has to be calculated from the "drag" force in wind direction D, caused by
the lift forces on the blades. Refs 4.21 and 4.22 include also the profile drag forces, but this is not
strictly correct (cf. the discussion for the horizontal-axis turbine in Sect. 4.4.2). However, because Cd
is always positive, the influence on D is almost cancelled during a revolution.

The drag force calculated from blade element theory is

+n d(zIR ) +IT fU 2
D = opU2R0(c) f 0 1 f e 2 C1 (cos a Cos sin y - sin a sin )d (4.5.52)

The momentum theory gives

+n +r/R
O = jpU2 R2 f d(z/R o ) f 4a(l-a) d(y/R o) (4.5.53)

-11 -r/Ro

with y = coordinate perpendicular to U and z.

In case of the single-streamtube theory of Ref. 4.21, Eq. (4.5.53) reduces to

D = pU2Sre f 4a(1-a)

When'a fixed value of X/(0-a) is assumed, Eq. (4.5.52) can be evaluated directly (see Eqs (4.5.50) and
(4.5.51)). Combining the Eqs (4.5.52) and (4.5.53) results in

a(I-a) = (1-a)2F(-L) or -L = I+F
1-a 1-a 1-a'

from which (I-a) may be calculated. This determines the value Vf X (cf. Eq. (4.5.6) for the two-dimensional
case).

In case of the multiple-streamtube theory of Ref. 4.22, this direct calculation is no longer possible,
because "a" depends on z and y and, thus, an iteration procedure mist be followed (see the discussion of
the two-dimensional case in Sect. 4.5.2).

In the discussion of the iteration procedure for the performance prediction of a horizontal-axis
turbine (Sect. 4.4.7.1), the complication of multiple solutions emerged, which depended on the shape of
the lift curve. Such a complication is not present in the performance prediction of a vertical-axis tur-
bine, when the single-streamtube theory is used. This is caused by the averaging process over a complete
revolution.

Using the multiple-streamtube theory, the complication of multiple solutions emerges again, because
the drag of an elemental streamtube is determined by the lift force on one specific blade element (more
precisely two, viz. at € and ("-)) at one specific angle of attack. The resulting equation is

4a(1-a)(r/R o)cos = (1/) (Bc/Ro)(1/sin y)(Urel /U)2C (Cos a cos 4 sin y - sin a sin 4)

because, from the Eqs (4.5.50) and (4.5.51),
(Ur/U)_ = (U /U) ; (a) _ = -(a) C (-a) = -Cl(a)

r lrel V' ' A4' 4 I I C1 a

The above equation can also be written es

47ra(i-a) sin y (r/Ro ) cosC 1 I=U2CSO O (4.5.54)

(Bc/Ro)(Urel/U)2 (cos acos 4sin y - sin asin

The lift coefficient is also determioed by a (Eq. (4.5.51)) and the profile data. This leads to Cl-vs-ot
curves from momentum theory (Eq. (4.5.54)) and from the profile data. T.e point of intersection determines
the operating point of the blade element (Fig. 4.52). Because of the applicaticn of symmetric profiles for
vertical-axis turbines, the multiple solutions are restricted to the stalling area in most cases. At high
X, there is also the possibility, that no solution can be obtained.

When A and "a" have been calculated (single streamtube) or "a" has been calculated for a given A
(multiple streamtube), the power coefficient can be determined from:
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c) 2 + (r/% )d(z/Ro) +v U e 2 s i(C otl
cC ---- " c1 sin a 0 (4.5.55)

o ref -n IT

In case of a parabolic blade shape, R2/S = 3/8n.
o ref

4.5.7.3 Vortex theories

Section 4.5.3 dealt with a vortex theory for a two-dimensional vertical-axis turbine with an infinite
number of blades. When a non-expanding wake and a constant vortex transport velocity in the wake were
assumed, a rather simple vortex model appeared.

The extension of the theory to three dimensions for a turbine with straight blades of finite length
by applying a simple aspect-ratio correction to the lift and adding a corresponding induced drag term to
the profile drag might seem to be obvious.

The trailing vortex system of a vertical-axis turbine differs, however, from that of an airplane
wing in level flight, viz.:
- The trailing vortex sheet is not straight, but has a cycloidal shape.
- The strength of the vortex sheet varies downstream due to the orbital lift variation.

The above simple approach can be used as a first step, but a more complete description of the vortex
system seems desirable (Giromill, Ref. 4.28; see also Ref. 4.27).

The combination of trailing vorticity (due to spanwise lift variation) and shed vorticity (due to
orbital lift variationi ' -.,,ion in helicopter aerodynamics (see e.g. Ormiston, Ref. 14.37). The vortex
system for a helicopter in high-speed forward flight is often simplified to a planar wake, which is,
however, not possible in case of a three-dimensional Oarrieus wind turbine.

Within the assumption of a non-expanding wake and a constant transport velocity, the basic idea of
Sect. 4.5.3 (Fig. 4.36) can still be used, i.e. at a fixed spanwise and azimuthal position at the rotor
circumference, each passing blade brings the same amount of shed and trailing vorticity in the wake. This
vorticity is transported downstream by a constant velocity, which results in 3 streamline with equidistant
patches of vorticity. In case of a rotor with an infinite number of blades, the wake is completely filled
with vorticity and the straight streamlines are lines with a constant vorticity.

The main complication of a three-dimensional wake is, that the orientation in space of the vorticity
vector differs from streamline to streamline. This will be exemplified by considering the idealized case
of a spherical Darrieu3 turbine (Fig. 4.53). The only purpose is to show the complexity of the problem.

When a high X and a "onstant transport velocity (1-a)U are assumed, the relative velocity and angle
of attack are approximately:

Urel jR0 cos 0

vR = (1-a)U cos cos 0

thus:

a V R/U [(l-a)/X] cos

The bound vorticity of one blade is

rb ' ClCUrel =.*C I c(l-a)U cos cos 0 (4.5.55)

The shape of the vortex sheet, springing from a blade at position @, can be described by

X = Ro cos 0 cos(-St) + Ro[(l-a)/X]Qt

Y = R cos 0 sin(4-t)0

Z = R sin 0 , (4.5.56)
0

and the shape of the vortex sheet of blade number i of a B-bladed rotor

Xi = R° cos 0 cns(i+i2r/B-Qt) + R [(l-a)/Xfht

Y= R cos 0 sin(+i2v/B-Qt)

Z. = R sin 0 , (4.5.57)
I 0

with 0 < i < B-I.

The shed vorticity is parallel to the local blade span, but the trailing vorticity is tangential to
the vortex sheet, which is not tangential to the sphere, as can be seen from Eq. (4.5.56). The vortex-
sheet shape, springing from an orbital position i, depends on two parameters 0 and t, and can locally be
described by two vectors, viz.

r0 = ( O, a0, ")

rt - ("T, ay, D). (4.5.58)

The strength of the vortex sheet due mi shed and trailin vorticity can be calculated by dividing the shed
and the trailing circulation by the t.rresponding length r/ the vortex sheet at the time of origin (t 0)

7
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in t and O-direction, respectively. Thus with

ds 4. 1rrid + +Ids0 . [r 0 0 dst =r t.r ] dt

the vortex sheet strengt- becomes (with Idfl = fldt)
_ 1'b d4 =all b _ - . (c/R )C (l-a)U cos 0 sin */w

s 3 (dst) ol0

(shed vorticity) with

W = [cos2 0 + 2[(I-a)/X] cos 0 sin + [(l-a)/X)2] (4.5.59)

a = - '- ddo - (c/R°)C, (l-a)U sin 0 cos * , (4.5.60)

(trailing vorticity).
The direction of the shed vorticity is parallel, but opposite to (r)t4o and the direction of the trailing
vorticity is also parallel and opposite to (t)t- O. These directions can be given by the "direction cosines"
of the vectors r0 and Ft, thus at t-*0

cos (O,x) = i- -1 - sin a cos ,with IroI r r
30 Ir 01 L0 00I

Cos (0,y) = T- r I = - sin 0 sin ,

az 1 (4.5.61)
cos (,z) = = + cos0 ;

cos (t,x) = E- -- t- = [cos 0 sin + (l-a)/]/W

Cos (t,y) = ay = - (cos 0 cos )IW
at Irti

cos (t,z) = Z-L-- = 0 ,with Ir = r. (45.62)
at Irtl t

The Eqs (4.5.56) through (4.5.62) describe the vortex sheets for a finite number of blades. With the for-
mula of Biot-Savart, the induced velocities can be calculated, at least in principle.

A possible simplification is to look at the limit B-=, c+0 for Bc/Ro finite, in which case the wake
is filled continuously with vorticity. In order to facilitate the application of the formula of Biot-
Savart, the shed and trailing vorticity have to be decomposed in components parallel to the x, y and
z-axis.

This decomposition of the vorticity in the ro- and rt-directions into the x, y and z-directions can
be visualized by considering a volume of the wake which is spanned by the line elements ds0 , dst and 6x.
The first two elements ore taken at t = 0, and the third element is the distance in x-direction covered by
the vortex sheets of all B blades, i.e. during a complete revolution, thus

ds0 = RodO

dst = QRoW dt

or because dt = -d / , (4.5.63)

dst = -ROW d,

Ax = 21TRo(l-a)/X

The amount of rotation contained in this volume in the direction of the shed (0) and trailing (t) vorticity
is

dr0 = y = - L- CI (i-a)UR ° cos 6 sin @ d ,
0 a

drt = By 0 c C1 (1-a)UR sin 0 cos do . (4.5.64)
0 0

When these circulations are divided by the respective areas normal to the direction of dr0 and drt, the
rotation in F and r direction are obtained (w0 , wt). When it is remembered that the volume of tie paral-
lelepiped is

Ax ds0 dst Icos (t,y)l Icos (O,z)l = Vol,

+
the areas normal to r0 and r+ are

Vol Vol

Thus

U = Ax dst Icos (ty)l Ices (0,z) l

t-



-drP
t Ax ds0 cos (t,y)l cos (0,z) l

These rotations can be decomposed in x, y and z direction, viz.:

W0 = W 0 cos (0,x); w0 = c0 Cos (0,y); W0 = W0 cos (0,z);
x y z

t = W t cos (t,x); Wt =W t cos (t,y); Wt = 0

After some straightforward calculations it follows that

" Q Bc C -a sin 0 cos (4565)
x -T T Il Icos 01 icos 01 Icos 0.

0 a

f+ BcC I sin 0 cos 0Y a o cos 01 Icos 01 Icos 7 (4.5.66)

z  = S B- C (4.5.67)

o a

The rotation in the wake inside the sphere stems from points {Ro, 0, (ii-O)}, whereas the rotation in the
wake behind the sphere consists of the sum of the rotation from the points (Ro, 0, } and (Ro, 0, (I-4)}.
When this is taken into account it may be shown that the rotation components in the y- and z-direction in
the wake behind the sphere are twice the values inside the sphere and that the rotation component in the
Y-direction in the wake behind the sphere is zero.

The vorticity components w. and wz are independent of x, except the jump at the boundary of the
sphere, and can be described in cylindrical coordinates (x, r, 0).

From the Eqs (4.5.66) and (4.5.67) it can be shown that the vortex lines in the wake are concentric
circles with a vorticity distribution depending only on the radial coordinate r, viz.

Wlateral = (Q/4i)(Bc/R0 )CI (r/R0 ) [l-(r/R 0)2]-1 , (4.5.68)
a

inside the sphere and twice that value in the wake behind the sphere. The rotation becomes infiite at the
wake boundary (r/Ro = I), but the total amount of rotation (circulation) integrated along a radius is
finite. Behind the sphere, this value is

Ylateral = (i/47i) (Bc/R0 )CI Ro (r/Ro) [1-(r/Ro)21-d(r/R) (1R0/8in)(B/Ro)C1  (4.5.69)
a oa

When this is taken to be accumulated in the wake boundary, the "lateral" vortex wake behind the sphere
consists of a cylinder with a constant vortex sheet streng~h equal to the value of Eq. (4.5.69). Such a
cylindrical vortex sheet induces an axial velocity far beh nd the sphere equal to Ylat.' which can also be
expressed by an axial induction factor 2a. This leads to tie following approximate expression for the
average axial induction factor at the sphere

a = (x/16iT)(Bc/Ro)C 1  (4.5.70)

It is interesting to compare this value with the approximate values of the two-dimensional theories Eqs
(4.5.8), (4.5.11)), although the contribution of the bound vorticity is not included in Eq. (4.5.70).

The strength of the bound vorticity can be obtained from Eq. (4.5.55) by substituting for the chord
length

c = oRo/B

and by defining the bound vortex sheet strength by

r b a

Yb 
=
Lim .os b , cos = yo cos Y 0 (4.5.71)

0: os~= C (a)

O = constant

From symmetry conditions it follows that, in the y-z-plane through the axis of the rotor, this bound vor-
J ticity distribution induces only velocity components in the y-z-plane and no components in x-direction.

It can also be shown, that on the average there is no axial flow through the turbine due to the bound vor-
ticity (i.e. no contribution to "a", Eq. (4.5.70)), but there is an average lateral flow through the tur-
bine.

The direct calculation of the flow due to the bound vorticity of Eq. (4.5.71) is complicated and will
not be investigated further.

The structure of the axial rotation (wx), which exists only inside the sphere, is rather complicated
and induces only velocity components in y- and z-direction, in that way also contributing nothing to the
axial induced velocities.

It must be remembered that the above exercise has been done for a given bound vorticity distribution,
which was a first-order approximation of the bound vortex distribution of a turbine with B -. A next
step would be to start with an unknown bound vortex distribution in a way similar to Ref. 4.25 for the
two-dimensional vertical-axis turbine with B + '. Such a calculation will not be executed here.

2 7;71 _P
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4.5.7.4 Experimental results

In contrast with the horizontal-axis turbine, there are rather complete test results for the Darrieus
turbine. Most of thtse results are obtained in a wind tunnel. This has the advantage of constant and pre-
dictable test conditions (contrary to the stochastic wind conditions in field tests), but the disadvantage
of a small size of the model turbine (low Reynolds number) and sometimes large and therefore uncertain
blockage corrections on the test results (rotor height ia the order of magnitude of the test-section
height).

The detrimental effect of very low Reynolds numbers is clearly demonstrated by the preliminary tests
of Ref. 4.38. Due to the small scale of the model, the Reynolds number related to the blade chord was
about 2xI0" and, therefore, the profile drag excessively high. This led to very small and even negative
Cp-values in the normal operating range of the model turbine. Only by estimating the power loss due to the
extravagant profile drag, the authors were able to show the energy-producing potential of the Darrieus
turbine.

Ref. 4.39 describes the tests c-f a 14 ft diameter Darrieus turbine in the 30 ft x 30 ft NAE wind
tunnel. There were, however, some trouble, with blade imperfections, therefore, the tests of Ref. 4.40
with a 12 ft diameter turbine in the same wind tunnel have to'be regarded as the final results.

Figure 4.54 shows the drag coefficient CD and the power coefficient Cp as a function of the tip-speed
ratio, as obtained from the experiments of Ref. 4.40, together with the calculated results of Ref. 4.21.
The large discrepancy in CD is caused by the drag of the turbine support, which is included in the experi-
mental data but not in the calculated data. Ref. 4.40 quotes a support drag (rotor inoperative) of
ACD  0.25. When the rotor is operative, the effective support drag will be lower, and Fig. 4.54 suggests
that the calculated results are not unrealistic.

The calculated power coefficients show discrepancies, especially at low X (stalled blades), but the
effect of rotor solidity is strikingly well predicted.

Ref. 4.41 gives a rather extensive set of wind tunnel test results. An interesting aspect of these
tests is the influence of the Reynolds number on Cp. This could be accomplished by keeping the angular
velocity of the turbine constant duriig one test run, because the relative velocity (and thus the Reynolds
number) depends largely on the angular velocity and only to a minor extent to the wind velocity.

Figure 4.55 shows a rather large influence of the Reynolds number on Cp. Figure 4.56 shows the in-
fluence of the solidity ratio on Cp. The influence on the operational X-range agrees with the results of
Ref. 4.40 (Fig. 4.54), but the influence on the maximum obtainable Cp is less pronounced. This might be
due to the variation of Rec during the test runs of Ref. 4.40; the one-bladed rotor was tested at smaller
maximum angular velocities than the three-bladed rotor. In this respect, it is interesting to notice that
Ref. 4.22 claims a better agreement with experimental results, using multiple-streamtube theory instead of
single-streamtube theory. This is only true, however, when the experimental results of Ref. 4.41 are used
(see Fig. 4.57).

Ref. 4.23 gives results of wind tunnel tests on a very small Darrieus turbine (diameter 0.250 m) with
a solidity Bc/R o = 0.256. In these tests the power output was obtained from the difference between measure-
ments at a fixed angular velocity "wind on" and "wind off". This means that the power coefficient is cor-
rected for the profile drag, which is excessively high at these low Reynolds numbers. The results obtained
will not be very accurate, but the main objective of that investigation was to study the influence of wind
shear on the Darrieus turbine.

Ref. 4.42 mentions some field tests on a Darrieus turbine with a diameter of 4.72 m. The Reynolds
numbers obtained during these field tests were quoted as Rec = 1.1xI0 6 . The optimum Cp was about 0.44,
which is fairly high. A large problem in field testing of a wind turbine is the determination of the refer-
ence wind velocity. For some revealing discussions on this subject, the references 4.43 and 4.44 might be
consulted.

4.5.8 Concluding remarks

Performance-prediction theories for the Darrieus wind turbine are based primarily on momentum con-
siderations, while only induced velocities in wind direction are takcn into account.

There are two variants, viz. the single- and the multiple-streamtube theory. It is difficult to
assess these theories by comparing them with experiments.

The two-dimensional vortex theory (Sect. 4.5.3) indicates a preference for the multiple-streamtube
theory, and certain experimental data emphasize this view.

The above-mentioned performance-prediction theories do not take into consideration a number of ef-
fects, which relative importance could be estimated in a two-dimensional case, viz.
- The variation of the induced velocities along the circumference of the turbine, which leads to blade

load differences at upwind and downwind blade positions.
- Stream-curvature effects, i.e. the effect of the finite blade chord.
- Unsteady effects.

In the setting up of a computer code, including vortex wake effects, the influence of a finite blade
chord and unsteady effects seems a formidable problem. The vortex-wake calculations will probably be
restricted to a cylindrical wake (no wake expansion) and also vortex sheet roll-up effects will be too
complex to deal with in a first attempt. The inclusion of finite-chord effects necessarily implies a
careful consideration of the blade leading edge (suction peak, tangential force), whereas unsteady ef-
fects can also only be taken into account in unseparated flow conditions, which limits the applicability
of the calculation method appreciably, becaise flow separation is present over a large range of X.

On the other hand, the geometry of a Darrieus turbine is to a large extent fixed by constructional
considerations and, consequently, there are only few parameters left for an aerodynamic optimization
procedure. Therefore, the question can be put forward whether such a refined performance prediction
method is really needed. The situation is further cimplicated by the turbulent (unsteady) effects, which
are present in the atmospheric boundary layer and are neglected in the above-mentioned calculation methods.
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The aerodynamics of a Darrieus turbine is, however, an interesting subject and will attract investi-
gators to study some aspects thoroughly. Such studies can only lead to practical results when the before-
mentioned three aspects are included in a balanced manner.
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5 MISCELLANEOUS TOPICS

List of symbols

A = 0.24/(aB) = factor in Eq. (5.1.28) (-)
a axial induction factor (-)
a distance between turbine and reference anemometer, measured in wind direction in Fig. 5.21 (m)
a distance upstream of turbine in Fig. 5.19 (m)
a = (UH-U1H)/U H = wind shear coefficient ()

B number of rotor blades (-)
B constant in logarithmic formula of Eq. (5.3.1) (-)
b distance between turbine and reference anemometer, measured perpendicular to the wind direction

in Fig. 5.21 (m)
b width of wake (m)
b half-width of the wake (i)
0.5
c chord of rotor blade (i)
CD  turbint: drag coefficient (-)
C drag coefficient of blade section

Cd drag coefficient of blade section (
C lift coefficient of blade section(-

Cl0  = BCI/a - lift curve slope (radian- 1)

C coefficient of bending moment at the blade root in Eq. (5.1.23) (-)
mb

C , C coefficients of moments about the y- and the z-axis through the rotor (-)m my z
CN  normal force coefficient (-)

CQ torque coefficient (-)

Ct  tangential force coefficient (-)

Cy, Cz coefficients of forces iny- and z-direction (-)

Cmean-square value of the variations of the normal force coefficient (-)

D rotor diameter ()
EI(f) spectral density of the wind velocity fluctuation (m

2/s)

F norm&l force distribution in Eq. (5.1.7) (N/m)
f dimersionless normal force distribution in Eq. (5.1.8) (-)
f frequency (Hz)
f(u) probability density of wind fluctuation u -)
fi( = (UiI/U1i)3 = power ratio of turbine i in an array, defined by the turbine density X (-)

f.(X) power ratio of a turbine in an infinite array (-)

G tangential force distribution in Eq. (5.1.7) (N/m)
G = (U + uI)/U = gust factor (-)

g dimensionless tangential force distribution in Eq. (5.1.8) (-)
g(Q) dimensionless lateral covariance (-)
H height of rotor (m)
h height of centre of rotor area or hub height (m)
i local blade setting angle (degrees)
k = 1 ref/Ure f = reduced frequency (-)

k Von Karman's constant in Eq. (5.3.1) C-)
ks  effective height of surface roughness (m)

k surface roughness of the terrain without turbines (m)

L length scale of turbulence in Eq. (5.1.35) (i)
L separation distance between turbines (m)
L lateral scale of turbulence (i)

I reference length in reduced frequency (m)
ref

m exponent in power-law wind-velocity distribution (-)
N normal force or axial force (N)
N number of turbines in an array (-)
P power (W)
P design design power (W)

P. power absorbed by turbine number i (W)

P power output of an isolated turbine (W)
0

Pr design or "rated" power of a turbine (W)

P(N) power output of turbine number N in an array (W)
P(U) probability uf occurrence of a wind velocity U (-)
P(u1) probability of occurrence of a positive wind fluctuation u1 (-)

Pl,P 2  power output of turbine number I and number 2 (W)

Q torque of rotor (Nm)
r local radius or distance between turbine and reference anemometer m)
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R(N) = [P(N+I) - P(N)]/P ° = incremental power ratio of turbine number N+l in an array (-)

R maximum radius or tip radius of a rotor (i)

R I(W) covariance of velocities at two points, separated by a dimensionless distance i (m2/s2)

Sland land area occupied by one turbine in an array (i 2 )

Sre f  reference area of a turbine; area swept by the rotor (m2 )

s  
spoiler area (m

2
)

T tangential force (N)
T integration time (s)
t tine (s)
U wino velocity (m/s)
u wind velocity fluctuation (turbulence) (m/s)
Ud design wind speed (m/s)

uf contrinution to velocity fluctuation from frequency f (m/s)

UH wind velocity at the heighest point of the rotor area (m/s)

UIH wind velocity at hub height (m/s)

Ui  wind velocity at turbine number i (m/s)

U. cut-in speed (m/s)

um maximum velocity defect in turbine wake (m/s)

U0  cut-out wind speed (m/s)

U0  wind velocity outside the atmospheric boundary layer (geostrophic wind speed) (m/s)

Urel velocity relative to blade element of rotor (m/s)

U1  wind velocity at the first upwind turbine in an array, i.e. the undisturbed wind velocity (m/s)

u I  wind velocity increase during a gust (m/s)

U10 wind velocity at a height of 10 m (m/s)

U* = ( /p)I - friction velocity (m/s)

U'* effective friction velocity with turbines present (m/s)
U(h) wind velocity at hub height for isolated turbine (m/s)
U'(h) wind velocity at hub height for a turbine in an array (m/s)
U'(k)so wind velocity at effective roughness height kso, with turbines present (m/s)

AU difference in axial wind velocity due to a small yaw angle a (m/s)
v velocity component in y-direction (m/s)
AV lateral velocity component due to a small yaw angle a (m/s)
X = N = force component in x-direction (N)
x co-ordinate in wind direction (i)
x = f/U10 = reduced frequency in Eq. (5.1.35a) (-)

xo  virtual origin of self-preserving wake (m)
XT = -UT/R o = dimensionless integration distance (-)

y horizontal co-ordinate perpendicular to the wind direction (m)
y = fL/U 10 = reduced frequency in Eq. (5.1.35b) ()

z, Z vertical co-ordinate (i)
Z 0 lowest point of rotor area (i)

ZIH hub height (m)

a angle of attack (degrees)
a exponent in power-law wind-velocity distribution (-)
0 wind direction or yaw angle (degrees)
y blade slope of troposlien (degrees)
Y strength of vortex sheet in Fig. 5.18 (m/s)
6 thickness of atmospheric boundary layer (m)
61, 62 fictitious boundary la/er thickness without and with turbines present (i)

Cgen energy dissipation in atmospheric boundary layer due to wind turbines (W/m
2)

e energy dissipation due to surface roughness (Wim2)

C s energy dissipation due to surface roughness with turbines present (W/m2)

s

= r/R0 = dimen;ionless radial co-ordinate in Eq. (5.1.29) (-)

= (x+xo)/D = dimensionless downstream co-ordinate in Eq. (5.3.14) (-)

n = (Z-Z H)/H = dimensionless vertical co-ordinate in Eq. (5.1.11) (-)

n = r/(b/2) = dimensionless wake-width co-ordinate in Eq. (5.3.13) (-)
0 angi, between U re and the plane of rotation of the rotor (degrees or radians)

0 blade-pitch angle (degrees)

X = R o/U = tip-speed ratio (-)

X = S /S = turbine density in an array (-)ref land

X tip-speed ratio at which the optimum power coefficient is reached (-)

p density of the air (kg/m 3)
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a solidity ratio of the turbine (-)
T wall shear 5tress (atmospheric boundary layer) (N/m

2)

T' wall shear strebs with turbines present (N/m
2
)

azimuth angle or orbital position of blade (degrees)
() vertical energy influx for a finite array (W/m

2
)

(x) vertical energy influx for an infinite array (W/m
2
)

4(u 1) error function (-)

SI angular velocity of the rotor (radians/s)
= 2iZf = angular frequency (s-1)
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5.1 Effects of flow inhomogeneity and turbulence

5.1.1 Introductory remarks

In Section 4 the theory for horizontal- and vertical-axis wind turbines in a non-turbulent homogeneous
air flow is discussed. An actual wind turbine is, however, submerged in a turbulent atmospheric boundary
layer, i.e. the turbine is subjected to a vertical increase of the average wind velocity (wind shear) and
to velocity fluctuations in space and time (turbulence, unsteadiness). Moreover, the local meteorological
situation may vary more or less rapidly, e.g. by the passing of a depression or thunderstorm. This makes
the description of the velocity field surrounding the turbine even more complicated, because the inter-
action between the turbulent wind flow and the rotating wind turbine is a non-statioiiary stochastic pro-
cess.

This last phrase means that the stochastic process is not simply characterized by an average value
and a complete set of moments of fluctuations of wind velocity and direction, but, for instance, that the
average wind velocity depends on the integration time considered and does not reach an unequivocal value
even by letting the integration time growing to very large values.

When one ieals with the influence of the turbulent flow on the wind turbine, it is useful to distin-
guish between turbulent fluctuations on a scale larger than the rotor diameter and fluctuations on a
scale smaller than the rotor diame.er. The underlying io~a s that fluctuations can only affect the tur-
bipe as a whole if the fluctuat;ons act on all blade elem. simultaneously, i.e. the fluctuations must
have a scale of the order of the rotor diameter or larger. rlictuations with a smaller scale tend to have
opposite effects on different blade elements and the integrated effect might tend to zero. The small-scale
fluctuations may also have a deteriorating effect on the rotor performance, e.g. by inducing a local blade
stall.

The definition of the integral scale appearing in the theory of homogeneous turbulence may be used
for the above-mentioned purpose, but it is not very suitable.

Because there is a kind of inverse relationship between scale and frequency, it might also be possi-
ble to define a low-frequency range in which the turbiihe as a whole is affected, and a high-frequency
range of turbulent fluctuations which have only a local effect on the rotor blades. It is clear, however,
that a wore specific statistical analysis has to be set up to obtain an adequate description of the ef-
fect of the turbulent wind flow on the turbine.

Much information about wind fluctuations, peak velocities, etc., can be found in the literature deal-
ing with industrial aerodynamics and a thourough survey of this literature seems profitable for a wind
turbine designer. Such a survey has not been made in this report, but the reader is referred to the work
of Frost (Ref. 5.1).

Besides the influence of the turbulent wind on the turbine with respect to the power production, the
influence on the blade loading is perhaps even more important. Two aspects of the blade loading must be
emphasized here, viz.:
- The extreme gust in connection with the specification of an ultimate load case for the rotor blade

(Ref. 5.1).
- The contribution to the fatigue loading due to the lasting velocity fluctuations. This is also closely
connected to the elasto-mechanic behaviour of the turbine to these load variations.

This Sections deals only briefly with the aerodynamic effects related to wind shear and turbulence,
because the last item is an underdevc loped area in the literature. The aspects of the turbo.lence of the
wind in relation to turbine control, will be discussed in Section 5.2. The problems connected with field
tests have been mentioned in Section 4.5.7.4 (see also the Refs 5.2 and 5.3), and will not be discussed
in the subsequent Sections.

5.1.2 Effect of wind shear

Due to the friction with the earth surface, the wind velocity is reduced close to the earth surface,
which leads to a kind of "boundary layer", the so-called "atmospheric boundary layer". The vertical varia-
tion of the average wind velocity (wind shear) is often iepresented by a power law (see Sect. 2.2.3) or by
a logarithmic law (see e.g. Ref. 5.4), both valid in the lower part of the atmospheric boundary layer (say
up to 100 m). There are meteorological condltions where the logarithmic and power laws do not apply, but
on relatively flat terrain and wind velocities above say 5 m/s, these cases will be relatively rare.

In practice, the rotor of a wind turbine is placed at some distance above the ground to avoid the
extreme low-velocity part of the atmospheric boundary layer (low energy content). This results in a more
or less linear velocity increase over the height of the rotor (see Fig. 5.1).

The average wind direction will also vary with L.eight in an ati'ospheric boundary layer, but this ef-
fect will be negligible over the rotor height in most cases.

The influence of a vertical wind shear on a vertical-axis (Darrieus) wind turbine is rather easily
estimated by means of the multiple-streamtube theory (Ref. 5.5), by assigning to each streamtube its cor-
responding wind velocity. It is also possible to divide the rotor area in horizontal slices, each with
its own value of Lilt wind velocity, and to apply the single-streamtube theory to each slice separately.
Which of the two methods gives the best estimate is difficult to assess, but there is an indication that,
in homogeneous flow the multiple-streamtube theory gives better results (see Sect. 4.5.3) and it is to be
expected, therefore, that this will also be the case in a shear flow.

In case of a wind shear, there is some arbitrariness in the choice of the reference wind velocity to
calculate Cp. There is a growing acceptance of taking the wind velocity at half the rotor height (Z H,
Fig. 5.1).

The influence of a wind shear on a Darrieus turbine can easily be demonstrated by comlaring the
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output of the same turbine in a uniform flow by making use of the symmetry properties of the rotor about

Defining a dimensionless vertical coordinate

n - (Z'Z H)/,i , (5.1.1)

the contributions of the horizontal slices of the rotor to the power coefficient C in a uniform flow can

be represented by

dCp/dn

which has to satisfy the following conditions:
+

(dCp/dn)+ n(dCp/dn)_ n , Cp = f (dCp/dn)dn , and (dC P/dn) ,_ = 0

To satisfy the above conditions (representing the power output about opt) the simplest interpolation for-
mula is

dCp/dn = 2 Cp(1-4n2 ) (5.1.2)
2P

which formula will be used to give a first estimation of the wind-shear effect.

In case of a linear wind shear, the velocity distribution can be written as (Fig. 5.1):

U/M H = 1+2an , with a = (UH-U H)/U H * (5.1.3)

The power output of each slice depends on (U/U H)3 , and when it is assumed that small variations of the
local X do not affect the dCp/dn around Xopt,te power coefficient in a wind shear (CP)ws is

3 (14 2
(Cp)ws = fC £ (1-42)(I+2an) 3dn = Cp P a2) (5.1.4)

-i
This shows that the power output in a linear wind shear is only slightly larger th&n the power output in a
uniform flow with a velocity equal to Up.

In Ref. 5.5, the influence of the wind shear is calculated for a 1/7th-power-law velocity profile
with Zo = 0 (or ZjH = H/2, see Fig. 5.1), which reveals a slightly smaller power output than in a uniform
flow.

When a power law velocity profile

U/U H = (2,+1)m (5.1.5)

is taken, the power coefficient in a wind shear can be estimated from

3 +1 2 3m+2

(C ) = 7 (1l42)(2fl+I)3mdl C (2)m+Pws 2 p (3m+3)(3m+2) (5.1.6)

In a uniform flow, m = 0 and (Cp)ws = Cp. In the case m = 1/7, (Cp)ws = 0.9699 Cp, which shows a slight
decrease of the power output due to the wind shear, in agreement with Ref. 5.5.

The above estimates are only representative for the situation at not. For tip-speed ratios differing
strongly from Xept, Eq. (5.1.2) does not give an adequate represer.tation of the distribution of Cp across
the rotor area and the influence of Cp/X has also to be taken into account. It is obvious, however, that
the effect of a wind shear on the power output is small. It is also showo, that the assumption of a
linear wind shear may lead to power changes with a different sign. The differences will be less when
Zo 1 0.

Instead of the limited discussion above, it would be possible to set up a more complete analysis by
taking dCp/dn = f(X), but a direct calculation as that given in Ref. 5.5 seems preferable.

The influence of the wind shear on the blade loading of a Oarrieus turbine could be estimated in a
similar way, but the influence will certainly be small, because of the small effect on Cp shown above.

The influence of a wind shear on the power output and the blade loading of a horizontal-axis wind
turbine is more complicated, because each blade element is subjected to a varying wind velocity during a
revolution of the rotor. Therefore, apart from a possible effect on the power output, a stationary wind
shear causes a varying blade load during a revolution (blade fatigue). It is possible to estimate the
effect a wind shear by a method developed originally by Glauert (Ref. 5.3). This method resembles the
above-given estimates for the Darrieus turbine in so far that it makes use of the known distribution of
normal and tangential blade loads in a uniform flow, but the analysis is more complicated.

Ref. 5.6 uses the blade-element theory more directly, but the linearized results agree with those
obtained from Ref. 5.7. An almost similar analysis is given by Ref. 5.8, but no explicit formulae are
given. Below, the effect of a wind shear will be estimated by the met'od of Ref. 5.7.

In homogeneous flow, the totai normal force and the total torque for a B-bladed rotor can be obtained
from dN and dT on the blade eleme',ts, thus (Le Fig. 5.2)

N = X = B f Fdr ; Q = -MX = B Grdr ; (5.1.7)

or in dimensionless torm,

CN N 2 B f d(--) ; C= 2 = B g-L(-) (5.1.8)

jPUJ iyR 0 Q pU iR3 0 0~H o
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where f and g are functions of A and r/Ro, which can be calculated from the theory of Section 4.4.
A rotor at constant S1 in a wind shear might exhibit different forces and moments (Fig. 5.2), which,

in general, can be calculated from

B
CN +AC = f (f+Af). d(j),

i =l 0

B

Cy +ACy = f (g+Ag) i sin Oi d(r-)
i=l o

B
Cz +ACz = f I (g+Ag). cos Oi d(R-)

i=1

B
CQ +ACQ = I (g+Ag) i L-d( ,

iQl 0 o

B
Cm +AC = f I (f+Af). sin Oi d( ) ,
y y i=l 0 0

B
C +AC . f (f+Af)i .cos i d(j ) (5.1.9)

z z i=l 0 0 R

with Af and Ag the increments in f and g due to the increment of the wind velocity AU with respect to UjH.
It must be noticed that Cy = CZ = Cm = Cz = 0.

The increment of the wind velocY ty leads to a variation of X, viz.

X+AX = QR/(U H+AU) = (PRo/UiH)[+(U/u H)]KJ-l-(u(5. .0)

The increment in F can be calculated quite generally from

aF DF
AF AU+-AX

or with Eq. (5.1.10) and because 2(U2)/DU = 2U u 2U H

AF = 2F AUL 3F A U AU (2-x-)F
AF - TF UH x W - 5

U H  XtX U H  U H

or in dimensionless form

Af = U- (2- ' )f (5.1.11)U

In a similar way, it can be obtained that

A^ = (2(5,1.12)

In the case of a linear wind shear, AU/U H can be written as

AU/UjH - a(r/R0 ) sin , with a = (UII-U I)/U H - (5.1.13)

With the Eqs (5.1.11) through (5.1.13), the forces and moments on the complete rotor or on a single rotor
blade can be calculated from the Eqs (5.1.9). The main difficulty, however, is to obtain expressions for
f and g. Figure 5.3 gives an example of an f- and g-distribution, calculated for a two-bladed rotor with
the theory of Sect. 4.4.3.1. Tip effects and partial blade stall make it very complicated to find analyti-
cal expressions; therefore, a numerical approach seems inevitable. In order to indicate some general
trends of the wind-shear effect, calculations will be shown with strongly simplified expressions for f and
g, viz.

f = (0.24/B)Xr/R and g = (0.30-0.02A)/B (5.1.14)

Figure 5.4 shows these simplified distributions for a two-bladed rotor (compare these simplified distribu-
tions with the distributions of Fig. 5.3).

In order to get an impression about the A-range in which the simplified expression may apply, the
CN, CQ dnd Cp are calculated from f and g, which leads to the following expressions (see Fig. 5.5)

cN = 0.12X

C = 0.15-0.OX,

C = X(0.15-O.01X) . (5.1.15)

The increments in forces and moments due to the wind shear can now be calculated from the Eqs (5.1.9) and
(5.1.11) through (5.1.14).

1 B
ACN = O.08Aa sin , (5.1.16)

B
ACy = 0.01(30-A)a . - sin 2 

Oi , (5.1.17)

/

. , ..... . ..
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ACz 0.01 (30-X)a sin 'i COS i (5.1.18)
Z Bi-I ' 51-8

AC - 0.00666(30-X)a- sin i , 
(5.1.19)

luI

QCm = 0. 06sia n s (5.1.20)

y 
i( 

.

B

1cm . 0.06Xa sin i cos (

It must be remembered, that

si if BnI
Ssin ¢i =  0 if B 2

B sin 2  if 8 2,S sin2 if 8

I B sn cos if B < 2 ,
sin €1 cos t3 (5.1.22)

i1-i 8 > 3

The following general conclwulons can be drawn from the above formulae:
- The normal force (or drag Cj) and the torque (CQ) are not affected by a linear wind shear, except in

case of a one-bladed rotor.
- The side force (Cy) and the "pitching" moment (Cm ) vary as sin 2 4 In case of a one- or two-bladed
rotor, and show a constant non-zero value in caseyof a three- or more-bladed rotor. It must be noticed,
that Cy and Cm do not change sign during a revolution.

- The vertical f~rce (Cz) and the "yawing" moment (Cmz) vary as sin 4 cos 4 in case of a one- or two-
bladed rotor and are zero for a three- or more-bladed rotor.

- The force and moment variations of one blade of a B-bladed rotor can be obtained from the above Formulae
by restricting the sum to B = 1. maintaining the factor 1/B.

To get some insight into the order of magnitude of the variations due to the wind shear, Fig. 5.5
shows CN, CQ and Cp versus X in a uniform flow, and Fig. 5.6 shows the force and moment increments due to
a linear wind shear with a = 0.10 (an increase of the wind velocity of 20 % over the rotor height is
large).

From the figures, it appears that the maximum force increments during one revolution are small with
respect to CN in uniform flow, which can be regarded as a representative force in connection with the sup-
port of the rotor axis. The moment Increments, however, especially the pitching moment Cm , may give a
significant contribution compared with the torque of the rotor CQ (notice that the maximuA of sin 2  = I
and of Isin cos 4' = )

The load variation on one blade of a B-bladed rotor can be obtained from Fig. 5.6 by dividing the
variation with X by B and taking the multiplication factor for B = 1. These load variations have to beL compared with CN/B and CQ/B of Fig. 5.5. The percentual load variations are not large, but might be sig-
nificant for determining fatigue load levels.

Another important blade load fluctuation has to be considered, viz. the blade bending moment at the
blade root. This could be estimated from

+Cb blade root/IpU 2 R3= f f(r/Ro)d(r/Ro) = (0.08/B)X (5.1.23)

ACM b f Af(r/Ro)d(r/Ro) = (0.06/B)Xa sin 4 (5.1.24)

This shows, that the maximum amplitude of the bending moment fluctuation is about 8 % of the bending moment
in uniform flow, at a wind-shear factor a = 0.10.

The above-mentioned simplified calculations can be extended by improving the representation of f and

g and by including a non-linear wind shear. The actual calculations, however, bzcome so complicated, that
a numerical approach has to be chosen instead of the analytical one. In such a case, a more direct calcu-, lation with a blade element method seems to be pre~erabie.

This could be envisaged by taking the radial wind velocity distribution for a specific blade position
and apply the blade element theory as if this velocity distribution was present at each blade position

(axisymmetric wind velocity distribution). This procedure can be repeated for different blade positions 4.
When the blade loads for a proper set of azimuth angles i(l = 1,.., B) are combined, the total rotor

load in a wind shear can be obtaired. Of course, a lot of aspects have been ignored in this approach (e.g.
unsteady effects), but the results might be more useful than the results obtained with the method of Ref.
5.7 or 5.6.

Somewhat related to the effect of wind shear is the influence of a small misalignment of the rotor
axis with respect to the wind direction, i.e. of a small yaw angle 0. This results in a small decrease of
the axial velocity

AU = -U(l-cos 8) U -11.182

and a small lateral velocity component

! AV=U sin BsU0 ,
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which are independent of height above the ground or lateral distance. AU is small because of its depend-
ence on 02. SV may not be small with respect to U, but has to be considered with respect to fIr = XU(r/Ro),
which is much larger than U over a large part of the blade span. The influence of yaw can be calculated
according to the method given in Ref. 5.7, but the remarks above already indicate that the Influence is
small at yaw angles up to 10 degrees.

5.1.3 Effect of turbulence and unsteadiness of the wind

A turbulent boundary layer is often described as a steady flow with a velocity U = U(z,x), on which
turbulent velocity fluctuations u,v,w are superimposed. The instantaneous values of the fluctuations can-
not be given in a deterministic way; it is only possible to describe them in a statistic manner by RMS-
values, cross-correlations and spectra.

In an atmospheric boundary layer, the average wind velocity U and also the average wind direction 0
are not steady, which makes it difficult to distinguish between U and u,v,w, i.e. between the average
velocity and the fluctuating components.

It is thought that the higher-frequency velocity fluctuations are determined by the local character-
istics of the atmospheric boundary layer (surface roughness, wind shear, temperature gradient) and that
the velocity fluctuations connected with variations in average wind speed and wind direction are deter-
mined by the large-scale weather system (barometric pressure distribution) and by large-scale geographic
characteristics (ocean or main land, latitude, day or night), thus leading to much lower frequencies.

Figure 5.7 shows a power spectrum of the wind velocity, recorded during several months. This example
shows that there indeed is an appreciable frequency gap between the high-frequency "turbulent" fluctua-
tions (peak at 40 cycles/h P 9.01 Hz) and the low-frequency "macro-meteorological" fluctuations (peaks at
0.01 and 0.08 cycles/h). The tentative conclusion can be drawn that the average wind velocity and direc-
tion can be defined by using an integration time of 10 to 15 minutes. The deviations of the instantaneous
velocity and direction from this 10 minutes average is then called "turbulence".

There are many cases in which this separation between average and turbulence is iut so clear, because
of a sudden jump of the velocity to a higher (or lower) value, e.g. during a loval thunderstorm. Also con-
nected with turbulence as it is usually visualized (e.g. the idealization of local isotropy) is the "gust".
Though a gust can be considered as an exceptional strongi and large-scale turbule.t fluctuation, it is
often mentioned separately because of its influence on the turbine loading (strenith). In Ref. 5.1, some
information about gusts is given. The time history of a gust (slope of the velocity increase, duration of
increased velocity level, slope of velocity decrease) is defined by a mathematical expression. Probability
distributions for the parameters included in this mathematical expression are given.

The influence of turbulence on a wind turbine is a very complex problem. Ref. 5.9 reports on a first
attempt to calculate the aerodynamic response of a wind turbine to turbulence. To that end, a "pseudo"
turbulence is generated by a computer code and its Influence on the rotor is calculated by a blade-element
method. The calculations are still in a preliminary stage.

In order to indicate some of the problems involved, a crude and sketchy discussion will be given of
the influence of isotropic turbulence on the normal force of a separate rotor blade of a horizontal-axis
turbine.

According to blade-element theory, the normal force distribution along the blade span can be calcu-
lated from

dCN/d(r/Ro) =-c (e-i)(c/Ro)(Url/U)2 cos 0 , (5.1.25)

when the profile drag is neglected. The turbulent fluctuations u,v,w affect Urel and 0. When a high-speed
turbine (X >> 1) is considered, it can be shown that the influence on Urel can be neglected with respect
to the influence on 0. Furthermore, it can be shown that the influence of v and w on 6 can be neglected
with respect to the influence of u on O, which results in the following variation in 0

u/U
AO u/ U . (5.1.26)

Because 0 is relative small when X >> 1, cos (0+40) % cos 0, and from Eq. (5.1.25) it follows that

dCN A dCN u/U dCN

d(r/R 0-i d(r/R ) = (ArRo) (0-i) d(.r/R

In case of a high-A design operating near X the angle of attack a = 0-i is almost constant along the
span. When the approximation for dCN/d(r/Ro given In the Eqs (5.1.8) and (5.1.14) for one blade is taken,
Eq. (5.1.27) can be written as

AdC /d(r/R o) s 0.24/(aB) (u/U) - Au/U (5.1.28)

It must be noted, that A is independent of r/Ro, which means that the local normal-force fluctuation is
proportional to the local wind fluctuation.

At a definite instant t, the normal-force variation due to a turbulent velocity difference
u = u(x,y,z,t) can be calculated from

ACN(t) - A f 1 u[(r/Ro),t] d(r/R o)

This is also a stochastic quantity with a time average zero, because 0 = . In order to obtain a
statistical measure of the normal-force fluctuation, the time average of (ACN)2 has to be considered. When

"" the equation



h 2 b b-x
f f(.) dx] f dx f f(x) f(x+i) d;

[a a a "X

Is used, the square of ACN can be calculated from

1 1 -r/Ro  12N - A2 f d(r/R) (f u[(ri/o),t] u[(r/Ro)+4,t]do -r/R

The time average of this value, indicated by an overbar, could be calculated from the following equation,
with T the integration time needed to obtain a meaningful average, thus

I 1-r/R o  T

A -A2 f rT f 2 u[(r/Ro),t] u[(r/Ro)+;,t]dt (5.1.29)o -r/R o 

The evaluation of the time integral is very complex, even when isotropic turbulence Is assumed that is
transported downstream with the main stream velocity U and that is not affected by the turbine.

In the theory of isotropic turbulence, space averages are assumed to be equal to the so-called
"ensemble" averages, using the ergodic hypothesis. A time average in a main stream with a velocity U at a
fixed point in space can be related to the space average by the Taylor hypothesis. The ensemble average is
a theo'etical concept of averaging values obtained from a number of independent realizations of a certain

conficiration at a given instant (e.g. the product of velocity components u at two points fixed in space
at a liven time t).

When the turbulent fluctuations u(x,y,z,t) are described in a coordinate system moving with the main
flow (velocity U), the dimensionless coordinates of an element of a rotor blade rotating with an angular
velocity Q appear to be time dependent In that coordinate system, viz.

x - -Ut/R o, y - -(r/Re) cos St, z (r/Ro) sin Ut . (5.1.30)
00

This shows, that neither the ergodic nor the Taylor hypothesis can be applied to transform Eq. (5.1.29)
intan ensemble average. In order to get some insight into the behaviour of Eq. (5.1.29), a special case
will be considered, viz. U - 0. When R - 0, the time can be expressed in x by t - -xR0 /U, and the y- and
z-coordinates are independent of t and n-"_y depend on the orbital position of the rotor blade 4, viz.

y - -(r/R o) cos and z - (R o) sinf

Because of the isotropy of the turbulence, the time average of Eq. (5.1.29) is independent of the blade
position *, when n = 0. Using Taylor's hypothesis, the time integral can then be transformed into a space
average with XT - -UT/Ro, thus

T - 1

(.)2 u[(r/Ro),t] u[(r/Ro)+c,t]dt = XT1  fT 2 u[(r/Ro)+,x]dx
0 0

According to the ergodic hypothesis, this space average can be set equal to an ensemble average and is
called the lateral covariance, which is independent of r/Ro in isotropic turbulence. This covariance
depends only on the separation distance i perpendicular to the main stream and is denoted by

R R()/U2 = u[r/Ro] u[(r/Ro)+4]/U2 - (u2/U2) g(r) (5.1.31)

When an often used approximation for g is applied, viz.

g - exP[-IRo/LgI]

with Lg the so-called "lateral scale" of the turbulence, Eq. (5.1.29) can be integrated, which results in

4U - 2A2('u"/U2)[Lg/Ro-(Lg/Ro)2 [l-exp(-Ro/Lg)]] (5.1.32)
N . (5..32

From Eq. (5.1.15), it follows that CN for one blade in a uniform flow car be calculated from CN =.12X/B
and the factor A can be expressed in CN (see Eq. (5.1.28)), viz.

A = 2CN/(X)

2When this is substituted, Into Eq. (5.1.32), the MS-value of ACN diviued by CN can be obtained.

=A..C - 8/aX)2T/U2j {L /Ro(L 0/A0)2 [1exp(-R/g] A . (5.1.33)
Due to the neglect of the rotation of the turbine blade, the correlation of the velocity at two different
blade elements is possibly overestimated, but it is hoped that Eq. (5.1.33) still exhibits some realistic
trends'

When the scale Lg becomes very small with respect to Ro, the expression between the 'large brackets
tends to zero. When Lg becomes very large with respect to Ro, it can be shown that the expression between
the large brackets tends to unity by expanding exp(-Ro/Lg) into a series.

Figure 5.8 shows the influence of the lateral scale of the turbulence on the RMS-value of the blade-
load fluctuations for a specific example. With a turbulence intensity of 15 %, the RMS-value of the load
fluctuations is about 20 % of the steady-state load if Lg > Re, but, even if Lg = Ro/10, the RMS-value
is still 10 % of the steady-state load.

The lateral scale of the u-fluctuations in an atmospheric boundary layer depends on a number of
factors as surface roughness, height above the ground, wind velocity, etc., and it is not known with great
accuracy. Nevertheless, a scale of 50 m at a height of 40 m above the ground seems acceptable (a comparable
longitudinal scale is 100 to 200 m). This shows that, even for a 100 m diameter turbine, Lg/Ro is not

i



5 -10

smaller than I and the possibility that the load fluctuation level will fall much below 15 to 20 % by
lack of correlation along the blade span seems to be srall.

The lateral scale will be smaller at a smaller height above the ground, but, in such a case, the
rotor diameter will be smaller also and the conclusion above probably remains valid.

Besider, the neglect of n, which might cause a decrease of correlation along the blade span, the
neglect of the influence of the operating turbine on the turbulence, has also to be considered. The dyna-
mics of 'turbulence, however, is a too complex problem to solve here. One effect can still be visualized

by considering the rlow retardation in front of the turbine from U to (l-a)U and by using some simple
estimations, first proposed by Prandtl (Ref. 5.10).

Consider the turbulence as a vorticity with its axis normal to the main stream, inside a closed loop
of fluid elements. In the retarding flow, the closed loop is compressed axially In the ratio 1-a and
stretched laterally in the ratio (1-a)-i, which leads to a decrease of the area inside the loop with a
factor of (1-a)1. The rotation inside the loop is thus Increased by a factor (1-a) . When the axial velo-
city fluctuation before the retardation was calclulated from

u- wr

it becomes, after the retardation

ul = w'r' - (1-a) 1w(l-a) 1r = (1-a) lu

i.e. the retardation increases the u-fluctuation by the factor 1/(1-a). This factor has to be included in
Eq. (5.1.33). Although such an estimate has to be considered with all reserve, it shows that an influence
may be present and may result in an increase of the load fluctuations. See Ref. 5.11 for a more extended
discussion of the effect of distortion of a turbulent stream on the fluctuating components.

The conclusion that the u-fluctuations are well correlated along the blade span, even for large-scale j
wind turbines, depends on the accepted size of the lateral scale Lg of the atmospheric boundary layer.
This integral scale, defined by

= R1/(3) fR(r)dr, (separation r perpendicular to U) (5.1.34)

0 o

is affected by eddies of different sizes, thus a more detailed discussion seems relevant.

An accepted model for a turbulent flow consists of a steady main flow carrying with it a large number
of eddies of different sizes and randomly distributed in space. The large eddies, containing most of the
turbulent flow energy, correspond to low-frequency fluctuations, whereas the smaller eddies, containing
less turbulent flow'energy, correspond to higher-frequency fluctuations. The distribution of turbulent
energy over a certain frequency range Is given in a turbulence "power spectrum" with spectral density
EI(f).

There is some discussion among the experts about the validity of several Interpolation formulae given
in the literature. By definition, the spectral density has to satisfy the relation

f E1 (f)df =7 .

0 1

An often used interpolation formula for such a spectrum Is given by Davenport (see e.g. Ref. 5.12)

f E1 (f) . I -7 x2(l+x2)-3/ , (5.1.35a)

with

x - f L/UI 0 , the reduced frequency, f: frequency (Hz), L: reference lengt0 " 1200 m, and
U10 : reference wind velocity at 10 m height (m/s).

Reference 5.4 shows a preference for the expression

f El(f) = Z'7 y(I+y) s/3  
, (5.1.35b)

with

y = f L/U1o, and L = 900 m,

because of the behaviour of the spectral density at f .*. 0. In the case of one-dimensional spectrum, El(0)
has to tend to a finite non-zero value. Eq. (5.1.35b) does behave that way and Eq. (5.1.35a) does not.
However, commonly used anemometers measure the iotal horizontal wind vector instead of the component in
the average wind direction. This means that wind spectra obtained with a simple anemometer are not strictly
speaking one-dimensional spectra and that a pure one-dimensional spectrum can only be obtained with a
special type of anemometer.

Actually, reference 5.4 gives the expression

5/3 -1
f El(f) = A u'y(l+y5 )_ , (5.1.35c)

with A = 2/3. The author supposes Eq. (5.1.35c) to be a printing error, because A has to show the value

A - (5/3) sin (30/5) - 1.793

to satisfy the integral condition for the spectrum.

Figure 5.9 shows the Eqs (5.1.35a) and (5.1':35b) for a particular case. The frequency of the peak of
the spectra Is almost the same, but the spectrum of Eq. (5.1.35b) shows higher spectral densities at low
frequencies than the spectrum of Eq. (5.1.35a).

The "peak" frequency can be calculated from the above expressions and appears to be proportional to
U10 as Is shown In the table below.

f 4
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Equation fpeak

5.1.35a (U10/L) Yj - 0.00144 U10
5.1.35b (U10/L) - 0.00167 U10

5.1.35c (U /L)(1)315 - 0.00142 U
10 2 10

This means that the frequency of the velocity fluctuations that possess much of the turbulence energy in-
creases with increasing wind velocity.

The graphical representation of E1 (f) is often put in the form of an f El(f) versus log f diagram, so
that the area below the curve remains a measure of the turbulence energy content, viz.

f EI(f) d(log f) = EI(f)df

Besides the energy content within a certain frequency band Af, (viz. E1 (f) Af), a measure of the cor-
relation of fluctuations within a certain frequency band and separated over a certain spatial distance
seems useful for a further discussion. This measure is called the "coherence".

In order to avoid too much detail, the definition of coherence will be given in a strongly simplified
form by denoting the contribution to u within a small frequency band around f by uf, thus

Coh = Iuf(r) uf(r+Ar)/ufr u f(r+Ar)Z]

In man%, cases, the square root of the coherence is used instead of the coherence itself. Ref. 5.12 gives
an interpolation formula for the coherence in cn atmospheric boundary layer, viz.

(Coh) - exp[-IC f.r/UI ]  (5.1.36)

The constant C depends on the height above the ground z. Some typical values are (for a suburban region, (

Ref. 5.8)

C = 4.5 at z = 40 m for the lateral coherence (Ar in Y-direction),

C - 6 at z - 40 m for the vertical coherence (Ar In Z-direction).

One can take the separation Ar at which (Coh)l < I cs a distance at which the correlation at frequency f
becomes insignificant. Figure 5.9 show an example by using the Eqs (5.1.35a), (5.1.35b), and (5.1.36)
(see also Fig. 5.7). There is some debate on the use of consistent values for L and C (corresponding to
the same meteorological situation and a more or less unobstructed area), but the general conclusions
drawn from this curve will be applicable to wind turbines in many cases.

It is clear from this figure, that in the frequency range containing most of the turbulence energy
(7xi0 3 <f < I0 1 Hz.), the correlation length (Ar) at which (Coh) is of the order of magnitude of
the rotor radius or larger.

Frequencies above 1 Hz have a correlation length of less than 1 m, which for most wind turbines
means that these fluctuations are uncorrelated and do not contribute to a normal-force fluctuation.

The energy spectrum and the coherence are functions of a "reduced" frequency, which means that the
frequency increases with the wind speed. A generalized conclusion from Fig. 5.9 might be that fluctuations
with a frequency above f - U/10 (Hz) are uncorrelated at a separation length above 1 m. For other separa-
tion lengths, similar results can be obtained.

When the angular frequency of the rotor is (9/27r), comparison with the frequency of the turbulent
fluctuations (f) may indicate whether the turbulent fluctuation changes during a revolutiun of the rotor,

i.e. whether the turbulence can be assumed "frozen" during a revolution. Th2 angular frequency can be
obtained from

9/2w -X U/(2R 0)

When X = 8 and U = 10 m/s, the angular frequency Is a function of Ro, as Is seen in the table below

Ro0(m) I 10 25 150
9/2% (Hz.) 12.7 1.27 0.50 0.25

Figure 5 n shows that the rrequency of the energy-containing eddies is one order of magnitude lower than
the angular frequency of t a rotor; thus the concept of frozen turbulence can be applied. The evaluation
of Eq. (5.1.29), however, remains still a difficult problem.

When the turbine rotates with a constant argular velocity n in a turbulent wini stream, the question
can be raised whether the lift variation on a blade element due to a wind velocity luctuation can be cal-
culated by quasi-steady aerodynamics, or whether It hr to be calculated by unsteady aerodynamics, which
leads to a time-lag of the lift In response to a wind velocity fluctuation.

This !'ahaviour Is Indicated by the value of the reduced frequency k of the wind velocity fluctuation
with respect to a blade element at a spanwise station r/Ro and a chord-length c/Ro (cf. Sect. 4.5.5)

--__ _f__c/__) ,,f (c/2)/R

k i reI f Fd27rf (c/2) f_______0
Uref f0r

which depends on the ratio of the frequency of the wind-velocity fluctuation and the angular frequency of
the rotor, and also on a geometric factor. A typical value for this geometric factor, with c/Ro = 0.075
and r/Ro - 0.75, is 0.05. A typical value for the high-frequency boundary of the energy containing eddies
is f - 0.2 Hz (Fig. 5.9). Because the angular frequency of the previous example was a function of Ro, the
reduced frequency of the high-frequency boundary of the energy containing eddies also becomes a function
of the rotor size Ro , which isshown In the table below.

.;;:;'-' 7
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Ro (m) 1 10 25 501
0/2n - 12.7 1.27 0.50 0.25
k (-) 0.001 0.00b 0.02 0.04

This shows that the response of a turbine to the energy containing eddies in a wind stream can be calcu-
lated with quasi-steady aerodynamics, even in the case of a large turbine.

When the turbine is not operating at Q = constant but at X = X = constant, the enertia of the
rotor-gearbox-generator combination has to be considered together wi h the torque variation of the genera-
tor due to the f-variation and the output of the X = constant control mechanism.

Ref. 5.13 discusses the dynamic response of the wind turbine for the case that the generator torque
is a function of n only and without an effective X = constant control mechanism. The case considered was
essentially a fixed-pitch rotor connected to a generator with a gearbox with a fixed gear-ratio. The
generator feeded a 12 volt storage battery via a voltage controller. The more general case with a
- constant control becomes increasingly complex.

A problem related to turbulence is the "gust", i.e. a sudden increase of the wind velocity above the
average wind velocity with a certain duration (often 3 to 6 seconds). Such a gust must be discerned from
the expectation of a very high average wind velocity (Fig. 2.2). Knowledge of extreme wind velocities
(gales, tornadoes) are important for the strength requirements of an inoperative wind turbine, but will
not be discussed here.

The wind turbine operates in a velocity range well below these extreme wind velocities (cf. Sect.
2.3.1j. The wind velocity is, however, not steady and fluctuations about the average can lead to instan-
taneous velocities appreciably higher than the average. It is Impractical to stop the wind turbine for the
relatively short time that the instantaneous wind velocity exceeds the so-called "cut-out" wind velocity
whereas the average wind velocity is well below that cut-out speed (turbine control, Sect. 5.2). There-
fore, the study of gusts at wind velocities within the operating range of a wind turbine is important inconnection with the load on an operative wind turbine.

A rather simple first guess could be made by assuming, that the fluctuations about the averagi have
a normal (Gaussian) distribution with a probability density

f(u) = 2 ] exp{- u2/ - }

The probability that a positive fluctuation u > u1 occurs can be calculated from

P(u)= (2Tr)"  exp(- y2)dy - 11-,(ui)l

a

with a

(u1) = 2(2n)"  f exp(-'y2)dy , (the error function),
0

and

a = U/(U7)1 ; y = U(U)

The magnitude of a gust is often given in the literature by a so-called "gust factor", which can be written
in the above approximation as

G = (U+ut)/U = 1 + [u1/[U2]1] [[u (5.1.37)

Figure 5.1 Oshows the gust factor G as a function of the probability of occurrence P(u1) and the turbulence
intensity of the wind flow. It must be noticed, that P(u1 ) gives the prbbability at a certain wind veloc-
ity U, i.e. it has to be considered as a conditional probability. The total probability can be obtained by
multiplying P(u1) by P(U), the probability of occurrence of a wind velocity U.

For example, when it is assumed that P(U=17 m/s) w 0.02 (or, more correctly, P(16.5U017.5 m/s) =
0.02), the probability of occurrence of one 10 second gust in a year (or two gusts of 5 seronds; in this
simple approach, there is no possibility to discriminate) at that wind velocity is

PU10 1 - 516l-1) = 365x24x3600 x' = 1.6x10 "

The gust factor can then be obtained from Fig. 5.10, viz. G - 1.8 (20 % turbuldnce intensity) or G 1.4
(10% turbulence intensity), which leads to a gust velocity of 30.6 and 23.8 m/s, respectively. Still
higher gust velocities are possible, but their probability of occurrence will be still smaller, e.g. once
in 50 years. This example shows the influence of the turbulence intensity on the maximum possible gust
velocity. The turbulence intensity is related to the surface roughness but also to the height above the
ground; therefore, a more detailed knowledge of the actual atmospheric boundary layer is necessary.

Although the above discussion brings about some important aspects aboot gusts, it gives not a reliable
basis for estimating gust loads on operating wind turbines, because:
The "ail' of the Gaussian distribution is not a suitable model for the est;mare of rare events like
strong gusts.

-The model does not include the "duration" and the "shape" of the gusts.
For a more detailed review of gust data, one is referred to the forthcoming handbook announced in

Ref. 5.1.

NN,



5.2 Turbine control

5.2.1 Introductory remarks

A discussion bf turbine control is intimately connected with the energy conversion system'chosen for
a specific design ahd the type of wind turbine used, viz. a horizontal- or a vertical-axis turbine.

IA most cases, the mechanical energy of the rotor is converted Intu electric energy by a generator-
gear-box combination (Sect. 2.3.2). When the turbine is operative, the torque of the generator has to be
matched to the torque of the rotor. The torque matching is done by a control system, the extent of which
is also affected by the scale of the turbine (a small-scale turbine has a mechanical regulator and a vol-
tage controller, whereas a large-scale turbine may have a control system with a mini-computer) and by the
mode of operation (X = constant or 1 a constant, cf. Sect. 2.3.2).

The type of turbine affects the control system, because a horizontal-axis turbine needs ayaw control
to turn the rotor into the wind direction, which is not necessary in case of a Darrieus turbine. Moreover,
a horizontal-axis turbine is sometimes provided with a blade-pitch control, which is not possible in case
of a Darrieus turbine (a very complex blade-pitch control is applied to the Giromill, however, see Ref.
5.l4). Furthermore, the control system has to start the turbine when the wind velocity comes above the
cut-in speed and it has to stop the turbine when the wind velocity comes above the cut-out speed or below
the cut-in speed (cf. Sect. 2.3.2); moreover the control system has to provide a number of safety measures,
such as the emergency stop during malfunctioning of sub-systems or during a runaway (overspeeding).

It takes a complete control-system analysis to deal with the above series of control functions in a
proper way, which is outside the scope of this; section. Also the various ingeneous mechanical control
5ystems that have been invented for small-scale turbines will not be discussed. Only those aspects which
are related to aerodynamics and apply to large-scale WECS will be dealt with in the following Sections.

5.2.2 Starting and stopping

As discussed in Sect. 2.3.1, wind velocities below the cut-in speed are not important with respect to
the annual energy production and the wind turbine only has to be started-up when the wind velocity raises
above this cut-in speed. The wind velocity has to be measured with an independent wind sensor (anemometer).
Problems related to the position of the wind sensor and the fluctuating characterof the wind will be dis-
cussed in the next Section.

To start the turbine, the rotor has to be unlocked (the locking is necessary to prevent occasional
movements of the rotor during a standstill) and, in the case of a horizontal-axis turbine, the rotor has
to be turned into the wind direction. What happens next depends on the self-starting ability of the tur-
bine, which is discussed below.

The existing performance theories for horizontal- and vertical-axis turbines give the possibility to
calculate the torque coefficient CQ = Cp/X also at low X. The rotor blades are stalled, however, at low X
and the calculated results become inaccurate. Moreover, the theory itself fails at - - 0, because the
model with which the induced velocities are determined becomes inadequate.

Calculations for a low-solidity Darrieus turbine reveals at low X a small X-range with negative Cp,
thus also negative CQ-values. At Q = 0, the wind velocity is not reduced by the operating turbine (a = 0)
and the angle of attack of a blade element and the relative velocity are (see Eqs (4.5.50) and (4.5.51))

a = arctg(cotg sin y) ,

Urel = U [sin 2 * + cos2 * sin
2 y

or, in case y nr/2 (blade element at equator plane),

a = - and Urel = U

The lift distribution on the rotor blade located at a certain azimuth angle in the wind stream gives
rise to a trailing vortex sheet, which induces a downwash along the blade span by which the actual angle
of attack along the blade is reduced in a way similar to an airplane wing in rectilinear flight. A slight
difference with the usual wing theory is the non-planar trailing vortex sheet due to the curved blade
geometry of a Darrieus turbine, but that is riot a fundamental difficulty.

An indication of the azimuthal variation of the torque at R - 0 can be obtained by considering a blade
element at the equator plane (y = %/2). The torque coefficient is proportional to the tangential force
coefficient of the blade element, which can be calculated from

Ct =C sin a - Cd cos a = Cl cos -Cd sin ,

with

Except for relatively small a-ranges (and thus 4-ranges) where the flow around the blade element is
attached and where the profile characteristics (C),Cd) depend on the profile geometry and Reynolds number,
the profile characteristics over a large part of all possible a-values are relatively insensitive to the
profile geometry. Important in this respect is the "flat plate" lift beyond the stall, with a maximum at
a : 450 .

Figure 5.11 shows C1 vs a and Cd vs a, together with Ct vs , calculated from the above formula. The
data are sketchy and only intended to reveal the general trend.

The lift in the attached flow region around a = 1800 is lower than in the attached flow region around
a 0, because the sharp-edged trailing edge becomes a leading edge in that case. This has a marked effect
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on the Ct (a - 1800,4, 2700).
When a one-bladed rotor is unlocked, the blade probably moves towards * = 1800, where it is in a

stable position. A two-bladed rotor shows a neutral or slightly unstable stability at 4 - 0 and 1800, but
when the rotor starts to move at a certain azimuth angle different from these neutral positions, the
inertia of the rotor may overcome these neutral positions and, thus, it may continue to rotate. For a
three-bladed rotor the probability of a continuous rotation from standstill is smaller. Although there is
a possibility that the Darrleus turbine starts to rotate from a standstill, the velocity due to rotation
modifies the flow around the blades in such a way, that at relatively low X the torque may become negative
again, in which case the rotor will not speed up any further. Usually, it is necessary to apply an exter-
nal torque to drive the turbine through the "negative torque dip" into the X-range with positive dCQ/dX.

It is possible to use the generator as a drive motor to speed up the turbine, thereby consuming
power from the grid instead of supplying it. Figure 2 of Ref. 5.15 shows, howevee, that there is also an
aerodynamic means to speed up the turbine to its operational range, viz. by combining the Darrieus tur-
bine with a Savonius rotor, which is self-starting.

Figure 5.12 gives an estimation of the torque at a velocity of U = 7 m/s for a Darrieus turbine,
combined with two Savonius rotors, through application of the experimental data of the Refs 5.16 and
5.17. The interference between the Darrieus turbine and the Savonius rotors has been neglected. An essen-
tial aspect is the difference in rotor diameterbetween the Savonius rotor and the Darrieus turbine in
order to match the positive CQ-vs-A range of both turbines.

A low-solidity horizontal-axis turbine with a blade-pitch angle for optimum Cp also shows a negative
Cp and CQ at low X, which means that also such a turbine is not self-starting (cf. e.g. Fig. 4.24).

At n = 0, there may be a positive torque on the rotor, notwithstanding the blade is completely stal-
led. The angle of attack can be calculated from

Because the lift CI is perpendicular to U and U is parallel to the axis of rotation in the case of f = 0,
the lift is equal to the tangential force driving the turbine and the drag is equal to the normal force,
which is perpendicular to the plane of rotation.

Figure 5.11 shows that C1 is always positive as long as i is positive; therefore, a positive torque
at Q = 0 seems very probable. The negative torque dip at low X can be overcome by using the generator as
a drive motor, but also by using a variable-pitch rotor. The purpose of the variable pitch is to decrease
the angle of attack duing the "speed up" of the rotor; in that way flow separation on the blades is
avoided. Such a variable-pitch rotor means a complication, but it is often desirable from other points of
view (feathering during storms e.g.).

In order to stop a rotating turbine, a mechanical brake can be applied, but in order to reduce the
necessary braking capacity, several aerodynamic means have been proposed to reduce the power output of
the rotor voluntarily. In the case of a horizontal-axis turbine with a variable-pitch rotor, aerodynamic
braking is easily provided by increasing the pitch angle. For both the horizontal-axis and the vertical-
axis turbine, aerodynanic braking can be provided by using spoilers, i.e. a relatively small flat surface
protruding from the aerofoil contour, which causes flow separation and, in that way, a lift decrease anda drag increase. Also the drag on the flat plate itself is important. The decrease of the power coeffi-

cient due to a spoiler, located at a radius r/Ro and with a total spoiler surface Ss, which operates on a
turbine with a tip-speed ratio X can be calculated (assuming Urel = Sir) from the formula

Acp - - (Xr/Ro)3 (S s/Sref)Cd

where C, is the drag coefficient of the spoiler with area Ss. The drag coefficient of a flat plate normal
to the flow is

Cd P 1.0 if height uwidth (square plate),

Cd M 2.0 if height >>width (two-dimensional strip).

Figure 5.13 shows the power loss due to a spoiler, estimated from the above formula. This reveals that
rather small spoiler areas are sufficient, especially at high X, but the diagram also reveals that the
influence decreases rapidly at low A, In order to relate the spoiler area to the blade area instead of to
the rotor reference area, it must be remembered that, for a Darrieus turbine with a height equal to the
diameter, the following formula applies

Sblade/Sref = 1.13 Bc/Ro

whereas for a horizontal-axis turbine with Xopt s 8, the solidity is about

o = Sbld/Sref 0.050

Roughly speaking, a spoiler area of the order of magnitude of 2 percent of the rotor blade area seems
sufficient to decelerate the turbine down to low angular velocities. R, , 5.18 shows some experimental
results obtained with a Oarrieus turbine (notice, that in Ref. 5.18 the ower coefficient contains the
factor 27/16). The experimental points in Fig. 5.13 show that the sv;%le calculation suffices for art
order-of-magnitude estimate of the required spoiler area. An accurat -.lculation is difficult due to
interference effects (induced blade stall etc.) and due to the inack . estimate of Urel (Urel varies
during a revolution). An accurate calculation does not seem wi. ';iwever, when the purpose of such
a spoiler system is regarded.

When the turbine has been brought to a standstill and has been locked in its parking position, still
important aerodynamic loads may occur, e.g. during a severe storm. This will be discussed in Sect. 5.2.4.

AT
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5.2.3 Control during normal operation

As discussed earlier (see also the Figs 2.2 and 2.3), the wind statistics for a specific landscape
or for a specific turbine site reveal a "cyt-in" speed, below which the turbine does not need to operate
due to the low annual energy content; they also reveal a "design" speed, above which the contribution to
the annual energy production is outweighed by the cost increase due to the increase of the installed
power. Above this design speed, the turbine is not always stopped, but the output of the rotor is limited*
to the so-called "'design" power by artificial means and only stopped at a still higher velocity, the so-
called "cut-out" speed.

An idealized performance diagram of a wind turbine is sketched in Fig. 5.14 for a 50 m diameter tur-
bine, with a (Cp)opt w 0.4, a cut-in speed Ui - 5 m/s', a design speed Ud - 17 m/s, and a cut-out speed of
Uo = 24 m/s. The idealization in this diagram is the assumption of Cp - (Cp)opt (i.e. X = Xopt = constant)
in the wind velocity range from Ui to Ud, and the assumption of a constant power output
[Cp = (CP)oPt(Ud/U)3] in the wind velocity traject from Ud to Uo.

It takes a control-system analysis and a cost-benefit analysis to decide which control system has to
be preferred to approach the ideal performance diagram as close as possible.

As mentioned in Sect. 2.3.2, an interesting case to consider is the n = constant mode of operation,
which was extensively studied in connection with a Darrieus turbine (Ref. 5.19). The main idea is that a
synchronous generator connected to a utility grid is forced by the grid to rotate with a fixed number of
revolutions, irrespective of the torque applied to the generator. The generator is connected to the rotor
by a gear-box with a fixed gear-ratio; the rotor is, therefore, also forced to rotate at a constant angular
velocity.

With a given geometry of the Darrieus turbine, the idealized performance diagram of Fig. 5.14 can
only be approached by changing the number of revolutions of the rotor. With the Cp-vs-N curve of Fig.
4.57, the performance curves at Q = constant have been calculated and given in Fig. 5.15.

This figure shows that 0 determines Ui and Ud; Ui corresponds with X = 7.27 (see Fig. 4.57) and Ud
corresponds with X Fj 3.7. In order to approximate the ideal performance diagram more closely at low wind
velocity, it seems necessary to apply a gear-box with at least two gear-ratios. As mentioned already in
Sect. 2.3.2, an attractive property of this system is that there is an automatic safeguard to overspeeding
at high wind velocities due to the stall of the rotor blades, as long as the generator is not pulled out
of its frequency by sudden torque fluctuations. For a more detailed discussion, see Ref. 5.19 and the
Technical Quarterly Reports of the SANDIA LABORATORIES.

A similar discussion can also be given for a horizontal-axis turbine with a fixed blade-pitch angle.
The calculated example of Fig. 4.24 will be used with Op= 0 and extrapolated in the high-X region. The
calculated S = constant performance curves are shown in Fig. 5.16.

The S = constant operation seems also possible with a horizontal-axis turbine. The necessity to chose
at least two values of % can be avoided, when the horizontal-axis turbine is provided with a variable-
pitch rotor. In that case, the ideal performance diagram can be approximated closely at one value of n.

In the discussions so far, the wind velocity U is mentioned only superficially. In Sect. 5.1.3, it
was discussed that the wind velocity is not constant but fluctuates irregularly about an average value.
Moreover, the frequency of the energy-containing fluctuations was shown to be such, that the aerodynamic
torque of the rotor follows these velocity fluctuations closely. This has no consequence for the
n = constant mode of operation with a fixed blade-pitch angle, where the maximum power output is deter-
mined by blade stall However, when blade-pitch control is used to limit the power output at high wind
velocities, there is a possibility of exceeding the design power, when the pitch control is slower than
the wind velocity vdriation.

This behaviour is elucidated in Fig. 5.17, which shows the importance of choosing the proper value of
n, when the overshoot has to be minimized, which may depend on the magnitude of the gust. Large gusts may
occur even at wind velocities within the normal operating range of the turbine, as was shown in Sect.
5.1.3.

The X - .opt = constant mode of operation (variable n) improves the power production at low wind
velocities, but the problems of maintaining the design power at high w;nd velocities and the corresponding
possibility of an overshoot remain.

Important input signals for a wind turbine control system are the wind velocity and the wind direc-
tion, which can be measured by suitable sensors (e.g. anemomete and wind vane). It is here that some
problems arise for large scale WECS. Upstream of the turbine a btagnation area exists and downstream the
wake is found; both regions where the undistirbed wind velocity and wind direction cannot be measured.
Moreover, putting the sensors too far from the turbine makes the determination of the instantaneous wind
velocity and wind direction very uncertain because of the stochastic character of the wind.

Figure 5.18 shows some simple models that may be used to estimate the stagnation of the wind velocity
in front of an optimally operating wind turbine (a = 1/3). The semi-infinite row of ring vortices seems a
good model for a horizontal-axis turbine. The actual stagnation effect will be some mixture of the three
types given. Figure 5.19 shows the numerical result of the estimations. It seems warranted to conclude
that a distance of at least twice the rotor diameter is necessary to avoid a detectable stagnation on the
reference anemometer in front of the turbine. The stagnation will vary with X (variation of a), but the
estimate is too crude to justify any further detail. The wake behind the turbine decays less rapidly thani the stagnation in front of the turbine and a location )f the anemometer in the wake should be avoided

altogether (cf. Sect. 5.3).
When the reference anemometer is installed on a mast at some distance from the wind turbine, at least

two masts are necessary to avoid the-wake, because of the variations in the wind direction.
In the case of a vertical-axis wind turbine, the reference anemometer is often situated on top of the

turbine, whereas, in the case of a horizontal-axis turbine with its rotor placed downwind of the tower,
t e reference anemometer is often situated on the nacelle. In both cases, a careful calibr tlon of the
position error has to be made at different values of X. In the case of a horizontal-axis turbine with an
upwind rotor, the only possibiiity Is to install two anemometers, placed diametrically at some distance
from the turbine while the upstream one is used.

-4• '1
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The problem with a distant reference mast (carrying an anemometer and a wind vane) is to predict the
wind velocity and direction at the location of the turbine (with the turbine inoperative). A measure of
the correlation between the instantaneous velocity at the reference mast UI and the instantaneous velo-
city at the turbine site U2 is the covariance COV(U 1,U2). The dependence of this covariance on the separa-
tion distance r and the time delay T is sketched in Fig. 5.20 for the case that the mast is placed
exactly upstream of the turbine. The covariance at T = 0 decreases rapidly with increasing r(r2 > r, > 0).
It is possible to improve the correlation by applying a time delay to the signal obtained from the refer-
ence mast, which is equal to the transport time r/O1. For other wind directions the situation is worse,however, see Fig. 5.21. The data of Fig. 5.20 actually represent COV(UI,U3 ) with a = r cos _81 instead of

r; therefore, COV(U ,U2) has to be introduced also, which leads to a further decrease of COV U ,U2). In
turbulence theory, OVU3,U2) is the so-called lateral correlation, which decreases more rapidly with in-
creasing n than the longitudinal correlation COV(U1 ,U3) decreases with increasing a. Moreover, the lateral
correlation cannot be improved by time delay-

The correlation between the wind directions, COV(81,02), is smaller than that between the wind velo-
cities, because the wind direction fluctuations are mainly caused by lateral velocity fluctuations, which
are correlated less than the longitudinal velocity fluctuations, which mainly determine the wind velocity
U1 and U2.

Statistical cnnsiderations (Ref. 5.20) indicate that the retarded instantaneous wind velocity at the
reference mast is not the best prediction of the instantaneous wind velocity at the turbine. The best
prediction is, according to Ref. 5.20, a weighted sum of the average wind velocity and the retarded in-
stantaneous wind velocity at the reference mast, on the understanding that the best prediction is equal
to the retarded instantaneous velocity when the normalized covariance approaches 1, and is equal to the
average wind velocity when the normalized covariance approaches zero.

In practical casc', the above discussion means that an accurate prediction of the instantaneous
value of the wind veloLity at the turbine is highly improbable. The prediction of the instantaneous value
of the wind direction even seems impossible. A possible way out is to use d filtering technique, to get
rid of the high-frequency fluctuations and to try to predict the low-frequency fluctuations at the turbine
from the low-frequency fluctuations measured at the reference mast. A further analysis is needed to choose
a suitable "integration time" for the filters, in order to predict those frequencies which are required
for the control system with a sufficient accuracy.

In this respect one has to think of those velocity fluctuations that have to be followed by the blade
pitch control in order to maintain the design power. Fluctuations in wind direction are only important,
when the frequency of the fluctuation can be followed by the yaw control; the rate of change of yaw is
limited by precession forces and power requirements.

5.2.4 Safety aspects

It is a specialized branch to investigate which measures the control system has to take in order to
handle malfunctioning of one or more of the sub-systems. This aspect will, therefore, be discussed neither
here nor in the following Sections.

The possibility of aerodynamic braking by spoilers in case of a runaway (e.g. when the link between
rotor and generator is disconnected unintentionally or is broken) has been discussed in Sect. 5.2.2. The
spoilers could be activated by a centrifugal switch.

There is one aerodynamic aspect, however, that is to be discussed under this heading, viz. whether a
wind turbine can withstand a severe storm. When a turbine is locked in its parking position, the aerody-
namic force on the blades are lower than those in the case of a rotating turbine at the same wind speed,
as a consequence of the increased relative velocity. *rhe aerodynamic force on a parked turbine may even
be lower in a severe storm than duiing normal operation at the design wind speed. Take, e.g., an extreme
wind velocity of 40 m/s blowing normal to a blade element; then the normal force is determined by the dragcoefficient Cd =2.0 and is proportional to

I Cd U
2  2x402 - 3200 m2/sz

A turbine operating at X = 5 at a wind velocity U = 15 m/s may have a lift coefficient C1 s 1.0; the cor-
responding normal force on the blade element is than proportional to

C,(XU)2 - i.Ox(5x15)
2 = 5625 m2/s

2

which shows that the aerodynamic force on the blade element is higher during normal operation than during
a standstill in a severe storm.

Due to the absence of the centrifugal forces during a standstill, the bending moments in the rotor
blade may be higher in a severe storm than during normal operation, notwithstanding the higher aerodynamic
load.

For the Darrieus turbine, the aerodynamic "buckling" has been discussed in Ref. 5.21. This effect is
also possible with a horizontal-axis turbine (cf. Fig. 2.8). This is the reason why it is sometimes
advised to keep the turbine operative at a constant sl during a severe storm (it is also mentioned as an
advantage of the n = constant operating mode, see Sect. 2.3.2).

Although the blade bending stresses might be alleviated during a severe storm by maintaining a con-
stant angular velocity, the total forces on the tower may become high, due to the higher aerodynamic load
on the blades which is transferred to the tower, whereas the blade bending stress alleviating centrifugal
forces are not transfer'ed to the tower.

In the case of a horizontal-axis turbine with a variable-pitch rotor, the aerodynamic loads during a
severe storm, with the rotor locked in the parking position may be strongly decreased by "feathering",
i.e. chosing such a value f.. %, that the average lift on the blade is zero and the drag low
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(i.e. Cd 4< 2.0). This is only effective when the rotor is aligned in the wind direction. Because of the
"gustiness" of the wind, such an alignment cannot be perfect all the time. A two-bladed horizontal-axis
turbine with its blades locked horizontally in the "feathered"-pitch position is insensitive to wind
direction fluctvations (horizontal gusts) but not to vertical gusts. A three- or more-bladed turbine is
always sensitive to wind direction fluctuations (horizontal and vertical gusts).

5.3 Wind turbine "farms"

5.3.1 Introductory remarks

In the preceding Sections, the discussions were centred on the isolated wind turbine in homogeneous
(Sect. 4) or in Inhomogeneous (Sect. 5.1) flow. Such a situation Is found in rural applications of wind
energy, e.g. when each remote farm has its own wind turbine (and solar heat system).

Consideration of wind energy as a means to delivery a substantial amount of electric energy to the
utility grid, however, means a large number of turbines on a certain land area. Such an array of wind
turbines is sometimes called a wind-turbine "farm", which word emphasizes the dependence of the output on
the weather system ("harvesting" of the wind energy and the existence of "good" and "bad" wind-energy
years).

In the case.of a wind-turbine farm, the question arises how closely the wind turbines can be packed
on a given land area. There are two reasons to pose this question viz.:
- to minimize the use of land in cases where land Is scarce (e.g. in The Netherlands),
- to reduce the costs by minimizing the length of access-raods, cables, etc., and by centralizing control

systems.

The separation distance between wind turbines will be determined by their (mutual) interaction. There
are two possible ways of interaction, viz.:
- the mutual Interaction of turbines placed in a row perpendicular to the wind direction. Such an inter-
action is mainly caused by "blockage" effects, i.e. local velocity and direction deviations aside of
the turbine (connected with the stagnation upstream of the turbine).

- the interaction of turbines placed in a row downstream. Such an Interaction is caused by the wake
(reduced velocity) of the upstream turbine, acting on the downstream turbine. The influence of the down-
stream turbine on the upstream one is negligible in practical cases (cf. Fig. 5.19).

It is the second item; the wake interaction, which mainly determines the necessary separation distance
between the turbines in a wind-turbine farm. Therefore, only the wake-interaction effects will be discussed
in the following Sections.

The study of the wake interaction is limited in most cases to the prediction of the reduction of the
wind velocity at the location of a certain wind turbine due to the presence of the other (upstream) tur-
bines (power reduction). The possible increase of the turbulence level of the flow (fatigue loading) is
rarely considered.

An early estimate of the velocity reduction due to an unlimited array of wind turbines was made by
Templin (Ref. 5.22). His basic idea was to calculate the velocity reduction by considering the wind tur-
bines as extra surface roughness elements added to an already rough terrain.

In practical cases, a wind-turbine farm consists of a limited array; the above estimation of the
velocity reduction will, thus, only be valid for a downwind part of the array, because the turbines at the
upwind edge of the array do not suffer any reduction in the wind velocity.

Crafoord (Ref. 5.23) extended the theory of Templin by using a vertical energy balance, to estimate
the downwind windchear variation. Both theories assume, however, that the separation between the wind tur-
bines is so large that single wakes are no longer discernable, I.e. dlret wake effects are neglected.
Lissaman (Ref. 5.211) tries to include these direct wake effects by considering first the wcke decay of a
single turbine. Then, by adding the velocity reductions of wakes at different stages of decay (wind tur-
bines at different distances), he estimates the velocity reduction due to the upwind part of a turbine
array.

The above-mentioned theories contain some uncertainties; therefore, experimental data are badly
needed. An early wind tunnel measurement exists of the interaction between two horizontal-axis wind tur-
bines (Ref. 5.25). More recently, wind tunnel measurements have been perfcrmed on a limited array of tur-
bines (represented by circular wire grids; Ref. 5.26).

5.3.2 Wake-interaction theories

5.3.2.1 Surface roughness theory

The discussion of Ref. 5.22 Is based on the Idea that wind turbines can be corsidered as extra rough-
ness elements on an already rough terrain. The difference In velocity profile of the turbulent boundary
layer due to this extra roughness can then be determined. In order to be able to use the formulae for a
turbulent boundary layer on a rough surface, it Is necessary to consider an infinite array of homogeneously
distributed wind turbines and to assume that the separate "wakes" of the extra roughness elements are com-
pletely smeared out and are no longer Individually discernible in the total wind profile.

Ref. 5.22 starts from the logarithmic velocity profile for a turbulent boundary layer over a rough
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surface, viz.

U/U* = (1/k) ln(z/k s) + B (5.3.1)

with

U : horizontal velocity
U* = '/p= so-called friction velocity
T surface shear stress
p : air density
k Von Karman's constant (N 0.40)
z height above the surface, where U is measured
ks  effective "roughness height"
B number, which is constant at a sufficient high Reynolds number, which is always true for an

atmospheric boundary layer over rough terrain (B s 8.5).

%4hen the above-mentioned numerical values of the constants are used, Eq. (5.3.1) becomes

U/U* - 2.5 ln(z/k s) + 8.5 (5.3.2)

In Ref. 5.22, then the effect of the presence of the wind turbines on an effective wall shear stress is
estimated. It seems obvious to translate the "drag" on the wind turbines into an additional shear stress
by dividing this drag force by the land (surface) area corresponding to one turbine, which introduces the
notion of turbine "density" A.

It is also obvious, however, that the average wind-velocity reduction due to the turbines might af-
fect the original wall shear stress too.

With the assumption that the wall shear stress is determined solely by the roughness height and the
velocity at that height, the effective roughness height for the terrain with turbines can be defined.

For a determination of the power loss caused by the turbine-induced velocity reduction, the logarith-
mic velocity profile for a terrain with and without turbines at the same wind velocity outside the astmos-
pheric boundary layer (the so-called geostrophic wind Uo) has to be calculated. A difficulty is, however,
that the logarithmic velocity profile is scaled with the friction velocity, which is different for the
cases with and without turbines and which drops cut at the determination of the effective roughness height.

Returning to the determination of the wall shear stress with turbines, in Ref. 5.22 the drag of the
turbine is calculated from

2Sre
D - C D IEU'(h)]Sref

with

CD turbine drag coefficient, which is taken equal to 1. An optimally operating turbine has
a CD su 8/9, but when the tower drag is included, CD = I seems a good average value.

U'(h): wind velocity at the centre of the rotor area, in case of a horizontal-axis turbine this
is the velocity at the hub height.

Sref : area swept by the rotor.

When the land area occupied by one turbine is denoted by Sland, the turbine density A can be defined by

X = Sref/Sland

and the additional surface stress is

AT = D/Sland = (X/2)p[U'(h)]2  (5.3.3)

When the original roughness height is denoted by ks = kso and when it is assumed that the velocity at
z - kso determines solely the wall stress due to the original surface roughness (see Eq. (5.3.2)), the
total wall stress with turbines present is

T p[U'(kgo)/8.5]
2 + (X/2)p[U,(h)]

2  ,

or, by definition:

[u'*] 2 = [U' (kso)/8.5J2 + (X/2)[U'(h)]2  (5.3.4)

When Eq. (5.3.2) is used with ks as the effective roughness height for the combination of original surface
roughness and turbines, the values of U'(kso) and U'(h) can be expressed in the average friction velocity
U'*. When these values are substituted in Eq. (5.3.4), the friction velocity drops out and the following
relation appears

1 0/8.5)2[2.5 In(kso/ks) +8.5
2 + (X/2)2.5 ln(h/k s) +.8.51

Because h/k5 = (h/kso)(kso/ks), the above formula can be written as

h/k5 = exp[o.4 {[(2/X)[,-(Y/8.5)2]] -Y}] (5.35)

with
Y = 8.5 - 2.5 ln(ks/kso)

This relation Is also shown in Fig. 5.22. In Ref. 5.22 the uncertainties in the determination of ks by the
assumptions made are emphasized and estimated values ofk s for roughness elements on a sooth surface are
compared with experimental values. There are large discrepancies at values of X < 5xmO" . It is possible,however, that a comparison of the effect of extra roughness elements on an already rough surface might

lead to a better agreement.

In the above discussion, the friction velocity U'* has not been determined; this velocity is a kind
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of "scale" factor for the velocity In the log law. Such a remark also applies to U* for the terrain with-
out turbines (kso). The velocity profiles with and without turbines can only be compared at equal wind
velocity outside the boundary layer (z > 6), where U(z > 6) - Uo and where 6 is the so-called boundary-
layer thickness.

In civil-engineering structural design, the power-law wind velocity profile is widely accepted and
reads

U(z)/U o a (z/6) . (5.3.6)

The log law (Eq. (5.3.2)) applies only to the lower part of the wind profile, but when a fictitious value
of the boundary-layer height 61 in the log law Is taken to obtain U(61) = Uo, the following modified ex-
pression can be found

U(z) 2.5 In(z/k)so + 8.5

_U 2.5 In(61/ks) + 5 (537)

Matching the Eqs (5.3.6) and (5.3.7) in the lower part of the wind velocity profile for two types of ter-
rain leads to the results summarized in the following table.

Type of velocity distribution
power law Ilog law

Type of terrain 6 (m) a 6, (m) kso (m)

Open country 275 0.16 3 0 1.5
Rough wooded terrain 0 0.2 3000 12

Eq. (5.3.7), with ks instead of kso, could be used to describe the velocity profile with turbines present.
The problem of estimating U'* is now exchanged for the problem of estimating 62. In Ref. 5.22, two possi-
bilities are considered, viz. 61 - 62 = constant and 6j/kso - 62/ks - constant.

With these two assumptions and Eq. (5.3.5), the power ratio at hub-height can be calculated from

U(h)l [[2.5 ln(h/kso) - 2.5 ln(ks/kso) + 8.5][2.5 ln(61/kso)+ 8.5]13

LuTh-J [2-5 ln(h/ks) + 8.5 i2.5 ln(6 2/k0  2.5 ,n(k /ks * B5]j (538)

This power ratio is shown in Fig. 5.23 for a height h - 30 m, for two types of terrain (kso = 1.5 and 12 m)
and for two assumptions about 6. The supposition 6/ks - const-nt shows the largest decrease with increas-
ing X. From the table above, which gives the influence of kso on 61, it appears that the assumption
6/k = constant is rather well confirmed by the two examples given, viz. 61/kso n 253 for open country and
6i/kso = 250 for rough wooded terrain (but 61 is a rather fictitious value).

Moreover, the assumption 6/ks = constant gives the expected result, namely that the decrease of the
power ratio is less in the case of rough wooded terrain, contrary to the assumption 6 - constant (see
Fig. 5.23). The theory of Ref. 5.22 gives a maximum acceptable value of X of about 2x10 "3. "eyond that
value, the power ratio decreases rapidly. When the separation distance between two turbines is denoted by
L, this value of X means

(%r/4)02/L2 < 2x10 "3  or L/D > [(71/8)xt3] F 20 .

In Ref. 5.23, the power ratio of a turbine in a finite array is estimated by means of a method that closely
follows the theory of Ref. 5.22.

In Ref. 5.23, the description of the power ratio for an infinite array is given. The enery dissipa-
tion due to the surface roughness cs and due to the wind turbines cgen are assumed to be replenished by a
vertical energy influx by turbultnt mixing processes *,('). When ot er energy sources are disregarded,
the energy balance for an infinite array reads

I() - es + Cgen . (5.3.9)

The energy dissipation flux due to surface roughness depends on a number of factors, which are not of
interest for the discussion below. The energy flux due to the wind turbines depend on the design (or
"rated") power Pr and the power ratio in an infinite array fQ(A) (_ Eq. (5.3.8)), thus

Cgen = PrQf(X)/L 2  
(5.3.10)

with L = mesh wildth of the square array.
In Ref. 5.23 then a finite array is considered. Take a volume of air with the height equal to the

turbine diameter D, the width equal to L and also the length equal to L, starting at turbine number i and
ending at turbine number i+1. The energy balance for this volume reads

pU3 LD + (A)L2 - c'L2 - Pi = IpU3  LD

with

U; : wind velocity at turbine i
Ut wind velocity at turbine i+1
*g*: energy influx for a finite array
cs : energy dissipation due to surface roughness for a finite array
Pi :power absorbed by turbine i.

When the power ratios are defined by

fiM() - (Ui/UI) 3  ; f +10,) - (Ui+I/U 1)3 ; et.
the "rated" or "design" power is defined by (U1 = wind velocity at first turbine)

Pr CP jU3*1
2
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and the vertical energy influx for a finite array 4( ) is assumed to be equal to the influx for an in-
finite array ( according to Eq. (5.3.9). The energy balance can then be written as

fi~ ( )  = fiX) (61)(D/L) f ( )  - fQ() - ( sC)2P (53.11)

In Ref. 5.23 the last term between parentheses is neglected, i.e. the decrease of the energy dissipation
due to surface roughness between two adjacent turblnes, and a rather simple recurrent expression for the
power ratio of a turbine in a finite array appears. The value of fQ(X) could be obtained from Eq. (5.3.8)
or a similar kind of estimate. The recursion formula reads

f M = f( M - Cp I) -f=()] (5.3.12)

with fl(X) = I as a starting value.

The estimates of Ref. 5.22 (Fig. 5.23) can be used to calculate the downstream variation of fi(X)
with the above formula. An example of such a calculation is given in Fig. 5.24. This diagram shows how
much energy is available on a land area of a given length in wind direction.The length expressed in tur-
bine diameters D is directly related with the turbine density X and the number of turbines covering this
length, e.g. on a stretch of 100 times the turbine diameter, with a X = 0.005, 8 turbines can be placed,
with X = 0.01, 11 turbines and with X = 0.02, 16 turbines can be placed on that stretch. The total amount
of energy obtained from a fixed land area increases by increasing the number of turbines (increasing X),
but the added turbines become increasingly inefficient from the point of view of power production.

It is difficult to assess, however, whether these crude assumptions used in the energy balance con-
siderations lead to acceptable results. In Ref. 5.23 are some additional considerations about the energy

balance and a large number of diagrams illustrating the Influence of several parameters have been given.

In Ref. 5.27 the equations for the atmospheric boundary layer are considered in a somewhat simplified
form in order to estimate the influence of atmospheric stability on the power ratio for an infinite array
of turbines.

It would also be possible to refine the original calculations of Templin (Ref. 5.22) by applying the
boundary layer equations for rough flat plates and by applying measurements of the boundary layer, passing
from smooth to rough (see e.g. Ref. 5.28). The measurements of Ref. 5.28 are interesting, because they
show that the wall shear stress adjusts itself immediately to the value for the rough wall, while the
velocity profile more gradually changes from smooth to fully rough. However, all these boundary layer dis-
cussions are unable to describe the direct wake effects, because the individual wakes are assumed to be
smeared out at,the distances behind the turbines considered. This assumption is possibly justified at
small values of X, but the larger values of X (smaller separation distances) are especially Interesting
for finite arrays; thus, a different approach seems worthwhile.

5.3.2.2 Wake-decay theory

An approach that differs strongly from the preceding Section is considering the decay of a wake be-
hind a single turbine and superimposing the wakes of the upstream turbines in order to find the velocity
profile at the location of a turbine inside a certain array.

The main problem to be solved in this approach is to describe the variation of the wake properties
downstream of the turbine, the so-called wake "decay".

A classical way to describe the decay of a turbulent wake in a homogeneous non-turbulent flow, Is to
assume self-preservation (Fig. 5.25). The notion of self-preservation can be clarified as follows. The
wake structure is characterized by its width b, the maximum velocity defect in the centre of the wake um
and a shape function f(- 2) - f(n), thus

(U1-u)/U 1 = I - (um/Ul)f(n) , (5.3.13)

with b and um functions of (x + xo)/D = ¢, thus

b = b() and um = Um() (5.3.14)

Self-preservation means that f(n) is a function independent of c and may only differ from object to object
(e.g. solid sphere, wind turbine, body of revolution). The functions b() and um(C) have to be found from
the equations of fluid dynamics. The quantity xo is the so-called "virtual origin" of the self-preserving
flow, which does not need to coincide with the actual origin of the wake (x = 0).

When um/UI - 1, which means at a large distance behind the turbine, the momentum loss in the wake
can be linearized and appears to be proportional to

(Um/Ui)(b/D)2 .

Because pressure differences are zero far behind the turbine, this momentum loss has to be equal to the

drag of the turbine and is, therefore, independent of c. From mixing-length theory or similar kinds of
reasoning, it can be shown that the wake width is proportional to

b/D ( )/ , (5.3.15)

and from the momentum loss it follows that the maximum velocity defect is proportional to

(Um/Ui) .(C)-2/3 (5.3.16)

This simple result is difficult to apply to a wind turbine, because:- the virtual origin xo depends on the wake-generating body;- it Is not b priori known at what distance the wake actually become self-preserving; experiments



indicate that the Eqs (5.3.15) and (5.3.16) only apply at very large distances during the final decay;
- the effect of wind shear and turbulence of the outer flow is not included although it appears from
experiments that this effect cannot be neglected.

Though it seems possible, with the present-day knowledge of turbulent flows, to set up a computer
code for the calculation of the wake decay by using an "eddy viscosity" or another turbulent shear stress
model, the calculations become very complicated and the results have to be checked with experimental re-
sults In any case. It seems more adequate to resort directly to experimental data. This has been done in
Ref. 5.24 by'taking the extensive test results of Abramovich (Ref. 5.29) about decaying lets. At first
sight, this seems contradictory, but it can be assumed that the velocity defect curves in the case of a
wake behave similar to the velocity excess curves of a jet In a co-flowing stream, except close to the
origin.

In Ref. 5.24, a thorough discussion is given of the wake model used in their computer code. For the
sake of completeness, some main points will be repeated here.

The model for a single wake Is given in Fig. 5.26 arid rests on the following assumptions:
- At a short distance behind the actual turbine, a rectangular velocity defect curve is assumed, with a
velocity defect 2aU1 and a wake width 2ro = [(1-a)/(1-2a)] D, according to the simple actuator disk
theory.

- The wake Is divided Into a number of regions. With each region, the wake width increases linearly with
the downstream distance, but the rate of growth differs from region to region and depends on the
"effective" turbulence of the flow. It must be noticed that, for the far wake, in Ref. 5.24 it is
assumed that b a r, whereas Eq. (5.3.15) gives b =(4)1/ 3 . This "final" decay is possibly too far behind
a turbine to be of Interest for the wake-decay calculations. In addition, ambient turbulence was neg-
lected.

- The effective turbulence is composed of the ambient turbulence of the atmospheric boundary layer and the
"mechanical" turbulence generated by the turbine. The mechanical turbulence has its main effect in the
near-wake region, whereas the far wake is affected solely by the ambient turbulence.

- The length of the near wake is determined by the degrading of the potential core, caused bv the shear
layer. The rate of growth of the wake diameter is determined by the effective turbulence, in which the
mechanical turbulence plays a vital role.

- In the transition region, the velocity profile develops from a double shear layer to a self-preserving
near-wake profile. it is assume d that the rate of growth of the wake diamter Is equal to the rate of
growth of the near wake.

- Within a fixed length of 10 ro , the mechanical turbulencedecays and, behind that distance, the rate of
growth of the wake diameter is solely determined by the ambient turbulence.

With the above assumptions, the magnitude of the maximum or "centre-line" velocity defect in the
wake can be determined from momentum-loss considerations, the magnitude of which is assumed to be constant
throughout the entire wake length and equal to the turbine drag. The influence of ground proximity is cal-
culated by using a mirror image of the wake and superimposing the results.

Ref. 5.24 then discusses the wake-interaction effects within an array of wind turbines. This consists
partly of a simple superposition of the computed velocity defects of the separate wakes, but this is com-
plicated by the reduction of the velocity at a certain turbine due to turbines inside the upstream zone of
Influence. For a more thorough discussion and for computed results, reference has to be made to the orig-
inal report.

5.3.3 Experimental results

5.3.3.1 Wake behind a single turbine

In Rr-f. 5.25 some early wind tunnel tests are described on two Identical model turbines with a diam-
eter D = 150 mm and two blades of constant chord c - 15 mm. By measuring directly the power output of the
two turbines at different downwind and lateral separations, the wake-turbine interaction could be deter-

mined. The power ratio for two turbines placed directly in line with the wind is shown in Fig. 5.27. The
lateral separation necessary to obtain just full wind power (P2/PI - 1*0) Is shown in Fig. 5.28. This

V' figure shows the remarkable result that zero power loss is reached when the rotor areas still overlap each
other geometrically, i.e. y/0 < 1.0.

Very interesting and complete material appeared recently in Ref. 5.30, where wind tunnel tests were
carried out on a two-bladed model with a diameter D = 360 mm and a constant chord c = 20 mm. The tests
were carried out with different values of the ambient turbulence infr.asity. Some of the test results are
reproduced In the Figs 5.29 through 5.32.

Fig. 5.29 shows the velocity defect in the wake centre for three different tip-speed ratios of the
turbine. X - 6.6 corresponds with the optimum Cp of the model turbine. The decrease of the velocity defect
behind the turbine approaches a power law at values of x/D between 5 and 8, depending on X. The power law
resembles (x/D)'5/4 instead of (x/0)"2/3 , as is shown in the figure.

The tests shown In this figure were carried out with an ambient turbulence intensity of 1 %. Very
interesting Is the "mechanical" turbulence intensity along the wake centre, shown in Fig. 5.29. The rapid
increase of the turbulence intensity at x/D between 4 and 8 probably corresponds with the termination of
the so-cal!ed "potential" core, as it was named in Ref. 5.24. This shows, that there are turbulence inten-
sitles of more than 10 % in the shear layer of the near wake.

AFig. 5.30 shows the increase of the wake width with downwind separation. The so-called "half width"
is that width at which the wake velocity defect Is one half of the value at the centre line. The half
width decreases Initially due to the "potential core" effect.

Fig. 5.31 shows the influence of the ambient turbulence intensity on the wake decay, which Is

I !"
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appreciable. The difference between tests with a horizontal-rxis turbine and a Darrieus (vertical-axis)
turbine Is not significant. Though the ambient turbulence a,preciably affects the magnitude of the
velocity defect at a given x/D, the rate of decrease is not affected. Ref. 5.30 obtains the following
power-laws for the velocity defect and the wake half width, viz.

Ur/U 1 -(x/D) , (5.3.17)

b0.5/D -(x/D)
° 63  (5.3.18)

Figure 5.32 shows the power ratio of a turbine, located just downwind from another turbine. It must
be noticed that these results are obtained for a low ambient turbulence level, viz. 1 %. The extrapolated
results have been obtained from an interpolation formula given in Ref. 5.30. For a more complete discub-
sion of the test results, reference has to be made to the original report.

5.3.3.2 Wake Interaction in a finite array

Due to the limited dimensions of a wind tunnel, test results for a finite array of wind turbines in
a wind tunnel are only obtainable by simulating the energy-absorbing effect of a turbine by a small cir-
cular wire screen. Such tests have been described in Ref. 5.26.

A more or less realistic simulation of the turbine wake seemed possibly by a wire screen surrounded
by a small annular "ring" or diffuser. The applicability of the simulation was judged by comparing meas-
urements on the isolated screen with rotating model tests, such as described in Ref. 5.30.

In the tests described In Ref. 5.26, the turbines were placed on-a circular turntable in the test-
section floor. The turbines were distributed on this circular area in a rectangular pattern in such a way,
that the separation between two turbines (x/D) was maximum at a wind direction 8 n 0 and minimum at
8 - 450. The table below gives the x/D, for different numbers of turbines (N) placed on the turntable, to-
gether with the corresponding X-values.

N 37 49 9718012.1j
S .5x0 "  2.4x!02 4.5x10

0 10
x/D 7.1 5.7 4.25

It has to be noticed that In this table the strict definition of X = Sref/Sland has been used. In an array
with different spacings in two directions (which applies in this case), the X-values cannot be compared
with the X-values for an infinite array, because in that case an equal spacing In two directions was im-
plicitly assumed.

Figure 5.33 shows the power output of three rectangular patterns on a circular area at different wind
directions. The wind velocity is the same at all wind directions (isotropic wind). Increasing the number
of turbines on a given land area Increases the total output, but the total output divided by the number of
turbines decreases, however.

At 8 - 100 and 300, the wake interactions are smallest, whereas at 8 - 450 the interaction is largest,
as was to be expected, because x/D is small.

Figure 5.34 shows the power output of a circular array averaged over several wind directions in iso-
tropic wind. It also gives an impression of the variation of the power ratio across the array, by showing
the total average, the average of the turbines along the circumference of the circular array and the
average of the turbine in the centre of the array. This diagram clearly shows that the central turbine in
a rectangular grid of turbines on a circular land area is the least "economic". V1

It is difficult to compare Fig. 5.34 with the predictions of Crafoord (Fig. 5.24), but the neglect of

direct wake interactions seems to lead to an underestimation of the power losses in a finite array (notice
that the diameter of the circular array is N 46 D).

5.3.3.3 Practical applications

The experimental results of the preceding Sections in combination with the preceding theoretical calcula-
tions can be applied in two different way, viz.
1: to estimate a maximum possible amount of wind energy, which can be obtained from an extensive land area

- (e.g. an entire country), In order to get a first impression of the feasibility of wind energy conver-
sion for such a country.

-: to find the optimum pattern for a finite array of wind'turbines on a specific land area, taking the
number of turbines as well as the spacing in different directions into account.

The first question is answered by several authors using the surface-rdughness theory or some modified
form of it, which is especially suited for such a-question. Also the result for a large but finite array
may be included. The answer is often given as a power output per land area (W/m2), but this depends crit-
Ically on the wind statistics used and, therefore, the measure of rotor area per land area (m2/km2 or X)
is preferred. The table below gives some estimates of this quantity.

Athor Ref. m2/km2  X type of array

Templin 5.22 1000 1.0x10 "  In03infinite
Railly 5.27 1500 1.5x10"3i Ljungstrdm 5.25 1 000 1.x10 "  fi
Builtles 5.26 20000 2.0x10 "2 fite
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This clearly indicates the influence of considering direct wake effects and finite clusters of turbines
Instead of infinite arrays. However, these high-density finite arrays can only be sparsely distributed
across the country and, for a first estimate of the total amount of wind energy for an entire country,
the infinite array estimates seem still useful.

Nevertheless, the second question has more practical significance. The authors of Ref. 5.31 applied
in the-r study the computer code of Ref. 5.24, adjusting some numerical constants in order to get a better
agreement with the experimental results of the Refs 5.26 and 5.30. The use of the computer code er,ables a
quick survey of different turbine arrays. In Ref. 5.31 two different kinds of array patterns are con-
sidered, viz. the row and the rectangular array covering an almost circular land area.

Figure 5.35 shows the calculated output of a single row of turbines, averaged over the wind rose for
an isotropic wind distribution. This diagram shows that the economic limit is not reached even for a very
large number of turbines placed in a single row, provided that the value of the turbine spacing x/D has to
be taken not too small. For an Isotropic wind distribution (same wind velocity from all directions),
x/D i 3 seems an acceptable value. By repeating the calculations for a real wind rose, and by putting the
row perpendicular to the prevailing wind direction, Ref. 5.21 quotes a value of x/D P 2 as economically
feasible in that case, because of the reduced wind energy content of the wind directions parallel to the
row.

The energy output of the circular array is considered for- an isotropic wind, but also some cases with

a real wind-rose distribution have been considered. The ratio

R(N) = [P(N+I),- P(N)]/P °  , (5.3.19)

with P(N+I) : power output of an array of N+I turbines,
P(N) : power output of an array of N turbines,
Po : power output of an isolated turbine,

could be envisaged as a measure for the economy of adding one turbine to an existing array. Ref. 5.31
quotes a limiting value of R(N) = 0.75 below which a further enlargement of the array is not economically
feasible.

Figure 5.36 shows results for a cluster-like turbine array. The rectangular pattern shows a separa-
tion distance x/D = 7 in the direction a = 450. Arrays with different numbers of turbines were calculated.
The smallest array consisted of a square with 25 turbines, whereas larger arrays formed equilateral poly-
gons. The numbering system of the turbines in the array followed a spiral order of sequence, as sketched
in Fig. 5.36.

The relative power output decreases steadily with the increasing number of turbines, but the total
energy output P(N) increases, as is shown in the table below.

N IN) P(N)
N Po Po

*25 0.8 22.00
29 0.87 25.23

13710.85131.45I

61 10.82 150.02
Also shown in Fig. 5.36 is the relative power increment due to adding one turbine (Eq. (5.3.19)), which
shows that, with x/D = 7, arrays with N < 60 seem economically fensible.

The influence of the wind rose on these cluster-like arrays appeared to be negligible within the
accuracy of the calculations, when x/D > 5.

Ref. 5.31 gives as a tentative recommendation for acceptable separation distances In case of an
isotropic wind distribution

type of arra number of turbines separation
single row unlimited x/D 3
rectangular N 4 20 x/D > 5

4 pattern 20 < N'e 60 x/D ; 7
(cluster-like) N > 60 x/D , 9

which is a far more shaded answer than the X-values given by the surface roughness theories at the begin-
ning of this Section.

5.4 Short note on literature and bibliographies

Each of the Chapters I through 5 and the Appendices contain lists with references cited in the text,
but these lists are by no means an exhaustive survey of the literature on wind energy. Readers interLsted
in bibliographies on wind energy are referred to the following volumes:
I Burke, B.L., Merony, R.N.: Energy from the Wind; Annotated Bibliography.

Colorado State Univ., Basic Volume (Co., USA; July 1975), First Supplement (Co., USA; April 1977).
2 Van Steyn, R.: Wind Energy; a Bibliography with Abstradts and Keyrds, Part 1 and 2.

. - Eindhoven Univ. of Techn. (Eindhoven, The Netherlands, July 1975)3 Van Meel, J., Hengeveld, D.: Wind Energy; a Bibliography with Abstracts and Keywords, Part 3 and 4.
Eindhoven Univ. of Techn. (Eindhoven, The Netherlands, Jarch 1977).

partial bibliography, which contains a listing of recent reports generated by the Federal Wirnd Energy
Pg of the USA, is distributed recently (July 1978) by the
P Wind Systems Branch, Energy Technology - Solar Energy Division,

U.S. Department of Energy (DOE).
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Much information Is contained in the proceedings of Symposia and Workshops, a number of which will be
listed below:
I Proc. Workshop on Wind Energy Conversion Systems (Washington D.C., 11-13 June 1973)

NSF/RA/W-73-006 (Dec. 1973).
2 Proc. Second Yorkshop on Wind Energy Conversion Systems (Washington D.C., F-11 June 1975).

The Mitre Corp. MTR-6970 (Sept. 1975).
3 Proc. Third Biennial Conf. and Workshop on Wind Energy Conversion Systems (Washington D.C., 19-21

Sept. 1977).
JFB Scient. Corp. CONF-770921 (Sept. 1977).

4 Proc. Workshop on Advanced Wind Energy Systems (Stockholm, Sweden; 29-30 Aug. 1974).
Swedish State Power Board.

5 Proc. Vertical-Axis Wind Turbine Techn. Workshop (Albuquerque, New Mexico, 18-20 May 1976).
Sandia Laboratories Report SAND76-5586 (July 1976).

6 Proc. Intern. Symp. on Wind Energy Systems (St. John's College, Cambridge, England; 7-9 Sept. 1976).
Proc. Second Intern. Symp. on Wind Energy Systems (Amsterdam, The Netherlands; 3-6 Oct. 1978).
Proc. Workshop on Wind Turbine Structural Dynamics (Lewis Res. Center, Cleveland, Ohio, 15-17 Nov.

L 1977).
NASA Conf. Publ. 2034/DOE Pub]. CONF-771148 (1978).

In conclusion, the articles appearing in the journal "Wind Engineering" (UK, first volume in 1977) and in
the "Journal of Energy" (USA) have to be mentioned.
Just before submitting the present document for publication, the following report was brought to the
author's attention: I

Miller, R.H., et al.: Wind Energy Conversion, Volume II:
Aerodynamics of Horizontal-Axis Wind Turbines.
M.I.T. Report ASRL TR-184-8 (1978).

This report was not taken into account when preparing the present review.
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APPENDIX A
STREAM FUNCTION AND VELOCITY DISTRIBUTION DUE TO AN ANNULAR WING WITH A

TRIANGULAR CHOROWISE VORTICITY DISTRIBUTION IN AXISYMMETRIC FLOW

A.1 Introduction

There is an extensive literature on annular wing theory, but those theories are mainly concerned with
induced velocities at the chord of the annular wing and not with the velocity field inside the annular
wing, which is the prime question in case of a wind concentrator.

In order to get some Insight Into the Induced mass flow through the annular wing, calculations have
been carried out on an infinitely thin cylindrical annular wing with a triangular chordwise vorticity
distribution, without bothering about the question whether such a chordwise load distribution is compatible
with d flat plate aerofoll section. It is hoped that a triangular loading is not too far away from the
actual incompressible flow load distribution and the the camber of the corresponding aerofoll sectlcn is
is not too large so that the computations are Invalidated (this certairly depends on the chord-radius
ratio of the annular wing).

The maximrum induced mass flow through the annular wing depends on the maximum attainable circulation
around the aerofoil section. It is very difficult to set up such a calculation, but sone insight into pos-
sible bounds can be obtained by calculating the corresponding section lift coefficients. In case of an
annular wing, this lift coefficient cannot be simply obtained from the circulation and the velocity at
infinity (wind velocity), because of the self-induced axial velocity at the aerofoil chord. These self-
induced velocities have been obtained from Ref. A.l.

A.2 Induced axial velocities

Ref. A.2 gives the so-called "Stokes stream function" for an elementary vortex ring of strength ydx
(see Fig. A.1)

*(O,r) - R I cos 6 (x 2 +R2+r 2 -2rR cos 0)"1 d . (A.l)

0

A triangular vortex distribution with total circulation r,

y - 21 x/c2  , (A.2)

leads to a stream function in point P(O,r)
2 c

*(O,r) - rrR/(2sc 2) f cos 6 do f x(x2+R2+r2-2rR cos o)-1 dx • (A.3)
0 0

Integration and transformation leads to a stream function expressed in complete elliptic integrals of
first and second kind, viz.:

*(Or) 2 k - -- (k)} ---- E(k1) ---- (k2 )} , (A.4)

1ck k 3k3k
wi th

wih k2 4rR/[(R+r)2+c2]

and

k2 •rR/(R+r)2

When c 4 0 and ki + k2 - k - 4rR/(R+r)2, Eq. (A.4) reduces to the stream function of a discrete vortex
t, ring, viz.:

r(rR) 1/2 r2 21
yl(,r) - 27r k - k) K(k) - tE(k)j (A-5)

which agrees with the forimula given In Ref. A.2.
The stream function *(O,r) times 2n gives the volume flow through a circle with radius r. The volume

flow through the annular wing can be found by taking the limit r + R. When r - R, k2  1 and E(k2) - 1.
Furthermore

Lim (K - k2K)/k .O .k + 1 2
k2 +

It follows from Eq. (A.4) that, if

V:: k2 - k2 - 4/[4+(c/R)2]

the following relation holds:

21r*(O,R) - rRf -k I 2-k2  (.(c/R)2L7 3 k3 3k 0 [
Divided by irR2, Eq. (A.6) gives the average Induced axial velocity (u). For non-zero values of c/R,

-. -
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21t(0,R) is finite. the volume flow through a discrete vortex ring (c - 0) is Infinite, however, as can

be seen from Eq. (A.5) with r- R and k - 1.

The distribution of the axial velocity along the radius could be obtained from Eq. (A.4'1, but It
becomes a very Intricate expression. In case of the discrete vortex ring (Eq. (A.5)), the expression
becomes simpler, viz.:

u (0, 1 L k r 1+r/R ]l(O r ar 1 21TR(l+r/R) I ) +(k) .(A 7)

The induced axial velociLy on the axis (r = 0) is

ul (I,) - /2R , (A.8)

which result could have been obtained much simpler from the application of the law of Biot-Savart to a
vortex ring of strength r.

The induced velocity becomes infinite at the vorte ring (r - R) (see Fig. A.2). This explains the
infinite volume flow In case of a discrete vortex ring1). When the vorticity Is distributed along a finite
chord, the Induced velocities remain finite and also the volume flow through the annular wing remainsfin!te (cf. Ref. A.1).

In case of a finite chord, the axial Induced velocity at the axis can be calculated directly, viz.

u(0,0) = r 2[1+(c/R)21-1] (A.9)211 (c/R)2[1+(c/R)2]

Figure A.3 shows the average velocity 5 (Eq. (A.6)) and the velocity on the axis (Eq. (A.9)) as a function
of the cR-ratio.

At a fixed value of R and for a given total circulation r, the average induced velocity increases
with decreasing ciR. The velocity at the axis u(0,0) also'increases with decreasing c/R, but it approaches
u(0,0)/(r/2R) - I when c/R + 0, which agrees with the results for a discrete ring vortex (Eq. (A.8)). This
means that the velocity distribution across the exit plane of the annular wing is almost constant when
c/R > 1 and approaches the distribution of Fig. A.2 when c/R << 1.

When c/R > 1, u(0,0) > Z. This can be made plausible by remembering that when a certain vorticity
distribution at a given sectional geometry is assumed, the condition of zero normal velocity at the aero-
foil section has not been fulfilled. This may lead to an outflow through the annular wing, which reduces
the axial velocities at r + R and leads to an underestimation of G.

For a rough estimation of the average Induced velocity through an annular wing, apparently Eq. (A.9)
can be used if OR > 1, whereas Eq. (A.6) should be applied If c/R < 0.5.

A.3 Estimation of section lift coefficient

The self-induced axial velocity component at the aerofoil section of an annular wing (see Fig. A.4)
can be calculated from (see Ref. A.1):

du(x,R) = (Y/i)dx'2R2 [4R 2+(x'-x)2 ] 3/2[K(k)-E(k)]/k2 , (A.10)

with

k2 - 4R2 14R
2+(x'-x)

2 ] - [1 (.2  2-)]

For a triangular vorticity distribution (Eq. (A.2)), Eq. (A.10) becomes

du(x,R) = K(k)-E(k) d . (A.12)

The integrand becomes singular at k = 1, i.e. if x'/c = x/c. When the expansion for K and E

'4 4 1213K = In + (in 7, - 1)k' 2  (A.13)

E = 1 + (n L- I)k' 2  , (A.14)

is used, with

k' = (l-k2)1

which is valid for values 1 4 k < 0.75 with an error < 4 %, Eq. (A.12) can be written as

dx,).yfRk[(In r)(0 - -7)-1 L d(- . (A. 15),

A further approximation, with

k st 1 ,I

k R c "C

(K-E) su In 4 _ I ,(A.16)

TF-Adiscrete vortex ring in an axial external flow also implies that a certain volume is pumped around

(back flow outside the ring) and that it does not contribute effectively to the volume flow through

the ring.
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leads to a solution of Eq. (A.15) that is valid for very small values of k', i.e. very small values of
c/R, viz.:

u(xR) - r IinR + I .(1)2 i ) In A (A.17)

In order to give an Impression of the error due to the approximation of Eq. (A.16), compared with the
original approximation of Eq. (A.13) and Eq. (A.1A), the ratio of the two integrands can be given, viz.:

du1 (x,R)/du2 (x,R) E [ln(4/a)-l]k 1[ln(It/k')(l-k'2/4)-l] , (A.18)

with a = ' " ) , k - (1+a2)
"  

, and k = (1-k2)

The distribution of the error along the Integration Interval 0 < x'/c < I for one value of x/c and
two values of c/R is given in Fig. A.5. This figure shows that Eq. (A.17) always overestimates the veloc-
ity, but, even with c/R - 2, the error in the integrated value of u(x,R) will not exceed 8 percent.
Therefore, Eq. (A.17) can be used for an order-of-magnitude estimation of the self-induced velocity at the
chord of the annular wing. Figure A.6 shows the self-induced velocity distribution along the chord for
some values of c/R.

Till now, only the value of r has been used. The maximum attainable circulation is difficult to
assess, but a maximum section lift coefficient (related to the local velocity) is easier to apprehend.

In order to define a local lift coefficient C1 , an average velocity 0 can be defined from the total
section lift on the annular wing, viz.:

C

C1  pG
2c - par - p f y[U+u(x,R)Jdx (A.19)

When Eq. (A.2) is used for y, the average velocity along the chord can be calculated from

U+2x d(.) (A.20)
0c c

With Eq. (A.17), the average velocity becomes

U 4. [1 In(_cR) + ]2"ur . (A.21)

From Eq. (A.19), the section lift coefficient can be obtained

Te lf Cn c.8 + ]]-1 (A.22)

The lift coefficient obtained with a given circulation r in a wind velocity U on a two-dimensional wing is

U 1 . 2r/uc , (A.23)

which shows that C1 < Clo, due to the self-induced velocity, when compared with Eq. (A.22). From Eq.
(A.22), it appears also that

C1 + CO, when c/R +0,
in other words, when the chord becomes small with respect to the radius of the annular wing, the flow t
around the profile becomse two-dimensional (see also Ref. A.1).

From the'Eqs (A.22) and (A.6), the relation between U, c/R and C1 can beobtained, viz.:

rc/R [3 + . _ ____-K---E L- In vB + al ,* (A.24)

2(3)0 .30 1 dRI T17I () all
with, k-f[ + (c/R)2] "  .

Eq. (A.24) becomes singular when the denominator tends to zero. The origin of this singularity is most
easily resolved by rjeturning to the expression for the circulation, viz.

r - C cO - CCU C + ICIc -1- [ In  ,
I 2R dR) 8.,

or r - [ ,--~ In 8 R + ]'CcU r c .1Tc

It is easily shown that there Is a limiting value for C1 , at which 1'* (which Is physically impossible),
viz.

1 + 3 (A.25)

The singularity of Eq. (A.24) Is most ea.iily reached when

c/R 8 +
c/[ln(cR) 

+ 4]

becomes a maximum, which Is reached at

(c/R) 8e"  i 6.23

_x7, ,-L X ' .... , .. ,.- ..._ . . ... _
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When this value is substituted in Eq. (A.25), it gives a limiting value of the local lift coefficient

Cl 4~.03

Figure 3.11 also shows the singular behaviour of the mass flow amplification at C I P 4.

A.4 List of references

A.1 Dicicmann, H.*E.: Grundlagen zur Theorie ringf~rmiger Tragflflgel (frei umstr~mte Dilsen).
Ing. Archiy, 11 (194.0) pp. 36-52.

A.2 Batchelor, G.K._: An Introduction to Fluid Dynamics.
(Cambridge Univ. Press, London, 1970) P. 521.

I,,

R do,. Rx

0. R

u

Fig. A.1 Calculation of the Induced axial velocities in the exit plane of an Fig. AA4 Calculation of the induced axial velocity at the wing section of

annular wing with a triangular vorticity distrition along the an annular wing

chord c/R - 2

dul(O.8,R)
du210.8,R)

r 11

11.0

0.5 R 10

01,. 1.o0

0 2 4 6 PM21 1.0 0.8 0.6 0.4 0.2 0 *X/C

Fig. A.2 Axcial velocity induced by a discrete vortex ring Fig. A.5 Error In Eq.(A.12), when the approximation according to Eq.iA.16)

is applied, as a function of Yt'/-, and c/R; error estimated with
Eq.(A,18)

1.4

1.2- uxR

1.0

0.00O.- c/R 0.2

0

asu~~o a. funtio of th2/~a



BI

APPENDIX B
ENERGY EXTRACTION FROM AN INCOMPRESSIBLE STEADY FLOW

B.1 The Bernoulli constant H

Energy extraction from an Incompressible steady flow is indicated aerodynamically by a decrease of
the so-called Bernoulli constant H, when a fluid particle moves along a streamline.

If no energy is lost,

H a p + pU2

is constant along a streamline.
The conditions for a variation of H in flow direction can more easily be discussed when the incom-

pressible momentum equation is used:

L. + wu,--VH - \Vxw ,(6.1)t p

with : external force per unit mass (N/kg)

W= Vx : rotation of fluid element; twice the instantaneous angular velocity (i/s)

v kinematic viscosity (m2/s).

In case of a steady (a/at = 0), inviscid (v = 0) and irrotational (w - 0) flow, Eq. (B.1) becomes

(8.2)
P

The only possibility for the existence of a non-zero gradient of H in flow direction Is an external force
in flow direction. This is the fictitious situation of an actuator disk perpendicular to the flow, with

a drop in total head across the disk (cf. Sect. 3.2.1).

In steady inviscid flow with rotation, Eq. (B.1) becomes

H + (B.3)

The possibility for a gradient in flow direction can be traced by forming the dot product with from
Eq. (B.3), viz.:

t-VH t- U)Z(B.4)
p

The second term on the right-hand side is identically zero; therefore, Eq. (B.4) leads to the same conclu-
sion as Eq. (8.2).

In a steady viscous flow, forming the dot product between t and Eq. (B.1) and reminding that
. = -0 leads to

I -VH - l- vt-Vx' . (6.5)~P

The second term on the right-hand side expresses the dissipation of flow energy into heat due to viscosity
and cannot be regarded as a useful form of energy extraction.

The first term on the right-hand side can contribute to VH in viscous flow (frictional force), but4
these forces are usually small. The much more powerful lift force, however, is always perpendicular to U
and, thus, cannot contribute to VH.

The ultimate conclusion is that extra.tion of a significant amount of energy from a flow has to be
sut nusteay fo.Hwvrwhntelo scnie narfrec rm oigwt h tubeconnected with unsteady-flow phenomena. A fluid particle flowing through a rotating turbine is subject to~sucb an unsteady flow. However, when the flow is consi6ered in a reference frame moving with the turbine

blace, the flow is steady again (when the angular velocity of the turbine is constant). This apparent
contradiction will be discussed below. Because viscous forces are not important in this respect (apart
from the effect of viscosity in generating rotation in the flow and in that way generating lift), the1 influence of viscosity will b neglected.

Transformation of Eq. (B.1) into an energy equation by forming a dot product with U leads to the fol-
lowing equation

DH = + p. (B.6)

Dt atwith --- +U.V

which Is the substantial or material derivative, i.e. a differentiation following the motion of the fluidparticle. Eq. (B.6) shows that H may vary due to fluctuating static pressures and due Jo the work done by

external forces. In unsteady flow, the lift force need not be perpendicular to U and p. 4 might contribute
to DH/Dt.



82

B.2 Choice of the reference frame

The flow through a steadily rotating horizontal-axis turbine in a reference frame attached to
"earth" is unsteady (Eq. (B.6)), even when the oncoming flow Is steady. When the turbine is considered in
a reference frame attached to the turbine blade, the flow is steady, but it rotates as a whole around an
axis coinciding with the axis of the turbine.

For a steady flow, Eq. (8.6) becomes

Dt

In a rotating system, however, the fictitious external forces (Coriolis and centrifugal) have to be
added, thus

Dt - * - pi .2Axi - p~.ix(& *$)

The second term on the right-hand side is identically zero. The first term on the right-hand side is zero
because, in inviscid flow, the only possible force is a lift force that is perpendicular to U.

The triple cross product can be written as a gradient, viz.

and the energy equation for the relative flow becomes

DH pU.v (&x )2 II(&x 2WEtO

This means that in the relative flow

p + IpU 2 - ip(&x4)2 = constant . (B.7)

In an Inviscid relative flow of a rotating system, the Bernoulli equation In the form p + JpU2 = constant
can be applied along a streamline at a constant distance from the axis (r = constant). Such streamlines
do not exist actually, however, in case of a wind turbine, because of its large wake expansion (cf. Fig.
3.3).

Eq. (B.7) can be interpreted in another way, by considering the velocity in the "earth-bound" or
"absolute" reference frame

Ur a U

with Ur - velocity in a frame fixed'to the turbine blade,

Ua = velocity in a frame fixed to earth.

The square of the relative velocity can be calculated from

u2 . U a- + (W U" + 2-6a -(Ux")
r r r a a a

and substituted in Eq. (8.7) gives

p= U2 + Pa"(xr) - constant (B.8)

Far in front of the turbine, %a is parallel to and the dot product in Eq. (B.8) is zero. Far behind the
turbine, the static pressure has to be equal to the pressure far in front of the turbine; thus an energy
loss in the flow is only possible when Ua is deflected during its passage through the turbine In the,
direction of xr.

The dot product term can be interpreted as the change of angular momentum per unit volume in the
flow times fl, and equals the torque of the turbine times $1, which is just the generated power of the tur-
bine. It is interesting to notice that the generation of power with a horizontal-axis turbine has to be
connected with tangential velocity components in the flow behind tne turbine.

It is also interesting to note that, for a vertical-axis turbine, no reference frame fixed to the
turbine blade exists which leads to a steady flow in that reference frame. This Inherent unsteadiness Is
a serious drawback in setting up general equations for the vertical-axis turbine. Especially inconvenient
is the impossibility to use the equation of the angular momentum (calculation of the torque) in case of a
vertical-axis turbine.

,1 . • . - .....4



APPENDIX C
DETERMINATION OF THE INDUCED VELOCITIES IN AXISYMMETRIC FLOW

C.1 Introduction

The bound vorticity on the rotor blades and the trailing vorticity behind the rotor Induce velocities
that change the wind velocity in front of, at, and behind the rotor. Due to the complexity of the vortex
system, these induced velocities can only be determined in some special cases.

The discussion in this Appendix will be restricted to axisymmetric flow, I.e. to a flow where all
quantities are Independent of the azimuth angle *. It can be shown that this represents a turbine with an
infinite number of blades.

The vortex system and the governing equations will be discussed, which will reveal the complexity
even in the case of axlsymmetric flow. The vortex formulation Is applied to a cylindrical (non-expanding)
wake with a simple r-distribution (constant and linear) only, in order to avoid the difficulty to solve
a nonlinear problem.

Then, momentum considerations are used, to get some Insight into the effect of wake expansion on the
induced velocities at the rotor. The equations arising from this approach are, however, also nonlinear and
could be solved only for a special case. Nevertheless, the Influence of the wake expansion can be indi-
cated. It then turns out, that also the static pressure d~ficit In the wake due to the rotation in the
wake (connected with the torque), plays an important role.

C.2 The vortex structure; general formulation

Figure C.1 shows a rotor blade, represented by a bound vortex along the span and the trailing vortex
sheet behind the blade. Due to the combined action of the axial wind velocity and the rotation of the
blade, the vortex sheet gets a helical form. Due to the Induced velocities, the rather simple helical
shape (determined by U and fr) will be modified. When the induced velocities are not small with respect to
U, the modification of the shape will be large and the problem becomes nonlinear. This would lead to a
complex Iterative calculation procedure, which will not be discussed here. For more details, see the Refs
C.1, C.2 and C.3.

When the number of blades increases while the total strength of the bound vorticity is kept constant,
the rotor disk becomes a vortex sheet with an axisymmetric strength distribution. Behind the rotor, the
wake Is filled with trailing vorticity, which is also axisymmetrically distributed.

Figure C.2 shows the notation to describe this situation. Yr is the strength of the bound vorticity
at radius r, which is related to the total bound circulation at radius r by

i() - 27rr Yr . (C.1)

In cylindrical coordinates, the continuity equation (mass conservation) for axisymmetric flow can be
written as ,

Vv r) + a (u r)-0 C2

which is Identically satisfied by a stream function *(x,r) with *(x,O) -0, when

V A. U- (C.3)r ix r "r

It must be noticed that, In axisymmetric flow, the tangential velocity component w Is not affected by mass
conservation. In this Section, u, v and w are the components of the total velocity.

The vorticity components in the wake flow are
1x -L(w r) w w

': x ' o r ; r  a x 3 ( c .4 )

a" au " L 2  r

In front of the rotor and outside the wake, the flow Is Irrotatlenal (+ - 0), and It follows from the

Eqs (C.4) and (C.5) that it has to satisfy the equations:

A2k+ 2 1 - I - = 0O, a~d : w - 0 (C.6)
ax 2  or 2  r or

In Incompressible and Inviscid steady flow within the wake (i.e. In absence of external forces), there is a
relation between the velocity q, the rotation w and the Bernoulli constant H (see e.g. Appendix B, Sect.
B.1), viz.:

pVH - qx (C.7)

or, in cylindrical coordinates,1 al w c8

--ax W W- r (C.8)

1 BH (C9)

p"r " x " *, c9

i. " "- l~.: .. -. - ..-- In. --.-- -- -- --- -
,

-
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1 u ) (C.10)p r ¢ = u r " v 0 x .

The variation of H in a merldional plane on the surface 4 = constant in the wake can be calculated from

(using axisymmetry 3/at - 0)

I aH I aH ax IaHar (C.1)
as px 3s + Tr S

where ds is a line element on the intersection of the stream surface and the meridional plane, and

axu an ar v with us
as u a as u- "

Eq. (C.11) can then be written (when the Eqs (C.4), (C.5), (C.8) and (C.9) are used) as
BH u )V p-(

- P(v W w Wr)s + P(w Wx - (Vxu- U _r)

In axisymmetric flow, Eq. (C.10) has to be Identically zero and, therefore, the right-hand side of this
equation is zero, thus:

0 O and H - H(*) (C.12)

Because H varies only normal to 4 - constant, Eq. (C.7) shows that the vortex lines coincide with the
stream surfaces. When the circulation r(r) is defined as

r(r) - 2anr w

this circulation is constant in a stream surface 4 , constant, viz.:

a(w r) a(w r) x + a(w r) ar
as ax as or s

ax ar
= r r - + w x

thus s r x

s ar(r) 0 , and r(r) r(,) in tie wake (C.13)

s 0 elsewhere.

When Eq. (C.7) is used, the gradient of H normal to 4 = constant can be calculated from

I Hl a w W( w r )p W an = 
s- us r=- a--n- " s 0,

with

and

n = the normal on 4 - constant.

The gradient of the stream function Is

a4+ a'ax a4ar (-v r)(--) + u r u r
8n rxn Br anuu s7n Yxn+ rn U s us r,

and the gradient of H can be written as
I 8H -( rr 2 D(w r) a* s }

(w'8 r~r - *- _u Wp a*/ an 3 a an S

or

dH r(2nr) - - w, r (C.14 )

There has to be found another relation between H and r, which is connected with the role of external

forces of the actuator disk, representing the turbine.
The jump In the Bernoulli constant AH can be calculated from the static pressures and velocities in

front of and behind the actuator disk. In front of the actuator disk, the pressure is Pl and the velocity
components In a "fixed-to-earth" coordinate system are u1 , v1 and w1 . Behind the actuator disk the pres-

sure Is P2, and the velocity components are u2, v 2 and w2,
From Eq. (B.8), It follows that (App. B)

p1 + p(u2+v2+w2) + pW nr P2 + (u2+v 2 +w2 ) + Pw2flr

which can also be written as

H1 + pwIr a H2 + pw 2 Ar

o AH = H2 - H1 - p(w1 - w2)flr . (C.15)

From the vortex sheet density of the actuator disk, it follows that:
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thus

AH pyrnr 2 (C.16)

Because H - constant in irrotational flow and because H Is also constant on a stream surface (except for
the drop at the actuator disk), from Eq. (C.16), it follows that

(aH)l - n ar, dH n dr (C.17)
arx 13'2- O and

When Eqs (C.5) and (C.17) are substituted into Eq. (C.14), the equation for the wake flow is

[ + r 1r + 1 [a2 1+ 2!t - .1M (C.18)
L 2 =.r)J~ #d r2 ax2 a 2 r arj

With a given 0, a given r-distribution, and the appropriate boundary conditions, the axisymmetric flow
through a wind turbine with an Infinite number of blades and an expanding wake could be calculated with
the Eqs (C.6) and (C.18). The general solution is still too complicated, because the problem is nonlinear.
Therefore, a simplified solution will be discussed next.

C.3 The cylindrical wake

The cylindrical wake is an idealization, which Is valid for induced velocities (U-u), v - U. It is,
therefore, successfully applied to the problem of an airplane propeller in cruise condition, but in the
case of a wind turbine It is only of limited applicability. However, in the wake far downstream it can be
applied without any restriction.

A cylindrical wake means v - 0 and (B/Dx)( ) 0. hen this is applied to Eq. (C.18), it gives

r+F1.Lr+ .1 [L 1 diy
k2- L? 3Jdr d r tdr (rdr)/

or changing to w - r/(2yfr) and u - (1/r)(d/dr)

d(wr) W2  dw du
dr - wdr d ~jr

which can be Integrated, viz.:

r a
pnwr + lp(u 2+w2) + f r pnwr + ip(u2+w2 ) + P(r) constant . (C.19)

0

From Eq. (C.16), the first term on the left-hand side can be interpreted as the total pressure jump across
the actuator disk: -AH. When the total pressure of the undisturbed wind velocity Is denoted by Ho and the
undisturbed static pressure by po, the equation of Bernoulli inside the wake is

H(r) - H + AH - p + pU2 + AH - p + jp(
2+ 2 )

0 0

or

-AH + p(u2._w2) + p-H o  . (C.20) I>

When the Eqs (C.19) and (C.20) are compared with each other, it follows that, apart from a constant, P(r)

is equal to the static pressure in the wake, viz.: 4
p - P(r) + C

which constant can be determined by the boundary condition that at r = Ro the pressure p - po, thus:

P " Po p P(r) - P(Ro ) ,

or substituted in Eq. (C.20),

-AH + P(u2+w2) + P(r) - P(Ro ) + p0 = Ho (C.21)

Because AH and P(r) - P(Ro ) depend on w, Eq. (C.21) shows that there is a relation between w and u, i.e.
the r-distribution along the blade span determines the axial velocity In the wake far downstream. A

Two simple examples will now be given.

First example: The circulation Is constant along the blade span. This has the following consequences:

r k

AH - -pflwr = -pfk - constant

k+ P(r) -P(Ro ) - p(wIo - w
2 )  ;w°"o

pu2 - PU2 - pflk - pwo - constant .

In connection with a future discussion, it Is useful to draw attention to the fact that the rotation in
the wake causes a variation of the static pressure across the wake equal to P) -P O ).
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Second example: The circulation varies linearly from zero at the axis to a maximum at r - Ro . The conse-
quences are:

w -constant -w o

AH -pWr ,iI r

P(r) - P(Ro) pw In(r/Ro)
2

pu2  bpU 2 
- pgwor - pw; [li+ln(r/Ro)2]

The condition (a/ax)() - 0 is strictly speaking only valid in a two-d;mnensional flow, i.e. in the
wake far behind the rotor, where the wake is double-infinite. The wake starts at the actuator disk and it
is obvious that (a/ax)( ) - 0 cannot be valid throughout.

By the equation of Stokes, it can be shown that w is Independent of x, also close behind the actuator
disk.The w caused by the bound vorticity decreases downstream, but the w caused by the trailing vorticity
increases downstream, which results in a tangential velocity Independent of x. The axial velocity induced
by the trailing vorticity increases downstream, but the bound vorticity does not induce any axial velocity.
Therefore, the axial velocity u depends on x. When the vortex lines are restricted to cylindrical surfaces,
it can be shown that the axial induced velocities at the actuator disk are one half of the axial induced
velocities far behind tie actuator disk. The total axial velocity at the rotor is, therefore, the arith-
metic -,an of the velocity, far in front of the rotor (U) and far behind (u3). From the continuity equa-
tion, it iuliows that this decrease of the total axial velocity in the wake is not compatible with a
cylindrical wake. Apart from t.e region far downstream, it can only be approximately cylindrical in case
of small induced velocities.

When the first example is taken, the absorbed power can rather easily be calculated, because AH and
u3 are constant across the wake. The absorbed power is

P - (AH)x(volume flow through rotor)

n Jp(U 2-u2 _W2) -(U+u )R 2

or written as a power coefficient,

Cp = (-u 3/U)(1+u 3/U)2 - (l+u 3/U)(Wo/U)2 n (l+u 3/U) [1-(u 3/U)2 -(Wo/U)2 ]  (C.22a)

For later reference, it can also be expressed In the induction factor "a", by u3 /U - 1-2a, viz.:

C - 4a(i-a)2 - (1-a)(wo/U)2  (C.22b)

The first term corresponds to the ideal power coefficient derived by Betz (cf. Eq. (3.2.6)). The second
term is the power loss due to the wake rotation. Because AH - pnwoR^, this loss can be minimized for a
given value of AH by chosing a high value of fn. It can be shown that this argument is valid for other
circulation distributions too.

The calculation of the influence of the wake expanslon is complicated, even in case of a constant
circulation along the blade span.

C.A Momentum considerations

Because an exact calculation of the influence of wake expansion with the Eqs (C.18) and (C.6) Is very
complicated, momentum considerations, as given in Ref. C.4, will be used. The derivation Is analogous to
the one given in Sect. 3.2.1, but now the radial and tangential components are included and also a varia-

tion of flow quantities across the streamtube is admitted.

Figure C.3 shows the control volume around the turbine, represented by an actuator disk. The control
surfaces have been put at such a distance from the turbine, that the radial velocity components are
negligible and the pressure is equal to the undisturbed pressure po (except in the wake cross-section).

Divide the flow regime into two parts, viz.:
- the streamtube through the rotor,
- the outer flow.

Apply tne axial momentum equation to the control volume of the outer flow (upper part Fig. C.3). This
gives

PO(S3"S0 ) 
- fS (p-po)dSx V pU ff undScstream control

surface surface

with
Sx: projection of stream surface normal to X,
S c: control surface,
un: velocity component normal to control surface.

Because the outer flow Is source-free,

ffundSc 01 : and the axial momentum equation results in:

d1______ __________

-•_ --. - - - - - -- --- - - -
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Ip JJ (P-Po)dSx PO (S"S) (C.23)
stream o= su rface

This means that the axial component of the pressure integral over the outer surface of the streamtube
through the rotor (I ) solely depends on the expansion rate of the streamtuee (S -S0 )

When the axial force on the rotor is denoted by D, the axial momentum equat on, applied to the stream-
tube througb the rotor gives

ff (PI'-2  - l, + p0o S 0 - ff p3dS + pff u(U-u 3)dS
5ref 53 Sref

or, in view of Eq. (C,23),

0 - pff u(U-u3)dS - ff (p-Po)dS . (C.24)
ref S3

When the torque of the rotor is denoted by Q, the equation of angular momentum applied to the streamtube
leads to

Q a Pif u3w3r3dS (C.25)
3

In order to use the equations (C.24) and (C.25) , the pressures and velocities just behind the rotor haveto be related with those in the wake far downstream.

The continuity equation along an elemental streamtube in the wake gives the following relation

u dSref - u3dS 3  (C.26)

Moreover, in Sect. C.3 it was deduced that the circulation is constant along a stream surface, thus

wr - w3r 3  (C.27)

When it is assumed that energy is extracted from the flow only at the rotor, the equation of Bernoulli
can be applied separately In front of and behind the rotor, which leads to

Ha H I - p0 + pU2 - p1 
+ p(U2+v2)

H2  H3  p3 * p(u2+W) - p + p(u2+v2+w2)

or p3-po. -(p-p 2) + Jp(U 2-u2) + p(.2-w2) , (C.28)

because u and v are continuous through the actuator disk.

Tha pressure drop over the actuator disk can be calrulated from the equation of Bernouli for the
flow relative to the rotating rotor blades (cf. Appendix d, Eq. (B.8)):

pl + iP(u2+v2) - P2 + Jp(u
2+v2+w2) + pwir ,

or
, PI P2 ' Jpw 2  +  pw~r .(C.29)

When this is substituted into Eq. (C.28), it yields

= p(U2-u2 ) - owtir - pw2 (C.30)

In the wake far downstream, the flow Is parallel again (v a 0). From the discussion of the cylindricalwake (Eqs (C.19) through (C.21)), it followed that the pressure difference In the wake is determined by

the centrifugal forces, due to the tangential velocities, viz.:

p P(r) -P( .) =-p f (w/r3) dr3  . (C.3)
3-O 3) -P'03 r 3  3 3

Fr(., ta above formulae it can also be deduced that the loss of total head in the flow is

H° - H2 , (pi-p2 ) - pw2  pwor (C.32)

When.Eq. (C.30) is substituted into Eq. (C.24) and when also the relations Eq. (C.26) and (C.27) are used)
this leads to + 3 nr 3 l+ w/rl

JP 55 (U-u )2dS - pn f up 3r3 Ku - l rdS (C.33)S 3, 3 3 S 3 3

for r R03, Eq. (C.30) gives:

p(U2-u2 ) = ow R + pw 2  (c.3 )
03 030o3 o3

The above equations suffice (at least In principle) to calculate the flow behind the turbine and the tor -
que of the turbine,-when a distribution of the tangential Velocities in the wake far downstream is as-
sumed. It is still a diff;cult Job, however, andthereforea special example will be taken.
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In the case that r - constant, wr * constant or w - k/r. Applying this to the Eqs (C.30) and (C.31)~gives

jP(U
2 "u ) = pnk + 03

which shows that also u3 - constant in the wake. This equation can also be written as

R- 2 -u2 1w3 (C.35)
Because dr/dt - 0 and dHi/d - 0 In this special case, from 5q. (c.14), it follows that W - 0 In the wake
and thus in the entire flow field, except on the wake boundary. Eq. (C.5) shows that chis is equivalent

to

_v au
5-" 7

Because It has been assumed, that u and v are constant through the actuator disk, it follows that av/Dx- 0
at the actuator disk and from the above equation it can be derived that au/r - 0 and u - constant across

L the actuator disk. Eq. (C.26) can now be written as

ur dr - u r dr and ur2 - ur , (C.26a)
3 3 3 3 3

and, rrom Eq. (C.33), it follows then that

(U-u3)
2 - 29k(l-u3/U) (C.36)

Eliminating sik gives .wz /
u - I(U+u 3 )  o 3- / U" =M(+u 3)(I A)  .(C-37)

) 1 -&w33/ ju3(U-u3)j '( u)(+

This formula shows that, due to the rotation and the corresponding pressure deficit In the wake,

u ' I(U+u3)

with the equal sign for the case wo3 - 0 (cf. Sect. 3.2.1).

The torque can be calculated from Eq. (C.25):

Q = pffu3 w3 rdS3  pffuk dSref pukSref

he power coefficient of the wind turbine in this case is
p Qfl/ pU 3 Sref 2(flk/U 2 )(u/U) (C.38)

Substitution of the Eqs (C.35) and (C.37) into (C.38) gives

p= IX(1+u3/U)(I+A) [1-(u3/U)2 . (Wo3/U)2] (C.22c)

Comparison with Eq. (C.22a) shows that the decrease of Cp due to wake rotation is reduced because
W03 < wo and because A > 0, when the sta.ic pressure d6ficit and the wake expansion are taken into account.

When the following parameters are defined

AflRo/U ; q n k/Ur° ; P a u/u 3  ; (R 9 ndu/U= t ;

the Eqs (C.35), (C.36) and (C.38) can be written as:

2Xq = (I-t2) - (J)-i q2 (C.35a)

(1-t) 2 - 2Xq[1-(i)'] , (C.36a)

C = 2Xq1t M 12(-)t(1-t)2 (C.38h)

When q is eliminated and p is solved from the Eqs (C.35a) and (C.36a), this gives

1 [ 1 3 [ + ( t) 3 2 } xI l + 3t + + I + 3t - 8t(i+t) (C.39)

4X2 0j2 J
When x o, p + (1+t)/2t. Substituting this into Eq. (C.38a)-, leads to

(Cp) = I(1-t)(l+t) 2 = 4(1-u/U)(u/U) 2 
= 4a(1-a) 2

which corresponds to the ideal power coefficient derived by Betz (cf. Eq. (3.2.6)) with u/U = (1+t)/2=1-a
(see also Eq. (C.22b)).

When X + 0, p +.- (see Eq. (C.39)) and, according to Eq. (C.36a), 2Xq + (i-t) 2 or q 4 . This means
an infinite circulation, which Is physically impossible.

The condition that q remains finite when X +0 can be obtained frdm the Eq. (C.36a), viz.

(h-t)e 2 0(X) , thus t + (I-X),

and, because p + 2+1/8Vx (Eq. (C.39)) and q.* I -(Eq. (C.36a)),
j It can be shown that:

1) 1:./
2' __
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rhe physical restrictions Imposed on the formulae (C.38a) and (C.39) can only be obtained by con-
sidering a blade-element theory that !ntroduces che lift coefficient of the blade element.

In the commonly used theories, the following assumptions are applied:
(P3 P ) - 0 ;I
u .u U+u 3), thus U3 - 2u-U ; A
- dSref - u3 dS3  ;

- With respect to w, there is no wake expansion, thu, w2 r " w3 r - wr. It must be noticed, that at the
rotor itself wrotor w jw and in front of the rotor w - 0 (cf. Eq. (C.15) and further).

- The momentum equations are used in the differential form.

With the above assumptions, the equations (C.24) and (C.25) become (Eq. (C.29) is also used):

2u(U-u) - nwr + 1w2

dQ = 2npuwr2dr

From the first equation, it follows that it is Impossible to keep both u and wr constint along the rotor
blade. In order to calculate the influence of the above assumptions by comparing them with the results of
the Eqs (C.38a) and (C.39), the case u - constant (thus u3 - constant) has been chosen.

When the following parameter Is defined:
X - nr/U - Xr/R0  1

the equations can be written as

2(u/U)(1-u/U) - Xq + J(X/X)
2q2

2ffpU2R1
dQ - -Z"0 (u/U)qX dX

When q is extracted and when the rotor drag coefficient is defined by

C0 = D/ oU2 nR2 - 4(u/U)(1-u/U)

the power coefficient (because dP - dQ) becomes:

Cp - (4/X2 )u/U f X3[(l + r. D/X2)1 - I] dX (c.40)
0

For large va!ues of X and X, the form between brackets becomes

01 + CD/X2) 1 - 1 u I + ICD/X2 - 1 - ICD/X 2

and, thus,

X
C - (2,'A2)C (i/U) f X dX - (u/U)C0 . 4(u/U)

2 (1-u/U)
0

which s the well-known Betz' expression.
Integrating Eq. (C.40) gives [

V By consideration of the Eqs (C.38a), (C.39) and (C.41), It Is possible to Investigate the influence of
neglecting the wake expansion and the pressure reduction in the wake far downstream, although the cases
are not fully comparable, because in case of the wake expansion, both r and u are constant along the blade
span, whereas, In the case of cylindrical wake, only u is constant along the span.

The lower part of Fig. C.A shows the axial velocity through the rotor (u) in the case of an expanded
wake, divided-by the axial velocity in case of a cylindrical wake [ (Ui?.)]. Up to common values of X the
Influence is small.

The upper part of the figure shows the far more dramatic effect of the wake expansion on Cp. The
large loss of energy output due to wake rotation in the case of a cylindrical wake Is caused by applying
the tangential velocity at the wake boundary equal to wo . k/Ro , whercas In the case of the expanded wake
the tangential veloc ty at the wake boundary Is wo3 a k/R 3, which Is smaller by a factor t//Vp. Combined
with the small Increase of the axial velocity, the power ?oss due to wake rotation in this latter case is
negligible. At low tip-speed ratios, the power output m!ght be even larger than the Betz' limit expression,
but it might be questioned whether a real rotor blade can sustain such high lift loads.

At each valde of X, there is a certain value of u.3/U (or u/U) a which Cp Is maximum. These optimum
values of Cp at each value of X have been compiled In Fig. C.5. This clearly shows that, when the wake
expansion and the static pressure d~ficit In the wake are taken Into account, 'the optimum power output Is
equal to the Betz limit up to very low values of X, where the simple theory for F. constant along the
radius of the rotor blade breaks down.

Also shown In Fig. C.5 Is the result of Glauert (Ref. C.4), whizh shows an opr'Imum, when P as well as
u/U are allowed to vary along the span of the rotor blade.

That the effect of wake rotation on the over-all power coefficient can be-neglected, due to the
" balancing effects of wake expansion and static pressure d ficii In the wakej can be made plausible by con-

sideriig the energy equation, viz.

dP -s dQ- u dD- i!dQ

This equation states that the power delivered by the turbine (OdQ) has to be equal to the work done by

.1.........
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the air on the rotor, through the axial force (u dD) and the torque ( (w/r)dQ); it has to be remembered
that the direction of u is in the direction of dD and that the direction of the angular velocity Jw/r Is
opposite to the direction of dQ. In Eq. (C.24), the drag force consists of a momentum term and a pressure
term, due to the pressure ddficit in the wake, thus

dD = pu(U-u 3)dSref + Ap3 dS3

and, from Eq. (C.25),

dQ =,PU 3W3r3 dS3 a puwr dSref

Hence
W

-j 1 dQ - -u Jpw2 dSref

Because

p3d 3  3 pw3 dS3  pw2 dSref

the influence of the static pressure d6ficit in the wake and the influence of the wake rotation almost
cancel. The remaining equation for the generated power:

dP - pu2(U-u3)dSre f

is identical to Betz' expression, when the wake rotation is neglected.

C.5 Concluding remarks

The calculation of induced velocities is very complicated, even in axisymmetric flow. By simplifica-
tion of the problem and by using the momentum equations, it Is possible to get insight Into the behaviour
of the induced velocities.

The assumption that the axial velocity at the rotor is the arithmetic mean of the velocity far in
front of and far behind the rotor can be applied for a large range of tip-speed ratios. Only at low values
of X, this assumption might underestimate the axial velocity when, as is usually done, also the static
pressure deficit in the wake Is neglected.

The tangential velocity w behind the rotor is connected with the bound vorticity at the rotor (circu-
lation r) on a common streamline. In the wake far behind the rotor, the radial velocities have to be zero,
and the centrifugal forces due to the tangential velocities have to be balanced by the static pressure
dficit in the wake. This provides a relation between the allowed combination of axial and tangential
velocities.

It is possible to translate the conditions far behind the rotor to conditions Just behind the rotor,
because the total head and the circulation have to be constant along a streamline in the wake. It can be
shown that the tangential velocity at the rotor is one half of the tangential velocity Just behind the
rotor. (This is important in connection with blade-element theory.)

The determination of the streamline pattern in the wake is complicated; therefore, often a cylindrical
wake is assumed. This means that the tangential velocities In the wake far downstream are overestimated.
This causes also an overestimation of the pewer loss due to wake rotation, especially at low X.

There is a strong Indication that the combined effect of wake expansion and static pressure deficit
In the wake almost cancels the so-called "power loss due to wake rotation", which appears In the theory
of Glauert (Ref. C.l) and in most of the other theories described in this report. This power loss due to
wake rotation Is only significant at low X and/or low values of r/Ro (close to the hub), which means at
rather high values of the local solidity ratio a'. The lifting-line approximation (c << Ro ) used in the
above theories becomes less accurate when the solidity becomes large, which means another possible error
source in the performance prediction. This also explains the fact that the compensating effect of wake
expansion and static pressure deficit has not been recognized in the past when the results of calculations
and experiments were compared with each other.

The momentum equations, valid for the entire streamtubue through the rotor, are often assumed to be
valid also for an elemental streamtube. It is difficult to assess the validity of this assumption, but,
regarding the small Influence of the static pressure ddflcit in the wake on the axial velocity at not too
small values of A, the error due to this assumption possibly is small.
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APPENDIX D
SOME CONSIDERATIONS ABOUT THE ROTOR BLADE SHAPE

D.1 Introduction

In the next Sections, some simple discussions are given concerning the influence of the blade shape
of a vertical-axis wind turbine on the blade loading due to centrifugal forces, with the aim to show the
advantagqe of the so-called troposkien blade shape.

Next, the centrifugal loading of a horizontal-axis turbine is discussed and, in a strongly simplified
way, the influence of the aerodynamic load is indicated.

D.2 Bending stresses due to centrifugal loading for a drum-type vertical-axis turbine

Consider a vertical-axis turbine with straight blades parallel to the axis of rotation. The radius of
the rotor is Ro and the height Is H.

To simplify the calculations, the following assumptions have been made:
- The blade has a constant chord c and a constant thickness ratio t/c.
- The cross-sectional area of the blade construction material is constant along the blade span and, with a

factor 0, is expressed as 4-tc. The specific mass of the construction material is indicated as Pm.
The centrifugal load per unit span at an angular velocity A of the rotor can be calculated from

Fc/H - p tc flR
c m o

The maximum bending moment in the blade now depends on the blade attachment, which can be indicated by a
factor f, thus

Nb f(Fc/H)H 2 - m tc j2 H2Ro

The factor f is equal to if the blade is clamped at one side and free at the other side, f is 1/12 if
the blade is clamped at both sides, and f is 1/8 If the blade is connected at the tip to the other blades
by a horizontal strut and hinged at both sides, etc.

The moment of inertia of the blade cross-section can be expressed by the cross-sectional area and the
radius of gyration rt of the cross-section. The bending resistance is then 'btained from this moment of
inertia by dividing by It, thus

Wb = Otcr2/( t)
b t

where rt < it

The bending stress is now calculated from

a b . Mb/Wb - If Pm(H/rt)2 (t/Ro)(SIRo) 2  . (D.1)

This formula shows that the bending stress is proportional to the square of the circumferential velocity
fiRo and also proportional to the specific mass of the material Pm. It can be noticed that Ob < tx, the
maximum tensile stress of the material considered, and that the square root of the ratio of at  

1 o the I
specific mass pm, which has the dimension of a veloci'ty, is a property of the material conside'r. For

alluminum alloy, this material constant is (at /pm)l P, 420 m/s.
Eq. (D.1) shows that a given blade construction and blade material sets a limit to the circumferential

velocity of the turbine. This equation also shows a kind of similarity rule, viz. if two geometrically
similar turbines are taken operating at the same tip-speed ratio X and wind velocity U (i.e. ARo = con-
stant), then the bending stress ob is the same for both turbines, irrespective of the size of the turbine.

A final conclusion from the above equation is that, because rt < t/2 << H and often H N 2R0 , the cir-
cumferential velocity of a straight-bladed (drum-type) vertical-axis turbine is severely limited by the
allowable bending stress.

D.3 The troposklen blade shape for a vertical-axis turbine

The bending moments in the rotor blades of a vertical-axis turbine caused by the centrifugal forces
can be avoided by giving the blades the shape of a rotating rope with zero rigidity, with the end points
connected to the axis of rotation.

Consider a steadily rotating curved blade, with a constant mass per unit lernth (m) along the span of
the blade. The shape of the troposkien has to be such, that the variation of the tension force Fn along
the blade is In cquilibrium with the centrifugal force on a blade element (dFc, Fig. D.1),'in Which bend-
ing moments in the blade are avoided.

.If gravity forces are neglected, from vertical equilibrium, it follows that Fz las to be constant

Salong the span of the blade.KFrom horizontal equilibrium, it follows that

dFc = (dF /dz)dz . (D.2)r

From the force triangle in Fig. D.1 and the formula for the centrifugal force, the following expressions
can be~obtained:

* Fr FzdR/dz ; Fn F +(dR/dz)2] (D.3)

dF c n2Rfll(+(dR/dz)2)'dz .(D.4.)
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From the Eqs (0.2), (D.3) and (D.4) It follows that

mQ2R[l+(dR/dz)2]1 -Fzd2R/dz2  (D.5)

Because at z = O, R = Ro, dR/dz a 0 anJ d2R/dz2 . _Rk !
, with Rk the radius of curvature of the troposkien

at z - 0, it follows that:

Fz = +mj2Ro R , (D.6)

and d2R/dz2 - R(RoRk) I[1+(dR/Dz) 21 
(0.7)

Integrating with the above boundary conditions gives

dz/dR (2kRk/Ro)[dF(k,R/Ro)/d(R/Ro)] , (O.8)

M/2R0 - z/Ro = 2k(Rk/Ro)F(k,R/Ro) , (D.9)

with k2  (1+4R /Ro)
ko

and F(k,R/R 0 elliptic integral of first kind.

Choosing a certain radius of curvature Rk leads to a definite height of the rotor, as can be seen from
Eq. (0.9) by substituting z = 0 and R/Ro = 1.

H/2R o = 2k(Rk/Ro)K(k) (D.10)

with K(k) = complete elliptic Integral of first kind.

The minimum value of Fn occurs at z - 0 (Fn ) and equals Fz Eq. (D.6). The maximum value occurs at the
blade root (R = 0). From Eqs (D.3) and (D.8), it follows that the ratio of (Fn)max to Fno is

(Fn) max/F no= [+[4k2(Rk/Ro)2]1]. (0.11)

The area swept by the rotor blade can be calculated from

Sref 4R f (R/Ro)d(z/Ro)

wh3t leads to

S f/R = 4(Rk/Ro)Int(l+k)/(1-k)] (0.12)

It is also interesting to know the blade length s needed to obtain such a swept area Sref . This can be

calculated from

ds = [l+(dR/dz)2] (dz/dR)dR
This can be expressed Ii, complete elliptic integrals of the first (K) and second (E) kind, viz.:

s/R0 = (2/k)[E(k) - [1-k2 (l+2Rk/Ro)]K(k)3 (0.13)

Some numerical results have been calculated and compiled in Table 0.1. If Rk = 0, the troposklen degener-
ates into a folded straight line.

The swept area is connected with the energy extracted from the wind stream, whereas the arc length is
connected with the costs of blade construction to obtain such a swept area. The ratio Sref/(sRo) Is a
measure for the "economy" of the shape. It increases with increasing Rk (when Rk/Ro t -, Sref/sRo - 1.273).
but the corresponding increase in tower height certainly sets a limit to the "optimum' value of

Sref/SRo.

Denoting the material cross-section of the blade by Otc and the specific mass by Pm, the maximum
tensile force In the blade can be obtained from the Eqs (D.6) and (D.11) with m = pm4tc, viz.

(Fn) max = PmStC1
2R1(k/Ro)[1+[4k2(R/R)2]1'] ,

and the maximum tensile stress can be calculated from

at  -(Fn)max/tc pm(0Ro)2(Rk/Ro)[+[4k2(Rk/Ro)2]'l] (D.14)

Figure 2.6 shows that a Darrieus turbine can v.;thstand higher circumferential velocities (nRo ) than a
straight-bladed (drum-type) turbine (see also the gqs (0.14) and (D.1)).

D.4 Centrifugal stresses in the blades of a horizontal-axis turbine

The centrifugal stresses in the blade of a horizontal-axis turbine can be estimated from some sim-
plifying assumptions, vii. that the relative cross-sectional area of the blade material is constant along
the blade span (i.e. 0 - constanti t/c a constant, whereas c varies along the blade span) and that the
specific mass of the material is constant along the span (pm = constant).

The cen:rIfugal forte In a blade section at radius r can then be calculated from:

_ _ V
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F (r/R * Pm fn2R4 t/c f (C/R )2(r/R )d(r/R (0.15)
r/Ro

This irtegral can be easily evaluated for a blade with linear taper

c/Ro . a - br/R o  , (0.16)

which corresponds to a taper ratio

TR - c(r/Rosl)/c(r/RoO) = (a-b)/a (D.17)

The tensi;e stress in that cross-section is then easily calculated by dividing through the material cross-

section 4'(t/c)c 2 , thus

la2(1-x2) - 2ab(l-x3) 4 lb2(l-x4)

at PM 2 (018a - 2abx + b2x2

with x = r/Ro

Figure 0.2 shows the spanwise distribution of the tensile stress as a function of the taper ratio
(see also Fig. 2.7).

0.5 Possible reduction of bending moments due to the aerodynamic load on the blade of a horizontal-axis
turbine

The aerodynamic lft forces on the blades of a horizontal-axis turbine Introduce bending moments in

the blade sections. When the blade axis is brought out of the plane of rotation (see Fig. 0.3), the cen-
trifugal forces create an orposite bending.moment, and there might be a possibility to define such a shape
of the blade axis, that al', bending moments are avoided.

The condition for zero bending moment at ea.' blade section (rl,x 1 ) is that the moment due to the
aerodynamic load M1 (rl) is equal and opposite to the moment due to the centrifugal force M2(rl), or

R 0 dN Rc dF
Nl(r 1) = " --(r-rl)dr -11(r,) f "c(x-x,)dr

r 1 2 r I

for 0 < r1  Ro

This condition is difficult to work with; therefore, a slightly different condition is used, viz.
dM1 (r)/dr1  dR2 (rl)/drl ,

which is, but for a constant (independent of rI) equivalent with the first condition, as can be seen by
integration. This constant has to be zero, because the moment Is zero when rI = Ro .

'Whe, the result for the differentiation of an Integral with a parameter is remembered, viz.

d 1 b dfI  df2d ~~af2 (~ x jdy f(xy)dx - f x +f(b,y)T- f(a,y)T y a~f2 (y)a ayd

the differentiation of M1 and M12 lead to

dMI dN - N dr1
' .r drr I-r-r, N(r,)

dr1  r1  d 1r r dr

and

dM o Fx dF dF drI  dx1
2= -- .-dr [- (x-x i(r
Idr r r-r

because N(R) F (Ro ) - 0.0 c

The differential form of the condition for zero bending moments in the blade, neglecting gravity and
also neglecting the finite cross-section of the blade,' is

N(r1 ) I (dxI/drl)Fc(r) '

or, written in a more abreviated form;
dx/dr =tgy - N/F c  (D.19)

Such a shape is only feasible if y remains small, i.e. if the aerodynamic load remains small with respect
to the centrifugal forces.

Below, the feasibility will be studied by crudely estimating the aerodynamic and centrifugal forces
for an optimally operating wind turbine.

_ 2
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It would be possible to use the theory of Sect. 4.4.2 for the estimation of the aerodynamic load and
the corresponding spanwise chord distribution, but a still simpler approach will be followed.

When it Is assumed that the induction factor "a" is constant across the entire rotor area, the normal

force coefficient for the complete rotor is (cf. Sect. 3.2.1)

CN - N/ pU2 rR2 - 4a(1-a)

and the normal force on one blade of a B-bladed rotor is

N - (21/B)a(-a)pU
2R2 (D.20)

Consequently, the normal force on the outer part of the blade between r/Ro - I and r/Ro is then

H(r/Ro) (21T/8)a(1-a)pU2R2[l-(r/Ro)
2] . (0.21)

The blade chord distribution can be estimated In the following way. The normal force on a blade element
d(r/Ro) is, according to the simple momentum estimates of Sect. 3.2.1,

dN = (4v/B)a(1-a)(URo)2(r/Ro)d(r/R0 )

and, according to blade element theory,
dN - pU2  cC dr

rel 1

When the tangential induction factor (a') is neglected (see Sect. 4.4.2), the relative velocity Is equal

to

U2  - (1-a) 2U2 + (0r)2 - U2[(I-a)2 + (Ar/Ro)2]

and the blade element shows a normal force

dN - pC U2R2[(l-a)2 + (Xr/Ro)2](c/Ro)d(r/Ro)

Equating both expressions for.dN gives a formula for c/Ro, viz.

ORO = (81r/BC)a(1a)X-2 (r/Ro)[[(1.a)/X]2 + [r/Ro]2]'- (0.22)

When C1 and "a" are taken constant along the span, a rather simple explicit formula in r/Ro appears. Com-

parison with the theory of Glauert (Sect. 4.4.2) shows a surprisingly good agreement, especially at

higher values of X, when "a" is taken to be 1 (Table 0.2).

The centrifugal force on the outer part of the blade (between r/Ro - I and r/Ro) can now be calculated
with the usual assumption of the constant value of and t/c along the span, thus

F(r/R) p (t/c)2R4 f (c/Ro)2(r/Ro)d(r/Ro)
c 0 m 0r/R 0

or, with substitution of Eq. (D.22),

F(R' - p[(8n/BC1)a(l-a) X
2 ]2(t/c)2R" f I y3(A2+y2)'2dy (D.23)

m 0 r/R0

with A - (1-a)/X and y - r/Ro0

The integral can be evaluated as

A2(l-y
2) iA 2+1-+ In )j(D.24)

(A2+1)(A 2+y)y

Returning to Eq. (D.19)' and substituting the Eqs (D.21) and (0.23) leads to

d(x/Ro) 0 B(C1))
2(l-y2) [ A2(0-y2) In A2+1  1

--R tgy + (D.25?
bee T p16 (t/c)a(1-a) (A2+i)(A2+y2) the2fom

This equation has been numerically evaluated and the result, in the form of the spanwise distribution uf
y, is shown in Fig. 0.4 with the following values, viz.

B =-2, a = 1/3 (optimum), C, = 1.0, p - 1.23 kg/m 3 (air), Pm - 2750 kg/m 3 (aluminum alloy),

t/c - 0.12, X = 8 and 4, 4, - 0.69 (solid cross-section) and 0.20 (hollow).

An example of the blade shape is shown in Fig. 2.8 for X = 8 and 0 - 0.20.

The deflection close to the tip is probably overestimated, because of the neglect of the lift loss
close to the tip (tip-correction factor). The deflection angle close to the root is probably underestimated,
because of the very large blade chord, which will possibly not be applied in practice.

The hollow blade in this example is still rather heavy (30 % of the cross-section Is solid material)
and Fig. D.4 shows, that the bending moments can probably oot be avoided in a high-X design with a light-
weight construction.

Somewhat surprising and also somewhat misleading is the large influence of X on. the deflection angle,
which is caused by two effects, viz.

The aerodynamic load on the rotor blade of an optimally operating turbine is almost independent of A
(Eq. (D.21)), whereas the centrifugal force depends on the chord length squared, which is strongly



dependent on X (Eq. (0.22)).
- The material area factor is taken to be constant at different X, but the lower-loaded low-A blade will
certainly show a reduced 4' compared with a high-X blade design.

TABLE D.1
Variation of blade geometry and blade loading with varying

curvature at the equator plane for a true troposkien

R/R H/21 Sref/Rz s/Ro  Sf/SR) Fno/(n $RZ) (F )a/(mZR 2 ) (F )a/(MfZ 2R
no00 rf e 0 n max 0 n max 0

0 0 0 2.0 0 0 0.5 0.2500
0.1 0.3545 0.9912 2.2090 0.1605 0.1 0.6 0.2716
0.2 0.5677 1.5399 2.4119 0.6385 0.2 0.7 0.2902
0.3 0.7358 1.9642 2.6029 0.7546 0.3 0.8 0.3073
0.4 0.8773 2.3209 2.7828 0.8340 0.4 0.9 0.3234
0.5 1.0080 2.6339 2.9524 0.8921 0.5 1.0 0.3387
0.6 1.1139 2.9157 3.1137 0.9364 0.6 1.1 0.3532
0.7 1.2164 3.1740 3.2671 0.9714 0.7 1.2 0.3672
0.8 1.3116 3.4135 3.4137 0.9999 0.8 1.3 0.3808
0.9 1.4003 3.6379 3.5545 1.0235 0.9 1.4 0.3938
1.0 1.4844 3.8497 3.6902 1.0432 1.0 1.5 0.4065
1.5 1.8504 4.7722 4.3059 1.1083 1.5 2.0 0.4645
2.0 2.1565 5.5452 4.8440 1.1447 2.0 2.5 0.5161

Rk = radius of curvature at equator plane (M)
Ro  - maximum radius (m)
H = height of troposkien blade (m)
,Sref = area swept by the rotating blade (m

2)

s = length of blade (m)
Fno = tension force in blade at equator plane (N)
(Fn)max : ditto at blade root (N)
m mass per unit blade length (kg/m)
M ms = total mass of one blade (kg)
S = angular velocity of the rotor (rad./s)

TABLE D.2

Comparison between the optimum blade chord distribution according
to Glauert Eq. (4.4.21) with the simplified estimate of Eq. (D,22)

=r Glauert Eq. (D.22)
1 0 ( 0BC)C/R)ot
1 3.367 3.807-

2 2.382 2.513
3 1.728 1.774
4 1.338 1.359
5 1.087 1.097

6 .913 .919
7 .787 .791
8 .691 .693
9 .615 .617
10 .555 .55611 .505 .506

12 .463 .464
13 .428 .428
14 .398 .398
15 .371 .372

Glauert: (XBCIC/R) opt. = 87 X(0 - cos 0)

with

X r= sin 0 (2 cos 0-1)
Ro  (1 - cos 0) (2 cos 0 . 1)

Eq. (D.22), written in a somewhat different way:

(XBCIc/Ro)opt. = 8n a(1-a)X[(1-a)
2 
+ X2]

"

with a 1/3.
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