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FLUID DYNAMIC ASPECTS OF WIND ENERGY CONVERSION
by
0. de Vries

National Aerospace Laboratory NLR,
Anthony Fokkerweg 2
1059 CM  AMSTERDAM
The Netherlands

SUMMARY
N\

A review is made of the fluid dynamic aspects of wind energy conversion. A short survey of the total
framework of wind energy conversion is given to bring the fluid dynamics aspect in its proper dimensions.
Next, the several wind concentrator concepts are discussed, while the main body of the report is formed by
a discussion of the theory of wind=driven turbines, including both the horizontal-axis and the vertical-
axis turbines.

The report concludes with a survey of inhomogeneous flow and turbulence effects, turbine control and
wake interference effects. F\

FOREWORD

There has been in recent vears a dramatic revival of interest in harnessing the energy contained in
terrestial winds. Wind energy conversion systems are being developed now in many countries, meetings and
symposia are being organized at an ever increasing frequency, and hundreds of journal articles, company
reports, papers in conference proceedings and official government publications are being issued all over
the world. Scattered among all these sources are various bits and pieces of information about the most
fundamental aspects of wind energy conversion, the prime force that makes it all work, THE FLUID DYNAMICS
of such a process. At the present time no single, generally accessible source exists that could provide a
comprehensive summary of the fluid dynamics foundations of the great variety of wind turbines that now are
being corstructed or proposed. To fill this gap, the Fluid Dynamics Panel of AGARD has decided to sponsor
the preparation of the present review. Since the fluia dynamics processes involved in wind energy conver-
sion are not too dissimilar from those occurring in flight of various types of aerospace vehicles, it was
considered particularly appropriate that such a review be undertaken under the auspices of an aerospace
advisory group and that it be performed by an aerospace ovganization. In this regard the Panel was most
fortunate to secure the cooperation of the National Aerospace Laboratory of The Netherlands, one of the
best known aerospace research organizations in the world, which kindly undertook to perform this work. It
is hoped that this volume will find its way into the hands of the many designers of modern wind turbines
and that it will facilitate their difficult task by providing a comprehensive review of the fluid dynamics
methods and data on which their designs have to be based.

Ottawa, 8 December 1978 Kazimierz J. Orlik-Rickemann,
Deputy Chairman,
Fluid Dynamics Panel.
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1 GENERAL INTRODUCTION

1.1 Wind energy development in the past

The very idea to make use of the power of the wind flowing over the earth surface is a very old one.
It was put into practice already in ancient times for ship aropulsion, but also the conversion of wind
energy into mechanical energy (grinding, wood cutting, water pumping) was used centuries ago. One has only
to recall the well-known satirical romance by Miguel de Cervantes (1605), where Don Quixote, the hero of
this romance, once fighted windmills,

Windmills were extensively used up to the beginning of the industrial era, which started with the in-~
vention of the steam engine, soon followed by the invention of the electric motor/generator and the inter-
nal combustion engine. Because of the ready availability of coal, oil and natural gas (improved transport
systems) and because of the capacity of engines to generate a large amount of power in a small volume at
any required instant, the windmills soon became obsolete.

During the Second World War and shortly afterwards, there was a relatively short-lived revival of
interest in wind power, with an emphasis on the generation of electricity by a large-scale wind turbine,

Without the intention to be complete, some names and projects may be mentioned here, such as Ulrich
Histter (Refs 1.1, 1.2 and 1.3) in Germany, the studies and practical experience of the Electricité de
France (EOF, Ref. 1.4) and Neyrpic (Ref. 1.5) in France, Golding (Refs 1.6, 1.7 and 1.8) in the UK, the
Gedser windmill in Denmark and, last but not least, the Putnam turbine at Grandpa's Knob (Ref. 1.9) in the
USA.

The decline of interest in wind power in the post-war years was mainly due to the abundance of low-
priced oil, the growing insight that wind energy is a relatively expensive form of energy, and the tech-
nical problems with some of the turbines (fatigue).

1.2 Recent developments

The energy~crisis of 1973-1974 and the growing acceptance of the idea that fossil fuel resources are
not unlimited ended the euphoric era of rapid industrial expansion and increasing rates of economic
growth, and led to a renewed and probably lasting interest in alternative energy resources, such as solar
energy and wind power.

The wider acceptance of studying alternative energy sources led to long-term research projects spon-
so ed by government agencies, in contrast with the more limited wind energy projects in the post-war
years. In this respect, the Energy Research and Development Administration (ERDA) and their Biennial
Workshops on Wind Energy Conversion Systems (ist in June 1973) in the USA, have to be mentioned first.
Also Sweden made an early start with their National Program on Wind Energy Conversion (Swedish Board for
Technical Development, STU) and organized a Workshop in Stockholm {29-30 August 1974). The Netherlands
started a National Program in March 1976, while research programs were started also in Germany and
Denmark. These last two countries do not yet have an official National Program; neither does the UK,
where general studies are carried out at several univ.-sities and institutions, such as e.g. the Central
flectricity Generating Board (CEGB). Canada stands out with ils vertical-axis turbine project and allied
studies of the MNational Research Council (NRC, Refs 1.10 and 1.11), whereas in several other countries in
the world investigations are under way in universities and other institutions.

Moreover, in 1973/1974, the then US Foreign Minister Dr. Kissinger convened an energy conference in
Washington D.C., which was contirued in the so-called "Energy Co-ordinating Group'' and resulted in an
“Agreement on an International Energy Program'' (1EP), in which 18 countries participated. To execute IEP,
the '"International Energy Agency" (IEA) was founded with its residence in Paris at the Orgarnization for
European Economic Co-operation (OEEC),

The Governing Board of IEA is assisted by 4 Standing Groups. Each Standing Group set up a number of Sub-
Groups. The Sub-Group for Energy RED set up a number of so-called "Working Parties'. The Working Party on
Wind Power was inaugurated in March, 1576, with The Netherlands as "lead country',

Other landmarks of the growing interest in wind power are the International Symposia on Wind Energy
Systems (Ist ISWES, 7-9 Sept. 1976, 2nd ISWES, 3-6 Oct. 1978) organized by the British Hydromechanics
Research Association (BHRA), the growing number of articles on wind power in the "Journal of Energy" (USA),
the establishment of a jouinal devoted to a large extent to wind power, viz., '"Wind Engineering" (UK) and
the establishment of the 'Wind Energy Society of America" (USA).

1.3 Scope of the present report

The entire field of Wind Eneryy Conversion Systems (WECS) is a very extensive one. Most National Pro-
grams are devoted to large-scale epplications of wind turbines to generate electricity which could be fed
into the public grid, but there is a growing tendency to consider also decentralized application of wind
power (each farm its own turbine, possibly combined with solar energy), especially in scarcely populated
areas.,

Furthermore, the application of wind power in developing countries has problems of its own, ranging from
rather simple approaches (Ref. 1.12) to the more fundamental ones, as covered by the "Dutch Steering
Committee for Wind Energy in Developing Countries' (SWD, Refs 1,13 and 1.14),

Finally, thete is the already well-estabiished field of small-scale wind turbines for pumping water in
rural areas and for special purposes, such as radio and light beacons that have to operate unatter.ded for
very long periods (Ref. 1.15),

Giving an overview of the entire field of wind energy conversion systems is only poscible by forming
a staff of contributors, Therefore, it was decided to limit the study to fluid dynamics aspects only,
which still is an extensive field to discuss, due to the rather exponential growtd ur the number of
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publications of recent years,

In order to put the rather extensive aerodynamic discussions in its proper pevspective, it was
decided to start with a short survey of the different aspects of wind energy conversion (Chapter 2}. The
discussion being far from complete, an emphasis is laid on large-scale turbines.

Since the discovery of the Betz limit (Ref. i.16; 1926 and Section 3.2), which states that an iso-
lated wind turbine of a given size can extract only a part of the energy flux offered by the wind stream,
there have been many proposals for so-called ''wind concentrators', to get more power from a turbine with
given diameter than indicated by the Betz limit. A number of these proposals is discussed in Chapter 3.
Although it can be shown that the power output of a turbine with a given diameter can indeed be increased
above the Betz iimit by several of the proposed devices, it is the belief of the author that the cost-
increase due to the added structures outweighs the power-increase, with the exception of some special
cases (e.g. Trade-wind areas).

Chapter 4 discusses the aerodynamic theory of the wind-driven turbines. It constitutes the main body
of the report and is limited to the diccussion of a turbine in a steaay, non-turbulent homogeneous flow.
One of the most intriguing results is that, though a wind turbine is subjected to large aerodynamic 1:ft
forces, only a small component of that lift force is used to drive the turbine. Most of the existing
theories are based on momentum considerations and a blade element theory, but more elaborate computer
codes including trailing vortex wake calculations and lifting surface theory are under way. Although the
more complicated computer codes give a better prediction of the induced velocities in the plane of rota-
tion of the rotor, .t might be questioned whether they could predict the small comoonents of the 1ift
force (leading-edge suction peak) with a significantly greater accuracy. This applies especially for the
vertical-axis (Darrieus) turbine, where higher accuracy probably cannot be achieved without including
effects due to unsteady aerodynamics and stream curvature.

Furthermore, a wind turbine is submerged in a non-homogeneous, unsteady and turbulent flow (atmospheric
boundary layer), the effect of which on the turbine performance is difficult to assess. This is also the
reason why the feasibility of developing very extensive turbine-performance computer codes is still ques-
tionable.

The inhomogeneous flow and turbulence effects are briefly discussed in Chapter 5, together with a
short discussion of the aerodynamic aspects of turbine control and the effect of putting a large number of
turbines together in a so-called wind turbine "farm" (wake interference effects).

in the discussion of the subjects in this report the basic assumptions are stronger underlined than
specific results obtained with the theory. The choice of the subjects to be discussed and the depth of
exposition of some details reflect the author's prejudice, which seems inevitable in such a new field of
research.

It is hoped that this review summarizes the present state-of-the-art to such an extent that it will

have a function in the dialogue with respect to the feasibility of using wind power to alleviate future
energy shortages.
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2 SURVEY OF ASPECTS rERTAINING TO Wiid ENERGY CONVERSION

List of symbols
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—
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ideal

o

ref

average

design
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ideal
P(U.
( J)

P(E,Uj)

bl i =]
o

ref

Cc Cca A D
e -
- <

.

<
I
(=3
(=3

u

axial induction factor (-)

number of rotor blades (-)

chord length of rotor blade (m)

lift coefficient of aerofoil section (-)

3 = HP -
P/3pU%s o = power coefficient ( )

= Pideal/ipuasref = 16/27 = theoretical maximum power coefficient according to Betz (-)

2 = - HP -
@/ 3oV Seaffo = Cp/A = torque coefficient (-)

acceleration of gravity (m/s?)

height above the ground (m)

height of rotor (m)

height at which the reference wind velocity is measured (m)
power (W)

annual average power based on wind statistics (W)

design power or installed power (W)
theoretical maximum power according to Betz (W)

probability of occurience of a wind velocity in the velocity class Uj(-)
annual energy at wind velocity class Uj )

= total wind energy in a year

torque (Nm)

local radius (m)

maximum radius or tip radius (m)

arc length of rotor blade (m)
reference area of the turbine; area swept by the rotor perpendicular to the wind velocity (m2)

time (s)

profile thickness (m)

integration time for determination of average (s)
wind velocity or undisturbed velocity (m/s)

average wind velocity, depending on integration time T (m/s)

= U - U = wind velocity fluctuation (m/s)

average wind velocity in wind velocity class i or j, e.g. Uj = 10 m/s when 9.5 ¢ Uj < 10.5 m/s
average wind velocity at reference height Href (m/s)

average wind velocity at a beight of 500 m (m/s)

root-mean-square value of wind fluctuation divided by the average wind velocity; turbulence
intensity (-)

axial deflection of rotor blade (m)

exponent of power-law wind-velocity distribution (-)

= QR /U = tip speed ratio (-)

air density (kg/m3)
density of rotor blade material (kg/md)

= Be/R, = solidity ratio of Darrieus turbine or a drum-type vertical-axis turbine (-)

s

f ¢ ds = solidity ratio definition valid for both horizontal and vertical-axis
turbines (-)

bending stress (N/m? or N/mm?)

tensile stress (N/m® or N/mm?)

= B/Sref
[o]

. Material area of blade cross-section (-)

blade thickness times chord length
angular velocity of the rotor (radians/s)
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2,1 Introduction

When the discussion of wind energy conversion is restricted to fluid dynamics aspects, only the top
of an iceberg is revealed. A complete study should include a large number of aspects, some of which are
listed below:
~ Meteorology
= Aerodynamics
- Structures (aeroelasticity)

- Energy conversion (e.g. mechanical energy to electricity or heat)
- Energy storage

- Distribution of energy to the consumer

- Economy

- Environmental effects.

An authoritative review of all these areas is beyond the scope of this report, but some background
information about these areas is indispensable to appreciate a discssion of the fluid dynamics aspects.

The practicability of small-scale conversion systems is already iully recognized. On the other hand,
large-scale systems that may have significant economic potential are now being studied in many countries,
but their feasibility has not yet been fully demonstrated. In order to assist in such studies, the empha-
sis of the present review is placed on large~scale rather than small-scale systems.

The kinetic energy of the atmosphere of the earth is enormous. Although it is an open question at
which rate this energy can be extracted from the atmosphere without changing the weather system, it is
evident that a very interesting amount of energy is present for this purpose.

A possible optimistic prognosis that might be based on this precognition is changed drastically by
the fact that, on practical grounds, direct energy conversion is only possible up to heights from 50 to
150 m above the ground (the maximum height of wind turbines that can be envisaged). A further reduction is
caused by the vertical wind gradient. Due to the friction with the surface of the earth, the wind velocity
above the surface is reduced and an atmospheric "boundary layer" is formed. The height of this boundary
layer ranges up to several hundreds of metres, dependin) on the "roughness'" of the surface of the earth.
The energy conversion, therefore, takes place in the lower part of the boundary layer with a correspond-
ingly reduced energy content.

Geographical factors apd practical limitations on the height of the turbines are, however, not the
only factors that limit the usuable amount of wind energy. There i5 a kind of implicit economi¢c reasoning,
which leads to converting only a part of all available wind energy {cut-in speed, design speed}. Also the
choice of the type of turbine and its mode of operation is strongly connected with economic considerations.

The structural lay-out of a wind turbine is determined by a large number of factors, of which static
strength, fatigue lifetime and cost-efficiency are the main points. They depend strongly on the total
wind energy conversion ,ystem considered, i.e. the type of turbine, the conversion system, the mode of
operation, etc. It is inpossible to reveal in brief all the interrelations between the several factors in
a proper way. The discussion of structural aspects will, therefore, be restricted tc the effect of the
shape of the rotor blace for HA (horizontal-axis propeller type) and vertical-axis (VA) Darrieus*) wind
turbines. Also the aerodynamic loads and the aeroelastic instabilities (divergence, flutter) will be dis-
cussed briefly. Structural aspects of wind concentrators (shrouds, vortex augmentors, etc.) are little
studied up till now and will, therefore, not be discussed. The cost-effectiveness of a structural design
will also not be discussed explicitly.

The above-mentioned aspects were all connected with the technical feasibility to build a wind turbine,
although some cost-effectiveness aspects were implicitly involved. A next important item ic, however, how
one wants to use this energy, because this has a strong feed-back to the lay-out of the complete wind
energy conversion system, Short comments will be given on the type of conversion (i.e. to mechanical
energy, to heat, or to electricity), on the storage, and on the distribution of energy to the consumer,

The survey of aspects pertaining to wind energy conversion will be concluded by a short survey of
cost 'alyses found in the literature, and of environmental effects.

2.2 Available amount of wind energy

2.2.1 Data from weather stations

Most studies on the available amount of wind energy start with a kind of wind energy '"prospecting"
close to the ground, based on available meteorological data. In most countries, weather stations possess
wind velocity recordings over a number of yea's. From such recordings, a first order-of-magnitude estimate
of the available amount of wind energy can be made. In such a survey, the distribution of the velocity
over the wind directions is neglected, because this aspect can only be considered by taking the character-
istics of the wind turbine into account,

In the interpretation of the meteorvlogical data, a number of factors has to be considered.
The first factor is the height above the ground where the wind velocity is measured. The present-day
meteorological standard height is 10 m, but various heights may occur due to local circumstances. For a

¥} The reader must notice, that in this report the term '"Darrieus turbine' denotes a curved-blade VA wind
turbine. Darrieus actually invented several types of wind turbines and in his 1931 US patent he
covered both curved and straight-bladed configurations.
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proper site selection, it is necessary to compare wind velocity data at the same height (e.g. 30 or 60 m).
The translation of the wezther-station data to a larger height (wind shear) will be discussed in Sect.
2.2.2.

When wind data of different stations are compared, it is necessary to correct the data for local
effects. These local effects may be due to a kind of "wind shadow' from neighbouring obstacles at certain
wind directions or due to locally different ,urface roughnesses at some distance from the station.

In corrugated terrain, a kind of wind energy "concentration' might be possible (see e.g. Ref. 2.1),
but this will not be discussed here.

Another factor is the infiuence of the wind velocity sampling method on the estimation of the annual
average energy flux. This will be discussed here at some length, because some confusion can be observed
in the literature.

The variation of the wind velocity due to a variation of the weacher system is relatively slow
(except in case of a thunderstorm). The wind velocity is measured, however, in the lower part of a turbu~
lent boundary layer, and the instantaneous wind velocity fluctuates st-ongly. The meteorological wind
velocity is, therefore, measured as an average over a certain time interval, say half an hour or one hour.
When the time interval is denoted by T, the average wind velocity is defined as:

1 T
0=5 fUdt (2.2.1)
0
When the velocity fluctuation within that interval is denoted by:
u=y - ﬁ,
the average of the fluctuation in that interval is zero:
1 T
i=1 [ (u-O)dr =o. (2.2.2)
0

The average energy flux in that interval is proportional to:

T
f (D+u)3de = 03 + 302G + 3002 + ud . (2.2.3)
0

Some remarks can be made about the right-hand terms of Eq. (2.2.3), viz.:

m:

-l

302%2u = 0, because u = 0 .
3002 # 0, because u® # 0 .

3 { = 0, if the probability distribution of u is symmetrical,
# 0, if the probability distribution of u is skew.
(2.2.3) can, therefore, be written as:

- 2 03
03 = U3(l+3 LA > . (2.2.4)
0?7 03

The difference between US and U3, i.e. the difference between the true average energy flux and the energy
flux estimated from the average wind velocity, depends strongly on the integration time T.

At small time intervals, e.g. 7 = | or 2 minutes, the contribution to u come« from the high-frequency
turbulent fluctuations of the atmospheric boundary layer. In that case, the skewness of the probability
distribution is small and the last term in Eq. (2.2.4) can be neglected. The turbulence intensity

Vu /U) in the lower part of the atmospheric boundary layer (referred to as the local wnnd veloc1ty) nay
be of the order of 20 percent. In that case, the differcnce U and U3 is 12 percent, viz.

TE U3{143(0.2)2) = 1.12 U3 .

At very large time intervals, e.g. T = | year, the fluctuations from the average Lecome very large
and the probability distribution becomes skew, so that the third term in Eq. (2.2.4) is significant. In
such a case, the ratio of u? and §3 may amount to a factor 3 or L.

When hourly averages (T = 1 hour) are used, the value of the factor is between the two values quoted
above. In most cases, the contribution of the skewness is no large, and the factor does not differ sig-
nificantly from the factor quoted for the small time intervals (1.12).

The data gathered at weather stations ccatain much more relevant information, e.g. the frequency
distribution of the duration of a calm (no wind energy available) or the frequency distribution of the
duration of a wind velocitv within a certain velocity interval {duration of a certain energy production).
This information is important in the discussion on energy storage.

2.2.2 Mind shear

The wind velocity increases with height. Greater heights possibly mean larger rotor diameters and, in
that case, the wind velocity varies across the rotor area and the annual energy flux has to be averaged
also over a certain height (Ref. 2.2).

The increase of the wind velocity with height (wind shear) can be described in two different ways,
viz. with a power-law formula or with a logarithmic formula. Meteorologists often prefer the logarithmic
formula, because it can be derived theoretically. The power~law description is used in this Section
because of its simplicity and because it is used in Ref. 2.3.
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The effect of the wind shear has been rather extensively studied in Sweden (Ref. 2.3). The wind shear
depends on the wind direction, the wind velocity, and the stability condition of the atmosphere. The in-
stantaneous velocity profile can be defined by an exponent o (see also Fig. 2.1):

[+3
U/Uref = (H/"ref) (2.2.5)
Tavle 2.1 shows some results of Ref. 2.3. !
R v {m/s)
Site H=60m a Remarks
Oskarshamn 2.3 0.87 | night wind from sea
5.5 0.63 ] ditto

9 - 10 | 0.31|wind from land
10 - 15 ]10.12 | wind from sea

Marviken 2.0 1.6 | night wind from sea
3.5 0.9 | ditto !
4.5 0.38 | wind from land i
7 - 12 |0.36] ditto !
7 - 12 | 0.13| wind from sea
Table 2.1: Instan.aneous wind shear data (Ref. 2.3) i

The difference in neasured wind shear between wind from tand or from sea is caused by the difference
in “surface roughness'. Large differences in wind shear at low wind velocities are possibly due to differ-
ent stability conditions of the atmosphere. Because wind velocities below 4 or 5 m/s are negligible with
respect te their contribution to the annual average energy flux (cf. Sect. 2.3), these large variations in
wind shear are not too interesting from the point of view of wind energy conversion.

In a statistical-average sense, the wind shear at the higher wind velocities depends only on the
“surface roughness" in the wind direction. When a measured wind velocity at a small height is translated
into a velocity at larger height, the wind direction has to be taken into account, when the surface rough-
ness varies appreciably between the various wind directions.

In a sense Fig. 2.1 is somewhat misleading, because the wind profiles are given at the same U..¢
(velocity measured by weather station). Under the same weather conditions, the wind velocity at a {arge
height is almost independent of the surface roughness; since the effect of the surface roughress is a
slowing down of the wind approaching the ground. At the other hand, Fig. 2.1 shows clearly how important
it is to correct the wind velocity data measured in inland weather stations for the effective height of
the wind turbine. Table 2.2 shows the influence of the wind shear on the energy flux $pU3 (W/m?),

height (m) 10 ] 20 ] 30 | 40

energy flux (W/m2) |.
Usoom= 15"‘/5 H

wind from sea | 507|651 ] 753|836
a = 0,12
wind from land | 64 f 105 ] 151 1198
a = 0.31

Table 2.2: Influence of wind shear on energy flux at low level |
with a constant velocity at large height (500 m)

2.2.3 Wind energy flux

In the literature, many estimations of the annual average energy flux have been given. The magnitudes
depend strongly on the geographical location, but the factors discussed in the Sects 2.2.1 and 2,2.2 cer-
tainly also affect the values given.

Without starting an extensive survey of the literature, it seemed useful to give at least some
figures, to illustrate the low density of wind energy and the consequently large turbine areas necessary
to obtain a reasonable amount of energy from the wind.

Conditions Annual average
Country Ref.| height | site velocity | energy flux
{m) (m/s) (kW/m?)
Canada 2.4 33 coastal ? 0.3 -0.4 i
inland i 0.1 -0.2
France 2.5 Lo coastal 7 0.35-0.55
inland ? 0.34
The Netherlands | 2.6 14 coastal 6-7 0.47
Sweden Z.3| 50 | coastal | 7.7 0.53 |
inland 5.6 0.22
USA Z.7 7 | coastal | 6-7 0.15-0.2 !
inlang%} 7.8-8.6 0.3 -0.4

*) Great Plains !
Table 2.3: Average annual energy flux at several countries ;
i
!

There are, of course, large climatological differences between the countries listed, but in general
coastal areas reveal higher energy fluxes than iniand areas, with the Great Plains in tihe USA as a notice-
able exception.

The wind energy flux above sea miyht be interesting, but information is scarce, and there are addi-
tional probiems connected with wind energy "harvesting' on sea (platforms, maintenance),
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2.3 Useable amount of wind energy

2.3.1 Design power, cut-in speed

It seems advantageous, from the point of view of economics, to limit the wind energy conversion at a
certain maximum wind velocity (see e.g. Ref. 2.8). Tkis (maximum) design power determines the costs
(investments) of the WECS (Wind Energy Conversion System) tc a large extent.

In rural applications, such as pumping of water, it is often desirable that the wind turbine starts its
operation at a wind velocity as low as possible. From the point of view of the annual energy production,
such a low “'cut~in" speed is not necessary, as is easily demonstrated by considering a wind velocity pro-
bability curve (Fig. 2.2).

When the probability of occurrence of a wind velocity within a certain interval is denoted by P(U.),
the dimensionless distribution of energy, corresponding to a wind velocity interval Uj’ can be calcu\a{ed
from

ur(u,)
P(E,U,) = —l—L— (i ranging over all ciasses) (2.3.1)
T udeuy)
i

The denominator corresponds to the area below the P(E,U)-curve in Fig. 2.2 and is, except a numerical
factor, equal to the annual wind energy flowing through an area of | m2, The example given in Fig. 2.2
corresponds to an annual energy of 4.37 MWh/mz/year.

It follows directly from Fig. 2.2, that low wind velocities have such a low energy flux that, not-
withstanding their high probability, the contribution to the annual energy is negligible (shaded area at
the left-hand side). '

Very high wind velocities have a high energy flux, but, due to the low probability, their contribution to
the annual energy is also low. When the excess power is destroyed partially (e.g. by blade-pitch control},
in order to continue the energy production at wind velocities above the design speed, the corresponding
power loss is even smaller than the shaded area at the right-hand side of Fig. 2.2,

The arguments for accepting a reduced annual energy production in order to reduce the design power
(costs) are demonstrated more clearly in Fig. 2.3.
When a power coefficient
p = —L— = 0.
L sref

is assumed at wind velocities below the design speed, and a constant power above the design speed, it is
possible to calculate the annual energy production, using uiie wind statistics of Ref. 2.6 as an example.

Fig. 2.3 shows, that the annual enerygy production increases vervy slowly at design speeds above say
15 m/s. Also shown in Fig. 2.3 is the ratio of the design power to the avcrage annual power, which is a
kind of "costs benefit''-ratio, The figure reveals a rapid increase of this rativ with design speed, which
emphasizes the choice of a lower design speed.

2.3.2 Turbine characteristics

The useable amount of wind energy is further restricted by some characteristics of the wind turbine,
viz. the performance characteristics and the effect of the operating mode (control).

One aspect pertaining to the performance characteristics of the wind turbine in connection with the
useable amount of energy, is the possibility to convert also the energy from the turbulent component of
the wind info mechanical energy. As mentioned in Sect. 2.2.1, this turbulent energy could possibly amount
up to 12 percent of the energy, calculated from half-hourly or hourly mean values,

The possibility to convert turbulent energy with a wind turbine depends on the scale of the turbine
with respect to the "'scale' of the atmospheric turbulenr.. A very small turbine reacis on almost every
fluctuation, but a large wind turbine only reacts o. low-frequency (large-scale) fluctuation,. Tt< high-
frequency (smali-scale) fluctuations are "integrated" along the rotor blade span and possibly contribute
nothing to (or even deteriorate) the driving force on the rotor blade, in the same way as there is no
turbulence signal from a very long hot-wire., In Sect. 5 these effects will be discussed in more detail.

It is still questionable whether the development of a special larde-scale quick-responding turbine
is feasible, because the whole Wind Energy Conversion System (WECS) has to be attuned to it, and the
extra amount ¢f energy obtained is not very large.

In this context, it is perhaps worthwhile to mention the difference between Horizontal-Axis (HA) and
Vertical-Axis (VA) turbines. The HA turbine has to be set into the wind direction to operate at maximum
efficiency, whereas the VA turbine operates independently of the wind direction. Because a large HA
turbine can only be yawed slowly, it is impossible to follow quick variations in wind direction, which
possibly results in a reduction in energy production,

Betz (Ref. 2.9) showed long ago, that any wind turbine cannot extract more than a certain amount of
energy from a given (steady) wind energy flux (see also Section 3.2.1), viz.:

P,
¢ o . ideal _ %% ~ 0.59 , (2.3.2)
ideal ipU3Sre
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Pideal = theoretical maximum power of turbine (W)
1pU3 = wind energy flux (W/m?)
o = air density (kg/m3)
U = steady or average wind velocity (m/s)
S.ef = area perpendicular to the wind stream, swept by the rotor of the turbine (m2) .

The actual power coefficients of existing wind turbines are still lower than the ideal power c2fficient
given by Betz, because of rotation (vortices) left in the wake behind the rotor and because of viscous
losses (profile drag). These aerodynamic losses depend on the type of wind turbine considered and will be
discussed extensively in Sect. b. Suggestions to increase the power coefficient above this Betz limit by
so-called '"wind concentrators', will be discussed in Sect. 3.

The variation of the power coefficient Cp with the operating conditions of a given turbine also plays
an important role. The performance characteristics of a wind turbine are described by the variation of the
power coefficient Cp and the torque coefficient Cy with the tip-speed ratio \. These quantities are
defined as follows:

A=/, (2.3.3)
with Q@ = angular velocity of the rotor (rad/s)
R, = maximum radius of the rotor (m);
Cp =« —— (2.3.4)
¥
10U%S of ;
CQ = ___;Q_____ (2.3.5)
bov SrefRo
with P = aerodynamically generated power (W)

Q = aerodynamic torque (Nm).
Because of the relation between power and torque

P=qQ ’
there is a relation between the power and torque coefficients, viz.:
Co=ACq - (2.3.6)

Therefore, when the Cy-vs-) curve is given, cQ-vs-A can easily be calculated by Eq. (2.3.6).

Figure 2.4 gives examples of the characteristics of HA and VA turbines, which, however, are perhaps
not fully representative of a modern design. An important parametar that determines the A-range in which
the turbine operates is the so-called solidity ratio, i.e. the ratio of the total rotor blade area to the
area swept by the rotor blades.

In case of the VA turbines one also often applies a solidity ratio defined by:

o=8 c/R° , (2.3.7)

with B = number of blades of the rotor (-},
¢ = chord ov the rotor blade (m).
The general definition of the solidity ratio is

s
o =8/S ¢ 0[ cds , (2.3.8)

with ds = blade-element length, measured along the span (m);
s total blade length, measured along the span (m).

For a constant Cp, a high solidity ratio means a low A (Fig. 2.4) and, because of Eq. (2.3.6), a relatively
high C,. Sometimes a high torque is wanted at a relatively low angular velocity {e.g. when a water pump is
to be griven). In such & case, a multi-bladed HA turbine (so-called American windmill) or a Savonius
turbine (VA turbine, ¢ > 2) can be applied. Both types are also ''seif-starting", i.e. they start rotating
from standstill at a sufficiently high wind velocity.

A low solidity ratio means a high A and a relatively low Cq. In most WECS designs, the low-solidity
turbines are preferred because of the higher angular velocity and the lower torque, which reduces the
costs of the gear-box,

»

The VA Darrieus turbines are only weakly self-starting, with the torque being slightly positive for
most parked positions, Usually, they have to be started by using the generator as a driving electric motor
or by combining them with a Savonius rotor (see Ref. 2.7).

A low-o HA turbine shows a rather flat-topped Cp-vs-A curve. Therefore, the turbine can be operated
at almost constant Cp over a rather large range of A. This range of X at almost constant Cp can even be
incrcased by giving the blades a pitch control, i.e. by changing the vlade setting angle during operation.

The Darrieus turbines show a much stronger variation of Cp with X. huwever, the effect of the turbine
characteristics on the annual energy production also depends on the operating modc, together with the wind
statistics (Fig. 2.2). The choice of the operating mode of the turbine, viz. oper2ting at A = constant or
@ = constant, has important consequences, which will be discussed below. Little is tcund in the literature
about matching the torque vs angular velocity curves of turbine and generator. This wili, therefore, not
be included in the discussion below.

A = constant
It is clear from the outset, that a maximum amount of energy is extracted from the wind at every wind
velocity, when the turbine always operates at the value of the tip-speed ratio A corresponding with the
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optimum power coefficient. In that case the angular velocity of the turbine Q is proportional to the wind
velocity U, the torque Q is proportional to U2, and the power P is proportional to U3, When the case of
converting mechanical power P of the turbine into electric power is considered, it is often suggested to
operate the gencrator at constant RPM, which requires much from the gear-box (variable gear-ratio).

? = constant

When the turbine operates at constant angular velocity, A varies proportional to 1/U and the gener-
ated oower P and torque Q depend on the Cp-vs=-\ curve, which is determined by the type of wind turbine
considered.

Figure 2.5 shows idealized Cp-vs-) curves for a HA and a VA turbine, together with corresponding Cp-vs-U
curves for © = constant,

A careful choice of @ in case of a HA turbine results in a large range of wind velocities with an
almost constant Cp equal to the optimum of Cp. The decrease of Cp at high and low U does not affect the
annual energy production appreciably (cf. Sect. 2.3.1 and Fig. 2.2). It is also clear from Fig. 2.5, that
special aerodynamic means are necessary to limit the power at high wind velocities to the design power
(pitch control or spoilers for a HA turbine).

At 9 = constant the Darrieus (VA) turbine shows some favourable features., The choice of Q determines
automatically the cut-in speed by Cp = 0 at high A. Even more important is the decrease of Cp at high wind
velocities (low 1), at which the generated power (proportional to CpU3) shows a maximum, i.e. the design
power can be fixed by chosing a proper value of Q. When the Darrieus turbine is optimized by selecting a
value for @ and a value for the solidity ratio o, also using & given wind velocity probability distribu-
tion, the annual energy production will be found to be not much lower than the same turbine operating at
X = constant and at the same design power. The loss in annual energy production has to be balanced against
a reduction in costs by using a simpler (less expensive) gear-box (see also the discussion in Ref. 2.10).

2.4 Structural aspects

2.4.1 Shape of the rotor blade

The large-scale wind turbine tends to be of a low-solidity type (higher angular velocity, lower
torque) with relatively slender blades (small chord with respect to blade span). The bending stiffness of
the blade is limited because the thickn~ss-chord ratio of the profile has to be small (profile drag). To
alleviate the bending stresses in the blade, special blade shapes have been developed. A typical example
is the Darrieus turbine, where the bending stresses due to centrifugal forces have been avoided entirely
(see also Appendix D).

From an aerodynamic point of view, a vertical-axis turbine with straight blades is advantageous,
because the full span of the blade is aerodynamically active in generating power, whereas the extreme
parts of the curved blades of a Darrieus turbine are aercdynamically less active. On the other hand, the
Darrieus turbine has a structural advantage (shown in Fig. 2.6) when it is compared with the straight~
bladed vertical-axis turbine. In addition, the Darrieus turbine can operate at substantially higher cir~
curmferential velocities than the straight-bladed vertical-axis turbine at an equal stress level, which is
advantageous in view of the lower torque and lower gear-ratio of the gear-box.

The rather simple estimate of the stress in the blades of a Darrieus turbine due to centrifugal
forces is possible when a constant chord and mass distribution along the span is assumed, because the
blade mass is proporticnal to the material cross-section of the blade, which cross-section is also used to
calculate the stress and, therefore, drops out of the formula. For the calculation of the bending stress
in a straight-bladed vertical-axis turbine, however, a t/c-value has to be assumed and the radius of
gyration of the section is chosen equal to ¥t {Appendix D).

Figure 2.6 shows the large influence of the blade support on o for a straight-bladed vertical-axis
turbine, but even the multiple-supported blade is inferior to the curved Darrieus rotor blades. Details
about the so-called "'troposkien' blade shape of the Darrieus turbine can be found in the Refs 2.11 and
2.12 (the name troposkien was coined by Blackwell and Reis as a greek transliteration of ''skipping rope',
i.e. ""tropos" = turn and "schoinion' = rope).

The centrifugal acceleration exerts pure tensile forces in the blades of a horizontal-axis turbine.
The tensile stress is a function of the tip speed (AU) and the taper ratio of the blades, when a mass per
unit length is assumed that is proportional to chord times thickness (t c). Results of such an estimation
are shown in Fig. 2.7 (for details see App. D). Comparison between the Figs 2.6 and 2.7 reveals that the
horizontal-axis turbine can withstand even higher tip speeds than a Darrieus turbine at an equal stress
level.

The shape of the aerodynamic load distribution on a curved-bladed vertical-axis turbine differs
slightly from the shape of the centrifugal load distribution. Therefore, small bending moments may remain
in a troposkien-shaped rotor blade. It should be possible to modify the troposkien in such a way, that the
bending moments due to a given aerodynamic loading would be exactly zero, but this has little practical
significance.

In the case of a horizontal-axis turbine, the blade shape can be chosen in such a way that the vend-
ing moments due to the combined action of centrifugal and aerodynamic load are exactly zero. This can only
be rcalized, however, at one value of A = QR /U,

Figure 2.8 shows an estimation of the required shape of the blade, i.e. such a shape that the resuit-
ant of the centrifugal and the aerodynamic load is always paraliel to the blade span. The aerodynamic load
is estimated for an optimum turbine according to the theory of Glauert (Ref. 2.13), neglecting tip losses.
Therefore, the displacement (x/R,) at the tip is slightly over-estimated. The data of Fig. 2.8 apply to
a rather heavy rotor-blade construction; light-weight constructions are not considered here, because such
constructions lead to large displacements and thus to unrealistic blade shapes (for details see App. D).
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So far, the influence of gravity was neglected in the discussion of the blade shape. It can be shown,
that the influence of gravity on a troposkien depends on the ratio of centrigugal acceleration to the
acceleration of gravity, thus QZRo/g. Darrieus turbines of similar shapes but different sizes operate at
equal tip speed ratios X = QRy/U. The above-mentioned ratio can, therefore, be written as A2U2/gR°. This
ratio decreases with increasing size of the turbine, which suggests that the weight of the rotor blades
may not be neglected when a large-scale Darrieus turbine is considered. The ratio of the maximum tensile
force ir the rotor blade due to the centrifugal load and the weight of the rotor blade is a good indicator
whether gravity can be neglected. This ratio is shown in Fig. 2.9.

In case of a large-scale Darrieus turbine, the weight will cause bending moments in the blade. It is
possible to modify the troposkien in such a way, that bending moments due to weight are avoided too. This

is, however, only possibie at one chosen value of QR,/g, i.e. only when the turbine operates at
= constant.

The influence of the weight on the blade loading of a horizontal-axis turbine is somewhat more com-
plicated. The load varies during a revolution of the rotor and can, therefore, not be compensated by a
modification of the shape of the rotor blade.

The variation in tensile force depends on the ratio between maximum centrifugal force and weight of the
blade. For a blade with taper ratio 0.5, this amounts to

centrifugal force 2
weight =~ 0.2 (QRO) /gRo !

which differs from the values given in Fig. 2.9 for the Darrieus vertical-axis turbine by not more than a
factor 0.6.

When the blade of a horizontal-axis turbine is in a horizontal position, the bending moments due to
the weight will be maximal. Because of the blade twist, there will be a component of the bending-moment
vector parallel to the blade chord at the blade root. The blade thickness is always smaller than the
chord, and the bending stresses due to weight at the blade root may, therefore, become significant.

From the preceding discussion, it can be concluded that a careful consideration of the shape of the
rotor blade is helpful in alleviating blade stresses.

In case of a vertical-axis turbine, bending moments due to centrifugal forces can be avoided by
applying a troposkien blade shape. Under operation at Q = constant, the bending moments due to weight can
also be avoided by modifying the troposkien. Bending moments due to the aerodynamic load cannot be avoided
completely, but are of little practical significance.

In case of a horizontal-axis turbine, centrifugal forces only induce tensile stresses. When the
turbine operates at X = constant, the rotor blade can be bended in such a way, that bending moments due to

the aerodynamic load are avoided. Variation in tensile and bending stresses due to weight cannot be alie-
viated by changing the shape of the rotor blade.

2.4.2 Aerodynamic loads on a wind turbine

In the preceding Section, the aerodynamic load on a rotor blade was already mentioned. That load was
thought to be due to a steady homogeneous wind stream. An actual wind turbine is immersed, however, in a
highly turbulent wind stream with a more or less steady vertical wind gradient or wind shear,

A detailed discussion of the aerodynamics of rotors will be given in Section 4, whereas the influence
of wind shear and turbulence will be discussed in Section 5.

It seems adequate to point out here the importance of the scale of the wind turbine with respect to
the ""scale' of the turbulence of the atmospheric boundary layer. A small-diamete: turbine (say, 1 m},
rasponds to more or less rapid variations of wind velocity and wind direction, whereas a large diameter
turbine (say 50 m) responds only to relatively slow variations in wind velocity and direction and does nct
respond to rapid variations, because they act only on a part of the whole rotor. The quintessence of this
»emark is the change in character of the fluctuating aerodynamic load due to turbulence with the scale of
the wind turbine.

Also important to notice is the different behaviour of a VA and a HA turbine in wind shear and turbulence.

A wind shear induces a stationary load distribution along the span of the blade in case of a VA
turbine, but in case of a HA turbine, a wind shear induces aerodynamic load variations during a revolution.
With other words, wind shear contributes to the fatigue load in the case of a HA turbine.

Variations in wind direction that are slow with respect to the time needed for one revolution of the rotor
do not affect a VA turbine, whereas such variations lead to fluctuating aerodynamic loads in case of a HA
turbine, because it cannot be yawed fast enough to follow the variations in wind direction. The faster

variations in wind velocity and direction contribute to the aerodynamic fatigue load for both the HA and
the VA turbine.

Another important fluctuating load source stems from the aerodynamic blade~tower interference, i.e. a
load variation due to moving the rotor blade through the wake of the tower. Such an interference is always
present in case of a VA turbine, but the interference is relatively mild, because the effective part of
the rotor blade is at a relatively large distance from the tower, In case of a HA turbine, such an inter-
ference is only present with a rotor downstream of the tower. The interference is strong in that case,
because of the short distance between blade and tower.

A significant static load case is the stopped rotor during a heavy storm. In such a case, the pre-
stressing action of the centrifugal forces disappears and the bending moments increase strongly.

Templin and South (Ref. 2.14) discuss the blade buckling in case of a Darrieus wind turbine. In case
of a HA turbine, it is often proposed to feather the blades in case of a heavy storm,

Banas and Sullivan (Ref. 2.10) discuss the favourabie feawure of operating a Darrieus VA turbine at
Q = constant, because of the decrease of the torque above a rertain wind velocity (by blade stall), which

does not necessitate the stopping of the turbine at a heavy storm. The pre-stressirg effect of the centri-
fugal forces diminishes the danger of blade buckling irn that case.




s o

¥
t’ﬂ > ’J@«w W iaih ok
b R Ay

—— g -

2-9

Since the rotor blades are connected to the tower in one way or another, the aerodynamic loads on the
blades are transferred to the tower. ln case of a HA turbine in a steady wind, this results in a constant
force downstream, the so-called "rotor drag' force. A VA turbine in a steady wind also experiences this
rotor drag in a time-average sense, but the instantancous force varies during a revolution in case of a
one~ or two~bladed rotor. In case of a three~ or more~bladed rotor, the rotor drag is almost time-
independent.

When we sum up this Section, it can be stated that a wind turbine is subject to varying loads, which
determine the fatigue lifetime of the structure, especially that of the rotor blades.

Turbulence of the atmospheric boundary layer contributes to the fatigue load in case of both the VA
and the HA turbine. An additional fatigue load comes from the perioaic lift variation during a revoiution
in case of a VA turbine, but also a HA turbine shows additional fatigue loads due to wind shear, due to
the fact that it is not properly aligned with the wind direction, and due to blade-tower interference in
case of a downstream-placed rotor.

Notice, that the gravity forces cause fluctuating blade forces ’n case of a HA turbine also (cf.
Sect. 2.4.1).

2.4,3 Aeroelastic effects

In the preceding Sections, external lecads and their relation with the turbine configuration have been
mentioned. The severity of the loads can only be judged by calculating the stresses induced in the struc-
ture by these loads.

From the more or iess steady external loads, the stresses in the structure can be estimated in a
rather straightforward way, although in case of a statically indeterminate structure, it might be neces~
sary to apply a finite-element computation methr:d.

The estimation of fluctuating stresses due to fluctuating external loads is often less straightfor-
ward., Only in the case of low-frequency fluctuations, a quasi-steady calculation of the stresses might
make sense, but if frequencies occur approaching some of the eigenfrequencies of the structure, this might
lead to strong discrepancies. This means, that the wind turbine has to be considered as an elastomechanic
structure and that the various responses to fluctuating loads have to be calculated. When these calcula-
tions have to be preferred, the specialized field of vibrations and aeroelasticity is entered.

it is obvious that a HA turbine and a helicopter rotor have much in common, and the experience from
helicopter industry should be valuable., There are, however, differences which make that these results are
not directly applicable to a wind turbine, and that the aeroelastic modeling of a wind turbine has to be
formulated from the basis, as is discussed in Ref, 2,15,
The VA turbine reveals some characteristics differing from the HA turbine, which necessitate an alterna-
tive formulation (see e.g. the discussion in Ref. 2.16). The fiutter boundary for a VA turbine, using a
blade flutter and a mass parameter, has been discussed in Ref, 2.14.

In general terms, the aeroelastic modeling of a wind turbine starts with setting up the equations of
motion of the rotating elastomechanic structure.
Solving these equations of motion is largely facilitated by chosing such a co-ordinate system, that the
coefficients of the differential equation are time-independent. In that case, the solution procedure boils
down to a system of linear eigenvalue equations, from which the stability of the system can be studied
more easily. Some remarks have to be made on the choice of the co-ordinate system, in order to obtain
time-independent coefficients in the dif¢.rential equation.

A rotating three- or more-bladed rotor described in a co-ordinate system fixed to ''earth" reveals a
kind of polar symmetry, which leads to timz~independent coefficients. This is no longer true for a one- or
two-bladed rotor. In that case, the co-ordinate system has to be fixed to the rotor instead of to eartch.
It is here that an important difference appears between VA and HA turbines, A one- or two-biaded turbine
with a co-ordinate system fixed to the rotor describes the "tower' or 'base'" ~5 a structure rotating in
the co-ordinate system, and time-independent coefficients can only be obtained when the tower or base has
a polar symmetry with respect to the ''rotor-fixed" co-ordinate system, Such a polar symmetry can only be
expected with a VA turbine, not with a HA turbine, With a view to the cost-effectiveness, there is a pref-
erence for a two-biaded HA turbine, which leads to differential equations with time-dependent coefficients
and a correspondingly increased computational labor to solve these equations (Ref. 2.15),

When only inertial forces are considered, the stability calculations reveal the dynamic stability of
the wind turbine (e.g. the existence of a "critical' RPM).

When so-called 'self-induced" aerodynamic forces are included, i.e. aerodynamic forces due to vibra-
tory motions, important flutter cases can be disclosed. Because of the rotation of the rotor, even in
still air a high velocity relative to the rotor blade exists and small angle-of-attack variations due to
the vibratory motion induce appreciable aerodynamic force variations. This explains why the flutter bound-
aries of Ref. 2,14 are almost independent of the wind velocity.

The aerodynamic forces due to a steady wind velocity are almost constant for a HA rotor and period-
ically varying for a VA rotor. These aerodynamic forces might induce flutter in case of a VA turbine, but
such a behaviour has not been reported at present,

The calculation of the responsc of the elastomechanic structure to fluctuating external loads, such
as blade-tower interference, turbulence {gusts), non-harmonic aerodynamic forces due to the wind, and
weight (HA turbine), is more complicated thun a stability calculation and it is necessary to obtain re-
liable estimations of the fatigue 1oading, The main problem is the estimation of the external load fluc-
tuations (Sect. 2.4.2).

Rather simple cousiderations can lead to the advice to design the rotor blade cross-section in such a
way, that elastic axis, centre of gravity and aerodynamic centre almost coincide, in order to decouple
bending and torsion fiodes of the rotor blade (Ref. 2.10)}. In Ref. 2.17, however, only a minor effect of
blade cross-section mass balancing on the presence of instabilities is mentioned. It is not clear whether
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such a conclusion is also valid for a HA turbine.

In reference 2.1 it is stated that sufficient bending and torsional stiffness of the curved rotor
blade of a Darriecus turbine is necessary to avoid instabilities, together with sufficient torsional stiff-
ness of the tower.

Sufficient bending stiffness scems sometimes only obtainable by bracing the blades to the tower with
struts, The bending stiffness of the tower is increased by guy-wires. In reference 2.17 information is
given about the static and dynamic behaviour of guyed masts, together with a reference to the literature.

A two-bladed VA turbine shows a large variation of the torque during a revolution of the rotor,
similar to the variation of the rotor drag mentioned in Sect. 2.4.2. In reference 2.14, however, it is
stated that this torque "rippie" is largely attenuated by the elasticity of the rotor and the slip charac-
teristics of the induction-type generator, which lead to a tolerable output voltage ripple. The study of
the transfer function between the aerodynamic torque (input) and the generator voltage (output) seems,
therefore, an interesting subject.

In the case of a HA turbine, a flexible blade hinge is effective in reducing fluctuating blade stress
levels (see e.g. Ref. 2.18; hingeless, teetering, coning, gimbaled, or fully articulated). The minimum
clearance between bladc and tower depends on the coning angle and the dynamic response of the blade on
sudden gusts (oending). This clearance is a larger problem in case of a rotor upstream of the tower, but
might be reduced by tilting the rotor (Fig. 2.10).

The downstream rotor has the disadvantage of the fatigue lvad due to blade~tower interference, whereas
the tilted rotor shows the disadvantage of fluctuating loads due to the fact that it is not aligned with
the wind direction. A tilted rotor might, however, alleviate the fluctuating loads due to wind shear (ver-
tical wind gradient). Sufficient blade-tower cleaiance in case of an upstream rotor is also obtained by
using a swept-forward tower, with the additional advantage of lower bending moments in thy tower (Fig. 15
of Ref. 2.19), but the disadvantage of yawing a large part of the tower, together with the rotor into the
wind direction.

The problem of calculating the aeroelastic response of a wind turbine to external load variations, in
order to estimate fluctuating stress levels (fatigue), is related to the problem of the dynamic response
of the whole wind energy conversion system to ''gusts''. Such a dynamic response can, for instance, be used
to estimate fluctuations in electric output (voltage ripple).

Reference 2.20 suggests the use of aeroelastic effects of the rotor blades in the conversion of the
energy contained in gusts by a quick aeroelastic response, instead of using a slower mechanical pitch-
regulating device.

An intercsting prublem is the question whether aeroelastic problems increase with increasing scale of
the wind turbine. In case of geometrically similar wind turbines, the reduced (dimensionless) eigenfre-
quencies of the structure ore almost independent of scale, which is also the case with the stresses due to
aerodynamic and centrifugel forces (Refs 2.14 and 2.18). This seems to indicate that aeroelastic instabil-
ities are almost independent of scale, but the assumption of a «eometrically similar structure is probably
not valid when the size of the turbine increases drastically.

Such a change in the structure might be due to the increase of stresses with an increase of the scale
of the turbine, caused by gravity (Ref. 2.18, see also Sect. 2.4.1). The change in the stress levels,
caused by a change of he ratio between the rotor diameter and the ''scale' of the atmospheric turbui.ace
(cf. Sect. 2.4.2), mighy also give rise to different structural designs for large-scale turbines.

Moreorer, from cost-effectiveness considerations, the tower and blade structure of a small-scale wind
turbine is relatively rigid, because it becomes expensive to develop a special light-weight structure at a
small scale On the other hand, such a development becomes a must at large scale, and the relative stiff-
ness of the structure will b2 correspondingly reduced.

2.5 <{onversion, storage and distribution to the consumer

The kind of conversion chosen for the wind energy conversion system has a strong influence on the
choice of the type of wind turbine and gear-box (speed increaser). The direct use of the mechanical energy
of the wind turbine can be envisaged in small-scale rural applicaiions, such as pumping water for irriga-
tion, For that purpose often 3 low-} type of wind turbine is chosen (large torque, low RPM); the RPM
regulation is then of minor importance.

Using the mechanical eneryy for driving machinery, as in ancient times, does not seem feasible any
more.

Conversion of the mechanical energy into a8 lower-graded kind of energy, e.g. heat, seems feasible
when the distance between turbine and consumer is not too large, but even in that case it is o ten pro-
posed to produce electricity as an intermediate step. Also electrolysis is proposed to produce hydrogea
gas, but, as a matter of fact, almost every proposal today is directed towards the production of electric-
ity.
fonversion of the mechanical energy into electric energy, which has to be fed directly into the public
utility network, puts a high demand on the output frequency and voltage, and it is often suggested that an
almost constant generator RPM facilitates this task appreciably. This implies using a gear-box with a var-
iable gear-ratio or operating the wind turbine at constant RPM. Reference 2.21 gives an appealing but not
searching review of possible applicstions.

Considerations about pros and cons of DC or AC conversicn are too specialized to be mentioned here.
Some related information is given in the Refs 2.22 through 2.28.

A disadvantage of wind energy is the variance between supply and demand. Energy storage seems a log-
ical answer to this problem, but the feasibility of storing a large amount of energy is still questionable,
apart from some special applications.

Storage of electric energy in batteries is only feasible in small- to medium-scale applications, and
the high costs of a battery bark are only acceptable when no alternative energy sources are available
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(e.g. ir remote areas).

En.rgy storage by electr,lysis of water and recuperation in a fuel cell or by mixing the hydrogen gas
with natural gas, is sometimes proposed (Refs 2.29 through 2.31).

Storage of pumped water depends on local condstions: see e.g. Ref, 2.32, where it is reported that
water is pumoed out of a cavity in a salt layer and the energy is recuperated by dumping the water into
the cavity via a hydro- turbine.

Storage by compressed air is proposed in Ref. 2 33, whereas energy storage in flywheels is also

studied (e.9. Ref. 2.34). Energy storage in heated water is a possibility in case of space heating (Ref.
2.21).

It is charscteristic for the change in attitude towards energy storage, however, that six papers
dealing with energy storage were presented at the First Workshop on Wind Energy Conversion Systems in the
USA in 1973, whereas only one paper was presented at the Second Workshop in 1975.

The distribution of the energy to the consumer is no direct problem when the wind turbine and con-
sumer are nearby, as is mostly the case in small-scale applications. For large-scale applications with an
extensive array of wind turbines, the energy production can be so large, that the energy has to be trans-
ported over hundred ki.ometers ot more.

The distribution of energy from an array of wind turbines to a number of dispersed consumers is made
possible by converting the energy into electricity or hydrogen gas. To by-pass the high costs of a distri-
bution network of power-lines or pipe-lines, it is frequently proposed to use existing public utility
networks.

In case of electricity, because storage is difficult in large-scale applications, the electric power
has to be fed directly into the public utility network (standard voltage and frequency). To overcome
losses at larger transport distances, the output voltage has to be transformed into higher values before
putting it on the power line.

In existing networks and power stations, special measures have to be taken to balance demand and
supply. Because of the fluctuating supply in case of wind power, these measures become more complicated.
In reference 2.35 it is suggesced to couple several arrays of wind turbines across a whole country in
order to smoothen out the fluctuations in wind power supply. When wind energy delivers only a fraction of
the total electric power in the network, the circulating energy fluxes in the coupled networks remain
small and are perhaps acceptable.

Studies about these operational problems are progressing in several countries today, but results have
not yet appeared in the open literature.

2.6 Cost analyses

When the wind statistics of a country, or a part of it, look promising, when the industrial capabil-
ity is sufficiently developed to design and construct a wind energy conversion system, and when there is a
market for wind-generated power by selecting a suitable conversion, storage and distribution system, a
very difficult questicn remains to be answered, viz. whot is the price of wind energy in that particular
case.

It is certainly true that the wind energy price (e.g. US dollar cents/kWh) is not an absolute cri-
terion for the feasibility. In remote and isolated regions, the prices for the traditional forms of
energy are much higher, and a wind energy price that was too high for a densely populated and industrial-
ized region might be acceptable there (Refs 2.36 and 2.37). Moreover, when diversification of energy
sources is considered in order to become less dependent upon fossil fuel imports in the long run, it might
be a policy to accept a relatively high price for wind energy. The feasibility of wind energy with respect
to the wind energy price is also intimately connected with the future development of the price of fossil
fuels.

It takes an expert to judge the results of several cost analyses appearing in the literature, A direct
comparison is often difficult, due to various assumptions about inflation and interest rates and about
that part of the system that had to be included into the cost calculation (R&D costs, costs of adaptation
to public utility network, etc.). Furthermore, a comparison of the caiculated wind energy prices is hin-

" dered by differences in the assumed amount of wind energy (wind climate) and other external factors. In
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order to compare the cost effectiveness of different wind energy conversion systems, it has been suggested
to formulate standard data as a basis for such a comparative cost analysis.

A breakdown of che costs of a wind energy conversion system is interesting, because it signalizes
that part of the sysicm that looks most promising for ReD in low-cost design. In case of the Putnam 1500
kW horizontal-axis wind turbine, the rotor accounted for almost 43 % of the total cost (Ref. 2.38). In
reference 2.39 a cost breakdown is given for a I kW vertical-axis wind turbine and in reference 2.40 for a
1060 kW horizontal-axis turbine, Both breakdowns, though not fully comparable, are shown below.

Ref. 2.39 Ref. 2.40

rotor 26 % | rotor 28 %

bearings 11 % | pintle + drive 9%

tower 23 % | tower 18 %

gear-box, generator, etc. k40 % |electric system 14 %
controls system 2%
installation b %

site + support fac. 4 %

Table 2.4: Cost breakdown of a small-sca'e VA (Ref. 2.39)
and a large-scale HA (Ref. 2.40) wind turbine.

Modern blade-manufacturing concepts seem to have reduced the rotor costs already from 43 % to 28 %.
It must be mentioned in this context, that in Ref. 2.39 the conclusion is drawn that above 20 kW a verti-
cal-axis turbine becomes less economic than a horizontal-axis turbine.
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In figure 2.11 a number of energy cost estimates found in the literature is compared. There is indeed
a tendency that large vertical-axis turbines become less economic than large horizontal-axis turbines. The
variance between the several estimations is, however, large.

According to Ref. 2.32, a storage system almost doubles the price of the WECS. Whether the availabil-
ity of a more reqgular fiow of energy is worth such an extra investment is difficult to assess.

2.7 Environmental effects

When the technological and economical problems are solved, some problems remain in the area of envi-

ronmental effects and public acceptance.

Although wind energy {and also solar energy) is a non-polluting kind of energy production in a strict

sense, there are phenomena that might be unacceptable in some situations, e.g.:

- Visual pollution, i.e. a large array of wind turbines might be harmful to an attractive landscape.

- Interference with FM radio and TV transmission due to large rotating metal rotor blades. When fibre
glass and epoxy are used as constructing materials, these problems might be overcome.

- Interference with bird migration routes, which might cause an unacceptable high rate of bird collisions.

- Deterioration of the climate due to a reduction of the.wind velocities. A variation in the weather
system du2 to an increased "surface roughness'' caused by large arrays of wind turbines seems improbable,
but an infiuence on the "micro' climate might be possible.

- Land use. Due to the necessary spacing of the turbines, and due to the safeguarding and access roads, a
substantial area will be needed for a wind turbine array.

The above-mentioned situations may differ from country to country. In a densely populated country as
The Netherlands, visual pollution and iand use mean strong limitations to the possible use of wind power
(Ref. 2.41), whereas these factors mignt be less restrictive in other countries with large uninhabited
areas.
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Fig 21 Ideglized wind shear piof.'es i 1elation 1o a laige-scale wind
turbine
(} = 034, wind from land {(rough)
(t = 012, wind from sea (smooth)
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Fig 2 2 Probability distribution of wind vetocity P(U) and energy dis
tiibution P(E,U) for a location on the Dutch coast at 14 m
above the ground {Ref 2 6)
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3 WIND CONCENTRATORS

List of symbols

A =S /S = diffuser area ratio (-)
e “ref
B number of blades (=)
B = | - nd(l - A"%) = diffuser factor (=)
b span of tip vane (m)
c chord of rotor blade (m)
% = D/}oUzsref = rotor drag coefficient (-)
Cy drag coefficiant of aerofoil section (-)
b a 2 = axi fe -
’ CD ) Daxial/&ou Sret axial force coefficient (-)
u axial ) ) .
CDS = Dsllpu Sef = axial force coefficient on shroud (-)
CL lift coefficient of a three-dimensional wing (-)
Cl lift coefficient of an aerofoil section (~)
= 3 = tei -
S = P/3pV Sref = power coefficient (-)
Cpe = (po-pe)/iou2 = pressure coefficient at diffuser exit (-)
c = P, /3pU3s = 16/27 = theoretical maximum power coefficient according to Betz (-)
Pideal ideal ref
< chord length of shroud (m)
<, chord length of tip vane (m)
D drag force (N)
0 cial axial force (N)
Di induced drag force of three-dimensional wing (N)
} 0, rotor drag or rotor axial force (N)
0, axial force on shroud (N)
k a (pl-pz)/ipui = screen resistance factor (-)
P power (W)
Pideal theoretical maximum power according to Betz (W)
Pe static pressure at diffuser exit (N/m2)
Po undisturbed or free-stream static pressure (N/m2)
Py static pressure in front of actuator disk (N/m2)
P, static pressure behind actuator disk (N/m2)
Py free-stream total pressure (N/m?)
o
Py total pressure behind actuator disk (N/m2)
i
ap = p,-p, = pressure drop over actuator disk (N/m2)
r local radius of rotor blade (m)
R radius of shroud (m)
Ry maximum radius or tip radius of rotor (m)
Se exit area of diffuser (m?)
Sref reference area of the turbine; area swept by the rotor blades (m?)
v wind velocity (m/s)
U = U + U = sum of wind velocity and average self-induced velocity inside shroud (m/s)
v average induced velocity inside shroud (m/s)
j ’ v, velocity in exit area of diffuser (m/s)
A ' u, velocity through actuator disk (m/s)
v induced velocity zomporent in y~direction {(m/s)
w induced velocity component in z-direction (n/s)
r circulation (m2/s)
Ty circulation around rotor blade; bound circulation (m?/s)
FS circulation around shroud or annular wing (m%/s)
. r, circulation around tip vane (m2/s)
T vortex sheet strength at wake boundary (m/s)
The ditto far downstream (m/s)
T vertex sheet strength at shroud (m/s)
)y = QRO/U = tip speed ratio (-)
¥
f = ~ 2 . n2 = dife . . -
ng (po pz)/[io(ur Ue)] diffuser efficiency (-)

o -

JEDUEDE AP UR

-

T M Gat A b

W'm * ,}'ﬁ-E -:?p~ ‘,j',m‘z“"f-f ‘{’ “‘Hi;.‘ﬁ-’.‘ 5 W%Wﬂ,@ m;/bm “WW PO Ty




fOUm——,

D e <

density of air (kg/m3)

R
= (B/Sref) OI °cdra solidity ratio of turbine (-)
angle of wake divergence (degrees)

tilt angle of tip vane (degrees)
angular velocity of the rotor (radians/s)
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3.1 Introduction

1t was recognized by Betz, as early as 1926 (Ref. 3.1), that there was a theoretical upper limit to
the amount of energy that can be extracted from the wind energy flux which is available to a wind turbine
of given dimensions.

His simple theory was amended by taking into account the influence of rotation left behind in the
wake of the wind turbine (e.g. Glauert in Ref, 3.2), but this reduced the attainable amount of wind energy
even further, not to mention the inevitable friction losses (profile drag).

Also due Lo the low energy density of the wind (Sect. 2.2.3), wind turbines of very large diameters
have to be applied to produce a significant amount of energy. In order to get around this limitation, a
number of devices have been proposed, with the purpose to concentrate the windstream to a smaller area
(increased mass flow). The increased energy cutput for a given diameter has then to be weighed against the
cost increase due to the added structural elements.

The purpose of this Chapter is to discuss the various concepts of increasing the power output. It
appeared from Sect. 2.6 that 2 reliable cost analysis is very difficult. Therefore, the cost-effectiveness
of a wind concentrator will not be discussed, but the possible adverse effects of the additional costs on
the feasibility of a wind concentrator concept has to be kept firmly in miwd.

Because of the vital place of the Betz limit in this discussion, his formula will be deduced in full
detail. It must be noticed that the Betz limit applies to horizontal-axis as well as to vertical-axis wind
turbines. Most of the wind concentrator concepts are, however, proposed for horizontal-axis turbines.

From the discussion of the Betz limit it follows that the power output of a wind turbine with a given
diameter may exceed this limit, when it would be possible to increase the mass flow through the turbine.
An increased mass flow can only be realized by a further reduction of the pressure in front of the turbine
and a consequently increased pressure recovery towards the free-stream pressure behind the turbine., By a
number of investigators it was found that the application of a diffuser benind the wind turbine should
have the desired result (Refs 3.3 through 3.8).

The original ideas were concentrated on the conventional diffuser, but it was realized that, in order
to limit the size of such a device, an annular wing or ''shroud' could operate more efficiently, especially
as regards he costs of the structure. In this respect it has to be noticed that a diffuser-type augmentor
has to be put into the wind direction, though a 'bell-mouth' intake in front of the turbine alleviates
this restriction substantially (Refs 3.3 and 3.7).

The diffuser augmentor could be used in combination with a vertical-axis turbine, but, in that case,
the wind-direction independence of the vertical-axis turbine is lost and the additional advantages of a
shrouded horizontal-axis turbine, such as a reduction of tip losses, cannot be obtained.

The tip-vane concept appeared already some years ago {Refs 3.9 and 3.10), but was first published in
the open literature in 1976 (Ref. 3.11).

It seems premature to formulate an opinion about the feasibility of the tip-vaone concept because a
joint Netherlands-USA research program on the subject (Delft Univ. of Techn. and the Aero Yironment Inc.)
has been started in the end ¢f 1976. Therefore, only the basic idea will be discussed in this Chapter. For
a more mathematical approach to the concept, the references mentioned before may be consulted.

Finally, the vortex-augmentor concept will be briefly discussed. The practicability of the concept
seems still questionable and the fluid dynamics processes involved are very complicated.

3.2 The Betz limit

3.2.1 Derivation of the formula

The Betz formula can be derived from three conservation laws, viz. the conservation of energy, axial
momentum and mass, which laws are applied to a one-dimensional flow, in order to simplify the calculation,

The wind turbine is replaced by an "actuator disk" (Fig., 3.1), which means that the velocity U, is
continuous through the rotor area {conservation of mass), but that the static pressure shows a drop from
Py to py (energy absorption by the turbine). It is assumed, that the energy absorption only takes place
when air passes through the actuator disk and the pressure drop is constant across the actuator disk (one-
dimensional flow). This assumption implies that the total pressure in the wake is constant (differing from
the total pressure outside the wake by pl-pz) and the Bernoulli equation can also be applied in the wake.

The pressure difference across the actuator disk gives rise to a drag force

D = (p]-pz)sref . (3.2.1)
Applying the Bernoulli equation in front of and behind the actuator disk leads to
= - v = 2.2
b (p] PZ)Jref iO(U Ue)sref . (3-2-2)

Applying the axial momentum equation to the situation sketched in Fig. 3.1 leads to
D=pUs c(U-U) . (3.2.3)

Comparing the Eqs (3.2.2) and (3.2.3) shows that
U, = 3(usu,) . (3.2.4)
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The velocity through the actuator disk is the arithmetic mean of the velocity far in front and far behind
the actuator disk.

Vihen erergy is absorbed by the turbine, U, is smaller than U, and it follows from Eq. (3.2.4) that
U < U, which means that the mass flow through the turbine oUrsref < pUSre .
The quintessence of the Betz limit is that the absorption of energy from tge wind stream is connected with

a reduction of the mass flow through the turbine, in that way limiting the maximum amount of energy that
could be extracted from the wind.

The power absorbed by the turbine is equal to the energy loss of the mass flow through the turbine,
thus

= 2.1n12
P= ipursre."(U Ue)

(3.2.5)

Substituting Eq. (3.2.4) into Eq. (3.2.5) and using the definition of the power coefficient (Eq. (2.3.2))
leads to

3 . 2(1 -
Cp = P/30USS ¢ = (U /0)2(1 - U /U) (3.2.6)

It is easily seen that the maximum or ideal power coefficient is obtained whun Ur/U = 2/3 and Ue/U = 1/3,
thus

¢, =8 . (3.2.7)

ideal
The main source of the power output reduction is due to a reduced mass flow through the turbine (factor
2/3), whereas the influence of incomplete energy absorption is less, viz. a factor i-(1/3)2 = 8/9.

3.2.2 Discussion

Though the actuator disk suggests a horizontal-axis wind turbine, Eq. (3.2.6) is equally valid for a
vertical-axis turbine (within the restrictions of the assumptions applied).

The rotor drag coefficient Cp can be calculated from the rotor drag (Eq. (3.2.2)), viz.:
- 2 = -
€y = D/3pU%s o = k(v /0) (1 - U /0) (3.2.8)

iigurg)B.Z shows the variation of €p, Cp and U,/U with U./U, calculated from the Eqs (3.2.4), (3.2.6) and
3.2.8).

An increasing retardation of the flow through the actuator disk increases the rotor drag, decreases the
velocity in the far wake, and initially increases the absorbed power.

At U./U = 0.5, the velocity in the far wake becomes zero, and the absorbed power is already beyond
its optimum value. Still lower values of U_/U lead co negative velocities in the far wake, which violates
the continuity equation (mass conservationf in one-dimensional flow.

The simple axial momentum theory cannot cope with U./U < 0.5. In that range,a real horizontal-axis
turbine may operate in the so-called "turbulent wake state' and ''vortex ring state', i.e. a return flow
exists across & part of the actuator disk, and it is clear that one-dimensional flow theory cam be
applied (Refs 3.12 and 3.13, see also Ref. 3.14).

Reference 3.15 suggests Cp = 1.0 = constant in the range 0 ¢ Up/U < 0.5, but in view of the very com~
ptex flow, where a turbine operates in a turbulent wake state, the simple momentum considerations do not
look very convincing (see also Ref. 3.13).

In reference 3.14 it is inferred from helicopter tests that Cp > 1 when Up/U < k. The question remains
also whether modifications in the theory for this part of the operating range of a wind turbine will
yield a modified value for the maximum obtainable power coefficient.

Glauert (Ref. 3.2) includes in his discussion of the horizontal-axis wind turbine the rotation left
behind in the wake (trailing vorticity of the rotor blades, torque and angular momentum). The tangential
velocities due to this rotation, contribute to the kinetic energy left in the wake and decrease the maximum
attainable power coefficient. The inclusion of the tangential velocity components has also a small in-
fluence on the value of U./U at which the optimum Cp is reached (see, however, Appendix €).

Hitter (Ref. 3.12) draws attention to the possibility tha. the strong diverging streamiines at and
behind the actuator disk and also the mixing layer at tha wake bn.ndary might lead to a higher optimum
value of Cp than that obtained froi the simple axial momentum theory,

A large wake divergence might lead to a larger total velocity through the rotor (U./cos ¥ instead of
Uq; Fig. 3.3) and thus to & larger kinetic energy at the rotor, but not to a larger mass flow. The wake
divergence and turbulent mixing might also result in a lower value of Uy, but this is more difficult to
visua;ize. Farther behind the turbine, U is larger than Uy, due to turbulent mixing (wake decay, Sect.
5.3.2). .

Hiitter states that the theoretical optimum of Cp might be increased with 4 to 13 % by wake divergence
and turbulent mixing.




3.3 The diffuser augmentor

3.3.1 Simple diffuser

The gist of diffuser operation can be shown by one-dimensional flow calculations, almost similar to
those leading to the Betz limit.

The oxial momentum equation is not convenient in this case, because the external forces on the dif-
fuser are difficult to estimate. The pressure recovery in the diffuser, defined by the diffuser efficiency
ng, can ve used instead.

It is assumea that energy losses only take place at the turbine (p,-p,) and in the diffuser. It is assumed
that the free-stream static pressure py is present at the diffuser exit. A lower pressure at the diffuser
exit has an important effect on the mass flow, but complicates the demonstration of the principal action
of a diffuser.

The pressure recovery over the diffuser can be calculated from the diffuser efficiency (for notation
see Fig. 3.4)

Po Py = Ny io(Uzr-Uf;,) . 3.3.1)
It follows from mass conservation in incompiessible flow that
Ug = (S, /S IV, =V /A (3.3.2)

with A = diffuser area ratio.
When it is assumed that the inlet flow towards the turbine is friztionless, thus:

.. = 2.y2 -~
Po-Py = ¥ (UZ-0%) -
then the pressure drop over the turbine can be written as
PyPy = 10U7-3oU201 - n (1-A"2)) N
= U201 - B(U /0)?) (3.3.3)
wi th 8 =1-n1-a"2] .

The power absorbed by the turbine is

= - = .12 - 2
P= Ursref(pl p2) 2ol Ursref[I B(Ur/U) 1,

and the power coefficient, defined on the area swept by the turbine blades (Sref)' becomes
Cp = —t— = (U/U) 1 - B(U/U)2] . (3.3.4)
3 r r
3ol sref

For a given diffuser (area ratio A and efficiency nd), i.e. a given value of B, Cp obtains an optimum at a
given vaiuve of Ur/U, viz.:

u/u= (38)7F . (3.3.5)
The corresponding value of U /U follows from Eq. (3.3.2), viz.:

U= ATGe) (3.3.6)
and the optimum power coefficient is

. =2 et . (3.3.7)

An interesting limit is ng =1, i.e. a frictionless diffuser, which corresponds to a value B = 1/A2, In
that case

U /U = A/Y3, thus proportional to the diffuser area ratio,
U,/U = 1//3, thus constant and the optimum power coefficient is
Cp =5 A3 . (3.3.8)
opt.

The ideal turbine without diffuser, discussed in Sect. 3.2.1, shows in the optimum situation an effective
diffusing ratio )

Se/Spef = U/Up =2

which diffusion is also assumed to be frictionless.

When both optimum power coefficients are compared at the same value A = 2, viz. 16/27 = 0.5926 vith
4/3/9 = 0.7698, the frictionless solid-wall diffuser shows a larger power output than the wind turbine
with a so-called "frictionless free-streamline diffusion.

This difference can be explained by considering the momentum equation, which reveals that the solid-wall
diffuser increases the axial drag force, even in case of an inviscid flow (“d = 1), An analogous situation
is discussed in Sect. 3.3.2 (see Fig. 3.10).

Figure 3.5 shows the optimum power coefficient for the turbine-diffuser combination, according to the
simplified theory of Eq. (3.3.7). The deteriorating influence of a low diffuser efficiency is clearly
demonstrated, It must be noted, however, that ng and A are coupled and cannot be freely chosen.
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To visuvalize the relative benefit of the large structure that has to be built around the turbine, the
power output of a turbine without diffuser has been plotted in Fig. 3.5 (dotted line) for the case of a
turbine with a diameter equal to the exit diameter of the diffuser.

Even an ideal diffuser (ng = 1) does not generate a comparable amount of energy. This difference can-
not be nullified by taking the tip losses of the turbin. without diffuser into account.

The pros & cons of a simple diffuser cannot be we jhed objectively without a proper cost analysis,
but this figure shows that a simple diffuser is not a panacea for overcoming structural problems in design-
ing large-scale WECS.

Figure 3.6 shows the increased mass flow due to the diffuser (U./U), together with the velocity at
the diffuser exit (Ue/U). It is clear that the increased mass flow is entirely responsible for the augmen-
tation of the power output.

In wind tunnel experiments on models of wind concentrators, the power absorption is often simulated
by a wire screen. The pressure drop over a screen at the plane of the rotor is
PPy = k ipU% , (3.3.9)
with k = resistance factor of the screen.
The simulated power absorpticn is

P = (pypy) Y.S i J""U?'ksre

ref f
and the corresponding power coefficient
Cp = k(U /0)3 . (3.3.10)

It follows from the Eqs (3.3.10), (3.3.5) and (3.3.7) that the optimum Cp can only be simulated with one
specific screen, viz. with

k=28 . (3.3.11)
Figure 3.7 shows the necessity to use a series of screens in model tests, in order to determine properly
the optimum,

luvestigation of a diffuser in a wind tunnel revealed an aspect of the influence of the external flow
around the diffuser on the internal flow in the diffuser (see e.g. Refs 3.5 and 3.7). The external flow
might cause a static pressure at the diffuser exit p, which is smaller than p,. Denoting the dimensionless
pressure difference at the diffuser exit by

= - 2
Coe = (Pgpe)/d0U%

the power coefficient becomes (instead of Eq. (3.3.4))

Cp = (ur/u)[1+cpe-a(ur/u)2] , (3.3.12)
and the optimum power coefficient
=2 i
cpopt. 3(1+cpe) [(1+Cpe)/381 . (3.3.13)

Figure 3.8 shows power coefficients obtained from wind tunnel experiments on models of diffusers, compared
with values obtained from Eq. (3.3.13). The calculations can only be used as an illustration, because the
values of ng and C,, obtained at the experiments are not known precisely. The experiments of reference
3.7, designated ''with flaps', have been performed with an annular wing (flap) around the diffuser exit, in
order to reduce the static pressure at the diffuser exit. When these resuits are ccmpared with the experi-
mental results "without flaps', the influence of the flaps is shown tc be considerable.

These results can also be interpreted in another way (Refs 3.6, 3.7 and 3.8), viz. that using the
diffuser behind the turbine to boost the ''free-streamliine diffusion' is far more effective than using it
as a plain solid-wall diffuser. Moreover, it is possible to reduce the dimensions of the diffuser in that
way.

When this aspect is elaborated further, it boils down to the long existing idea of a shrouded turbine,
which will be discussed in the next Section.

3.3.2 Shrouded turbine

The concept of a shrouded turbine was originally proposed for a propeller (e.g. propeller of a ship),
but it is also applicable for a wind turbine. It is based upon the increase of the mass flow through the
turbine. An additional advantage is the increased efficiency due to the avoiding of the tip losses, when a
small enough tip clearance can be applied.

The increased mass flow due to the shroud can be visualized by considering the shroud as an annular
wing in axisymmetric flow (Fig. 3.9). The sectional 1ift on the annular wing has to be directed towards
the axis of symmetiy (over-all 1ift zero), and the corresponding circulatory flow around the wing section
of the annular wing induces an increased velocity through the area enclosed by the annular wing (like a
vortex ring).

An annular wing in axisymmetric potential flow does not absorb energy from the flow. !t follows from
the axial momentum equation, that the resultant axial force on the annular wing has to be zero. The only
forces on the annular wing then are the purely radial section 1ift forces (Fig. 3.9).

When an energy-absorbing actuator disk is placed inside this annular wing, the axial momentum is
?ha?ged, which must be equal to a resultant axial force on the turbine (D) and possibly on the shroud

Ds) also.
When assumptions similar to those of Sect. 3.2.1 are used, an expression for the axial momentum can be
given:
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D40 = 0U S, (U-U) (3.3.14)
and for the drag force on the turbine (cf. Eq. (3.2.2))
2.y2

D, = 3p(v Ue)sref . (3.3.15)

This gives an expression for U _ (cf. Eq. (3.2.4))
°s ( )
V= 3(U+v ) + AEREVER 3.3.16
r e p{U Ue Sref

Eq. (3.3.16) shows, that U, reduces to the value of the turbine without shroud, in the case Dg = 0. Al-
though the increased mass flow through the turbine could be calculated from the circulation of the annular
wing (see App. A), an increased power output with a shrouded turbine is only possible (within the range of
applicability of the simple axial momentum theory), when an axial force on the shroud is present,

The power coefficient for the shrouded turbine can be calculated from the Eqs (3.2.5) and (3.3.16)

Cp = 2[1-(u V)] [1+(ue/u)]2+2c05[1+<ue/u)1 , (3.3.17)
with Cp = O /30U%s

O,

f
The optimum CP will be obtained, when

e -1, 203 )}

(U /0) ¢ 5+ 5(143¢, ) (3.3.18)
P s
opt.

The optimum is determined with D /0U2S ¢ = constant.

Figure 3.10 shows Cp and Uy, as a function of U, and the axial force Dg on the shroud. At Ug/U =1,
no energy is absorbed from the wind stream. However, Cp # 0 when D, # 0 in that case. This is caused by
Up » = when Ug » U and Dg # 0 (see Eq. (3.3.16)), which is physically impossible.

These strongly simplified considerations do not offer a basis for calculating a shrouded wing turbine,
but render some insight into the rather large axial forces that have to be created by the shroud, in order
to obtain a significant power augmentation.

The calculation of a shrouded wind turbine is very complicated and will not be discussed here. How-
ever, it seems possible to get some insight into the problems involved, by considering parts of the com-
plete calculation,

In Appendix A, the mass flow increase through an annular wing has been estimated for a wing section
with given circulation. The results described in Appendix A will be summarized below.

Approximating the annular wing by a ring vortex (a kind of lifting line approximation) leads to an
intinite mass flow through the annular wing. The infinity can be circumvented by excluding a ''vortex core
radius' from the calculation of the mass flow, but the choice of such a radius is rather arbitrary,

Distribution of the circulation over a finite chord length results in a finite mass fiow. Also the
distribution of the axial velocity along the radius becomes more constant (an infinitely long cylinder
with a8 constant strength of the vortex sheet induces a constant velocity inside this cylinder).

The mass flow is proportional to the circulation I'; it also depends on the chord/radius-ratio. The
circulation cannot be increased arbitrarily (I « €, c). An increasing chord length increases I' at fixed
Cy, but the mass flow decreases with increasing c/k at fixed I'. This leads to an optimum value of c/R.

The calculation is further complicated by the fact that an annular wing induces an axial velocity
along its own chord, which increases the effectivz velocity, from which the 1ift coefficient has to be
calculated for a given circulation (€ « /0, with U = wind velocity + self-induced velocity).

Figure 3.11 shows the results of the calculations of Appendix A, Though the rumerical results given
in this diagram are not very accurate, it clearly demonstrates the need for attaining high values of C;
(flapped aerofoil sections, Refs 3.7 and 3.8) and rather large values of c/R (from 2 to 6, depending on
C1). The very large values of the mass flow increase calculated at €y ~ & and c/R =~ 4 to 6 correspond to
extreme high values of I'. That still acceptable Cy-values are obtained is due to the very strong self-
induced velocities along the chord, but it can be questioned whether such a situation is realistically
predicted by the approximations used in the calculations (inaccuracies increase at c/R > 2).

This discussion of the shrouded wind turbine will be concluded by sketching a method that gives some
insight into the shroud-turbine interaction,

Figure 3.12 shows an annular wing with an actuator disk, which absorbs energy from the flow and in
that way causes a constant pressure drop Ap across the actuator disk. Behind the disk originates a wake
with a constant but Jower total head, bounded by a vortex sheet (velocity discontinuity) with zero pressure
difference across it. .

For a given shape of the annular wing and a given pressure drop Ap, the exercise consists of deter-
mining the shape of the discontinuity layer and the vortex strength distribution on wing (y.) and discon-
tinuity layer (yp) under the following constraints:

- the normal velocity has to be zero on the wing contour and on the surface of the discontinuity layer;

- the tangent to the discontinuity layer at the trailing edge of the wing must coincide with the bisector
of the tail angle of the profile;

- the pressure difference across the discontinuity layer has to be zero;

- the pressure in the wake at infinity is equal to py, which determines the.constant velocity in the wake
at irfinity

boUZ = gt - sp (3.3.19) j
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and the strength of the vortex sheet at infinity
Ype =V " U (3.3.20)

because the flow at infinity is two-dimensional.

The width of the wake at infinity is determined by the mass flow increase through the annular wing
(unknown value of yg) and the pressure drop Ap and is, therefore, a part of the problem. The existence of
the discontinuity layer depends diiectly on the existence of a pressure drop Ap across the actuator disk
and shows the interaction between shroud and turbire.

Due to the difference in total head in the wake, the above sketched problem i5 not a potential flow
problem, However, it can easily be transformed into one by adding a static pressure equal to Ap in ihe
wake area. The discontinuity surface of the actuator disk disappears, the static pressure in infinity in
the wake is now equal to p, + Ap, and the pressure difference across the surface of discontinuity is no
longer zero but constant and equal to Ap (see Fig. 3.12, hottom).

This second problem can be solved by potential flow methods, in which the shape of the vortex sheet
of the wake boundary is calculated by an iteration procedure. The solution of the original pioblem can be
obtained by subtracting Ap from the static pressure in the wake area and from that on the inside area of
the annular wing up to the location of the actuator disk.

It must be noticed that such a calculation only refers to a strongly simplified model of a shrouded
wind turbine, viz. the representation of the wake of the turbine by a potential flow region enclosed by a
surface of discontinuity.

Considering the results of measurements found in the literature and considering the order of magnitude
calculations of Appendix A, one can conclude that optimum values of the power coefficient of about Cp = 2
can be obtained, but a rather large structure around the wind turbine is needed (c/R > 1).

It can be concluded that in the literature a numter of advantages of a diffuser or shroud has been
mentioned, viz,:
- increased energy output at a given turbine diameter, due to an increased mass flow, a small increase of
the allowable pressure difference across the turbine, and a higher turbine efficiency (less tip losses);
~ less sensitivity of the energy output to yaw;
- lower fluctuating blade loads due to the damping effect of the shroud on the fluctuations of the wind
direction;
- higher turbine RPM due to higher mass flow and a consequently reduced gear-ratio of the gear-box.
A disadvantage is:
- Increase of costs due to the large structure around the turbine which has to be put into the wind direc-
tion. This last point is less restrictive in areas with a trade wind.

3.4 The tip-vane concept

3.4.1 The basic idea

It was discussed in Sect. 3.3.2, that a vortex ring around a wind turbine could increase the mass
flow through the turbine and in that way increases the power output.
This '"vortex ring" could be created by an annular wing, but this leads to a rather large structure around
the turbine, which seems not always practicable.
( A tip)vane, however, is a relatively small lifting surface, attached to the tip of the turbine blade
Fig. 3.13).
Figure 3.13 tries to clarify how tip-vanes can creatz a vortex ring. When the tip vane is replaced by a
horseshoe-vortex, the tip vane, with a 1ift force directed towards the axis, generates a pair of tip vor-
tices with a sense of rotation as indicated in Fig. 3.13. At a certain tip speed ratio A = QRy/U, the
clockwise and counter-clockwise rotating tip vortices originating from different tip vanes coincide and
cancel. The remaining parts of the tip vortices between the tip vanes for.n a vortex ring with such a sense
of rotation, that the mass flow through the turbine increases.

3.4.2 Discussion

That a relatively small tip vane, moving with the turbine blade does the same job as a large fixed
shroud around the turbine can be explained along the following lines. The circulation of the shroud (Tg)
depends on the chord (Cs) and the wind velocity (U), thus

Ty = U cg (neglecting the influence of c/R).

The circulation of the tip vane (T,) depends on the chord (c,) and the relative velocity, which, at high
values of A, is almost equal to 9R,, thus:

l‘v * QRo cv :
The ratio of these two values is proportional to
r /r Q = A
ST @R /0) (e fe) = Me /fc) .
At high values of X, c, can be made much smalier than cg an¢ st?ll result in the same value of T.

The following relation has to be fulfilled (Fig. 3.13), when the respective tip vortices should can-
cel:
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2rR /B = b A or Bb/2nR = Ao,

with B = number of turbine blades.
The ratio of the total tip-vane area and ihe area uf the shroud, at equal values of TI', is proportional
to

-2
Bcvb/(2nR°cs) = (B b/ZnRO)(cv/cs) « )
This area ratio is small at a high value of )\,

A wing with a finite aspect ratio experiences a drag force that is composed of a profile drag (fric-
tion drag) and an induced drag (drag due to the tip vortices). The tip vane is a wing of finite span and,
therefore, experiences also a drag, which reduces the power output. Due to the mutual cancelling of the
tip vortices (Fig. 3.13), the induced drag is strongly reduced (analogous to drag reduction of airplanes
in formation fl.ght). In Ref. 3.9 the possibility to develop a special spanwise loading is considered,
which gives the largest induced drag reduction due to vortex cancellation,

The power output reduction due to a drag coeificient (Cy) of the tip vane is easily calculated, viz.:

aCp = -in(AU)zcdcvaoﬂ (ipURSref) = -Cd(Bcvb/Sref)A3 . (3.4.1)

This clearly illustrates the necessity to choose the tip-vane area as small as possible and to develop
special low-drag aerofoils. The power loss increases with the third power of the tip-speed ratio, which 1s
especially unfavourable, because the mass flow increase of the tip vanes is connected with a high tip-
speed ratio.

It was pointed out in Sect. 3.3.2 that a mass flow increase through the turbine requires an extra
axial force, which, in case of tip vanes, has to be an axial force on the tip vanes. This axial force can
be generated by tilting the tip vané (see Fig. 3.14). This tilt angle is also necessary to let the tip
vortices interfcre in a favourable way, because of the expanding streamtubes behind the turbine,

The axial force coefficient, which can be compared with the axial force coefficient Cpg of Fig. 3.10
(see also Eq. (3.3.17)), can be calculated for the tip vanes from

c /Qipuzsref) = 1Bo(A)2¢ bC, sin y/(1U2S ) = €, sin v(Be b/s_ 2 . (3.4.2)

D = Daxial

axial
The axial force is connected with the mass flow increase through the turbine and, therefore, with the
power increase (Fig. 3.10), and increases with the tip-speed ratio squared, the sine of the tilt-angle,
the lift coefficient, and the tip-vane area. In view of the power loss (Eq. (3.4.1)), the tip-vane area
has to be as small as possible, and it follows from Eq. (3.4.2) that the lift coefficient has to be as
high as possible (special low-drag-high-1ift aerofoils; Liebeck sections) in order to attain sufficient
mass flow increase. The velocity through the turbine can now be calculated from Eq. (3.3.16):

U0 = 304U, /0] + 3C, _|/u-<ue/u>1 , (3.4.3)
axia
and the corresponding power coefficient can be calculated from Eq. (3.3.17):
Cp = $[1-(U /0)] [1+(u /v))% + icbaxiall1+(ue/u)1 . (3.4.4)

The optimum value of Cp at a fixed value of Cpaxia) 15 attained at a special value of Ug/U (cf. Eq.

(3.3.18)):

(Ue/U)CP = - % + %[1 + 2y

]i ) (3.4.5)
axial
opt.
This optimum differs from the one found in Ref. 3.9, because in that case, the velocity increase is as-
sumed to be indeperdent of U./U, whereas in Eq. (3.4.3) the velocity increase depends on Ue/U, but cDaxial
is kept constant.lln Ref. 3.9 optimum values of Ug/U < = are shown, whereas Eq. (3.4.,5) shows optimum
values of Ug/U >

It must be noticed that cDaxial is a function of ¥ (Eq. (3.4.2)) and, because of the yet unknown rela-
tion between ¢ and Ue/U, Cp, ;.| is a function of Ug/U, i.e. the optimum of Eq. (3.4.5) is not an ab-
solute optimum. Furthermore) it is implicitly assumed, that the tip vane induces a constant velocity
across the rotor area, which is certainly not true,

The interaction between tip vane and energy-absorbing turbine is inciuded in Eq. (3.3.4) through the
tilt angle ¢ implicit in CDaxiaI' This tilt angle has to be equal to the slope of the streamlines in the
Eig region of ;he turbine blades. This slope can only be calculated from vortex wake calculations
cf. Fig. 3.12).

The optimum power output of an ideal wind turbine with tip vanes with a total area equal to 10 % of
the turbine reference area and a lift coefficient C; = 2 is given in Fig. 3.15 as a function of the tilt
angle and the tip-speed ratio. Also the influence of the profile drag of the tipe vane (C4q = 0.01) has
been calculated from Eq. (3.4.1). The induced drag of the tip vanes is assumed to be zero.

The figure shows that already moderate tilt angles give an appreciable increase of the power output.
It is also clear that the turbine has to be designed for a high cip~speed ratio to attain sufficient power
increase from the tip vanes. Because Ug/U has to be smaller than 1 (otherwise no energy has been extracted
from the flow), coaxial has to be smaller than 4, which is easily observed from Eq. (3.4.5).

The calculations of the Refs 3.9 through 3.11 show rather large tip vanes, viz. a total vane area of
the same order of magnitude as the rotor blade area of a low-solidity turbine (which could obtain the high

A values) and a span of the tip vane equal to half the span of the turbine blade has been assumed in the
calculations.

tn Ref. 3.16 incidentally the T-inducer (tip-vane as discussed above) and the L-inducer are mentioned. The
latter is supposed to have no induced drag at all. It will be shown that this assertion is not completely
correct. It also brings about an interference effect between tip vane and turbine blade, which has to be




studied carefully in developing the tip-vane concept.

Figure 3.16 shows very schematicaily the vortex system in the tip region of a turbine blade without
inducer and with a T- and L-inducer. For reasons of simplicity, the tip vane is assumed to act like a per-
fect end-piate, i.e. the circulation of the turbine blade Iy, is completely carried over tc the tip vane.
Comparison with Fig. 3.13 shows that the vortex cancellation of the tip-vane contribution to the t ailing
vorticity Ty is not altered in case of an L-inducer. The situation sketched in Ref. 3.16 is obtained in
case Ty, = 0. There is a downward lift force on the L-inducer (due to I'y), but the remaining tip vortex
induces only velocities opposite to the wind velocity, and no mass flew increase is generated.

Figure 3.16 also shows the antisymmetric 1ift distribution superimposed on the 1ift distribution of
the tip vane in case of a T-inducer, caused by the interference with the turbine blade. When the tip vane

is not a perfect end-plate, the tip vortex of the turbine blade complicates the vortex system, but basi-
cally does not alter the situation.

3.5 Vortex augmentor concepts

Several proposed wind concentrator concepts are based upon the energy-concentrating effect of tip
vortices or leading-edge vortices of wings {Refs 3.17 through 3.20).

The different proposals have in common tnat a wing (rectangular or delta) is placed at an angle of
attack to the wind, in that way generating a lift force on the wing. The wing planform is chosen such,
that most of the trailing vorticity is concentrated in the tip vortex (rectangular wing) or the leading-
edge vortex (delta wing). The axis of the energy-absorbing turbine coincides with the vortex core.

The combination of wing and turbine has to be turned into the wind direction. An example of such a

proposal is sketched in Fig. 3.17. Ref. 3.20 proposes a half-model of a rectangular wing placed vertically
and the turbine attached to the wing at some distance behind the tip.

There is a connection between the "'kinetic' energy of the tip vortex and the "induced" drag D; of the
wing. Usually, drag is connected with a loss of energy of the flow, but the induced drag has a different
origin, which is not connected with a loss of flow energy.

In a potential flow model, a vortex sheet is left behind a lifting wing. Far downstream, in the so-
called Trerftz-plane, the vortex sheet only induces velocity components perpendicular to the undisturbed
velocity U, viz. v and w (in y- and z~direction). The bound vorticity on the wing is so far upstream of
the Trefftz-plane that it does not induce any velocity components in the Trefftz-plane and the velocity in
the x-direction is equal to the undisturbed velocity U.

Because no energy can be lost in a stationary potential flow (see App. B), the equation of Bernoulli
shows, that the vortex sheet induces a static pressure déficit in the Trefftz-plane, viz. (with
po = undisturbed static pressure)

P=p, = ~3p(vZ+u?) . (3.5.1)
Applying the axial momentum equation gives an expression for the induced drag:
+ o + o
0 = - /I (p-p)dydz = 3o [f (v?+w?)dydz . (3.5.2)
Trefftz-
plane

Close behind the wing, the velocity components v and w induced by the vortex sheet are one half of the
values induced in the Trefftz-plane, but the bound vortex induces extra w-components.

In a way similor to the diffuser, the vortex sheet also creates kinetic energy at the expense of the
static pressure, but the induced velocity components are perpendicular to the main stream and do not in-
crease the mass flow through the turbine.

The kinetic energy of a vortex sheet is spread over still a large area. However, due to boundary
layer effects on the wing and due to instability of the vortex sheet behind the wing, a pair of tip vor-
tices are formed which contain already 60 to 80 % of the total trailing vorticity at a small distance

behind the wing. It is this rolling-up of the vortex sheet into tip .vortices which also concentrates the
kinetic energy into a smaller area.

An objection to the tip vortex concept is that boundary layer material is sucked into the vortex
core, which decreases the total pressure in the vortex core and thus reduces the energy content of the
flow through the turbine. In a leading-edge vortex, the same might take place, but in this case the effect
may be compensated by a large axial velocity in the vortex core (see Refs 3.17 and 3.18).

Loth (Ref. 3.20) estimates for a rectangu ar half-wing with an area of 9 times the rator area (Spef),
a rotor diameter of 0.6 times the wing chord an® a lift coefficient of the wing £y =~ 4(!) and
that the kinetic energy flowing through the ro. r could be three times 3pU3S op, which is the energy flux
without concentrator. Such an estimate direct Iy reveals the weakness of such a type of concentrator,

When a rotor solidity o = 0.05 is assumed, the above estimate means a stationary wing surface equal
to 9/0.05 = 180 times the rotor blade areu. The same amount of energy could be obtained with a free turbine
having a v3 times larger diameter, which means a three times larger rotor blade area.

The trade-off between a three times larger rotor blade area (to obtain the same increase in power out-
put) or a 180 times larger stationary winy area, which has to be turned into the wind direction and which

has to withstand the aerodynamic locads of a storm, is very likely to turn out in favour of the free tur-
bine.

There are more disadvantages connected with the wing-generated vortex augmentors, viz. the very com-
plex oncoming flow to the turbine and the large load fluctuations when the tip vortex is displaced with
respect to the turbine axis during a lateral gust.

Moreover, Loth (Ref. 3.21) discusses the change in static pressure déficit in the vortex, when a part
of the rotational energy is absorbed by the turbine and the corresponding limitations in energy-absorbing
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capacity of the system. Also the question could be raised whether the axial adverse pressure gradient
generated by the energy absorbing turbine might induce vortex bursting, with the corresponding adverse
effect on the power output. J
Ref. 3.22 suggests to use the low pressure in a vortex core to suck air through the turbine. The
\ vortex or '"tornado'' is generated by the wind flowing through a huge tower with vertical slots (which have
to be opened or closed, depending on the wind direction), aud the vortex is assumed to be further ampli-
fied by thermal effects.
Also in this case, the trade-off between the costs of the structure of the tower with the large
movable '"Venetian blinds' and the costs of a free turbine with an equal power output is unlikely to be in
favour of the "tornado''~-type of concentrator. Moreover, sucking air close to the ground surface seems an
extra disadvantage, because of the loss of primary wind energy, a flaw that was also contained in the
design of the Enfield-Andreau turbine (see Fig. 4.1),
3
L. 3.6 Concluding remarks
There are several other proposals for increasing the wind energy flux through the turbine disk than :
those discussed in the preceding sections, e.g. ideas based on the increased velocity near large buildings 1
(Ref. 3.20), or based on the increased velocity due to irregularitries in the earth surface (hills, ridges).
These proposals are too dependent on local circumstances to become generally applicable.
It seems possible indeed to augment the power output of a wind turbine of a given diameter. However,
in most cases the additional structure is so extensive (except possibly the tip-vane concept) and has to '
be put into the wind direction (except possibly diffuser concepts in trade-wind regions), that it is still ,
questionable whethar the increased costs are compensated by the increased power output.
The tip-vane concept seems to be the most promising, because the vanes are attached to the blades and
the additional structure possibly needs not be large with respect to the turbine blade area. There are
several aspects, however, which have to be studied further before the feasibiliiy of this concept can be
shown unequivocally.
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Fig 3.1 Stream tube containing the actuator disk with area S;ef and
control surfaces at a large distance from the turbine (actuator disk)
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L THEORY OF WIND DRIVEN TURBINES

List of symbols
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- g'cl cos 0/(h sin? 0) = factor in Eq. (4.4.34) and Eq. (h.4.44) (-)

amplitude of vertical displacement in Eq. (4.3.2) (m)

axial induction factor (-)

tahgential induction factor (-)

number of rotor blades (~)

location of axis of rotation in Eq. (4.3.3) (m)

wing span in Sect. 4.3.2 (m)

= cos 6{cos 6 - X sin 0) = factor in Eq. {(4.4.47) (-)

chord length of rotor blade (m)

drag coefficient of three-dimensional body, e.g. in Eq. (4.2.2) (-)

s D/(ipUzsref) = rotor drag coefficient (-)
drag coefficient of aerofoil section (-)

minimum profile drag coefficient (-)

profile drag coefficient taken as a constant at the low-angle-of-attack approximation (-)
blade chord at hub radius (m)

1ift coefficient of flutter machine (-)

1ift coefficient of aerofoil section (-)

section 1ift coeffirient at XOpt (=)

maximum 1ift coefficient (-)

= 3C,/3a = slope of 1ift curve (degree™! or radian”!)

3C,/3a = slope of lift curve (degree™! or radian”l)

BCL/BG = 1ift increase due to flap deflection in Eq. (4.3.11) (radian™1)

= pitching moment/{}pU%¢2) = pitching-moment coefficient of aerofoil section in Eq.
(4.3.5) (-)
= mass flow through rotor/(pU2R) = mass-flow coefficient in Fig. 4.39 (-)

zero~1ift pitching-moment coefficient in Eq. (4.5.24) (-)

= P/(ioU3Sref) = power coefficient (-j

= P/{}pU3Bcb) = power coefficient of a B-bladed flutter machine (-)

= P/(4pU32RH) = power coefficient of a two-dimensional turbine with a vertical axis (-)
optimum power coefficient (-)

= Q/(ipUZSrefRo) = Cp/A = torque coefficient (-)

chord length of flap in Eq. (4.3.15) (m)

tangential force coefficient (-)

tangential force coefficient averaged over a complete revolution (-)
chord length at the tip (m)

= 2R = rotor diameter {m)

drag force or axial force (N)

distance between vortex sheets in Fig. 4.13 (m)

diameter of shaft in Fig. 4.21 (m)

element of vortex sheet in t-direction in Eq. (4.5.63) (m)

element of vortex sheet in o-direction in Eq. (4.5.63) (m)

tip correction factor due to Prandtl (-)

real part of the Theodorsen function in Eq. (4.5.29) (-)

tip correction factor as a function of ¢ in Eq. (4.4.36) (-)
higher-order tip correction factors in the Eqs (4.4.40 and 4.4.46) (-)
imaginary part of the Theodorsen function in Eq. (4.5.29) (-)

height of rotor (m)

= p + 3pU2 = constant of Bernoulli (N/m?)

local blade setting angle (degrees)

1
= (-1)% = imaginary unit (-)
= U/nd = advance ratio of propeiler (-)
Bessel function of the first kind in Eq. (4.5.29) (-)

= wc/U = reduced frequency in Eq. (4.3.6) (-)

= }c/R = reduced frequency in Eq. (4.5.28) (-)

tip correction factor due to Goldstein or Lock and Yeatman (-)

moment averaged over one revolution of a vertical-axis turbine in Eq. (4.2.4) (Nm)
normal force or axial force (N)

-1




T kg

n number of revolutions per second in Fig. 4.30 (s7}) i
p power (W)
p static pressure (N/m2)
Q torque of rotor (Nm)
R radius of two-dimensional vertical-axis turbine (m) !
r =z /c= dimensionless amplitude of vertical displacement in Eq. (4.2.6) (-) .o
r local radius (m)
Re{ } real part of { } (-)
Re = U_ c/v = Reynolds number referred to chord length (-)
"hub hub radius (m)
R, maximum radius or tip radius (m)
?t vector in t-direction in Eq. (4.5.58) (m/s)
[ vector in 0-direction in Eq. (4.5.58) (m/radian) *
s arc length along troposkien (m) \
s = x /¢ = dimensionless position of the axis of rotation in Eq. (4.3.6) (-) ‘
S af reference arca of the turbine; area swept by the rotor (m?)
T tangential force (N}
t time (s) 2
u wind velocity (m/s) !
u axial induced velocity in Eq. (4.5.14) (m/s) Ly
U, resultant axial velocity (m/s)
uy averaged axial induced velocity in Eq. (4.5.18) (m/s)
v, velocity component normal to blade element in Eq. (4.5.49) (m/s)
Vol total velocity relative to blade element (m/s)
Uian resultant tangential velocity (m/s)
v velocity component in y-direction (m/s)
Vg gust velocity in Sect. 4.5.5 (m/s)
v radial velocity component in Eq. (4.5.19) (m/s)
v, azimuthal velocity component in Eq. (4.5.20) (m/s)
W, total induced veloc'ty it the plane of the rotor in Fig. 4.9 (m/s)
X = Qr/U = Ar/R, = local .ip-speed ratio (-)
x co-ordinate in witd di ection (m) \
x distance along blaa~ clord (m)
Xhub = Qr, /U = speed ra i, at the hub radius (-) ‘
%o location of the axis of rotation in Eq. (4.3.3) (m)
s location of the point of attachment in Eq. (4.5.23) \») i
Ax displacement of vortex sheet during one revolution (m)
Y horizontal co-ordinate perpendicular to the wind; lateral co-ordinate (m)
y = A/(1-a) = variable used in Sect. 4.5.2 ()
2z vertical co-ordinate (m)
2 amplitude of vertical displacement in Eq. (4.3.1) (m) ‘
o angle of attack (degrees or radians) ;
a angle of attack, determining the lift in a curved flow in Eq. (4.5.21) (degrees) l
) 1
“90* * 50° ‘
«'100 angle of attack at leading edge, mid chord and trailing edge in the Eqs (4.5.21) and (4.5.22)
(radians) |
nax angle of attack at maximum 1ift or maximum angle of attack during one revolution of a vertical-
axis turbine (degrees) |
r circulation (m%/s) !
v strength of vortex sheet (m/s)
Y slope of a troposkien blade shape (radians or degrees) |
rb circulation of bound vorticity (m?/s) !
Ty strength of bound vortex sheet (m/s) %
r, circulation around blade number i in Sect. 4.5.3 (m%/s) !
rio maximum circulation during a revolution of a blade number i in Sect. 4.5.3 (m2/s) %
ro =8 rio = maximum circulation of B blades during one revolution (m2/s)
Yo = ro/ZnR = (o/Im)CI (1-a)U = maximum strength of bound vortex sheet (m/s)
a }
r, circulation around B blades at radius r (m2/s) f
+
r, circulation around one blade with B » » at radius r (m2/s)
g strength of shed vortex sheet (m/s)
e strength of trailing vortex sheet (m/s)
) r, total circulation at radius r for B » « (m%/s)
$ flap defiection in Eq. (4.3.11) (radians)
H ‘r
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s angle between U, and the normal to the radius in Eq. (4.5.44) (degrees)
60 amplitude of harmonic flap deflection (radians)
n aerodynamic efficiency of turbine in Sect. h.4.6 (-)
n = H/2R = height-to-diameter ratio of rotor (-)
0 angle between wind velocity and chord in Eq. (4.3.1) (radians)
] angle between U ., and plane of rotation for a horizontal-axis turbine (degrees)
] angle in cylindrical or spherical co-ordinates (degrees)
% amplitude of harmonically varying 0 (radians)
Sp blade pitch angle in the Figs 4.2 and 4.48 (degrees)
0, value of 0 at the tip of the rotor blade {degrees)
A = QR/U or = QR /U = tip-speed ratio of a two-dimensional vertical-axis turbine or of a three-

A . o . : ; - \

dimensional®vertical-axis and horizontai-axis turbine ()
v Kinematic viscosity of air (m%/s)
p density of air (kg/m3)
g = B¢c/R or Bc/R° = solidity ratio of a two-dimensicnal or a three-dimensinnal vertical-axis
turbine (=)
R
o
o = (B/sref) | cdr = solidity ratio of a horizontai-axis turbine (-)
r
hub

a' = Be/2nr = local solidity ratio of 8 horizontal-axis turbine (-)
b3 ptase angle in Eq. (4.3.1) (radians)
¢ azimuth angle (degrees)
& = - ¢ = negative phase angle in Eq. (4.3.9) (radians)
¢ (k) = (J,-id,) (F+i6) + iJ; = Sears function (-)
¥ phase angle in Eq. (4.3.2) (radians)
Q angular velocity of rotor (radians/s)
® sngular frequency (s71)
w = XU = cur! U = rotation (s7})
w, rotation of shed vorticity (s7!)
0, t-component of rotation in Sect. 4.5.7.3 (s71)
W00, x-, y- and z-component of rotation in the Eqs (4.5.65) through (4.5.67) (s7!)
wg o-component of rotation in Sect. 4.5.7.3 (s71)
”~
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4.1 Introductory remarks

The very purpose of a wind turbine is to extract energy from the air flow and then convert it into
mechanical energy. The performance calculations of wind turbines are mostly based upon a steady flow, in
which the influence of the turbulence of the atmospheric boundary layer (unsteadiness, gusts) is neglected.

The loss of energy in a steady incompressible flow, is aerodynamically indicated by a decrease of the

b so~called Bernoulli constant H, i.c. a decrease of
Ha=p+dpU2
where p = static pressure {(N/mn%),

p = air density (kg/m3),
‘ U = velocity of the air (m/s).
: The way in which such a decreasc could be accomplished is discussed in Appendix B.
Viscous dissipation (transformation of flow energy into heat), e.g. by putting a screen perpendicular
to the flow {cf. Sect. 3.3.1, Eq. (3.3.10)), cannot be regarded as a useful form of energy extraction.
In a steady flow, the most powerful aerodynamic force (1ift) cannot extract energy from the flow,
because the 'ift is always perpendicular to the fiow. It would be possible to drive a turbine with pure
L drag forces, but a large part of the extracted energy would be dissipated into heat, which results in a
low efficiency. It is shown in Appendix B that the utilization of 1ift forces with the related small
viscous drag force is only possible, when the flow through the turbine is unsteady.

e

In Appendix B it has also been discussed that, although the flow through the turbine is unsteady in
an absolute (fixed-to-earth) reference frame, a steady flow could be obtained in the case of a horizontal-
axis turbine when the reference frame is fixed to the rotor blades. An energy lass in the flow can be
shown to occur in that case after modification of the equations of motion {adding centrifugal and Coriolis
forces). This brings about a fundamental difference in describing the flow through horizontal-axis
(propeller type) and vertical-axis (or cross-wind type) wind turbines.

A classification of wind turbines into devices utilizing drag or lift forces and into horizontal-axis
or vertical-axis turbines can be made from zerodynamic considerations. However, a large number of mechan-
ical devices has been inventeu, which can be cailed wind turbines, but cannot be classified according to
the above-mentioned scheme. Also, the nomenclature is not unequivocal, e.g. by a horizontal-axis turbine
is usually meant a turbine with its rotor-axis parallel to the wind. In case of a turbine with its axis
horizontal, but perpendicular to the wind, the name cross-wind turbine is sometimes used, but a vertical-
axis turbine can also be considered as a cross-wind turbine.

The discussion of the theory of wind-driven turbines will be limited to some types. The choice of
these types will be discussed from examples of turbines, given in the figures 4.1 through 4.4,

Figure 4.1 shows some examples of horizontal-axis turbines with the rotor-axis parallel to the wind
direction. The discussion of the theory will be limited to the low-solidity (high-angular-velocity) type,
because this type is most promising for large-scale applications. The multi-bladed type with its low
angular velocity and correspondingly high torque is mostly used for rural applications. The high mutual
interference between the blades of a multi-bladed rotor might be a challenge to the theorist, but an
accurate calculation is hardly worth the trouble, because of the kind of application for such a type of
turbine,

The Enfield-Andreau turbine and the tip turbines shown at the bottom of figure 4.1 have been invented
to by-pass the difficulty to step up the low RPM of a large wind turbine to the high RPM needed for an
electric generator. The first one, which has actually been built, uses the hollow rotor blades as a cen=
trifugal pump, sucking air through the hollow tower, which drives a small turbine in the lower part of the
tower, The efficiency proved to be low and this type will not be discussed further. The second one uses
the high tip speed of a low-solidity wind turbine to drive small turbines. The additional problems of this
concept (blade loading, gyroscopic effects on the small turbine) are much larger than the original gear-
ing problem and, thus, this type will also be left out here.

Figure 4.2 shows two types of vertical-axis wind turbines. The Darrieus turbine, with its blades
L curved to alleviate the bending moments due to centrifugal forces (cf. Fig. 2.6 and Appendix D), is an
intensively studied concept nowadays. The main advantage is the cheap blade construction, apart from the
more common advantage of insensitivity to wind direction (no yaw control, contrary to the horizontal-axis
turbine). The drum-type turbine is theoretically interesting, because the fictitious infinitely high tur-
bine is a two-dimensional analogue of the Darrieus turbine. The drum-type has also the possibility to vary
the blade setting angle during a revolution (e.q. RPM control), but this destroys the insensitivity to

wind direction. Therefore, the drum-type will be discussed only as a two-dimensional analogue of the
Darrieus wind turbine.

Al

The types discussed above are primarily driven by a component of the lift force. Figure 4.3 shows
\ scme types that are primarily driven by 8 drag force. They are listed as vertical-axis turbinez, but will
operate also as a horizontal-axis turbine with their axes perpendicular to the wind (cross-wind types). In
that case, however, the insensitivity to the wind direction is lost. The cup turbine operates due to a
drag difference between the concave and corvex side of the cup. It is actually used only as a wind velocity
meter and will not be discussed further. The example of the simple articulated panemone is given, because
it offers an occasion, by means of a rough performance estimate, to show the low tin-speed ratio and low
power coefficient inherent to all drag-driven turbines. In order to .void the flapping blades of an artic-
ulated panemone, it is possible to shield one half of a fixed-bladed rotor from the wind stream, but in
that case the shield has to be rotated when the wind direction changes. The Savonius turbine is, strictly
speaking, not a drag~driven rotor. The rotor can be considered as a wing section with a S-shaped mean
line, rotating about its mid chord. At zero angle of attack, the S-shaped mean line causes a torque (zero-
1ift pitching moment). At small angles of attack, the iift force, acting at the quarter chord point,
causes a torque (pitching moment about mid chord), whereas <t larger angles of attack the torque is due to
the drag difference between the convex and concave side of the rotor., Due to its simple and rugged con-
struction and because of its performance (high torque, not too low power coefficient), the Savonius tur-
bine is often seen in small-scale applications.

.
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Figure 4.4 shows two examples of horizontal-axis cross-wind turbines. Both of them could be operated
as vertical~axis turbines. This would be more logical for the drum-type (cf. Fig. 4.2), because a yaw
mechanism is avoided, but a flutter machine with a vertical axis has still to be put into the wind direc-
tion. The cyclic vertical motion of the flutter machine could be attractive for driving a water pump.
Whether this concept is feasible depends on the invention of a elegant solution for the mechanism that has

h to produce the combined vertical and pitching motions of the wing.

In the next Sections, the performance of the simple articulated panemone and the flutter machine will
be discussed briefly. The theory of the horizontal-axis (particularly the low-solidity one) and the ver-
tical-axis (particularly the Darrieus type) wind turbines will be discussed more extensively.

. Comparison between theory and experiment is hampered by a lack of reliable experimental data, espe-
| cially in case of the horizontal-axis turbine. For the vertical-axis Darrieus turbine, rather complete
sets of experimental results and comparison with theor:ztical calculations are available,

k.2 Drag-driven turbine

It is possible to drive a turbine by pure drag forces. The construction of the turbine then has to be
such, that elements of the turbine moving in wind direction have a high resistance, and elements moving
opposite to the wind have a low resistance. This can be realized by a number of different mechanisms, but
the mechanism sketched in Fig. 4.5 offers the possibility of a simple estimation of its performance. The
estimation, although rather crude, is useful because it leads to an overestimation of the power coeffi-
cients, when certain assumptions are made,

The following assumptions are made in the calculation:

1: At the lower half of the turbine, the blades are free from the stops, and the blades (hinged at the
nose) direct themselve into the relative wind direction, which is not necessarily parallel to the wind
direction U as drawn in Fig. 4.5. When the blades are frece from their stops, the drag is neglected and
the blades do not contribute to the torque M.

2: At the upper half of the turbine, the blades are pressed against the stops, if

Jusingl 2 9R or |sin | 2 aR/U =2 ; (4.2.1)

otherwise the blades are free from the stops and do not contribute to the torque M (see item 1), This
leads to the conclusion, that a positive contribution to the torque is only possible if XA < ¥,

3: The velocity through the rotor is assumed to be equal to the wind velocity U. Also the mutual inter-
ference between the blades (e.g. one blade entering the wake of a preceding blade) is neglected. This
means that the solidity of the rotor

o = Be/R {with B = number of blades) (4.2.2)

: is assumed to be low.
L: The normal force on the blade (N) depends on the component of the relative velocity normal to the tlade
chord

U sin ¢] - ar

and the normal force can be calculated from the corresponding drag coefficient for a flat plate normal
to the flow, thus

N = 3o(u sin o] - QR)2CcH
= $oV2CpcH(|sin o| - V%, (4.2.3)

with  Cp= drag coefficient (CD s 2),
¢ = chord of the blade,
H = height of the rotor.
The average torque of one blade during one revolution of the rotor can be calculated from Eq. (4.2.3),
with the condition of Eq. (4.2.1), and with a = |arc sin 1|

L

- 2 2
M=-2—1;aj' N R d¢

= %; oUZCDcHR [(leAQ)(% - % arc sin A) - % A cos (arc sin A)]

= ;—" pUZCpchR F(2) . (4.2.4)
The generated power can be calculated for a B-bladed rotor from
P=BHQ ,
and the corresponding power coefficient from
Cp = P/4pUS2RH = (0/2n) CHF(A) . (4.2.5)

Figure 4.6 shows the power coefficient as a function of the tip-speed ratio, estimated with Eq. (4.2.5),
in which C; = 2 and rather high values of the solidity ratio are inserted. Notwithstanding the high solid-
ity ratio chosen, the power coefficients obtained are Jow, and the optimum Cp occurs at A ~ 0.27.

The torque coefficient Cq (see Eq. (2.3.6)) is obtained from

€q = Cp/r = (o/20)CiF(R) . (4.2.6)

o
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The torque is maximum at A = 0, viz.:
g
CQ =3 CD ,

and tends to zero when A + 1. The panemone is self-starting.
L.3 Flutter machine, used as a wind turbine

4.3.1 General remarks

It is known, that an elastic structure, e.g. the wing of an aircraft or the rotor-blade of a wind
turbine, might vibrate in such a vibration mode that energy is transferred from the airflow to the vi-
prating structure (flutter). In case of insufficient mechanical damping, the vibration may become so
violent, that the structure disintegrates.

The suspending of a rectangular wing in such a way, that a certain combination of vertical displace-
ments and rotations about an axis parallel to the wing span can be realized (cf. Fig. 4.4), might create a
possibility to extract energy from the flow and convert it into mechanical energy.

Energy considerations, including unsteady aerodynamic effects, were published for the first time in
Ref. 4.1. In the following Sections, estimates will be made of the amount of energy that can be extracted
from an airflow by a flutter machine, by applying quasi-steady aerodynamics. Possible mechanical solutions

for the translational and rotational motions and for the conversion of the motion of the wing into mechan-
ical energy will not be discussed.

The only purpose of the discussion is to show whether there is a potential feasibility to use the
flutter machine as a wind energy converter.

4.3.2 Energy extracted by a plain aerofoil

The aerofoil can rotate about an axis at a distance x_ behind the nose of the section (Fig. 4.7). The
axis can be displaced vertically (z). The displacements and the rotations vary harmonically with a phase
shift ¢:

6 = 00 sin wt,
z=2z, sin (wt+o) . (4.3.1)

If the axis of rotation would be located at a distance b' behind the nose instead of at the distance xg,
the same motion of the aerofoil can be described by using different values of z, and ¢, viz, a and ¢
(assuming small rotations), thus:
8 = eo sin wt,
z = a sin (wt+y), (4.3.2)
with the conditions
2 = 52 -h! -h1)2p2
a 22 + 2zo(x° b )00 cos ¢ + (xo b') 62
z_ sin ¢
2 (4.3.3)
— . .3.
z cos ¢ + (xo b )eo

tgy =

At low reduced frequency, i.e.
k = wc/U << 1 ,

lift and pitching moment can be calculated in a quasi-steady way, i.e. they can be calculated from the
instantaneous values of velocities and angles.

The usual approximation is applied, in which the aerofoil is replaced by a discrete vortex at ic, and

the relative velocity at 3¢, normal to the local mean line, has to be zero (see e.g. Ref. 4.2). This leads
to

e =0 [o-gE gl xo)j—i] : (4.3.4)
«
’ C::-‘"C.-(-’-{.g.c(:(g-)‘_) (1’35)
m B0 dt L'c * *e

When Eq. (4.3.1) is substituted into the Eqs (4.3.4) and (4.3.5), and when the abbreviations
k = wc/U, r= zo/c, and s = xo/c

are used, the following results are obtained

CL = CLa [0° sin wt - kr cos (wt+d) + k(&-s)eo cos wt] , (4.3.6)

= - % ko, cos wt + (s-k)C . (4.3.7)

The extracted power P equals the energy during one period, times w/2n. The power is made dimensionless by
means of

e el i o =
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3pU3chb (b = wing span) ,

which leads to

2n/w
p w c. do . 1. dz
v T o [ucm Fr T dt]d‘

The integral is evaluated for s = }. Other locations of tne axis of rotation can be considered, using
different values of r and ¢ (see the Eqs (4.3.2) and (4.3.3)). For s = §, the following result is obtained:

P
3pu3cb

The maximum value of the 1ift slope is C__ & 2n (two-dimensional); therefore, the first term in Eq. (4.3.8)
will be zero or small and negative. The second term can only be positive, when ¢ is negative. When it is
assumed that cLu =2n and ¢ = -¢], the result s

= [(keo)2/161 (icL(x -n) - ic kr(oo sin ¢ + kr) . (4.3.8)

[+ ]

P
3oU3ch

The optimum of this function can be obtained from the requirement that the first and second partial
derivatives are zero, viz,:

= nkr(Oo sin ¢, - kr) = X . (4.3.9)

93X .

i n(oo sin ¢, 2kr) = 0

This gives the stationary points (n/2, 85/2) and (0, 0). The values of X in these points are
X(n/2, 0 /2) = (n/L)62 or X(0, 0) =0

the last value being not of physical interest here.

Jecause both

(aZX/a¢ﬁ) >0 and (aZX/aer\kr >0

4y = /2 = 8,/2
it is a proper maximum,

According to the quasi-steady theory (applicable when k << 1), the maximum extracted power expressed
ing_ is
o

P
toU3ch

= % 02, with 8 = 2kr . (4.3.10)

4.3.3 Energy extracted by an aerofoil with plain flap

Next, a wing is considered which moves up and down and which is provided with a plain flap deflected
with the same frequency but a different phase. It has been assumed that the 1ift increment due to flap
deflection is independent of the angle of attack. It is possible to combine this motion with a variation
of 8 of the wing itself, but the realization of such a motion requires a complicated mechanism; the cal-
culation has, therefore, not been carried out.

The 1ift can be calculated from (cf. Eq. (4.3.4)):

=1 dz
L7 CLG a8 - (4.3.11)

$
When the displacement and flap deflection are written as

c

z=2z, sin wt,
§ =26, sin (ot + ¢), (4.3.12)

the power P is made ¢imensionless by %pU cb and can be written as

P = ikr(CLé 6, sin ¢ - erLa) , . (4.3.13)

when the power needed to drive the flap motion (liinge moment) is neglected, The optimum power can be cal-
culated in a way similar to Sect. 4.3.2 and is obtained when ¢ = % and 60 = 2krCy /CLG'
The optimum is @

2
P (cL /8) (cL /e, ) 2 . (h.3.14)
$pU3ch o § "a
When the chord of the flap is denuted by C.s it can be calculated for a hinged flat plate, that
¢, /¢, = (2/n) {arc sin (cr/c)i + e se) (1 - cr/c)]k} . (4.3.15)
§ Ta

The value of £g. (4.3.15) depends on the ratio of flap chord and wing chord, but is always smaller than
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one. When cLa = 2m, an expression similar to Eq. (4.3.10) appears viz.:
P T
= §2 (1 /C 2 (4.3.186)
oUlch O ( g La)

Although &, might be chosen larger than 8,, the Eq. (h.3.15) shows that the value of Eq. (4.3.16) is al-
most always smaller than the corresponding value of Eq. (h.3.10).

L.3.4 Estimation of power output

In order to estimate the maximum possible amount of energy that can be extracted from the wind by a
flutter machine, the maximum possible values of the considered parameters have to be estimated. For the
plain aerofoil, one of the tonditions is that the instantaneous angle of attack may not exceed a specific
value (stalling angle of the aerofoilj. The instantaneous angle of attack is

1 dz

=0 - ===

udt °
According to Eq.(4.3.1),

@ = 0, sin wt = kr cos (wt+$) .
With the conditions for the optimum found in Sect. 4.3.2 viz.:
¢ = - % and 00 = 2kr ,
the angle of attack varies under optimal conditions as:
a =} 00 sin wt . (4.3.17)

When a maximum angle of attack during a dynamic stall of about % radian is assumed, Eq. (4.3.17) gives the
following conditions:
8, €3 or krg % . (4.3.18)
The maximum power output of a single plain aerofoil is
P
$pU3ch

For the same value of the parameter 8, as that given in Eq. (4.3.18), it is also possible to compare these
results with the resuits given in Ref. L.1. Contrary to the above given caiculations, Ref. 4.1 uses the
complete unsteady aerodynamic equations, which give the following resuit

=%~035. (4.3.19)

—— 0.6 03 = 0.27 . (4.3.20)
ipUch

A comparison of the Eqs (4.3.19) and (4.3.20) shows that the quasi-steady calculations overestimate the
energy output by 30 percent.

The dimensionless quantities given in the Eqs (4.3.19) and (4.3.20) cannot be compared directly with
the power coefficients Cp for a horizontal- or vertical-axis wind turbine. The coefficient for a flutter
machine is defined relative to the wing area, whereas the power coefficient Cp is defined by means of the
area perpendicular Lo the wind and swept by the rotor (e.g. nD2%/h).

A horizontal-axis turbine shows a theoretical optimum power coefficient Cp = 0.59. When a low solid-
ity ratio (Eq. (2.3.8)) is applied, e.g. o ~ 0.1, the dimensionless power related to the rotor-blade area
becomes

P
-—3——— = 0.59/6.1 = 5.9
iU osref

This clearly shows that a flutter machine produces less power per unit area of the aerodynamic active
elements than a low-solidity horizontal-axis turbine.

It is conceivable to construct a flutter machine consisting of a cascade of B aerofoils with a mutual

separation equal to the chord c or less. In this case a reference area comparable with the reference area
for a conventional wind turbine may be defined, viz.

Sref = Bchb ,

and the corresponding maximum power coefficient (when unf vourable interference effects are neglected)
becomes

Cp = ———m 0.27 .
bpU3Bch

This compares less unfavourable with a conventional wind turbine than the coefficient referred to the
total blade area, but the solidity ratio is high, viz.:

o= Bcb/Sref =1 ,

According to Ref. 4.1, the quasi-steady calculations are valid if
k<porl . (4.3.21)
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It is, thus, advantageous not to exceed :his value of k by choosing r not too small (see £q. (4.3.18)). It
follows then from Eq. (4.3.18) that the related optimum value of 6, is obtained at r~ 1, i.c. at a dis-
placement z, ® c.

A possible advantage of this concept is the lower acceleration of the blade elements of a flutter
machine, compared with those of e¢.g. a horizontal-axis turbine. With ¢ » n/2, x, = ¢/2 and zy ™ ¢, the
maximum acceleration of a blade of the flutter machine is approximately

2 1 si 2
wéc(cos wt + % sin wt)max N wéc |,
which can be written as

wle = k2U2/¢c

while the maximum centrifugal acceleration of a horizontal-axis turbine at high X is approximately

nZRO = AZ(C/RO)UZIC &A%/

The flutter machine, therefore, reveals a potential feasibility to operate as a wind energy converter,
when an elegant construction for the rotational and flapping motion can be realized. The flutter machine
has to be considered, however, as a device with a high solidity ratio, which implies relatively high
manufacturing costs.

L. 4 Horizontal-axis turbine

L.4.1 General remarks

At first sight, a strong analogy seems to exist between the aerodynamics of an airplane propeller, a
helicopter rotor and a horizontal-axis wind turbine. It could be expected then, that the performance cal-
culation of a horizontal-axis wind turbine can take advantage of the experience from airplane-propeller
and helicopter-rotor theory and experiment.

An important difference between a propeller or helicopter rotor and a horizontal-axis wind turbine
is, that in the first case the th-ust or lift is the most important quantity and the torque somewhat less
important, whereas in the second .ase the torque is much more important than the force in wind direction.
Moreover, the torque is more difficult to estimate, because it is composed of a component of the lift
force (critically dependent on the angle of attack) and the profile drag of the rotor blade.

A further important difference between an airplane propeller and a horizontal-axis wind turbine is,
that a propeller in cruise condition reveals small perturbation velocities with respect to the speed of
flight, whereas an optimally operating wind turbine shows perturbation velocities that are not small with
respcct to the wind velocity. This appreciably affects the possibilities to formulate a mathematical model
for the vortex wake behind the rotor. In case of the propeller, a cylindrical wake with a periodic struc-
ture can be defined (slipstream contraction can be neglected), whereas in case of a horizontal-axis tur-
bine the vortex wake expands appreciably (cf. Fig. 3.3) and the vortex structure varies downstream, i.e.
the structure becomes a function of the induced velocities, which leads to a nonlinear wake structure and
thus to a complex iterative calculation procedure.

An airplane propeller in take-off conditions does have more in common with an optimally operating
wind turbine (large perturbation velocities, but a large slipstream contraction instead of a large wake
expansion). However, no detailed calculation method for this operating condition of an airplane propeller
can be found in the literature,

In some flight regimes of a helicopter, the aerodynamics of the rotor is more similar to-that of a
wind turbine, e.g. in autorotation. In this field new developments in ca'culation methods (enabled by the
development of the digital computer) can be found in the literature.

In the next Sections, the blade-element theory, the vortex theory for small perturbations (essentially
the propeller theory), and the possible extension to large perturbation velocities will be discussed, with
an emphasis on the underlying assumptions. Some results of the theory will be reviewed and some remarks on
optimization procedures will be made. Comparison with experiments is hampered by lack of recent and accu-
rate test results,

The discussions will be limited to the case of a horizontal-axis wind turbine with its axis parailel
to the wind and immersed in a steady, homogeneous and non-turbulent wind stream, i.e. the effects of the
atmospheric boundary layer will be excluded.

L.4.2 Theory for an infinite number of blades

When the number of blades of a rotor tends to infinity, it is assumed that the circulation around an
elemental blade at radius r (F;) tends to zero, while the total circulation of B blades (rr) remains
finite, thus

r.= Lim B r; = finite .
B o
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When B + «, the flow is axisymmetric, i.e. independent of the azimuth angle 4. From < 2ch elemental-blade
trailing edge a vortex sneet springs, whose local strength depends on the local 'bound" vorticity. For a
discussion of this vortex system sec Appendix C.

The discussion in this Section is based on the theory of Glauert {(Ref. 4.3). The induced velocities

y are denoted by so-called "induction'" factors. At the rotor, the axial and tangential velocity at a radius
r are:
= i i
U i-a)u , (4.4.1)
= ! .
Uan = (1Ha%ar (h.4.2)

with = angular velocity of the rotor.

When a cylindrical wake is assumed (cf. App. C), the induced velocities far behind the rotor are
twice the values at the rotor.

U = (i722)U (4.4.3)
F— ] (1+2a')ar . (4.4.4)

When it is assumed that the momentum equations can be applied to the elemental annular streamtube with

radius r and thickness dr (cf. Appendix C), the axial momentum equation gives an expression for the normal
force on the annuius

-V

tane

dN = bnrpU2a(1-a)dr , (4.4.5)

when the static pressure déficit due to the tangential velocities in the wake far downstream is neglected.
The tangential force on the rotor blade elements in the annulus (dT) gives rise to a torque

dQ = ra7. When the equation for the angular momentun. is applied and the wake expansion is neglected, the
total tangential force on the annulus is

dT = Unr2pURa’ (1-a)dr . (4.4.6)

When the chord of the rotor blade is small with respect to the span of the blade, the chordwise pressure
distribution of a blade element at the annulus is identical to that of a two-dimensional wing section
(profile) with a relative velocity and angle of attack equal to those of the blade element. This means
that the local lift and drag of the blade element can be calculated from the data on two-dimensional pro-
files {C; vs @, Cy vs a) and the local U, and angle of atiack a.

s Because €y is perpendicular to U and vy parallel to U , it follows from the velocity triangle

. . 143 rel d rel

in Fig. 5.9 that in case of a B-bladed rotor

B .
dN =5 pU2 1 c(Cy cos B + C, sin 8)dr
~a)2y2
= nrpo'c, L17a)%02 cos © L1+(c,/Cy) tg 0] dr (4.4.7)
sin? 0
d7 = % pUﬁe]c(C‘ sin 8 - C, cos 6)dr
—a)202 <}
= nrpo'C {1-a)?? sin 6 [l-(Cd/CI) cotg 98] dr , (4.4.8)
sin? ¢
with o' = Bc/2nr = local solidity ratio. (4.4.9)

The induction factors a and a' can now be calculated from the Eqs (4.4,6)-(4.4.8), The induced velo-
\ cities at the blade element are generated, however, by vortices {1ift forces) only and not by the profile
s drag, because, within the small-chord approximation, the profile drag does not induce velocities atl the

rotor blade itself. Therefore, Cq has to be set equal to zero, when the induction factors are calculated.
Thus the equations are

a/(1-a) = o'c, cos o/ (4 sin? 8) , (4.4.10)
a'/{1+a') = a'cl/(h cos 0) . (4.4.11)
! When the relation, obtained from the velocity triangle (Fig. 4.9)
1-a
X Xtg = T7a’ (5.45.12)

is used, with
X = Qr/U = (QRO/U)r/Ro = Ar/Ro = local tip-speed ratio. (4,4.13)

Eliminating a and a' from the Eqs (4.4.10)-(4.4.12) gives

cos § - X sin @
sin 6 + X cos 8 ° (4.4.14)

Dividing the equations (4.4.10) and (4.4.11) and using Eq (4.4.12) leads to

o'C‘ =l sin ¢

X=2rtg o,

which can also be written as

a'qr
U tg 6
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As Fig. 4.9 shows, this means that the total induced velocity is perpendicular to the relative velocity.
This can be understood, because the lift force is perpendicular to the relative velocity and the change
in linear momentum has to be in the direction of the applied force, which results in a total induced
velocity that is also perpendicular to the relative velocity.

The power generated by the blade elements can be obtained from

dP = QrdT,
and the power coefficient of the whole turbine from
Ro
‘% = z 2 ; 2 oo
ipV nRo oy nRO rhub

Using the Eqs (4.4.8), (4.h,10) and (4.4.14) leads to

Cp = (8/12) fA sinZ 8(cos 6 - X sin 8)(sin 6 + X cos 0)[1-(Cd/Cl)cotg 01x2dx . (4.5.15)
Xhub
For actual calculations, the angle of attack has to be obtained from (Fig. 4.9)
a=8-i , (k.4.16)

and with this value of «, C, and C4 can be obtained from the profile data.
The range of useful values of 6 will now be disctssed. From the velocity triangle follows, that a
wind turbine might operate in a 6-range
0 <6 < 90°

The lower boundary is the condition U = 0, @ # 0, or a = 1; the upper boundary is the condition @ = 0,
r=20ocra'=-1, When C; = 0, the induced velocities are zero va=a'=0), and it follows from Eq.
(4.4.12) that

(tg °)c,=o = /X . (h.417)

In order to satisfy the continuity equation (mass conservation), the velocity far downstream cannot be
smaller than zero (there cannot be any backflow). Such a condition can occur in a real flow (turbulent
wake state and vortex ring state; Ref. 4.4), but the equations cease to be valid in that case. It follows
from Eq. (4.4.3) that

ag}
With the equations (b.4,10) and (4.4.14), this can also be written as

a = cos 6(cos 8 - X sin 6) < ¥
or {(tg 20)}, <y P VX . (4.4.18)
In reference 4.3, the conditions for optimum power generation in the case that Cg = 0 are discussed.
Because of the assumed independence of different blade elements along the span, the integrand of Eq.

(4.4.15) can be optimized for each radial position (X) separately, for a given value of the tip-speed
ratio ), thus

—g—e- sin? o{cos 6 - X sin 8)1sin 6 + X cos 8) =0 ,

which results in

. sin 6(2 cos 6 - 1)
X = (1 ="cos 8){(2Zcos 06 +1) ° (4.4.19)

or, when this is inserted into €q. (4.4 14),

o'cl = 4(1 - cos 68) , (4.4.20)
or, from the product of both,
P c " . 2 cos 6 -~ 1
2nXo ¢, = (ABEO cl)optimum 8n sin © T T ET - (4.4,21)

The distribution along the span of the optimum of 6 and the optimum of €y c are shown in the figures 44,10
and 4.11. When the 1ift coefficient is chosen constant along the sp.n, Fig. 4.11 reveals the chord distri-
bution along the span.

Also shown in the figures is the possible range of 8 and Cy c. A negative Cy might be tolerated along
a part of the span at certain off-design conditions, but too high values of Cy (or too low values of 8)
extend the formulae out of the range of validity. Figure 4.11 shows that, in the present theory, only the
turbine performance ove~ a relatively narrow range at the high-iift side of the optimum can be calculated.

Ref. 4.3 also gives the optimum of Cp in case Cqg = 0 (C{/Cy = =), whereas Ref. 4.5 gives the in-
fluence of €;/Cy on the optimum of Cp in case of C{/Cq is constant along the blade span. The results are
shown in Fig. 4.12. This figure shows that, when a low value of A is chosen (which corresponds to a large
chord and many blades, according to Fig. 4.11), the optimum of Cp is appreciably reduced.

Usually, this power reduction at low A is explained by considering the work done on the air by the
torque of the rotor, viz.

aP = - [ a'q do
It is argued, however, in Appendix C (Sect. C.5), that this power reduction is probably cancelled for the
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greater part, when also the effect of the static pressure déficit in the wake is considered,
When we return to Fig. h.11, it appears that the circulation at the tip is non-zero. This is caused

by the assumption of an infinite number of blades. In the next Section, the influence of a finite number
of blades will be discussed.

L.4.3 Tip correction theories

h.4.3.1 Linearized correction

With a finite number of blades, the circulation around the blade has to decrease continuously to zero
towards the tip, because of the possibility of a cross-flow around the tip, which decreases the pressure
difference between upper and lower side of the tip profile. This effect is analogous to that of an air-
plane wing of finite span, but the vortex calculations are more complex in case of a wind turbine.

Prandtl (Ref. h.6) introduced a relatively simple method to estimate this so-called "tip~loss"
effect. He considered the helical vortex sheets “ehind the turbine (cf. Appendix C) to be rigid planes
moving with a velocity equal to the axial induced velocity alU with respect to the undisturbed external
flow. Because this was still a complex problem to solve, he simplified it further by considering a set of
equidistant parallel flat plates, with a mutual distance (Fig. 4.13) of

d= (ZnRO/B) sin 0, ™ (27r/8) sin 8 (4.4.22)

with 6, = helix angle at the tip.

With a conformal transformation, the reduc~ion in potential difference between two plates approaching
the tip could be calculated, It was assumed that this reduction in potential difference was equal to the
reduction of the circulation around the rotor blade. The reduction factor found by Prandtl was

F = (2/n) arc cos [exp - (n/d)(Ro-r)]

{2/n) arc cos [exp - (B/2)(l-r/R°)/{(r/R°) sin 0}] . (4.4%.23)

When the circulation for a rotor with an infinite number of blades is denoted by I , the circulation for
a B-bladed rotor is then

r=Ffr, . (4.4.24)

I, can be calculated from Sect. 4.4.2 (because of the axisymmetry) by considering the induced tagential
velocities far downstream, viz.

I = 2nr 2a'Qr = hrra'ar .

Because the total induced velocity i Is perpendicular to U oy (Fig. 4.9), w, can be expressed in the
tangential velocity component

W, = a'qr/sin o ,
or with the expression for r,
w, =T /bxr sin @
t 3

At a given value of ¢ {(thus a given value of Wt)r the circulation is reduced by the factor F (which also
depends on ¢) according to Eq. (4.4.24), and the equation for wy becomes

W, = r/bnrf sin o .
Because the total circulation of the B blades is
B

r==¢

2 ICUre

I ’
the formula for w, can be written as
w, = {o'C/HF sin 0)U | (4.4.25)
which can be regarded as the fundamental equation to calculate the turbine performance.
From the fact that wy is perpendicular to U.,, it follows that
Urel sin 9 = U - W, COSs o .
Together with £q. (4.4.25), the following relations can be obtained

w /U = [(bF/g'Cl) sin? 0 + cos 0]"l (4.4.26)

U o}/U = [(o'C,/4F)cotg 0 + sin 017! . (4.14.27)
From the velocity triangle (Fig. 4.9), the relation

t
ar 4w, sino X+ (W;/U) sin @

U-w, cos 0 1 - (w /U) cos
t
tgo =
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follows, or, with Eq. (4.4.26):
o'tl = UF sin © §%%—%f}%%%%g—% . (4.4,28)
The power coefficient can be calculated from the tangential force, which leads to
Cp = (8122} jx F sin? 0(cos 6 - X sin 6)(sin 8 + X cos 0) [1-(Cd/C|)cot90]X2dX . (4.4.29)
o

Apart from the factor F, this formula is identical to Eq. (4.4.15). Figure 4.1h shows the influence of the
tip correction on the local power coefficient (dCp/d(r/R,)}, when Cy = 0. The influence on the optimum 8
is smail. This means that most of the conclusions drawn ?rom the theory for B = = aiso apply to a finite
number of blades.

It can be revealed from Fig. 4,14 that the tip loss decreases with increasing tip-speed ratio A (due
to the decrease of 0), which is also an argument to design a wind turbine with a high A.

L. h.3.2 Theory of Wilson and Lissaman

ln Ref. 4.7, a theory for tihe tip correction is given that slightly deviates from the theory of the
preceding Section. It uses the momentum equation in the same way as that in Ref. 4.3 and has, therefore,
to interprete the correction factor F in terms of velocities.

When Fig. 4.13 and Ref. 4.6 are considered, the potential difference between the plates might also
be interpreted as the difference between w, and the average of the velocity between the plates wi times
the distance d. Deep inside the plates {r + 0), w! + 0 or wewi > we, i.e. the fluid moves with the vortex
sheet, whereas approaching the tip of the plates tr > Ro), wé + we or we=w{ + 0. This leads to the inter-
pretation that at the vortex sheets, thus also at the blade elements, the full induced velocities are
present {aU, a'@r), but that between the vortex sheets the induced velocities are reduced and that the
average induced velocities could be obtained by the factor F, viz. aFU and a'Fqr.

To apply this concept to the momentum equations, the additional and more or less logical assumption
has to be made that far downstream similar arguments can be used, i.e. the average induced velocities far
downstream are 2afU and 2a'FQr. 1t must be noticed that, when the total induced velocity at the blade
element is perpendicular to the relative velocity at the blade element (X(a'/a) = tg6), the total average
induced velocity is also perpendicular to the relative velocity at the blade element.

In Ref. 4.7 then the assumption is made that the total circulation around the blade elements at
radius r,

= B = B J
P=sCcl iclc(l+a Jar/cos &, (b.4.30)
is equal to the circulation, calculated along a circle with radius r far downstream
I = 2nr 2a'Far . (4.4.31)

Such a relaticn is strictly valid only in axisymmetric flow, because, due to the radial velocities from
the cross-flow around the blade tips (Fig. 4.13), the stream surface becomes deformed and a radial trans-
port of vorticity may take place, which invalidates the assumption above.

Eq. (4.4.31) can also be interpreted as T = F T_, used in the preceding Section. From the Egs
(4.4.30) and (h.4.31) it follows that

o'C

alf__ 1 (4.4.32)
ita' I cos o °’ U

which can be compared with Eq. (h.h.11) for an infinite number of blades.
In Ref. 4,7 the axial momentum equation (Eq. (4.4.5)) is applied; but "a' is replaced by the average
value "af', which uitimately leads to the following relation:
[}
(1-aF)aF _ 9'Cy <o ©
(1-2)2 4 sin? 9
which can be compared with Eq. (4.4.10) for an infinite number of blades.

(4.4.33)

The linearized approach of the preceding Section should give a somewhat different left hand side of
the equation, viz. aF/(1-a). The inclusion of a higher-order term can be questioned (see Sect. 4.4.3.3),
but in Ref. 4.8 it is quoted, that it reduces appreciably the computation time for an optimalization cal-
culation.

The ratio of the Eqs (4.4.32) and (4.4.33), together with Eq. (4.4.12) gives

1-af
1-a ’

al
X-a—= tgo

which shows that neither th» local total induced velocity (w¢) nor the average one (Fwy) is perpendicular
to the relative velocity at the blade element. This could also be restored by including higher-order terms
in Eq. (4.4.32). This owuld lead to a left-hand term equal to

a'F(1-aF)
1+a'){1-a

The induction factors can be written explicitly, viz.
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a = {204F - [F2 4 hAF(l-F)]*}/z(A+F)2 , (4.4.34)
with
A=o0'C cos 8/(k sin @) ,

and
a'= o'Cl/(hF cos 9 - o’CI) . (4.4.35)
When F + 1, i.e. B> = or r/Rg + 0, the result of Sect. 4.4.2 is found again.

When F + 0, i.e. r/Rg > 1, C} » 0 (Eq. (4.4.33)) and the values for a and a' become indeterminate.
The values at the tip (r/Ro = 1) are not important, however, and can be omitted.

The formulae obtained are too complicated to permit an elimination of a and a' in order to get an
explicit expression for ¢'Cy (cf. the Eqs (4.4.14) and (4.4.28)), and an iteration procedure is necessary
for the calculation.

4.4.3.3 Higher-order correction

in the Refs 4.7 and 4.8, the average values of the induced velocities are applied directly into the
momentum equations, which, strictly, is not correct. The variaticn of the induced velozities with azimuth
angle ¢ (Fig. 4.15) has to be taken into account. In Re”. 4.6, however, the variation with ¢ is not explic-
itly shcan, and it is hard to obtain it from the formulae given. Therefore, a siausoidal variation between
the rotor blades (and vortex sheets) is assumed (Fig. 4.15), viz.

(aU)f = (aU)F + (aVu) (1-F) cos B , (5.4.36)

(a'ar)f = (a'qr)F + (a'ar) (1-F) cus 8¢ . (4.4%.37)
The same distribution has been assumed far downstream, but the maximum interference factors thzn are Za
and 2a'.

When the axial momentum equation is agglied to an elemental streamtube through the rotor (Fig. h.15),

and when the static pressure déficit in the wake far downstream is neglected, the contribution to the
normal force is

d(dN) = rd¢drp2afU(1-af)U = 2rdédroU2(af-a2f2)
integrating over ¢ leads to

dN = bnrpU2(aF-a2fF*)dr (4.4.38)
with
1 2n
F =2_‘n I fd@ , (,’{.‘4-39)
o)
and
i 2n
F* = o0 { f2d¢ = F2 + $(1-F)2 | (4.4.40)
o

In a similar way, it can be found that

dT = harpqu(a‘F-a'af*)dr . (4.b.41)

When F 5 1, i.e. B 4 wor r/Ro » 0, F¥51) and the formulae of Ref. 4.3 are obtained.

When F » 0, i.e. r/Rg » 1, F¥ + §, which expresses the fact that, when the average of the induced
velocities is zero, the average of the squares of the induced velocities need not to be zero.

From the above equations, it follows that dN and dT become negative when the tip is approached. This
seems physically unrealistic, but, as it is limited to values of r/Ry very close to one, it could be
accepted. It is an indication that, in spite of the apparently more accurate highetr~crder terms, some
other effects have been neglected.

Effects possibly neglected in the calculation are the non-axisymmetrically distributed trailing
vorticity and the pressure term in the linear momentum equation {cf. the discussion in Appendix C in
case of an axisymmetric flow).

When the blade-element expression is equated to :the momentum expressions, the following fo.mulde are
obtained

)
aF-a2F* ) 0 CI cos 6

s (4.4, 42)

(1-2)2 4 sin? 0
'c
a'F-a'af* 94
{1+a")(1-a) ~ Tcos 6 ° (4.4.43)

The ratio of these two equations, together with Eq. {4.4.12), leads to
a
X = ?tgo

which shows that the total induced velocity is perpendicular to the relative velocity at the blade element
(cf. Sect. 4.4.2).
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Solving "a" from Eq. (b.h.42) gives

a = (A+3F)/(A+EX) - 3[F2 + LAE-F*) 13/ (AaF%) (4.4 )
with
A= o'C] cos 6/(h sin? 0) .

When F » 0, F* » 1 and "A" has to be zero or negative, otherwise the square root becomes imaginary. This
means that C; as vell as "a" have to be zero or negetive.

When the energy equation averaged over an arnular streamtube is applied,

2n 27

{ (+a'flar d(d7) = [ (1-af)u d(dN)

$=0 $=0
this yields

{a'F~a'aF*+a'2F*-a' 25F%*) X2 = aF-2a2F*4a3F%* | (4.4.45)
with

1 2 3 3,3 2
F**=-ﬂoj' f3de = F3 + 3F(1-F)2 | (b.4.46)

When a' = a tgo/X is substituted, this yields
—Fw(“C) ——W[F*Z(HC)Z uFF**cli’ , (4.4.47)

with
C = cos 6{cos 6 ~ X sind )

When F » 0, then F* + , F** o 0 and Eq. (4.4.47) becomes indeterminate 0/0. C can be interpreted as the
induction tactor "a" for F = 1 (i.e. for B = »). Because the argument of the square root should not become
negative, the possible range of F and € is limited. This limitation is not very important, because it is
in the range C > ¥, which is also outside the range of applicability of the momentum equations (violation
of continuity equation).

It seems possible to obtain solutions by putting Eq. (4.4.47) equal to Eq. (L.h.4h4), but the question
remains whether these complicated calculations attain a better agreement with experiment than the linear-
ized correction of Sect, 4.4.3.1.

L.h.4 Linearized vortex wake theory

Consider the wake behind a rotor with a finite number of blades. When the induced velocities are
small with respect to the wind velocity, the helical vortex sheets move downstream with a velocity almost
equal to the wind velocity. Therefore, the vortex sheets move downstream like a rigid body. Due to the
small induced velocitites, the wake expansion can also be neglected, which leads to o cylindrical wake.

Prandtl (Ref. 4.6) already made a simplified calculation, but Goldstein (Ref. 4.9) was the first who
calculated the induced velocities from the rigid helical vortex sheets. However, these results were
iimited to the case of an optimum circulation distribution along the span of the blade. The optimum distri-
bution was such, that it revealed a minimum rotational energy in the wake at a given axial force on the
rotor (i.e. an optimum efficiency for an airplane propeller). Such an optimum distribution for an airplane
2t cruise condition need not (o be identical with the distribution for a maximum energy output in case of
a wind turbine,

In order to apply the calculations of Ref. 4.9 also to non-optimum conditions, the method of Lock and
Yeatman (Ref. 4.10) could be used. The underlying assumptions are:
- The total induced velocity at rad . r depends solely on the circulation at radius r.
- The total induced velocity is perpendicular to the relative velocity at the blade element,

The total induced velocity could be calculated from
W, = P/nrk sin 6 (4.4.48)

with I' = total circulation of B blades at radius r;

k = numerical factor, calculated by Goldstein as a function of r/R,, sin 0 and B,
Because of the underlying assumptions and because of the identity of the Eqs ?h.h.hS) and (4.4.25), the
equations of Sect. 4.4.3.1 can be used, when the factor F is replaced bv k,

Because the Eqs (4.4.48) and (4.4,25) are identical, it is to be expected that the tip correction
theory of Sect. 4.%.,3.1 and the linearized vortex wake theory give similar results. Larger deviations
would be possible, when the induced velocities would also be calculated for non-optimum cnrculat|on distri~
butions.

It must be emphasized that the mutual independence of different blade elements along the span, when
the theory of Lock and Yeatman is used, stems only from the (implicit) assumption of a definite shape for
the circulation distribution.

When B = », the flow is axisymmetric and the mutual independence of the blade elements can be proven
(when the wake expansion is neglected). Because the condition B = = is better approximated when A in-
creases, it is to be expected that the error due to the assumption of Lock and Yeatman will be moderate
also with a non-optimum circulation distribution at high values of X.
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4.4.5 Extended numerical methods

It is possible to extend the existing calculation methods in various directions, but all these

entensions consequently lead to a more complicated computer program than the relatively simple programs
discussed so far,

Possible directions to extend the calculation method are:
1: From Jifting line to lifting surface.
The above-discussed calculation methods assumed the bound vorticity to be concentrated at the 4-chord
line, whereas the chordwise pressure distribution is assumed to be equal to that of a two-dimensional
wing section. This could be extended by several lifting surface approximations, like those of
Weissinger (Ref. 4.11) and Multhopp (Ref. 4.12), the acceleration potential method (e.g. Van Holten,
' Ref. 4.13), or even a modern panel method (e.g. Ref. 4.1h4).
2: From a cylindrical towards an expanding wake.
The only direct calculation of induced velocities known in the literature is that for a cylindrical
rigid vortex wake with a given circulation distribution, belonging to an optimally operating airplane
propeller at cruise conditions (Ref. 4.9). In Ref. h.15 a cylindrical wake is applied, but the circula-
tion is not given beforehand. The induced velocities are not given, therefore, a comparison with the
results of Ref. 4.9 is not possible. The influence of the wake expansion is discussed in Appendix C for
an axisymmetric wake, but could be investigated for a B-bladed rotor by a so-called "fixed-wake"
method. This neans, that the shape of the wake is a part of the input data of the computer program and
does not follow from the calculations.
The ultimate goal would be the calculation with an expanding wake, the shape of which is determined by
the calculation method, using an iteration procedure (cf. the analogous but less complicated problem
for the wake of an aircraft wing, see e.g. Ref. 4.16). Such a method is outlined in Ref. 4 15, but the
completion of the computer codes including all these features are still a long way ahead.

Because of a number of reasons, the "high-A" wind turbine seems the most promising (cf. Sect. 2.h).
This leads to rather small chord lengthe (small solidity ratio ¢') &t tne most effective parts of the
rotor blade (r/Ro > 0.5). Therefore, the extension of the calculation method in the direction of a lifting-
surface theory does not seem to be urgent.

There are more doubts about the validity of the determination of the induced velocities (tip effects
and wake expansion). Because the induced velocities determine the angle of attack o of the blade elements,

which in turn very sensitively influences the local 1ift force on the blade, an extension in the directicn
of item 2 seems to be the most urgent.

A very readable review of the state-of-the-art of rotor aerodynamics is given in Ref. h.17. The
necessity to use these complicated calculation methods depends on the discrepancies between the results
obtained by the more or less "simple' methods and the expcrimenial iesults, which are, however, very
scarce. Wind tunnel tests often are performed at such a low Reynolds number, that the appropriate aerody-
namic data of thc wing sections are missing, or the data are obtained from '"field" or "free-air' measure-
ments, which can hardly be compared with calculations because of wind-shear and atmospher!.-turbulence
effects which are not accounted for in the calculation methods.

When it is considered that, at the one hand, the computer codes containing an expanding vortex wake,
finite chord-effects, etc., are very complex while, at the other hand the inhomogeneous and turbulent-flow
effects are neglected, the question can be raised whether such complex computer codes really make sense.
The impiementation of inhomogeneous and turbulent-flow effects in the aerodynamic performace calculation
still is an unsolved problem (cf. Sect. 5.1).

4 4.6 Aerodynamic optimization

in the case of a wind turbine, the aerodynamic optimization of a rotor means that the geometry of the
L rotor blades is varied in such a way that the power output Cp becomes a maximum.
For a turbine with an infinite number of blades, such an optimization has already been discussed in
Sect. 4,4,2. Ir the case of a turbine with a finite number of blades, the optimum geometry cannot be given
explicitly. In Ref. 4.8, the aerodynamic optimization of a wind turbine is briefly discussed, and a
special part of that approach will be commented on below.

In Ref. 4.8, an aerodynamic efficiency for a ring element of a wind turbine is defined in anaiogy
with an airniane propelier, viz.

l - 0de - power output of rotor
" = T7-3J0 dN ~ work done by air through axial force N

It is then stated, that n = ny,, is a necessary condition for an aerodynamically optimized design.
From the energy equation (cf, Appendix C, Sect, C.h4)

dP = 0 dQ = (1-a)U dN - a'e dQ ,
. it follows for the above-defined efficiency, n, that
S
Ly
The highest possible n can be obtained by making a' as small as possible, i.e. by making Q as smaill as
possible. This can be obtained by choosing @ as high as possible at a fixed power output. This conclusion
was also obtained for a rotor with an infinite number of blades (Sect. 4.4.2).

It must be noticed, that this conclusion is drawn from & theory that does not take the static pres-
sure déficit in the wake into account (Appendix C). There are indications that the power loss due to wake
rotation might be compensated largely by the influence of the static pressure déficit in the wake. At the
other hand, 2 turbine with a low A (slow-running turbine} shows a high solidity. It might be that the
present tip-correction theories do not properly represent the strong mutual interference of the blades in
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the case of a high-solidity rotor.
For a rotor with a given @ {or 1), a' cannot be chosen independently and the use of n in an optimiza-

tion procedure does not seem very worthwhile.
The simplest and most direct way to obtain an optimum velue of Cp is to require an optimum value of
dCp/d(r/R,) at each spanwise location. This procedure is admissible when it is assumed that the blade

elements are mutually independent.

The optimization has to be carried out for a fixed value of A and a fixed number of blades 8, The
optimizatibn results in an optimum value of 6 and (c/R )Cl at each spanwise station of the rotor blade.
The actual s“ape of the rotor blade is not completely ?ixed, because C} depends on a = 6 ~i and because a
certain degree of freedom exists in the choice of the chord- and twist-distribution along the span.

In order to simplify the calculations, a fixed value of C}/Cy is assumed during the optimization pro-

cedure.
The formulae for the optimization will be summed-up below for the different calculation methods, dis-

cussed in the Sections 4.4.3 and h.4.4,

The formulae for the linearized tir correction and the linearized vortex wake are identical, using
only k instead of F in the latter,

A

Cp = §¥ | Fsin? g(cos 8 - X sin 8){sin 0 + X cos 0)[1-(Cd/C|)cot90]X2dX
Xhub
The condition for the optimum Cp is
(0)opt = MAX [F sin? 6{cos 0 ~ X sin 8){sin 8 + X cos 0)[1-(Cd/C|)cotgol] ,

A,X,Cd/cl = const.

and the corresponding lift-times-chord distribution

c _ 181 . cos O - X sin ©
(i_cl)opt = [B REsin 0 S5+ X cos 0] :
o o 0=(0;0pt

In the theory of Wilson and Lissaman, the formulae are

A
Cp ==z [ aF(i-aF) [tgo -(c,/c,) Ix%aX

The condition for optimum Cp is

(8) gpy = MAX [aF(l-aF)[th -(cd/c‘)]]
A,X,C4/C, = const.

with the additional formulae
a i-af
X=371a 9
a = {20+F - (F2 + baF(1-0) 1H}2(aeR)2
a's c'C]/KhF cos 6 - o'Cl) ,
= in2
A =gq'C, cos q/(h sin? 6)
Due to the complexity of the formulae, a double iteration cycle is necessary, which results in finding
the values of (e)opt and (°'cl)opt' From the latter can be obtained
[ _2n
R ope = 5

opt

[
Ro(° cl)opt

The formulae for the higher-order correction theory are

8 A
cP = -):z I (aF-azF*)[tge'(Cd/CI)]xz dX

xhub

The condition for optimum Cp is

(6) g = MK [ (aF-a2F¥) Lego- (e ]

)\,X,Cd/Cl = const.

with the additional formulae

a =k Ep(140) - 4 g [PR2(140) 2-UFF)

C = cos 6(cos 0 - X sin 0) |,
Fr =2 4 3(1-F)2
Fre= F3 4 3F(1-F)2 |

|
!
!
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Despite its apparent complexity, only a single iteration cycle is necessary, which discloses the values .
of (0) and (a)gp¢. From these values can be obtained that ) !
opt opt .

HPYA ~32F*
I = :
°op *“opt ;
. ri
Figure 4.16 shows some typical results, obtained by the above optimization procedures. The influence /
[

of the different methods on the value of (8}, is very small. The influence on {cCy/Ry)gne IS larger. The
higher-order tip-correction theory leads to an increased chord and/or increased lift coefgicient at the
tip. It is, howevar, highly questionable whether this result is acceptable from an aerodyramic point of
view, Especially the assumption of the mutual independence of the blade elements might b> violated in the
tip region, due to the radial displacement and '"rolling-up" effects of the trailing vortex sheet,

The optimum shape is very close to the Glauert solution (Sect. 4.4.2) and leads to a rather imprac-
tical blade shape, viz. a strongly non-linear taper and a large blade twist, especially close to the blade
root. . {

A more practical blade shape design requires a direct rather than an inverse method for a given blade ‘
geometry. This will be discussed in the next Section for the linearized tip-correction theory.

4L.4.7 cCalculation method for a given blade geometry

4. 4,7.1 Description of the method

In these calculations it is assumed that the blade geometry {c/Ro, i) is given, as well as the number
of blades B, the tip-sprad ratio A and the aerodynamic profile data €y = f(a) and Cy4 = f{a).
From Eq. (4.4.28) it follow that €y = f(8), viz.:

8nr/R .
= o : €y 6 - X sin 0
by = Bc/R, Fsin 0 S 97X cos 0 ° (4.4, 49)

with
Fe % arc cos [exp -~ (B/2) (1 - r/Ro)/{(r/Ro) sin 8}) .

From the aerodynamic data it follows that
¢, = fla) = fle-i) . (4.4.50)

Trhe intersection of both curves in the C)-vs-6 plane gives the operating point of the blade element under
consideration (see Fig. 4.17). There are some difficulties, which will be discussed below. :

( Generally, there is more than one point of intersection between the curves of the £qs (4.4.49) and
4.h.50).

An intersection with the dashed part of the curves in Fig. k.17 means that the induction factor
a > }. Consequently this solution has to be omitted (see discussion in Sect. 4.4.2).

The lift curve might intersect the ful! line part of the curve (a < 3) twice (or even three times),
when the curves intersect in the stalling region. Though all the solutions are possible, the unstalled
solution will be preferred.

It is also possible that no solution can be found, i.c. the curve of Eq. (4.4.49) remains below the
curve of Eq. (4.4.50). This operating region is often designated as the ''turbulent-wake' state, and is
beyond the scope of the calculation methods discussed above.

Figure 4,17 also shows that this turbulent-wake state is most easily reached with negative values of
the setting angle i, whereas large positive setting angles might lead to negative values of {j, which
means a thrust or 'propeller' state,

When the operating points (i.e. Cy, 6, an', thus, Cq) have been obtained along the entire plade
span, the power coefficient Cp can be obtained “rom Eq. ?M.M.ZS). The aerodynamic blade loading can also
quite easily be obtained.

Some results calculated with the above-described method will be discussed below. These results might
differ from results obtained with tne other calculation methods, but the general conclusions obtained
from one method will also apply to the results of a different method (see also Ref. 4.8 and the reports
quoted there). :

k. 4.7.2 The ideal rotor shape

The optimization procedure (Sect. 4.4.6) results in a 0- and Cjc-distribution along the blade span at
a given value of A and Cy/Cq. When a constant Cy (thus constant a) along the span is chosen ((Cy)gesign):
the corresponding ¢/Rg and i can be obtained. Figure 4.18 shows a specific result for B =2, » = 8, and
three values of (C))gesign-

The blade terminates at ry,, /Ry = 0.10 in this case. The blade shows a large non-linear taper and a
large blade twist, especially close to the hub.

Figure 4,19 shows the influence of the choice of the design lift coefficient on the Cp~vs=\ curve, A t
low value of the design lift coeflicient leads to a broader operating range of A, mainly caused by the
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larger available a-range from optimum towards stall.

The decrease of {Cplopt is mainly due to the decrease of C}/C4 at the chosen value of the design 1ift
coefficient. Also the XA at which the optimum is obtained changes by this effect.

Though the design lift coefficient has to be chosen equal to the €] value at which C/Cq attains its
maximum, in order to obtain an optimum Cp, there may be structural, operational and cost considerations
for choosing a different value. These considerations are, however, out of the scope of this work.

The value of rp,,/Ry = 0.10 is chosen rather arbitrarily. From a structural and costs point of view,
it might be favourable to increase ry,,/R,, because the largest part of the blade area and also the largest
part of the blade twist variation is concentrated near the hub {(see Fig. 4.18). Figure 4.20 gives an im-
pression of the power loss due to increasing rp,b/Ro, which, of course, has to be balanced against blade-
cost reduction.

The shaft between blade hub and rotor axis only produces drag, which means an additional power loss.
Figure 4.21 gives an estimation of the power loss, It shows that below rpyp/Rg & 0.30 the additional
power losses are insignificant,

The shape of the Cp-vs-X curve is also affected by the profile characteristics of the aerofoil section
chosen, Figure 4.22 shows the influence of the aerofoil data, characterized by the maximum 1ift coefficient
{{C)) max) and the minimum profile drag ((Cdlmin). At a fixed value of the design 1ift coefficient, the
maximum 1ift coefficient determines mainly the value of X at which the blade stalls, whereas the minimum
drag coefficient mainly affects the optimum value of Cp.

4k.4.7.3 More practical blade shapes

The aerodynamically optimized blade saape (Sect. 4.4.7.2) is a very complicated one to produce.
Therefore, the complexity of the shape has to be reduced as far as possible, considering the power-loss
penalties involved.

In this Section, results of calculations will be given for rotor blades with NACA 23012 aerofoil
sections (C1)max ™ 1.79, (Cg)pipn & 0.0060, (€1/Cq)max & 125). A first simplification is to reduce the
non-linear taper to a linear chord distribution along the blade span. The twist distribution is given by
a power law (see Fig. 4.23) which approximates the optimum twist distribution rather closely, except near
the hub, where the twist is somewhat reduced.

Figure 4,24 gives the Cp-vs-\ curves for a two-bladed rotor with twisted blades and linear taper for
a number of different pitch angles 6, (for the definition of 8p, see Fig. 4.24). The optimum value of Cp
does not differ significantly from tge value for the ideal blade shape. It must be remembered, however,
that for the ideal blade (C}/Cq)max = 100 instead of 125 in the present case. This means that avoidance
of the sudden chord increase near the hub and a slight reduction of the twist results in only a small
power loss.

Figure 4.25 shows the angle-of-attack distribution along the blade span as a function of the tip-
speed ratio A, For the sake of comparison, the a-distribution of the "ideal' shape is also given., Due to
the twist reduction near the hub, the spanwise a-variation is much stronger along that part of the blade
span. The chord reduction amplifies chis trend. The power losses at the catimum are mainly caused by devia-
tions from the optimum C;/Cy-value along a part of the blade span,

A further simplification of the biade shape consists of omitting the twist altogether. The figures
4,26 through 4.28 show the Cp-vs-) curves for untwisted blades with different taper ratios but a constant
total rotor solidity {o). It also has to be noticed, that rp,,/R, is taken equal to 0.20 in this case, to
avoid that a part of the blade stalls early and in that way deteriorates the turbine performance.

Compared with the twisted blade design of Fig. 4.24, the optimum €p is only reduced with 6 %, but the
reduction is stronger for the non~optimum values of Cp.

A remarkable fact revealed from these figures is the rather favourable performance of the constant-
chord design, which is in itself the ultimate goal of simplicity. The main cause of the power loss can be
discerned from Fig. 4.29. The very strong a-variation along the blade span at all values of A causes at
each )\ a deviation from the optimum Cy/C4 and a premature blade stall near the hub, even at rather high
tip-speed ratios like A = 8,

When the main purpose is the design of a cheap wind turbine, an untwisted rotor blade with a constant
chord seems to be a good choice, with only limited power losses. This rather favourable behaviour is only
obtained at sufficient high Reynolds numbers (about 3x108), where a_,, is sufficiently high. For a small-
scale turbine, the untwisted rotor blade might behave badly, due to tﬁe premature stall, aggravated by thke

1 low Reynolds: number (low %max) *

4.4.8 Concluding remarks

The calculation methods commonly used for a horizontal-axis wind turbine are based on a blade-element
theory {(blade chord negligible with respect to blade span), where the induced velocities are determined
from momentum considerations combined with a tip correction factor (finite number of blades) or from a
linearized vortex-wake calculation, which can be shown to be almost identical with the momentum theory
including a tip correction.

A basic assumption underlying all blade-element theories is the mutual independence of different
blade elements along the span. This independence exists only in case of a rotor with an infinite number of
blades and a non-expanding (cylindrical) wake. It is difficult, however, to estimate the influence of the
wake expansion and of the finite number of blades.

s It is shown in Appendix C that, in the case of a rotor with an irfinite number of blades, vthen wake
expansion and stotic pressure déficit in the wake (due to wake rotation) are taken into account, the
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so-called power loss due to wake rotation is almost compensated. This pcwer loss due to wake ri tation was

the main improvement by Glauert (Ref. 4.3) of the simple estimation by Betz (Ref. 4.18). The present con-

siderations show, however, that this improvement is at least questionable (see App. C). As far as experi- '
ments indicate unfavourable power coefficients for a low=X high-Q (high-solidity) turbine, this might be

caused by mutusl blade interference (cascade effect), which becomes significant at a Yigh-solidity turbine

and is neglected in the blade-elcment theories considered.

Apparently the best available estimate of the induced velocities in the case of a finite number of . si
rotor blades is given by a linearized vortex wake calculation (Goldstein, Lock and Yeatman, Refs 4.9 and
4.10). The calculation is based, however, on a specific shape of the spanwise circulation distribution,
which corresponds to the optimum distribution for an aircraft propeller in cruise condition (i.e. high
thrust, low torque). When the actual circulation distribution for a wind turbine differs from this optimum
propeller distribution, differences in the induced velocities can be expected.

Figure 4.30 shows the difference in circulation distribution between an optimally operating propeller
and a wind turbine at a comparable tip-speed ratio (or advance ratio in case of a propeller). At three

b spanwise stations, the implicitly used circulation distributions to calculate the induced velocities have 1
r been indicated, by scalirg the propeller-distribution up and down. The deviations between the circulation
. distribution of the wind turbine and the corresponding circulation distributions of Goldstein are targe. ‘ é

Moreover, the wake expansion is also neglected.

Estimating the induced velocities from momentum considerations with a tip correction factor lead to
almost identical results. '"Improvements' of the theory by using ""higher-order' tip corrections are highly
questionable. The only way to improve the calculation method seems to be the application of sortex-wake
calculations, either a fixed-wake or a more complicated deformable-wake calculation (iterative procedure)
and inclusion of the influence of a finite blade chord (lifting-surface theory instead of lifting=-line . 1
theory), especially close to the hub. ]

Although there are enough theoretical indications that the blade-element theory needs further refine-
ment, lack of reliable experimental data makes it still difficult to decide whether more elaborate vortex
wake calculations have to be performed.

With the existing blade~element theories, a rotor blade can be designed which produces an optimum Cp
at a given value of the tip-speed ratio A.

A first condition to reach (Cp) pt is to choos: the lift/drag ratio equal to (C}/Cy)pax of the profile
considered and to keep it constant a?ong the entire utade span, i.e. the corresponding C) and, thus, also
! the corresponding o has to be taken costant along the blade span. (Cy/Cq)lmax has to be at least equal to b
or larger than 100 (at A =~ 8), but a further increase, by choosing more sophisticated aerofoil sections,
results in only a slight further increase of Cp.

A second condition is that both a strongly varying blade chord length along the span and a strongly
varying blade twist are accepted, which leads to a very complicated rotor blade,

It is possible to approach the optimum very closely by taking a linearly tapered blade, but with
still a strongly varying blade twist.

Introduction of a rotor blade without twist results in a power loss penalty of about 6 to 10 % (at
the higher Reynolds numbers, i.e. for relatively large-scale turbines). This might be acceptable for a
single producticn unit (reduction of tooling costs), but looses its attraction in case of mass production.

Choosing an untwisted blade design, the constant-chord (untapered -) blade, seems rather attractive,
because the biade area in the hub region is reduced, where the blade stall starts at relatively high
values of A,

The blade-element theory predicts an increased power output when very high values of the tip~speed
ratio A are chosen, i.e. a very low solidity ratio, because:
- The power loss due to the tip-correction factor decreases with increasing A.
- The power loss due to wake rotation decreases with increasing A.
This tendency is opposed to the power loss due to the profile drag, which increases with A, Sophisti- 4
. cated aerofoil sections have to be applied in that case to attain very high values of (€1/Cq)max-
b : Because the power loss due to wake rotation is questionable, but is anyhow very small at X > 10, the !
predicted preference for a low-solidity high-A turbine depends strongly on the accuracy of the tip correc- |
tion factor applied. |
!
\

More elaborate computer codes, including the effects of relaxed vortex wakes, rolled-up tip vortices
(instability of vortex sheets) and lifting-surface theories (finite blade~chord effects) are being
developed (Ref. 4.15), but the completion is still a long way ahead.
Considering the possibly large effects of flow inhomogeniety and turbulence (unsteadiness) of the
l atmospheric boundary iayer on the wind-turbine performance, the usefulness of such complicated computer
codes may be questioned. |

4.5 Vertical-axis turbines

L.5,1 General remarks

An important aerodynamic difference between vertical-axis and horizontal-axis turbines is the appear~
ance of unsteady flow phenomena. During a revolution of the rotor of a vertical-axis turbine in a steady
wind stream, the flow direction and velocity relative to an element of the rotor blade vary in a cyclic
way, whereas, in the case of a horizontal-axis turbine, the flow relative to a blade element is steady.
Even more drastic for the set-up of a calculation method for a vertical-axis turbine is the impossi=
bility to relate the torque of the rotor to the change in angular momentum of the flow, even in time-
averaged sense (see i1emark Appendix B). Momentum considerations, therefore, only deal with the induced
velocity components in the direction of the undisturbed wind velocity. !
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For the same reasons as given for the horizontal-axis turbines, the theoretical discussion will be
limited to low-solidity rotors. A typical high-solidity vertical-axis turbine is the Savonius rotor (for
an extensive experimental survey of this type of turbine one is referred to Ref. 4.19.) The optimum values
of Cp are restricted to ~ 0.16, but its main feature is its high starting torque, almost linearly decreas-
ing wit! increasing X. Ref. 4.19 includes an extensive list of references on the subject.

The discussion of a drum-type high-solidity turbine in Ref. 4.20 is interesting because of the
attempt to apply angular-momentum considerations. Ref. 1.20 also gives some experimental re-ults.

The principal features of the vertical-axis turbine will be elucidated by considering a two-dimen-
sional rotor, i.e. an infinitely high turbine with a finite diameter.

Next, the three-dimensional vertical-axis turbine will be discussed with special emphasis on the
Darrieus type. Especially for the Darrieus type of vertical-cxis turbine, experimental data on power and
torque coefficients are rather complete, which is in sharp contrast with the situation for horizontal-axis

turbines.

L.5.2 Two-dimensional momentum theory

When an element of a rotor blade of a vertical-axis turbine rotates with an angular velocity Q at a
radius R and the wind velocity U is reduced to (1-a)U by the induction factor a (cf. Sect. &.4.2), which
might be a function of the azimuth angle ¢ (when induced cross-flow velocities are neglected), the velocity
relative to the blade element is (see Fig. 4.31)

Uiel = {qR + (1-a)VU sin ¢}% + {(1-a)U cos ¢}2 ,

which can be written as
U /U = (O + (1-3) sin ¢}2 + {(1-a) cos ¢}2]i ; (4.5.1)

Figure 4.32 shows the influence of the tip-speed ratio X and a constant induction factor a on the relative
velocity. At the higher tip-speed ratios, £q. (4.5.1) can be approximated by

UreI/U ~ A 4+ (1-3) sin ¢ (4.5.2)

When the chord of the blade element is perpendicular to the radius, the angle of attack of the blade
element can be calculated from (see Fig. 4.31)

~ (1~-a) cos
a = arc tg mr-s'j;-n—-& . (14.53)

At higher tip-speed ratios, this can be approximated by
andlzdcos s (4.5.4)

Figure L.31 shows the influence of A and a on the angle of attack. At low A, there is a strong asymmetry
of a with varying é. This asymmetry reduces with increasing A, but, even at X = 6, a certain asymmetry is

perceptible.

By analogy with the momentum theory for a horizontal-axis turbine, the force component on the blade
element in the direction of the wind can be related to the change in momentum in wind direction. The usual
assumption is made that the induced velocity far downstream is twice the induced velocity at the rotor,

i.e. (1-2a)v.
A difference with the theory for a horizontal-axis turbine is, that "a' might be a function of ¢.
Another difference is the neglect of cross-flow-induced velocities which are analogous to the tangential-

induced velocities at a horizontal-axis turbine.

The determination of the induction factor "a'" is connected with the assumed functional dependence of
“a" with the azimuth angle ¢. The simplest approach stems from Templin (Ref. 4.21), which will be called
the “single-streamtube' theorv. In this approach, a is assumed to be independent of 4.
From the momentum equation, the force in wind direction B (per unit height) can be derived as
D = 2R p 2a(1-a)u?
From the forces on the blade elements of a B-bladed rotor, averaged during one revolution, it follows
that

=B 2
D = 5= { 3oU2 , cCy cos (d+a)dd

in which ¢ = f(a) ~ €y o at angles of attack below the stall. Here and in the sequel, it will be assumed
that in the vertical-~axis turbines symmetrical profiles are applied, unless stated otherwise.

The above equations result in

2n
-a) =+ Bl 2 !
a(l-a) = 5 o= 5= OI (U ,,/0)%C) cos (¢+a)ds . (4.5.5)
Because a is implicitiy contained in U.,}/U and o, Eq. (4.5.5) cannot be solved directly, but an iteration
procedure has to be applied. Ref. 4.21 shows a way out, by the introduction of the variable

y = 3 {1-a)
Then Eq. (4.5.5) becomes:
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1 1 Bc i 2 . 2 2 { cos ¢
i S OI {(y + sin ¢)2 + cos? ¢} €y cos i@ + arc tg 7+ sinél dé . (4.5.6)

For a given geometry of the turbine (B¢c/R) and a given value of y, the value of (1-a) can be calculated.
From that, the corresponding tip-speed ratio can be caiculated, viz. .

X = y(1-a)

The generated power is calculated from the tangential force, T, in which the profile drag is included (cf.
Sect. 4.2.2); thus

2%
_ B o2 . _
P = QR oIt OI ’pUreIC(cl sin a Cd cos a)dé

or the corresponding power coefficient

20
Cp = P/20U%2R = (1/4m) (Be/R)A [ (U \/0)°C sin a [1-(C/C|)cotgalds . (4.5.7)
o

These formulae are still so complicated, that a numerical solution has to be chosen. To get some insight
into the behav.our, a strongly approximated solution will be given. Assume:

A >,

C‘ ] Cl a,

a
a s (I;a) cos ¢ << 1,

cos (¢+a) =~ cos ¢ .

Applying this to Eq. (4.5.6) gives the following result
| 1 B¢ 1 1 Bc

o rwmERa VYRR Y
which can also be written as

a=te3% 2 . (3.5.8)

a

An approximate expression for the power coefficient can be obtained from Eq. (4.5.7) with

sin o ~ «a,

cos a & 1,
€4l -
This leads to
Be, f(1-a)* (5 v _, Bc 22
cp=;.R—cla T (y2+1) - 3 26, 2 (1-2)2(y2+1)

Because also y>>1, and with Eq. (4.5.8), this can be approximated by

Cp = ha(i-a)2 - § 3%, A3 . (4.5.9)
When this result is compared with Eq. (3.2.6) and when it is reminded that Up/U = 1-a, the above equation
shows that a vertical-axis turbine also approaches the ideal power coefficient derived by Betz, when the
profile drag is neglected and a constant induced velocity is assumed across the rotor. Notwithstanding the
very crude approximations, which have been used to obtain the Eqs (4.5.8) and (4.5.9), some general in-
sight can be obtained with these formulae.

Figure 4.33 shows the Cp-vs-A variation with Cqy = 0 (dashed curves) for three values of the rotor
solidity Bc/R. The optimum Cp is always equal to the Betz value 16/27 (a = 1/3), but the value of \ at
which this optimum is obtained is inversely proportional to tne rotor solidity.

As discussed in Sect. 3.2.2, the simple momentum theory breaks down, when a 2 1/2, which corresponds
with €p = 0.5 (if €C4o = 0). This limit is also indicated in Fig. L4.33.

The profile drag affects the Cp-vs-A curves appreciably, espgecially at high A, as could be expected
from Eq. (4.5.9). When the profile drag is taken into account, the optimum Cp decreases with decreasing
rotor solidity. The limit a = 1/2, which is connected with a certain value of AB¢/R, shifts to lower
values of Cp or even disappears from the operating range of the turbine at low rotor solidity.

The maximum angle of attack occurring during a revolution is also shown in Fig. 4.33, which can be
estimated from

la | = (1-3)/x . (radians)

max
The approximations used in the Eqs (4.5.8) and (4.5.9) are valid for small angles of attack, certainly
smaller than the stalling angle, which is .dicated in Fig. 4.33. Therefore, the calculated Cp-vs=) curves
have also a low-A bound, which is also indicated. This shows that, at a high rotor solidity, the A-range
that can be calculated vith this simplified theory is very narrow.

The values given in Fig. 4.33 must not be looked at too closely, because of the approximations applied.
The general trends, however, will be similar to those obtained with the complete Eqs (4.5.1), (4.5.3),
(4.5.5) and (4.5.7). The main advantage of the complete equations, besides a higher accuracy, is the possi-
bility to extend the calculations into the stalled region, when the full profile data are included. The
a = 1/2 limit, however, remains.
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Another approach, called the "multiple-streamtube’ theory and proposed by Strickland (Ref. 4,22),
assumes that the induction factor a varies in a direction perpendicular to U, but is constant in the
direction of U {see Fig., h.34).

The force in wind direction on the elemental streamtube (dD) can be related to the change in momentum
in that elemental streamtube, thus

dD = R cos ¢ d¢ p 2a(1-a)u?2 .

Each blade element passes the elemental streamtube twice, viz. once downwind and once upwind. 1t follows
from Eqs (4.5.1) and (4.5.3) that U..y and lul are equal at ¢ and (n-$), which means that dD is equal in
both cases. The average force can then be calculated from blade element theory, viz.

) 6+de
4 =87 U2 cC) cos (¢+addp .

Combining both equations leads to
a(1-a) = (I/hn)(Bc/R)(UFCI/U)ch cos (6+a)/cos ¢ . (4.5.10)

The power coefficient Cp can be calculated with the same Eq. (4.5.7), but now the induction factor a = a(4).
The trick to solve Eq. (4.5.10) directly by substituting y = A/(1-a) and solving (1-a) cannot be done,
because y would vary across the rotor diameter. Therefore, Eq. (4.5.10) can only be solved by an iteration
procedure.

Also in this case some insight can be obtained by an approximate solution, similar to the method
leading to the Eqs (4.5.8) and (4.5.9). The result is

awm (l/hn)(Bc/R)Cl cos ¢(A+2 sin ¢)//[l + (l/lm)(Bc/R)Cl cos & 2 sir ¢] =
a o
s (1/4n) (Be/R)C) X cos ¢, (4.5.11)
a

which is valid in the range - % S %

This approximation sgows some resemblance with Eq. (4.5.8). 1t is also clear from this equation that
a=0at ¢ =+90 and -90 . Figure L.35 shows the dependence of "a" from ¢ according to the multiple-
streamtube theory. At low values of the rotor solidity and high values of A, the variation is almost like
cos ¢, but, at higher solidity and lower A, the variation becomes asymmetric. This asymmetry is also found
experimentally (Ref. 4.23) and stems mainly from the asymmetry in Upey (see Fig. 4.32).

Differences in the power coefficients between single- and multiple~-streamtube theories can only be
discerned by taking higher-order temms into account. This is caused by the smoothing effect of the inte-
gration during one revolution. The differences between the theories will, therefore, be more clearly de-
monstrated by calculating the blade loading, i.e. the product of a and U%el-

The Kaman Aerospace Corp. assumes a "bullet-shaped" velocity distribution across the rotor. The
parameters needed to quantify the velocity distribution are determined from an over~all momentum balance.
This assumption has a profound influence on the blade loading (Rcf. 4.24), but the validity of this
assumption has not been demonstrated.

So far, only the variation of the induction factor "a" in a direction perpendicular to the wind
velocity has been considered. It i¢ to be expected, however, that the induced velocity also varies in
wind direction between the upwind and downwind blade positions, which results in larger angles of attack
ior th? upwind blade position (¢ = 180°) and lower angles of attack for the downwind blade position

é = 0).

Within the scope of momentum theory, it is not possible to calculate the streamwise variation of the
induced velocity. The only possibility is to look for empirical information, which is not yet available,
The streamwise velocity variation is connected with a downstream divergence of the streamlines (continuity
equation), which implies velocity components perpendicular to the wind velocity.

The only way to overcome the above-mentioned problems in determining the induced velocities, is to
calculate them from the shed vorticity in the wake downstream,

4.5.3 Two-dimensional vortex theory

In the case of a steadily rotating two~dimensional vertical-axis wind turbine, the circulation T
around the blade varies with its azimuthal position. Due to this variation in time, vorticity is shed from
the blade., 8y the combination of the rotational motion and the downstream transport velocity, a cycloidally
shaped vortex sheet with varying vortex strength is formed (Fig. 4.36). The induced velocity components
from this vortex sheet deforms this cycloidal shape. Therefore, an exact determination of the induced
velocities and the corresponding shape of the vortex sheets is a very complex problem,

From Fig. 4.36, some remarks can be made, which prove useful in subsequent discussions of the vortex
wake. Each time the rotor blade passes a certain azimuthal position (e.g. ¢,), the circulation varies
from Iy to r+[(dr/d$)a4); and the amount of vorticity shed in the wake is -[(dr/d¢)as};. These "patches"
of shed vorticity are located downstream at the points of intersection between the streamline through the
azimuthal position ¢; and the corresponding parts of the vortex sheet. This streamline also coincides with
the "upwind' azimuthal position $,, where an amount of vorticity equal to -[(dr/d$)a¢), is shed into the
wake.

The vorticity distribution in the wake can, therefore, also be described as follows. On each stream-
line in the wake, a row of vortices is located. From each blade stuws a double row of vortices, one from
the upwind and one from the downwind blade position. In case of an infinite number of blades, the stream-
line consists of a continuous distribution of vorticity. This aspect has been elaborated by Holme (Ref.
4,25) .
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Ref. 4.25 describes the method extensively. Therefore, only an outline of the methad will be given.
When the circulation around one blade at orbital position ¢ is considered to be P
Ple) = 46, aclpgy

the chord length can be expressed as a part of the rotor circumference 2rR, using the solidity ratio
o = B¢/R, viz.

=2
c = 2"B(ZNR) .

Thus

_ o 2nR
) = 7581 Vet 550

In case of an infinite number of blades, there exists a continuous, but yet unknown distribution of bound

: vorticity on a circle with radius R, which can be defined by a vortex sheet density
- . rb g {
v (#) = Lin R8s =T Vel (h.5.12a)
5> oo o
c+ 0
¢ = constant

The streamlines in the wake are considered to be straight (non-expanding wake) and parallel to the undis-
turbed wind velocity. The strength of the vorticity on the part of the streamline inside the circle is :
constant and depends on the gradient of the bound vorticity at the upwind intersection between streamline !
and circle, whereas the strength of vorticity on the downstream part of the streamline outside the circle
is also constant, but with a strength which depends on the sum of the gradients at the upwind and down-
wind intersections of the streamline with the circle.
The strength of vorticity on the streamline depends also on the transport velocity, which is assumed
to be constant along the entire streamline, but depends also on the strength of the bound and shed vorti-
city.
From this bound and shed vorticity, the induced velocities at the bound vorticity (circle) can be
calculated. After a linear relation between the local circulation and the local radial velocity has been
derived, a set of linear algebraic equations is obtained, when a Fourier series for the bound vorticity
distribution is assumed.

The determination of the average transport velocity, which determines the strength cf the shed vorti-
city as well, is still a problem. In Ref. 4.25 two “hypotheses'' are given, viz.:
- the transport velocity is equal to the mean velocity of the mass flow through the turbine, and
- the transport velocity is determined by considering the momentum and energy balance.

Application of the two hypotheses leads to a difference in tip-speed ratio A of less than 0.5 %, and
in Ref. 4.25 it is concluded that the first hypothesis, being the simplest to apply, can be adopted for
future calculations.

Figure 4.38 shows the power coefficient as calculated by Holme. Comparing this with the power coeffi-
cient given in Fig. 4.32 reveals a large similarity, bu. there arc slight differences., The optimum invis-
cid (Cygo = 0) power coetficient is slightly less (8 %) than the Betz optimum 16/27, which also has its
effect oh the values of Cp with Cgo = 0.01. The stall boundary of Fig. 4.37 also differs slightly, due to
the larger angles of attack at the upwind blade positions,

Figure 4.39 shows a comparison of the results obtained with the single-streamtube theory and the mul-
tiple-streamtube theory with the resuits of Ref. 4.25 for inviscid flow (C4o = 0). In case of the stream-
tube theories, the complete equations (not the approximated ones) have been applied.

Besides the power coefficient, also the rotor drag coefficient Cp and the mass flow coeflicient Ly
have been given. The last two are defined as

b ¢ = force in wind direction
’
° 3oU%2R
. = Mmass flow through rotor area
[i] pU2R

The differences in the average mass flow between the three methods is small. The differences in total
rotor drag Cp and power coefficient Cp are larger.
The multiple-struamtube theory is closer to the vortex wake theory than the single-streamtube theory,
1 especially for the power coefficient, ‘

The greatest achievement of the vortex theory of Ref. 4.25 is the prediction of the variation in
load between the upwind and the downwind blade positions. For a typical configuration, Ref. 4.25 shows, .
that the maximum normal force at the upwind position is 1.5 times the maximum at the downwind position. :
The maximum tangential load is in the upwind position even three times the maximum at the downwind posi-
tion, The momentum (streamtube) theories predict maxima that have equal magnitudes at upstream and down-
stream positions,

The induced velocities culculated in Ref. 4.25 will be discussed somewhat further by considering a

fixed bound-circulation distribution,

It follows from the simplified momentum considerations (see approximations preceding Eqs (4.5.8) and
(4.5.9)), that a first-order approximation of the bound-circulation distribution is (see Eq. (4.5.12a))

[*]
Tp ® EFcla

£ %;Cla(l-a)u cos ¢ =y, cos ¢ . (h.5.12b)

(|-a)Acos 2 {\ + (1-a) sin 6}u

LSRED T U Ry o e TR e R s PR et GBI g AN preptief T T TN T




R P e

24 ”

When the blades move from ¢ to ¢+d¢, the shed vorticity is transported in wind direction over a distance
SPRPTIC L S -
(1-a)u q T R d$ ,
and covers a distance in y-direction of
dy = R cos ¢ d¢
The amount of shed vorticity can be expressed as (see Eq. (4.5.12b))
-8 = ; 2
a5 (Yo €05 ¢ R de)dd = v sin ¢ R(d¢)

The average shed rotation in the parallelogram is

H 2
) Y, sin ¢ R(ds) oA sin o
Ys = T(T-a)/A) R dé R cos ¢ d 1-a "o R cos ¢

The shed vortex sheet strength can then be expressed as

Y = u R cos ¢ d¢ = T%S Y, sin ¢ do . (4.5.13)

The induced velocities can now be calculated from Ref. 4.25, The bound vorticity induces only radial velo-
city components on the circle, equal to

VR =ty siné

which leads to longitudinal and lateral components
u = vp cos = 3 Yo sin ¢ cos ¢ (4.5.14)
vEvpsing =gy sin ¢ (4.5.15)

because of the symmetry about the wind direction, only azimuth-angles between 0 and m need to be considered.
The shed vorticity induces longitudinal components on the circle equal to

u
u=- o Ta Y 0S¢ » O
U=+%‘_}\“" COS¢ l<¢\<‘n (b5]6)
]'BYO ’ 7 < ] el
and lateral components equal to
A .
vV = & T"—a-YO Sin ¢ . (h°5-17)

Taking the average u between the points ¢ and n-¢, i.e.

= - Ay cos ¢ 5 0gdg %

u
av i-a ‘o
it follows from £q. (4.5.12b) that
u /Y= - (rx/bm)c, (Bc/R) cos & . (4.5.18)
a
inis is equivalent to Eq. (4.5.11), obtained from the multiple-streamtube theory, and demonstrates that,

in a first-order approximation, thc multiple~streamtube theory comes close to the vortex theory of Ref,
L.25, as was also seen in Fig. 4.39.

At the higher values of X for which the vortex theory of Ref. 4.25 is valid, it is clear frcm com-
paring the Eqs (4.5.14) and (4.5.15) with the Eqs (4.5.16) and (4.5.17), that the induced velocities due
to the bound vorticity are small with respect to the induced velocities due to the shed vorticity. This
vortex theory is valid for only a very large number of blades (B » =) and it seems interesting to look for
the influence of a finite number of blades. This is most easily done for the influence of the bound vor-
ticity, when an azimuthal variation like cos ¢ (see Fig. L.40) is assumed, viz.

.20
P, =T, cos (¢+|§—)

When

P =8T

n io ’

the induced velocities at onz blade by the remaining (B-1) blades are

B-1
VR T T (FO/hﬂRB) ) [cos (i2n/B) cotg{i2n/B) cos ¢ - 2 cos? {in/B) sin ¢] ,
i=l —————

sI SIl

8-1

vy = - (r_/4nR8) |

s [cos (i2n/B) cos ¢ - sin (i2a/B) sin ¢]

i=1 ——— —————
Siny S1y

ft can be shown that $| = S|, = 0, that Syy = =(B-2), and that Sy|| = ~1. The induced velocities are,

when Yo = Fo/ZnR is introduced for reasons of comparison,
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Vg = 3 Yo Eég sin & , (4.5.19)
(vp =v, =0, ifB=1)
1 R [
Vg = b Y, g 05 ¢ - (4.5.20)

In the timit B » », the results vo = 3 y_sin ¢ and vy = 0 of Ref, 4.25 are re-obtained.
From the above formulae, it is :leaF that, in case of a small number of blades, large deviations from

the case B + » can occur. For instance, if B = 2, then vp = 0 and vg = 3 vo cos ¢, in contradiction with
the case B + o,

The influence of a finite number of blades on the induced velocities of the shed vorticity is more
complicated and will not be investigated here.

Because the shed vorticity is discretized in the downstream direction by the finite number of blades,
it is more or less natural to discretize the continuous vortex sheet also in the azimuthal direction. This
leads to a fully numerical approach.

When a computer code is compiled for such a case, a logical extension is to vary the downstream
transport velocity (1-a)U with the azimuth angle. The solution of this problem necessitates an iteration
procedure, but it is still much simpler than the calculation of a fully relaxed wake (i.e. taking wake
expansion and thus flow retardation in the wake into account). Wilson et al. reported on such rela, ed-wake
calculations at the Third Wind Energy Workshop of September 1977 (Ref. 4.26). In Fig. 4.41 (Ref. 4.26) are
compared the angle of attack variation calculated with the relaxed-wake analysis for a one-bladed rotor,
the fixed-wake analysis of Holme (B = »), and the multiple~streamtube theory of Strickland for a common
value of the solidity ratio Bc/R = 0.2 and for a tip-speed ratio A = 3.54,

Though none of the methods leads to identical results, it is clear that both vortex methods indicate
a different behaviour between the upstream and the downstream blade position, which could not be obtained
from momentum considerations.

From this comparison, it is also clear that the difference in calculated power output will be less
than the differences in calculated blade load variation during one revolution, because of the smoothing
effect of the integration over one revolution, which is needed to obtain the power output.

Taking the finite number of blades into account has a special effect on the downwind blade positions
(210° < ¢ <3009, notice the deviating definition of ¢).

When B = =, vy = 0 and Vg # 0, whereas with B = 1, vy = vo = 0, This large difference possibly is
responsible for ne differences in a between fixed-wake (B = ) and relaxed-wake (B = 1) results in the
range 150 < ¢ < 2109, shown in Fig. 4.11,

Relaxed-wake calculations have also been persued by Fannucci and Walters (Ref. 4,27) and Brulle et al.
(Ref. 4.28).

h.5.4 Stream-curvature effects

Several authors have indicated the influence of the stream curvature due to the rotational motion and
the finite blade chord (see e.g. Ref. 4.29).

In the preceding Sections, the lifting-line approximation was implicitly assumed, i.e. the chord
length was assumed to be very small with respect to the radius R. When ¢/R is not very small, the velocity
due to rotation (QR) is no longer parallel to the blade chord everywhere.

When the thickness distribution of the aerofoil section is neglected, the influence of the angle-of-
attack variation along the chord on the 1ift and pitching moment can be estimated from thin-aerofoil
theory (see e.g. Ref. 4,30), viz.:

Cy=21d,withda=1} (u§0+a;00) , (4,5.21)

and
= I ' [
Coo = Tz(aoo + Zaso 3a100) , (b.5.22)
where the subscripts at the angle of attack indicate the chordwise location at which the o is obtained

(see Fig. b4.42).

From Fig., 4.42, it follows that the point of attachment of the profile (x,) has a direct effect on
the 1ift, but that the pitching moment is not affected by x,, viz.:

a = =(3/h - x /c) /R, (4.5.23)
Cro = (n/8) c/R . (4.5.2h)

Figure 4.43 shows that, for normally used values of x,/c = % or 1, a negative effective angle of attack is
induced by the stream curvature. This means a lift increase for the upwind blade positions and a 1ift
decrease for the downwind blade positions. The pitching moment induced by the stream curvature is always
tail-heavy.

BecaZse the vortex-wake theories (Sect. 4.5.3, Fig. 4.41) also indicate larger {(negative) angles of
attack upwind and smaller (positive) angles of attack downwind, the stream curvature increases this cffect,
which is important for the blade loading.

The infiuence of the stream curvature on the power output, i.e. the influence on the tangential force
T paraliel to the blade chord ¢, is more difficult to estimate for an infinitely thin flat aerofoil.

It boils down to the determination of the finite suction force on the infinitely thin leading edge by
an infinitely low pressure on the leading edge (see Ref. 4.31).

During a revolution of the rotor, the external angle of attack varies with the azimuth angle approx-
imately as:
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a RS lie cos ¢ ,

whereas the stream-curvature-induced angle of attack along the chord is constant during one revolution, viz, )

a' = - (x/c - xO/c) c/R

The resultant angle of attack can be described as the superposition of an antisymmetric angle of attack

distribution aj with respect to x/c = } (second normalized distribution of Birnbaum} and a constant angle

of attack along the chord g (first normalized distribution of Birnbaum). The tangential force coefficient .
Cy solely depends on a, (Refs 4.30, 4.31) and can be calculated from

¢, = 2nug = 2n [u+(x°/c - 1/2)eR)? . (4.5.25)

In this case, the total 1ift force is Eqs ((4.5.21) and (4.5.23)):
Cl = 2a(a41 3) = 20 [a+(Ko/c - 3/h)c/R) , (4.5.26)

and it is shown, that
C, # Cylatd)

in case of stream curvature. The tangential force coefficient averaged during one revolution is a measure
for the power output. Using the approximation for a form Eq. (4.5.4), this average value is

+7

— 4
T =4 J [10-a)/21 cos ¢ + (x /e - 172)c/R] do

= 21[ (1/2)((1-a) 1212 + (x fc - 1/2)2(c/R)?]

The contributior of the stream!ine curvature to the average tagential force is always positive. This posi-
tive contribution to the power coefficient can be estimated for a B-bladed rotor from

BCp s BAT, &o(QR)2cnR/ioU32R =} 4T (Be/R) A3,

with
6T, = 2n(x /c = 1/2)2(c/R)?

This can also be vritten as
8C, = (n/87) (x /e ~ 1/2)?(8ca/R)3 . (4.5.27)

When the induction factor is taken from the approximate equation (4.5.8) (it should be remembered that
a = } may be regarded as a maximum value in practical operating conditions), the range of BcA/R is

0 < BeA/R < b/n

Figure 4.4k shows the increase of the power coefficient oue to stream curvature. For the commonly used '
values of x,/c between 4 and %, the influence is not large, although not negligible. ‘
The increase of the negative angle of attack at the apwind blade positions initiates an early blade
stall, but, it is difficult to assess whether these stream curvature effects are adversely affected by ,
viscosity (boundary-layer effects).
Another remark is, that a possible improvement of the calculation methods by using lifting-surface
theories (e.g. panel methods) necessitates a carefull consideration of the leading-edge flow (i.e. a large
number of panels at the leading edge). The above considerations implicitly contain the conclusion that a
more accurate determination of the lift (blade loading) not always means a more accurate determination of {
the tangential force (power output).

4.5.5 Unsteady effects '

As remarked in Sect. 4.5.1, the vertical-axis turbine shows a cyclic 1ift variation during a revolu-
tion. In the preceding sections, quasi-steady aerodynamics has been applied throughout. Because the so-
called reduced frequency k is low for the commonly applied solidity ratios, viz. ,

k=l /U c™ e/ = jc/R (4.5.28)
the neglect of unsteady aerodynamic effects seems warranted. Ashley (Ref. 4,32), however, drew attention

to the fact that the influence on the tangential force (suction peak) was larger than the influence on the
lift itself,

The unsteady effects can be estimated by considering simplified rotor aerodynamics, viz. (see Sect.
,5.2)

o a=-‘—;-‘1cos¢ and ¢ =Qt .

This can be regarded as an airplane wing moving through the air with a velocity QR and subjected to a
periodic gust of magnitude

vg = QRa = (1-a}l cos ¢ .

Urel =

The ltargest simplification is the assumption that the wake trails downstream as a straight line, whereas
in case of an actual turbine, the wake shows @ more or less cycloidal shape. Also the mutual interference
between the blades (B # 1) has been neglected. The quasi-steady wake effects are included to a first order

.
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of magnitude i1n the induction factor "a". Therefore, the simplification is restricted to the unsteady
effects of the wake.

Ref. 4.33 calculates the sinusoidal gust effect on the lifr, The result is

ot ., ) .

¢, = Re {“"CQR(‘ a)ue “")} = 2 Lefe' ™ 20},
$5(aR) ‘¢

with %#(k) the so-called Sears function:

(k) = (Jo-iJ])(F+iG)+iJ]

This leads to

1-a .
¢, = 21 52 [(J F44,0) cos .t=(J 6-J)F+d)) sin ] . (4.5.29)
In the quasi-steady case, the lift coefficient is
1-a
(Cl)qs 2 -)\—- cos Qt . (‘0.5-30)

The tangentiai force coefficient has to be calculated from the suction force on the leading edge (cf. Sect.
4,5.4), which depends solely on the first normalized Birnbaum 1ift distribution. A careful analysis leads
to (see also Eq. (4.5.25))

c .
] 1-a int
L Y Re{e @(k)}

and thus
1-a3,? | . 12 ]
= ? = — - - e
€, = 2nal = 2n(57) l(JoF+JiG) cos ot = (J G=J\F+J,) sin qt] . (4.5.31)

In the quasirsteady case, the tangential force coefficient is

- 2
(Ct)qs = 25 (172 cos? ot . (4.5.32)

The instantaneous angle of attack is

1-a 1-a_iQt
= cos Nt or Te .

This shows, that the common method to calculate Cy, viz.

¢, =C a= 2n (-l-ii)2 Re{eiQt o(k)}Re{eiQt} ,

leads to a result different from Eq. (4.5.31).

Figure 4.45 shows that the unsteadiness of the flow has a significant effect on the tangential force.
The influence on the 1ift is smaller, but cannot be neglected. The power output is proportional to the
tangential force coefficient averaged over one revolution, thus

—_— 1 +n 1-a, % 2 2
C. =37 _ﬂj C, d¢ = (- [(JOF+J]G) + (JOG-J|F+J|) ] . (4.5.33)

In the quasi-steady case, the average value is

— 1-a,2
(Ct)qs = Zﬂ(T . (4.5.34)
The ratio of the Eqs (4.5.23) and (4.5.34) is a measure for the decrease of the power output due to un=
steady effects. The ratio of the Eqs (4.5.29) and (4.5.30), with 0t = ¢ = 0, is a measure for the decrease
of the 1ift amplitude due to unsteady effects. Both ratios have been given in Fig. 4.46 as a function of
c/R.

Though the profile drag has not been taken into account, which might ckange the power ratio still
further, it is clear from this figure that, for a commonly used value ¢/R = 0.10, the power is reduced by
16 % due to unsteady effects.

Ref. 4.32 gives a more compiete discussion, which also includes the influence of the variation of the
relative velocity Upe| during one revolution.

4k.5.6 Two-dimensional vertical-axis rotor with variable pitch

An important difference between a vertical-axis and a horizontal-axis turbine is, that the blade
element of a horizontal-axis turbine operates under the same (optimal) conditions during one revolution,
whereas the plade element of a vertical-axis turbine cannot operate under optimal conditions during the
entire revolution,

It is obvious that several investigators looked for means to impiove the vertical-axis turbine in
this respect by applying variable pitch (see e.g. the Giromill, Ref. 4,28). Apart from the greater struc-
tural complexity, the pitch control has to follow the wind direction, i.e. the turbine loses its independ-
ence from the wind direction,

The driving force of the turbine is the component of the aerodynamic force per, endicular to the
radius. The main part of the 2erodynamic force is the lift, which is perpendicular > Upe). Therefore,
the driving force component is governed by the angle between Unej and the normal tc the radius, which is
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mainly determined by the wind velocity {only modified by the induced velocities) and changes sign at
¢ = +1/2 and -%/2. In order to generate a positive driving force during the entire revolution, the 1ift
force has to change sign in step with the sign of the angle between Upoy and the normal to the radius.

An idealized case of such a variable-pitch turbine is represented by a pitch distribution which
keeps the 1ift constant during a revolution, only flipping from positive to negative 1ift at ¢ = +n/2 and
from negative to posltlve at ¢ = ~-n/2, whlch necessitates an almost instantaneous jump in pitch angle at
these values of ¢.

In the case that B s» «, the bound vorticity can be representeld by

cos ¢
o lcos ¢

Yb =Y .
The shed vorticity Bnly leaves the circumference of the turbine at ¢ = +7/2 and ¢ = =n/2 and, when a con-
stant transport velocity equal to (1-a)U is assumed, it can be represented by

, .

A
Yo=275 Y -

Figure 4,47 shows the vortex system of such an idealized turbine.

The velocities on the circumferencé that are induced by the bound vorticity are symmetrical about x = 0O
and y = 0 and can be calculated {(Ref. 4.25) from

. To AL cos 6
Vold) = mgp | Toeser 90 =0 (4.5.35)
Yo o cos 6
ve(d) = - = _ﬂf Teos o7 cot9 #(6-¢)do
2. 3
.Y cos sin 5 "
-~ 1n i 0godsy (4.5.36)
" [cos % + sin % 2

The velocities induced by the shed vofticity are

Y, “(1-sin ¢)d (14sin §)dd
vl = - %%3'7% [ X A + X : ]
(1-sin ¢)2 + (grcos $)2  (14sin §)2 + (i~cos $)2
r Yo cos cos
=TT [n + arctg T:ETEQE + arctg T:ZTHQE] s (4.5.37)
- x X cos gy '
V(¢) ZA YO J' [ (R cos ¢)di - (R cos ¢)dﬁ ]
TR (i-sin 92+ (%-cos $)2  (1+sin ¢)2 + (%-cos $)24
r» Yo l-sin ¢ .
TTlaT LN Ty . (w538
-a
The average axial velocity is
= 3u(d) + u(n-¢)} = - ——— Y, . (4.5.39)

1-a ‘o

which turns out .to be constant across the turbine. From £q. (4.5.37), it can be shown that, when the lower
boundary is extended from 0 to -», far downstream in the wake

(W), = -2y, ‘ C (wsa)

av’w T-a Yo
whuch is the rather obvious solution for the velccity between two vortex sheets of constant strength and
ertendlng towards infinity in both directions.

Because a = ~u_ /U, the value of the induction factor can be obtained from Eq. (4:5.39), viz.
a= -4 (-by )t ' (4.5.41)
Agpiving the energy equation (see e.g. Sect. 3.2.1) leads to the power coefficient

Cp = ha(1-2)2 = b4 = $(1-Iy /)] (4 + $(1-liny Ju)Hp?

-2 [1+(1-!n§h)*] . (4.5.42)

The total radial velocity due to the wind velocity U and the induced velocities vg($), u(¢) and v(4) are
calculated from

vp=Ucos ¢ + vR(¢T + u(¢) cos ¢ + v(¢) sin-¢ . .

.

From this, the tangential force can be calculated, viz.

g cos ¢
dT,' Yo Teos 3 g Rdé

and thus also the powgr coefflcient:
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The result of the evaluation of the above integral is given below term by term

jfn cos? & ot I*" cos $_ . [cos 36 - sin &é] d =0 ,

lcos ¢l lcos ¢1 cos ¢ + sin %¥é
+% 2
coS
_“f o5 ¢ nd$ = 4o

+n 2 .
€os cos ¢ cos_¢ -
_“f T—__?Tcos 3 (arctg gt + arcty 127 ¢) dpy =0 ,

é -sin

because the sum of .the two arc tangents is
n_cos ¢
2 lcos ¢l '

and the last integral

+n
cos ¢ 1-sin ¢y _. =
-nI lcos &1 ! (l+sin ¢’ sin ¢ dp = 0

This leads to the result

Y Y
Cp = ip2 (h-k 72 10 = ta1-a)2 (4.5.43)
because ’
Ao h.5.39))
a=yzZy (see Eq. (4.5.39)),

which is idential to Eq. (4.5.42) deduced from the energy equation. 'When this is.compared with the results
of Ref. 4.25 at zero profile drag (see Fig. 4,39), which result is derived with, comparable approximations,
it can be shown that the variable-pitch rotor obtains only 8 % more power than the fixed-pitch rotor.

The main advantage of the variable-pitch turbine lays in the possibility to.control the power output
at constant angular velocity and varying wind speed. In that respect, the blade pitch variation needed to
maintain constant 1ift during a revolution seemis to be interesting and will be considered below.

When the angle between the relative velocity and the normal to the radius is denoted by & and when it
's assumed that Upey &~ QR, this angle can be estimated (Figs 4.47 and 4.48) from

v v (4) :
__R_cos ¢ 'R u(¢) v(¢) _. .
§ = ax et gR— t TaE oS ¢+ —gf-sing . (4.5.44)
The blade~pitch angle Bp necessary to maintain a (constant) angle of attack a can be calculated from
cos
ep §-a Teos 6T ° . (4.5.45)

When it is assumed, as before, that C|a = 2n, there is a relation between y, and a, viz,

BT

b _ BY 2macR _ ,|Bc
Yo =7 =T 2R "’[R ]“QR '

thus
a = 2y /[(Bc/R)AR] . (4:5.46)

By using also the expression a = A{y,/U)/{1-a), this leads to the following result

. C0s ¢ _ ali-a) cos 34 - sin 3] _a_ [ 2 cos 4
ep A a2 In [cos 16 + sin J.«¢] nA [“ + m] cos ¢ + .

i-sin ¢711_ 2a(l-a) cos ¢
*sin ¢ ln[l+sin ¢]] (Be/R) A2 lcos ¢1

Notice, that the second term at the right-hand side can only be evaiuated in the range 0 < ¢ < n/2
(Eq. (k.5.36)), but that vp(¢) is symretrical about x = 0 and y = 0.

(4.5.47)

Figure 4.49 shows some calculated results. Notwithstanding the crude approximations used, the calcu~
lations show the possibility of operating the turbine at optimum Cp{a = 1/3) at constant angular velocity
and variable wind speed (i.e. variable A?. The strong blade-pitch variation in the range 80" < ¢ < 110°
are mainly due to the velocities induced by the shed vorticity. . :

The above calculations are too crude to permit an actual performepce estimation. Such an estimation
has to include a more refined method for the calculation of the induced velocities, and has also to in-

clude viscous effects (profile drag and blade stall), Ref. 4,28 is referred to for some results of such an
elaborate calculation.

Finally, still the question remains whether it is worthwhile to increase the power output at constant
angular velocity by installing such an intricate blade pitch device.
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4,5.7 Three-dimensional turbines

4.5.7.1 Straight or curved blades

The choice between straight or curved blades (troposkien) is mainly determined by structural consider-
ations, This was already discussed in Sect, 2.4.2 and results of some simplified calculations have been
given in Fig., 2,6, The conclusion reached with these considerations was that the straight-bladed turbine
can only be applied in the case of lower angular velocities (thus lower 1), contrary to a turbine with
curved blades,

The choice of the blade shape has also influence on the calculation method., In case of a straight~
bladed turbine, two-dimensional theory (Sect. 4.5.2 and 4.5.3) can be used with only a slight modification,
viz, including a finite-wing theory to account for ''tip-loss' effects. Though this is a simplified
approach, leaving the curvature of the trailing vortex sheets out of consideration, it may be workable in
view of other Intricate aspects, which are usually omitted, like stream curvature (Sect. 4.5.4) and un-~
steady aerodynamics {(Sect. 4.5.5).

In case of a turbine with curved blades (Darrieus turbine), the deviation from two-dimensional
theory will be still larger. Up till now, momentum theories (single~ or multiple~streamtube theories) are
the only succesfully applied performance prediction methods (Refs 4.21 and 4.22). Vortex theories become
very complicated in case of curved blades and, because of the magnitude of stream curvature and of un-
steady effects, the application of a three-dimensional vortex theory only makes sense when curvature and
unsteady effects are included,

Theoretically, the Darrieus turbine has a somewhat smaller power coefficient than the straight-bladed
turbine. Morecver, with a given height and diameter, the reference area of a Darrieus turbine is about
0.65 times the referenie area of a straight-~bladed design (slightly depending on the height/diameter
ratio). This means, that a straight-bladed turbine has a 1.5 times larger power output than a Darrieus
turbine with the same height and diameter. A straight-bladed design can be applied with a blade-pitch
control, which is almost impossible in case of a Darrieus turbine,

In the next Sections, the discussions will be restricted to the Darrieus turbine., The performance
prediction models of Templin (Ref, 4.,21) and Strickland (Ref. 4.22) are chosen more or less arbitrarily
for the next discussion; similar models have been formulated by other investigators, see e.g. the Refs
4.7, 4.34, 4.35 and 4.36.

4.5.7.2 'Momentum theories

The basic ideas are similar to those given in Sect. 4.5.2, Because of the blade curvature, different
blade elements are oriented differently in space, which affects the magnitude of the relative velocity and
angle of attack of the blade elements. The blade curvature also causes the distance from blade element
towards the axis to be different from element to element. It is assumed, that only the velocity components
normal to the leading edge ot “he blade element affects the aerodynamic force; the velocity components
parallel ;o the leading edge have no effect. The equations for U.q; and o can be derived as follows (see
Fig. 4.50).

The local wind velocity at the blade element, (1-a)U, can be decomposed into a radial and a tangential
component, viz.
{1-a)V cos ¢ and (1-a)U sin ¢ .

The tangential comporent adds to the velocity due to rotation @r, which leads to a resultant tangential
velocity .

Upap ™ BF + (1-a)u sin ¢ . (4.5.48)

0f the radial component, only the component normal to the blade element affects the aerodynamic force
(Fig. 4.50), thus

u, = (1-a)U cos ¢ siny . (4.5.49)
This leads to the following equations for U..; and a
Urey = L{er + (1-a}U sfn ¢)2 + ((1-a)¥ cos ¢ 'sin 7)2]* .

or
U /U = [[Mr/R, + (1-a) sin §32 + [(1-2) cos ¢ sin 2t (4.5.50)

. (1-a) cos ¢ sin y -
a = arctg /R, F (iFaT sTn g where A = QR /U . (4.5.51)

For the case r/Ro= 1 and y= 90° (equatorial plane), the above equations reduce to the Eqs (4.5.1) and

(4.5.3),
The troposkien might be approximated by a parabola (Ref, 4.21), thus

PRy =1 = (z/nR )2,

with:
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and with the angle between normal and vertical (y)
Yy = % - arctg [(Z/n)(Z/nRo)]

With the above formulae, the Eqs (4.5.50) and (4.5.51) can be used to gain insight into the influence of
the blade curvature on the distribution along the blade span of angle of attack and relative velocity. For
A = 3 and a constant induction factor a = 1/3, the.e distributions are shown in Fig. .51 for some azimuth
angles. '

The relative velocity is mainly affected by the reduction of the circumferential velocity when r/Rg
decreases (increasing z).

The angle of attack is nearly constant along a large part of the blade span. Blade elements close to
the axis, however, show large angles of attack, which leads to blade stall. Due to the small radiai dis-
tance of these elements, the effect on the power output will be smail.

The induction factor "a' has to be calculated from the ''drag" force in wind direction D, caused by
the 1ift forces on the blades. Refs 4.21 and 4.22 include also the profile drag forces, but this is not
strictly correct (cf. the discussion for the horizontal-axis turbine in Sect. 4.4.2). However, because Cq
is always positive, the influence on D is almost cancelled during a revolution,

The drag force calculated from blade element theory is

rel\2 . . .
v Cl(cos a cos ¢ sin y - sin & sin ¢)dp . (4.5.52)

+n d{(z/R ) +1 U
= 3ou2r2 (8BS —_
D = ipU Ro(Ro) 'nI sin y 2m _ (

The momentum theory gives

+

n -H"/Ro
D= 3oU2RZ [ d(z/R) | ha(1-a) dly/R) , (4.5.53)
-n -r/R°

with y = coordinate perpendicular to U and z.
In case of the single-streamtube theory of Ref, 4.21, Eq. (4.5.53) reduces to
= 2 -
D = $pU Sref ba(1-a) .

When a fixed value of A/(1-a) is assumed, Eq. (4.5.52) can be evaluated directly (see £qs {4.5.50) and
(4.5.51)). Combining the Eqs (4.5.52) and (4.5.53) results in
) -a) = (1-a)2F (2 L A
a(1-a) = (1-a) F(‘_a) or 15 = I+F(]_a, ,
from which (1-a) may be calculated. This determines the value of \ (cf. Eq. (4.5.6) for the two-dimensional
case).

In case of the multiple-streamtube theory of Ref. 4.22, this direct calculation is no longer possible,
because "a" depends on z and y and, thus, an iteration procedure mist be followed (see the discussion of
the two-dimensional case in Sect. 4.5.2).

In the discussion of the iteration procedure for the performance prediction of a horizontal-axis
turbine (Sect. 4.4.7.1), the complication of multiple solutions emerged, which depended on the shape of
the §ift curve. Such a complication is not present in the performance prediction of a vertical-axis tur-
bine, when the single-streamtube theory is used. This is caused by the averaging process over a complete
revolution.

Using the multiple-streamtube theory, the complication of multiple solutions emerges again, because
the drag of an elemental streamtube is determined by the 1ift force on one specific blade element (more
precisely two, viz. at ¢ and (7-4)) at one specific angle of attack., The resulting equation is

’

ha(l-a)(r/Ro)cos ¢ = (l/n)(Bc/Ro)(l/sin Y)(Urel/U)2C|(cos « cos ¢ siny - sin a sin ¢)
because, from the Eqs (4.5.50) and (4.5.51),

(UreI/U)ﬂ-¢ = (Urellu)¢ ; (a)ﬂ_¢ = -(a)¢ 3 C(-a) = -C,(a)
The above equation can also be written as

hna(1-a) sin y (r/Ro) cos ¢

c' = 2 —, (I‘-S-Sl‘)
(BC/RO)(UreI/U) (cos a cos ¢ sin y ~ sin a sin &)

The lift coefficient is also determined by a {Eq. (4.5.51)) and the profile data. This leads to Cy-vs-n
curves from momentum theory (Eq. (4.5.54)) and from the profile data. The point of intersection determines
the operating point of the blade element (Fig. %.52). Because of the applicaticn of symmetric profiles for
vertical-axis turbines, the multiple solutions are restricted to the stalling area in most cases. At high
A, there is also the possibility, that no solution can be obtained.

When A and "a'" have been calculated (single streamtube) or "a'" has been calculated for a given A
(multiple streamtube), the power coefficient can be determined from:

T

-
R

N

N\

N e ar .,_._,,.‘:,?,. prmer - pe T MWTITET S AT TS NTYDyRe Terw T 0 S > mpe




[,

R2 4+n (e/R)d(z/R) +1 U c
2 2 e { (—631)20l sin a[l-(fi)cotga]d¢ . (4.5.55)
1

Bc
Cp = A ( —
P Ro Sref -n 2n sin y -1

In case of a parabolic blade shape, Rg/Sref = 3/8n.

4.5.7.3 Vortex theories

Section 4.5.3 dealt with a vortex theory for a two-dimensional vertical-axis turbine with an infinite
number of blades. When a non-expanding wake and a constant vortex transport velocity in the wake were
assumed, a rather simple vortex model appeared.

The extension of the theory to three dimensions for a turbine with straight blades of finite length
by applying a simple aspect-ratio correction to the lift and adding a corresponding induced drag term to
the profile drag might seem to be obvious.

The trailing vortex system of a vertical-axis turbine differs, however, from that of an airplane
wing in level flight, viz.:

- The trailing vortex sheet is not straight, but has a cycloidal shape.
- The steength of the vortex sheet varies downstream due to the orbital lift variation.

The above simple approach can be used as a first step, but a more complete description of the vortex
system seems desirable (Giromill, Ref. 4.28; see also Ref. 4.27).

The combination of trailing vorticity (due to spanwise lift variation) and shed vorticity (due to
orbital lift variation) iz ~ciwon in helicopter aerodynamics (see e.g. Ormiston, Ref. 4.37). The vortex
system for a helicopter in high-speed forward flight is often simplified to a planar wake, which is,
however, not possible in case of a three-dimensional Darrieus wind turbine.

Within the assumption of 2 non-expanding wake and a constant transport velocity, the basic idea of
Sect. 4.5.3 (Fig. 4.36) can stil) be used, i.e. at a fixed spanwise and azimuthal position at the rotor
circumference, each passing blade brings the same amount of shed and trailing vorticity in the wake. This
vorticity is transported downstream by a constant velocity, which results in 3 streamline with equidistant
patches of vorticity. In case of a rotor with an infinite number of blades, the wake is completely filled
with vorticity and the straight streamiines are lines with a constant vorticity.

The main compiication of a three-dimensional wake is, that the orientation in space of the vorticity
vector differs from streamline to streamline. This will be exemplified by considering the idealized case
of a spherical Darrieus turbine (Fig. 4.53). The only purpose is to show the complexity of the problem.

When a high A and a -onstant transport velocity (1-a)U are assumed, the relative velocity and angle
of attack are approximately:

U ~ QRO cos 6 ,

rel
Vg = (1-3)U cos & cos 6 ,
thus:

amvp/U = {(1-a)/2} cos ¢

The bound vorticity of one blade is

ry = ¥ cU =_&C]ac(!-a)U cos ¢ cos & . (4.5.55)

The shape of the vortex sheet, springing from a blade at position ¢, can be described by

X =R cos 6 cos(4-at) + Ro[(l~a)/A]Qt ,

Y =R cos 0 sin(¢-at) ,

7= Ro sin 8, (4.5.56)

and the shape of the vortex sheet of blade number i of a B-bladed rotor

X; = R, cos © cos (¢+i2n/B-0t) + Ro[(l-a)/x]ﬂt ,
Y, = R cos 0 sin(¢+i2n/g-0t) ,
Z, =R sino , (4.5.57)

with 0 € i < B-1,

The shed vorticity is parallel to the local blade span, but the trailing vorticity is tangential to
the vortex sheet, which is not tangential to the sphere, as can be seen from Eq. (4.5,56). The vortex-
sheet shape, springing from an orbital position ¢, depends on two parameters 8 and t, and can locally be
described by two vectors, viz.

> _ (3 ?Y az)

To™ \36° 20" 30’ '
id aX 3Y 3l
re = (a_t-’ 30 '3—{) . (4.5.58)

The strength of the vortex shezt due t» shed and trailin; vorticity can be calculated by dividing the shed
and the trailing circulation by the c.rresponding length ¢° the vortex sheet at the time of origin (t = 0)
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in t and 9-direction, respectively., Thus with

P _»»—»i
ds = [ro.rO] do , dst = [rt.rt] dt

0
the vortex sheet strengtt becomes (with |d¢l = Qdt)
\ My g
Yo = 33—-18;27::3 = i(c/Ro)C]c(l-a)U cos O sin ¢/W ,
(shed vorticity) with
W= [cos2 0 + 2[(1-a)/A) cos 6 sin ¢ + [(I-a)/xlz]i , (4.5.59)
= - EIE do = ¥(c/R)C, (1-a)U sin 8 cos ¢ (4.5.60)
Ye 3¢ (ds,) o' 1 ’ to
S 0’ t=l} a
L_ (trailing vorticity). N
The direction of the shed vorticity is parallel, but opposite to (rg).q and the direction of the trailing
vorticity is also para[}el and opposite to (Fi)t»o- These directions can be given by the "direction cosines"
of the vectors F% and ry, thus at t+0
cos (8,x) = %% T%—T = - sin 6 cos & , with (rol = [F:).FB]i )
0
cos (8,y) = %% l: T=" sin 8 sin ¢ ,
0
.5.61
cos (0,z) = %% T%—T = 4+ Co5 0 ; (4.5.61)
9
X |1 .
cos {(t,x) = FTET S [cos 8 sin ¢ + (1-a)/AI/NW
t
cos (t,y) = %% T%—T = - (cos 0 cos ¢)/W ,
t
{ cos {t,z) = %% |: = 0, with Ir d = [F:.F;]i . (4.5.62)
t

The Eqs (4.5.56) through (4.5.62) describe the vortex sheets for a finite number of blades. With the for-
mula of Biot-Savart, the induced velocities can be calculated, at least in principle.

A possible simplification is to look at the limit B»>=, c+0 for Bc/R, finite, in which case the wake
is filled continuously with vorticity. In order to facilitate the application of the formula of Biot-
Savart, the shed and trailing vorticity have to be decomposed in components parallel to the x, y and
z=axis.

This decomposition of the vorticity in the FB- and F;-directions into the x, y and z-directions can
be visualized by considering a volume of the wake which is spanned by the line elements dsg, ds and 4x.
The first two elements are taken at t = 0, and the third element is the distance in x-direction covered by
the vortex sheets of all B blades, i.e. during a complete revolution, thus

ds0 = Rodo ,

dst

or because dt = -d¢/Q , (4.5.63)

[ ds, = R W d¢ ,

AX = 2nRo(I-a)/A .

fR W dt ,
[}

The amount of rotation contained in this volume in the direction of the shed (8) and trailing {(t) vorticity
is

B .
dry = By ds, = -} EE ¢ (i-a)URo cos 6 sin ¢ do ,
i [o] a
B .
) dr, = By dsy = + ﬁi Clu(l-a)URO sin 6 cos ¢ de . (4.5.64)

When these circulations are divided by the respective areas normal to the direction of dl'g and dfy, the
rotation in FB and ry direction are obtained (wg, wy). When it is remembered that the volume of tie paral-
lelepiped is

bx ds, ds, lcos (t,y)1 lcos (0,z)1 = Vol,

> -
the areas normal to To and r, are

Vol
|d50[

Vol

and |d5t[ .

Thus
dr0

Yo ® &x ds, Tcos ¢,y T Teos 18,21 *

————
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t = Bx dsy lcos (t,y)1 icos (0,z2)1

These rotations can be decomposed in x, y and z direction, viz.:

wy = Wy €OS (8,x); wy = Wy €OS (0,y); Wy = Wy COS (0,z);

X Y z

(¢

wtx = w, €os (t,x); wty = w,_ cos (t,y); wtz =90

After some straightforward calculations it follows that

- -9 Bc 1-a sin 8 cos ¢
N T R, Cla *» Tcos 01 fcos 6] lcos &1 °* (4.5.65)
Q Bc C sin 6 cos ©
R T E; Vo Teos o1 Tcos 01 Icos &l (4.5.66)
Q Bc sin
w, ="y -‘g Clu -‘—i\-cos S . (4.5.67)

The rotation in the wake inside the sphere stems from points {R,, 6, (n-4)}, whereas the rotation in the
wake behind the sphere consists of the sum of the rotation from the points {R,, 0, ¢} and {Ry, 0, (n-4)}.
When this is taken into account it may be shown that the rotation components in the y- and z-direction in
the wake behind the sphere are twice the values inside the sphere and that the rotation component in the
x-direction in the wake behind the sphere is zero.

The vorticity components w,, and wy are independent of x, except the jump at the boundary of the
sphere, and can be described in"cylindrical coordinates (x, r, 6).

From the Eqs (4.5.66) and (4.5.67) it can be shown that the vortex lines in the wake are concentric
circles with a vorticity distribution depending only on the radial coordinate r, viz.

= (a/tm) (Be/R )T, (e/R) [1-(r/R)2]E (4.5.68)
o

“ateral

inside the sphere and twice that value in the wake behind the sphere. The rotation becomes infirite at the
wake boundary (r/Ro = 1), but the total amount of rotation (circulation) integrated along a radius is
finite, Behind the sphere, this value is

1

Tiateral = @/4m) (Be/R)C R [ (r/R) [1-(r/R )?2] *d(r/ao) = (aR /8n) (Be/R T, . (4.5.69)

a0 a
When this is taken to be accumulated in the wake bcundary, the ''lateral' vortex wake behind the sphere
consists of a cylinder with a constant vortex sheet streng*h equal to the value of Eq. (4.5.69). Such a
cylindrical vortex shezet induces an axial velocity far beh nd the sphere equal to Yiat.® which can also be
expressed by an axial induction factor 2a. This leads to tie following approximate expression for the
average axial induction factor at the sphere

a= ()\/16n)(8c/R°)CI . (4.5.70)

o
It is interesting to compare this value with the approximate values of the two-dimensional theories Eqgs
(4.5.8), (4.5.11)), although the contribution of the bound vorticity is not included in Eq. (4.5.70).

The strength of the bound vorticity can be obtained from Eq. (4.5.55) by substituting for the chord
length

¢ = oRo/B ,
and by defining the bound vortex sheet strength by
rb [
Yb = tnm E;E——ESE-57§ = n? cl (l-a)U coS ¢ = YO COoS ¢ . (h.5.7|)
-+ @ o] a
c—+0

g = constant

From symmetry conditions it follows thav, in the y-z-plane through the axis of the rotor, this bound vor-
ticity distribution induces only velocity components in the y-z~plane and no components in x-direction.

It can also be shown, that on the average there is no axial flow through the turbine due to the bound vor-
ticity (i.e. no contribution to "a", Eq. (4.5.70)), but there is an average lateral flow through the tur-
bine. .
The direct calculation of the flow due to the bound vorticity of Eq. (4.5.71) is complicated and will
not be investigated further.

The structure of the axial rotation (mx), which exists only inside the sphere, is rather complicated
and induces only velocity components in y- and z-direction, in that way also contributing nothing to the
axial induced velocities.

it must be remembered that the above exercise has been done for a given bound vorticity distribution,
vhich was a first~order approximation of the bound vortex distribution of a turbine with B + «. A next
step would be to start with an unknown bound vortex distribution in a way similar to Ref, 4.25 for the
two-dimensional vertical-axis turbine with B + », Such a calculation will not be executed here.
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4.5.7.4 Experimental results

In contrast with the horizontal-axis turbine, there are rather complete test results for the Darrieus
turbine. Most of these results are obtained in a8 wind tunnel. This has the advantage of constant and pre-
dictable test conditions (contrary to the stochastic wind conditions in field tests), but the disadvantage
of a small size of the model turbine (low Reynolds number) and sometimes large and therefore uncertain
blockage corrections on the test results (rotor height ia the order of magnitude of the test-section
height). . .

The detrimental effect of very low Reynolds numbers is clearly demonstrated by the preliminary tests
of Ref. 4.38. Due to the small scale of the model, the Reynolds number related to the blade chord was
about 2x10% and, therefore, the profile drag excessively high. This led to very small and even negative
Cp-values in the normal operating range of the model turbine. Only by estimating the power loss due to the
extravagant profile drag, the authors were able to show the energy-producing potential of the Darrieus
turbine.

Ref. k.39 describes the tests «f a 4 ft diameter Darrieus turbine in the 30 ft x 30 ft NAE wind
tunnel. There were, however, some trouble, with blade imperfections, therefore, the tests of Ref. b, k40
with a 12 ft diameter turbine in the same wind tunnel have to-be regarded as the final results,

Figure 4.54 shows the drag coefficient Cp and the power coefficient Cp as a function of the tip-speed
ratio, as obtained from the experiments of Ref. 4.40, together with the calculated results of Ref. 4.21.
The large discrepancy in Cp is caused by the drag of the turbine support, which is included in the experi-
mental data but not in the calculated data. Ref. h.h0 quotes a support drag (rotor inoperative) of
ACp s 0.25. When the rotor is operative, the effective support drag will be lower, and Fig. 4.54 suggests
that the calculated results are not unrealistic.

The calculated power coefficients show discrepancies, especially at low A (stalled blades), but the
effect of rotor solidity is strikingly well predicted.

Ref. 4.41 gives a rather extensive set of wind tunnel test results. An interesting aspect of these
tests is the influence of the Reynolds number on Cp. This could be accomplished by keeping the angular
velocity of the turbine constant duriig one test run, because the relative velocity (and thus the Reynolds
number) depends largely on the angular velocity and only to a minor extent to the wind velocity.

Figure 4.55 shows a rather large influence of the Reynolds number on Cp. Figure 4.56 shows the in-
fluence of the solidity ratio on Cp. The influence on the operational \-range agrees with the results of
Ref. 4.40 (Fig. 4.54), but the influence on the maximum obtainable Cp is less pronounced. This might be
due to the variation of Rec during the test runs of Ref. 4.40; the one-bladed rotor was tested at smaller
maximum angular velocities than the three-bladed rotor. In this respect, it is interesting to notice that
Ref. 4.22 claims a better agreement with experimental results, using multiple-streamtube theory instead of
single~streamtube theory. This is only true, however, when the experimental results of Ref. 4.4l are used
(see Fig. 4.57).

Ref. 4.23 gives results of wind tunnel tests on a very small Darrieus turbine (diameter 0,250 m) with
a solidity Bc/Ry = 0.256. In these tests the power output was obtained from the difference between measure-
ments at a fixed angular velocity '"'wind on" and "wind off''. This means that the power coefficient is cor-
rected for the profile drag, which is excessively high at these low Reynolds numbers. The results obtained
will not be very accurate, but the main objective of that investigation was to study the influence of wind
shear on the Darrieus turbine.

Ref. 4.42 mentions some ficld tests on a Rarrieus turbine with a diameter of 4,72 m. The Reynolds
numbers obtained during these field tests were quoted as Re. = 1.1x108, The optimum Cp was about 0.hk,
which is fairly high. A large problem in field testing of a wind turbine is the determination of the refer-
ence wind velocity. For some revealing discussions on this subject, the references L.43 and h Lk might be
consulted.

L.5.8 Concluding remarks

Performance~prediction theories for the Darrieus wind turbine are based primarily on momentum con-
siderations, while only induced velocities in wind direction are taken into account.

There are two variants, viz. the singie- and the multipie-streamtube theory. It is difficult to
assess these theories by comparing them with experiments.

The two-dimensional vortex theory (Sect. 4.5.3) indicates a preference for the multiple-streamtube
theory, and certain experimental data emphasize this view.

The above-mentioned performance-prediction theories do not take into consideration a number of ef-
fects, which relative importance could be estimated in a two-dimensional case, viz.
- The variation of the induced velocities along the circumference of the turbine, which leads to blade
load differences at upwind and downwind blade positions.
- Stream-curvature effects, i.e. the effect of the finite blade chord.
- Unsteady effects.

In the setting up of a computer code, including vortex wake effects, the influence of a finite blade
chord and unsteady effects seems a formidable problem. The vortex-wake calculations will probably be
restricted to a cylindrical wake (no wake expansion) and also vortex sheet roll-up effects will be too
complex to deal with in a first attempt. The inclusion of finite-chord effects necessarily implies a
careful consideration of the blade leading edge (suction peok, tangential force), whereas unsteady ef-
fects can also only be taken into account in unseparated flow conditions, which limits the applicability
of the calculation method appreciably, because flow separation is present over a large range of X.

On the other hand, the geometry of a Darrieus turbine is to a large extent fixed by constructional
considerations and, consequently, .here are only few parameters left for an aerodynamic optimization
procedure. Therefore, the question can be put forward whether such a refined performance prediction
method is really needed. The situation is further complicated by the turbulent (unsteady) effects, which
are present in the atmospheric boundary layer and are neglected in the above-mentioned calculation methods,
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The aerodynamics of a Darrieus turbine is, however, an interesting subject and will attract investi-
gators to study some aspects thoroughly. Such studies can only lead to practical results when the before-
mentioned three aspects are included in a balanced manner.
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= 0.24/(aB) = factor in Eq. (5.1.28) (-)
axial induction factor (-)

distance between turbine and reference anemometer, measured in wind direction in Fig. 5.21 (m)

distance upstream of turbine in Fig. 5.19 (m)
= (UH-UiH)/UQH = wind shear coefficient {-)

number of rotor blades (-)
constant in logarittmic formula of Eq. (5.3.1) (-)

distance between turbine and reference anemometer, measured perpendicular to the wind direction

in Fig. 5.21 (m)
width of wake (m)
half-width of the wake (m)

chord of rotor blade (m)
turbine drag coefficient (-)

drag coefficient of blade section (-)

1ift coefficient of blade section {-)

= 3C)/%a = 1ift curve slope (radian-1)

coefficient of bending moment at the blade root in Eq. (5.1.23) (-)

coefficients of moments about the y- and the z-axis through the rotor (-)

normal force coefficient (-)

torque coefficient (-)

tangential force coefficient (-)

coefficients of forces in y- and z-direction (-)

mean-square value of the variations of the normal force coefficient (-)

rotor diameter (m) .
spectral density of the wind velocity fluctuation (m2/s)

normsl force distribution in Eq. (5.1.7) (N/m)

dimensionless normal force distribution in Eq. (5.1.8) (-)

frequency (Hz)

probability density of wind fluctuation u (-)

= (Ui/U‘)3 = power ratio of turbine i in an array, defined by the turbine density A (-)

power ratio of a turbine in an infinite array (-)

tangential force distribution in Eq. (5.1.7) (N/m)
= (U + ul)/U = gust factor (-)

dimensionless tangential force distribution in €Eq. (5.1.8) (-)
dimensionless lateral covariance (-)

keight of rotor (m)

height of centre of rotor area or hub height (m)

local blade setting angle (degrees)

= wlref/Uref = reduced frequency (-)

Von Karman's constant in Eq. (5.3.1) (-)
effective height of surface roughness (m)

surface roughness of the terrair without turbines (m)

length scale of turbulence in Eq. (5.1.35) (m)
separation distance between turbines (m)
lateral scale of turbulence (m)

reference length in reduced frequency (m)

exponent in power-law wind-velocity distribution (-)
normal force or axial force (N)

number of turbines in an array (-)

power (W)

design power (W)

power absorbed by turbine number i (W)
power output of an isolated turbine (W)
design or "rated" power of a turbine (W)

power output of turbine number N in an array (W)
probability of occurrence of a wind velocity U (-)
probability of occurrence of a positive wind fluctuation u; (~)

power output of turbine number 1 and number 2 (W)

torgue of rotor (Nm)
local radius or distance between turbine and reference anemometer (m)
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R(N) = [P(N+1) - P(N)]/Po = ipcremental power ratio of turbine number N+ in an array (-)
Ro maximum radius or tip radius of a rotor (m)
R, (&) covariance of velocities at two points, separated by a dimensionless distance ¢ (m2/s2)
Sland land area occupied by one turbine in an array (m2)
Sref reference area of a turbine; area swept by the rotor (m?)
S spoiler area (m?)
T tangential force (N)
T integration time (s)
t time (s)
1] wine velocity (m/s)
u wind velocity fluctuation (turbulence) (m/s)
Yy design wind speed (m/s)

: ug contrioution to velocity fluctuation from frequency f (m/s)

- Uy wind velocity at the heighest point of the rotor area (m/s)
Uy wind velocity at hub height (m/s)
U, wind velocity at turbine number i (m/s)
U, cut-in speed (m/s)
un maximum velocity defect in turbine wake (m/s)
Y, cut-out wind speed {(m/s)
Yo wind velocity outside the atmospheric boundary layer (geostrophic wind speed) (m/s)
Upel velocity relative to blade element of rotor (m/s)
Ul wind velocity at the first upwind turbine in an array, i.e. the undisturbed wind velocity (m/s)
u wind velocity increase during a gust (m/s)
Uio wind velocity at a height of 10 m (m/s)
y* = (r/p)i = friction velocity (m/s)

s y'* effective friction velocity with turbines present (m/s)
u(h) wind velocity at hub height for isolated turbine (m/s)
u'(h) wind velocity at hub height for a turbine in an array (m/s)
U'(kso) wind velocity at effective roughness height k__, with turbines present {m/s)
av difference in axial wind velocity due to a small yaw angle 8 (m/s)
v velocity component in y~direction (m/s)
av lateral velocity component due to a small yaw angle 8 (m/s)
X = N = force component in x-direction (N)
X co~ordinate in wind direction (m)
X = fL/U}y = reduced frequency in Eq. (5.1.35a) (-)
Xo virtual origin of self-preserving wake (m)
X1 = -UT/R = dimensionless integration distance (-)
y horizontal co-ordinate perpendicular to the wind direction (m)
y = fL/U,, = reduced fraquency in Eq. (5.1.35b) {-)
z, Z vertical co-ordinate (m)
Z, lowest point of rotor area (m)

| Z‘er hub height {(m)
a angle of atiack (degrzes)
a exponent in power-law wind-velocity distribution (-)
B8 wind direction or yaw angle (degrees)
Y blade slope of troposl.ien (degrees)
Y strength of vortex sheet in Fig. 5.18 (m/s)
é thickness of atmospheric boundary layer (m)
61, 8, fictitious boundary laver thickness without and with turbines present (m)

I €gen energy dissipation in atmospheric boundary layer due to wind turbines (W/m?)

€y energy dissipation due to surface roughness (W/m?)
e; energy dissipation due to surface roughness with turbines present (W/m?)
e = r/R = dimensionless radial co-ordinate in Eq. (5.1.29) ()
14 = (x+xo)/D = dimensionless downstream co-ordinate in Eq. (5.3.14) (-)
n = (Z-Ziﬂ)/ﬂ = dimensionless vertical co-ordinate in Eq. (5.1.11) (-)
n = r/(b/2) = dimensionless wake-width co-ordinate in Eq. (5.3.13) (-)
0 angl- between U_, and the plane of rotation of the rotor (degrees or radians)
Op blade-pitch angie (degrees)
A = AR /U = tip-speed ratio (=)
A = 5.ef/S)ang = turbine density in an array (-)
Aopt tip~speed ratio at which the optimum power coefficient is reached (-)
P density of the air (kg/m3)

e

*@ "\;gj'ﬁj,r r—/ﬁ.lwiwzgz@pwmwsf T RIS T S YO T - *




solidity ratio of the turbine (-)

wall shear stress (atmospheric boundary layer) (N/m?)
wall shear stress with turbines present (N/m?)
azimuth angle or orbital position of blade (degrees)
vertical energy influx for a finite array (W/m¢)
vertical energy influx for an infinite array (W/m2)

error function (-)

angular velocity of the rotor (radians/s)
= 2nf = angular frequency (s~!
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5.1 Effects of flow inhomogeneity and turbulence

5.1.1 lIntroductory remarks

In Section 4 the theory for horizontal- and vertical-axis wind turbines in a non-turbulent homogeneous
air flow is discussed. An actual wind turbine is, however, submerged in a turbulent atmospheric boundary
layer, i.e. the turbine is subjected to a vertical increase of the average wind velocity (wind shear) and
to velocity fluctuations in space and time (turbulence, unsteadiness). Moreover, the local meteorological
situation may vary more or less rapidly, e.g. by the passing of a depression or thunderstorm. This makes
the description of the velocity field surrounding the turbine even more complicated, because the inter-
action between the turbulent wind flow and the rotating wind turbine is a non-stationary stochastic pro-
cess.,

This last phrase means that the stochastic process is not simply characterized by an average value
and a complete set of moments of fluctuations of wind velocity and direction, but, for ‘astance, that the
average wind velocity depends on the integration time considered and does not reach an unequivocal value
even by letting the integration time growing to very iarge values.

When one Jeals with the influence of the turbulent flow on the wind turbine, it is useful to distin-
guish between turbulent fluctuations on a scale larger than the rotor diameter and fluctuations on a
scale smaller than the rotor diamecer. The underlying ic2a 's that fluctuations can only affect the tur-
bire as a whole if the fluctuations act on all blade elem: s simultaneously, i.e. the fluctuations must
have a scale of the order of the rotor diameter or larger. F'uctuations with a smaller scale tend to have
opposite effects on different blade elements and the integrated effect might tend to zero. The small-scale
fluctuations may also have a deteriorating effect on the rotor performance, e.g. by inducing a local blade
stall,

The definition of the integral scale appearing in the theory of homogeneous turbulence may be used
for the above-mentioned purpose, but it is not very suitable.

Because there is a kind of inverse relationship tetween scale and frequency, it might also be possi-
ble to define a low-frequency range in which the turbine as a whole is affected, and a high-frequency
range of turbulent fluctuations which have only a local eifect on the rotor blades. It is clear, however,
that a more specific statistical analysis has to be set up to obtain an adequate description of the ef-
fect of the turbulent wind flow on the turbine.

Much information about wind fluctuations, peak velocities, etc., can be found in the literature deal-
ing with industrial aerodynamics and a thourough survey of this literature seems profitable for a wind

turbine designer. Such a survey has not been made in this report, but the reader is referred to the work
of Frost (Ref. 5.1).

Besides the influence of the turbulent wind on the turbine with respect to the power production, the
influence on the blade loading is perhaps even more important. Two aspects of the blade loading must be
emphasized here, viz.:

- Ihe extreme gust in connection with the specification of an ultimate load case for the rotor blade
Ref. 5.1).
- The contribution to the fatigue loading due to the lasting velocity fluctuations. This is also closely
connected to the elasto-mechanic behaviour of the turbine to these load variations.

This Sections deals only briefly with the aerodynamic effects related to wind shear and turbulence,
because the last item is an underdeveloped area in the literature. The aspects of the turbulence of the
wind in relation to turbdine controi, will be discussed in Section 5.2. The problems connected with field

tests have been mentioned in Section 4.5.7.4 (see also the Refs 5.2 and 5.3), and will not be discussed
in the subsequent Sections.

5.1.2 Effect of wind shear

Due to the friction with the earth surface, the wind velocity is reduced close to the earth surface,
which leads to a kind of "boundary layer", the so-called "atmospheric boundary layer'. The vertical varia-
tion of the average wind velocity {wind thear) is often iepresented by a power law (see Sect. 2.2.3) or by
a logarithmic law (see e.g. Ref. 5.4), both valid in the lower part of the atmospheric boundary layer (say
up to 1060 m). There are meteorological conditions where the logarithmic and power laws do not apply, but
on relatively flat terrain and wind velocities above say 5 m/s, these cases will be relatively rare.

In practice, the rotor of a wind turbine is placed at some distance above the ground to avoid the
extreme low-velocity part of the atmospheric boundary layer (low energy content). This results in a more
or less linear velocity increase over the height of the rotor (see Fig. 5.1).

The average wind direction will also vary with hkeight in an atiospheric boundary layer, but this ef-
fect will be negligible over the rotor height in most cases.

The influence of a vertical wind shear on a vertical-axis (Darrieus) wind turbine is rather easily
estimated by means of the multiple-streamtube theory (Ref. 5.5}, by assigning to each streamtube its cor-
responding wind velocity. It is also possible to divide the rotor area in horizontal slices, each with
its own value of ihe wind velocity, and to apply the single-streamtube theory to each slice separately,
Which of the two methods gives the best estimate is difficult to assess, but there is an indication that,
in homogeneous flow the multiple-streamtube theory gives better results (see Sect. 4.5.3) and it is to be
expected, therefore, that this will also be the case in a shear flow.

In case of a wind shear, there is some arbitrariness in the choice of the reference wind velocity to
calculate Cp. There is a growing acceptance of taking the wind velocity at half the rotor height (ZiH’
Fig. 5.1).

The influence of a wind shear on a Darrieus turbine can easily be demonstrated by comparing the
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output of the same turbine in a uniform flow by making use of the symmetry propertics of the rotor about

Ziy.
Pefining a dimensionless vertical coordinate

n= (Z'Z;“")/q ’ (5.‘-])

the contributions of the horizontal slices of the rotor to the power coefficient Cp ina uniform flow can
be represented by

dCP/dn ,

which has to satisfy the following conditions:

+} .
(dCp/dn), = (dCp/dn)_, Cp = [ (dCp/dn)dn , and (dCp/dn) o\ _y =0

To satisfy the above conditions (representing the power output about xopt) the simplest interpolation for-
mula is

3 42
dCp/dn = 3 Cp(l hn?) (5.1.2)
which formula will be used to give a first estimation of the wind-shear effect.

In case of a linear wind shear, the velocity distribution can be written as {(Fig. 5.1):
U/Uy, = 1+2an , with a = (uH—U,"H)/U,"H . (5.1.3)

The power output of each slice depends on (U/U H)3, and when it is assumed that small variations of the
local X do not affect the dC,/dn around A__ ., the power coefficient in a wind shear (C;) is
p opt Plws
3 H 3
= = ~fin2 3dn = 2
(Cplys =5 & S (1-hn?) (1+2an)3dn = C, (145 a%) . {5.1.4)

This shows that the power output in a linear wind shear is only slightly larger than the power output in a
uniform flow with a velocity equal to UiH'

In Ref. 5.5, the influence of the wind shear is calculated for a 1/7th-power-law velocity profile
with Zg = 0 (or Zyy = H/2, see Fig. 5.1), which reveals a slightly smaller power output than in a uniform
flow.

When a power law velocity profile

U/Uyy = (20+1)T {£.1.5)
is taken, the power coefficient in a wind shear can be estimated from
+3 3m+2
=3 42 3m, _ 3 (2)
(CP)wS =3 CP I (1 lm )(21’]'”) dn = ) CP W . (5.]6)

In a uniform flow, m = 0 and (Cp), = Cp. In the casem = 1/7, (Cp)yg = 0.9699 Cp, which shows a slight
decrease of the power output duc to the wind shear, in agreement with Ref, 5.5,

The above estimates are only representative for the situation at xopt' For tip-~speed ratios differing
strongly from Aoptv £q. (5.1.2) does not give an adequate represertation of the distribution of Cp across
the rotor area and the influence of 3Cp/3X has also to be taken into account. It is obvious, however, that
the effect of a wind shear on the power output is smali. It is also shown, that the assumption of a
linear wind shear may lead to power changes with a different sign. The differences will be less when
2 # 0.

o

Instead of the limited discussion above, it would be possible to set up a more complete analysis by
taking dCp/dn = (1), but a direct calculation as that given in Ref. 5.5 seems preferable.

The influence of the wind shear on the blade loading of a Darrieus turbine could be estimated in a
similar way, but the influence will certainly be small, because of the small effect on Cp shown above.

The influence of a wind shear on the power output and the blade loading of a horizontal-axis wind
turbine is more complicated, because each blade element is subjected to a varying wind velocity during a
revolution of the rotor. Therefore, apart from a possible effect on the power output, a stationary wind
shear causes a varying blade load during a revolution (blade fatigue). It is possible to estimate the
effect a wind shear by a method developed originally by Glauert (Ref. 5.3). This method resembles the
above~given estimates for the Darrieus turbine in so far that it makes use of the known distribution of
normal! and tangential blade loads in a uniform flow, but the analysis is more complicated.

Ref. 5.6 uses the blade-element theory more directly, but the linearized results agree with those
obtained from Ref, 5.7. An almost similar analysis is given by Ref. 5.8, but no explicit formulae are
given. Below, the effect of a wind shear will be estimated by the method of Ref. 5.7.

In homogeneous flow, the totai normal force and the total torque for a B-bladed rotor can be obtained
from dN and dT on the blade elements, thus (cze Fig. 5.2)

N=X=8fFr ; Q=-H, =8/fGrdr ; (5.1.7)
or in dimensioniess torm,
N r Q r r
[V p— gsjfd(.._) . C=-————-—=B[g——-d(——-) (5.1.8)
N 2 2 R TR 2 3 R R !
ipUiH nRo (o) !mu‘lH nRo () o

BRFY
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where f and g are functions of A and r/R,, which can be calculated from the theory of Section 4.4,
A rotor at constant § in a wind shear might exhibit different forces and moments (Fig. 5.2), which,
in general, can be calculated from

8
Lo (enaf), dlg)

CN +Arn .
i=1

B8
C, 80y = ] [ (g+dg); sin ¢ d({—o-) )

B
C, +4C, = ;El f (g+bg); cos ¢, d(."%;) ,

8
C, +aC, = ) J (g+bg), = d(=)
e e i=l ! Ro Ro
8 r r
c, *8C, = Z J (f+a£), = sin ¢, dlz)
y Y i=1 [} [}
B . r
¢, +C = I J (f+af), g cos ¢, dlg=) (5.1.9)
z 4 i=1 [} [}

with of and Ag the increments in f and g due to the increment of the wind velocity AU with respect to Upy.

It must be noticed that Cy = C; = C, = sz = 0. /
The increment of the wind velothy ledds to a variation of X, viz.
-1
aad = a8 /(U +0) = (@R D[ 14070, ] 1= 00y, ] (5.1.10) |
The increment in F can be calculated quite generally from
JF 3F
AF = sﬁAU + STAX ,
or with €q. (5.1.10) and because 2(U2)/0U = 2U = Wy
oF = oF § - R B L B ador
IH iH iH
or in dimensionless form
of = - (2 (5.1.11) .
3H !
In a similar way, it can be obtained that
rg = 4L (243294 (5.1.12)
iH
In the case of a linear wind shear, AU/U%H can be written as
AU/U%H = a(r/Ro) sin ¢, with a = (UH-UW)/UiH (5.1.13)
With the Eqs (5.1.11) through (5.1.13), the forces and moments on the complete rotor or on a single rotor
blade can be calculated from the Eqs (5.1.9). The main difficulty, however, is to obtain expressions for '
f and g. Figure 5.3 gives an example of an f- and g-distribution, calculated for a two-bladed rotor with |
the theory of Sect. L.h.3.1. Tip effects and partial blade stall make it very complicated to find analyti- |
cal expressions; therefore, a numerical approach seems inevitable. In order to indicate some general ;
trends of the wind-shear effect, calculations will be shown with strongly simplified expressions for f and |
g, viz. '
f = (0.24/8)Ar/R and g = (0.30-0.021)/8 (5.1.14) 1
J Figure 5.4 shows these simplified distributions for a two-bladed rotor (compare these simplified distribu-
tions with the distributions of Fig. 5.3). ;
A In order to get an impression about the A-range in which the simplified expression may apply, the
Cy» Cq and Cp are calculated from f and g, which leads to the following expressions (see Fig. 5.5) |
I
oy = .12 , |
= 0.15-0. , 1
CQ 0.15-0.01)
Cp = 2{0.15-0.012) (5.1.15)
The increments in forces and moments due to the wind shear can now be calculated from the Eqs (5.1.9) and
(5.1.11) through (5.1.14),
1
1 B
4Cy = 0.08xa iz sin ¢, (5.1.16)
. 8
4ty = 0.01(30-3)a g iZI sin? ¢ (5.1.17)
i
{
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, B
8C, = 0.01(30-A)a 5 I sin ¢, cos ¢; (5.1.18)
iat !
, B
AC, = 0.00666(30-)\)a = } sin ¢, , (5.1.19)
Q B4 i
1 8 .
86, = 0.060ag I sinZ¢, , (5.1.20)
Yy =1
, B
Acmz- 0.06)a % 121 sin ¢, cos ¢; . (5.1.21)
It must be remembered, that
B .
1 = Jsing ifB=1
5 L s {o 82 ,
1 % Gin? o o SN2 P iEB<2
B L, LI if833 ,
1 8 sin $ cos ¢ ifBg2 ,
B iz sin ¢, cos ¢, = {0 1853 . {(5.1.22)

The following general conclusions can be drawn from the above formulae:

- The normal force (or drag (y) and the torque (Cg) are not affected by a linear wind shear, except in
case of a one-bladed rotor,

- The side force (Cy) and the “pitching" moment (C, ) vary as sin? ¢ in case of a one- or two-bladed
rotor, and show a constant non-zero value in case’of a three- or more-bladed rotor. |t must be noticed,
that Cy and Cp , do not change sign during a revolution,

- The vertical fdrce (C7) and the 'yawing" moment (sz) vary as sin ¢ cos ¢ in case of a one- or two-
bladed rotor and are zero for a three- or more-bladéd rotor.

- The force and moment variations of one blade of a B-bladed rotor can be obtained from the above formulae
by restricting the sum to B = 1, maintaining the factor 1/8,

To get some insight into the order of magnitude of the varlations due to the wind shear, Fig. 5.5
shows Cy, Cq and Cp versus A in a uniform flow, and Fig. 5.6 shows the force and moment increments due to
a lin§ar wind shear with a = 0,10 (an increase of the wind velocity of 20 % over the rotor height is
large).

From the figures, it appears that the maximum force increments during one revolution are small with
respect to Cy in uniform fiow, which can be regarded as a representative force in connection with the sup-
port of the rotor axis. The moment increments, however, especially the pitching moment Cp , may give a
significant contribution compared with the torque of the rotor Cq (notice that the maximuh of sin? ¢ =1
and of |sin ¢ cos §| = %),

The load variation on one blade of a B-bladed rotor can be obtained from Fig. 5.6 by dividing the
variation with A by B and taking the multiplication factor for B = 1, These load variations have to be
compared with Cy/8 and Cqo/B of Fig. 5.5. The percentual load variations are not large, but might be sig-
nificant for determining fatigue load levels.

Another important blade load fluctuation has to be considered, viz. the blade bending moment at the
blade root. This could be estimated from

C =M /&pUzﬂRg= J £(r/R }d(r/R ) = (0.08/8)A (5.1.23)

ap blade root

ac, = f af(r/R )d(r/R ) = (0.06/B)2a sin ¢ (5.1.2L)
b

This shows, that the maximum amplitude of the bending moment fluctuation is about 8 % of the bending moment
in uniform flow, at a wind~shear factor a = 0.10.

The above-mentioned simplified calculations can be extended by improving the representation of f and
g and by including a non-linear wind shear. The actual calculations, however, bzcome so complicated, that
a numerical approach has to be chosen instead of the analytical one. In such a case, a more direct calcu-
lation with a blade element method seems to be pre’erable.

This could be envisaged by taking the radial wind velocity distribution for a specific blade position
¢ and apply the blade element theory as if this velocity distribution was present at each blade position
(axisymmetric wind velocity distribution). This procedure can be repeated for different blade positions 4.

When the blade loads for a proper set of azimuth angles ¢;(1 = 1,.,, B) are combined, the total rotor
load in a wind shear can be obtaired. Of course, a lot of aspects have been ignored in this approach (e.g.
unsteady szects), but the results might be more useful than the results obtained with the method of Ref.
5.7 or 5.6,

Somewhat related to the effect of wind shear is the influence of a small misalignment of the rotor
axis with respect to the wind direction, i.e. of a small yaw angle 8. This results in a small decrease of
the axial velocity

8U = -U(1-cos B) ~ -jUs% ,
and a small lateral velocity component
AV =U sin 8 » UB ’
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which are_independent of height above the ground or lateral distance. AU is small because of its depend-
ence on B2, AV may not be small with respect to U, but has to be considered with respect to ar = AU(r/Ry),
which is much larger than U over a large part of the blade span. The influence of yaw can be calculated
according to the method given in Ref, 5.7, but the remarks above aiready indicate that the influence s
small at yaw angles up to 10 degrees,

5.1.3 Effect of turbulence and unsteadiness of the wind

A turbulent boundary layer is often described as a steady flow with a velocity U = U(z,x), on which
turbulent velocity fluctuations u,v,w are superimposed. The instantaneous values of the fluctuations can-
not be given in a deterministic way; it is only possible to describe them in a statistic manner by RMS-
values, cross-correlations and spectra.

In an atmospheric boundary layer, the average wind velocity U and also the average wind direction B
are not steady, which makes it difficult to distinguish between U and u,v,w, i.e. between the average
velocity and the fluctuating components.

It is thought that the higher-frequency velocity fluctuations are determined by the local character-
istics of the atmospheric boundary layer (surface roughness, wind shear, temperature gradicnt) and that
the velocity fluctuations connected with variations in average wind speed and wind direction are deter-
mined by the large-scale weather system (barometric pressure distribution) and by large-scale geographic
characteristics (ocean or main land, latitude, day or night), thus leading to much lower frequencies.

Figure 5.7 shows a power spectrum of the wind velocity, recorded during several months, This example
shows that there indeed is an appreciable frequency gap between the high-frequency "turbulent" fluctua-
tions (peak at 40 cycles/h s 0.01 Hz) and the low-frequency "macro-meteorological’ fluctuations (peaks at
0.01 and 0.08 cycles/h). The tentative conclusion can be drawn that the average wind velocity and direc-
tion can be defined by using an integration time of 10 to 15 minutes. The deviations of the instantaneous
velocity and direction from this 10 minutes average is then called "turbulence',

There are many cases in which this separation between average and turbulence is wot so clear, because
of a sudden jump of the velocity to a higher {or lower) value, e.g. during a loval thunderstorm. Also con-
nected with turbulence as it is usually visualized (e.g. the idealization of local isotropy) is the ''gust",
Though a gust can be considered as an exceptional strong,and large-scale turbulent fluctuation, it is
often mentioned separately because of its influence on the turbine loading (strength). In Ref. 5.1, some
information about gusts is given. The time history of a gust (slope of the velocity increase, duration of
increased velocity level, slope of velocity decrease) is defined by a mathematical expression. Probability
distributions for the parameters incliuded in this mathematical expression are given,

The influence of turbulence on a wind turbine is a very complex problem, Ref. 5.9 reports on a first
attempt to calculate the aerodynamic response of a wind turbine to turbulence, To that end, a "pseudo"
turbulence is generated by a computer code and its influence on the rotor is calculated by a blade-element
method. The calculations are still in a preliminary stage.

In order to indicate some of the problems involved, a crude and sketchy discussion will be given of
the influence of isotropic turbulence on the normal force of a separate rotor blade of a horizontal-axis
turbine.

According to blade-element theory, the normal force distribution along the blade span can be calcu-
lated from

de,/d (/R = %Clu(e-i)(c/Ro) (U, /)2 cos 6, (5.1.25)

when the profile drag is neglected. The turbulent fluctuations u,v,w affect U.o| and 8. When a high-speed
turbine (A >> 1) is considered, it can be shown that the influence on U] can be neglected with respect
to the influence on 6. Furthermore, it can be shown that the influence of v and w on @ can be neglected
with respect to the influence of u on 6, which results in the following variation in 0

u/y °
80 ™ T (5.1.26)
("
Because 0 is relative small when A >> 1, cos (6+46) =~ cos 8, and from Eq. (5.1.25) it follows that
L O dc, 5.1.27)
aG7R ) ¥ 8T a7k ) = TXe/R J(6-1) a(r/R) o

In case of a high-A design operating near Ay, the angle of attack a = 8- is almost constant along the
span. When the approximation for dCy/d(r/Ry) given in the Eqs (5.1.8) and (5.1.14) for one blade is taken,
Eq. (5.1.27) can be written as

adCy/d(r/R ) ~ 0.24/(aB) (u/U) = Au/v . (5.1.28)

It must be noted, that A is independent of r/R,, which means that the local normal-force fluctuation is
proportional to the local wind fluctuation,

At a definite instant t, the normal-force variation due to a turbulent velocity difference
u = u(x,y,z,t) can be calculated from

L
syl =4 f g o[ (r/R )] atr/r) .

This is also a stochastic quantity with a time average zero, because U = 0. In order to obtain a
statistical measure of the normal-force fluctuation, the time average of (ACy)2 has to be considered. When
the equation

Fors
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is used, the square of ACN can be calculated from

1 1-r/R
sChe) = A [ alerm) [ ° @ o[ (/R ) ] W[ (r/R )4z, t]ds
o

The time average of this value, indicated by an overbar, could be calculated from the following equation,
with T the integration time needed to obtain a meaningful average, thus

— 1 1-r/R, RRELEIPY
ACZ = A2 of d(r/R ) _{/R g T OI (0] u[(r/Ro),t] uf (r/R )45, t]de . (5.1.29)
[e]

The evaluation of the time integral is very complex, even when isotropic turbulence is assumed that is
transported downstream with the main stream velocity U and that is not affected by the turbine.

In the theory of isotropic turbulence, space averages are assumed to be equal to the so-called
Yensemble'! averages, using the ergodic hypothesis. A time average in a main stream with a velocity U at a
fixed point in space can be related to the space average by the Taylor hypothesis. The ensemble average is
a theo' etical concept of averaging values obtained from a number of independent realizations of a certain
configuration at a given instant (e.g. the product of velocity components u at two points fixed in space
at a jiven time t),

when the turbulent fluctuations u(x,y,z,t) are described in a coordinate system moving with the main
flow (velocity U), the dimensionless coordinates of an element of a rotor blade rotating with an angular
velocity 92 appear to be time dependent in that coordinate system, viz.

x = -Ut/R , y = -(r/Ro) cos Qt, z = (r/Ro) sin Qt . (5.1.30)

This shows, that neither the ergodic nor the Taylor hypothesis can be applied to transform Eq. (5.1.29)
into. an ensemble average. In order to get some insight into the behaviour of Eq. (5.1.29), a special case
will be considered, viz, 2 = 0. When @ = 0, the time can be expressed in x by t = -xR_/U, and the y- and
z-coordinates are independent of t and o"ly depend on the orbital position of the rotor blade ¢, viz,

y = -(r/Ro) cos ¢ and z = (r/Ro) sin % .

Because of the isotropy of the turbulence, the time average of Eq. (5.1.29) is independent of the blade

position ¢, when @ = 0. Using Taylor's hypothesis, the time integral can then be transformed into a space
average with Xy = -UT/R,, thus

X
T

T
T f q&)z u[(r/Ro),t] u[(r/R°)+;,t]dt = X;l f %)2 u[(r/Ro),x] u[(r/R°)+c,x]dx
[o] ]

According to the ergodic hypothesis, this space average can be set equal to an ensemble average and is
called the lateral covariance, which is independent of r/Rg in isctropic turbulence. This covariance -
depends only on the separation distance ¢ perpendicular to the main stream and is denoted by

Ryq (8) 702 = u[r/R ] u[(r/Ro)+r,]/u2 = (2/02) g(z) . (5.1.31)
When an often used approximation for g is applied, viz,
g= exp[-IRO/Lgl] ,

with Lg the so~called "lateral scale" of the turbulence, Eq. (5.1.29) can be integrated, which results in

ZEE = zAZ(G?/uz)[Lg/RO-(Lg/RO)2 [1-exp(-R°/Lg)]] . (5.1.32)

From Eq. (5.1.15), it follows that Cy for one blade in a uniform flow car be calculated from Cy = 0.122/8B
and the factor A can be expressed in Cy (see Eq. (5.1.28)), viz.

A= ZCN/(aA) .

When this is substituted, into Eq. (5.1.32), the MS-value of ACy diviued by Cﬁ can be obtained.
RC2/C2 = 2} f5Z 42 - 2 1 -
MCR/CE {8/(ar) 2} {uZ/u2} {Lg/n° (LQ/RO) [1 exp Ro/Lg)]} . (5.1.33)

Due to the neglect of the rotation of the turbine blade, the correlation of the velocity at two different
blade elements is possibly overestimated, but 1t is hoped that Eq. (5.1.33) still exhibits some realistic
trends:

When the scale L, becomes very small with respect to Ry, the expression between the 'large brackets

tends to zero. When Lg becomes very large with respect to Ry, 1t can be shown that the expression between
the large brackets tefds to unity by expanding exp(-Ro/Lg) into a series.

Figure 5.8 shows the influence of the lateral scale of the turbulence on the RMS-valuc of the blade-
load fluctuations for a specific example. With a turbulence intensity of 15 %, the RMS-value of the load
fluctuations is about 20 % of the steady~state load if lg 2 Ros but, even if Lg = Ry/10, the RMS-value
is still 10 ¥ of the steady-state load.

The lateral scale of the u-fluctuations in an atmospheric boundary layer depends on a number of
factors as surface roughness, height above the ground, wind velocity, etc., and it is not known with great
accuracy. Nevertheless, a scale of 50 m at a height of 40 m above the ground seems acceptable (a comparable
longitudinal scale is 100 to 200 m). This shows that, even for a 100 m diameter turbine, Lg/Ro is not
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smaller than 1 and the possibility that the load fluctuation level will fall much below 15 to 20 % by v

lack of correlation along the blade span seems to be small. ‘ \
The lateral scale will be smaller at a smaller height above the ground, but, in such a case, the '

rotor diameter will be smaller also and the conclusion above probably remains valid.

i Besides the neglect of , which might cause a decrease of correlation along the blade span, the
. neglect of the influence of the operating turbine on the turbulence, has also to be considered. The dyna-
mics of turbulence, however, is a too complex problem to solve here. One effect can still be visualized
by considering the rlow retarda%ion in front of the turbine from U to (1-a)U and by using some simple
estimations, first proposed by Prandtl (Ref. 5.10).
Consider the turbulence as a vorticity with its axis normal to the main stream, inside a closed loop
, of fluid elements. In the retarding floy, the closed loop ic compressed axially in the ratio 1-a and
' stretched laterally in the ratio (1-a)"%, which leads to a decrease of the area inside the loop with &
factor of (1-a)¥. The rotation inside the loop is thus increased by a factor (1-a)%. When the axial velo-
city fluctuation before the retardation was calculated from

U= o,

it becomes, after the retardation

vl =o't = (1-a)-&w(1-a)-*r = (1-a) " lu s 1

i.e. the retardation increases the u-fluctuation by the factor 1/(1-a). This factor has to be included in
Eq. (5.1.33). Although such an estimate has to be considered with all reserve, it shows that an influence
may be present and may result in an increase of the load fluctuations. See Ref. 5.11 for a more extended
discussion of the effect of distortion of a turbulent stream on the fluctuating components. ‘

The conclusion that the u-fluctuations are well correlated along the blade span, even for large-scale

/
wind turbines, depends on the accepted size of the lateral scale Lg of the atmospheric boundary layer. X
This integral scale, defined by

Lg = 1/(w2) | Ryy (r)dr, (separation r perpendicular to U) , (5.1.34)
o

is affected by eddies of different sizes, thus a more detailed discussion scems relevant.

An accepted model for a turbulent flow consists of a steady main flow carrying with it a large number
of eddies of different sizes and randomly distributed in space. The large eddies, containing most of the
turbulent flow energy, correspond to low-frequency fluctuations, whereas the smaller eddies, containing
less turbulent flow energy, correspond to higher-frequency fluctuations. The distribution of turbulent
' en?r?y over a certain frequency range is given in a turbulence "power spectrum" with spectral density
‘ E1(f).

There is some discussion among the experts about the validity of several interpolation formulae given
in the literature., By definition, the spectral density has to satisfy the relation
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An often used interpolation formula for such a spectrum is given by Davenport (see e.g., Ref, 5.12)

FE(D - .§. W x2(14x2) 3"

(5.1.35a)
with

x = f L/Uyg, the reduced frequency, f: frequency (Hz), L: reference length = 1200 m, and «
Uyg: reference wind velocity at 10 m height (m/s).

Reference 5.4 shows a preference for the expression

FE(R) =20yl ™

» (5.1.35b)
with

y = f L/Uyg, and L = 500 m,

because of the behaviour of the spectral density at f - 0. In the case of one-dimensional spectrum, Eq(0)
has to tend to a finite non-zero value. Eq. (5.1.35b) does behave that way and Eq. (5.1.35a) does not.
However, commonly used anemometers measure the total horizontal wind vector instead of the component in
the average wind direction. This means that wind spectra obtained with a simple anemometer are not strictly i

speaking one-dimensional spectra and that a pure one-dimensional spectrum can only be obtained with a
special type of anemometer.

Actually, reference 5.4 gives the expression

FE(R) = AT y(sy™ ), (5.1.35¢)
with A = 2/3, The author supposes Eq. (5.1.35¢) to be a printing error, because A has to show the value

A = (5/31) sin (31/5) =~ 1,793
to satisfy the integral condition for the spectrum.

Figure 5.9 shows the Eqs (5.1.35a) and (S.ff35b) for a particular case. The frequency of the peak of '
the spectra is almost the same, but the spectrum of Eq. (5.1.35b) shows higher spectral densities at low
frequencies than the spectrum of Eq. (5.1.35a).

The 'peak" frequency can be calculated from the above expressions and appears to be proportional to
Ujg 3 is shown in the table below,
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Equation fpeak
, 5.1.35a | (U, o/L) Y3 = 0.0014h U,
| 5.1.35b | (u;0/L) -Z— = 0.00167 U,
5.1.35¢ | (U,0/0) )/° = 0.00142 v,

0

This means that the frequency of the velocity fluctuations that possess much of the turbulence energy in-
creases with increasing wind velocity,

The graphical representation of E{(f) is often put in the form of an f Eq(f) versus log f diagram, so
that the area below the curve remains a measure of the turbulence energy content, viz,

f E1(f) d(log f) = El(f)df .

Becides the energy content within a certain frequency band Af, {(viz. E{{f) Af), a measure of the cor-
relation of fluctuations within a certain frequency band and separated over a certain spatial distance
seems useful for a further discussion, This measure is called the ‘'coherence'.

In order to avoid too much detail, the definition of coherence will be given in a strongly simplified
form by denoting the contribution to u within a small frequency band around f by ug, thus

Coh = [u(r) uf(r+A?T|j//[uer)z E;(r+Ar)z] .

In manv cases, the square root of the coherence is used instead of the coherence itself. Ref. 5.12 gives
an interpolation formula for the coherence in &n atmospheric boundary layer, viz,

(com ¥ = expl-c farsu l] . (5.1.36)

The cons;ant C depends on the height above the ground z. Some typical values are (for a suburban region,
Ref. 5.8

¢ = 4,5 at z = 40 m Yor the lateral coherence (Ar in Y-direction),
C=6 atz=U4 m for the vertical coherence (Ar in Z-direction).

One can take the separation Ar at which (Coh)? ¢ § cs a distance at which the correlation at rrequency f
becomes insignificant. Figure 5.9 shows an example by using the Eqs (5.1.35a), (5.1.35b), and (5.1.36)
(see also Fig. 5.7). There is some debate on the use of consistent values for L and C (corresponding to
the same meteorological situation and a more or less unobstructed area), but the general conclusions
drawn from this curve will be applicable to wind turbines in many cases.

It is clear from this figure, that in the frequency range containing most of the turbulence energy
(7x10-3 < f < 10~1Hz.), the correlation length (Ar) at which (Coh)% < § is of the order of magnitude of
the rotor radius or larger.

Frequencies above 1 Hz have a correlation length of less than 1 m, which for most wind turbines
means that these fluctuations are uncorrelated and do not contribute to a normal-force fluctuation,

The energy spectrum and the coherence are functions of a ''reduced'" frequency, which means that the
frequency increases with the wind speed. A generalized conclusion from Fig. 5.9 might be that fluctuations
with a frequency above f = U/10 (Hzf are uncorrelated at a separation length above 1 m. For other separa-
tion lengths, similar results can be nbtained,
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When the angular frequency of the rotor is (R/2w), comparison with the frequency of the turbulent
fluctuations (f) may indicate whether the turbulent fluctuation changes during a revolutivn of the rotor,
i.e. whether the turbulence can be assumed ''frozen' during a revolution. Th2 angular frequency can be
obtained from

/21 =) U/(ZnRo) .

When A = 8 and U = 10 m/s, the angular frequency is a function of Ry, as is seen in the table below

R, (m) 1 10 | 25 | s0
Q/2n (Hz.) | 12.711.27] 0.50 ] 0.25

Figure 5 @ shows that the ‘requency of the enecrgy-containing eddies is one order of magnitude lower than
the angular frequency of i e rotor; thus the concept of frozen turbulence can be applied. The evaluation
of £q. (5.1.29), however, remains still a difficult problem,

When the turbine rotates with a constant aryular velocity @ In a turbulent wini stream, the question
can be raised whether the 1ift variation on a Llade element due to a wind velocity luctuation can be cal-
culated by quasi-steady aerodynamics, or whether it hs to be calculated by unsteady aerodynamics, which
leads to a time-lag of the 11ft in response to a wind velocity fluctuation.

This "“ehaviour is indicated by the value of the reduced frequency k of the wind velocity fluctuation
with respect to a blade element at a spanwise station r/Rg and a chord-length ¢/Ry (cf. Sect. 4.5.5)

wlref ~ 2nfle/2) | _f (c/2)/R°
u ar /2% f7Ro ’

e\\}wm—mw\ R N RN N i I e

k =

ref

which depends on the ratio of the frequency of the wind-velocity fluctuation and the angular frequency of
the rotor, and also on a geometric factor. A typical value for this geometric factor, with c/Ry = 0.075
and r/Ry = 0.75, is 0,05, A typical value for the high-frequency boundary of the energy containing eddies
is f = 0.2 Hz (Fig. 5.9). Because the angular frequency of the previous example was a function of Ry, the
reduced frequency of the high-frequency boundary of the energy .containing eddies also becomes a function
of the rotor size Ry, which is shown in the table below.
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Ry (m) 1 10 25 | s0
a/2n (=) [12.7 1.27 [ 0.50[0.25
k (-) 0.001 | 0.008]0.02]0,0h)

This shows that the response of a turbine to the energy containing eddies in a wind stream can be calcu-
lated with quasi-steady aerodynamics, even in the case of a large turbine.

Vhen the turbine is not operating at @ = constant but at A = Aopt = constant, the enertia of the
rotor-gearbox-generator combination has to be considered together wiEh the torque variation of the genera-
tor due to the Q-variation and the output of the A = constant control mechanism.

Ref. 5.13 discusses the dynamic response of the wind turbine for the case that the generator torque
is a function of Q only and without an effective A = constant control mechanism. The case considered was
essentially a fixed-pitch rotor connected to a generator with a gearbox with a fixed gear-ratio. The

generator feeded a 12 volt storage battery via a voltage controller. The more general case with a
X = constant coentrol becomes increasingly complex.

A problem related to turbulence is the “'qust", i.e. a sudden increase of the wind velocity above the
average wind velocity with a certain duration (often 3 to 6 seconds). Such a gust must be discerned from
the expectation of a very high average wind velocity (Fig. 2.2). Knowledge of extreme wind velocities
(gales, tornadoes) are important for the strength requirements of an inoperative wind turbine, but will
not be discussed here.

The wind turbine operates in a velocity range well below these extreme wind velocities (cf. Sect.
2.3.14. The wind velocity is, however, not steady and fluctuations about the average can lead to instan-
taneous velocities appreciably higher than the average. It is Iimpractical to stop the wind turbine for the
relatively short time that the instantaneous wind velocity exceeds the so-called ''cut-out' wind velocity
whereas the average wind velocity is well below that cut-out speed (turbine control, Sect. 5.2). There-

fore, the study of gusts at wind velocities within the operating range of a wind turbine is important in
connection with the load on an operative wind turbine.

A rather simple first guess could be made by assuming, that the fluctuations about the averag: have
a normal (Gaussian) distribution with a probability density

Fu) = [2n v2) 7 exp{-} w2/uZ} .,

The probability that a positive fluctuation u > uj occurs can be calculated from
-
Plu)) = (2m) 7% [ exp(-3y2)dy = #{1-¢(u))} ,
a

with
a
¢(ul) = 2(2n)-i [ exp(-3y2)dy , (the error function),
o

and
a= /@y = w(@®?

The magnitude of a gust is often given in the literature by a so-called "gust factor", which can be written
in the above approximation as

= weu)v = 1+ [u [ (@] /0] (5.1.37)

Figure 510 shows the gust factor G as a function of the probability of occurrence P(u|) and the turbulence
intensity of the wind flow. It must be noticed, that P(u;) gives the probability at a certain wind veloc-
ity U, i.e. it has to be considered as a conditional probability. The total probability can be obtained by
multiplying P(u1) by P(U), the probability of occurrence of a wind velocity U,

For example, when it is assumed that P(U=17 m/s) = 0.02 (or, more correctly, P(16.55U<17.5 m/s) =
0.02), the probability of occurrence of one 10 second gust in a year {(or two gusts of 5 seronds; in this
simple approach, there is no possibility to discriminate) at that wind velocity is

10 x 1
S5x24x3600 © 0,02

The gust factor can then be obtained from Fig. 5.10, viz. G & 1.8 (20 % turbulence intensity) or G =~ 1.4
(10 % turbulence intensity), which leads to a gust velocity of 30.6 and 23.8 m/s, respectively, Still
higher gust velocities are possible, but their probability of occurrence will be still smaller, e.g. once
in 50 years. This example shows the influence of the turbulence intensity on the maximum possible gust
velocity. The turbulence intensity is related to the surface roughness but also to the height above the
ground; therefore, 3 more detailed knowledge of the actual atmuspheric boundary layer is necessary.

-5
P(ul) =3 = 1.6x10 .

Although the above discussion brings about some important aspects about gusts, it gives not a reliable
basis for estimating gust loads on operating wind turbines, because:

- The '"tail"* of the Gaussian distribution is not a suitable model for the estimate of rare events like
strong gusts.

- The model does not include the '"duration"” and the ''shape' of the gusts.

For a more detailed review of gust data, one is referred to the forthcoming handbook announced in
Ref., 5.1,
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5.2 Turbine control

»

5.2.1 Introductory remarks

A discussion of turbine control is intimately connected with the energy conversion system chosen for
a specific design ahd the type of wind turbine used, viz. a horizontal- or a vertical-axis turbine.

In most cases, the mechanical cenergy of the rotor is converted intu electric energy by a generator-
gear-box combination (Sect. 2.3,2). When the turbine is operative, the torque of the gcnerator has to be
matched to the torque of the rotor. The torque matching is done by a control system, the extent of which
is also affected by the scale of the turbine (a small-scale turbine Has a mechanical regulator and a vol-
tage controller, whereas a large-scale turbine may have a control system with a mini-computer) and by the
mode of operation (A = constant or © = constant, cf. Sect. 2.3.2).

The type of turbine affects the control system, because a horizontal-axis turbine needs a,yaw control
to turn the rotor into the wind direction, which is not necessary in case of a Darrieus turbine. Moreover,
a horizontal-axis turbine is sometimes provided with a blade-pitch control, which is not possible in case
of a Darrieus turbine (a very complex blade-pitch control is applied to the Giromill, however, see Ref.
5.14). Furthermore, the control system has to start the turbine when the wind velocity comes above the
cut-in speed and it has to stop the turbine when the wind velocity comes above the cut-out speed or below
the cut-in speed (cf. Sect. 2.3.2); moreover the control system has to provide a number of safety measures,
such as the emergency stop during malfunctioning of sub-systems or during a runaway (overspeeding).

\t takes a complete control-system analysis to deal with the above series of control functions in a
proper way, which is outside the scope of this section, Also the various ingeneous mechanical control
systems that have been invented for small-scale turbines will not be discussed. Only those aspects which
are related to aerodynamics and apply to large-scale WECS will be dealt with in the following Sections.

5.2,2 Starting and stopping

As discussed in Sect. 2.3.1, wind velocities below the cut-in speed are not important with respect to
the annual energy production and the wind turbine only has to be started-up when the wind velocity raises
above this cut-in speed. The wind velocity has to be measured with an independent wind sensor (anemometer).
Problems related to the position of the wind sensor and the fluctuating character:of the wind will be dis~
cussed in the next Section.

To start the turbine, the rotor has to be unlocked (the locking is necessary to prevent occasional
movements of the rotor during a standstill) and, in the case of a horizontal~axis turbine, the rotor has
to be turned into the wind direction., What happens next depends on the self-starting ability of the tur-
bine, which is discussed below.

The existing performance theories for horizontal- and vertical-axis turbines give the possibility to
calculate the torque coefficient Cy = Cp/A also at low A, The rotor blades are stalled, however, at low A
and the calculated results become inaccurate. Morecover, the theory itself fails at A = 0, because the
model with which the induced velocities are determined becomes inadequate.

Calculations for a low-solidity Darrieus turbine reveals at low X a smell A-range with negative Cp,
thus also negative Co-values. At @ = 0, the wind velocity is not reduced by the operating turbine (a=0)
and the angle of attack of a blade element and the relative velocity are (see Eqs (4.5.50) and (4.5.51))

a = arctg(cotgs sin y) ,

Uy =V [sin? ¢ + cos? ¢ sin? y]*

or, in case y = 7/2 (blade element at equator plane),
=0 . =
a=35-¢ and Urel u .

The 1ift distribution on the rotor blade located at a certain azimuth angle ¢ in the wind stream gives
rise to a trailing vortex sheet, which induces a downwash along the blade span by which the actual angle
of attack along the blade is reduced in a way similar to an airpiane wing in rectilinear flight. A slight
difference with the usual wing theory is the non-planar trailing vortex sheet due to the curved biade
geometry of a Darrieus turbine, but that is not a fundamental difficulty.

An indication of the azimuthal variation of the torque at @ = 0 can be obtained by considering a blade
element at the equator plane (y = n/2). The torque coefficient is proportional to the tangential force
coefficient of the blade element, which can be calculated from

Ct = Cl sin o = Cd cos o = C, cos ¢ - Cd sin ¢ ,

with
T
o=z $

Except for relatively small o-ranges (and thus ¢-ranges) where the flow around the blade element is
attached and where the profile characteristies (Cy,C4) depend on the profile geometry and Reynolds number,
the profile characteristics over a large part of all possible a~values are relatively insensitive to the
profilg geometry. Important in this respect is the 'flat plate' 1ift beyond the stall, with a maximum at
o~ 459,

Figure 5.11 shows Cy vs a and Cq vs o, together with C¢ vs ¢, calculated from the above formula. The
data are sketchy and only intended to reveal the general trend.

The 1ift in the attached flow region around a = 180° is lower than in the attached flow region around
o = 0, because the sharp-edged trailing edge becomes o leading edge in that case. This has a marked effect
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on the Cy (a = 180°, ¢ = 2709),

When a one-bladed rotor is unlocked, the blade probably moves towards ¢ = 180°, where it is in a
stable position, A two-bladed rotor shows a neutral or slightly unstable stability at 4 = 0 and 180°, but
when the rotor starts to move at a certain azimuth angle different from these neutral positions, the
inertia of the rotor may overcome these neutral positiuns and, thus, it may continue to rotate. For a
three-bladed rotor the probability of a continuous rotation from standstill is smaller. Although there is
a possibility that the Darrieus turbine starts to rotate from a standstill, the velocity due to rotation
modifies the flow around the blades in such a way, that at relatively low A the torque may become negative
again, in which case the rotor will not speed up any further, Usually, it is necessary to apply an exter=
nal torque to drive the turbine through the '""negative torque dip' into the A-range with positive dCq/dA.

It is possible to use the generator as a drive motor to speed up the turbine, thereby consuming
power from the grid instead of supplying it. Figure 2 of Ref, 5.15 shows, howevel, that there is also an
aerodynamic means to speed up the turbine to its operational range, viz, by combining the Darrieus tur-
bine with a Savonius rotor, which is self-starting.

Figure 5.12 gives an estimation of the torque at a velocity of U = 7 m/s for a Darrieus turbine,
combined with two Savonius rotors, through application of the experimental data of the Refs 5.16 and
5.17. The interference batween the Darrieus turbine and the Savonius rotors has been neglected. An essen-
tial aspect is the difference in rotor diameter between the Savonius rotor and the Darrieus turbine in
order to match the positive Cq-vs-X range of both turbines.

A low-solidity horizontal-axis turbine with a blade-pitch angle for optimum Cp also shows a negative
Cp and Cqg at low A, which means that also such a turbine is not self-starting (ct. e.g. Fig. 4.24).

At @ = 0, there may be a positive torque on the rotor, notwithstanding the blade is completely stal-
led. The angle of attack can be calculated from

B-T‘——'
a=z-i .
Because the 1ift € is perpendicular to U and U is parallel to the axis of rotation in the case of 9 = 0,
the 1ift is equal to the tangential force driving the turbine and the drag is equal to the normal force,
which is perpendicular to the plane of rotation.

Figure 5.11 shows that C} is always positive as long as i is positive; therefore, a positive torque
at = 0 seems very probable. The negative torque dip at low X can be overcome by using the generator as
a drive motor, but also by using a variable-pitch rotor. The purpose of the variable pitch is to decrease
the angle of attack duiing the "speed up'" of the rotor; in that way flow separation on the blades is

avoided. Such a variable-pitch rotor means a complication, but it is often desirable from other points of
view (feathering during storms e.g.).

In order to stop a rotating turbine, a mechanical brake car be applied, but in order to reduce the
necessary braking capacity, several aerodynamic means have been proposed to reduce the power output of
the rotor voluntarily. In the case of a horizontal-axis turbine with a variable-pitch rotor, aerodynamic
braking is easily provided by increasing the pitch angle. For both the horizontal-axis and the vertical-
axis turbine, aerodynamnic braking can be provided by using spoilers, i.e. a relatively small flat surface
protruding from the aerofoii contour, which causes flow separation and, in that way, a lift decrease and
a drag increase. Also the drag on the flat plate itself is important. The decrease of the power coeffi-
cient due to a spoiler, located at a radius r/Ry and with a total spoiler surface Sg, which operates on a
turbine with a tip-speed ratio A can be calculated (assuming Upel = Qr) from the formula

- 3
8Cp = = (\r/R)3(S /S )Cy

where Cy4 is the drag coefficient of the spoiler with area 55. The drag coefficient of a flat plate normal
to the flow is

Cq ~ 1.0 if height &~ width (square plate),
tg ~ 2.0 if height >>width (two-dimensional strip).

Figure 5.13 shows the power loss due to a spoiler, estimated from the above formula. This reveals that
rather small spoiler areas are sufficient, especially at high ), but the diagram also reveals that the
influence decreases rapidly at low A. In order to relate the spoiler area to the blade area instead of to

the rotor reference area, it must be remembered that, for a Darrieus turbine with a height equal to the
diameter, the following formula applies

Sblades/sref = 113 B":/Ro ’
whereas for a horizontal-axis turbine with o5y & 8, the solidity is about
o= sblades/sref ~ 0.050 .

Roughly speaking, a spoiler area of the order of magnitude of 2 percent of the rotor blade area seems
sufficient to decelerate the turbine down to low angular velocities. R. , 5.18 shows some experimental
results obtained with a Darrieus turbine (notice, that in Ref. 5.18 the ower coefficient contains the
factor 27/16). The experimental points in Fig. 5.13 show that the siwnle calculation suffices for an
order-of-magnitude ¢stimate of the required spoiler area. An accurat -glculation is difficult due to
interference effects (induced blade stall etc.) and due to the inac.. '  estimate of Upay (Upe) varies
during a revolution). An accurate calculation does npot seem wor o'+ it wvever, when the purpose of such
a spoiler system is regarded.

When the turbine has been brought to a standstill and has been locked in its parking position, still
important aerodynamic loads may occur, e.g. during a severe storm. This will be discussed in Sect. 5.2.4,
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5.2.3 Control during normal operation

As discussed earlier (see also the Figs 2.2 and 2.3), the wind statistics for a specific landscape
or for a specific turbine site reveal a "cyt-in" speed, below which the turbine does not need to operate,
due te the low annual energy content; they also reveal a ''design" speed, above which the contribution to
the annual energy production is outweighed by the cost increase due to the increase of the installed
power. Above this design speed, the turbine is not always stopped, but the output of the rotor is limited
to the so-called *'design' power by artificial means and only stopped at a still higher velocity, the so-
called "cut-out" speed.

An idealized performance diagram of a wind turbipe is sketched in Fig. 5.14 for a 50 m diameter tur-
bine, with a (Cp)gpe = 0.4, a cut-in speed Uj = 5 m/s, a design speed Ug = 17 m/s, and a cut-out speed of
Up = 24 m/s. The idealization in this diagram is the assumption of Cp = (Cp)opy (i.e. A = Agpy = constant)
in the wind velocitg range from U; to Uy, and the assumption of a constant power output
[Cp = (Cp)opt (Ug/V) ] in the wind velocity traject from Uy to Uq.

It takes a conttol-system analysis and a cost-benefit analysis to decide which control system has to
be preferred to approach the ideal performance diagram as close as possible.

As mentioned in Sect. 2.3.2, an interesting case to consider is the @ = constant mode of operation,
which was extensively studied in connection with a Darrieus turbine (Ref., 5.19). The main idea is that a
synchronous generator connected to a utility grid is forced by the grid to rotate with a fixed number of
revolutions, irrespective of the torque applied to the generator. The generator is connected to the rotor
by a gear-box with a fixed gear-ratio; the rotor is, therefore, also forced to rotate at a constant angular
velocity.

With a given geometry of the Darrieus turbine, the idealized performance diagram of Fig. 5.14 can
only be approached by changing the number of revolutions of the rotor. With the Cp-vs-A curve of Fig.
4,57, the performance curves at © = constant have been calculated and given in Fig. 5.15.

This figure shows that @ determines U; and Uy; U; corresponds with A = 7.27 (see Fig. 4.57) and U4
corresponds with A & 3.7. In order to approximate the ideal performance diagram more closely at low wind
velocity, it seems necessary to apply a gear-box with at least two gear-ratios. As mentioned already in
Sect. 2.3.2, an attractive property of this system is that there is an automatic safeguard to overspeeding
at high wind velocities due to the stall of the rotor blades, as long as the gencrator is not pulled out
of its frequency by sudden torque fluctuations, For a more detailed discussion, see Ref. 5.19 and the
Technical Quarterly Reports of the SANDIA LABORATORIES.

A similar discussion can also be given for ahorizontal-axis turbine with a fixed blade-pitch angle.
The calculated example of Fig. 4.24 will be used with 0p = 0 and extrapoiated in the high-A region. The
calculated 9 = constant performance curves are shown in Fig. 5.16.

The @ = constant operation 'scems also possible with a horizontal-axis turbine. The necessity to chose
at least two values of Q can be avoided, when the horizontal-axis turbine is provided with a variable~
pitch rotor. In that case, the ideal performance diagram can be approximated closely at one value of Q.

In the discussions so far, the wind velocity U is mentioned only superficially. In Sect. 5.1.3, it
was discussed that the wind velocity is not constant but fluctuates irregularly about an average value.
Moreover, the frequency of the energy-containing fluctuations was shown to be such, that the aerodynamic
torque of the rotor follows these velocity fluctuations closely. This has no consequence fur the
@ = constant mode of operation with a fixed blade-pitch angle, where the maximum power output is deter-
mined by blade stall However, when blade-pitch control is used to limit the power output at high wind
velocities, there is a possibility of excending the design power, when the pitch control is slower than
the wind velocity variation.

This behaviour is elucidated in Fig. 5,17, which shows the importance of choosing the proper value of
@, when the overshoot has to be minimized, which may depend on the magnitude of the gust. Large gusts may
occur even at wind velocities within the normal operating range of the turbine, as was shown in Sect.
5.1.3.

The A = Agpy = constant mode of operation (variable Q) improves the power production at low wind
velocities, but the problems of maintaining the design power at high wind velocities and the corresponding
possibility of an overshoot remain.

Important input signals for a wind turbine control system are the wind velocity and the wind direc-
tion, which can be measured by suitable sensors (e.g. anemometer and wind vane). It is here that some
problems arise for large~scale WECS. Upstream of the turbine a stagnation area exists and downstream the
wake is found; both regions where the undisturbed wind velocity and wind direction cannot be measured.
Moreover, putting the sensors too far from the turbine makes the determination of the instantaneous wind
velocity and wind direction very uncertain because of the stochastic character of the wind.

Figure 5,18 shows some simple models that may be used to estimate the stagnation of the wind velocity
in front of an optimally operating wind turbine (a = 1/3). The semi-infinite row of ring vortices seems a
good model for a horizontal-axis turbine. The actual stagnation effect will be some mixture of the three
types given, Figure 5.19 shows the numerical result of the estimations. |t seems warranted to conciude
that & distance of at least twice the rotor diameter is necessary to avoid a detectable stagnation on the
reference anemometer in front of the turbine. The stagnation will vary with A (variation of a), but the
estimate is too crude to justify any further detail, The wake behind the turbine decays less rapidly than
the stagnation in frort of the turbine and a location of the anemometer in the wake should be avoided
altogether {cf. Sect. 5.3).

When the reference anemometer is installed on a mast at some distance from the wind turbine, at least
two masts are necessary to avoid the-wake, because of the variations in the wind direction.

In the case of a vertical~axis wind turbine, the reference anemometer is often situated on top of the
turbine, whereas, in the case of a horizontal-axis turbine with its rotor placed downwind of the tower,
t -2 reference anemometer is often situated on the nacelle. In both cases, a careful calibrdtion of the
position error has to he made at different values of A.In the case of a horizontal-axis turbine with an
upwind rotor, the only possibility is to install two anemometers, placed diametrically at some distance
from the turbine while the upstream one is used.

K

s oo e




FERLERY

!rwz ‘W.’,Qg>x 9 od
Pd el d 'ﬁl‘au -y

5-16

The problem with a distant reference mast (carrying an anemometer and a wind vane) is to predict the
wind velocity and direction at the location of the turbine (with the turbine inoperative). A measure of
the correlation between the instantaneous velocity at the reference mast U and the instantaneous velo-
city at the turbine site Uy is the covariance COV(Uj;,U;). The dependence of this covariance on the separa-
tion distance r and the time delay t is sketched in Fig. 5.20 for the case that the mast is placed
exactly upstream of the turbine. The covariance et t = 0 decreases rapidly with increasing (ry > ry > 0),
It is possible to improve the correlation by applying a time delay to the signal obtained from the refer-
ence mast, which is equal to the transport time r/0y. For other wind Jirections the situation is worse,
however, see Fig. 5.21, The data of Fig. 5.20 actua]ly represent (OV(Uq,U3) with a = r cos 8; instead of
r; therefore, COV(Us,U,) has to be introduced also, which leads to a furtger decrease of COV(U ,Uz). In
turbulence theory, éOV U3,U2) is the so-called lateral correlation, which decreases more rapidly with in-
creasing b than the longitudinal correlation COV(Uy,U3) decreases with increasing a. Moreover, the lateral
correlation cannot be improved by time delay-

The correlation between the wind directions, COV(Bq,82), is smaller than that between the wind velo-
cities, because the wind direction fluctuations are mainly caused by lateral velocity fluctuations, which

are correlated less than the longitudinal velocity fluctuations, which mainly determine the wind velocity
Uy and Uz,

Statistical considerations (Ref., 5.20) indicate that the retarded instantaneous wind velocity at the
reference mast is not the best prediction of the instantaneous wind velocity at the turbine. The best
prediction is, according to Ref. 5.20, a weighted sum of the average wind velocity and the retarded in-
stantaneous wind velocity at the reference mast, on the understanding that the best prediction is equal
to the retarded instantaneous velocity when the normalized covariance approaches 1, and is equal to the
average wind velocity when the normalized covariance approaches zero.

In practical casc¢*, the above discussion means that an accurate prediction of the instantaneous
value of the wind velouity at the turbine is highly improbable. The prediction of the instantaneous value
of the wind direction even seems impossible. A possible way out is to use a filtering technique, to get
rid of the high~frequency fluctuations and to try to predict the low-frequency fluctuations at the turbine
from the low-frequency fluctuations measured at the reference mast. A further analysis is needed to choose
a suitable "integration time'" for the filters, in order to predict those frequencies which are required
for the control system with a sufficient accuracy.

In this respect one has to think of those velocity fluctuations that have to be followed by the blade
pitch control in order to maintain the design power. Fluctuations in wind direction are only important,
when the frequency of the fluctuation can be followed by the yaw control; the rate of change of yaw is
limited by precession forces and power requirements,

5.2.4 Safety aspects

It is a specialized branch to investigate which measures the control system has to take in order to

handle malfunctioning of one or more of the sub-systems. This aspect will, therefore, be discussed neither
here nor in the following Sections.

The possibility of aerodynamic braking by spoilers in case of a runaway (e.g. when the link between
rotor and generator is disconnected unintentionally or is broken) has been discussed in Sect. 5.2.2. The
spoilers could be activated by a centrifugal switch,

A

.

There is one aerodynamic aspect, however, that is to be discussed under this heading, viz. whether a
wind turbine can withstand a severe storm. When a turbine is locked in its parking position, the aerody-
namic force on the blades are lower than those in the case of a rotating turbine at the same wind speed,
as a consequence of the increased relative velocity., The aerodynamic force on a parked turbine may even
be lower in a severe storm than dut ing normal operation at the design wind speed. Take, e.g., an extreme

wind velocity of 40 m/s blowing normal to a blade element; then the normal force is determined by the drag
coefficient €4 = 2.0 and is proportional to

Cy U2 = 2x402 = 3200 m2/s2 .

A turbine operating at A = 5 at a wind velocity U = 15 m/s may have a 1ift coefficient C} ~ 1.0; the cor-
responding normal force on the blade element is than proportional to

¢, (A0)% = 1,0x(5x15)% = 5625 m?/s2

which shows that the aerodynamic force on the blade element is higher during normal operation than during
a standstill in a severe storm.

Due to the absence of the centrifugal forces during a standstill, the bending moments in the rotor
blade may be higher in a severe storm than during normal operation, notwithstanding the higher aerodynamic
load.

For the Darrieus turbine, the aerodynamic 'buckling' has been discussed in Ref. 5.21. This effect is
also possible with a horizontal-axis turbine (cf. Fig. 2.8). This is the reason why it is sometimes
advised to keep the turbine operative at a constant @ during a severe storm (it is also mentioned as an
advantage of the 9 = constant operating mode, see Sect. 2.3.2).

Although the blade bending stresses might be alleviated during a severe storm by maintaining a con-
stant angular velocity, the total forces on the tower may become high, due to the higher aerodynamic load

on the blades which is transferred to the tower, whereas the blade bending stress alleviating centrifugal
forces are not transferied to the tower.

In the case of a horizontal-axis turbine with a variable-pitch rotor, the aerodynamic loads during a
severe storm, with the rotor locked in the parking position may be strongly decreased by ''feathering",
j.e, chosing such a value 7., ep, that the average 1ift on the blade is zero and the drag low
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(i.e. €4 << 2.0). This is only effective when the rotor is aligned in the wind direction. Because of the
“"gustiness' of the wind, such an alignment cannot be perfect all the time, A two-bladed horizontal-axis
turbine with its blades locked horizontally in the "feathered"-pitch position is insensitive to wind
direction fluctrations (horizontal gusts) but not to vertical gusts. A three~ or more-bladed turbine is
always sensitive to wind direction fluctuations (horizontal and vertical gusts).

5.3 Wind turbine "farns"

5.3.1 Introductory remarks

In the preceding Sections, the discussions were centred on the isolated wind turbine in homogeneous
(Sect. 4) or in inhomogeneous (Sect. 5.1} flow. Such a situation is found in rural applications of wind
energy, e.g. when each remote farm has its own wind turbine (and solar heat system).

Consideration of wind energy as a means to delivery a substantial amount of electric energy to the
utility grid, however, means a large number of turbines on a certain land area. Such an array of wind
turbines is sometimes called a wind-turbine "farm'", which word emphasizes the dependence of the output on
the w?ather system (''harvesting" of the wind energy and the existence of "good" and "bad" wind-energy
years) .

In the case.of a wind-turbine farm, the question arises how closely the wind turbines can be packed
on a given land area. There are two reasons to pose this question viz.:
- to minimize the use of land in cases where land is scarce (e.g. in The Netherlands),
- to reduce the costs by minimizing the length of access-raods, cables, etc., and by centralizing control
systems. ,
The separation distance between wind turbines will be determined by their (mutual) interaction. There
are two possible ways of interaction, viz.:
- the mutual interaction of turbines placed in a row perpendicular to the wind direction, Such an inter-
action is mainly caused by "blockage" effects, i.e. local velocity and direction deviations aside of
the turbine (connected with the stagnation upstream of the turbine},
- the interaction of turbines placed in a row downstream. Such an interaction is caused by the wake
(reduced velocity) of the upstream turbine, acting on the downstream turbine. The influence of the down-
stream turbine on the upstream one is negligible in practical cases (cf. Fig. 5.19).

It is the second item; the wake interaction, which mainly determines the necessary separation distance
between the turbines in a wind-turbine farm. Therefore, only the wake-interaction effects will be discussed
in the following Sections.

The study of the wake interaction is limited in most cases to the prediction of the reduction of the
wind velocity at the location of a certain wind turbine due to the presence of the other (upstream) tur-
bines (power reduction). The possible increase of the turbulence level of the flow (fatigue loading) is
rarely considered.

An early estimate of the velocity reduction due to an unlimited array of wind turbines was made by
Templin (Ref. 5.22), His basic idea was to calculate the velocity reduction by considering the wind tur-
bines as extra surface roughness elements added to an already rough terrain.

In practical cases, a wind-turbine farm consists of a limited array; the above estimation of the
velocity reduction will, thus, only be valid for a downwind part of the array, because the turbines at the
upwind edge of the array do not suffer any reduction in the wind velocity.

Crafoord (Ref. 5.23) extended the theory of Templin by using a vertical energy balance, to estimate
the downwind windchear variation. Both theories assume, however, that the separation between the wind tur-
bines is so large that single wakes are no longer discernable, {.e. direct wake effects are neglected.
Lissaman (Ref. 5.2h) tries to include these direct wake effects by considering first the wcke decay of a
single turbine. Then, by adding the velocity reductions of wakes at different stages of decay (wind tur-
bines at different distances), he estimates the velocity reduction due to the upwind part of a turbine
array.,

The above-mentioned theories contain some uncertainties; therefore, experimental data are badly
needed, An early wind tunnel measurement exists of the interaction between two horizontal-axis wind tur-
bines (Ref, 5.25). More recently, wind tunnel measurements have been perfcrmed on a limited array of tur-
bines (represented by circular wire grids; Ref. 5.26).

5.3.2 Wake-interaction theories

>

¥

5.3.2.1 Surface roughness theory

The discussion of Ref. 5.22 is based on the idea that wind turbines can be corsidered as extra rough-
ness elements on an already rough terrain. The difference in velocity profiie of the turbulent boundary
layer due to this extra roughness can then be determined, In order to be able to use the formulae for a
turbulent boundary layer on a rough surface, it is necessary to consider an infinite array of homogeneously
distributed wind turbines and to assume that the separate ''wakes'" of the extra roughness elements are com-
pletely smeared out and are no longer individually discernible in the total wind profile.

Ref. 5.22 starts from the logarithmiz velocity profile for a turbulent boundary layer over a rough
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surface, viz, i ?
V/U* = (l/k)ln(zlks) +B , (5.3.1)

with

¢ horizontal velocity

V<7p = so-called friction velocity

surface shear stress

air density

: Von Karman's constant (s 0.40)

: height above the surface, where U is measured

: effective "roughness height!

: number, which is constant at a sufficient high Reynolds number, which is always true for an
atmospheric boundary layer over rough terrain (B = 8.5),

when the above-mentioned numerical values of the constants are used, Eq. (5.3.1) becomes
U/U* = 2.5 In(z/ks) + 8.5 . (5.3.2)

*
B

P
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In Ref, 5.22, then the effect of the presence of the wind turbines on an effective wall shear stress is
estimated. It seems obvious to translate the 'drag" on the wind turbines into an additional shear stress
by dividing this drag force by the land (surface) area corresponding to one turbine, which introduces the
notion of turbine ''density" A. {

It is also obvious, however, that the average wind-velocity reduction due to the turbines might af- \
fect the original wall shear stress too.

With the assumption that the wall shear stress is determined sclely by the roughness height and the
velocity at that height, the effective roughness height for the terrain with turbines can be defined.

‘ For a determination of the power loss caused by the turbine-induced velocity reduction, the logarith-
mic velocity profile for a terrain with and without turbines at the same wind velocity outside the astmos~
pheric boundary layer (the so-called geostrophic wind Uy) has to be calculated. A difficulty is, however,
that the logarithmic velocity profile is scaled with the friction velocity, which is different for the
cases with and without turbines and which drops cut at the determination of the effective roughness height.

Returning to the determination of the wall shear stress with turbines, in Ref. 5.22 the drag of the
turbine is calculated from

D=, so[u (n)]?s

ref ’
with

CD ¢ turbine drag coefficient, which is taken equal to 1. An optimally operating turbine has
a Cp »~ 8/9, but when the tower drag is included, Cp = 1 seems a good average value.

U'(h): wind velocity at the centre of the rotor area, in case of a horizontal-axis turbine this
is the velocity at the hub height.

Spef ¢ area swept by the rotor.

When the land area occupied by one turbine is denoted by Sjan4, the turbine density A can be defined by
} =

A Sref/Sland '
and the additional surface stress is

ot = 0/8, = (W2)plut ()12, (5.3.3)

When the original roughness height is denoted by kg = kg and when it Is assumed that the velocity at

) z = kgo determines solely the wall stress due to the original surface roughness (see Eq. (5.3.2)), the l
, total wall stress with turbines present is |
' : o= p[U kg )/8.5]% + (v2)elu! ()12, | |
g or, by definition: !
i (%12 = [u'(k ) /8.5]% + (\V2) U (h)1% . , (5.3.4) l '
. When Eq. (5.3.2) is used with kg as the effective roughness height for the combination of original surface
roughness and turbines, the values of U'(kgo) and Y'(h) can be expressed in the average friction velocity ;
' U'*, When these values are substituted in Eq. (5.3.4), the friction velocity drops out and the following
; relation appears
i
i

1= {1/8.5)%[2.5 In(k /k.) + 8.5]2 + (A/2)[2.5 In(h/k)) +.8.5])% .

Because h/kg = (h/kgo) (kgo/ks), the above formula can be written as

Wk, = exs 0. {[ 1521 )] (5.3.5)
with

e e

Y =8.5-2.5In(k/k. ) .

This relation is also shown in Fig. 5.22. In Ref. 5.22 the uncertainties in the détermination of kg by the :
assumptions made are emphasized and estimated values of k; for roughness elements on a sgooth surface are '
compared with experimental values. There are large discrepancies at values of A < 5x10°. It Is possible,

however, that a comparison of the effect of extra roughness elements on an already rough surface might
lead to a better agreement.

. In the above discussion, the friction velocity U'* has not been determined; this velocity is a kind
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of "scale' factor for the velocity in the log law., Such a remark also applies to U* for the terrain with-
out turbines (kgo). The velocity profiles with and without turbines can only be compared at equal wind
velocity outside the boundary layer (z > 6§}, where U(z > §) = Uy and where § is the so-called boundary-
layer thickness.

In civil-engineering structural design, the power-law wind velocity profile is widely accepted and
reads

() = (2/8)% . (5.3.6)
The log law (Eq. (5.3.2)) applies only to the lower part of the wind profile, but when a fictitious value

of the boundary-layer height 8y in the log law is taken to obtain U(8y) = Uy, the following modified ex-
prression can be found

v | 25 In(z/k ) + 8.5 ‘ (5.3.7)
U, 2.5 (5 7k T+ 8.5

Matching the Eqs (5.3.6) and (5.3.7) in the lower part of the wind velocity profile for two types of ter-
rain leads to the results summarized in the following table,

Type of velocity distribution
power law log law
Type of terrain s (m) a §; (m) k_ (m)
Open country 275 0.16 380 1.5
Rough wooded terrain] 400  0.28 ] 3000 12

Eq. (5.3.7), with ks instead of kgo, could be used to describe the velocity profile with turbines present,
The problem of estimating U'* is now exchanged for the problem of estimating 82. In Ref. 5.22, two possi-
bitities are considered, viz. §; = 82 = constant and §j/kso = 83/ks = constant.

With these two assumptions and Eq. (5.3.5), the power ratio at hub-height can be calculated from

U.(h)]a [2.5 in(h/k, ) = 2.5 Inlk /k ) +8.5][2.5 Inle 7k ) + 8.5])°

U{h) [2.5 In{h/k, ) + 8.5}[2.5- In(8,/k. ) = 2.5 Tnlk 7k ) + 8.5] (5.3.8)
This power ratio is shown in Fig. 5.23 for a height h = 30 m, for two types of terrain (kso = 1.5 and 12 m)
and for two assumptions about &, The supposition §/kg = const-nt shows the largest decrease with increas-
ing A. From the table above, which gives the influence of kso on 84, it appears that the assumption
8/ks = constant is rather well confirmed by the two examples given, viz. 8§1/kgo = 253 for open country and
5I/Eso = 250 for rough wooded terrain (but &1 is a rather fictitious value),

Moreover, the assumption §/kg = constant gives the expected result, namely that the decrease of the
power ratio is less in the case of rough wooded terrain, contrary to the assumption § = constant (see
Fig. 5.23). The theory of Ref, 5.22 gives a maximum acceptable value of A of about 2x1073, Reyond that
value, the power ratio decreases rapidly. When the separation distance between two turbines is denoted by
L, this value of A means

(r/W02/L2 < 2x1073  or  L/D > [(n/8)x103]F w 20

In Ref. 5.23, the power ratio of a turbine in a finite array is estimated by means of a method that closely
follow: the theory of Ref. 5,22,

In Ref. 5.23, the description of the power ratio for an infinite array is given. The enery dissipa-
tion due to the surface roughness €5 and due to the wind turbines eqepn are assumed to be replenished by a
vertical energy influx by turbulent mixing processes ¢w(k). When otger energy sources are disregarded,
the energy balance for an infinite array reads

0,0 = e  + e (5.3.9)

The energy dissipation flux due to surface roughness depends on a number of factors, which are not of
interest for the discussion below. The energy flux due to the wind turbines depend on the design (or
"rated") power P, and the power ratio in an infinite array f_(A) (= Eq. (5.3.8)), thus

€gen = PefaM/L2 (5.3.10)

with L = mesh width of the square array.

In Ref, 5.23 then a finite array is considered. Take a volume of air with the height equal to the
turbine diameter D, the width equal to L and also the length equal to L, starting at turbine number i and
ending at turbine number i+1, The energy balance for this volume reads

3 2 . e12 - p. = 3oUl
}pUiLD +¢(A)L e;L Pi ipUi+1LD ’

with
U; : wind velocity at turbine i
Us. 4t wind velocity at turbine i+l
#ti}: energy influx for a finite array
€l : energy dissipation due to surface roughness for a finite array
Pi ¢ power absorbed by turbine i.

When the power ratios are defined by
f - 3 - 3 .
the ""rated' or "design' power is defined by (U; = wind velocity at first turbine)

- 3 a2
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an¢ the vertical energy influx for a finite array $(A) is assumed to be equal to the influx for an in-
finite array ¢w(x), according to Eq. (5.3.9). The energy balance can then be written as

Fag ) = £,(0) - (n/h)(D/L)[f‘(A) - £, (0 - (cs-e;)Lz/Pr] . (5.3.11)

In Ref. 5.23 the last term between parentheses is neglected, i.e. the decrease of the energy dissipation
due to surface roughness between two adjacent turb'nes, and a rather simple recurrent expression for the
power ratio of a turbine in a finite array appears, The value of f (A} could be obtained from Eq. (f.3.8)
or a similar kind of estimate, The recursion formula reads

Fg @) = £,00 - 6@t [f,00 - ] (5.3.12)

with fl(A) = 1 as a starting value.

The estimates of Ref. 5.22 (Fig. 5.23) can be used to calculate the downstream variation of f;())
with the above formula. An example of such a calculation is given in Fig. 5.24, This diagram thows how
much energy is available on a land area of a given length in wind. direction. The length expressed in tur-
bine diameters D is directly related with the turbine density A and the number of turbines covering this
length, e.g, on a stretch of 100 times the turbine diameter, with a A = 0,005, 8 turbines can be placed,
with A = 0,01, 11 turbines end with A = 0,02, 16 turbines can be placed on that stretch. The total amount
of energy obtained from a fixed land area increases by increasing the number of turbines (increasing 1),
but the added turbines become increasingly inefficient from the point of view of power production,

It is difficult to assess, however, whether these crude assumptions used in the energy balance con-
siderations lead to acceptable results. In Ref. 5.23 are some additional considerations about the energy
balance and a large number of diagrams illustrating the influence of several parameters have been given.

In Ref, 5.27 the equations for the atmospheric boundary layer are considered in a somewhat simplified
form in order to estimate the influence of atmospheric stability on the power ratio for an infinite array
of turbines.

It would also be possible to refine the original calculations of Templin (Ref. 5.22) by applying the
boundary layer equations for rough flat plates and by applying measurements of the boundary layer, passing
from smooth to rough (see e.g. Ref. 5.28). The measurements of Ref. 5.28 are interesting, because they
show that the wall shear stress adjusts itself immediately to the value for the rough wall, while the
velocity profile more gradually changes from smooth to fully rough. However, all these boundary layer dis-
cussions are unable to describe the direct wake effects, because the individual wakes are assumed to be
smeared out at ,the distances behind the turbines considered. This assumption is possibly justified at
small values of A, but the larger values of A (smaller separation distances) are especially interesting
for finite arrays; thus, a different approach seems worthwhile.

5.3.2.2 Make-decay theory

An approach that differs strongly from the preceding Secticn is considering the decay of a wake be-
hind a single turbine and superimposing the wakes of the upstream turbines in order to find the velocity
profile at the location of a turbine inside a certain array.

The main problem to be solved in this approach is to describe the variation of the wake properties
downstream of the turbine, the so-called wake ‘''decay".

A classical way to describe the decay of a turbulent wake in a homogeneous non-turbulent flow, is to
assume self-preservation (Fig. 5.25). The notion of self-preservation can be clarified as follows. The

wake structure is characterized b{ its width b, the maximum velocity defect in the centre of the wake up

and a shape function f(sfi) = f(n), thus

(U‘"u)/ul =1 - (Um/Ul)f(n) » (503-‘3)
with b and u_ functions of (x + xo)/D =g, thus
b=1b(z) and u = u (¢} . (5.3.14)

Self-preservation means that f(n) is a function independent of ¢ and may only differ from object to object
(e.qg. solid sphere, wind turbine, body of revolution). The functions b(z) and uy(z) have to be found from

the equations of fluld dynamics. The quantity x, is the so-called ''virtual origin' of the self-preserving

flow, which does not need to coincide with the actual origin of the wake (x = 0).

When uy/Uy << 1, which means at a large distance behind the turbine, the momentum loss In the wake
can be linearized and appears to be proportional to

(um/Ul)(b/D)z .

Because pressure differences are zero far behind the turbine, this momentum loss has to be equal to the
drag of the turbine and is, therefore, independent of . From mixing-length theory or similar kinds of
reasoning, it can be shown that the wake width is proportional to

b0 «(2)'/?

and from the momentum loss it follows that the maximum velocity defect is proportional to

(5.3.15)

(u/0) =) %%, (5.3.16)

This simple result is difficult to apply to a wind turbine, because:
- the virtual origin x, depends on the wake-generating body;
- it Is not 3 priori known at what distance the wake actually become. self-preserving; experiments
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indicate that the Eqs (5.3.15) and (5.3.16) only apply at very large distances during the final decay;
- the effect of wind shear and turbulence of the outer flow is not included although it appears from y
experiments that this effect cannot be neglected. . 1

Though it seems possible, with the present-day knowledge of turbulent flows, to set up a computer
code for the calculation of the wake decay by using an "eddy viscosity' or another turbulent shear stress
model, the calculations become very complicated and the results have to be checked with experimental re-
sults in any case., It seems more adequate to resort directly to experimental data. This has been done in
Ref. 5.2k by'taking the extensive test results of Abramovich (Ref. 5.29) about decaying iets. At first
sight, this seems contradictory, but it can be assumcd that the velocity defect curves in the case of a
wake behave similar to the velocity excess curves of a jet in a co-flowing stream, except close to the
origin,

In Ref. 5.2k, a thorough discussion is glven of the wake model used in their computer code. For the
sake of completeness, some main points will be repeated here,
The model for a single wake is given in Fig. 5.26 and rests on the following assumptions:

i - At a short distance behind the actual turbine, a rectangular velocity defect curve is assumed, with a ¥
- velocity defect 2aU} and a wake width 2rg = [(1-a)/(1-2a)]¥D, according to the simple actuator disk
theory.

- The wake is divided into a number of regions. With each region, the wake width increases linearly with

the downstream distance, but the rate of growth differs from region to region and depends on the

Yeffective!' turbulence of the flow. It must be noticed that, for the far wake, in Ref. 5.24 it is

assumed that b « g, whereas Eq. (5.3.15) gives b a(;)1/3. This "final" decay is possibly too far behind

a turbine to be of interest for the wake-decay calculations. In addition, ambient turbulence was neg-

lected.
- The effective turbulence is composed of the ambient turbulence of the atmospheric boundary layer and the '
Y‘mechanical’ turbulence generated by the turbine. The mechanical turbulence has its main effect in the
near-wake region, whereas the far wake is affected solely by the ambient turbulence.
The length of the near wake is determined by the degrading of the potential core, caused bv the shear
layer. The rate of growth of the wake diameter is determined by the effective turbulence, in which the
mechanical turbulence plays a vital role,
- In the transition region, the velocity profile develops from a double shear layer to a seif-preserving
near-wake profile, It is assumed that the rate of growth of the wake diamter is equal to the rate of
growth of the near wake.
Within a fixed length of 10 rg, the mechanical turbulence.decays and, behind that distance, the rate of
! I ‘ growth of the wake diameter is solely determined by the ambiéent turbulence.

{

With the above assumptions, the magnitude of the maximum or ‘'centre-line' velocity defect in the v
wake can be determined from momentum~loss considerations, the magnitude of which is assumed to be constant
throughout the entire wake length and equal to the turbine drag. The influence of ground proximity is cal-
culated by using a mirror image of the wake and superimposing the results.

Ref. 5.24 then discusses the wake-interaction effects within an array of wind turbines. This consists
partly of a simple superposition of the computed velocity defects of the separate wakes, but this is com-
plicated by the reduction of the velocity at a certain turbine due to turbines inside the upstream zone of
:nfluence. For a more thorough discussion and for computed results, reference has to be made to the orig-

nal report. H

b v g e

—— e ot it A g e s

“an

5.3.3 Experimental results i

5.3.3.1 Wake behind a single turbine

In Ref, 5.25 some early wind tunnel tests are described on two identical model turbines with a diam-
eter D = 150 mm and two blades of constant chord ¢ = 15 mm, By measuring directly the power output of the
two turbines at different downwind and lateral separations, the wake-turbine interaction could be deter-
mined. The power ratio for two turbines placed directly in line with the wind is shown in Fig. 5.27. The 3
lateral separation necessary to obtain just full wind power (P3/Pj = 1.0) s shown in Fig. 5.28, This 1
figure shows the remarkable result that zero power loss is reached when the rotor areas still overlap each
other geometrically, i.e. y/D < 1.0,

o
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Very interesting and complete material appeared recently in Ref. 5,30, where wind tunnel tests were
carried out on a two-bladed model with a diameter D = 360 mm and a constant chord ¢ = 20 mm. The tests
were carried out with different values of the ambient turbulence intensity, Some of thz test results are
reproduced in the Figs 5.29 through 5.32.

Fig. 5.29 shows the velocity defect in the wake centre for three different tip-speed ratios of the
turbine. A = 6.6 corresponds with the optimum Cp of the model turbine. The decrease of the velocity defect
behind the turbine approaches a power law at values of x/D between 5 and 8, depending on A. The power law
resembles (x/8)~5/% instead of (x/D)~2/3 , as is shown in the figure.

The tests shown in this figure were carried out with an ambient turbulence intansity of 1 %, Very
interesting is the ''mechanical' turbulence intensity along the wake centre, shown in Fig. 5.29. The rapid
increase of the turbulence intensity at x/D between 4 and 8 probably corresponds with the termination of :
the so-called "potential' core, as it was named in Ref. 5.24. This shows, that there are turbulence inten- 3
sities of more than 10 % in the shear layer of the near wake.

Fig. 5.30 shows the increase of the wake width with downwind separation. The so-called "half width"
is that width at which the wake velocity defect Is one half of the value at the centre line. The half
width decreases initially due to the "potentlal core' effect.

Fig. 5.31 shows the influence of the ambient turbulence intensity on the wake decay, which is
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appreciable. The difference between tests with a horizontal-rxis turbine and a Darrieus (vertical-axis)
turbine is not significant. Though the ambient turbulence aupreciably affects the magnitude of the
velocity defect at a given x/D, the rate of decrease is not affected. Ref. 5.30 obtains the following
power-laws for the velocity defect and the wake half width, viz,

U /Yy =(x/0) 7%, (5.3.17)

0.63
by, 5/0 «(x/D) . (5.3.18)

Figure 5.32 shows the power ratio of a turbine, located just dowawind from another turbine. It must
be noticed that these results are obtained for a low ambient turbulence level, viz., 1 %, The extrapolated
results have been obtained from an interpolation formula given in Ref. 5.30, For a more complete discus=
sion of the test results, reference has to be made to the original report.

5.3.3.2 Wake interaction in a finite array

Due to the limited dimensions of a wind tunnel, test results for a finite array of wind turbines in
a wind tunnel are only obtainable by simulating the energy-absorbing effect of a turbine by a small cir-
cular wire screen. Such tests have been described in Ref. 5.26.

A more or less realistic simulation of the turbine wake seemed possibly by a wire screen surrounded
by a small annular "ring" or diffuser. The applicability of the simulation was judged by comparing meas=-
urements on the isolated screen with rotating model tests, such as described in Ref. 5.30,

In the tests described in Ref., 5.26, the turbines were placed on.a circular turntable in the test-
section floor. The turbines were distributed on this circular area in a rectanguiar pattern in such a way,
that the separation between two turbines (x/D) was maximum at a wind direction g = 0 and minimum at
g = 45O, The table below gives the x/D, for different numbers of turbines (N) placed on the turntable, to-
gether with the corresponding A-values.

S 37 ) 97 -
81 | i.sx1072] 2.x107% | 4.5x1072
O P ) 4
5 | XY 7.3 5.7 575

It has to be noticed that in this table the strict definition of A = S..¢/S|and has been used. In an array
with different spacings in two directions (which applies in this case), the A-values cannot be compared
with the A-values for an infinite array, because in that case an equal spacing in two directions was Im-
plicitly assumed.

Figure 5.33 shows the power output of three rectangular patterns on a circular area at different wind
directions. The wind velocity is the same at all wind directions (isotropic wind). Increasing the number
of turbines on a givan land area increases the total output, but the total output divided by the number of
turbines decreases, however,

At 8 = 10° and 30°, the wake interactions are smallest, whereas at 8 = 45° the interaction is largest,
as was to be expected, because x/D is small,

Figure 5.34 shows the power output of a circular array averaged over several wind directions in iso-
tropic wind. It also gives an impression of the variation of the power ratio across the array, by showing
the total average, the average of the turbines along the circumference of the circular array and the
average of the turbine in the centre of the array, This diagram cleerly shows that the central turbine in
a rectangular grid of turbines on a circular land area is the least ''economic'’,

It is difficult to compare Fig. 5.34 with the predictions of Crafoord (Fig. 5.24), but the neglect of
direct wake interactions seems to lead to an underestimation of the power losses in a finite array (notice
that the diameter of the circular array is ~ 46 D),

5.3.3.3 Practical applications

The experimental results of the preceding Sections in combination with the preceding theoretical calcula-

tions can be applied in two different way, viz. _

1: to estimate a maximum possible amount of wind energy, which can be obtained from an extensive land area
(e.g. an entire country), in order to get a first impression of the feasibility of wind energy conver-
sion for such a country.

2: to find the optimum pattern for a finite array of wind' turbines on a specific land area, taking the
number of turbines as well as the spacing in different directions into account.

The first question is answered by several authors using the surface-roughness theory or some modified
form of it, which is especially suited for such a-question. Also the result for a large but finite array
may be included. The answer is often given as a power output per land area (W/m2), but this depends crit-
fcally on the wind statistics used and, therefore, the measure of rotor area per land area (m2/km2 or A)
is preferred. The table below gives some estimates of this quantity.

Athor Ref. | m2/km? A type of array
Templin 5.22] 1000 | 1,0x10°°
Railly 5.27| 1500 | 1.5x1073 | Infinite

Ljungstrdm| 5.25 | 15000 | 1.4x107< .
Builtjes | 5.26 | 20000 |2.0x1072 | Finite
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This clearly indicates the influence of considering direct wake effects and finite clusters of turbines
instead of infinite arrays. However, these high-density finite arrays can only be sparsely distributed
across the country and, for a first estimate of the total amount of wind energy for an entire country,
the infinite array estimates seem still useful,

Nevertheless, the second question has more practical significance. The authors of Ref. 5.31 applied
in the:r study the computer code of Ref. 5.2k, adjusting some numerical constants in order to get a better
agreement with the experimental results of the Refs 5,26 and 5,30, The use of the computer code enables a
quick survey of different turbine arrays. In Ref. 5.31 two different kinds of array patterns are con-
sidered, viz. the row and the rectangular array covering an almost circular land area.

Figure 5.35 shows the calculated output of a single row of turbines, averaged over the wind rose for
an isotropic wind distribution., This diagram shows that the economic limit is not reached even for a very
large number of turbines placed in a single row, provided that the value of the turbine spacing x/0 has to
be taken not too small, For an isotropic wind distribution (same wind velocity from all directions),

x/D rs 3 seems an acceptable value. By repeating the calculations for a real wind rose, and by putting the
row perpendicular to the prevailing wind direction, Ref, 5.21 quotes a value of x/D m 2 as economically
feasible in that case, because of the reduced wind energy content of the wind directions parallel to the
row.

The energy output of the circular array is considered for an isotropic wind, but also some cases with
a real wind-rose distribution have been considered. The ratio

RIN) = [P(N#1). = PINI/P, (5.3.19)

with P(N+1) : power output of an array of N+1 turbines,
P(N) : power output of an array of N turbines,

Py : power output of an isolated turbine,

could be envisaged as a measure for the economy of adding one turbine to an existing array. Ref. 5.31
quotes a limiting value of R(N) = 0.75 below which a further enlargement of the array is not economically
feasible.

Figure 5.36 shows results for a cluster-like turbine array. The rectangular pattern shows a separa-
tion distance x/D = 7 in the direction g = 45°, Arrays with different numbers of turbines were calculated.
The smallest array consisted of a square with 25 turbines, whereas larger arrays formed equilateral poly-
gons. The numbering system of the turbines in the array followed a spiral order of sequence, as sketched
in Fig. 5.36,

The relative power output decreases steadily with the increasing number of turbines, but the total
energy output P(N) increases, as is shown in the table below.

N | EN) TR
NP, | P
251 0.88 | 22.00
29 0.87]25.23
3710.85 | 31.45
4g | 0.84 ] 37.80
6110.82]50.02

Also shown in Fig. 5.36 is the relative power Increment due to adding one turbine (Eq. (5.3.19)), which
shows that, with x/D = 7, arrays with N < 60 seem economically feacible,

The influence of the wind rose on these cluster-like arrays appeared to be negligible within the
accuracy of the calculations, when x/0 > 5.

Ref. 5.31 gives as a tentative recommendation for acceptable separation distances in case of an
isotropic wind distribution

type of array | number of turbines | separation
single row unlimited x/D > 3
rectangular N £ 20 x/D > 5
pattern 20 < N'g 60 x/D » 7
{cluster-1ike) N > 60 %/D > 9

which is a far more shaded answer than the A-values given by the surface roughness theories at the begin-
ning of this Section.

5.4 Short note on literature and bibliographies

Each of the Chapters 1 through 5 and the Appendices contain lists with references cited in the text,
but these lists are by no means an exhaustive survey of the literature on wind energy. Readers intercsted
in bibliographies on wind energy are referred to the following volumes:

1 Burke, B.L., Merony, R.N.: Energy from the Wind; Annotated Bibliography.
Colorado State Univ., Basic Volume (Co., USA; July 1975), First Supplement (Co., USA; April 1977).

2 Van Steyn, R.: Wind Energy; a Bibliography with Abstracts and Keywords, Part 1 and 2.
Eindhoven Univ. of Techn. (Eindhoven, The Netherlands, July 1975},
3 Van Meel, J., Hengeveld, D.: Wind Energy; a Bibliography with Abstracts and Keywords, Part 3 and 4,

Eindhoven Univ. of Techn. (Eindhoven, The Netherlands, March 1977).

A partial bibliography, which contains a listing of recent reports generated by the Federal Wind Energy
Program of the USA, is distributed recently {(July 1978) by the

Wind Systems Branch, Energy Technology - Solar Energy Division,

U.S. Department of Energy (DOE).
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Much information is contained in the proceedings of Symposla and Workshops, a number of which will be

listed balow:

1 Proc. Workshop on Wind Energy Conversfon Systems (Washington D.C., 11-13 June 1973)
NSF/RA/W-73-006 (Dec. 1973).

Proc. Second Yorkshop on Wind Energy Conversion Systems (Washington D.C., S-11 June 1975).

The Mitre Corp. MTR-6970 (Sept. 1975).

Proc. Thlr? Biennial Conf. and Workshop on Wind Energy Conversion Systems (Washington D.C., 19-21

Sept. 1977).

JFB Scient. Corp. CONF-770921 (Sept. 1977).

Proc. Workshop on Advanced Wind Energy Systems (Stockholm, Sweden; 29-30 Aug. 1974).

Swedish State Power Board.

Proc. Vertical-Axis Wind Turbine Techn. Workshop (Albuquerque, New Mexico, 18-20 May 1976).

Sandia Laboratories Report SAND76-5586 (July 1976),

Proc. Intern. Symp. on Wind Energy Systems (St. John's College, Cambridge, England; 7-9 Sept. 1976).

Proc. Second Intern. Symp. on Wind Energy Systems (Amsterdam, The Netherlands; 3-6 Oct, 1978).

ProcS Workshop on Wind Turbine Structural Dynamics (Lewis Res. Center, Cleveland, Ohio, 15~17 Nov.

1977).

NASA Conf. Publ, 2034/DOE Publ. CONF-771148 (1978).

In conclusion, the articles appearing in the journal “Wind Engineering' (UK, first volume in 1977) and in
the "Journal of Energy'" (USA) have to be mentioned.
Just before submitting the present document for publication, the following report was brought to the
author's attention: {

Miller, R.H., et al.: Wind Energy Conversion, Volume 11:

Aerodynamics of Horizontal-Axis Wind Tufbines.

M.1.7. Report ASRL TR-184-8 (1978).
This report was not taken into account when preparing the present review.
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Fig. 5.4 Simplified f- and g-distributions for a two-bladed rotor, accor-

ding to Eq.({5.1.14)
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Fig. 5.5 The variation of Gy, Cry and Cp with A, in a uniform flow

according to the simplified expressions for f and g (see the

Egs. (5.1.14) and {5.1.15))
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APPENDIX A
STREAM FUNCTION AND VELOCITY DISTRIBUTION DUE TG AN ANNULAR WING WITH A
TRIANGULAR CHOROWISE VORTICITY DISTRIBUTION IN AXISYMMETRIC FLOW

A.1  Introduction

There is an extensive literature on annular wing theory, but those theories are mainly concerned with
induced velocities at the chord of the annular wing and not with the velocity field inside the annular
wing, which is the prime question in case of a wind concentrator.

In order to get some insight into the induced mass flow through the annular wing, calculations have
been carried out on an Infinitely thin cylindrical annular wing with a triangular chordwise vorticity
distribution, without bothering about the question whether such a chordwise load distribution is compatible
with a flat plate aerofoil section, It is hoped that a triangular loading is not too far away from the
actual incompressible flow load distribution and the the camber of the corresponding aerofoil secticn is
is not too large so that the computations are invalidated (this certairly depends on the chord-radius
ratio of the annular wing).

The maximum induced mass flow through the annular wing depends on the maximum attainable circulation
around the aerofoil section. It is very difficult to set up such a calculation, but soime insight into pos-
sible bounds can be obtained by calculating the corresponding section lift coefficients. In case of an
annular wing, this 1ift coefficient cannot be simply obtained from the circulation and the velocity at
infinity (wind velocity), because of the self-induced axial velocity at the aerofoil chord., These self-
induced velocities have been obtained from Ref, A,1.

A.2 Induced axial velocities

( Ref. A.2)glves the so-called “'Stokes stream function' for an elementary vortex ring of strength ydx
see Fig. A.1

27
v(0,r) = 19%;55 [ cos e (x2+R2+r2-2ﬁB cos e)’* do . (A.1)
o

A triangular vortex dictribution with total circulation T,

y = 2T x/c? , (A.2)
leads to a stream function in point P[0,r)

2n c
$(0,r) = PrR/(2nc2) [ cos 8 d8 [ x(x2+R2+r2-2rR cos o)t ax . {A.3)
o o

Integration and transformation lexds to a stream function expressed in complete elliptic integrals of
first and second kind, viz.:

3/2 , (1-k 1-k3 ' 2-k3 2-k3
vo,r) = 2 {hewy) - —Exi)} - By - 2e0o)}] )
nc 3 ] 33 33
with
K2 = brR / [ (Rer)24c2]
and

k2 = 4R/ (R+r)2

When c + 0 and kj » ky = k = 4rR/(R+r)2, Eq. (A.4) reduces to the stream function of a discrete vortex
ring, viz.: .

1/2
r(rR) 2 _ _2
'III (0,r) = - {('E k) K(k) ‘EE(R)} ’ (A.5)
which agrees with the formula given In Ref. A.2,
The strcam function y(0,r) times 2x gives the volume flow through a circle with radius r. The volume

flow through the annular wing can be found by taking the limit r + R. When r = R, k = | and E(kz) =1,
Furthermore

Lim (K- Kk2K)/k3 =0 .
k2 + 1 2 2

It follows from Eq. (A.4) that, if
k2 w k2 = U/[h+(c/R)Z]

the following relation holds:

-2 12
2u9(0,R) = —IB8R_ [%Ll‘-x +1- &e] . (A6
(c/R)? K3 33

Divided by nR2, Eq. (A.6) gives the average induced axial velocity (u). For non-zero values of c/R,
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2ny(0,R) is finite. The volume flow through a discrete vortex ring (c = 0) is infinite, however, as can
be seen from Eq. (A.5) with r=R and k = 1,

The distribution of the axial velocity along the radius could be obtained from Eq. (A.4}, but it

becomes a very Intricate expression. In case of the discrete vortex ring (Eq. (A.5)), the expression
becomes simpler, viz.:

13, ¢t 14r/R
0@ = F32 vy = gy (K00 + i) (A.7)
The induced axial velocity on the axis (r = 0) Is

u,(0,0) = I/2R , (A.8)

which result could have been obtained much simpler from the application of the law of Biot~Savart to a
vortex ring of strength I'.

The induced velocity becomes infinite at the vortey ring (r + R) (see Fig. A.2). This explains the
infinite volume flow in case of a discrete vortex ring!), When the vorticity is distributed along a finite

chord, the induced velocities remain finite and also the volume flow through the annular wing remains
fintte (cf. Ref. A.1).

In case of a finite chord, the axial induced velocity at the axis can be calculated directly, viz.

fy]
(0,0) = L 2[ [14(c/R) 2121
: 2R (C/R)z[‘l-{-(c/R)Z]i

Figure A.3 shows the average velocity G (Eq. (A.6)) and the velocity on the axis (Eq. (A.9)) as a function
of the c/R-ratio.

At a fixed value of R and for a given total circulation I, the average induced velocity increases
with decreasing c/R. The velocity at the axis u(0,0) also' increases with decreasing c/R, but it approaches
u(0,0)/(r/2R) = 1 when c/R + 0, which agrees with the results for a discrete ring vortex (Eq, {A.8)). This
means that the velocity distribution across the exit plane of the annular wing is almost constant when
c¢/R > 1 and approaches the distribution of Fig. A.2 when c¢/R << 1,

When c¢/R > 1, u(0,0) > G. This can be made plausible by remembering that when a certain vorticity
distribution at a given sectional geometry is assumed, the condition of zero normal velocity at the aero-
foil section has not been fulfilled. This may lead to an outflow through the annular wing, which reduces
the axial velocities at r + R and leads to an underestimation of u.

(A.9)

For a rough estimation of the average Induced velocity through an annular wing, apparently Eq. (A.9)
can be used if ¢/R > 1, whereas Eq. (A.6) should be applied if c¢/R < 0.5,

A.3 Estimation of section 1ift coefficient

The self-induced axial velocity component at the aerofoil section of an annular wing (see Fig. Ab)
can be calculated from (see Ref. A.1):

du(x,R) = (y/m)dx'2R2[4R2+(x'-x) 21" /2 [K(K) -E (k) I/K2 (A.10)
with
. -1 &2 ,x' %2 -1
K2 = WR2[URZ+(x'=x)2)7 = [142(D)” (2-37] (A.11)
For a triangular vorticity distribution (Eq. (A.2)), Eq. (A.10) becomes
r - x! o ex!
du(x,R) = 5o kIK(K)-E(K)] =~ d(Z-) . (A.12)
The integrand becomes singular at k = 1, i.e. if x'/c = x/c. When the expansion for K and €
K =1n T‘:"' + 4(In Tl:"‘ - Nk'2 (A.13)
E =1+4(In Tl:"‘ - k2, (A.14)
is used, with
k' = (1-k0)E '
which is valid for values 1 ¢ k < 0,75 with an error < 4 %, Eq. (A.12) can be written as
r 4 k'2 x! ex!
dulx,R) = gz k{(n ) (1 =Ky -1] 229 (A.15).
A further approximation, with
k1,
]
(KE) & In g = 1, (A.16)

IJ A discrete vortex ring in an axial external flow also Implies that a certain volume is pumped around

(aapk'flow outside the ring) and that it does not contribute effectively to the volume flow through
the ring.
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leads to a solution of Eq. (A.15) that is valid for very small values of k', i.e. very small values of
c/R, viz.:

wif) =g [t n e e s - ofi-@ 002 -1 0] (A 17)

In order to glve an impression of the error due to the approximation of Eq. (A.16), compared with the
original approximation of Eq. (A.13) and Eq. (A.14), the ratio of the two integrands can be given, viz,:

duy (x,R) /du, (x,R) = Uin(4/a)=13K7 Din/k?) (1-k2/8) 117", (A.18)
[} -
with  a=3SE %, ke (), and k' = (12}
The distribution of the error along the integration interval 0 < x'/c ¢ 1 for one value of x/c and

two values of ¢/R is given in Fig., A.5. This figure shows that Eq. (A 17) always overestimates the veloc-
ity, but, even with ¢/R = 2, the error in the integrated value of u(x,R) will not exceed 8 percent.
Therefore, Eq. (A.17) can be used for an order-of-magnitude estimation of the self-induced velocity at the
chord of the annular wing. Figure A.6 shows the self-induced velocity distribution along the chord for
some values of c/R.

Till now, only the value of I' has been used, The maximum attainable circulation is difficult to
assess, but a maximum section 1ift coefficient (related to the local velocity) is easier to apprehend.

In order to define a local 1ift coefficient Cy, an average velocity U can be defined from the total
section 1ift on the annular wing, viz.:

c
C, 3p0%¢c = plr = p [ y[U+u(x,R)1dx . (A.19)
o
When Eq. (A.2) is used for y, the average velocity along the chord can be calculated from

o=y + 2 J ulx,R) £ d(") . (A.20)
o]

With Eq. (A.17), the average velocity becomes
P 8 31.r
i=v+[4 Inf=zp) + #lar - (A.21)
From Eq. (A.19), the section 1ift coefficient can be obtained
c/R -1
Cp = [ln(c/R) 37 . (A.22)

The 1ift coefficient obtained with a given circulation ' in a wind velocity U on a two-dimensional wing is
Cyg = 2T/, (A.23)

which shows that €} < Cj_, due to the seif-induced velocity, when compared with Eq. (A.22). From Eq.
(A.22), it appears also that

¢y + Cl » when c/R + 0,

in other words, when the chord becomes small with respect to the radius of the annular wing, the flow
around the profile becomse two-dimensional (see also Ref. A.1).

From the'Eqs (A.22) and (A.6), the relation between i, c/R and Cy can be obtained, viz.:

-1

i 4 2(1=- k2) _2-k2.1 [3. . /R 8
U " we/R [ e 3k3—~] ['c'l' - 58 iR + 3]] 3 (A.24)
with- k=1 4+ s(e/m21Y | '

Eq. (A.2k4) becomes singular when the denominator tends to zero. The origin of this singularity is most
easily resolved by returning to the expression for the circulation, viz,

P = 4Cycl = 46c0 + 461c oix [ 406D + 3]

or
IcU -1

) [ cc[a. S + ]] :

It is easily shown that there is a limiting value for Cy, at which I' » = (which is physically impossible),
viz.

-1
6y = o [ 0 + 3] (A.25)
The singularity of Eq. (A.24) is most easily reached when

C/R [In(—7—) + &]

becomes a maximum, which Is reached at ~

(c/R) = 8e™* m 6,23 .
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When this value is substituted in Eq. (A.25), it gives a limiting value of the local lift coefficient

cl 4,03

Figure 3.11 also shows the singular behaviour of the mass flow amplification at Gy~ 4,

AL List of references
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A.2 Batchelor, G.K.: An Introduction to Fiuid Dynamics.
(Cambridge Univ. Press, London, 1970) p. 521.

Fig. A.1 Calculation of the induced axial velocities in the exit plane of an
annular wing with a triangular vorticity distribution along the

chord
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Fig. A.2 Axial velocity induced by a discrete vortex ring
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Fig. A.3 Average velocity G and velocity on the axis u (0,0) at the exit of

an annular wing with a triangular chordwise vorticity distribution,
as a function of the ¢/R-ratio
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Fig. A.4 Calculation of the induced axial velocity at the wing section of
an annular wing
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Fig. A.5 Error in Eq.(A.12), when the approximation according to Eq.(A.16)
is applied, as a functior of x'/< and ¢/R; error estimated with

Eq.(A18)
%4 (
u(x,R)
I'/2R
%34 vix,R)
x/c
Lor /R = 0.01
0.8 /\
0.6 | ¢/R=01
el /\
/R=1
0,21
cR=2
0 1 1 1 ! ;
1.0 0.8 0.6 0.4 0.2 0 »/e

Fig. A8 Self-induced velocity along the chord of an annular wing with a
triangular vorticity distribution
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APPENDIX B
ENERGY EXTRACTION FROM AN INCOMPRESS!IBLE STEADY FLOW

B.1 The Bernoulli constant H

Energy extraction from an incompressible steady flow is indicated .aerodynamically by a decrease of
the so-called Bernoulli constant H, when a fluid particle moves along a streamline,
If no energy is lost,

H=p+ 3pou?

is constant along a streamline.
The conditions for a variation of H in flow direction can more easily be discussed when the incom-
pressible momentum equation Is used:

oV + 1 -
3" T4 ﬁxw - ;VH = Wxw (8.1)
with T : external force per unit mass (N/kg)

© = 9xU : rotation of fluid element; twice the instantaneous angular velocity (1/s)
v : kinematic viscosity (m2/s).
In case of a steady (3/3t = 0), inviscid (v = 0) and irrotational (& = 0) flow, Eq. (B.1) becomes

? = %Vﬁ . (B.Z)

The only possibility for the existence of a non-zero gradient of H in flow direction is an external force
T in flow direction. This is the fictitious situation of an actuator disk perpendicular to the flow, with
a drop in total head across the disk (cf. Sect. 3.2,1).

In steady inviscid flow with rotation, Eq. (B.1) becomes
%-vu =F +Uxd . (6.3)

The ?ass;bility for a gradient in flow direction can be traced by forming the dot product with U from
Eq., (B.3), viz.:

Lo = 0F 4 00 (8.
The second term on the right-hand side is identically zero; therefore, Eq. (B.4) leads to the same conclu-
sion as Eq. (B.2).

+ » 4 \N @ steady viscous flow, forming the dot product between U and €Eq. (B.1) and reminding that
U-Uxe = 0 leads to

-“;ﬁ-vn = TF - Ve . (8.5)

The second term on the right-hand side expresses the dissipation of flow energy into heat due to viscosity
and cannct be regarded as a useful form of energy extraction.

The first term on the right-hand side can contribute to VH in viscous flow (frictional force), but
these forces are usually small. The much more powerful 1ift force, however, is always perpendicular to U
and, thus, cannot contribute to YH.

The ultimate conclusion is that extra.tion of a significant amount of energy from a flow has to be
connected with unsteady~flow phencmena. A fluid particle flowing through a rotating turbine is subject to
suck an unsteady flow, However, when the flow is considered in a reference frame moving with the turbine
blaie, the flow is steady again (when the angular velocity @ of the turbine is constant). This apparent
contradiction will be discussed below. Because viscous forces are not important in this respect (apart
from the effect of viscosity in generating rotation in the flow and in that way generating lift), the
influence of viscosity will be neglected,

Transformation of Eq. (B.1) into an energy equation by forming a dot product with U leads to the fol-
lowing equation

bH _op . &,
Dt at“"’”—'!'E ’ (8.6)

D 9 -

with -D—t'--é-E+U'V ’

which is the substantial or material derivative, i.e. a differentiation following the motion of the fluid
particle. Eq. (B.6) shows that H may vary due to fluctuating static pressures and due to, the work done by
external forces., In unsteady flow, the 1ift force need not be perpendicular to U and oU-F might contribute
to DH/Dt.
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B.2 Choice of the reference frame

The flow through a steadily rotating horizontal-axis turbine in a reference frame attached to
Yearth" is unsteady (Eq. (B.6)), even when the oncoming flow is steady. When the turbine is considered in
a reference frame attached to the turbine blade, the flow is steady, but it rotates as a whole around an
axis coinciding with the axis of the turbine.

For a steady flow, Eq. (B.6) becomes
DH
-ﬁ-pﬁ? .

In a rotating system, however, the fictitious external forces (Coriolis and centrifugal) have to be
added, thus

%% = oU.F = pl.28xU ~ oU.8x(BxP) .
The second term on the right-hand side is identically zero, The first term on the right-hand side Is zero
because, in inviscid flow, the only possible force Is a 1ift force that is perpendicular to U,

The triple cross product can be written as a gradient, viz,

Bx(@xD) = vi@ExD)2 ¢

and the energy equation for the relative flow becomes

Mo olens @2 = 2 to(@ct)2

This means that in the relative flow

p + pU2 - 50(8x¥)2 = constant . (8.7)

In an inviscid velative flow of a rotating system, the Bernoulli equation In the form p + $pU2 = constant
can be applied along a streamline at a constant distance from the axis (r = constant). Such streamlines
do ?ot exist actually, however, in case of a wind turbine, because of Its large wake expansion (cf. Fig.
3.3).

€q. (B.7) can be interpreted in another way, by considering the velocity in the "earth-bound" or
Yabsolute! reference frame

- Y >
Ur = Ua + 3xr ,

with U, = velocity in a frame fixed to the turbine blade,
v, = velocity in a frame fixed to earth.

The square of the relative velocity can be calculated from
2 %5 oW -, >, * . >
V=00 =00, + (xF) + (@xr) + 20, @,
and substituted in Eq. (B.7) gives
p = ipug + pﬁ;'(ﬁx?) = constant . (8.8)

Far in front of the turbine, Ua is parallel to § and the dot product in Eq. (B.8) Is zero, Far behind the
turbine, the static pressure has to be gqual to the pressure far in front of the turbine; thus an energy
loss in the floy Is only possible when U, is deflected during its passage through the turbine in the
direction of Uxr.

The dot product term can be interpreted as the change of angular momentum per unit volume in the
flow times , and equals the torque of the turbine times @, which is just the generated power of the tur-
bine. It is interesting to notice that the generation of power with a horizontal-axis turbine has to be
connected with tangential velocity components in the flow behind tne turbine,

It is also interesting to note that, for a vertical-axis turbine, no reference frame fixed to the
turbine blade exists which leads to a steady flow in that reference frame. This inherent unsteadiness is
a serious drawback in setting up general equations for the vertical-axis turbine. Especially inconvenlent
Is the impossibility to use the equation of the angular momentum (cclculation of the torque) in case of a
vertical-axis turbine.
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APPENDIX C
DETERMINATION OF THE INDUCED VELOCITIES IN AXISYMMETRIC FLOW

C.1 Introduction

The bound vorticity on the rotor blades and the tralling vorticity behind the rotor induce velocitles
that change the wind velocity in front of, at, and behind the rotor. Due to the complexity of the vortex
system, these induced velocities can only be determined in some special cases,

The discussion in this Appendix will be restricted to axisymmetric flow, i.e. to a flow where all
quantities are independent of the azimuth angle ¢, !t can be shown that this represents a turbine with an
infinite number of blades.

The vortex system and the governing equations will be discussed, which will reveal the complexity
even in the case of axisymmetric flow. The vortex formulation is applied to a cylindrical (non-expanding)
wake with a simple r-distribution (constant and linear) only, in order to avoid the difficulty to solve
a nonlinear problem,

Then, momentum considerations are used, to get some Insight into the effect of wake expansion on the
induced velocities at the rotor. The equations arising from this approach are, however, also nonlinear and
could be solved only for a special case. Nevertheless, the influence of the wake expansion can be indi-
cated, It then turns out, that also the static pressure déficit in the wake due to the rotation in the
wake (connected with the torque), plays an important role.

C.2 The vortex structure; general formulation

Figure C.1 shows a rotor blade, represented by a bound vortzx along the span and the trailing vortex
sheet behind the blade. Due to the combined action of the axial wind velocity and the rotation of the
blade, the vortex sheet gets a helical form. Due to the induced velocities, the rather simple helical
shape (determined by U and qr) will be modified. When the induced velocities are not small with respect to
U, the modification of the shape will be large and thz problem becomes nonlinear. This would lead to a
complex iterative calculation procedure, which will not be discussed here. For more details, see the Refs
c.1, C.2 and C.3.

When the number of blades increases while the total strength of the bound vorticity is kept constant,
the rotor disk becomes a vortex sheet with an axisymmetric strength distribution. Behind the rotor, the
wake ts filled with trailing vorticity, which is also axisymmetrically distributed.

Figure C.2 shows the notation to describe this situation. y. is the strength of the bound vorticity
at radius r, which is related to the total bound circulation at radius r by

P(r) = 2mr T . {c.1)

In cylindrical coordinates, the continuity equation (mass conservation) for axisymmetric flow can he
written as

3 3

sy +slur) =0, (c.2)
which Is identically satisfied by a stream function y(x,r) with y(x,0) = 0, when

i eela e

It must be noticed that, In axisymmetric flow, the tangential velocity component w is not affected by mass
conservation, In this Section, u, v and w are the components of the total velocity.

The vorticity components in the wake flow are

13 . -
We =T ar(" o W x ? (c.4)
LV _Bu_ _1723% 3%y 13y
Y Tax T or r [ax2 + a2 ror] (c.5)

In front of the rotor and outside the wake, the flow is irrotational (& = 0), and it follows from the
Eqs (C.4) and (C.5) that it has to satisfy the equations:

33% + 33% - %-%% =0, and : w={
ax ar
In incompressible and inviscid steady flow witnln the wake (i.e. in abserce of external forces), there is a

rel?tloh between the velocity U, the rotation & and the Bernoulli constant H (see e.g. Appendix B, Sect,
B.1), viz.:

. {c.6)

%VH = UX-(S (C.7)
or, in cylindrical coordinates,

134 -

";—3—; v w¢ w We s (c.8)

1 3H .

.6-3—F = W “’x u w¢ N (0-9)
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11 3H
ST YT Ve . (c.10$)

The variation of H in a meridional plane on the surface y = constant in the wake can be calculated from
(using axisymmetry 3/3¢ = 0)
ar

18H 13Hax ,10H
P3 "paxds  poaras (c.11)
where ds Is a line element on the intersection of the stream surface and the meridional plane, and

r . %— , with u_ = ViZevZ

x| ar
3s S

u
3 = U and

S

£q. (C.11) can then be written (when the Eys (C.4), (€.5), (C.8) and (C.9) are used) as

9H u \ w
i p(v wy = W wr)us + plw w - u m¢)ﬁ: pa;(v m

U

" U wr) .

In axisymmetric flow, Eq. (C.10) has to be identically zero and, therefore, the right-hand side of this
equation is zero, thus:

%2 =0 , and H=H{) . (c.12)

Because H varies only normal to y = constant, Eq. (C.7) shows that the vortex lines coincide with the
stream surfaces. When the circulation P(r) is defined as
r(r) = 2arw ,

this circulation is constant in a stream surface y = constant, viz.:

dwr) _dlwr) ax 3w r) ar
3s ax 93s ar 3s
IX ar

T U T T

r
= (~u 0+ v mx) «0 ,

s
thus )
= T(y) in the wake
ar(r) _ ’
9s 0 , and r(r) {- 0 elsewhere. (c.13)

When Eq. {(C.7) is used, the gradient of H normal to ¥ = constant can be calculated from

Tamaw o «u3ur)

papan WY T Ys w¢ r an Ug Yg
with 3

= [u2 2

Ys [wr + wx] '
and

n = the normal on Y = constant.
The gradient of the stream function is

3 _ W dx _ WaAr_ . oV u .

o tarant VOl rurgmur,
and the gradient of H can be written as

1 3H 3 -2 3w r) 3y _

53 =~ W rr W a0 Ys Y
or

1 dH -2 dr _ -1

W r{2nr) i . (c.14)

There has to be found another relation between H and T, which Is connected with the role of external
forces of the actuator disk, representing ‘the turbine.

The jump in the Bernoulli constant AH can be calculated from the static pressures and velocities in
front of and behind the actuator disk. In front of the actuator disk, the pressure is py and the velocity
components in a 'fixed-to-earth' coordinate system are uy, v{ and wq. Behind the actuator disk the pres-
suve is pp, and the velocity components are uz, v and wy.

From Eq. (B.8), it follows ihat (App. B)

20024002 2 4v24w2
Py + -}p(u1+v1+w|) + puyfir = p, + i(u2+v2+w2) +pwyair

which can also be written as
H1 + pw1nr = H2 + pwznr ,

or
8H = Hy - Hy = plwy = w)ar . (C.15)

From the vortex sheet density of the actuator disk, it follows that:
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thus
! BH = - oy Qr = - ol \ (.16)

Because H = constant in irrotational flow and because H is also constant on a stream surface (except for
\ the drop at the actuator disk), from Eq. (C.16), it follows that

aH _or di__ g dr

GPxe0 = " PZrlaram0 * 2 T PTGy (c.17)
When Egqs (C.5) and (C.17) are substituted into Eq. (C.14), the equation for the wake flow is

) r ]dl‘ 1 [329 3251/__1_6_\;1_]

Tt | =+ = + - -0 . (c.18)

[Zﬂ (2'nr) dw 2 ax2 ar2 roor

With a given R, a given T-distribution, and the appropriate boundary conditions, the axisymmetric flow
through a wind turbine with an infinite number of blades and an expanding wake could be calculated with
the Eqs (C.6) and (C.18). The general solution Is still too complicated, because the problem is nonlinear. '
- Therefore, a simplified solution will be discussed next. !

-~

C.3 The cylindrical wake

The cylindrical wake is an idealization, which is valid for induced velocities (U-u), v << U, It is, :
therefore, successfully applied to the probiem of an airplane propeller in cruise condition, but in the
case of a wind turbine it is only of limited applicability. Wowever, in the wake far downstream it can be
applied without any restriction,

A cylindrical wake means v = 0 and (3/9x)( ) = 0. \ihen this is applied to €q. (C.18), it gives

0, T 7drdr, 1[4 (1w .
[zu’"("_i’z”) TwTT dr(rdr] o .

or changing to w = T/(2nr) and u = (1/r) (dy/dr)
d{w r) ., w? dw , du
d

oo trtYr gt 0 o

which can be integrated, viz,.:

&

r 2
powr + 3p{u2+w?) + [ p%—dr = pfwr + ¥p(u24w?) + P(r) = constant ., (c.19)
°

- e —

From Eq. (€.16), the first term on the left-hand side can be interpreted as the total pressure jump across
the actuator disk: =-AH, When the total pressure of the undisturbed wind velocity is denoted by H, and the
undisturbed static pressure by p,, the equation of Bernoulli inside the wake is

.

[PV RPPURPRIESERER o 4

‘: H(r) = Hj + 8H = p_ + JpU% + &H = p + 3o (u?4?) . ;
. 4
f or ¢
% -tH + fp(uZew?) +p=H . (c.20) 3‘%
o When the Eqs (C.19) and (C.20) are compared with each other, it follows that, apart from a constant, P(r) E
E 4 s equal to the static pressure in the wake, viz,: /N
1 p=P(r) +C , . "
i ) which constant can be determined by the boundary condition that at r = R, the pressure p = p,, thus: ;
‘ p=-py=P(r) -P(R) , 4
E or substituted in Eq. (C.20),
H J
j -8H + fp(uZsw?) + P(r) - P(R) +p =H . (c.21) 5
‘ﬁ Because AH and P(r) = P(Ry) depend on w, Eq. (C.21) shows that there Is a relation between w and u, i.e. ‘§
k the P-distribution along the blade span determines the axial velocity in the wake far downstream, %
g Two simple examples will now be given, :
% First example: The circulation is constant along the blade span. This has the following consequences: :
T k :
% T 1
H AH = -pfiwr = -pflk = constant |, 4
¥
, ' - - 2 . . S
- P(r) = P(R) = 3p (w3 - w?) 5 W, R :
P Fdl ;
2 tou? = 4pU% - pftk - fpwl = constant . ¥
#
. : In connection with a future discussion, it Is useful to draw attention to the fact that the rotation in b
_ the wake causes a variation of the static pressure across the wake equal to P(r) - P(Ry).
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Second example: The circulation varies linearly from zero at the axis to a maximum at r = Ry. The conse-
quences are:

w = constant = w, ,
AH = -pnwor .

P(r) - P(R)) = $ov2 In(r/R)?

3pu? = §pU2 - AW = ipwg [1+In(r/Ro)2] .

The condition (3/ax)( ) = 0 is strictly speaking only valid in a two-dimensional flow, i.e. in the
wake far behind the rotor, where the wake is double-infinite. The wake staris at the actuator disk and it
is obvious that (3/3x)( ) = 0 cannot be valid throughout.

By the equation of Stokes, it can be shown that w is independent of x, also close behind the actuator
disk. The w caused by the bound vorticity decreases downstream, but the w caused by the trailing vorticity
increases downstream, which results in a tangential velocity independent of x. The axial velocity induced
by the trailing vorticity increases downstream, but the bound vorticity does not induce any axial velocity.
Therefore, the axial velocity u depends on x. When the voriex lines are restricted to cylindrical surfaces,
it can be shown that the axial induced velocities at the actuator disk are one half of the axial induced
velocities far behind tite actuator disk. The total axial velocity at the rotor is, therefore, the arith-
metic —ean of the velocity far in front of the rotor (U) and far behind (u3). From the continuity equa-
tion, it ivliows that this decrease of the total axial velocity in the wake is not compatible with a
cylindrical wake. Apart from tie region far downstream, it can only be approximately cylindrical in case
of small induced velocities.

When the first example is taken, the absorbed power can rather easily be calculated, because AH and
u3 are constant across the wake. The absorbed power Is

P = (AH)x(volume flow through rotor)
- 202 wpy? . 2
3o (U ul w2) }(Ul»u3)nR0 .
or written as a power coefficient,
= - 2 . 2 u - 2 . 2
Cp = $(1=ug/) (1+u3/U)2 = §(1+a3/0) G U)2 = 3 (14u3/0) [1-(ug/)2 = (i /0)2] . (c.22a)
For later reference, it can also be expressed in the induction factor "a', by u3/U = 1-2a, viz.:
Cp = ha(1-a)2 - (1-a) (w /0)2 . (c.22b)

The first term corresponds to the ideal power coefficient derived by Betz (cf. Eq. (3.2.6}). The second
term is the power loss due to the wake rotation. Because AH = pQw R,, this loss can be minimized for a
given value of AH by chosing a high value of Q. It can be shown that this argument is valid for other
circulation distributions too,

The calculation of the influence of the wake expansion is complicated, even in case of a constant
circulation along the blade span,

C.4 Momentum considerations

Because an exact calculation of the influence of wake expansion with the Eqs (C.18) and (C.6) is very
complicated, momentum considerations, as given in Ref, C.4, will be used. The derivation is analogous to
the on2 given in Sect. 3.2.1, but now the radial and tangential components are included and also a varia-
tion of flow quantities across the streamtube is admitted.

Figure C.3 shows the control volume around the turbine, represented by an actuator disk. The control
surfaces have been put at such a distance from the turbine, that the radial velocity components are
negligible and the pressure is equal to the undisturbed pressure py (except in the wake cross-section) .

Divide the flow regime into two parts, viz.:

- the streamtube through the rotor,
- the outer flow. .

Apply tite axial momentum equation to the control volume of the outer flow (upper part Fig. C.3). This
gives

P, (5,-55) = (p~p )dS_=oU ff udsS_  ,
07370 st{iam P™Po’ ®x control " €
surface surface

with
S, projection of stream surface normal to X,
Sc: control surface,
Uyt velocity component normal to control surface.

Because the outer flow is source-free,
Ifundsc =0 ,

and the axial momentum equation results in:

e e —— o o W e s e -
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| = (p-p )dS_ = p (S,~S.) . (c.23)
P st{£am o7 x T30
surface

This means that the axial component of the pressure integral over the outer surface of the streamtube
through the rotor (1.} solely depends on the expansion rate of the streamtuve (S3-Sg).

When the axial ?orce on the rotor is denoted by D, the axial momentum equat?on. applied to the stream-
tube through the rotor gives

D= g! (pl'pz)(‘s x lp + poso - gf p3dS + pjs'f u(U-u3)dS ,
ref 3 ref

or, in view of Eq. (€.23),

D =pff u(U-u3)dS - ff (p3~p°)dS . (c.24)
sref S3

When the torque of the rotor is denoted by Q, the equation of angular momentum applied to the streamtube
leads to

Q= pgf uWzrads (c.25)
3
In order to use the equations (C.24) and (C.25), the pressures and velocities just behind the rotor have
to be related with those in the wake far downstream,
The continuity equation along an elemental sireamtube in the wake gives the following relation

uds o= u3dS3 . (c.26)

Moreover, in Sect, C.3 it was deduced that the circulation is constant along a stream surface, thus
WE = Wary (c.27)

When it is assumed that energy is extracted from the flow only at the rotor, the equation of Bernoulit
can be applied separately In front of and behind the rotor, which leads ‘to

Hy = Hy = p, + $pU2 = Py + yp(u2avd)
= - ™ 2
Hy = Hy = pg + ip(u§+w§) Py + ¥p (u24v24nw2)

or P3Py = ~(p1-By) + $p(U2-u2) + fo(w2-ud) (c.28)
because u and v are continuous through the actuator disk,

The pressure drop over the actuator Jisk can be calculated from the equation of Bernoull{ for the
flow relative to the rotating rotor blades (cf. Appendix o, Eq. (B.8)):

Py + toluZ+v2) = p, + Jo(u2+vZiw?) + pwar

or
Py~ Py = Yow? + pwar (c.29)

When this is substituted into Eq. (C.28), it yields
P3"D,, = ipkUz-ug) - pwir - &pw% . (c.30)
In the wake far downstream, the flow Is paraflel again (v = 0), From the discussion of the cylindrical

waké (Eqs (C.19) through (C.21)), it followed that thé pressure difference in the wake is determined by
the centrifugal forces, due to the tangential velocities, viz.:

Ro3 . :
P3P, = P(r3) - P(Ro3) =-p (w3/r3) dry . (c.31)
r
3

Fred tre above formulae it can also be deduced that the loss of total head in the flow is
Hy = Hy = (py-py) - tow? = pwar . (c.32)

When.Eq. (C.30) is substituted into Eq. (C.24) and when also the relations Eq. (C.26) and (C,27) are used,
this leads to

, 1+iw, /0r
o [ (U~u3)2ds = o0 ff Ugdia s [ u3 3. l+&z/ﬂr]ds ) (c.33)
53, 53 3 -
for ry = Ry EQ. (C.30) gives:
&p(Uz-ug3) = oMyaRo3 + &pwg3 . {c.3h)

The above equations suffice (at least In prifciple) to calculate the flow behind the turbine and the tor-
que of the turbine, .when a distribution of the tangential velocities in the wake far downstream is as-
sumed. It is still a difficult job, however, and, therefore,a special example will be taken,
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In the case that T = constant, wr = constant or w = k/r. Applying this to the Eqs {C.30) and (C.31)
gives

1o (2-d) = pak + doWd5

which shows that also uy = constant in the wake. This equation can also be written as

fk = &(uZ-ug) - iwis . (c.35)

Because dr/dy = 0 and dH/db = 0 In this special case, from £q. (C.1k4), it follows that wg = 0 in the wake
and thus in the entire flow field, except on the wake boundary. Eq. (C.5) shows that chis is equivalent
to

3v _ du

9x  3r
Because it has been assumed, that u and v are constant through the actuator disk, it follows that 3v/ox =0
at the actuator disk and from the above equation it can be derived that 3u/3r = 0 and u = constant across
the actuator disk. Eq. (C.26) can now be written as
= 2 2
ur dr u3r3dr3 and ur2 = uyrg (C.26a)
and, vrom Eq. (C.33), it follows then that

(U-u3)2 = ZQk(l-u3/U) . (c.36)

i- 33/(u2-u§)
I-iwgB/{u3(U-u3)

This formula shows that, due to the rotation and the corresponding pressure déficit in the wake,
uz &(U+u3) ,

Eliminating Rk gives

u= i(U+u3) } = &(U+u3)(1+A) . (c.37)

with the equal sign for the case w ; = 0 (cfF. Sect. 3.2.1),

The torque can be calculated from Eq. (C.25):
Q= pIIu3w3r3dS3 = pffuk dS_ . = puks

ref °
fhe power coefficient of the wind turbine in this case is
Cp = Q0 / $oU%s o = 2(0k/U%) (u/0) . (c.38)
Substitution of the Eqs (C.35) and (C.37) into (C.38) gives
= - 2 . 2
Cp = +(14uy/0) (14A) [1-(uy/0)2 = (w/0)?] (c.22¢)

Comparison with Eq. (€.22a) shows that the decrease of Cp due to wake rotation Is reduced because

o3 < vy and because A > 0, when the sta.ic pressure déficit and the wake expansion are taken into account.

When the following parameters are defined
A= R /UG qe k/Ur ; u= u/ug = (R°3/Ro)2 ; end u3/U =t 3
the Eqs (€.35), (C.36) and (C.38) can be written as:

2 = (1-t2) = (W"'q2 , {c.352)
(1-t)2 = 22g[1-(0""] , {¢.36a)
Cp = 2Mqut = p2(p-1)"2e(1-0) 2 (c.38a)

When q is eliminated and y is solved from the Eqs (C.35a) and (C.36a), this gives

w= g [1 + 3¢ +-‘l“—;;)-3 + {[1 ¥ 3t +i:j;-)—3-]2 - 8:(1+t)}*] . (c.30)

When A + », u + (14#t)/2t, Substituting this into Eq. (C.38a), leads to
(€p) ), o= $(1-0) (14t) 2 = b(1-u/U) (u/U) 2 = ha(i-a)?

which corresponds to the ideal power coefficient derived by Betz (cf. Eq. (3.2.6)) with u/U = (1+4t)/2=1-a
(see also Eq. (C.22b)).

When A + 0, y + » (see Eq. (€.39)) and, according to Eq. (C.36a), 2xq + (1-t)}2 or q + =, This means
an infinite circulation, which Is physically impossible,
The condition that q remains finite when A + 0 can te obtained from the Eq. (C.36a), viz.

(1-t)2 = 0()) , thus t =+ (1-/3) ,
and, because y -+ 2+1/8/% (Eq. (C.39)) and q + % (Eq. (C.36a)),
it can be shown that:
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fhe physical restrictions imposed on the formulae (C.38a) and (C.39) can only be obtained by con-
sidering a blade-element theory that introduces che 1ift coefficlent of the blade element,

In the commonly used theories, the following assumptions are applied:
= (p3=py) = 0
“u& i?U+U3), thus U3 = 2u~y
~ U dSpep = u3 dS3 5
- With respect to'w, there is no wake expansion, thuz wpr = w3r = wr. [t must be noticed, that at the
rotor itself weotor ™ 3w and in front of the rotor w = 0 (cF, Eq. (C.15) and further).
- The momentum equations are used In the differential form,

With the above assumptions, the equations (C.24) and (C.25) become (Eq. (C.29) is alsc used):
2u(U-u) = qwr + w2
dQ = 2ppuwr?dr .

From the first equation, it follows that it is impossible to keep both u and wr constant along thz rotor
blade. In order to calculate the influence of the above assumptions by comparing them with the resuits of
the Zqs (C.38a) and (C.39), the case u = constant (thus uj = constant} has been chosen.

When the following parameter is defined:

Xwar/U= Ar/Ro '

the equations can be written as
2(u/) (1-u/U) = xq + 1(3/X)2¢2 ,

ZﬂpUZRg
dQ = —zr (u/U)qx dx .

When q is extracted and when the rotor drag coefficient is defined by
€y = D/%pU2xR2 = U(u/v) (1-u/U)

the power coefficient (because dP = 0dQ) becomes:
’ 3
G = (Wa2)ur f [ (1 + e )7 - 1] ax . (c.40)

For large values of A and X, the form between brackets becomes
AN O LR PR IR I T I

and, thus,

A
Cp = (222)Cp(n/0) oj X dx = (o/0)Cy = h(u/u)2(1-u/v) .

which is the well-known Betz' expression,
Integrating E£q. (C.40) glves

o = (07 ) G2eacy) G2scy)t - 42 - gin (it (c.h1)

By consideration of the Eqs (£.38a), (C.39) and (C.41), it is possible to investigate the influence of
neglecting the wake expansion and the pressure reduction in the wake far downstream, although the cases
are not fully comparable, because in case of the wake expansion, both I' and u are constant along the blade
span, whereas, in the case of cylindrical wake, only u Is constant along the span.

The lower part of Fig. C.k shows the axial velocity through the rotor (u) In the case of an expanded
wake, divided by the axial velocity in case of a cylindrical wake [¥(U+u;)]. Up to common values of A the
influence is small. -

The upper part of the fligure shows the far more dramatic effect of the wake expansion on Cp. The
large loss of energy output due to wake rotation in the case of a cylindrical wake is caused by applying
the tangential velccity at the wake boundary equal to wy = k/R,, whercas In the case of the expanded wake
the tangential velocity at the wakz boundary is wg3 = k/R s which 1s smaller by a factor 1/Yy. Combined
with the small increase of the axial velocity, the power ?oss due to wake rotation in this latter case is
negligible. At low tip-speed ratios, the power output miyht be even larger than the Betz' 1imit expression,
but it migh: be questiuned whethet a resl rotor blade can sustain such high 1ift loads.

At each valie of A, there is a certain value of u3/U (of u/U) at which Cp is maximum. These optimum
values of Cp at each value of ) have been compiled in Elg. €.5. This clearly shows that, when the wake
expansion and the static pressure déficit in the wake are taken into account, 'the optimum power output is
equal to the Betz limit up to very low values of ), wheré the simple theory for I = constant along the
radfus of the rotor blade breaks down.

Also shown in Fig. C.5 Is the result of Glauert (Ref, C.b4), whizh shows an op~imum, when F as well as
u/U are allowed to vary along the span of the rotor blade.

That the effect of wake rotation on the over-ali power coefficient can be-neglected, due to the

balancing effects of wake expansion and static pressure déficit in the wake; can be made plausible by con-
sidering the energy equation, viz. ’

dPeqndy=ud-f¥de .
This equation states that the power delivered by the turbine (2dQ) has to be equal to ths work done by
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the alr on the rotor, through the axial force (u dD) and the torque (4{w/r)dQ); it has to be remembered
that the direction of u is in the direction of dD and that the direction of the angular velocity iw/r is
opposite to the direction of dQ. In Eq. (C.24), the drag force consists of a momentum term and a pressure
term, due to the pressure déficit in the wake, thus

dD = pu(U-u3)dSref + bpy dS;

and, from Eq. (C.25),
dQ = 'pUsW3Ty dS3 = puwr d$

ref
Hance

.4 - - 2
{rrdQ u Ypw dsref

Because

Ap3d53 ) ipw% dS3 ~ dow? dS ¢
the influence of the static pressure déficit in the wake and the influence of the wake rotation almost
cancel. The remaining equation for the generated power:

- 2 ()=
dP = pu2(y u3)dSref

is identical to Betz' expression, when the wake rotation is neglected.

C.5 Concluding remarks

The calculation of induced velocities is very complicated, even in axisymmetric flow. By simplifica-
tion of the problem and by using the momentum equations, it is possible to get insight into the behaviour
of the induced velocities.

The assumption that the axial velocity at the rotor is the arithmetic mean of the velocity far in
front of and far behind the rotor can be applied for a large range of tip-speed ratios, Only at low values
of A, this assumption might underestimate the axial velocity when, as is usually done, also the static
pressure déficit in the wake is neglected.

The tangential velocity w behind the rotor is connected with the bound vorticity at the rotor (circu-
lation T) on a common streamline., |n the wake far behind the rotor, the radial velocities have to be zero,
and the centrifugal forces due to the tangential velocities have to be balanced by the static pressure
déficit in the wake. This provides a relation between the allowed combination of axial and tangential
velocities.

It is possible to translate the conditions far behind the rotor to conditions just behind the rotor,
because the total head and the circulation have to be constant along a streamline in the wake. |t can be
shown that the tangential velocity at the rotor is one half of the tangential velocity just behind the
rotor. (This is important in connection with blade-element theory.)

The determiration of the streamline pattern in the wake is complicated; therefore, often a cylindrical

wake is assumed. This means that the tangential velocities in the wake far downstream are overestimated.
This causes also an overestimation of the power loss due to wake rotation, especially at low A,

There is a strong indication that the combined effect of wake expansion and static pressure déficit
In the wake almost cancels the so-called 'power loss due to wake rotation'!, which appears in the theory
of Glauert (Ref, C.%) and in most of the other theories described in this report. This power loss due to
riake rotation Is only significant at low A and/or low values of r/R, (close to the hub), which means at
rather high values of the local solidity ratio o', The 1ifting=1ine approximation (c << Ry) used in the
above theories becomes less accurate when the solidity becomes large, which means another possible error
source in the performance prediction, This also explains the fact that the compensating effect of wake
expansion and static pressure déficit has not been recognized in the past when the results of calculations
and experiments were compared with each other.

The momentum equations, valid for the entire streamtuve through the rotor, are often assumed to be
valid also for an elemental streamtube. It is difficult to assess the validity of this assumption, but,
regarding the small influence of the static pressure déficit in the wake on the axial velocity at not too
small values of A, the error due to this assumption possibly is small.
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Fig. C.1 The trailing vortex sheet of a rotoi Liade with a variabie circula-
tion along the span of the blade
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Fig. C.4 Influence of wake expansion. Wake expansion with I'= con-
stant (see Eqs(C.38a) and (C.39)). Cylindrical wake with u/U=
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APPENDIX D
SOME CONSIDERATIONS ABOUT THE ROTOR BLADE SHAPE 4

L

D.1 Introduction
In the next Sections, some simple discussions are given concerning the influence of the blade shape i
of a vertical-axis wind turbine on the blade loading due to centrifugal forces, with the aim to show the :
advantsge of the so-called troposkien blade shape. v
Next, the centrifugal loading of a horizontal-axis turbine is discussed and, in a strongly simplified
way, the influence of the aerodynamic load is indicated. <
D.2 Bending stresses due to centrifugal loading for a drum-type vertical-axis turbine
Consider a vertical-axis turbine with straight blades parallel to the axis of rotation. The radius of ¢
the rotor is Ry and the height is H. ;
To simplify the calculations, the following assumptions have been made: 4
- The blade has a constant chord ¢ and a constant thickness ratlo t/c. é
- The cross-sectional area of the blade construction material is constant along the blade span and, with a §
factor ¢, is expressed as &tc., The specific mass of the construction material is indicated as py. i

The centrifugal load per unit span at an angular velocity @ of the rotor can be calculated from
- 2
FC/H Py dtc AR

v,

The maximum bending moment in the blade now depends on the blade attachment, which can be indicated by a
factor f, thus

- 2 . 2,2
Mb f(Fc/H)H fpm dtc Q<H Ro .

<2 e

The factor f is equal to % if the blade is clamped at one side and free at the other side, f is 1/12 if
the blade is clamped at both sides, and f is 1/8 if the blade is connected at the tip to the other blades

by a horizontal strut and hinged at both sides, etc.
The moment of inertia of the blade cross-section can be expressed by the cross-sectlional area and the

radius of gyration ry of the cross-section. The bending resistance is then nbtained from this moment of
inertia by dividing by it, thus

W, = oter/(3t)

where re < it .

The bending stress is now calculated from
o = Mp/My = F o (H/r )2Le/R ) (R )2 . (0.1)

S N

This formula shows that the bending stress is proportional to the square of the circumferential velocity
QRy and also proportional to the specific mass of the material pp. It can be noticed that op < o x* the
maximum tensile stress of the material considered, and that the square root of the ratio of Otmax 'O the
specific mass pp, which has the dimension of a velocity, is a property of the material consideved. For
alluminum alloy, this material constant is (otma /om) % = 420 m/s,
£q. (D.1) shows that a given blade construction and blade material sets a limit to the circumferential
velocity of the turbine. This equation also shows a kind of similarity rule, viz, if two geometrically ‘
similar turbines are taken operating at the same tip-speed ratio A and wind velocity U (i.e. SRy = con-
stant), then the bending stress op is the same for both turbines, irrespective of the size of the turbine.
A final conclusion from the above equation is that, because ry < t/2 << H and often H ™ 2R, the cir-
cumferential velocity of a straight-bladed (drum-type) vertical-axis turbine is severely 1imited by the
allowable bending stress.

D.3 The troposkien blade shape for a vertical-axis turbine

The bending moments in the rotor blades of a vertical-axis turbine caused by the centrifugal forces
can be avoided by giving the blades the shape of a rotating rope with zero rigidity, with the end points

connected to the axis of rotation,
Consider a steadily rotating curved blade, with a constant mass per unit terath (m) along the span of

the blade. The shape of the troposkien has to be such, that the variation of the tension force Fj along
the blade is in equilibrium with the centrifugal force on a blade element (dF., Fig. D.1)}, in which bend-
ing moments in the blade are avoided.

A f gravity forces are neglected, from vertical equilibrium, it follows that F; »as to be constant

along the span of the blade. .
From horizontal equilibrium, it follows that

dF = (dFr/dz)dz . (0.2)

From the ferce triangle in Fig. D.1 and the formula for the centrifugal force, the following expressions
can be.obtained:

- dz : F = 21%
Fo=~FdR/Uz ; F Fz[l+(dR/dz) | ‘(0.3)

dF = nznm[1+(dnldz)2]*dz . (p.4)




=
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D2
From the Eqs (D.2), (D.3) and (D.4) it follows that
mn2R[1+(dR/dz)2]* = -Fd%R/d2? . (0.5)

-l
Because at z = 0, R = R,, dR/dz = 0 and d?R/dz? = =R} , with Ry the radius of curvature of the troposkien
at z = 0, it follows that:

- 2
F, = +%R R, (0.6)
and
d?R/dz? = R(Rokk)'1[1+(da/oz)2]* . (0.7)
Integrating with the above boundary conditions gives
dz/dR = (2kR /R )[dF(k,R/R )/d(R/R)] (0.8)
W2R, - z/R = 2k(R /R JF(K,R/R)) {p.9)
2 -l
with k% = (bR /R)

and F(k,R/Ro) = elliptic integral of first kind.
Choosing a certain radlus of curvature Ry leads to a definite height of the rotor, as can be seen from
Eq. (D.9) by substituting z = 0 and R/Ry = 1,

H/2R = 2k(R /R IK(K) (0.10)

with K(k) = complete elliptic intearal of first kind.

The minimum value of F, occurs at z = 0 (F,,) and equals F; Eq. (D.6). The maximum value occurs at the
blade root (R = 0). From Eqs (D.3) and (D.3), it follows that the ratio of (Fp)pax to Fng is

(F) nax’Fro = [1+[1n<2(Rk/Ro)Z]'l]ir . (0.11)

n’max’ no
The area swept by the rotor blade can be calculated from

1
2
Sof = URZ OI (R/R )d(z/R )

what leads to
S:ef/Rg = u(Rk/Ro)ln[(1+k)/(l-k)l . (p.12)

It is also interesting to know the blade length s needed to obtain such a swept area S .¢. This can be
calculated firom .

ds = [1+(dR/dz) 21 (dz/dR)AR .
This can be expressed iu complete elliptic integrals of the first (K) and second (E) kind, viz.:
s/R, = (2/W[EW) - Li-k2(142R /R )IK(K) ] . (0.13)

Some numerical results have been calculated and compiled in Table D.1. If Ry = 0, the troposkien degener-
ates into a folded straight line.

The swept area is connected with the energy extracted from the wind stream, whereas the arc length is
connected with the costs of blade construction to obtain such a swept area. The ratio Spef/(sRy) is a
measure for the “economy' of the shape. It increases with Increasing Ry (when Rk/Ro + », Sref/sRo + 1.273).
but the corresponding increase in tower height certainly sets a limit to the "optimum' value of
Sref/sRo.

Denoting the material cross-section of the blade by ¢tc and the specific mass by pp, the maximum
tensile force in the blade can be obtained from the Eqs (D.6) and (D.11) with m = pyétc, viz.

(F)

-1.&
nax = Pptte 92RZ(R, /R [ 1+14K2(R, /R )21

and the maximum tensile stress can be calculated from

(F) pan/0te = o (a8 ) 2(R, /R ) [ 1e18k2(R, R )21 ]E (0.14)

=
9 ® ) max

Figure 2.6 shows that a Darrieus turbine can withstand higher circumferential velocities (ORy) than a
straight-bladed (drum-type) turbine (see also the £qs (D.14) and (D.1)).

D.4 Centrifugal stresses in the blades of a horizontal-axis turbine

The centrifugal stresses in the blade of a horizontal-axis turbine can be estimated from some sim-
plifying assumptions, viz. that the relative cross-sectional area of the blade material is constant along
the blade span (i,e. ¢ = constant; t/c = constant, whereas c varies along the blade span) and that the
specific mass of the material is constant along -the span (py = constant).

The cen:rifugal force in a blade section at radius r can then be calculated from:

P

4



1
Fr/R) = o ZRI0t/c ;R (e/R)2(r/R)d(r/R ) . (0.15)
A
This irtegral can be easily evaluated for a blade with linear taper

c/Ry=a - br/R (0.16)

which corresponds to a taper ratio
TR = c(r/Ronl)/c(r/Ro-O) = (a-b)/a . (0.17)

The tensiie stress in that cross-section is then easily calculated by dividing through the material cross-

section ¢(t/c)c?, thus

1a2(1-x?) - Zab(1-x3) + }b2(1-x%)

: 2
» o_=p (OR )2 , (0.18)
b t mo a - 2abx + b2x?
" with X = r/Ro .
Figure D,2 shows the spanwise distribution of the tensile stress as a function of the taper ratio
(see also Fig. 2.7).
0.5 Possible reduction of bending moments due to the aerodynamic load on the blade of a horizontal-axis
turbine
The aerodynamic 1ift forces on the blades of a horizontal-axis turbine introduce bending moments in
the blade sections. When the blade axis is brought out of the plane of rotation (see Fig. D.3), the cen~
trifugal forces create an orposite bending moment, and there might be a possibility to define such a shape
of the blade axis, that al’l bending moments are avoided.
The condition for zero bending moment at eac: blade section (r1,x1) is that the moment due to the
aerodynamic load Mj(rq) is equal and opposite to the moment due to the centrifugal force Ma(rq), or
Yo o Yo aF
! Hy(ry) = f EF(r-ri)dr = Hy(ry) = f E?-(x-x1)dr
r r
i 1 1
i for 0 < " < Ro .
P This condition is difficult to work with; therefore, a slightly different condition is used, viz.
I .
! i which is, but for a constant (independent of ri) equivalent with the first condition, as can be seen by
‘ 5 integration, This constant has to be zero, because the moment is zero when ry = Rg. ’
,ﬁ ‘When the result for the differentiation of an integral with a parameter is remembered, viz.
| } g Ib"fl(y) Ib of df, o
) £ f(x,y)dx = [ ==dx + f(b,y)— ~ f(a,y)r— ,
i ] W axt,(y) .oa W d %
H
t % the differentiation of My and M, lead to
P
41 R
1 dM o 9dr P dr
g . g -,..l!!dr-[iﬁ(r-r )] — e N(r)
" ’
§ dr, ‘ r, dr dr 1 enr| dr, 1
K
v and
) R
df dF dr dx
3 dMy o X dF; [ c ] 1. %
! e B e L I oL X () I
H dr, r rydr dr V' )iap, dFy  dryctid
¥, X=Xy
b because N(R_) = F_(R)) = 0.
’ %. The differential form of the condition for zero bending moments in the blade, neglecting gravity and
5] also neglecting the finite cross~section of the blade, is
i; N(r1) = (dxl/dr1)Fc(rl) ,
, g’ or, written in a more abreviated form;
by dx/dr = tgy = N/F_ . (p.19)
bovg
’ i’ Such a shape is only feasible if ¥ remains small, i.e. if the aerodynamic load remains small with respect
[ to the centrifugal forces.
) g Below, the feasibility will be studied by crudely estimating the aerodynamic and centrifugal forces
, , for an optimally operating wind turbine.
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1t would be possible to use the theory of Sect. 4.4.2 for the estimation of the aerodynamic load and
the corresponding spanwise chord distribution, but a still simpler approach will be followed.

When it Is assumed that the induction factor “a'" is constant across the entire rotor area, the normal
force coefficient for the complete rotor is (cf. Sect. 3.2.1)

Cy = N/&puznng = 4a(1-a) ,

and the normal force on one blade of a B-bladed rotor is
N= (2n/s)a(1-a)pu2ng . (p.20)

Consequently, the normal force on the outer part of the blade between r/R, = 1 and t/R, is then

N(r/Ro) = (2n/s)a(1-a)pUZRgtl-(r/no)ZJ . (0.21)

The. blade chord distribution can be estimated in the following way. The normal force on a blade element
d(r/Ry) is, according to the simple momentum estimates of Sect. 3.2.1,

dN = (4n/B)a(1-a) (UR )2(r/R )d(s/R )

and, according to blade element theory,
- 2
dN ipUrelccldr .

When the tangential induction factor (a') is neglected (see 3ect. 4.4.2), the relative velocity is equal
to

12, = (1-a)202 + (ar)2 = VY (1-a)2 + (Ar/R)?]
and the blade element shows a normal force
oN = 4oC,u2R2[ (1-a)2 + (Ar/R)2](c/R )A(r/R) .

Equating both expressions for.dN gives a formula for c/Ro, viz,

e/h = (Ba/ac)a(1-an "2 /R )[LU-a) A2 + Lr/R1Z]) (0.22)

When Cqy and "a'" are taken constant along the span, a rather simple explicit formula in r/Ry appears., Com-
parison with the theory of Glauert (Sect. 9.?.2) shows a surprisingly good agreement, especially at
higher values of A, when ""a" Is taken to be 3 (Table D.2).

The centrifugal force on the outer part of the blade (between r/Ro = 1 and r/Ry) can now be calculated
with the usual assumption of the constant value of ¢ and t/c along the span, thus

1
Fo(r/R) = p o(t/c)a?Rl [ (c/R)2(r/R)A(r/R))

r/Ro

or, with substitution of Eq. (D.22),

-292 L -
Fc(r/Ro) - pm[(aﬂ/ﬂc1)a(1—a)k 2] o(t/c)a%RE [ y3(AZ4y?) 2dy , (D.23)
° R
)
with A= (1-a)/X and y = PR, .
The integral can be evaluated as
2(1-y2 2
*[- L) (A;ﬂ_)] . (0.24)
(A2+1)(A2+y?) AZ4+y2
Returning to Eq. (0.19) and substituting the Eqs (D.21) and (D.23) leads to
d{x/R ) B(C,A)2(1~y?) [ 2 (1-y2 2 -1
o ) 1 AZ(1-y?) [A +1 ]
= tgy = — - - + In |=5— . (p.25)
d(r/R ) Py 6 ¢(t/c)all-a) (A241) (A%4+y?) A2

This equation has been numerically evaluated and the result, in the form of the spanwise distribution of
v, is shown in Fig. D.k with the following values, viz.

B ="2, a=1/3 (optimm), C, = 1.0, p = 1.23 kg/m3 (alr), o, = 2750 kg/m3 (aluminum alloy),
t/c = 0,12, A =8 and 4, ¢ = 0.69 (solid cross-section) and 0.20 (hollow).
An example of the blade shape is shown in Fig. 2.8 for A = 8 and ¢ = 0,20,

The deflection close to the tip is probably overestimated, because of the neglect of the 1ift loss
close to the tip (tip-correction factor). The deflection angle close to the root is probably underestimated,
because of the very large blade chord, which will possibly not be applied in practice.

The hollow blade in this example is still rather heavy (30 % of the cross-section is solid material)
and Fig. D.4 shows, that the bending moments can probably not be avoided in a high-A design with a light-~
weight construction.

Somewhat surprising and also somewhat misleading is the large influence of A on. the deflection angle,
which is caused by two effects, viz. ‘
~ The aerodynamic load on the rotor blade of an optimally operating turbine Is almost independent of A

(Eq. (p.21)), whereas the centrifugal force depends on the chord length squared, which is strongly
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dependent on A (Eq. (0.22)).
- The material area factor & is taken to be constant at different A, but the lower-loaded low-A blade will
certainly show a reduced ¢ compared with a high-A blade design.

TABLE D.1
Variation of blade geometry and blade loading with varying
curvature at the equator plane for a true troposkien

R/Ro | /2R, Seef/Ro | /R, Sref/SRd) Fno/(male) (Fn)max/(mazRg) (Fn)max/(anRo)
0 0 0 2.0 0 0 0.5 0.2500
0.1 |0.35451)0.9912 |2,2090 | 0.1605 0.1 0.6 0.2716 t
0.2 |0.5677 |1.5399 |2.4119 | 0.6385 0.2 0.7 0.2902 ¥
0.3 [0.7358|1.96k2 |2.6029 | 0.754% 0.3 0.8 0.3073 !
0.4 |0.877312.3209 |2.7828 | 0.8340 0.4 0.9 0.3234 !
0.5 |1.2080 [2.6339 |2.9524 | 0.8921 0.5 1.0 0.3387 1
0.6 {1.1139)2.9157 }3.1137 ] 0.9364 0.6 1.1 0.3532
6.7 |1.2164 | 3.1740 |3.2671 0.9714 0.7 1.2 0.3672
0.8 ]1.3116]3.5135 [3.4137 | 0.9999 0.8 1.3 0.3808
0.9 j1.4003 |3.6379 |3.5545 | 1.0235 0.9 1.4 0.3938
1.0 |1.4844 13.8497 |[3.6902 | 1.0432 1.0 1.5 0.4065
1.5 | 1.8504 | 4.7722 |4.3059 | 1.1083 1.5 2,0 0.4645
2.0 |2.1565 | 5.5452 | 4.8440 | 1.1L447 2.0 2,5 0.5161
Ry = radius of curvature at equator plane (m)
Ro = maximum radius {(m)
H = height of troposkien blade (m)
Spef = area swept by the rotating blade (m?)
s = length of blade (m)
Fro = tension force in blade at equator plane (N)
(Fn)max = ditto at blade root (N) v
m = mass per unit blade length (kg/m
M = ms = total mass of one blade ?kg
Q = angular velocity of the rotor (rad./s)
TABLE D.2
Comparison between the optimum blade chord distribution according
to Glauert Eq. (4.4.21) with the simplified estimate of Eq. (D.22)
X = Al Glauert | Eq. (D.22)
Ro (ABC1C/Ro)opt.
1 3.367 3.867
2 2.382 2.513
3 1.728 1.774
[ 1.338 1.359
5 1.087 1.097
6 913 919
7 .787 791
8 .691 .693
9 615 617
10 .555 .556
11 .505 .506
12 463 L6k
13 .28 h28
14 .398 .398 ’ -
15 37 .372 .

Glauert: (ABClc/R ) = 87 X{(1 - cus 0)

o’ opt.

with
K o= A = sin 8 (2 cos 8-1)
Ro {1 - cos 8) (2 cos 6 + 1)

£q. (D.22), written in a somewhat different way:

(BE c/Ry) oy = Br ali-a)X((1-a)2 + x2)7!

with a = 1/3,
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Fig. D.2 Influence of the taper ratio on the stress distribution due to cen-
trifugal forces along the blade span

Fig. D.4 Deflection angle of the blade axis of an optimally operating
horizontal-axis turbine with zero bending moments in the rotor
blade. B=2, C; =10

Is deflection angle of blade axis
Pro = 2750 kg/m®, P =123 kg/m°, ve = 0.12
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