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1.0 Introductio
“This study considers the problem of estimating the number of
errors in a software package and its mean time-to-failure (MTITF). An
emphasis is placed on the comparison and evaluation of various estima-

tors and on determining the estimator accuracy. The estimation

problem is described below.
i\

1.1 The Estimation Problem
Consider a software package being tested to detect program errors.
Let the testing start at t=0 and denote the error detection times by
1o Eps eee oo Also define the "inter-detection" times, Xgs the time
intervals between the detection of errors, as
i B | 1=2,3, ... n

x, ={ (1-1)
e 1=1

The correction of errors can be done in two possible ways. The
first possibility is to have all errors corrected immediately after
detection. An equivalent method will be to correct the errors at any
time after discovery but not to count rediscoveries of those errors
as new ones. The second correction method accumulates the detected
errors and at some discrete times, T it corrects several errors .
The first method is called the Instant Correction method and it is
discussed in Sections 2 and 3. The second method is called the
Delayed Correction method and it is discussed in Sections 4 and 5.

It is assumed that the program size remains the same during the
test phase. Furthermore, since there is no reliable information

about the number of errors which are introduced during the correctioms,




i
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it is assumed that the number of the new errors is small and therefore,
it is negligible. Then the objective is to estimate N, the initial
number of errors in the program, and T, the MITF after detecting n errors,
from the sequence Xys Xy X -

First note that during the interval ti-l <t < t.1 the number of
errors in the program is constant. Therefore, it is reasounable to assume
that the error detection rate will be constant too. The error detection

rate, which is also called the hazard rate, is denoted by z This

T
assumption was made in all the reported models, except for the one by
Schick and Wolverton [8], where it was assumed that the hazard increases
linearly with time. Since we could not find a physical justification for
this model in our case, we did not use it.

Once it is agreed that the hazard rate during € <t< t, is a

constant and equals 2 the probability density function for x; can

be derived [11]; it is found to be exponential.

f(xi) z, e 11 (1-2)

The mean value of x,, which is denoted by Ti, is actually the MTTF

i
before the detection of the ith error. It is given by

T, =— (1-3)

After some errors are corrected, the hazard function will vary. The
two main models of Shooman {4] and Jelinski and Moranda [1]

assume that the hazard function is proportional to the number of
remaining errors. Therefore, the two models are equivalent for our

case. We prefer to use the formulation of Jelinski as it gives N




directly. The hazard function is therefore assumed to be:
z, = ¢ (N-i+l) (1-4)

Where (N-i+l) is the number of remaining errors during the time
ci—l <t < c1 and ¢ is a positive constant. This model is called the
Standard model.

A different relationship between z, and i was suggested by

i
Jelinski and Moranda. It is givem by (1-5):

z, = Xoa (1-5)

i
Both Ao and a are positive constants. This model assumes that
the hazard function changes by a constant ratio and therefore, it is
called the Geometric model.
Another model was developed by Musa [7]. This model approximates
the number of errors, which is an integer, by a continuous real number.
Based on that, he found the expected number of errors to vary

exponentially, and the mean value of &y is given by

- o § i
A 3 In (1 - i) (1-6)

This model is referred to as the exponential model.
The next step is to select the data to be used for estimation.

While all the previous studies selected x, as the data, it was found

i
that the sequence ti may give better results. The reason for this is
that the t's are the integrals of the x's, and therefore will fluxuate
less. 'We have used both the xg and the €y data for estimation with
each estimator being designated as the x type or the t type.

Finally, when the model and the data are selected, one can still




select different types of estimators. The most common type is the
Maximum-Likelihood (ML) one. This was used in all the reported studies.
Another possible approach is to select the model parameters, N and ¢,

for example, in such a way that the difference between the data points

and their mean values is minimized in a least square sense. For
example, if we have X, data, and we are using the standard model, we
can find the mean value of x , which is denoted by ‘1‘1. from (1-3) and
(1-4).

T o=t (1-7)

1 ¢(N=-1+1)
and defines the estimation error E by (1-8)
n _ 2 n 1 2
E = 151 (x1 - Ti) 151 (xi - 3T§:T:IY) (1-8)

:1 This estimation method selects N and ¢ which minimize E. This type
of estimator is called a least-square (LS) estimator. Note that it can
be used with x or t type, as well as with the Standard, Geometric or
the Exponential models.

Next we may select any combination of models, data type and

estimation methods. However, some combinations lead to complex

analyses; therefore, they are not used. The seven combinations

which were selected are illustrated in Fig. 1-1. The resulting esti-
mators for the Instant Correction methods are described in Section 2 i
dnd their results are evaluated in Section 3. 3imilar estimators m
were developed for the delayed correction method. It was found that

the exponential model cannot be modified for this case and therefore,

e e e

it was not used here. The other six estimators are described in
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1-6
Section 4 and their results are evaluated in Section 5.

In addition to determining the estimates, we wish to learm
more about their accuracy. This is done in two methods. The first
method is the development of confidence intervals for the estimates.
The second method is to study the effects of N and n on the accuracy
of the estimate. The two methods, along with some experimental
results are given in Sectiom 6.

Finally, the format for the data collection is important as it
describes the information to be gathered. This is especially impor-
tant in the case of delayed error correction, where the detected
errors should be grouped into several intervals. Furthermore, the
source of each error should be discovered, so that errors would not
be counted more than once, if the reliability models of Section 2
are to be used. In order to make sure that all the required data are
collected, a proposed format was devised for data gathering. This

is described in Appendix E.

R B i, == - o e RER - >




2.0 Reliability Model and Estimators

Several methods are suggested for the estimation of reliability

parameters. These are listed below along with their equations.

2.1 Maximum=-Likelihood Model

Here it is assumed that the initial number of errors is N.
Errors are detected at random and are corrected immediately. After
correcting the (i-l)th error, the number of remaining errors in the
program is (N-i+l) and the hazard rate is assumed to be proportional
to the number of the remaining errors. Thus, the hazard rate before de-

tecting the ith error 1is

Ry " ¢(N-1+1) (2-1)

Assuming that n errors were detected and that the detection times are

tl’ tz P :n. Define the time differences as

X =Lt =€

i 1 L-=w 23 v . et

(2-2)

e

Then it is possible to estimate N and ¢ by maximum likelihood estimators
§ and $. The derivation, given in Appendix A.1l shows that ﬁ is the

solution of

- 1
I o= = = (2-3)
{=1 N~i+1 L3 )
N- s
o
I x
g=1 1
and
; 1
A {=] ﬁ—i‘.'l
¢ . (2-4)
5 =X
ey *

—




The MITF after the (1-1)th error correction is

';1 - 1—:1—- (2-5)
o (N-1+1)

2.2 Geometric Maximum Likelihood Model

In this model, the hazard rate decreases by a constant ratio
after the correction of an error. Accordingly, the hazard function be-

fore the detection of the 1th error 1is

z, = Ao a (2-6)
where Ao and a are constants.

Here one can estimate the most likely values of Ao, a and the mean
time to failure. This is done in Appendix A:2. The result of the

analysis shows that the most likely estimtes are the solutions of

(2-7) and (2-8)

B L 4 ai-l x1
nggzlz " n1-1 =0 (2-7)
L ai Xy
i=]1
Ao = T—‘!——- (2"8)
i
L a Xy
i=1

The mean time to failure after the correction of the (i-l)th error is

- 1 1
Ty W= . (2-9)
i z, Xo ai

i
-
o et

» R b
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2.3 Least Square x Mo«_iel ¥it
The basic assumptions of this model are the same.as those of the

model in Sectiorn 2.1. However, instead of determining the most likely
estimates of N and ¢. we search for those values which minimize the

sum of the squares of the deviations of Xy from the mean values.

° A ) S
E= I (x,-%x,)" = I [x,-~——7] (2-10)
N =1 X T p(N-i+D) .
z N and ¢ whichminimize E, as given by (2-10), are derived in A.3. It is

found that ﬁ is the solution of the equation (2-11).

 Jeenvn WECER 5 - 2 .z L —-0 @
1ag (1412 g (141)° gag  (N141)  gap  (B-141)
3
The estimate for ¢ is
n
T — -
= i=1 (N-i+1
, e J;f) (2-12)
i
b
: 4=1 Nitl
h '}
: The MITF, after the (i-1) = error correction is
i
:
o 1 1
:(- Ti — -z'- A A (2-13)
E i d(N-1+1)
,
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2.4 Least Square t Model

This model differs from the previous one by the fact that we
operate on the t times rather than the x times. Note that the times
t1 are given by

i
t,= I x (2-14)
4 %™

The rationale for the selection of t1 as a quantity to fit {ias that

it may be less sensitive to random changes, due to the summation of X, .

We compare ‘1 to its expected value, 21, which is given by
& 1 _ i 1
£, = § % = ¢ o, Y (2-13)
i = ) a1 (N=1+1) ¢

Consequently, the sum of the squares of the deviationa {s

n 2 n i

. - 1 2

- Y - - - p

E > (t1 tt) b (tl b PN-7+1 ) (2-10)
i=1 {=1 i=1

The objective is to determine ﬁ and 3 which minimize (2-16). This {s done

B
in Appendix A4 where {t {s shown that N {s the solutfon of (2-17).

n n n n

. o i _ .
L ¢t,B 4 A1 i tlAi i Ai“l 0 (2=17a)

i=1 i=1 i=1 i=1
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and
- 1
17 0 oD s

¢, 1is determined from

n
3 oAt
s _fup &
¢ - = (2‘18)
I t.A
=1 11

The mean time to failure, T, is given by

B 6 sl (2-19)

1 S(R-1+1)

2.5 Geometric Least Square x Model

Consider the geometric model where the hazard function after the

correction of the (i-1) KA error is
%, = )‘o a (2-20)

The mean time between the detection of the (i.-l)th and the ith error is

- 1 1
R, i

The objective now is to select the parameters a and Ao such that the

sum of the squares of deviations (xi - ;i) is minimized. Thus, the

estimation error is

n n
E = z(xi-ii)z- T, = el
i=] i=] o

(2-22)
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The parameters io and ; which minimize E are derived in Section A.5. It

is found that a is the solution of (2-23), and Xo is obtained from

(2-24).
n n n
ix X
i 1 Y I T e
):ai z-ﬁ-zaizauo (2-23)
1=1 1=1 @ {=1 {=1
n
1
L =7
A =i=L? (2-24)
o n X
z —
g=1 at

The mean time to failure for the 1th error, ?1, is given by

T, -t (2-25)

2.6 Geometric Least Square t Model

The geometric least square model is applied to the cumulative

time to failure ti. Consequently, the estimation error, E, {is

- - 2
E= ¥ (t, -¢,) (2-26)
1=1 i i
where
i
t,.® L x (2-27)
i joi 3
and
& .
t, = I x = L (2-28)

1 §=1 ] §=1 AoaJ

Therefore, E may be written as

PU—

——

e ———————es
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E= I (,- & -L-) (2-29)

A

The parameters, a and Xo which minimize E are derived in Section A.6.

a is the solution of eq. (2-30)

n n 2 n n
I t4Dy I g - I t4¢4 I CiDy = 0 (2-30a)
i=]1 i=] i=]1 i=1
where
4 1
=1
and
i
D, = I _Jj_ (2-30c)
=1 @
Xo is found from:
n
£ et
- 1=1 2
Ao n (2-31)
L tyC4
i=]1
and fi, is given by
~ = 1
T Tt (2-32)
a
o
2.7 onential Least Square Model

The following model is based on the work reported by Musa (7],
where a continuous model is assumed for N. According to that

model, the expected number for the corrected errors, N,, is

Se.s:- 2

s
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N, = N(1-e~ %) (2-33)

|
where ¢ is a constant and N is the initial number of the errors. Also l
the expected time until the 1th error is detected, t,, is found to be ‘

|

- -1 i
- 'y In (1 - ;ﬂ (2-34) l

Accordingly, we seek the parameters ¢ and N which minimize the estimation

error E.
3 n = n
: E= I (g, -E) = I [t1+%1n (1-%)12 (2-35)
.= 1=1 1=1

A

It is shown in Appendix A that the best estimate for N is the solutiom

of (2-36)
n n n n
e m &Y Sz ™Y L &Ly ao (2-30)
N-1 o N 1 N N-1 N
i=]1 i=] i=] i=]
: The estimate for ¢ is found from
) n
I 1’ G
i=1
¢ = - (2-37)
N
I t, ln (—
mp L0 WA
The MITF before the 1th error, Ti’ is given by
Y 5%a (2-38)
where Ei is given by (2-34). This is found to be
A h_ *
T, =% 1 (2-39) !
N-1 k
l
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3.0 Test and Evaluation of Estimators ;

The various estimators which are described in Section 2 were
tested and evaluated in order to verify that the equations are correct
and have no errors. Also, we want to determine the quality of the
estimators from the points of view of convergence and accuracy.

The first task is relatively easy. It was done by testing the p
estimators with deterministic data rather than random. In other words,
instead of having a sequence of random numbers, X5 to analyze, we

generate a sequence of the expected values of x, for the parameters .

N=60, n=50, ¢ = 0.1, with the corresponding MTTF of T = 1.0. Since

the data is not random, all the estimates should estimate the parameters
‘ N and T exactly. This was finally achieved after correcting several
errors in the program. This method was found very useful in debugging
the estimators program.

The next task is more difficult as real data is not available

for testing. The next best thing to real data is a randomly generated

data with the desired exponential probability function. Thus, the |9

data was generated randomly with exponential probability density

function,

£(x,) = O(N-1+1) o O (N-1+1)xy (3-1) t

where the index 1, was adjusted for each simulated time. Another point

i -

: of significance in simulating the data was to verify that the generated

-y ——

: time intervals, Xy, are independent of each other. This was examined

: by defining the variable y, by (3-2).

P —

3 e—¢(N-1+1)xi (3-2)

Yy
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3-2
The resulting random variable, Yy is uniformly distributed in the
interval (0,1). In order to examine the dependence between the various

yi's. we evaluated the correlation function R(k).

k
R Dkl VNG [ B (3-3)
= Tl

It was found that R(0) equals 0.08, as expected, but all the quantities
R (k), for k between 1 and 10 were close to zero, indicating that the
Yy values, and therefore, the xg values too, are independent.

In order to make the test statistically significant, 1000 random
sequences were generated for each estimator and the parameters were
estimated. The test results are presented as histograms which show the
frequency of estimating a certain parameter.

Following are four histograms for estimating N, the initial number
of errors. The data was generated randomly on the basis of the parameters
N=60 and ¢=0.02; the right estimate for N will be 60. However, due to
the randomness of the data, the estimates are spread over a wide range.
The histograms indicate the frequency of estimating &. Also included
is the cumulative frequency (C.D.F.), which indicates the number of
estimates being less than or equal to a certain value of ﬁ. Note that
all the histograms are similar in shape, indicating that all the four
estimators are similar to their behavior.

Comparing the histograms we observe that their general shape is the
same. The median point, for which 50% of the estimates fall below it,
is 60 and 61 for the estimates. The convergence rate is very high in
all the four models. It varied between 996 and 999 converging samples,

out of 1000.

I
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Another feature of interest is the estimate of the mean time to
failure, T. This parameter was estimated by all the seven methods. The
estimators operated on random data which was generated for the parameters
N=60, n=50, and ¢ = 0.1. The MTTF after detecting the 50 errors should
be 1.0, however, the estimate varies due to the randomness of the data.
A histogram for the geometric maximum likelihood model is given below.

In this case all the estimates converged between the values of 0.25 and
1.75.

The convergence was not always so good especially in the models
which estimated N first. A summary of the results is given in Table 3.1.
The table contains the number of samples for which the estimate has
converged. Also, it gives the values of %, the MITF, for various per-
centiles of the estimates. For example, the first row indicates that

25% of the estimates of i, using the maximum likelihood method, were
below 0.70. The results of Table 3.1 allow us to conclude the
following:

a) The estimates of T which are based on the Geometric models are
better. The variance of the estimate is smaller than that
resulting from the standard or the exponential models. The
reason for this is that the geometric model does not require
the estimate of N, which is very sensitive to random
variations in the data.

b) The least square estimates which are based on the x data are al-

ways worse than those based on the t data. The reason for this is
that the t times are the summation of the x's, and therefore,

they "smooth" out the randomness of x.
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c) We note that the general spread of the estimates of T is much
smaller than that of N. The reason is that T is derived from
the detection rate, whereas N has to be found from the change
in the error detection rate and a change is more sensitive to
randomness, the way that the derivative function is more sen-
sitive to noise.

Another question which interest us is the correlation between
estimators. That is, if one estimator produces a large estimate by one
method, would the same set of data produce large estimates using the
other methods? In order to examine this, we have determined all the
seven estimators for 20 sets of data. Note that although the data was
generated randomly, the same sets of data were applied to all the esti-
mators. The results were the estimates of N and f, by the Standard
and the Exponential models, and estimates for aand T by the Geometric
models. All the data points were generated for the parameters N=60,
n=50 and ¢=0.1, with the resulting T=1.0. Thus, the correct values are
N=60 and T=1.0. The actual estimates for all the 20 samples are given
in Table 3.2. |

An examination of the results of Table 3.2 reveal several
interesting points:

a) There is a strong correlation between the estimators. When

a set of data produces a small estimate of N, it does it
with all the estimators (samples 1, 3, 7, 9, 15). Similarly,
when the estimates are high, they are high with all the
estimators, (samples 5, 10, 12, 13).

b) Whenever the estimate of N is high, the estimate of T is

SR R—
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low and vice versa, low estimates of N give high estimates
of T.

The three methods of the Maximum-Likelihood, the Least-~
Square t and the Exponential models give almost identical
estimates whereas the Least Square x model gives different
estimates.

The estimates for T, resulting from the Geometric estimators
are usually lower than those given by the Standard estima-
tors. The reason for this is that the data is generated
randomly according to to the Standard model. When we try
to fit a Geometric model to it, we obtain a lower
estimate.

In spite of the high corrleation between the estimators,
it is worthwhile to evaluate all of them, as this gives a

wider base for estimating N and T.

!




4.0 Reliability Models for Delayed Error Correction

The objective of this section is to modify the reliability models
and estimators of Section 2 to fit the situation where error correction
is delayed. The program is loaded on a tape and each tape version is
tested and corrected. While the program is being tested, errors are
detected and recorded. Some of these errors, along with some other errors
which were detected by other means, are corrected at the end of the test
period. The corrections appear on the newer tape version.

Define the following variables:
h

t, - time when the 1t

1 error is detected. This is the

execution time and not the calendar time.

X, = t; -t _; - time between the detection of the (1-1)th
errct and the 1th error.

k - number of tape versioms,

n, - number of errors that were found in the jth tape
version.

m, - number of errors which were corrected in the (j+1)th
tape but not in the jth tape.

Mj -m + m, + ... mj-l = Cumulative number of errors which
were corrected in the jth tape version.

N - initial number of errors.

Nj =N -~ Mj &N = m = mj-l - number of errors that
remain in the jth tape.

I, - the set of integers which includes the indices of the
errors found in the jth tape.

For example, suppose that the program used two tape versionms.

Four errors were found in the first tape, of which three were
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corrected before the second tape was introduced. Three more errors
were found in the second tape. The number of tapes here is k=2.
The number of errors found in nl-b and n2-3. The number of errors

which were corrected in n1-3. Therefore we have nl-o and H2-3.

The set I1 includes the numbers [1,2,3,4] and 12 includes
(5,6,7]. Based on the above notations, we modify the models of

Section 2 as follows.

4.1 Maximum Likelihood Model

This model can be easily modified to this case as the hazard
function is assumed to be proportional to the number of remaining

errors. Let the number of errors in the jth tape be NJ, then we have

Nj-n-ml-mz-..o-n

j-1
(4-2)
Nl = N
Accordingly, the hazard function for the jth tape is
= N -
& j¢ (4-3)

The modified model is derived in Appendix B. N, the most likely

estimate for N, is the solution of the equation

n
n I Xy k &
{im
TE— - 1o (4-4)
& NJ z x, =1
i=1 i€l

]

and ¢ is derived from
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k
| : 3
‘1 o= Jﬁ!;__il (4-5)
I %
i=1
th -~ -
The MITF for the j tape, Tj’ is 4
T, - L (4-6)
N
\
4.2 Geometric Maximum Likelihood Model
When we apply the geometric model we assume that the hazard
function decreases geometrically. In this case we can assume two
forms of variation of the hazard. The first one is
3 K
z2, = X a (4-7) |
] i
:
According to this model, th* huzard decreases due to the correction,
independently of the number of errors detected. Another model will be i
: t
: My ?
! z, =) a (4-8) ;
E [
f
where &
M = :
e (4=9) :
Rl *
|
Denote the model of (4-7) as Geometric I, and (4-8) as Geometric II. |
§

The derivation of the most likely values of Xo and a are given in

Appendix B. For model I the estimate 4 is the solution of !




k
I(ad T x,)
i€l k
1L 3 N -
I 4% =1 o
g1 3
and Ao is found from
n
Ao k
I aj P x,
=1 ielj
The MITF for the jth tape is
Ry =y
Xoa

For model II the estinate d is found from

Kk
n (M a¥ & x)
] ter, * ko g
i=1 i _ L a S
k =1 iel
L oM
jal 33

and Ao is determined from

Also

(4-10)

(4-11)

(4-12)

(4-13)

(4-14)

(4-15)

e e TR
e SIS RS e = G

T ————

I ———
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It can be seen that model I can be obtained as a special case of

model II by substituting Mj - i

4.3 Least Square x Model

The hazard function zj. when the jth tape is used, is

zJ - ¢Nj (4-16)

Accordingly, the mean value of X, is

x, - —&% vhere iel;. (4-17)

The estimation error to be minimized here is

n
= .9 1.2
E= I (x1 - xi) = I L (xi - Eﬁ-) (4-18)
1=1 j=1 el i

b
The parameters ﬁ and ¢ which minimize this quantity are derived in

) t
Appendix B. N is the solution of the equation {1

ko k
b -—% T (__l? 3 xi)  ,
o N - Ny° el
1k1 | : _%1 J G (4-19) |
n 1 .
g 4 L ‘EJ‘ X |
ja1 Ny j=1 1»:1j
'"a
and ¢ is found from W
k n ﬁ
E ‘
PRGSO (4-20) I
k
L (-NL Lox) I
j=1 7 1te
s il i a e L Y Taagy




The MITF equals

e
ONJ

4.4 Least Square t Model

4-6

(4-21)

This model fits the cumulative time, ty» to its expected value.

Since the hazard function is constant during the use of a certain

tape, the mean time between failures will be constatn in that interval

tw.

51 - Ei; where 1te

To simplify the notation, define

N = N, where mel

(m) ] ]

Then we can write

1
Np?®

xi,-

In view of (4-23), the estimation error, E, equals

n n

i=1 i=1

The estimation of N and 3 which minimizes (4-~25) is given in

Appendix B. ﬁ is the solution of (4-26)

n n 2 o n
z eB, I A% - I ejar I ARy =0
1=1 i=1 i=1 i=1

(4-22)

(4-23)

(4-24)

(4-25)

(4-26)




where
E 4
m=1 (m)
and
LA
Bi = I 3 (4-28)
m=1 N
(m)

Also, 3 is given by

n
z A.iz
i=]1
¢ = '-—n———- (4’29)
z tiA1
i=]1

The MITF, ‘l'j is

AR (4-30)

4.5 Geometric Least Square x Model

" Section 4.2 presented two forms of the geometric model. Since
it was shown that model II is more general, it will be considered
in this section and in the following one.

Here again we use the notation

M( 1) = Mj where 1elj (4-31)

and recall (4-9)

M, =n,  +n

: 1 2 (4-32)

+...nj_1

~
The objective of the model is to estimate a and A, which minimize E.
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n n. 2

1

(4-33)
J40

- 1D -
E= I (:|::l - xi) - I (x1 -
i=1 i=1 Ao

The estimator 38 is found in Appendix B to be the solution of (4-34)

® x, M " B x B M

e e ) SR 1 P il w0 (W)
m M m M

=1 a D 4o 2 D 4y a @ 4, a7 WD

The estimate for io is given by (4-35)

n
i
)
)
o - —n—~——
i
L M

X

A (4-35)

X

The MITF is given by

(4-36)

~

4.6 Geometric Least Square t Model

The error resulting from fitting the ti values with their mean is

= » i 2
-2 1
E= I (t,-¢t, )= T (t, - I —=—) (4.37)
S| S Mo
{=1 1=1 A a
No )
The estimate & for a is found from
n n n n 'i
L egBy I AZ- I tgar I AgBy =0 (4-38) !Sﬂ
i=1 i=1 i=1 i=1 |




and

Xo is found from:

n
I A
i
A =il

o

2

n
I tiAi
i=1

(4-39)

(4-40)

(4-41)




5.0 Test and Evaluation of Estimators
for the Delayed Correction Case

The modified estimators, given in Section 4 were tested and eval-
uated. Here again, the objective is to verify that the derivation and
the computer program are correcc,vand to examine the quality of the
estimators.

The first part was done by testing the estimators with determ-
inistic data. Instead of generating a sequence of random numbers,

Xy, we generated a sequence of the expected values ;1 for some given
parameters N=60, T=1.0. The resulting estimators should equal N=60
and ;-1.0, if the derivation and the program are correct. Indeed,
after some small corrections, all the estimates were equal to the
desired values.

The next task of examining the estimators was done in a
similar way to the method of Section 3. Random sequences of times
were generated to simulate the error detection process with the
parameters N=120, n=100 and ¢$=0.05, with a resulting MTTF of T=1.0.
1000 such sequences were generated, and the various estimators were
determined for them. The results of the estimators of N are given
in the following pages in terms of histograms. These include estimates
of N determined by the Maximum-Likelihood estimator and by the Least-
Square estimators for both x and t. Note that the "correct" estimate
is N=120 and this value is the median for the three histograms. The
histograms have the same general shape and are similar to those

obtained in Section 3.
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Another quantity of interest is the estimate of the MTTF. We
have estimated the MITF from the 1000 sets of data, using all six
estimators. The results are presented by some histograms and by Table
5.1. The following page shows a histogram of the MITF, using the
Maximum Likelihood estimator. Note that the histogram is skewed and
that the "correct" value of T=1.0 is the median. This is typical
for the Standard estimators, which determine both N and T. This is
followed by three histograms of estimates by the Geometric models,
and the change is significant. Here we note that the histogram shape
resembles the normal distribution curve and that the spread is much
smaller than in the previous case. Here again we observe that the
mean value of the geometric estimators is considerably below the
"correct" value of T=1.0. The reason for this is that the data was
generated according to the Standard model, and when we try to fit a
Geometric model to it, we end with a smaller value of f. The estimator
results are analyzed further and the main results are summarized in
Table 5.1. These include the number of samples for which the estimate
has converged, various percentiles of the estimates.and the range of
the estimators. The results of Table 5.1 are similar to those of
Table 3.1 and they lead to the conclusions made in Section 3, namely,
that the estimates of f using the Geometric model are generally better
than the Standard estimators, and that the LS estimates of ?, based on

t are better than those generated from the x data.
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Another question which interest us is the correlation between
estimators. That is, if one estimator produces a large estimate by one
method, would the same set of data produce large estimates using the
other methods? In order to examine this, we have determined all the
six estimators for 20 sets of data. Note that although the data were
generated randomly, the same sets of data were applied to all the
estimators. The results were the estimates of N and f, by the Standard
models, and estimates for aand T by the Geometric models. All the data
points were generated for the parameters N=120, n=100 and &-0.05,
with the resulting T=1.0. Thus, the correct values are N=120 and
T=1.0. The actual estimates for all the 20 samples are given in Table
5.2
An examination of the results of Table 5.2 leads to the same
conclusions derived from Table 3.2. These are:
a) There is a strong correlation between the estimators. When
a set of data produces a small estimate of N, it does it
with all the estimators (samples 3, 7, 8, 15). Similarly,
when the estimates are high, they are high with all the
estimators (samples 9, 14, 18, 19).
b) Whenever the estimate of N is high, the estimate of T is
low and vice versa, low estimates of N give high estimates
of T.
c) The methods of the Maximum-Likelihood and the Least-Square
t models give similar estimates whereas the Least Square
x model often gives different estimates.

d) The estimates for T, resulting from the Geometric estimators

~
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Table 5.2 Comparison between estimators with identical data samples
Least Least Ceometric |
taxinum Square Square Maximum Ceometric Geometric
Sample Likelihood X lodel t Model Likelihood LS x Model | LS ¢ ‘llodel
Woniger N T | N 1 N % a T a T a T
1 116 0.95 { 119 0.84 | 113 1.11'0.985 0.529' 0.984 ] 0.567 | 0.984 [0.567
2 120 0.85 120 0.86 115 1.07;0.986 | 0.514 .985 0.55—7 .0—._9—86— 0‘.37'0—
3 112 1.52 | 116 1.26 | 109 2.01)0.983 >0.755 .984 .;T;;9 0.983 L__0.795
4 119 1.01{ 133 0.72 § 119 1.06}0.983 } 0.693 ) 0.987 FBT;B;q-ST;é;> 6?;;;m—
5 115 1.08 | 112 1.29 | 118 0.95{0.985 | 0.581 .983 1 0.660 0.986‘ 0.536
6 121 0.99 108 2.00 140 0.64]0,987 0.619 983 —0.749 0.990 .L;_.é‘?l
7 112 1.40 | 110 1.57 { 115 1.1610.985 | 0.627 | 0.982 ] 0.757 | 0.986 | 0.60%
8 112 1.58 { 112 1.59 | 115 1.3210.984 0.7821 .983 ] 0.815 | 0.986 | 0.703
9 128 0.73 | 138 0.62 | 134 0.66(0.986 | 0.584(0.98810.527 | 0.988 | 0.525
10 116 1.08 } 116 1.13 } 113 1.2910.986 | 0.556 | 0.983 | 0.679 | 01985 | 0.6C8
11 120 0.97 { 130 0.75 { 118 1.05{0.985 | 0.632 | 0.987 1 0.596 | 0.985 { 0.0650
12 123 0.72 § 125 0.68 | 130 0.61]0.986 | 0.47710.986 [ 0.481 1 0.288 | 0.433
13 122 0.88 { 122 0.88 } 108 1.9010.987 } 0.567 | 0.986 ) 0.614 | Q 0834 3—75;ﬁ
14 132 0.66 | 124 0.77 | 130 0.6710.989 | 0.453 { 0.987 | 0.536 } 0.989 3-160
15 114 1.25 } 115 1.19 | 111 1.60}0.985 | 0.633 | 0.983!10.723{0.984 3~;;;ﬁ“
16 118 1.02 | 119 0.98 { 119 0.9910.986 | 0.577 7 0.984 | 0.665 } 0.986 , 0.575 i
17 112 1.00 { 109 1.94 | 117 1.2310.984 | 0.778 | 0.982 | 0.861 | 0.986 5:574
18 140 0.75 | 138 0.77 | 142 0.7210.990 | 0.591 | 0.989 | 0.613 ) 0.990 | 0.564
19 128 0.81 } 128 0.81 | 127 0.85]0.988 ‘0.561 .987 | 0.611 | 0.987 { 0.593
20 112 1.724 | 123 1.14 | 116 1.4710.983 0.9382 .984 , 0.862 1 0.335 1 0.328
Mean 119.6/ 1.08 |120.3 | 1.09 {120.5 1.12{0.9857| 0.622{ 0.934% 0.662} 0.93441 0.607
SD 7.6 0.30 9.1 ] 0.41 9.9 0.4010.0019f 0.117 | 0.0021{ 0.112 { 0.0083] 0.102

| ——
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are usually lower than those given by the Standard estimators.
The reason for this is that the data is generated randomly
according to the Standard model. When we try to fit a
Geometric model to it, we obtain a lower estimate.

e) In spite of the high correlation between the estimators,
it is worthwhile to evaluate all of them, as this gives a

wider base for estimating N and T.

e et e e————



6.0 Accuracy of Estimates

In addition to estimating the parameters ﬁ and f. we wish to
determine the accuracy of the results. This is done by two different
methods. The first method is the development of confidence intervals
for the estimators, and the second method is the examination of the
effect of N, the initial number of errors, and n, the number of
detected errors, on the accuracy of the estimators. i

In order to simply the analysis, we discuss only the Instant
Correction case, where errors are corrected immediately after
detection.

Two methods can be used for the development of confidence
intervals. The first one is based on the fact that maximum likelihood
estimators which are based on large samples of data are normally dis-
tributed, with the true value as a mean. The resulting confidence
interval 1s called "large sample confidence interval." The second
method for constructing confidence intervals is a general one and
does not rely on the assumption of normal distribution. The two
methods are described in [10]. For the purpose of completeness, we
present the two methods in Sections 6.1 and 6.2.

The second method of evaluating the effect of N and n on the
accuracy of the estimator is given in Section 6.3.

6.1 Large Sample Confidence Intervals

This method is based on the assumption that the sample size
is large enough to result innormally distributed estimators

N and T. This assumption 1is accepted by researchers [12] for samples
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of size n > 30.
The method involves two steps: the evaluation of the variance,

and the construction of the confidence {interval. The variance can

be calculated by the method which is given in Appendix C. It is
found there that the variance of N is:
Var (&) = ——-——"‘-—2—'7?,7 (6-1)
Sn - A” ¢°
where
n
A= T Xy (6-2)
i=1
and
- 1
S = I 5 (6-3)
{=1 (N-i+1)
Similarly, the variance of f is found to be:
A Bl
Var (T) -% (s - = 7 + ,\‘“ 7<) (6-4)
(N-n) (N=n)" T
where S is given by (6-3) and
n
B= I (n-i+l) Xy (6=5)
i=1
Also
n 2B ~-n 2A 2B 82
Aw (5= =P+~ DG*NY TR A T hb (6~6)
(N~n) (N~n)> T T° T3 (N-n) T (N-n)" T
Once the variance is determined the confidence interval is
given by
N+&X o YVar() (6-7)
(*'2'7')

- -~ i o S SRS . PUSSORENEY
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and
T\, "Var(D (6-8,
0—51)
where Y is the confidence level and Aa is the number of standard
deviations which are exceeded with probability a. In case that we
want a one-sided confidence interval, we modify (6-7) and 6-8).
The one-sided limits will be
A /-——:
+ A Var (N 6-9
BE Ny T (6-9)
and
A —
-A YVar(T 6-10
5.5 Ay | TR (6-10)

6.2 General Confidence Intervals

The method used in the preceding section is based on the assump-
tion that a large number of errors were corrected. Here we present
a general method which does not require large samples of errors. The
method, which is given by [10], is described in Appendix D. We
present here a brief description of the method.

Suppose that we estimate the number of errors to be ﬁ', and that
this is based on data from n' points. Our objective is to construct a
confidence interval. For definiteness let the desired confidence
level be 90 percent. The method is based on finding two numbers, Nl and
Nz. Nl is such a number that when the true number of errors is Nl’
5 percent of the estimates are below ﬁ'. Similarly, N; is such that

when N is equal to NZ’ 5 percent of the estimates are above N'. These

values form a confidence interval (N.,, Nl) as discussed in Appendix D.
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The detailed procedure for using this method is illustrated next
for the cases n' = 60 and n' = 100. The first step is to construct
the percentile curves, as shown in Fig. 6.1 and 6.2 The point A, on
Fig. 6.1, indicates that if the initial number of errors is N=90, and
n' = 60 of those errors were corrected, then 102 of the estimates,

ﬁ, will be below 73 and 907 will be above it. Similarly, point B
shows that 75% of the estimates in this case are above 79. One can
conclude that 15X of the estimates will be within 73 and 79.

In order to determine the points A and B we start with the initial
number of errors N=90. We can choose ¢ to be any positive constant,
as it was shown in Appendix D that ¢ does n;t influence the confidence
interval. Next simulate the error detection process and generate

n' = 60 interdetection times x,, according to the probability demsity

Iy
function (1-2). Based on this sequence, we estimate N and record its
value. This process of generating a sequence and estimating N is
repeated 1000 times and the resulting estimates ﬁ are represented by
a histogram. It was found from the histogram that 10% of the estimates
ﬁ are below 73, this is the basis for the construction of the point A.
Next, we change the initial number of errors to N=80, and
repeat the process. When wa obtain enough percentile points, we
can join them to form the curves of Fig. 6.1 and Fig. 6.2.
The percentile curves, along with the estimate ﬁ, allow us to
construct a confidence interval of any desired level. Furthermore,
the interval may be one-sided or two-sided. For example, if the
estimate is N=120 for the case n'=100, we can see from Fig. 6.2 that

the 5% curve intersects the N=120 line at N=145, forming a 95%

|
|




b = L A T T L R e o 5 T
= SO

6-5

‘09 = ,U °STEAIdIUT DIUSPFJUOD 103 S3AIND ITFIUIDIBJ °T°'9 21n8yg




D e R . ==
— LB TN R finsic 370, - 3 ——
“ e i L SR . Ca

i i i S et

r ‘00T = ,U °STEAIIIUT IDUIPJJUOD J0J SIAIND B[FIU3DIAg °Z7°9 2inBy4

ost ont Nl 0zt ott 001

001

| i ; i
—oome ‘“ osveca b . | & _ . A .L“ 4 l_....
] : m M
i A0 1 : 3 E:
]

i
i T
O S8R - R

-4

o1t

|
i
i
]

N N o RN

-——ef e
7

i
|
i -

L
!
!

R SRR A et R

~—1 ozt

2 e
: L
»J! -
de |
1
-
e
| . o
,. R
o et
s R [
n

v A




e B A NS

A AW

one-tailed interval. In other words, there is a 95% probability

that the true number of initial errors is below 145. Similarly,

the probability is 90Z that N is below 138. One can construct a
two-tailed interval by considering the upper and the lower limits.
Thus, the probability is 90% that N is between 145 and 107. Also,
the probability is 75% that N is between 136 and 110. The two tailed
intervals do not have to be symmetric. Consaquently, the probability
is 85Z that N is between 110 < N < 145 or 107 < N < 136.

Note that in the actual testing ﬁ is known and therefore we need
the percentile curves only around that level of N. This reduces the
amount of work considerably.

This method is suitable for estimates with one unknown parameter,
such as ﬁ which depends only on N. If the estimator is a function
of two parameters, as in the case for f, being dependent on T and

N, this method becomes quite complex and it is not recommended.

6.3 Effect of N and n on Estimator Accuracy

An alternative approach for describing the accuracy of the
estimator is by studying the effect of N, the initial number of
errors, and n, the number of the detected errors, on the accuracy of
the estimator. Here again we rely on the results of Appendix D which
shows that the estimator ﬁ is independent of the parameter ¢.

The first step in the evaluation of the accuracy is to define an
error term, E, which describes the inaccuracy of the estimate. Here
we select E as

~ g M2
E = [Expected value of (N-N)“] (6-11)

TR
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The expected value is approximated by the average value over 1000

samples. In case that some sample resulted in a divergent estimate,
we assign the maximum value of N = 1000 to that sample. Next, the

error E is determined for various values of N and n.

are given by Table 6.1.

The results

Table 6.1. Estimation error as a function of N and N-n.
NN 50 75 100 | 150 | 200

2 3.9 — - - —

4 8.9 — - - -

5 19.9 5.95 4.7 3.9 3.85
10 79.3 11.0 8.5 6.2 5.6
15 202.0 62.5 11.3 9.0 7.6
20 328.0 96.7 24.2 11.4 9.9
25 - 147.0 59.3 15.3 o
30 - 219.0 93.4 22.5 14.3
40 - - 194.0 40.1 20.1
50 - - 299.0 73.2 29.6
60 - - -- 140.0 41.4
80 - - - 296.0 98.4

100 -— - - - 213.0

The same results are illustrated graphically by Fig. 6.3.

alternative way to represent the results of Table 6.1 is by finding

An

g ———




0 5 10 15 20 25 30 35 40 45 50 N-n

Fig. 6.3 The estimation error as a function of N, the initial
number of errors, and the number of the remaining errors,

N-n.
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curves of constant estimate errors as functions of N and N-n. This

is shown in Fig. 6.4. }

Figure 6.3 indicates clearly that there is a "knee'" in the error
curve for values of N, beyond which the estimate error becomes very
large. This knee occurs at N-n=0 for the curve N=75 and moves to
N-n=25 for N=150. This information may be useful in evaluating the t
quality of the estimate. For example, let the number of the detected %
errors, n=60 and the estimate & equals 100. If we assume that the
accuracy of the estimate is good and therefore N = &, the resulting

N-n will be approximately 40, and from Fig. 6.3 we see that for this

condition the error is very large, and the estimate is of no practical
value. On the other hand, if the number of the detected errors is
n=145 and the estimate is &-150, the accuracy of the result is probably
good. i
|

Figure 6.4 reveals another interesting point. It shows that as
N increases, the accuracy of the estimator improves significantly,
even if the number of remaining errors, N-n, remains the same.

The results of this section confirm the intuitive feeling that
the estimator accuracy improves as N increases or as N-n decreases.

But it goes beyond that by providing a quantitative measure for E,

as shown in Fig. 6.3.

e ———————————
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E=15

n

20 T

10

200

150

100

50

Curves of equal estimate errors, as functions of

N and n.

Fig. 6.4.
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7.0 Conclusions

Several methods were developed for estimating N, the number of
errors in a program, and T, the MITF. The estimators form two groups:
The Standard estimators and the Geometric ones. The Standard estimators
determine both N and T whereas the Geometric estimators can evaluate
only T. The various estimators were tested and evaluated. It was
found that the various estimators are strongly correlated but they
differ enough to justify generating all of them.

The estimators were later modified to fit the case where errors
correction is delayed, as may be required in our case. Test results
indicate essentially the same behavior as in the case of Instant
Correction.

In addition to estimating N and T, we can learn about the accuracy
of the estimates. This can be done by constructing confidence intervals
by one of the two methods suggested in this study or by observing the

effects of N and n on the estimate accuracy, as discussed in Section 6.

§
!




Appendix A-Derivation of Model Equations

A.1 Maximum Likelihood

The probability density of Xy is

£(x)) = oQriH) o PO X f=1,2. . om

The likelihood, L is

n n
; ~o(N-i+1) x4
L(x « s s 2)= I f(x)= N (H-i#l) e
1%2 W Ty i=1

In order to maximize the likelihood, we may maximize In(L).

n

In Lfx.o « o« X )= L
1 n i=1

[lnd + 1n (N-i+l) - O(N-i+l) xi]
n n
=nlnd + I 1ln (N=i+l)=-¢p I (N-it+l) x4
i=1 i=1
Now require:

9lnL s 1 -
S—= I —-¢I x =0
oN =1 N-i+l ul i

laL _n _ 7 (N-i#1) x, = 0
W ¢ a3

Rewrite (A4) as

n

g —1_

q=1 N-i+1
¢-

n

I x

=1 *

Now substitute (A6) in (A5) and rearrange

(A1)

(A2)

(a3)

(a4)

(A5)

(46)

ARSI i =
BRI at csun wren

L

|
|
|
1
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g 1 n
=1 N-i+1 n
Z (1-1) x
1=1 i :
y-it (A7)
I x
i=] 1
(A7) and (A6) will be used for estimating N and ¢ respectively
A.2 Geometric Maximum Likelihood Model
The probability density function of Xy is given by
- i
£ = 2 al e Mot % (48)
[s]
The likelihood function is
o —Xogl
Lixy -« . x) = I Aal o708 : (49)
o
i=1
n
Ia L(x; « . . x) =izl [In A, + 1 1n a - Agal x;7 =
n
+
= ala ), +‘E—&%—£l ln a - Ao ifl al 9 (A10)
In order to maximize the 1likelihood, require
dln L _ n(n+l) S G
3a 2a = Ao 1E1 ia x, 0 (A1l)
n i
ML= 1 aly .0 (a12)
o o 1i=]1
Rewrite (Al12) as
n
Ao 5 (A13)
T al X,
i=]




And substitute (Al13) in (All) to form:

n g i ai-l X
n(ntl) = ja] - —
2a ; 1
a X..
1=1 .

Solve (Al4) for 4 and (Ald for Ao'

A.3 Least Square - x Model

The error to be minimized is

n
1 2
E= I (- S-oD))
i=1
Require
‘ n
JE 1 1
i S 1 T ) ]=0
) i L7001+ 02 (\_i4
n
JE 1 1
=2 & [z -y § =N
N 5 L7 0D i1y 2
Rewrite (Al6 and (Al7) as
no n
i 1
p L—-—r= I — =
(N-1+1) WL
{=1 {=1 (N-1+1)
n n
X
pr—>rr - 1 ———e0
1_l(N-1+1) {e1 (N=1+1)

Express ¢ as

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)
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n
g
(A20)
n X,
Ao
1=1 N-i+l
and substitute (A20) in (Al9) to form
n n n n
X x
P —ty 1Ll gy Do— im0 e
mp (DT (814D - gy (N-1+1)
Next, solve (A2l1) for N and determine 6 from (A20)
A.4 Least Square t_Model
The error here is
n n
E= L -E)z' L (ty - é——l——‘)z
b P | i e P(N-1+1) (A22)
1=1 i=1 i
n
where t, = I X (A23)
i w1 3
In order to minimize E, require:
n
i i
oE 1 1
=—n32 L, =~ I =w==von) T ———] =0 (A24)
oM ey 1 ya1 d(N=3+1) juml P(N-3+1)2
n
i i
JE 1 1
S a2if(,= £ === 0 ] =0 (A25)
3 i -j+1 2
R R R
Rewrite (A24) and (A25) as
D i 1 n i 1 i 1
otle, t——=1-:l I " ¢ G2 "0 (A26)
jo e (F3HD) =1 4=l =1

YRRy

R < > AT ——




I TN

n i n i 2
1 I o] =0
oIfe, Iggel- L ol N-j+i)
1=1  4=1 1=1

Now express ¢ as

n 1 1 2
(L —)
o = Azl 1=l (W-3+1)
n i
I (t:1 z
i=]1 i=1

ks
N-3+1

And substitute (A28) in (A26) to form:

n i o 1 2
1 1
L(, L Y L (L =—)
i 2 (N=-3+1)
g1 g1 ID 4 g
n i a 1 i

1 - —-—1 L) _1 -
- Dy ygE)t (D omoey ot P 7 =0

i=1 I=1 i=1 j=1 j-l(N-j+1)

In order to simplify the expressions define

s 1
Aow L e
1" oy B
1
B, = L

L ja1 (w342

Then we may write (A29) as

n n n n

2
L(eB) A" - L t,A) LAB =0
i=1 i=1 i=1 i=1

A-5

(a27)

(A28)

(A29)

(A30)

(A31)

(A32)




Also, (A28) will become:
n

Lkt

im]
n

I t.A
i_lii

~ "
Eq. (A32) is solved first for N, and (A33) is used to derive ¢.

A.5 Geometric Least Square x Model

The estimation error is

n 1 2
E= I (xi - 1)
i=1 Aoa

and the objective is to determine Xo and 3 which minimize E.

Require
n
9E _ Ay TIFTRRE, Sl e
i A 1),\ 7 "0
i=1 0?2 0?
n
_3_1"-__ - - 1 : 1 &
L D710
o A a A\° a
i=1 o o

Rewrite (A35) and (A36) as

n ix n
P d.gpd

=0
o {=] 81 i=] 821

A

n x n
i 1
A I =] ==
o i-1 ai 1-1321

=0

Now, express )‘o as

A-6

(A33)

(A34)

(A35)

(A36)

(a37)

(A38)

e bt s A AR At

PO D % 8

L

=

PR A

e e T




n n n n

z 2 xi . z —1_ - z fi ) z —-—_i = 0
1 21 - 2

i=1 2 i=1 2 i=1 i=1

A.6 Geometric Least Square t Model

The estimation error in this case is

n i
1 2
E-z(:i-zl i)

i=1 =1 o "

The objective is to find Ao and & which minimize E. Require:

n i i
3E _ . 1
a2 il -1 =z —Lmrao
el j=1 "o =1 %
and
n i i
9E & - . =
w2 Bl B el ale) e
i=1 j=1 %o j=1 %o
Rewrite (A42) and (A43) as
n i n i i
e ey . P »
A, Dot (2 aj+1) E (2 % z—-'jl—q) 0
i=1 j=1 i=1 j4=1 2 4=1 2
n i n
1 1
A Do (2 —1—1)-z(zl 2—13)-0
121 g=1l ¥ gel a1 Y gey @

A-7

(A39)

(A%0)

(A41)

(A42)

(A43)

(A44)

(A45)
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Define the following functioms

i

S 5 A4
“ jm1 a3 oo,
i
j.]_ a

and re-write (A44) and (A4S5)

n n

Xo z tyDy = )% CsDy = 0 (A48)
i=1 i=1
n n 2

Xo L t4C4 - z €y = 0 (A49)
i=1 i=1

Now, derive }‘o from (A49)

n
L 012

i=1
Ao e (AS0)
z tici
i=1

and substitute (AS0) in (A48)

o n 2 n n
I eDy+ I C° - I tC4 I 4Dy =0 (aS1)
1=1 i=1 i=1 i=1

A.7 Exponential Least Square Model

The estimation error here is

1 2

n
E= I(ty+%1a (50

(A52)
1e1 ¢

B ——— e 3



In order to minimize E, require:

n
Be2D i+ EhG - w & -o.
i=1
n
9E 1 N-i, 1 i
£°2 Pl + 3 TR T ol = 0,
i=1

Rearrange (AS53) as

$ 2 ty ln ( ) + Z ln ( ) -5
1=1 i=1

Then

n
-z ln2 (ﬁﬁl,
i=1

¢ = 5
N-i

I t, In (™

i=1 i N

Sub. (AS56) in (A54)

n it, n n n
Pt ot b - T deh - T &b -
i=1 i=1 i=1 i=]

Eq. (A57) is solved for N and $ is determined from (AS56).

(A53)

(a54)

(AS5)

(456)

(A57)




Appendix B--Derivation of Model Equations for

Piecewise Constant Hazard

The equations for the modified models of Section 4 are derived in

this appendix.

B.l Maximum Likelinood Model

The probability density function for x, is

£(x,) = 0N o PNyxL

(1)

where j is the index of the tape on which the ith error was discovered.

The likelihood function is

Lixx, « - - x) = 1T N Rl U SO
1€1, €T

k

Nk¢ e—Nk¢xi

In L (xlx2 g e xn) = T I (Inp + In Nj

j-l iEIj

In order to maximize the likelihood require:

k
9 1nL 1
5= & I & -¢x,) =0
4 I=1 1ely ~ *
or
k n
T .;1 -¢ I x, = 0
=1 i=1

Similarly require

k
ll.._..z £ (.];-iji)-o

. j=1 iEIj

- N

3 %

(82)

(83)

(B4)

(B5)

(B6)

,1




or
k

n-¢ I “j X x, = 0 (B7)
i=1 iEIj

From (B5) we obtain

k

o= 21 (88)
I x4
i=1

Then substitute (B8) in (B7) to form:

n
n 2 Xx
w, i k n
- i=1 SR .ﬁi aQ (B9)
im ks =173
j=1 i€Ij

Then ﬁ is the solution of (B9) and ¢ is derived from (BS8)

B.2 Geometric Maximum--Likelihood Model

Consider first the derivation of model I.

z ad (B10)

j-}‘o

The likelihood function is

2
L(x;%,. .« x)) = Aoae-%axi I Apa2 e-x°a = SRS Roak e—)‘oakxi

1€1, 1€l, eIy
and
< 3
Inli(x, + v+ o 2)= 3 L InA_ +jlna-)a x, =
1 n j=l {el o (¢] i
k|
k k
=nlni +laa I joj-2A £ al : =, (B11)
j=1 © y=1 1€14

2 A

B -y
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Now require:

K
d1lnlL _ o _ ]
T Iy L xn .9 (B12)
“ 2 4= ey
k n
3al.2 = fag=3g b 440 L = =0 (B13)
=1 j=1 1e14

Combining (B12) and (B13) gives the estimate for a as the solution of

k
n Z J aJ I x

g R

311 ey .z d 3 x =0 (B14)
Z jny i=1 1€1y

i=1

and the estimate of ko is found from (B12)

n
Ao k (B15)
& aj L xi
j=1 i€l

For model II the hazard function is

LK al (B16)

where

My =n  +ny 4. . ony (B17)

The likelihood here is

- =AoX{
L(xl. . xn) it Ao e .

1eIy




i

B-4

and

£ M
InL(x3..%)= L I (lndg+Mj1lna-=2raidx)

=1 dely

k B o
=alnd +lna I aMy-X I al I x (819)

3=1 j=1 1€y

Require

k
9 1nL n-ZanE x, =0

. - (B20)
g o A0 j=1 1€Ij 3

and
k k
3ot 1 agMy = A, I Mg ol T (B21)
j=1 j=1 1€1
Combine (B20) with (B21l) to form:
k
n I (M a' I =3 k
=1 1€l T a4 5 x, =0 (822)
k J=1  ielj
z ﬂj Mj
J=3

Eq. (B22) is solved for 3. Later, io is found from (B20)

A - X (B23)
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B.3 Least Square x Model

The estimation error to be minimized is

i B ooy 1.2
E= Z (x,-x,)°= Z L (x, - == (B24)
= S O T
Note that Nj = N—nl- e = nj_1 (B25) j
ON . :
Therefore 'ﬁﬂi =1 (B26) ¥
b’. Now require
k
3E 1 1
==3 £ E &z - « —=]=0 (B27)
M Toamg B g7
and
L ‘rf £ fex, ~=t9 =291 =0 (B28)
% j=1 il 1 ¢Nj o2y
h| 3
Rewrite (B27) and (B28) as f
X kK n "
¢ = (L2 I =)=~ % —-;L- 0 (B29) 1
j=1 Nj 151:] j=1 Ny |
k k n !t
¢ I (Ni I x)- I —-} =0 (830) ’
3=t 7§ felI, 3=1

Now, combine (B-29) and (B-30) to form:




k n k
b —1— b G——— P xi) |
11 Ny3 - = N2 ter, - 0 (B31)
__1 1 !
2 z (N & =)
j-l Nj i=1 b 1€Ij
| Solve (B3l) for N and then evaluate ¢ from (B30)
k

E -—n% i
¢t (B32) |
1=l 3 {el, ¢

§
B.4 Least Square t Model ;

The estimation error is

n i 1 2
B= [ (¢, - § ) (B33) 5
1=1 T a1 Wy i

In order to minimize E require i

g 2 i
== I [2(t Z —) ( Z —s—)] =0 (B34) |
=" 50 La) G i
Also ;!
38 n i
L [2(t —)( Z ——)] =0 (B35)
3¢ i=1 1- m-l ¢N(m) m=1 ¢2
(m)

Rewrite (B34) and (B35) as ?

n i n i i !
¢ I (t, z-NZL)-z(z L 3 2—) = 0 (B36) |

i=1 m=i (m) i=1 m=1 (m) m=1N (m)




n i 1 2
(L) ii__—)
i=1 m=1 " (m) i=1 m=1 (m)

m i
1 = Q
¢z (e, g}

(B-36) and (B-37) can be simplified by using the notation

A = i .—1_..
1 g1 V)
i
B Bt
1 m=1 Nz
(m)

This allows writing (B36) and (B37) as

n n

¢ I tiBi - I AiBi = 0.
i=1 i=1
n n 2

¢ I tjAj - I A =0.
i=1 i=1

(B40) and (B4l) may be combined to form

n n n n
I esBy I A2 - I tjAy I ABy =0
i=1 i=1 i=1 i=1
and
n
I a’
s« 252
n
Lo tihAy
1=1

Note that (B42) and (B43) are identical to (A32) and (A33), except

that Ay and Bi are defined slightly differently.

(B37)

(B38)

(B39)

(B40)

(B41)

(B42)

(B43)




T O

B-8
B.5 Geometric Least Square x Model
The estimation error here is
n n
o ge 4
E= I (xi - xl) = F (x1 - -—T—) (B44)
A (1)
i=1 1=1 o4
To minimize E, require:
" M
Ew £ 2, ~~—b ety ap (B45)
Ja i A M(1) M, L
=1 o 2 )\o a (1)
n
JE 1 1
3"0 - I 2[("1 = 3 M(i))(kz N(1))] =0 (B46)
i=1 o8 o -
Rewrite the above as
X My T My
R R L I S ) S (B47)
i=1 3 jm] @
n n
X
i 1
A ¥ - = Q (B48)
¥ ) a 1)
Combine (B47) and (B48) to form
n n n n
s T T ;N R |
M M N Mgy O (349)
=1 (1) f=l T =1 N() ge1 g N

The solution of (B49) gives i, the best estimate of a. ko is found

from (B48) to be

¥ i -

-y

e g e




1
I
B-9
n
AT
A, = 1;1 o (B50)
=
i=1 g (1)
B.6 Geometric Least Square t Model
The estimation error to be minimized is i
n
i
2 :
E= I(t - L —lu—m-) (B51) :
i=1 Wl >‘oa
Require:
n
i i M
9 B R
= L [2e, - I ——lﬁa)-)( L ;( 1 =0 (B52)
q=1 m=l ), a m=1 A, a m)
and
n
i i :
JE 1 1 i
= = L [2(t, - I ) (2 ) =0 (B53) 1
20 1 =1 a(m) 1 A2 aM(m) i
=1 m=1l o
Rewrite the above equations as: |
= 1 M e i M :
xlz(:iz-iﬂl)-z(z 2.1 By u g (BS4)
gol m=l a (m) o=l a (@ m=l a (M)
by SN T
A t(t, £ ———)- ¥ (I ) =0
¥ {=1 i m=]1 a M(m) m=1 g M(m)
Define
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i 4
N (B56) |
m=1 (m) f
a |
!
and ‘
i M |
Bow f =il (B57) |
i m=1 an(“) &

n n
N s €84 ¢ AB, =0 (B58) :
: i=1 i=1
n n 2
xoifltiAi - 151 Ai =0 (B59)

Then 3 can be found from:

n n 2 n n
Lt I &' - L tiky I &S =0 (860)

i=1 i=1 i=1 i=1 -

and Ay is found from

(B61)




Appendix C--Derivation of Var(N) and Var(T)

Let the variables xl; Xy, + - - X have a probability density

function.

f(xl, Xos ¢ o e X3 91, 02, s s Gn)

)

If 61, 62, .« + 8, are the maximum likelihood estimators of 9, 6,,

o e Sn, and n is large, then 61, Bz, L en are approximately
distributed by the multivariate normal distribution with means

61, 92, % e . Bn. Moreover, if we define the matrix R to have the

elements
32
rij = - E[sg;sg‘ 1n f(xl, Xgs o 0« 5 61, 92, e en)] (c-1) |
then the variance matrix, V, equals
vert? (c-2)

Next, we use (c-1) and (c-2) to derive Var(ﬁ) and Var(f).

C.l. Derivation of Var(ﬁl

Consider the probability function

n
£(x, Xp5 « o x5 N = T § (N-itD) o P (B=tl)xg (c-3)

i=1

and
n

n
1n £(X;3 Xpy « « « X_ 3 N,d) = n lnd+ I 1ln(N-i+l) - ¢ I (N-1-1)x; (e=4)
= N g=1 i=1

Next, differentiate (c-4) in order to obtain the rij terms

n
dlnf - n _ T (N"iH’l) x{
% am

W -, A : X )
n— [ SR ta bt b ate b i PRECESPREIR TN 7= UREE" W =R Tt N

by il 5 Revgrm

PPN A

e o rh———




lenf .

2 7

el ¢
3°1nf B
3¢, 9N LA
dlnf _ = 1 -y
—_ z $Z x
N T o (D) i 2
o’lng _ 3 -1

2

1=l (N-1+1)2

Define the quantities A and S by

n
A= T xj (c=5)
i=1
n
s= 1 —L— (c=6)
i=1 (N-i+1)
Then we can express R by
S A
R= 3 % (c=7)
¢2

In order to find the inverse of R, note that the determinant, D, is

._.E. - A (C‘a)

e




Then the inverse matrix is .

n_ -A
- ¢2D . |
V=R = (c-9) !
A s ;

D D

We are interested in Var(ﬁ) which equals

s

Var(ﬁ) - R (c-10) J

B n
¢2D nS—A2¢2 ;
|
i
[a)
C.2 Derivation of Var(T)

We wish to express the probability density function of X1s Xpy o o -
X in terms of N and T, where T is the mean time to failure after ?
the correction of n errors. This is done by noting that r‘
13
1 i
= 3(N-n) =11 i
T= 3o s |
Then we may write the probability density function as :w
)

g 3 (N-i+1) x,

Therefore, '
A
1 0 1 n |
T 151 X{ = W®-mT L (a=141) x, (c-12) .

i=1 !

Recall (c~5) and (c-6) and define




k

e -

n
B= I (n-i+l) xi
i=]

Then we may write 1ln f(xl. Xpy eeeX ; N,T) as

n
12 Xgo oo X3 N,T) = & 1In(N-i#l) - n In (N~-n) - n 1In T

In £(x

i=1

T (e 2
T (¥n)T

The partial derivatives of 1ln f(°) are:

-1 n

+

2B

oN i=1 (N~it+l) 3 (N-n) .

(N--n)2 Tz

The determinant of R is

(N—n)3 T

C~4

(c~13)

(c=14)

(c-15)




Cc-5
n 2 . oem . 2k 2B B2
(N-n) (N~n)"T T T (N-n) T (N-mn) T :

and the variance matrix, V, is ’

-n , 2A 2B -B

. . oz ——

T T (N=n) T (N-n)" T :
\'A R A

-N n 2B
—_— (N e e e
-m)? 12 o ymdT
L
The variance of T is therefore:
Var(t) = 5 (s - —2— + —2-) (c-18)
(N-n) (N-n)~ T

The expressions (c-10) and (c-18) are used to determine the

confidence intervals in Section 6.
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Appendix D - A General Method for Obtaining

Confidence Intervals

The method described in this section does not rely on the assump-
tion that the sample size is large. Therefore, it is applicable to
other cases as well.

Suppose that we have detected n errors with the inter-arrival
times Xps Xpy o o o X . On the basis of those we estimate the
; initial number of errors in the program ﬁ(xl, Xpr o oo xn). Suppose
at this point that we can determine the probability demsity of N as a
function of the true value, g(ﬁ;N). This point will be discussed later.
Suppose, for definiteness that we need a 90 percent confidence level.
If any arbitrary number, say N', is substituted for N in g(ﬁ;u), the
distribution of ﬁ will be completely specified and it will be possible
to make statements about N. In particular, we may find two numbers L

and H such that

L A
{ P (N<L) = S g(N;N) dN = 0.05 (D-1)
3 n
P(N>H) = / g(§;N) dN = 0.05 (D-2)
H

The numbers L and H will depend, of course, on the number substituted
for N in g(ﬁ;N). In fact, we may write L and H as functions of N;

L(N) and H(N). The values of L and H for any value of N are determined
by equations (D-1) and (D-2). Clearly

H
P[L(N) < N < H(N)] = / g(N;N) dN = 0.9 (D-3)
L

L(N) and H(N) may be plotted against N as in Fig. D.l. A vertical line




Z)>

H(N)

L(N)

H(N')

L(N')//

foun . e m— | w—— — e

2z

z_>
HF R e _.\\\\

Fig. D.1 Graphical interpretation of the method for obtaining
confidence intervals
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through any chosen value of N' will intersect the two curves in points
which, projected on the N axis, will give limits between which ﬁ will
fall with probability 0.90.

Having comnstructed the two curves ﬁ = L(N) and ﬁ = H(N), we
may construct a confidence interval for N as follows: On the basis
of the sample of n failures compute the value of the estimator,
say N'. A horizontal line through the point ﬁ' on the N axis (Fig. D.1)
will intersect the two curves at points which may be projected on the N

axis and labeled N, and Nz, as in the figure. These two numbers de-

1
fine the confidence interval, for it is easily showm that

P(Nl <N < NZ) = 0.90 (D-4)

In order to clarify this point suppose that the number of
error is N'. The probability that the estimate will fall between
L(N') and H(N') is 0.90. If the estimate does fall between these
limits, then the horizontal line will cut the veritcal line, which
goes through N', at some point between the curves, and the corresponding
interval (N, Nl) will cover N'. 1If the estimate does not fall between
L(N') and H(N'), the horizontal line does not cut the vertical line
between the curves, and the corresponding interval (NZ’ Nl) does not
cover N'. It follows, therefore, that the probability is exactly
0.90 that an interval (NZ’ Nl) constructed by this method will cover N'.
This is true for any value of N.

It is possible to determine the limits Nz and Nl for a given
estimate without finding the curves L(N) and H(N). Referring to

Fig. D.1l, the limits for N are the points Nz and Nl such that

W e
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L(Nl) = N' and H(Nz) = N'. Thus, instead of finding the two curves,
we may solve for the points Nl and N2 which satisfy these conditionms.

In order to apply this method we have to determine the proba-
bility density of the estimator g(ﬁ;N). Furthermore, we have to show
first that g(ﬁ;N) depends only on N. We may start with the general
assumption that ﬁ depends on all the system parameters, that is,
g(ﬁ;N,¢,n). Since n, the number of corrected errors is known, n is a
known quantity and not a parameter. Next, we have to show that ﬁ is
independent of ¢, in order to reduce g(ﬁ;N,¢) to the desired form.

Suppose that instead of estimating N from X1s Xy o . . X, Ve

estimate it from a new sequence, Yy Yoo o o« Ypo defined as

vy o= bxy (0-5)
Since the probability density function of X, is

Ex) = (N-141)¢ & VIO Xy (D-6)
The probability density function of y; can be found from (D-7)

0 = |&| £ G (0-7)
This is found to be

E(y) = (-141) & D 3y (D-8)

Thus, the new random variable, Yio is normalized such that it is
independent of ¢. If we estimate N on the basis of the y; sequence,

the resulting estimate N will be independent of ¢. Recall Eq. (A.7)

which is used to estimate ﬁ.
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n
5 1 i = n
{=1 ﬁ—:H-l Z (1i-1) b ¥ (D-9)
;- i=l
n
3R <
i=1 +
Now, rewrite (D-9) as
n
I 24— - i (D-10)
i=1 N-i+l DGy,
O )
N—
n
Ly
i=1 t

Note that (D-10) describes f as a function of the y's, and therefore,
N is independent of ¢. Thus, we have established that N is a function
of the parameter N and the known quantity n. Therefore, we may write
the density of N as g(ﬁ;N). In order to comstruct g(ﬁ;N), it is
realized that an analytical derivation is impossible, and therefore,
a simulation is used to find g(ﬁ;N). This is done by generating
1000 sequences of X, variables with the desired probability density
function with N being set to some fixed value N', and n is given.
For each sequence we evaluate ﬁ, and we end up with 1000 estimates
of ﬁ. The histogram of N is a numerical approximation for g(N;N').
Note that this only gives g(ﬁ,N') for one point, N=N'. However, we
need to find g(ﬁ;N) for only a few points, as explained above.

The histograms were generated for various values of ¢, and
it was found, as expected from theory, that the histograms, and

g(ﬁ;N) are independent of ¢.




e

iR

The method described above can be modified easily to the case where

a one-sided interval is needed. In that case we only have to con-
struct L(N) and determine from it Nl. The confidence interval for
this case is n<N<Nl.

This method can be extended to the case where the estimater is
a function of two parameters, such as for %, g(f; T,N). However,
the construction of the histograms with two parameters becomes very
complex and therefore this approach is abandoned. On the other hand,
it is impossible to expreés T as a function of a single parameter,
g(%;T). This made the present method attractive only for ﬁ, whereas

the confidence intervals for T are determined by the method of Section

6.1
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Appendix E——Error Data Collection Format

Three separate tables are needed for adequate cross correlation

4 | and configuration control of the error data.
: 1
1
§ ‘
% Table #1 will provide information concerning the test runs (where rum is
‘é defined as being the execution or attempted executicn of a specific test
v% case). It is assumed that the entire OFP will be in residence in the
% FCC computer during the execution of each test run. It is also assumed
§ that all test runs (including those which discovere& no errors) will be
listed here. This is critical as the model will be attempting to calculate
an MTBF. The format is as follows:
Run # Calendar Date {Time of Day f OFP Type Run Length : Short description
L of Run ; of Run Configuration # (Sec) , of test case.
! ! : E.G., Bus control
! i g ! component, verify
i I ' transmission word
i i | count. »
' ! i }
|
E
E i Table #2 will jc:s%22 lape ceuflzuration information. The Zoc.irt for this A
table Inllowus:
1 > ! T
b § Tape Confizuration # Calendar Date it Replaced  List of Changes
i i Previous Tape - from Previous q
g i " Tape Coafiguration
i




Errot# Run &1

E-2

=3

able #3 vrovides the {nfoimation on sofiware errors di=scoverod during the

tasting. This table roguaests the execution time at which in orior occurred.

This means that recorded data used to search for an error will have to be
time correlated to the FCC execution (preferably to within a major cycle).
This is intended to be the execution time for the error source rather than
the error symptom. For example, if an incorrect display is discovered, we
want to kuaow the execution time at which the parameter being displayed was
incorrectly calculated (or output or formatted etc.) rather than the time
at which the faulty display was noticed. This table also requests that the
sout;; component be identified.. Here again we are ;oc interested in
symptoms. If a single symptom is caused by several sources, each source
should be listed as a separate error. It should also be noted that a
single source may cause several symptoms. In this case we are interested
in only the source. Thus the errors recorded in this table are not neces-
sarily synonymous with anomély reports. The above requests will require

considerable analysis of discovered anomalies. 1If this analysis is out

of your scope, plcase so inform us. The format for Table #3 is as follows:

Execution cine ]Source Component Tape Anomaly Error
of Error of Error Configura-| Report # | cat3
Occurrance tion No.

NOTES:
1. This is the run # in error was first discovered.
2. This refers to anonaly reports for which this error is a source
(may be more than a single report).
3. One of the following categories:
a. Computational; e.g., index, equation, sign convention, modeling,

mixed mode, truncation, rounding, units, convergence, etc.

i ————————
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E~-3
b, Tonieal; ».g., limit dotwrnisation, logile branch, loop exit,
missing condition, flag, iteratiova stup wize, storaze reference, endless

b =
~QLp, etc,

c. I/0; e.g., missfag 1/0, zarted 1/0, wrong ficld size, forrmat,

>

control, discrete usage, etc.

d. Data handling; e.g., data lost, write or read to wrong location,
nunber of entries, index or flag modification, bit manipulation, number
type coaversion, subscripting, bounds, etc.

e. Configuration; e.g., compilation, segmentation, illegal
instruction, etc.

f. Routine/routine interface; e.g., pass wrong parameters, expect
wrong parameters, communicate with wrong data block, calling sequence, etc.

g. User interface; e.g., data read but not used, data rejected but used,
valid data rejected, incorrect mode change, etc.

h. Data base; e.g., uncoordinated use of data elements, incorrect
initialization, missing data, wrong location, etc.

i. Requirements compliance; e.g., duty cycle violated, specified

accuracy not met, specified timing not met.
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