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We derive asymptotically tight time-space tradeoff . for pebbling three different
classes of directed acyclic graphs. Let N be the size of the graph, S the number
of available pebbles, and T the time necessary for pebbling the graph.

(a) A time-space tradeoff of the form -

STr 9(N’)

is proved for pebbling (using only black pebbles) a special class of permutation
graphs that implement the bit reversal permutation. If we are allowed to use
black and while pebbles the time-space tradeoff is shown to be of the form

N2
T=9 (~~.) +e(N). * -

~~_1

(b) A time-space tradeoff of the form

T=S 9(i)

is proved for pebbling a class of graphs constructed by stacking supercon-
centrators in series. This time-space tradeoff holds whether we use only black *

or black and white pebbles.

(c) A time-space tradeoff of the form ~ 
.-
, / •
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T = S 2 2°~~

is proved for pebbling general dirccted acyclic graphs with only black or black
and white pebbles.
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Abstract

We derive asymptotically light time-space tradeoffs for pebbling three different
classes of directed acyclic graphs. Let N be the size of the graph, S the number
of available pebbles, and T the time necessary for pebbling the graph.
(a) A time-space tradeoff of the form

S T r O ( N ’)

Is proved for pebbling (using only black pebbles) a spedal class of permutation
graphs that implement the bit reversal permutation. If we are allowed to nse
black and white pebbles the time-space tradeoff I. shown to be of the form

N’- T— 9( ~~-) +6(N). - -

(b) A time-apace tradeoff of the form

is proved for pebbling a class of graphs constructed by stacking supercon.
centrators In series. This time-space tradeoff holds whether we use only black
or black and white pebbles.

(c) A time-space tradeoff of the form

Ti- S 22
~~~

is proved for pebbling general directed acydic graphs with only black or black
and white pebbles.
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NOTATIONAL DEFINITIONS:

1(n) — O(g(n)) 1ff there are constants no> 0 and c> 0 such that for all
n>n , f(n)�cg(n).

1(n) — (1(g(n)) if there are constants no > 0 and c> 0 such that for all
no, 1(n) � cg(n).

1(n) 9(g(n)) 1ff 1(n) = O(g(n)) and 1(n) — (7(g(n)) .

1(n) — o(g(n)) if lim,,~~~f(n)/g(n) =0.

1(n) — w(g(n)) if lim.~~,,g(n)/f(n) 0.

Jogx Binary logarithm of z.

In x Natural logarithm of r. F
H

exp(x) Same a. c3.

[rJ The greatest integer y satisfying y � x.

Ixl The smallest integer y satisfying w x.

(i,jj The interval of integer. {i,i+ 1,...,j— 1,j}. I f j  < i
then (i ,j ] is the empty set.

I

- vi a

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - -- ~~~- - -~~~~~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - - 
_____________



As if we could kill time without injuring eternity!
—HENRY DAVID THOREAU (1817-1862)

I INTRODUCTION

We study time-space tradeoffs in a pebble game defined in [HPTOJ and [Co73J.
The game is played on directed acyclic graphs with bounded in-degree according
to the following rules:
(i) A pebble may be removed from a vertex at any time.
(ii) If all predecessors of an unpebbleci vertex v are pebbled, a pebble may be

placed on v .
(iii) If all predecessors of an unpebbled vertex v are pebbled, a pebble may be

moved from a predecessor of v to v.
The object of the game is to pebble each vertex in the graph at least once. (For
a comparison of slightly differing definitions of the pebble game see [ELT8].)

The pebble game has been used to model register allocation ([Se75J), to study
flowcharts and recursive schemata (fHP7OJ), and to analyze the relative power of
time and space as Turing-machine resources ([Co73j, IHPV77fl. Furthermore it

• has been used to derive timc-a~: 
- 1odcoffs for several important algorithmic con-

ccpts such as linear recursion ([Cha73J, (SS7TJ), Fast Fourier-Transform ((SST8a],
[To78)), matrix multiplication ((To78J), and integer multiplication ([SS78bJ). We
are interested in the relative power of time and space as resources in the pebble
game.

1 
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The space S required by the pebbling is the maximum number or pebbles ever
on the graph simultaneously; the time T required is the number of applications
of rules (ii) and (iii), i.e., the number of pebble placements. (One could also count
both placements and removals. The results would then change by at most a factor
of 2.) The size N of the graph is the number of its vertices.

In [HPV77J it is shown that any graph of size N can be pebbled using only
O(N/ log N) pebbles and in [PTCT7J a proof is given that for certain graph families
(1(N/ Jog N) pebbles are necessary to pebble all vertices.

Recently interest arose in the study of precise time-space tradeoffs in the pebble
game. The rationale is that space savings are only feasible if the corresponding
sacrifice in computing time is reasonable. It is of interest to know how much the
time increases as the amot~nt of available space, i.e., pebbles, is decreased.

The results given in IHPV77J and [PTCT7J limit the range of interest for S to
£7(N/ log N) = S � N. Two trivial observations about the pebbling time impose
a corresponding limitation on the range of interest for T.

(1) Any graph of size N can be pebbled with N pebble. in time N (in topological
order).

(2) If a graph G of size N can be pebbled with S ~ebble. at all then it can be
pebbled with S pebbles in time T � Eo�k�s(k) ~

(For the proof of (2) observe that the sum in (2) equals the number of different
configurations of at most S pebbles on C and therefore any strategy for pebbling C
whose length is greater has to repeat some configuration and can thus be shortened.)
The range of interest for T is thus 2~’ � T � N.

Clearly T ha. to increase if S is decreased. The main open question in this
area is how much T increases as S is decreased from N towards (1(N/ log N). It
is reasonable to make the following conjecture.

Conjecture C: There are graphs of size N that can be pebbled with O(N/ log N)
pebble, only in a time that grows superpolynomially in N.

Theoretical computer science often assumes that polynomial time algorithms
are feasible whereas algorithms whose Lime complexity exceeds any polynomial
are not. In this sense the conjecture asserts that there are graphs for which space
savings of S = O(N/ log N), though possible, are Infeasible.

If Conjecture C is true it makes sense to look for a function Sj (N) such that
fJ(N/ log N) � Sj(N) � N and Sj (N) has the following two properties:

2
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(a) If S � ciSj (N) then each graph of size N can be pebbled with S pebbles in
time T where T grows only polynomially in N.

(b) If S � c2Sj ( N )  then there are graphs of size N that can only be pebbled with
S pebbles in superpolynomiat time.

(Here Cl, C2 > 0 are suitable constants.) The threshold function Sj (N) locates the
asymptotic range for S where the “jump” from polynomial to superpolynomial
time occurs in the pebble game. Space savings of S � ciSj (N) are always feasible,
whereas there arc graphs for which space savings of S � c.2Sj (N)  are infeasible.
(Note that because of the asymptotic nature of the analysis, Sj(N) is not uniquely
defined. With any function Sj(N) that fulfills properties (a) and (b) above any func-
tion that is 9(Sj(N)) also fulfills the properties. Indeed, the location of the ‘jump”
from polynomial time to superpolynomial time can only be defined asymptotically.)

Not much progress has been made heretofore towards proving Conjecture C.
(Cha73J, [Rei78J, (SS77J, (SS78a), (SST8bJ and (To78J discuss time-space tradeoffs
for natural and constructible graph families. However, all these families can be
pebbled with S = O(N/ log N )  pebbles in linear time.

[EL78J, ELi78] and [PTT7J discuss graph families whose pebbling time increases
explosively from linear to superpolynomial at a certain point, as the number of
available pebbles is decreased. However, this point lies in the range S = o(N/ Jog N )
and for S = O(N/ log N)  these graphs can again be pebbled in linear time.

In fPip78j Pippenger proves the most dramatic time-space tradeoff known
heretofore for a family of graphs that is straightforward and can easily be con-
structed. It has the form

T_—~~~log~~~~~O(N).

For S = O(N/ log N) we have T = fl(N log log N) .

[To78J and [Reil8J discuss families of graphs that are much harder to construct
but have more dramatic time-space tradeoffs for S = (i(Nf log N) . However, none
of the lower bounds they prove reach -

T=S?(N ’+t) , for any t~>0

if S =. O(N/ log N) . They are thus far from exhibiting a superpolynomial blow-
up in time in the relevant range of S.

3 
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Independently from the work presented in this thesis Reiscbuk proves In [Rei78J
an upper bound on Sj. He shows that any graph of size N can be pebbled with
S— . Q(N/ log’N) pebbles (r EN) m time T where

Tt ~ N 22°~~ 
‘°~~~~. (1)

Therefore we cannot expect to find a graph of size N whose pebbling with S �
c N/ log log log N pebbles takes superpolynomial time (c> 0 i. any positive con-
stant). Thus

Sj”-o(N/log log logN).
(It is possible that the tighter upper bound

S~ O(N log log log N/ log log N)

is implied by Reiachuk’s algorithm. As he states hi. result, this bound which
would follow directly from an analysis of equation (1) cannot be inferred, however,
because equation (1) is only proved for the values S logIN for r E N.)

Thi. thesis proves Conjecture C, locates Sj , and contributes the analysis of
a new straightforward graph family with a rather dramatic time-space tradeoff.

Chapter 2 discusses an easily constructible graph family whose time-space
tradeoff is more dramatic than that discussed in fPip78J. The tradeoff has the form

ST = 8(N 2) .

For S O(N/ log N) we have T = (l(N log N) .
Chapter 3 proves Conjecture C by exhibiting a two-parameter graph family

with the time-space tradeoff

N O(~ )
T = S O ( - ~ )

T is thus auperpolynomia) in N for S � cN log log N/ log N (c> 0 is a suitably
small constant). For S O(N/ log N) we have T N°(’°~’°’ 

N)•
Chapter 4 locates Sj  by proving a time-space tradeoff for pebbling general

graphs of the form
v)ø(I~)T =S2k .

Thus Sj = 9(N/ log log N). For S 8(N/ Jog N) we have T = 2N°1’), I.e., T is
exponential.

— - . _ 
_________________ -
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There is a variation of the pebble game which ha. been studied in [CS7GJ,
1GT781 and (Me78J. In this variation pebbles of two colors, black and white, are
available. Three additional rules govern the use of white pebbles:

(iv) A white pebble can be placed on an empty vertex at any time.

(v) A white pebble can be removed from a vertex v if all its predecessors are
pebbled.

(vi) If all but one of the predecessors of a vertex v having a white pebble are pebbled,
then the white pebble can be moved from v to its unpebbled predecessor.

The object of the game is to finish with no pebbles on the graph starting with
no pebbles on the graph and pebbling each vertex at least once. The space S
required by the pebbling is the maximum number of pebbles ever on the graph
simultaneously and the time T rcquired is the number of applications of rules (ii),
(iii), (iv) and (vi), I.e., the number of pebble placements. Again the size N of the
graph I. the number of its vertices. We call this game the black & white pebble
game. The white pebbles represent non-deterministic guesses during a computa-
tion. They are easy to place, since guesses can easily be made, but hard to remove,
since guesses have to be checked. In this sense the black & white pebble game is
the non-deterministic version of the usual (black) pebble game.

(CS76J introduces the black & white pebble game and proves a lower bound on
the number of black and white pebbles necessary to pebble a certain graph family
called pyramid graphs. IMe78i extend, this lower bound to all directed acyclic
graphs: If a graph can be pebbled with k black and white pebbles then it can be
pebbled with 0(k2) black pebbles. (GTT8J shows that the fi(N/ log N) space lower
bound from IPTC71J carries over to the black & white pebble game (with different
constant factors). The main open questions in this area are the following.

(1) Are there graphs for which black and white pebbles save more than a constant
factor of space over black pebbles?

(2) If so, what is the maximum savings possible? ((Me78) shows that it has to be
of the order of the square root.)

In addition to these questions the study of time-space tradeoffs in the black & white
pebble game is of interest.

Although we are primarily interested in the black pebble game, it turns out
that for the three graph families we consider in this thesis the time-space tradeoffs

• in the black & white pebble game are straightforward extensions of the time-space
tradeoffs in the black pebble game. We therefore include also proofs of the following
results.

$
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In Chapter 2 a time-space tradeoff of the form

T= 8(~~-) + o(N).

is derived for pebbling bit reversal graphs with black and white pebbles.
In Chapter 3 it is shown that the time-space tradeoff for pebbling stacks of

superconcentrators with black and white pebbles is asymptotically identical to the
one for using only black pebbles, i.e., it has the form

N 8(
~

)
T= S8 ( ~~)

In Chapter 4 it is shown that the time-space tradeoff for pebbling general
directed acyclic graphs with black and white pebbles is asymptotically Identical
to the one for using only black pebbles, i.e., has the form

2~
(
~

)T = S 2

A summary of the research results presented in this thesis has been published
in [LITT9J.
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2 PERMUTATION GRAPHS

2.1 Introduct Ion

Below we will define a particularly simple family of graphs, which are induced
by permutations on N element..

DefinItion 2.1.1: Let w be a permutation on N elements. The permutation graph
Gfr) on N elements I. the graph G = (V,E) such that

V={ a1,02,...,ON,T ,T2,..., TN} and
E— ((a ,cj +i ),  (r,,;+1)I 1�i�N—1)

u((o,,r,~)I 1�i�N}

For 1 � i � N, a. is called the i-tb input vertex, Td is called the i-tb output
vertex; o~ is called the source, rN is called the sink. The path consisting of the
edges (01,02), (o2,a4,...

~ (ON— 1,aN) is called the input path. The path consisting
of the edges (r ,~’j) ,( r~,’r3) ,. . .,(rN__ 1, rN) is called the output p ath. (Figure 1
shows a typical permutation graph.)

A permutation graph on N elements thus has 2N vertices and a maximum in-
degree of 2. One class of permutation graphs has already been studkd in (HP7OJ,
(Cha73J and (SS7TJ and independently by the author. Sometimes called ladder
graphs, they correspond to the permutation w defined by ir(k) = N +1— k and
represent the memory allocation scheme in linear recursive programs. One Can
pebble ladder graphs fairly quickly: We have T w(N) only If S

2.2 Tb. Upper Bound in the Black Pebble Game

It is straightforward to derive an upper bound on the time-space tradeoff for
pebbling permutation graphs.

Fact 22~1: Each permutation graph can be pebbled with two pebbles.

Indeed, thi, fact is a special case of the following more general result.

7 
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Lemma 2 2.2: For each permutation graph on N elements an upper bound on the
time-space tradeoff in the black pebble game is given by

Proof : Assume that S pebbles are available. Reserve one pebble for the output
path. In at most N steps pebble the vertices C~_1(1),. . . ,Ow—’(s—J) on the input
path. Then in S — 1 steps pebble Ts_ 1 with the pebble reserved for the output
path. Move the pebbles on the input path in N —S+ 1 more steps a. necessary
to pebble the vertices Of-

~~($)~
.. . ,o~—a(2S~~2) on the input path.

(This can be done as follows. The S — 1 pebbles on the input path divide it
into S intervals of vertices. All but the first interval are such that the first vertex
in the interval is pebbled and all other vertices in the interval are not pebbled.
The first (perhaps empty) interval is entirely free of pebbles. Let C be the set
of the S — 1 vertices on the input path to be pebbled next. We will pebble C
in the order from smaLl to large vertices. For each vertex v E C that is in the
first interval there is another interval that does not contain any vertex in C. The
pebble at the low end of this interval can be used to pebble v. When there is no
vertex left to be pebbled in the first interval we can use the pebble on the next
higher interval to pebble the first vertex in C that is in this interval. If there is
more than one vertex to be pebbled in this interval then we can again use pebbles
from other intervals that do not contain elements of C. Continuing in this fashion
we can pebble C by placing pebbles on successively larger vertices on the input
path. In this process only vertices that started out unpebbled are pebbled and
each vertex is pebbled at at most once. Since S — 1 vertices start out pebbled at
most N — S + 1 placements arc made.)

Use S—i more steps to pebble the vertex r25__2 on the output path. Continue
in an analogous fashion.

This strategy pebbles tN in f~~1 phases, where each phase uses at most
N—S+1 placements of pebbles on the input path except the first phase which may
use N placements. Furthermore exactly N placements are made on the output
path. Thus

T�(N_ S+1) ([5
~~ 1_ 1) +2N �5

1
~ i +N. I
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Lemma 2.2.2 shows that for permutation graphs

ST �3N2.

For ladder graphs this upper bound is not at all tight. The question arises whether
there is a family of permutation graphs for which this bound i. tight up to a
constant factor. Such a family would be interesting because it would in some sense
represent the permutations that are most difficult to realize in serial computation
schemes with restricted storage capacity. Section 2.3 shows tha i the bit reversal
permutation i. such a permutation.

2.3 Tb. Bit Reversal Permutation

Let 0 � N — 2” and for convenience let the set to be permuted be the set
I (Il 0 � i <N) . Let 6 be the bijective mapping 6 : I —. (0, 1)” where b(j)
is the binary string of length n representing the numberj.

Deflnition 2.3.1: Let 6(5) b,,_~ .. . 60. The bit reversal of, (denoted by rev(j))
is defined to be the number j’ such that 6(f) 60.. b,,_.1. (Figure 2 shows the
bit reversal graph on N 32 elements.)

The bit reversal permutation has the characteristic property that it scatters
adjacent numbers approximately evenly over the interval I. This property is the
key to the following lower bound proof.

Thco~ m 2.3.2: If S � 2 then pebbling the bit reversal graph on N elements with
S pebbles takes at least time

N2

Proof : The proof is trivial for S> N/ 4. Thus assume that S � N/ 4.
Choose the integer e such that

25�2’ <4S.

Consider the output path divided into 2 ” ’  intervals of length 2’. The i-tb interval
~, (0 � i <2” ’) consists of the vertices ~~~ . . .

9
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Let ~, be the first lime a pebble is placed on ~~~~~ 
i.e., on the highest

vertex in I~. Let L3 := 0. Then t~> t,_j for 0 � j  < 2~~~’. In order to
find a lower bound on — we observe that at time I,_~ the interval I~ ispebble-free and thus aLl 2’ vert ices in I, have to be pebWed between t,_~ and
~,. By definition of the bit reversal permutation the immediate predecessors of
the vertices in I, on the input path divide the input path naturally Into 2’ — 1
intervals of length 2”—’. (The each immediate predecessor of a vertex in I, defines
the high limit of an Interval. The intervals at the corners of the Input path are
disregarded.) At time ~~~ at most S— i pebbles are on the input path. Thus at
least 2’ — 1 — (S — 1) � S intervals are pebble-free at 

~~~~~~~~~~ 
All of them have to

be pebbled completely before I,. This takes at least S . 2 ” ’  > N/4 placements.
Therefore 

~~
—

~,_ i  > N/ 4 for 0 
~ j < 2 ” ’, and thus before time t3~

_1 at least
2” ’N/4 > N~/1M placement. have to occur. I

2.4 Pebbling the Bit Reversal Graph With Black and White Pebbles

II we are allowed to use black and white pebbles to pebble the bit reversal
graph then the vertices on the output path do not have to be pebbled in sequence.
Rather we can place a certain number of white pebbles on the output path at
the beginning and then pebble the intervals thus created on the output path in-
dependently of each other. If we use this idea we can exploit a regularity of the
bit reversal permutation to speed up the pebbling such that

T

~J o e ~~J~4~i: The bit reversal graph on N = 2” elements can be pebbled with
S pebbles (3 � S 

~ 3VW) in time
— N2

T �36-~ -+3N.

Proof : Let k be such that3 .2 k �S<3.2 k+l.
• Put 2k white pebbles on the outputs ~ T2s—~, T2.2i~—*~ T3.2N—5, . . .

This partitions the output path into 2k intervals of length 2s...k• The j-th interval
-

- 
is the interval ~~~~~ Tti+I)2ø—~~~1) for 0 <1 < ¶~k Each of these intervals we
consider to be broken up into 2~~~2k chunks of length 2k. The i-th chunk of the ~-th
interval consists of the vertices (r j ~._ & f,~i , ~~~~~~~~~~~ 

for 0 � ~ < 211—2*

- i  10



We now reserve 2* more pebbles (this time black ones) for the output path,
one for each of the intervals created by the while pebbles. We will pebble the
intervals created by the white pebbles in 2~

_2k phases. The i-th phase pebbles
the i-th chunks of all intervals. We use 2* more black pebbles on the input path
to be able to pebble each chunk in one sweep.

Formal ly we assume inductively on i that the output vertices just before the
beginning of the i-tb chunks in all intervals, i.e., the vertices ~~~~~~~~~ for all
j such that 0 � ~ <2*, have black pebbles on them. (In the initial case i = 0
the first vertex on each 0-tb chunk has a white pebble on it and the argument
proceeds in the same fashion.) We rearrange the 2~ pebbles on the input path in
N _2* step. (N steps in the 0-th phase) such that they are on the vertices

0r.v(rsv(O)20 I+~2l), °rev(r.v (0)2 ’~~ + .21+ 1)~. • C,.,(fSy(O)2_ 5+(~+1)2l_.. 1)

This enables us to sweep the black pebble on the rev(0).th interval across the i-tb
chunk. Then by advancing each pebble on the input path one vertex we pebble
the vertices

- 
Or.w(eee(I)2*~~+i2’),°rev(rev(1)2~~~+~

21+1)l . . . ,C~,(,~~(I)2R.5+(;+1)2l__1)
• and can now sweep the black pebble on the rev(i)-th interval across the i-th chunk.

Advancing pebbles on the input path in a suitable manner allows us to pebble the
i-th chunks of all j  intervals in the order j  = rev(0), rev(1), rev(2),. . . , rev(2k

~~ 1).
It is easy to see that pebbling the i-th chunks of all j  intervals takes

placements on the input path if i ~ 0 and

placements on the input path if i = 0.

After all chunks are pebbled in this way the pebbles end up in a con figuration
that allows the white pebbles to be taken off the graph. The whole pebbling takes

• time

2” + (2” + (2* — 1)2k)2fl_2k — 2k(2~
_2k 

— 1) � 36~~- + 3N. I
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Corollary 2.4.2: The bit reversal graph on N elements can be pebbled with S
black and white pebbles (2 <S � N + 1) in lime

T �3G!~~+5N.

Proof : For S 2 see Lemma 2.2.2. If 3 � S � 3VW Theorem 2.4.1 applies. If
S> 3~./i~ the strategy given in Theorem 2.4.1 takes time at most 5N. I

The upper bound given in Corollary 2.4.2 can be matched asymptotically
with a lower bound whose proof uses the characteristic property of the bit reversal
permutation mentioned in Section 2.3.

For proving lower bounds in the black & white pebble game it turns out to
be convenient to consider the pebbling strategy to be a sequence of moves where
a move can be a placement or a removal of a pebble. The moves are regarded to
be numbered in sequence. We say that the move whose number is z happens at
t ime z. A vertex has a pebble (resp. is pebble-free) at time z if it. has a pebble
(resp. is pebble-free) after the z-th move. As long as we are careful to count only
placements of pebbles when we count necessary moves, this concept of time in the
end does not invalidate the fact that removals of pebbles do not take time. We will
follow this approach in all our lower bound proofs that consider black and white
pcbbles. (In order to distinguish this slightly different concept of time from the
concept of time introduced in the pebbling rules (i)—(iii), we will be denote move
numbers with the letter z—for the German word ‘~Zeit” meaning time. Intervals
of moves will be denoted by Z.)

2~heQtcm.2.4.3: Pebbling the bit reversal graph on N elements with S � 2 black
and white pebbles takes at least time

T> 3~~~+N.

Proof : For S> N/ 6 the theorem holds trivially. Thus let S � N/8.

Let s be the integer such that

3S�2’<6S.

As in Theorem 2.3.2 the output path is considered as divided into 2 ” ’  > N/ OS
intervals I, (0 � ~ <2” ’), of leng th 2’. The argument given in the proof of
Theorem 2.3.2 now has to be modified, however, since the intervals do not have
to be pebbled in sequence.

12 
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Define ~ :~~ 0. Let the set EQ be the empty set of intervals. For 1 � ~fN/SS9 inductively define zj to be the first time after ;....
~ 

at which any interval
that is not in ~~~ has been pebbled and unpebbled completely. Denote this
interval by I,,. At Zj a pebble is removed from Ij, , and at most S—i other intervals

• have pebbles on them. Add these intervals and Jj, to E1_~ to define the set L’,.
Note that E,~ has at most IS elements , and thus for I � 1NI~S21 the interval I,,
exists.

Analogously to the proof of Theorem 2.3.2 we will now argue that between - 
-

~~~ and and ; more than N/ 6 placements have to occur. We start by observing
that at time z~~1 the interval I~, is pebble-free and thus all of Jj ,  has to be pebbled
and unpebb led between zj ..i and;. The immediate predecessors of the 2’ vertices •

in I~ on the Input path divide the input path canonically into 2’ — I intervals
of length 2” . MI but S — 1 of these intervals are pebble-free at time Zj_ ~
and all but S — 1 (different) intervals are pebble-free at time ;. Thus at least 

- •

2 — (2S —2) > S intervals on the input path are pebble-free both at ;....
~ 

and at
;. All these intervals have to be pebbled and unpebbled completely between ;_

~
and sj. This takes at least S. 2” ’> N/ 6 placements on the input path. Thus

• before ‘fN/ eS ’ l more than
f N 1N  N2

• 1~S2 I6 �36S2
placements on the input path have to occur. At least N more placements occur
on the out put pat h. I

The improvement of the time-space tradeoff for the bit reversal graph by
using black and white pebbles relies heavily on a certain regularity of the bit
reversal permutation that allows us to pebble certain chunks on the output path
with only small modifications on the input path. It is our conjecture that there
are permutations that do not exhibit any regularity of this kind and for which the
time-space tradeoff for black and white pebbles just as for black pebbles has the
form

ST = 8(N2) .
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3 SUPERCONCENTRATORS

3.1 Introduction

Proving Conjecture C means finding graphs of arbitrarily large size that are
very hard to pebble. As pointed out in Chapter 1, people have been looking for
such graphs for quite some time. Even though nobody was able to approach su-
perpolynomial lower bounds some graph families have been studied that are fairly
hard to pebble (see IRei78J, (To78J and Chapter 2 of this thesis.) A natural way of
constructing graphs with even more dramatic time-space tradeoffs is to select one
of those graph families and use its graphs as basic building blocks in a construction
scheme that connects them in an appropriate way to amplify their bad properties.
For reasons that will become apparent later on, superconcentrators are a suitable
graph family for this purpose.

PefinitJon3.L1: A directed acydllc graph C with bounded in-degree, N inputs and
N outputs is called an N-superconcentrator if for every k such that 1 <k � N
and for every pair of subsets V1 of k inputs and V2 of k outputs there are k vertex-
disjoint paths connecting the vertices in V1 to the vertices in V2.

Note that we do not assume the ability to say which input is connected to
which output.

Definition 3.1.1 shows that superconcentrators have to be fairly dense graphs
in order to be able to achieve the routing necessary to join input5 to outputs
in all required ways. It is therefore interesting to find out how many edges are
necessary to build N-superconcentrators. It is relatively easy to construct N-
superconcentrators with a maximum in-degree of 2, a depth (i.e. length of the
longest path) of 0(log N) and O(N log N) edges (and vertices). Figure 3 shows
such an N-superconcentrator for N = 16. It is constructed by putt ing two FFT-
graphs back to back and fulfills the even stronger property that we are able to
specify beforehand which inputs have to be connected to which outputs. (Such
graphs arc called connectors.)

Valiant shows in [Va76J that N-superconcentrators exist that have only 0(N)
edges. We will call such superconccntrators linear. Valiant bases his result on a
paper by Pinsker (IPin73fl. Pippenger (fPip7l]) gives an improved construction of
linear su perconcentrators. His N-su percon ccn trators have a maximum in-degree
of 9, a depth of 0(log N) and at most 40N edges (and vertices). However, his
construction involves a step that is based on a probabilistic counting argument.
Recently Cabber & Ga)il ((GG79~) explicitly constructed linear superconcentrators.

14



Interest in supcrconcentrators first arose in the context of telephone switching
networks. Then superconcentrators were found in graphs that represent practical
algorithms like the multiplication of an N-vector by a non-singular N X N matrix
(see IVa76J). The conjecture that no linear superconcentrators exist gave hope
towards showing nonlinear lower bounds on the complexity of such algorithms.

• Valiant’s result shows that supcrconcentrators cannot be applied in this way to
show nonlinear lower bounds. However, it. provides a family of highly intercon-
nected sparse graphs. Such graphs are very good candidates for inducing dramatic
time-apace tradeoffs.

As mentioned in Chapter 1 we will include a treatment of the black & white
pebble game in our results, since it is a straightforward generalization of the black
pebble game. Specifically we will show all lower bounds using black and white
pebbles and all upper bounds using black pebbles. Since the bounds will match
each other asymptotically, this proves asymptotically equal time-space tradeoffs
for both the black and the black & white pebble game.

Section 3.2 discusses a lower bound and Section 3.3 discusses an upper bound
on the time-space tradeoff for pebbling superconcentrators.

3.2 The Lower Bound in the Black & White Pebble Game

In [To78] Tompa shows a lemma that he uses to prove lower bounds on peb-
bling superconcentrators. We generalize his lemma to the black &white pebble
game. Let us say that we pebble r outputs of an N-superconcentrator in a time
interval Z ii either Z contains r moves that pebble outputs of the superconcentrator
or r 

~~ 
N and at the end of Z all outputs of the superconcentrator are pebbled.

J~.ernrna 3.2.1 (Basic Lower Bound Argument , BLBA): In order to pebble S6+S.+1
outputs of an N-superconcentrator starting with a configuration of at most S~black and white pebbles on the graph and finishing with a configuration of at most
S~ black and white pebbles on the graph, at least N—S5— S~ inputs of the graph
have to bc pebbled and unpcbblcd.

Proof : The proor is indirect. Assume that there are Sb + S~ + 1 outputs that
can bc pebbled starting with Sb pebbles and finishing with S~ pebbles without

- both pebbling and unpebbling any of Sb + S. + 1 inputs. Since the graph is a
superconcentrator, there are So + S. + 1 vertex-disjoint paths connecting these
inputs to the outputs to be pebbled. At least one of these paths starts out and
ends up pebble-free. Its output has to be pebbled. Since the path ends up pebble-
free its input has to be pebbled and unpcbbled. This is a contradiction. I

15
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Corollary 3.2.2: Pebbling an N-superconcentrat.or with S black and white pebbles
takes at least fJ(N2/ S) pebblings of the inputs.

Proof: Iterate the BLBA [N/(2S + 1)J times. I
By Corollary 3.2.2 it is asymptotically at least as hard to pebble supercon-

cenirators as it is to pebble bit reversal graphs. Thus superconcentrators are a graph
family with a rather dramatic time-space tradeoff. However, this fact alone does
not make superconcentratore good building blocks for constructing bad graphs.
Bit reversal graphs for instance are not suited for this purpose. The~ reason why
auperconcentrators are an appropriate family to use in the construction of bad
graphs lies in the existence of the Basic Lower Bound Argument. Such an argument
does not hold for bit reversal graphs. The BLBA holds for superconcentrators be-
cause their inputs (reap. outputs) are completely symmetr ic to each other and thus
indistinguishable. It is this symmetry and in particular its formulation through the
BLBA that we apparently have to exploit, ii we want to achieve auperpolynomial
lower bounds on pebbling times.

3.3 The Upper Bound In the Black Pebble Game

In this section we consider special classes of superconcentrators that can be
pebbled efficiently.

There are classes of superconcentrators for which the lower bound proved in
the last section is tight up to a constant factor. An example of such a class Is
the class of superconcentrators constructed by putting two FFT-grapha back to
back (see Figure 3), as can be proved by an argument similar to the one given
in [ SSI TJ. However, as of now a similarly efficient pebbling strategy for linear
superconcentrators is not known.

In ~Pip77J Pippenger gives a recursive construction that he uses to prove
the existence of linear superconcentrators. Recently Gabber and Gau l combined
Pippenger ’s construction with ideas of Margulis ((Ma73J) to explicitly construct
lin ear superconcentrators. Before giving Pippenger’s construction we have to in-
trocluce another graph concept.

Dcfinitionj,1,j: Let 11, a, O~ and O’j  be positive integers such that 01 <~~ and let
0~ Oj~c. Let a~ 0~a/ 0~. An (n ,a,0i ,~4-linear concentrator Is a bipartite graph
with n left and 0jFn/t~1 right vertices such that each left vertex has a degree of
at most. a and each right vertex has a degree of at most a’ and such that each
subset X of left vertices with lxi � n/2 is connected to at least IXI right vertices.
(O~ <Oz) (An (n,a,0l,02)-linear concentrator has at most an edges.)
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Pippenger uses concentrators in order to construct linear superconcentrators
in the following way:

Definition 3.3.2: Let ) (N) 02[N/0j1. An (N , a, 0~, 02)-Iinear superconcent rat or
is a linear N-superconcentrator that is recursively defined as follows:

(a) If N � 0~ then the (N , a, O~, 9~)-linear superconcentrator is the complete bipar-
tite graph K(N , N) .

(b) II N > 01 then the (N ,tc, Oi, 02).Jinear superconcentrator baa N inputs and N
outputs such that the following holds.

Directed edges jo in the inputs with their corresponding outputs. -

The inputs are also the left vertices of an (N,a,Oj ,~~)-linear concentrator G1.
Edges in G, are directed from the left. towards the right vertices. • 

—

The outputs are also the left vertices of an (N , a, 0~, 02)-linear concentrator G2.
Edges in G2 are directed from the right. towards the ler~ vertices. :1
The right vertices of C1 are also the inputs of a ~ 4N), a,0i,0.~) -linear Buper-
concentrator whose outputs are the right vertices of G~.

(A schematic representation of this construction is given in Figure 4.)

lemma 3.3.3: An (N,a,01,~~)-lLnear superconcentrator has at most

( 2a+1 ‘1N~L O1I
~~ ~~~ 

—i-- ~og
~~i U 1/V2 /

vertices and edges. Its depth is O(log N).

Proof: The proof is a straightforward induction on N. I

In [P1p77J Pippenger proves the existence of (n, 6,4,8)-linear concentrators
and thus by the above definition also the existence of (N , 6,4,8)-linear supercon-
centrators. These supcrconcentrators have 39 N + O(log N) edges and Pippenger
shows in addition that they have at most 40N edges.

Recently Gabber and Galil extended ideas of Margulis ((Ma73J) to explicitly
construct (n, 112, 16, 17)-linear bounded concentrators. Their construction involves
additional technical constraints ([n/O~1 has to be a perfect square) and leads to
linear .N-superconcentrators with 3825 N + O(~fiV) edges.
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We will give a pebbling strategy that pebbles (N,a,0~,~~).linear supercon-
centrators using (1(N) pebbles in time O(N . (N/ S) a) where a 1 + 2log 1~,~ a.
Thus it pebbles Pippenger’s ((N , 6,4,8)-linear) superconcentrators in time O(N .
(N/ S) ~

84) and Gabber and Galil’s ((N, 112, 18, 17)-linear) superconcentrators in
time O(N .

Let us denote the (N, a, 0~, Oi)-linear superconcentrator with C(N, a, 0~, ~
).

Imagine C(N, a, 0,, 02) to be unfolded i times by applying the recursion in Definition
3.3.2. We then get a similar picture as in Figure 4, except now C1 and C2 are
replaced by G,~ and C,,2, which are concatenations of i bipartite graphs that
become smaller towards the middle of the superconcentrator (see Figure 5). The
superconcenirator in the middle of Figure 4 is now C(? ’(N), a,Oi,Oj), where, as is
easily proved inductively,

~‘(N ) � (~ )
‘N + 02— 01 

• 

(1)

Assume that S pebbles are available for pebbling C(N,a,0i,02), where S �
c log N for a large enough constant C>  0. Untold C(N,a,U,, 0~) ~ times, wherej  = j (N ,S) is minimum such that C(?’(N), ,c,0,,02) has at most $ vertices. By
the above estimate (1) for m and Lemma 3.3.3

= log92,,, + 0(1) . (2)

Furthermore note that j ( ?~(N) , 5) = i(N , 5) — 1.

We can pebble any r outputs of G(N ,a,0j , 02) with the following strategy.

C.P~llBLE(r,S);

If ~ 0 then pebble C(N,a, 0,, 02) in topological order.

It j >  0 then pebble C(N,,c,0,,02) in three phases:

1. Put pebbles on all inputs of C~l ’(N),a,0j, 02).
2. Put pebbles on all outputs of C(1’(N),~c,0,,02) .
3. Pebble the r outputs of C(N ,a, 0~, 02), but keep permanent pebbles on aLl

outputs of C(1I(N),a, 0,,02) .
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- Thus in phase 1 we put pebbles on all outputs of C,,1, in phase 2 we put
pebbles on all outputs of C(h ’(N), a,0z, 02 ) , and in phase 3 we pebble all outputs
of G~,2 while preserving the pebbles on the outputs of C(?i’(N) ,a,0j , 02) . Because
of the choice of 3(N,S) we can pcbblc C(X’(N),sc,0,,02) in topological order and
phase 2 takes time 0(S) . Phase I takes as much time as it take. to pebble C,,,.

Let i � 0 and if ~ > 0 then let i be such that ) ‘~ ‘(N) > 0,. (This ensures
that the recursion in Definition 3.3.2 can be applied s times to C(N,a,0i,02).) Let
CI(N , a, 0,,02) be the graph which is created from C(N, a, O,,02) by deleting all the
edges in the graph C(?~(N),a,0,,02) that occurs in the middle of C(N,a,0,,02).
Note that if i = 0 then C.(N ,a,0,,02) is the empty bipartite graph with N left
and N right vertices, and if i >0 then C,(N,,c,0l,02) follows the same recursion
as in Definition 3.3e2, except that the graph C() (N), a,0i, 02) is replaced by the
graph C._i(?~(N),a,0,,02). Figure 6 illustrates the graph Co(N,a,0,,02) for i 4.

Because in phase 3 permanent pebbles are kept on the output vertices of
C(?~’(N), a, 0~, 02), phase 3 takes at most as long as it takes to pebble r outputs of
the graph C,(N,sc,0,,Gi) .

We will find upper bounds for the time needed for phases 1 and 3 by a rela-
tively crude argument that applies to general directed acyclic graphs C with depth
5. Then we will apply this result to C,,1 and C,(N,a,0,,02) , both of which have a
depth 5 = 0(log N).

Let C be an acyclic graph with depth 5. We can pebble C by successively
pebbling all its outputs. Let. r be an output of C. Pebbling r means pebbling the
graph G(r) induced by all vertices from which r is reachable. We can pebble G(r)
with 0(5) pebbles using the procedure DEPTH-FIRST-PEBBLE given in IPTC77J.
In order to find an upper bound for the time needed to pebble Gfr) we investigate
the following trees.

P~efinition 3,3.4: Let C be a directed acyclic graph with depth 5 and a unique
output vertex r. The unfolding of C is a tree IJ~ of depth 5. Each vertex u~ in 1J~is the image of a vertex v in C. The tree (J~ is the unique tree with the following
propert ies.

(a) There is exactly one image of the output vertex v in ~~ 
and it is the root of

Ui:;.

(b) If the vertex w’ in U0 is the image of the vertex w in C, then w’ has exactly
one child v~ in U0 for each vertex v in C such that (v, w) is an edge in C. The
vertex v’ is an image of the vertex v.
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Fact 3~3j: Each strategy for pebbling the root of U0 in time 7’ canonically Inducesa strategy for pebbling the output. r in C in a time which does not exceed T. Thestrategy for pebbling 0 pebbles a vertex v whenever the strategy for pebbling (JGpebbles an image of v and at the same time no other image of v in If0 is pebbled.A pebble is taken ofT of v in C when a pebble is taken off of an image t/ of v inU0, and no other image of v in U0 is pebbled. Therefore a vertex v in C has a
pebble exactly when one of its images in (J

~ has a pebble.

k~e&t..L~~ : DEPTH.PIRST.PEBBLE pebbles any tree of depth 5 in linear timeusing 0(5) pebbles. (Sec [PTC77].)

From the above facts we can infer that the size of Cf0 gives an upper boundfor the time necessary for pebbling C with 0(5) pebbles. Let us first bound thesize of the unfoldings of the graphs C,,i(r) for each output r of G,,~.

LLc J ~1: For each output r of G,,~ the unfolding of G,,,fr ) has 0((N/S)0~~)vert ices, where fi log,,, ,, a.

Proof : By equation (2) the graph C,,j has a depth of j  = log,,,,, N/ S + 0(1).Furthermore it has a maximum in-degree of ,c’. Thus for each output r f G,,, theunfolding of G,,,fr) has 0(a”) 0((N/S) ’+’) vertices. I
Corollary 3.3.8: Phase 1 of C-PEBBLE takes time 0(N . (N/ S)~).
Proof: By the choice of j  the graph C,,, has at mostS/ 2 output vert ices. Since S �c log N for a sufficiently large constant c> 0, Fact 3.3.5, Fact 3.3.6, and Lemma3.3.7 imply that G,,,fr ) can be pebbled in with $12 pebbles in timefor all outputs r of C,,,. Thus pebbles can be put on all outputs of C;,j in time0(S . (N/ s ) $+l) 0(N . (N/ S)~’). C

Corollary 3.3.8 gives us the upper bound for the time that phase 1 takes. Aswe already mentioned phase 2 takes time 0(5). We will now find an upper boundon the time for phase 3.

heinma 3.3~ : Let L(i) (rcsp. V(i)) be the maximum number of leaves (resp.vertices) in the unfolding of C1(N ,a,0a, 02) fr) for any output r of C
~(N,a,D,,02) .Then L(0) = V(0) = 1. For I > 0 the following recurrences hold.

L(i) � 1+a.c’L(i — I)
V(i) �a V(i _ I) +~~sL(, l ) + 2
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Proof: The case I = 0 is trivial. Assume 1> 0. In order to bound the size of the
unfolding of C,(N, a, 0, ~02) fr) we have to trace all possible paths backwards from
v in C1(N,sc,0,, 02) and to bound the multiplicitics introduced by the in-degrees of
vertices on the different levels.

For L(i) one leaf is contributed by the input of CS(N , a, 0,, 02) which corresponds
to ,. The other leaves result from the three maximum multiplicities introduced
by 02 (at most a leaves), by C,_i~~(N) ,a,0i ,02) (at most L(i — 1) leaves) and by
C~ (at most c’ leaves).

For V(s) two vertices are contributed by v and its corresponding input of
C1(N,sc,0,, 02). Since 02 has an in-degree of at most. a, r is connected to at most
a outputs of C,._ , (X(N) , a,0,, 02). Each of these outputs contributes a tree with
at most V(i — 1) vertices and at most L(i — 1) leaves. Since the maximum in-
degree of C~ is a’ each leaf of C~

_
~ (X(N) , a, 0,, 9,) is connected to at most a’ inputs

of Cj (N, a, 0,,02). Therefore there are at most

~c(V(i— l)+,c’L(i— l))+2

vertices in the unfolding of CI(N , a, 0,, 94(r), which proves the lemma. I

In order to solve these recurrences we give the following general theorem.

Theorem 3.3.10: Let a, b and c be non-negative real constants. The recurrence

T(0) = 0(1)
T(i) � a T(i — 1) + cb’ if 1> 0

has the solution
T(i) = 0(b ’) i la ’( b
T(i) = 0(ib ’) if a = b
T(i) = 0(a ’) if a>b.

Proof : It can easily be proved inductively that

V(i) = a’ V(0) + cb’ (3)
O<v<s—1

If a > b then both terms in (3) exhibit cqual growth and V(i) = 0(a’) .
If a = b then the second term in (3) dominates V(i) and V(i) = 0(ia’) .
Ii a <b then the second term in (3) dominates V(i) and V(i) = 0(b1). I
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The recurrences in Lemma 3.3.9 are now easily solved.

Tii em 3.3.11: Both L(i) and V(i) exhibit an asymptotic growth of 0((~c~c’) ’) .

Proof: Substituting a cic’, b = 1, and c = 1 in Theorem 3.3.10 yields L(i) *

0((icic’)’).
Substituting a = a, b aa’ and a large enough constant c> 0 in Theorem

3.3.10 then yields V(i) 0((ica’f ). I

~~ eorem 3.3~ 3: Any r outputs of the graph C~(N, a, 0,, 02) can be pebbled in time
0(r . (N/S) ° ).

Proof : By definition of V(i) , the estimate (2) for j  and Theorem 3.3.11 the size of
the unfolding of C,(N,.c,0,,94fr ) for any output r of ~~(N,.c,0,,02) is 0((asi)’) =
Q((,~~)

IoiI~,/Ii NIS) = 0((N/S) °) . For pebbling each C,(N, a, 0,, 94(r) we have S/2
pebbles available. Since S � c log N for a sufficiently large constant c> 0 Facts
3.3.5 and 3.3.6 imply that we can pebble each output of C1(N,a,0,,0j) k time
0((N/ S)°) . In total r outputs have to be pebbled. I

~i~ht~~rn 3.3.13: The strategy C-PEBBLE pebbles any routputs of Cj( N,ic,0,,02)
in time

T � 0(N . (N/ S)’°”a”) + 0(r . (N/ 5) ~~
2
~°~

1ama ”).

Proof : The first term corresponds to the duration of phase 1 and the third term
corresponds to the duration of phase 3. Phase 2 is always dominated by phase 1~
I

Corollary 3.3.14: The strategy C-PEBBLE pebbles the linear superconcentrator
C(N ,~c,0,,0’,) in time O(N . (N/ S) °) .

Proof: For r = N phase 3 dominates the pebbling time. I

If we compare the upper bound of Corollary 3.3.14 with the lower bound of
Theorem 3.2.2 we detect a difference of 8.84 in the exponent (for Pippenger’s super-
concentrators). This Is a quite considerable gap for small S. For S 8(N/ log N)
the upper bound of Theorem 3.3.11 implies, however, that 7’ 0(N(log N)0

~~) =
o(N’+ ) for any t > 0. The BLBA gives in this case 7’ = 0(N log N) mind the gap
between the bounds is relatively small, namely a factor of 0(Qog N) 8

~~).
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4 STACKS OF SUPERCONCENTRATORS

4.1 Introduction

In the last chapter we decided to use superconcentrators as the basis for the
construction of bad graphs. What we still need is an appropriate scheme for con-
necting several superconcentrators in a way that amplifies their relevant properties.
The most straightforward way of doing this is to stack several superconcentrators
of the same size in series. This approach is also motivated by the results given in
[PT77J and [Rei78J.

It turns out that already this simple-minded connection scheme is enough
to yield graphs for proving Conjecture C. The proof is, however, substantially
more involved than the construct ion itself. We are here—as often in the theory
of computation—confronted with an easy construction whose properties are hard
to prove.

The graph family we will consider has two parameters and is defined as follows.

DcfiJi1ti9~L4 jJ: Lctn�6 . For isuch that .1�i<k le t C1be a copy of
Pippenger’s (n, a, 0,, 0,)-linear supcrconccntrator. Let C(n, k) be the graph created
by joining the outputs of C1 to the corresponding inputs of C÷, with directed
edges (1 <1 <k). The graph C(n ,k) has at least 2nJc and at most 4Onk and thus
O(nk) vertices. (Figure 7 schematically shows Cfr&, k).) -

As we will prove in Section 4.2, as long as S � n/20, the task of pebbling
C(n,k) with S black and white pebbles takes time

T= n ( ~~~) .

Furthermore in Section 4.3 we will pebble Pippenger’s superconcentrators
using only black pebbles in time

,~k
Q.84k

T= nO ( 1)

and even In linear time if S � 40n.
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Now let S = (1(N/ log N) . Choosing n =OS and k [N/ SJ we get a graph
C(n, k) of size 9(N) such that pebbling C(n, k) with S black and white pebbles
takes time

NT= S Q ( ~~) (1)

(It is important to notice that the graph C(n, k) satisfying this lower bound depends
on S. There is apparently no single graph that is bad for every S. Many graphs
contribute single data points to the enveloping lower bound curve.)

Moreover each graph C(n, k) of size N (2nk � N � 4Onk) can be pebbled
using only black pebbles in time

N N 0(k) N 0(k)

and even in linear time if k � 20N/S. Thus each C(n, k) of size N can be pebbled
in time

N O(~ )
T= S O ( ~~) . (2)

This shows that for both the black and the black & white pebble game, the
family of graphs C(n, k) has a time-space tradeoff of the form

T= S O ( ~~)

Analysis of this formula shows that if S = 0(N / log N) then 7’ = N’10°’~°~ 
N)

•

Furthermore 7’ is superpolynomial as long asS � c N log log N/ log N for a suitably
small constant C> 0.

Conjecture C is thus proved. Furthermore this time-space tradeoff implies a
lower bound on Sj (see Chapter 1) of the form

S~ = (1(N log log N/ log N).

This lower bound does not match the upper bound on Sj that follows from
Rejachuk’s studies ([Rei78)) and has the form.

Sj = o(N/ log log log N).

In Chapter 5 we will concentrate on closing the gap between these two bounds.
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Note that the asymptotic lower bound (1) discussed in Section 4.2 can (with
different constants) also be obtained for stacks of any linear superconcentrators.
The asymptotic upper bound (2) discussed in Section 4.3 holds (with different
constants) for all (n,a,0~,9,) -linear superconcentrators. This in particuLar implies
that there are constructible graph families that realize the time-apace tradeoffs
discussed in this chapter.

4.2 The Lower Bound in the Black & White Pebble Game

We can iterate the Basic Lower Bound Argument (Lemma 3.2.1) to find a
lower bound on the time-space tradeoff for pebbling C(n, k) .

~1~h~orem 4.2.1: In order to pebble all outputs of C(n, k) using S black and white
pebbles (2 � S < (n — 1)/4) (starting with any configuration of pebbles on the
graph) we need 7’ placements such that

Proof : The aubgraph C, together with the outputs of C,,_, and the edges joining
Ck_ , with Ck is an n-superconccntrator. Thus we can apply the BLBA [2s~-iJ
times to prove that

(n__ 2S)[2~~ _ 1j -

placements of pebbles on outputs of Ck_1 arc necessary to pebble all outputs of
Ck. Iterating this argument through Ck ,,...,Cl we find that

k—i k—i kf n—2S 1 I n I n l n \  (n \  I n2
~
5
~[2S+1J [2S+1J �2I~1OS) ~) ‘Ijo~

inputs of C, have to be pebbled. (Observe that n — 2S � 2S + 1 since S �
(n— 1)/4.) I

If the above theorem would already yield a superpolynomial growth of T for
S = O(N/ log N) then we would have provcd Conjecture C using a simple-minded
connect ion scheme (stacking) and a simple-minded proof (iteration of the BLBA).
This cannot be expected and indeed is not the case. But the argument given in
the proof of Theorem 4.2.1 can be improved considerably. This is because we did

— 
~U - - -- - _____ _________ ~~~~~~~~~~~~~~~~~~~



- -

k

not take into account at all how the pebbles are distributed over C(n, k). Let us
call a pebbling strategy fair if it distributes the S pebbles evenly over C(n, k) and
only assigns LS/kJ pebbles to the superconcentrator C, (1 � I � k). In this case
the argument given in Theorem 4.2.1 should go through, even if we substitute for
S the quantity [S/kJ. We would then get a lower bound of the form

T �nS1(~~) .

Of course there may be many strategies that are not fair in this sense but con-
centrate great numbers of pebbles on different levels at different times. However,
this means that on other levels of C(n, k) there will be fewer pebbles available at
those times. If we analyze these interdependencies accurately enough we will be
able to tighten the bound given in Theorem 4.2.1 by substituting tighter estimates
for the number of (locally available) pebbles in the individual applications of the
BLBA in the proof of Theorem 4.2.1.

Again we will use the approach of considering removals as well as placements
of pebbles as moves in the pebble game (see remarks in Section 2.4). Since the
BLBA only counts placements this will not invalidate our results.

Let us start by considering the outputs of Ck as numbered in the order in
which they are (first) pebbled. Let z~ be the time at which output I is pebbled
(1 � ~ � ti, ~ := 0, ~~~ := number of the last move of the strategy). Let V,z”J
be the interval starting with move I and ending with move z” inclusively. Let
p~ 

be the minimum number of pebbles on Ck after any of the moves in (z._ 1,z1)
(1 < I � n, p~-~-i 

:= 0). Observe that p~ � S for 1 � i � n+i. We will
consider disjoint intervals of numbers [i,,1 C [1, n) which will represent disjoint
time intervals [4z~J whcre z~ and z’~ (z._i � z~L, <z~ � zi) for 0 � I � nare
times that will be specified later. If convenient we will not explicitly distinguish
between [I,JJ and [4z~’j.

The disjoint intervals [1,5] will be chosen such that the BLBA can be applied
on Ck to each of them. They will generally be of different lengths depending on
the maximum number of pebbles on Ck during an interval. The objective is to
find a large number of intervals to which we can apply the BLBA with very tight
space estimates.

T he applications of the BLBA to the intervals will yield information about
how many outputs of Ck_ 1 have to be pebbled and how many pebbles are available
to do th is. Thus we will be able to give a recursive relationship between the time
necessary to pebble the outputs of Ck and the time necessary to pebble the outputs
of Ck_,. Solving this recurrence completes the proof.
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For this program to be realizable the intervals [1,5] have to be “good” acording
to the following definition.

DefInition 4.2.2: An interval I’~i] C 11, n] is called good if it fulfills the following
three requirements:

(3)

Pj+1 �
3

2 
(4)

Pk> 3
8 

f o ri ( k �j .  (5)

Note that the length of each good interval is j  — I + 1 � 8S. Good intervaLs —

are important because of the following lemma.

I~j r n I~L.4,2,.~: During the good interval [1, .il at least vi — 2S outputs of ~~~ are
pebbled.Only S— 1 — [

~ -~J pebbles are available for doing this.

Proof: Assume that the interval 1~1) is good in the above sense. Then because of
(3) there is a latest time I (z1_ i <1 < z1) such that at most (5— i)/2 pebbles
are on Ck at I (Observe that move z, places a pebble on Ck and therefore at time

— 1 there are fewer pebbles on Ck than at time ;.) Let x be the number of
pebbies on Ckat z’.Dcfinez~ :=z’+l.

Furthermore, because of (4) there is an earliest time z~ (z, � z~j < z,÷1)
such that at. most (j— i)/2 pebbles are on Ck at time z~ (z’~’, := z~+i). Let be
the number of pebbles on Ck at z’~. (Observe that for I <I ~~ 

n we have ~~~ <z~
and thus [z~,,z7,J and [z’~,,z~’j are disjoint if (ii , j t j and [ 12,521 are disjoin’.) During
[z ,z~ J, exactly j—s+ l  outputs of Ck arc pebbled starting with a configuration
of x’, and ending with a configuration of I,’ pebbles on C,,. Because of (3) and (4)
the BLBA can be applied. The application yields that at least n—x ~—x~ inputs
of Ck have to be pebbled and unpebbled during [z~,z~J. Furthermore at ~ there
are at most S—x~ pebbles on C1,.. . , C,, ,, and at time there are at most S—x~
pebbles on C,,... ,C,,_,. Therefore at least

•

outputs of C,,_, have to be pebbled during (4z~J.
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Furthermore, because of (5), at all times during [z’~,z~J more than (5— i)/8
pebbles stay on C,, and therefore at most S—i— 1~i!J pebbles are available for
pebbling C,,... ,C,,_,. Since move ./,~ places a pebble on C,, during (z~ + 1,z~J at
least vi —2S outputs of C,,_, have to be pebbled using at most S — 1 —
pebbles. I

Lemma 4.2.3 shows how we can apply the BLBA to a good interval and
proceed inductively on k. The following purely combinatorial lemma provides us
with the necessary statement about the abundance of good intervals.

L.mm& 4.2.4: Let r n. We can find a set of disjoint good intervals in [I, rj that
covers at Least ~ — S — p’+, elements of [1, r].

Proof: By induction on r.
If r < 4S then the statement of the lemma is trivial. Thus let r 

~~ 
4S.

Let I be maximum such that p, � ~~~~~~~~~~ (Such an i exists because i = 1 is
a candidate.) For k such that I <Ic � I + [ni_~J we have

_ _ _ _ _ _ _  

r+ i_ i_ {~±’ 1J .
r + 1 — k  2 

_ _ _ _ _ _ _

4 4 
- 

8

Also since p~ is integer

PI �  
l[r+i_- iJ

We can inductively assume that the number of elements in (1,1 — 1J that ci’n be
covered by disjoint good intervals is at least

s— i  i— i  iIr+1—iI
4 

— S—p1� 
~ 

— S — n  2

We have to make a case distinction.

Case 1: Assume there is a 5 E [ I + V1~ J~ 
r) such that I’~+’ <Vj !i. Let j  be

chosen to be the smallest such point. Then ji,j] is a good interval whose length
is at least [‘~~ ‘J + 1 and thus at least

elements in (1, rJ are covered with disjoint good intervals.
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Case 2: Otherwise we have P,+1> jLjiJ and thus Pr +l � ‘+~~~~ ‘. Thus

— S—p,+
~ 
� ~~~~~~~~~~~~~~ 

r+ 1— i  
~~~~ 

1~~~ )~ 
~~~~~~~~~~~~~~~

and the lemma holds again. 
~

We will now use Lemma 4.2.3 and Lemma 4.2.4 to construct a recursive
relationship for the time to pebble C(vs, k) .

Theorem 4.2 5: Let T(n , k, 5) be the time necessary to pebble f9n/101 outputs of
C(n, k) with S 

~ n/20 pebbles. Then

T(n , 1
~S) �~~

_
s~ 

(6)

T(n,k,S) 
~~ 

mm E T(r ii k — 1,S— 1 — 
— 

ij) fork> 1, (7)8

where D is an index set that contains all the ways in which we can select a large
number of good intervals. Specifically

D {(X j , . . . , Xn,) 
~~~~~~~~ 

and 1�x1�8S—Gforl�i�m

• and ~ x j �  } ,

Proof: By induction on k.
k = 1: follows trivially as in Theorem 4.2.1.
k > 1: Assume any strategy for pebbling C(n, k). Let r = r9nu lol and Let
S = n/20. By Lemma 4.2.3 during a good interval of length x at least n—2S � r
outputs of C,,_, have to be pebbled using at most S— 1—j~j’j pebbles. (Unless
x 

~~ 
85—6 no pebbles are left for pebbling the outputs of C,_,.) InductiveLy this

takes at least
( k— i

T1~ri,k— 1 ,S — 1 — [  8

steps. By Lemma 4.2.4 the total length of the disjoint good intervals we can find
is at least

~ —2S�~~.

Thus ii we assume that we have in good interval with lengths; (1 � I � m)
and minimize over all possible choices of the intervals, we get the formula given
in the theorem. I
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All that is left in order to find a lower bound on the time-space tradeoff for
pebbling C(n, k) is to solve the above recurrence. This can be done using standard
methods of calculus.

Our motivating discussion leads us to guess that T(n,k,S) � f ( n ,k,S) where

f ( n ,k,S)ii = .n (!
)  (8)

and c � 10 is an appropriate constant, which turns out to be 64. This guess can -

be verified inductively.

1heorem 4.2:~~~ If S � n/20 then

T(n~ki5) �n (~~~) .  (9)

Proof: The theorem is obviously true if Ic 1. Thus assume that k> 1.
By the inductive hypothesis we have alter eliminating the floor-function and

substituting real variables y, ;/8 (note that f(n, Ic, 5) is decreasing in S for
5>0)

T(n,k,S) � mm E f(n,k — l ,S—y,) (10)

where D’ is the set

and 0<y1<Sforl�I�m

and 
~~ Yi� j;~4 

) .

Let us first assume that in is fixed. The expression f(n, Ic — 1,5 — y) is a
convex function in y for 0 < y < S (its second derivative is non-negative). Thus
we have

E f ( n,k_ 1 ,S_y i) �r nf (n ,k— l ,S_ !  
~~
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Since f(n, k — I, S — ii) is also increasing in the range 0 < y < S we have

m f(n ,k_ 1 ,S_ !  
~~ 

ys)�mj(n,k_
~

1,S_
6~m). (11)

The value of the right hand side of (11) can now be minimized with respect to in
by differentiation. The minimum for m> n/64S occurs at

nk
64S

and amounts to
I nk

fl~~~~~~~).

This proves the theorem. I

4.3 The Upper Bound in the Black Pebble Game

The question arises, whether after the refinement of the argument used in the
proof of Theorem 4.2.1 the lower bound (9) that has been obtained on the time-
space tradeoff for pebbling C(n, Ic) is indeed asymptotically tight. This is the case,
and a matching upper bound is proved in this section. The pebbLing strategy that
we use to establish the upper bound is derived from the strategy C-PEBBLE for
pebbling (vi, DC, Oj ,  02)-linear superconcentrators (see Section 3.3).

Assume that S � c, Ic log vi pebbles are given, where c1 > 0 is a sufficiently
large constant. We define the following fair strategy STACK-PEBBLE that pebbles
r outputs of C(n,k) .

STACK-PEBBLE(r, k, 5):
Permanently assign LS/kJ pebbles to C,, and the rest of the pebbles to C,,. . . ,
Apply C-PEBBLE(r, ~S/k j )  to C,, to pebble r outputs of C,, with its 1S/kJ pebbles.
This requires pebbling a certain number r’ of inputs of C,, and thus pebbling
(at most) the same number of outputs of C,,_,. These outputs are pebbled by
recursively applying STACK-PEBBLE(r’, k — 1, S — LS/kJ) to C1, . . . , C,,_1.
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Theorem 4.3.1: STACK-PEBBLE pebbles any r outputs of C(n, k) with S pebble.
in time

T �r E (~~ E) +  n ~~ (k _ s)
(~~~ )  

(12)
1~~ i�k O�~~~k—1

where a = 1+2 log ,,51sc, j3 = log~,~~c, and c2 > 0 is a sufficiently large constant.

Proof: In Section 3.3 it is shown that the pebbling strategy C-PEBBLE pebbles
any r outputs of a (n ,~c,01,Gj) -linear supcrconcentrator with [S/ kJ pebbles in time

T � r~ (c2nk/ S)~ + vi . (c2nk/S)0 (13)

where C3 > 0 is a suitably large constant.

The proof of the theorem is by induction on k.
k = 1: See Theorem 3.3.13.

k > 1:  We have

h~I<IS— LS 1kJ
LkJ~~~ k — i

Thus STACK.PEBBLE(r’,k— 1,S—I S/ kJ ) has at most

~~~ 
(

~~~~

)o’ 
+ vi ~~ ~k — i — I)  

(
~ sky

+P 
(l4~

1�s�k—1 O�i�k—2

moves. By (13) we have

r’ ~ 
r .  (C2flk/ S)a + vi .  (c2nk/ 5)~. (15)

Substituting (15) into (14) and adding the number of placements on C~ yields

T � 
(

~ (
~

)° + ~ (c~nk)~
) (1 

+ 
~~~~~~~~~~~~~~~~~~

I ~ai+P

~~ (k~~ 1— i) (~ !~~ J
O�s�k—2 “ /
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r > ~~~ 
+ ~ (c~nk)~ ~~ 

(~~~

‘

~~

.)

d’

O<s <k—1

/ ~ as-f-~
+v i  ~~~ 

(k_ i_ i)
(~~~_)

r 
~~ 

(
~

)°
~ 
+ vi ~~~~ (k — I) 

(

~~~~iJc)tI~
+P

Corollary 4.3.2: STACK-PEBBLE pebbles C(n , k) in time

T= nO ( !~ ) .

Proof: Since a 
~ + 1, for r = vi the first term in (12) is dominating.
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5 THE GENERAL CASE

5.1 IntroductIon

The disc~uion of stack. of superconcentrator. led to a proof of Conjecture
C, and in addition to a lower bound on Sj of the form

- Sj=Q(N log logN/ logN).. (1)

Reiscbuk’s pebbling algorithm (see (Rei781) implies an upper bound on Sj of the
form

Sj = o(N/ log log log N) . (2)
In this Chapter we will locate Sj and show that

Sj = 9(N/ log log N). (3)

- Thus neither bound (1) nor bound (2) is tight. Equation (3) can be Inferred from
the following time-space tradeoff for pebbling general directed acyclic graphs with
black or with black and white pebbles.

T = S 22~
(
~~

)

(Equation (4) says that all directed acyclic graphs with bounded in-degree can be
pebbled with a sufficiently large number S of pebbles in time

O(~~)
T = = S 2 2

and that there are graphs for which a time

T=S

is necessary to pebble them with S pebbles.)

Moreover (4) implies that if S O(N/ log N) then T 2N~
(
~
)
, I.e., T is

exponential in some positive power of N.
In the following sections we will prove (4). Section 5.2 discusses the upper

bound part of (4) in the black pebble game. Section 5.3 shows the lower bound
part of (4) using black and white pebbles.
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5.2 The Upper Bound In The Black Pebble Game

In [PTC77J Paul, Tarjan, and Ccloni give a recursive algorithm BEST-
PEBBLE for pebbling any directed acyclic graph with a maximum in-degree d (d �
2) using S � c5 (d log d) (NI log N) pebbles (c5 > 0 is a sufficiently large constant).
They do not analyze the time efficiency of their algorithm, and in fact it may
be quite inefficient. However, it is possible to modify their algorithm such that
it makes efficient use of all S pebbles that arc available. We call the modified
algorithm FAST-PEBBLE. It is stated below, and its time analysis leads to ‘tn
upper bound of the form

(d+1)~T � S (cidf ~

(c,, c8> 1 are suitably large constants.).

(Reischuk ([Rei78j) independently uses similar ideas to prove his result that

0(1(d) ~ log 
~

)
T< N 2 2

for S J7(N/ log’ N) where r E N. The function 1(d) is not further specified.)

Throughout this section we will use the sum of the number of vertices and
the number of edges as a measure of the graph size.

Let G be a graph of size m with a maximum in-degree d (d � 2). The
definition and analysis of the algorithm FAST-PEBBLE(G, 5) that pebbles G *ith
S pebbles involves a set of constants c1, . . . ,c8> 0 on which a number of rather
arbitrary-looking constraints have to be imposed. Some of these constraints are
essential for FAST-PEBBLE to work properly; others are used in the time analysis
of the algorithm. A list of the constraints and short explanations of the significance
of the constants are contained in Appendix A. An example of a set of constants
satifying all constraints is

11 21 1
C~ = C2 = ~~~~~, C3 C4 5,

1cs=IOO, ~~~~~~~~~ ci == 29, c~=40.

Before we can define the algorithm FAST-PEBBLE we have to give the
definition of a function which plays a central role in the following discussion.
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Definition 5.2.1: Define

182 (2c2~~ c3)~~ (d + 1)S
dm 

—1.

We will show that if G has size rn and S is larg e enough, then we can pebble
G with S pebble. using the following informally stated recursive algorithm:

FAST.PEBBLE(G,5): 
-

If ,n 
~~ 

S then pebble G in topological order.

If rn > S then partition C into two disjoint parts C1 (of size mi) and G~ (of size
m2) such that no edges run from C2 into C1, and such that

1~ 1 L ~~
J_d �ml�1

~
1_

~~
j .

(This partition can be found by starting with C1 = 0 and successively adding
vertices to C1 in topological order until C1 has the desired size. Figure 8 illustrates
the partition of C into C3 and C2.) Let E be the set of edges from C1 into G~.

Case 1 (Small Cut): If ~~ � [c2SJ then partition the S pebbles into a set S1
of size 1(1 — c1)S J and a set S2 of size [c1SJ . Do FAST-PEBBLE(G1, 1(1 — cj )S J)
using the pebbles in S1; while doing this use the pebbles in $2 to permanently
pebble all sources of edges in E. Then take the pebbles in S~ off C1 and do ~‘AST-
PEBBLE(G2, 1(1 — ci)S 1) using the pebblcs in S1. -

Case 2 (Big Cut): If El> Lc25J then partition the S~ ebbLes into two sets S1 (for
use on C1 only) and $2 (for use on C.2 only) each of size 

~ ~~“
j and a pooi P of special

pebbles of size dp (see Definition 5.2.1). Start doing FAST-PEBBLE(C2, V~ ”J)
using the pebbles in $2. When a situation occurs where the output of an edge
in E has to be pebbled whose inputs in C1 arc not all pebbled, then temporarily
suspend the pebbling of C~. Do FAST-PEBBLE(G1, Vidi) using the pebbles in
S1 and leave the pebbles in P on all of the (at most dp) inputs of B that directly
precede the p outputs of E that have to be pebbled next. Then continue pebbling

Rcischuk ([Rci78J) independently uses essentially the same algorithm to prove - 

-

his upper bound result. His parameters (especially the number of special pebbles)
are different however, and as a consequence his bound is not tight enough to match
the lower bound proved in the next section.
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We will start the analysis of FAST-PEBBLE by making some remarks about
notation.

Let FAST-PEBBLE be called with arguments (C, 5) where C has size m. We
say that FAST-PEBBLE is called on a problem of size (tn,5). In the course of its
execution FAST.PBBBL IE calls itself recursively on the graphs C1 and G~. We will
denote the corresponding problem sizes by (in’, S’) , so that m~ is either in3 or m2
and 5’ is either f(l — cj)5) or j S~~dP J .

Define me c4d. The number me marks the threshold for the graph size
above which FAST-PEBBLE will become non-trivial.

With two lemmas we will now prepare ourselves for proving the efficiency of
FAST-PEBBLE.

&mzna 5.2.2: Let FAST-PEBBLE be called on an argument of size (m, 3). Assume
that in 

~~ 
S,m 

~ m0 
and if Case 2 applies, that p � 1, i.e., the pool Pot special

pebbles is not empty. Then for all recursive calls to FAST-PEBBLE on subgraphs
of size in’ we have ~~4 pebbles available such that 5’ � 1 and

m~
’ m

Proof : Cases 1 and 2 are handled separately.

Case 1: By definition of FAST-PEBBLE

rn’< m/ 2 + c2S+ d
S ’ (l—ci)S

With constraints (A3), (A4) and (A5) (see Appendix A), using in 
~ me and m 

~~ 
S

it follows that

0 
~ (1 

—2ci)m— (2c3(1—ci)+2c2)S---2d,

i.e.,

and thus
in
, 

in
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Case 2: Because of constraint (A2) we have

m’�!~ — c2S+(d+1)
and

(5)

We always have 5’ � 1 since by constraint (Al)
S2 (2c2—c.3) — (d+ 1)S ( fs \  (d+ 1)

= 3  — (2c 2—c 3) —
m 

�s(2~
_

~
_ d

~~1)

� S(2c~— c~)

< S
and by definition of p thus

dp < S —2 .
Substituting this into (5) yields 54 

~~ 
1.

Now by definition of p again

S((2c2 — c3)S— (d + 1))
din —1 .

This implies
d + 1 � (2c2 — c3) g — (~~)(dp + 1)

and therefore

m_ 2c2 S+(d + 1)�m— (~~) (dP+ 1)_ C3S.

Becausep�lwe have

m—2c,S--f- (d+ 1) � m_(~~) (d
p + 1 ) — c3 (S_ dp _ 1)

m_2~S+(d+1)�(~~
_ c3)(S

_ dP_ 1)

which implies that

m!
< 

rn_ 2c .2 S+(d +l)
<

rn

S’ S — d p —1  S C3. I
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Lemma 5.2.2 statcs that as we descend one level in the recursion, under certain
circumstances there is a constant minimum decline in the quotient rn/S of the
problem size (in, S).

Lemma 5.2.3: Let (m,S) be such that S � C5 logd (rn/ login). Then
(a) If in � m0 then S � in, i.e., all problems of size (in, 8) are terminal (do not

involve further recursive calls to FAST-PEBBLE).
(b) If in � me then p � 1, i.e., for all problems in which Case 2 applies, the pool

P is not empty.
(c) If in � me then for each recursive call to FAST-PEBBLE with problem size

(in’, 8’) we have 5’ ~ 
c~ log d (m’/ log m’), i.e. the condition on S given in the

premise of this lemma is hereditary.

Proof: The proof is again technical.
(a) Because of constraint (A9) and m 

~ m0 we have

C~ log d> (1 + log c4) log d 
> ~log in Jog c~ + Jog d

(b) Because of constraint (A8) we have

c.~logd 
> / 9

log c4 + log d — V 2c4(2c2 — 

~
) •

Ueingrn�mo~~~c4dwe get

(2C3—C3)(cS log d) 2m> 9
d Qogvn)2

Since S~~ c~logdm/ logrnwe have

(2C2—c3) S2 9
dm~~~~~~

aiid W lthS�m
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(c) First we prove that m’ ~~~ 
(
~ 

— c3) m. With S � rn and constraint (Al) we
have forrn�mo�(d+1)/c2

rn1�rn( ~~+! (c~
_ c1) _ (’+ 1)

(1 d+l

We know by Lemma 5.2.2 and part (b) of this lemma that

in’ in

Furthermore we have S � c5 log d (rn/ log in). By constraint (AB)

—C3C5 log d � log(~
’ — ci) .

Thus
Jog in’ � log(~ — c~) + log in ~ 

log m — C3C5 log d.

It follows that

— 
~~ 

log in — C3 < (log rn — £3C5 log d) � 
log m’ -

S S c5 logd c5 logd c5 logd

This proves (c). I

The upper bound on the time T(G,S) it takes PAST-PEBBLE to pebble the
graph C of size m with maximum in-dcgree d (d � 2) using S pebbles where
(S � c~ log d rn/log m) can now be proved. Lemma 5.2.3 implies the correctness
of FAST-PEBBLE whereas Lemma 5.2.2 gives the basis for an inductive argument
for proving the time bound. The details are given in the following theorem.

K~ rem 5 2.4: Let C and S be as defined above. FAST-PEBBLE pebbles C with
S pebbles in time T(G, 5) where

m/c3S in/ S
T(G, 3) � d — S 48 . (6)

40

~ 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 
~~~~~



Proof: The prooi Is by Induction on the quantity

S :=f(~!-_
i)/c4

J � 0: In this cue we have in � S, the problem is terminal and the theorem
follows trivially. 

-

j >0: In this case we have m > S. FAST-PEBBLE calls itself recursively with
arguments, say (,n~, S~. By Lemma 5.2.3 (a) we have in 

~ me. By Lemma 5.2.3
(c) the problem size (m’,S’) also fulfills the premise of the theorem. By Lemma
5.2.3 (a),(b) and Lemma 5.2.2 we have

Thus r~ ’ \i
j  :=I~~~

_
l)f c3

=j—l.

Thus the theorem can be applied inductively on all recursive calls. We have to
make a case distinction corresponding to Case 1 (Small Cut) and Case 2 (Big Cut).

Case I (Small Cut): There is only one recursive call of -PEBBLE on each
of C1 and C,, both times with f(1 — c~) Sj pebbles. Thus

T(G,S) � T(GI , 1(1 — ci)S 1) + T(C,, Ri — c,)S))

� 2 d2Ms?(
~~ —1

S 48 (sinced�2)

� — 1 s ~,
c %/S 

(since rn/c,S � 1).
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Case 2 (Big Cut): By Lemma 5.2.3 (b) we have p � 1. In fact by the definition
of p

If d \S 2 1
p — C3 — 

~~) ~—j — 1 
- 

-

d ’ S2
S 3drn

since ~zJ— 1 �z/3 if
~~ � 2. SinceS�c5 logdrn/logvn and m� me �c4d we

can bound d/ S from above and get

(7)

where c5> 0 is a constant that fulfills constraint (A 10).

By the definition of FAST-PEBBLE, in the case of a big cut C, is pebbled once
with [‘5~~”j pebbles and C1 is pebbled at most [T(C,, 

~~~~J)/~1 times, namely
at most once for each p (consecutive) placements on C,. Thus

T(G, 3) � r (c2~ [S 
— d

Pj) + T(G1~ [—~~ 
d~

j) {r ( ~~ [S 
— d~

J) / 1
Applying the theorem inductively to the recursive calls and using Lemma 5.2.2
and the estimate (7) for p we get

nm/(c,S)—I in/ S—c,
T(G,S) �d ’ — 

S48

+ d
2M
~
fr
~~ 

1 — 1 Sc 8 ~~ [- (d
2m/

~
3
~~

_1 

~~~~~~~
and eliminating the ceiling function, multiplying out and collecting terms

- 

T(G, 3) � 2 ~~~~~~~~~~~ S c 8
/ C

~ + (
~
) S d~”’~~ 

— 1 (!!~) ~7
2
~~

” 3 ’
~’.

Since rn/S � 1 and C7 and c8 fulfill constraint (A 12) we get

T(G,S) � d
2mI

~~
_ 1 s (i+ 

~
) (

~
) c7

2c8~
/ S

~~ (8)

The inequality (8) differs from the desired formula (6) only by an additional factor
of 

(i+~~)(~~)
on the base line, the factor of 2 in the exponent of C~ and the subtraction of C3 in
the exponent of C~ .
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The crucial step in the argument (and the step which requires T to grow as
a double exponential in (m/ S) ) is to show that adding C3 to the exponent of c~
outweighs the cancellation of both the factor of (1 + ~)(‘~

) on the base line and
the factor of 2 in the exponent of c~. Formally this is stated in the following fact
whose proof is again technical.

Fact 5.2.5: If rn/S � 1 then

(9)

Proof of Fact 5.2.5: The expression

cP/ z (10)

considered as a function of x has the following first derivative. - 

-
5’

~~ (( lna) (ln b)x bX — i).

If this derivative is greater th:n 0 for all x � 1 th en a minimum of the function
(10) for x � 1 is given by its value at x = 1. If we substitute

1_2/c c3 m
a=c 7 8 —

into (10) the resulting function is the fun ction

(i + !~ 
left hand side of (9)

~ cc) right hand side of (9)~ ‘ ‘
Constraints (A12) (A13) and (A14) assert that its derivative is positive ~~ all
rn/S � 1. Thus the minimum of (11) is given by its value at rn/S 1. By
constraint (All ) this value is greater than (1 + ~), which proves (9). I

We now continue the proof of Theorem 5.2.4. Using Fact 5.2.5 it follows that

T(G, 8) � d
2ml

~~ ~~1 
~ ~~~~~~ (1+ 

~
) (
~
)

� d ”~
’5 ~ S c 4%~

S_ C3 
(46a —2) 

c;/5_c~
)

� d2”~~ 
— 1 s

This completes the proof of the theorem. I

L . 
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It should be mentioned that st the expense of the simplicity of the argument
the constants in the upper bound given in Theorem 5.2.4 can be improved. However,
we are mainly interested in the asymptotic behaviour of the bound as described
by the following corollary.

Corollaiy 5.2.6: li the premise of Theorem 5.2.4 is fulfilled then

T(G, 5) � S (c~d)d~~~~~
5

where N denotes the number of vertices in C.

Proof: Since C has a maximum in-degree d we have rn 
~ (d+ l) N. Using Theorem

5.24 we get

T(G S) � d
2m/

~~
_ 1 

~

� ~~~~~~~~~~~~~

- � Sd ’8”’~’~ 48
’ by constraint (A 13)

� S (C7d)cS”’15

� S ~c,d)4~~
1)tJlS

. ~

For any constant d � 2, if S � cN/ log log N for a sufficiently large constant
c (depending on d) then T(G,S) is polynomial in N.

5.3 The Lower Bound In The Black & White Pebble Game

According to Section 5.1 the graph family C(n, k) defined in Chapter 4 does
not exhibit the worst time-space tradeoff possible. The graphs C(n,k) can be
pebbled with S � c N log log N/ log N pebbles in polynomial time if c> 0 is large
enough. On the other hand, if Sj = (?(N/ log log N) (as is stated in Section 5.1)
then graph families have to exist whose pebbling time is superpolynomial whenever
S 

~~ 
c N/ log log N for small enough c> 0. (Observe that N log log N/ log N

o(N/ log log N.) In order to prove the lower bounds stated in Section 5.1 we
therefore have to find graph families which have even more dramatic time-apace
tradeoffs than C(n,k) .

- 
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The csscnt ial idca in the construction and analysis of C(n, k) was to arrange
as many superconcentrators as possible in levels one below the other, such that the
13I~BA can be iterated through the levels. Intuitively, the more levels the graph
has, the more frequently thc BLBA can be iterated and the better the lower bound
on the pebbling time should be. In Chapter 4 we chose k = 9 (N/ S)  and n 9(S)
as this maximized the time. However, since S S1(N/ logN) we always have
k O(log N); thus the worst graphs among the C(n,k) do not have very many
levels. It. is suggested that we should find some way of increasing the number of
levels without increasing the graph size. Obviously the only way in which this is
possible is to use superconcentrators of different sizes. They have to be arranged
and interconnected in such a fashion as to retain the ability to iterate the BLBA
through practically all levels (or at least some constant fraction of them). This
means that long edges have to be introduced that connect non-adjacent levels.

These ideas lead to the following definition of a suitable graph family G(n, k)
(again in two parameters), that is somewhat reminiscent of the graph family used
in [PTC77J to prove tl~e space lower bound.

As in Section 5.2 we have to use a number of constants c1,... ,c10> 0 satis-
fying certain constraints. A list of the constraints and short explanations of the
significance of the constants are given in Appendix 13. An example for a set of
constants satisfying all constraints is:

9 1 1 1 1
C1 — — C2 — C3 - — C4 = C =11 11 44 88 180

cc = = 32500 c~ == 1.03 C9 = 1.00001 c~0 =

The graphs G(n,k) are defined as follows.

Definition.J,.~ I: Let n be divisible by 1l/ c3 1 2k G(n,k) is inductively defined as
follows:

(a) G(n, 1) is Pippenger’s linear n-superconcent.rator.

(b) For k> 1, G(n, k) cont~ ns three copkS C~ , Gmp~ and G~0 of Pippenger’s linear
n-superconcentrator and two copies G~ and ~~ of G(n/2, k—i). Let the inputs
of C, be denoted by ~~~~~~~~~~~~ 

and its outputs by r1,C,,. ~~~~~ (i E
(hi, mcd, lo)). Adopt corresponding notation for G, (1 E (hi , lo)). Then
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G(n, k) contains the following additional edges:

{ ~~~~ os,c~~,,), (r,,c~~,, o,,qJ ( 1  � i n

U ( (r ~.c~,os.c~J ,  (r ,~~ / 3 q~,,oj ,c~J ,
~~~~~~~~~ (r,,c~, o,+,,,2,c..,,j,

(r; ,c~,&a,,c~J, ~~~~~~~~~~~~~~~
(r~,c~,o,,cLJ, (rj,c~,,o,~~/3,qJ , I 1 � i � n/ 2 )

An illustration of this construction is given in Figure 9.

It is easily proved by induction on k that G(n, k) has between (6k — 4) n
and (120k — 80)n, i.e., 9(nk) vertices and furthermore that G(n,k) has 2k )—1 3
superconcentrators.

If we unfold the recurrence in Definition 5.3.1 we see that can represent G(n, k)
schematically (leaving out all edges between superconcentrators) as a bar graph,
where each bar represents a superconcentrator.

D.efinitk ~j,1,2: To each superconcentrator C in G(n, k) we assign a level number
4(C) as follows:

(a) If k 1 then G(n,k) is a superconcentrator C and
ti (C) := 1;

(b) Ifk>lth en
I;

for all superconcentratora C in G~
4(C) := ik_ J (C) + I;

lk(Cmad) :i= 2k _ l ;

for all superconcentrators C in G~
4(C) := lk_ 4(C) + 2k — 1;

lk(C~o) := 2k+l —

In effect Definition 5.3.2 numbers the superconcentratora from top to bottom
in the bar graph of C(n,k). Figure 10 shows the bar graph of G(n,k) for k = 4.

From now on we will denote the superconcentrator at level ~ by C,. We will
say that G’, follows C’, or that C’, precedes C~ if C~ s located below C, in the bar
graph of G(n, k), i.e., if i > j.
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Even though we were able to motivate the definition of G(n,k) with obser-
vat ions about the graphs C(n, k) , no parts of the lower bound proof for C(n, k)
can be carried over to G(n, k). We have to arrange the iterations of the BLBA in
a different fashion. The following definitions introduce the essential concepts for
the lower bound proof for G(n,k) .

D~finjti~~~~ ,~: Let C, be a superconcentrator such that 1> 1.

(a) The parent of C, is the highest level superconcentrator preceding C, that is
larger than C, (if such a superconcentrator exists, otherwise of the same size
as C1) . The transitive closure of the parent relation is called the ancestor
relation.

(b) The neighborhood of the superconcentrator C, is the set of superconcentrators
including C,, its parent, and all superconcentratore preceding C1 and following
its parent.

Definition 5.3.3 gives each level except the first one a parent and a neighbor-
hood. The parent of C’1 is larger than G1, unless C’, is an n-superconcentrator, i.e.,
of the largest size possible in G(n ,k) . (For example, in Figure 10, Cii,Cj~ and
c~ i have the same parent Cj ~,. The neighborhoods of C17, C19 and C~ are the
sets (C10, C,7) , (C,0, C,7, C,8, C19) and (C17, C18, C19, c~o,~ 1) respectively. The
parent of G~g is C15.)

Again note, that we will count placements as well as removals of pebbles.
(The same remarks as in Section 2.4 apply.) Assume that S < c~n. In the lowerbound proof we will again analyze the distribution of pebbles on the graph.

Focussing our attention on level i of C(n,k) we will consider time intervals
during which many outputs of some supcrconcentrator C, (j  < 1) preceding C,
have to be pebbled while a lot of pebbles are bound on levels following I and thus
not available for pebbling C,. Again we will use the BLBA to insure that many
outputs of C, have to be pebbled during the time interval considered.

The appropriate definitions for carrying out the program outlined above are
the following.

P_cfinitionJL3~4: Let Z [zj , z2J be a time interval.

(a) An m-supcrconccntrator C, is called good in Z ii in each subinterval of Z in
which at least r~~mi outputs of C, are pebbled, the number of pebbles on the
neighborhood of C1 drops below c3m.
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(b) An in-supcrconcentrator C, is called usefu l in Z if C, and all its ancestors are
good in Z and at least c~m outputs of C, are pebbled in Z.

(c) Let C’ be the parent of C,. Assume that C’ is not C,_,. C’ is right for C, in
Z if C’ is useful in Z and at all times during Z at least c4m pebbles stay on
the neighborhood of C,.

By constraints (85) and (86) ~~~~~ is useful in the interval Z111 covering
the whole pebbling strategy. We will show in the following that if C, is useful
in Z we can identify two disjoint subintervals of Z during each of which either

is useful or the parent of C, is right for C,. This allows us to iterate the
argument through the levels from G~+i~ 3 towards C1 and at each step double
the number of necessary placements. W e have to pay for making a large jump
(from C, to its parent) by “losing” a proportional number of pebbles that are
bound on the neighborhood of C1 during the interval considered. The number of
available pebbles then implies an upper bound on the number of large jumps we
can make, and thus gives a lower bound on the number of times the argument
can be iterated. Each iteration doubles the number of necessary placements. The
number of possible iterations will ultimately lead to the desired lower bound on
the time-space tradeoff for pebbling G(n, k) .

In order to formally pursue this argument we have to prove a series of lemmas.
The first lemma puts the BLBA into a context that is suitable for the discussion
of G(n,k).

J~ernma_5.3~~: Let 1> 1. Assume that in the interval Z , 1c2m1 outputs of the ~~
•

superconcentrator C, have to bc pebbled starting and ending with a configuration
of fewer than 2c3m pcbbles on the neighborhood of C,. Then during 2 at least. c1m1
outputs of the m’-superconcentrator that. is the parent ol C, have to be pebbled.

Proof : By constraint (133) we can apply the BLBA to Z and get that at least
(1 — 4c3)m inputs of C, have to be pebbled and unpebbled during 2. We have to
make a case distinction.

Case 1: C1 is a C~ . Thus C1_, is the parent of C, and because of the edges
between C,_ 1 and C, during Z at least (1 — 5c3) 2m � 2cj m (see constraint (84))
outputs of G1_, have to be pebbled.

Gase 2: C’1 is a 
~~ned resp. a 

~~~~~~~ 
In this case let ~~ be the corresponding t~~ ,j

resp. Cmed (i.e., C’ = C1 2 ~ ,1~~.2) . Because of the direct connections between
C’ and C1 at least (1— 6c~)in � cjm (see constraint (134)) outputs of C’ have to be
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pebbled during Z. If C’ is the parent of C, then the lemma is proved. Otherwise,
because of constraint (132), we can apply the BLBA to Z again to show that at
least (1 — 4cj ) m inputs of C’ are pebbled in 2. Repeated application of the case
distinction to C’ then proves the lemma. I

The following lemma gives the definition of usefulness its significance.

Ltziqna 5.3,8: Let 1> 1. If the m-superconcentrator C, is useful in Z then its
parent is also useful in Z.

Proof: Since the parent of C, is by definition good in 2 = [z,,z~j we only have to
show that at least c1,n’ outputs of the parent of C, are pebbled in Z, where m~ isthe number of inputs of the parent of C,.

Since n/2k � l/c~ (sec Definition 5.3.1) we have c2pn 
~~ c2n/2k_ I � 2 and

thus 6[c2m1 � 9c~m 
~ 

c1m (using constraint (82)), i.e., at least 61c2m1 outputs
of C, are pebbled in 2.

Let Z, be the interval during which the first fc2ml outputs of C, are pebbled.
Let Z2 be the interval during which the next 1c2m1 outputs of C1 are pebbled,
and let Z3 be the rest of 2. Then at least [c2m1 outputs are pebbled during Z3.
Furthermore, because C, is good during Z, sometime during Z, and sometime
during Z3 the number of pebbles on the neighborhood of C, (i.e., certainly the
number of pebbles on C, itself) drops below c3m. Let this happen at time z~ inZ1 and at time Z3 in Z3. During the time interval (~ j  + 1,z3J C 2 at least 1c2m1
outputs of C, are pebbled starting with a configuration of fewer than c~m pebbles
on C,. Applying Lemma 5.3.5 to the interval [zo + 1,z3) yields the result. I

We will now prove the lemma that provides us with a lower bound argument
that caii be iterated on G(n, k).

I rnmaj,3~ : Let 1> 1. Let the m-superconcentrator C1 be useful in Z. Then
there are two disjoint subintcrvals Z’1 and Z’2 of 2 such that in Z,

~ ~ E {1, 2))either C,_ 1 is useful or the parent of C, is right for C1.

Proof : If C,_, is the parent of C, then the lemma follows from Lemma 5.3.6. Let
us thus assume that this is not the case.

Then C,_ 1 has half the size of C,. Because C, is useful in 2, as in the proof of
Lemma 5.3.5, at least Ofc2ml outputs of C, arc pebbled in 2. Let 2, := [zi,i,zziJ
be the interval in which the first 3fc2ml outputs of C, are pebbled and let Z2 :
[zj ,2,~j ,2J be the interval in which the last 31c2m1 outputs of C, are pebbled. The
following argument can be applied equally to both 2, E (1,2)) and we will
without loss of generality consider only Z1.
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Let zo be the first time and z1 be the last time in 2, at which fewer than
cam pebbles are on the neighborhood of C. Because C, is good in Z at least
1c2m1 outputs of C, are pebbled in Z’ = [

~ + 1,zi~. We make the following case
distinction.

Case 1 (C,_ 1 is bad in 2’): Suppose that there is a subinterval [a~,z.,J C 2’

during which 1c2m/21 outputs of C,....1 are pebbled and always at least c4m pebbles
stay on the neighborhood of C. Without loss of generality we can assume that
at. time Z2 a pebble is placed on the neighborhood of C,. Let z4 be the last time
before (and not including) z2 at which there are fewer than c3m pebbles on the
neighborhood of C,. Let :0 be the first time after (and including) z~ at which there
are fewer than c~m pebbles on the neighborhood of C1. Let Z” ; [z. + 1,~ ) and
let Z’1 := (z4+1,z~J where . =z5 1( 25 =Z 3  and ~~, =~~—1 otherwise. We
have 2’, C 2” C Z’. (Furthermore note that if 

~~ 
= — 1 then at x~ a pebble is

removed from the neighborhood of C,.) During Z”, [c2m/21 outputs of C,_, are
pebbled starting and ending with configurations of fewer than c3m pebbles on the
neighborhood of C~ (i.e., also on the neighborhood of C,_,) . Applying Lemma
5.3.5 to 2” yields that at least c1rri outputs of the parent of C,_, are pebbled
during Z”. Applying Lemma 5.3.5 again (using constraint (132)) yields that at least
2c,m outputs of the grandparent of C1 3 ,  i.e., the parent of C, are pebbled in 2”,
i.e., also in Z’,. Furthermore at all times during Z’, at least c4m pebbles stay on
the neighborhood of C1. Thus the parent of C, is right for C, in 2’,.
Case 2 (C1_, is good in Z:~ Otherwise any time in 2’ that fc2rn/21 outputs of

are pebbled the number of pebbles on the neighborhood drops below c4m.
Because of constraint (85) this means that C,._, is good in 2,. We make another
case distinction.

C’ase 2.1 (a, is larg:~~ The parent of C’1 has the same size as G1. In this case the
parent of C, is also the parent of C1_,. Thus C,_ , and all its ancestors are good
in 2’. But in 2’ we have to pebble [c~mJ outputs of C, starting and ending with
configurations of fewer than c3m pebbles on the neighborhood of C,. By the I3LBA
we have to pebble in Z’ at least (1 — 2c3) rfl inputs of C,, and because of the edges
between C,•.~ and C, at least (1 — 4c,)m/2 outputs of Ci._~. Because of constraint
(134), C,_, is useful in Z’, := Z’.

Case 2.2 (C1 is small): The parent. of C, is larger than C,. We have to make a
third case distinction.

Case 2.2.1 (The parent of C, is bad in :~~ Assume that there is a subinterval

~
) C Z’ in which Ic2ml outputs of the parent of C,__ , are pebbled while always
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at least c4rn pebbles stay on the neighborhood of C.. Without loss of generality
we can assume that at time Z7 a pebble is placed on the neighborhood of~ C,.
Let ~ be the last time before (and not including) z~ at which there are fewer
than c3m pebbles on the neighborhood of C,. Let z1~ be the first time after (and
including) ~ at which there are fewer than c3m pebbles on the neighborhood of
C,. Let Z” :~~ ~~ ÷ 1,z,oj and Z~ := [

~ + 1,z,,J where zjj = ZJO if Zjo =
and zj 

~ 
= — 1 otherwise. We have Z~ C 2” C 2’. (Furthermore note that

if z,, = — 1 then at ZIO a pebble is removed from the neighborhood of C,.)
During 2”, r~m1 outputs of the parent of C

,_, are pebbled starting and ending
with a configuration of fewer than c3m pebbles on the neighborhood of C, (i.e.,
also on the neighborhood of C1_,) . Applying Lemma 5.3.5 to Z” yields that at
least 2c,m outputs of the grandparent of C,_, (i.e., the parent of C.) are pebbled
during Zr,, i.e., also during 2’,. Furthermore at all times during Z~ at least cm
pebbles stay on the neighborhood of C,. Thus the parent of C1 is right for C, in
z~.

C ~ 2.2.2 (The parent of C1 is good in ?~): Otherwise any time in 2’ that. Tc2ml
outputs of the parent of C,—i arc pebbled the number of pebbles on the neigh-
borhood of C1 drops below C4rn. Thus the parent of C,_, is good in Z’, and thus
C;_, and all its ancestors are good in 2,. As in Case 2.1 we can infer that C1_1
Is useful in Z’, :=— Z’. I

We are now able associate with the strategy for pebbling G(n, k) a rooted
binary tree according to the following definition.

P.eflnitlon 5.3.8: LeLR be the rooted binary tree such that each vertex in R is an
ordered pair (1,2) where 1 � I � 2k+1 —3, Z C Zau is a time interval and C, is
useful in 2. Furthermore

(a) The root of R is the vertex (2k4 1  — 3, Zi n) .

(b) Each vertex v = (1,2) in R such that 1> 1 has two children (j , Z’,), j  E (1,2)
where Z, is defined as in Lemma 5.3.7 and C,, C;_ 1 if C1_, is useful in

otherwise C;1 is the parent of C, (and C,, is right for Cj in 2’, by Lemma
5.3.7).

(c) Each vertex u = (1, Z) in R is a leaf.

Thus all leaves of R are vertices v; = (1,2;) where the Z1 are pairwise disjoint
subintervals of ~~ duri ng which C, is useful. By constraint (132) at least 6fc2ril
outputs of C, are pebbled in each of the 2,. The BLBA can be applied twice (see
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of the 2,. Thus if b s a lower bound on the number of leaves in R then 2(1 — c3)nb
is a lower bound on the number of placements of pebbles on inputs of C,, and
therefore also a lower bound on the time necessary to pebble G(n, k).

We can therefore prove tLe following theorem.

Theorem 5L3J: In order to pebble G(n,k) with S � c5n pebbles, a time T is
necessary such that

T�(1 7~)  
n 2(1—2cs/c4)2~~~1

Proof: We will prove in the following lemma that R has at least 2(1_~~~/c~)2~~~
1 3

leaves. I

J.aemma 5.3.10: The number of leaves in I? is bounded from below by

2(~ 
— 2c5/c4) 2~~

1

Proof: Each non-leaf in R has two children. Thus if we prove that each path in
fl has a length of at least 6 than we can infer that there are at least 26 leaves in
R. Therefore the lemma follows from the following lemma. I

I.4emni~ 5.3.11: Each path in R has a length of at least

(i 2C5’~2k÷1
~ C4/

Proof : Consider an arbitrary path p = (1,, 2,), . . . , (I,., Zr) in R, where Ii 2k~~1 —

3, Zi Z&ji, 1, = 1 and 2, 22 D 2,. Let I : {i,,..., i,) and
B : {i , . . ., 2k l I  — 3) — I. Each level v EB fulfills 1> v>  4~..i 

(or some

1 (1 � I < r). Furthermore C~÷, is the paren t of C, because by the definition
of R otherwise C~.f1 C,,...1, which is impossible. Thus C~~1 is right for C,, in Zè.

By Definition 5.3.4(c) ii C,, is an (n—2~~’).superconcentrator then its neigh-
borhood contains at least c4n/2k 2 pebbles during 21. But it also has at most
21+’ — 2 levels. MI of these )cvels except ig and s~ ..j are in B.
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Thus the operation of including a certain number of levels in B is accompanied
by “using up” a certain number of pebbles that are permanently bound on those
levels during 2, C Z. Wc will express this fact by “charging” a proportional
amount (namely c4n/26+’) of all pebbles bound on the neighborhood of C, to
each level in B that is in the neighborhood of C.,. This procedure can charge each
pebble used for pebbling G(n, k) to at most 2 levels (namely levels v and v’ such
that sg_, > v> ig >.t’> ~~~ if the pebble stays on C4 during Z,). Therefore
at least - I

IBIc4 2k÷a
pebbles have to stay on G(n, k) during 2,.. Since only S � C~fl pebbles are available,
we get

~~I�~~2~~
2

C4

and thus
r=2~

+1_ 3_ J I� (1_2~
f
~2
1+1_ 3. I

C5,

We will now adjust k and ii such that we can infer a lower bound from Theorem
5.3.9 that asymptotically matches the upper bound given in Section 5.2.

Let S be a (unction of N and let N/ log N � S � N. Choose k = fceNfS
where c~ fulfills constraint (137), and choose n to be the unique number in the
interval if 1/c5JS, 11/cslS+ 11/c2126 — 1J that is divisible by f1/cal2k. Define the
graph G’(N ,S) := G(n,k) . Then G’(N ,S) has at most

l2Onk �120(cø~~ + i)(F!ls+ 1~124~
s+1)

�12O([~1ceN + ~1~ 1~~
2
~

4h1s+1 + F~1s + 1~12~’
1’~ 1)

�120N ([!1(co +1) + 2c0[!1 log N N~~ ’ + 2N4~
57 1)

vertices. Maximization with respect to N yields that G ’(N, 5) contains at most
c7N vertices, where C? fulfills constraint (B8).

!J~b~c~tcm 5.3.12: In order to pebble G’(N, S) with S pebble., where N/log N �
S � N a time T is necessary such that

MIS
T�c,o sc:a
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where M is the size of G ’(N, 5), c~ fulfills constraint (139), cg fulfills constraint (1310)
and d O  fulfills constraint (1311).

Proof: Subetitute n 
~ Fl/cslS and k � c,N/ S in Theorem 5.3.9. I

An analogous remark as in Section 4.2 applies here: G1~(N , 8) has to be chosen
in dependence of S. There is no single graph G(n, k) that has a dramatic time space
tradeoff for all S. The lower bound curve given in Theorem 5.3.12 is an envelope
of the lower bound curves for the G’(N , S) for all S. We strongly conjecture that
there is no single graph whose time-space tradeoff has a lower bound as given in
Theorem 5.3.12 for all S.
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6 CONCLUSIONS

The results proved in Chapter 5 answer the basic open question in the area of
graph pebbling—the question of the location of the range Sj where space savings
become infeasible because the accompanying sacrifice in pebbling time is super-
polynomial. In a certain sense this closes the area of general research concerned with
graph pebbling. However, there are a number of generalizations and extensions
that may be worth studying.

The uppet and lower bounds proved in Chapter 5 are asymptotically tight,
but the constants are very far apart. The two constants in the doubly exponential
time bound are 29 and 40 in the upper bound and 1.03 and 1.00001 in the lower
bound. With these constants the bounds are only of theoretical interest and be-
come insignificant for practical purposes. However, we assume that especially the
constants in the upper time bound can be improved significantly. The algorithm
FAST-PEBBLE should in practice perform much better than the constant. given
in Section 5.2 suggest.

Furthermore, so far the graph families that realize superpolynomial lower time
bounds—and in fact even the graph families discussed in [PTC7TJ that realize the
lower space bound—are very hard to construct and rather obscure. Their essential
element is the superconcentrator, and until very recently superconcentrators could
not even be constructed at all. Their role in the context of practical algorithms is
not very well understood. On the other hand, if we confine ourselves to the study
of graph families.that arise in algorithmic context and are simpler to construct, we

can only derive much less dramatic time-space tradeoffs. It would be interesting
to find out if the lower bounds given in Chapters 4 and 5 and in [PTC77J can
also be realized by such graph families. There are two ways of trying to answer
this questions aflirmatively. Firstly, one could try to attach strong algorithmic
significance to certain linear superconcentrators. Secondly, one could try to prove

- the lower bounds using other simpler graph families. On the other hand one could
give evidence for the (act that practical graph families are indeed much eaaier
to pebble than Chapters 4 and 5 and fPTC77J suggest, by defining a subset of
“practical graphs” and proving better upper bounds for all graphs in this subset.

Part of the motivation for studying graph pebbling arose from connections be-
tween the pebble game and Turing-machine complexity (see [HPV77) and IPa7OJ).
In this research area upper bounds on Turing-machine time complexity are derived
in Iwo step.. In the first step certain Turing-machine computations are represented
by directed acyclic graphs that are called computation grap hs. In the second step a
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Turing-machine is constructed that simulates a pebble game on these computation
graphs with a certain given number of pebbles. We conjecture that the lower
bounds in Chapter 5 and in [PTC77J can be realized with computation graphs.
This would give some support towards conjecturing that the upper bounds on
Turing-machine complexity that are derived in [HPV7TJ are tight.

The black & whitc pebble game is largely unexplored and several open ques-
tions have been posed by (CS76J and [Me78J. The most interesting question here
is whether the addition of white pebbles can save more than a constant fraction
of space on certain graphs (see Introduction). Also it can be noted that, while
Chapters 4 and 5 and (CT78J show that white pebbles do not improve the general
lower bounds, as long as one is dealing with specific graph families, white pebbles
often seem to improve the time-space tradeoffs. Ladder graphs for instance can
be pebbled with one black and one white pebble in linear time. And Chapter 2
exhibits an improvement also for bit reversal graphs if black and white pebbles
are used.

Finally one can make investigations in graph pebbling more applicable by
introducing slight modifications of the pebble game that implement certain specific
feature. of machine architecture (like two-address instructions).
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APPENDIX A

Table of consiraints for the constants c~, . . . , c6> 0 used in Section 5.2:

c~~ < 2c2 (A l)

c1 > 2c2 (A2)

c1 +c2 < (A3)

(A4)

C4 
~~ (1—24) — 2c3(1—dl)—2c3 (A5)

- 
lo&

(~~
_

ci)
c~ — (A6)

C 4 �
r

c~ � (1+ log Cd) 
~~2c4(~~ —~~j  

(A8)

c~ ~~ l+logc4 (A9)

0 < 3c0 � (2c2 — c3) — 
1-f- logc4 

(AlO)
C4c5

~$4)— 2)4~~
3 

� 1+~~ (All)

C7 > 1, c3 > 1 (A l2)

c~ ’ > 2 (A 13)

(1_~~)~~lnC? ln~ > 1 (A 14)

1 

:~~_~~_



Explanation of the constants:

Cl constant factor in the critical size of the cutset E
C2 constant factor in the displacement of cut from the middle of C

c3 minimal decrease of rn/ S per recursion level

c4 constant factor in the threshold on the graph size for which FAST.PBBBLE
becomes non-trivial

C~ constant factor in the lower bound on the size of S
c~ constant factor in the lower bound on the size of P
c.~ first exponential in upper time bound

c8 second exponential in upper time bound.

I
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APPENDIX B

Table of constraints for the constants C~, . . . , C~Q > 0 used in Section 5.3:

Cl < 1 (131)

9c 2 � c l  (B2)

c3 � c,/ 4 ~~3)

1—6C3 � c~ (134)

C4 ~ C3/ 2 (135)

C~ < C4/2 (136)

c < 1  (137)

ci � 120({~-1(ce+l) + 1 exp(~~~~~1
_

i)) (138)

c8 � 22_4c5/ce (139)

cg 
~ 

2~”~ (1310)

d o  � (1311)
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Explanation of the constants:

Cl constant factor in the upper bound on the outputs pebbled (definition of
usefulness)

c2 constant factor in the upper bound on the separation of two locally sparse
configurations (definition of goodness)

C3 constant factor in the upper bound on the number of pebbles in locally sparse
configurations (definiton of goodness)

C4 constant factor in the lower bound on the number of pebbles in locally dense
configurations (definition of rightness)

c5 constant factor in the upper bound on S

Ce proportion for k = 9(N/ S)
c~ constant factor in the upper bound to the size of G ’(N/S)
Ce first exponential in the lower time bound

Cg second exponential in the lower time bound
c10 constant factor in the lower time bound.
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Figure 8: The decomposition of C in FAST-PEBBLE
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