AD-A076 264 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/6 12/1
UPPER AND LOWER BOUNDS ON TIME=SPACE TRADEOFFS IN A PEBBLE GAME==ETC(U)
JUL 79 T LENGAUER N00014=76~C=0688

UNCLASSIFIED STAN=CS=79=745 NL

DATE
FILMED

=79

ooc

o

|
it e

HHI-‘—'— Il

|
Il

N
&,

WH

- .

= - . ~

UPPER AND LOWER BOUNDS ON TIME-SPACE TRADEOFFS
IN A PEBBLE GAME

re—

by

BA076264

Thomas Lengauer

DDC
iy e e
NOV o 71979 ”
STAN-CS-79-745 E&]EEU UG :
July 1979 -

DEPARTMENT OF COMPUTER SCIENCE
School of Humanities and Sciences
STANFORD UNIVERSITY

r

FILE_COPY,

DDC

UNCLASSIFIED o
SECURITY CLASSIFICATION OF THIS PAGE (When Date Fnteied)
REA L
REPORT DOCUMENTATION PAGE SEFORE COMBE BTG FORM
ad ., 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
ﬁ STAN-CS-79-7bSJ
1 l/lL!LE ‘(Md 3ub~ll;l..’) 8. YYPE OF REPORYT & PERIOD COVERED

' i e R] technical, July 1979
| Upper and Lower Bounds on Time-Space Trudeoffs ‘

6. PERFORMING ORG. REPORYT NUMBER

(in a Pebble e =SE SE R i STAN'CS‘79'7!#5
7. AUTHOR(s) 8. CONTRACY OR GRANT NUMBER(s)
Thomas /Lengauer Y
/ N¢001h-76-c-o688,

T PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Department of Computer Science v e oy n‘:nu'”ur’las
Stanford University d \ / i /

Stanford, California 94305 USA e ® i

11, CONTROLLING OF FICE NAME AND ADDRESS ! ' —OATE
Office of Naval Research \ /] ulpt979 j
Department of the Navy 1 13. NUMBER OF PAGES
Arlington, Va 22217 82

T4 MONITORING AGENCY NAME & ADDRESS(i!l dilterent lrom Controlling Ollice) 1S. SECURITY CLASS. (of this report)

ONR Representative - Philip Surra
Durand Aeromautics Building, Room 165 Unclassified
Stanford University T5e7 DECL ASSIFICATION/DOWNGRADING
Stanford, Ca. 94305 i R
- o e Y
16 OISTRIBUTION STATEMENT (of this Report))_‘__"._,..fo‘-“
this W2 k¥ 5 v)d wl"‘ s

for pubic S L ned. |
d“uumnknx“
Releasable without limitations on dissemination.

>|7V DISTRIBUTION STATEMENT (of the adstract entered in Block 20, If dillerent from Report)

———
18. SUPPLEMENTARY NOTES

[19. kKFY WORDS {Comﬁu on roverse side il necessary and Identily by block number)

Py RS-

pebbles, directed acyclic graphs, time-space tradeoffs, superconcentrators

20. ADSTRACT (Continue on reverse side Il necessary and Identify by block number)

(see reverse side)

DD , 9" 1473 EoiTION OF 1 NOV 65 1S OBSOLETE ' UNCLASS IFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

R ————— -

UNCLASSIF | ED

SECUMMITY CLASSIFICATION OF THIS PAGE (When Data Fntered)

\~

We derive asymptotically tight time-space tradeoffs for pebbling three different
classes of directed acyclic graphs. Let N be the size of the graph, S the number
of available pebbles, and T the time necessary for pebbling the graph.

{

(a) A time-space tradeoff of the form 3
ST = 6(N?)

is proved for pebbling (using only black pebbles) a special class of permutation
graphs that implement the bit reversal permutation. If we are allowed to use
black and white pebbles the time-space tradeoff is shown to be of the form

T= e(ﬁls;;) + 8(N).

(b) A time-space tradeoff of the form

N 6(%)
T=S5 6(§)
Th p/f
is proved for pebbling a class of graphs constructed by stacking supercon-
centrators in series. This time-space tradeoff holds whether we use only black
or black and white pebbles.

() A time-space tradeoff of the form 2 -
e

is proved for pebbling general dirccted acyclic graphs with only black or black
and white pebbles.

o S—

l
\ UNCLASSIF I ED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Enterad)

b

L ascisinisnitndh s i i——) " ks

T T

SOPTETLIUGE 1< o n” N R

e e el

e g

UPPER AND LOWER BOUNDS ON TIME-SPACE TRADEOFFS IN A PEBBLE GAME
Thomas Lengsuer

Depertment of Computer Science
Stenford University
Stenford, Celifornia 94305

July 1979

KEYWORDS: pebbles, directed acyclic graphs, time-space, superconcentrators.

This work was supported by the German Academic Exchange Service (DAAD). Printing
and distribution was supported by the Office of Naval Research under contract

NOOO14-76-C-0688.

Abstract

We derive asymptotically tight time-space tradeoffs for pebbling three different
classes of directed acyclic graphs. Let N be the size of the graph, S the number
of available pebbles, and T the time necessary for pebbling the graph.

(a) A time-space tradeoff of the form
ST = 6(N?)
is proved for pebbling (using only black pebbles) a special class of permutation

graphs that implement the bit reversal permutation. If we are allowed to nse
black and white pebbles the time-space tradeoff is shown to be of the form

T = 8(50) + 6(N).

(b) A time-space tradeoff of the form

o)
T =S 6(3) "

is proved for pebbling a class of graphs constructed by stacking supercon-

centrators in series. This time-space tradeoffl holds whether we use only black
or black and white pebbles.

(c) A time-space tradeoff of the form
T =g 928

is proved for pebbling general dirccted acyclic graphs with only black or black
and white pebbles.

e e e A i ’
iicd . PP PR, i el

I et s s S o

To my parents and my brother

ACKNOWLEDGMENTS

I am dceply indebted to my advisor, Bob Tarjan. Through his illuminating
and motivating lectures he first interested me in complexity theory. Through a
very rcwarding master's project he introduced me to applied research in the area.
As a teaching assistant for his courses I got the chance to give lectures and to
try to follow his uncompromising standards of teaching. And finally, after the
suggestion of an excellent thesis topic, he enabled me through a period of exciting
joint research to put together this dissertation. Except for Section 2.1-2.3, Chapter
3 and Section 4.3 all of the results in this document have been established in joint
research with Bob.

I would like to express my thanks to Don Knuth and Nick Pippenger. Both
read this thesis with interest and scrutiny and provided many useful suggestions.
Nick Pippenger had a particular influence on Chapter 2. Firstly he suggested the
investigation of bit rcversal graphs, and sccondly he contributed simplifications
in the proof of Theorem 2.3.2 that greatly reduced the size of Section 2.3 and
improved the constant [actors involved. Furthermore he made me aware of a
convexity argument that avoids the use of multidimensional calculus in the proof
of Theorem 4.2.8.

Some of the proofs have been verified using the formula manipulator of the
MACSYMA-Coneortium.

The financial support of my study through the German Academic Exchange
Service and the German National Fellowship Foundation is gratefully acknowl-
edged.

Of all those who directly or indircctly helped me towards my degree my
parcnts certainly made the greatest sacrifice. With unsurpassable love, and quite
unselfishly disregarding their own longings, they supported my program from the
beginning with mind and hcart. Across half the globe my family stayed and is

continuing to stay close to me in spirit; their love is an inexhaustible source of

strength and comfort.

Finally, I will always be gratclul to Becky & Mike, Bill, Elena & Juan, Greg,
and Rosa & Jorge, who all showed me how bcautiful international friendship can
be. They made my four years at Stanford an unforgettable period in my life, and
they are the main reason why it is so hard to Icave here.

iv

TABLE OF CONTENTS:

1 INTRODUCTION § Iy e R AR 1

2 PERMUTATIONGRAPHSot
2] Introduction . « « « ¢ ¢ ¢ ¢ ¢ ¢ o 0 0 0t b e b e e 000 0
2.2 The Upper Bound in The Black PebbleGame
2.3 The Bit Reversal Permutation ¢« ¢+ ¢ o 0 0o
2.4 Pebbling the Bit Reversal Graph with Black and White Pebbles . 10

© =N = =

3 SUPERCONCENTRATORS b w W 14
3.1 Introduction. dhe s un s xe e W
3.2 The Lower Bound in the Black & White Pebble Game 15
3.3 The Upper Bound in the Black PebbleGame 18

4 STACKS OF SUPERCONCENTRATORS 23
4.1 Introduction. U O P
4.2 The Lower Bound in the Black & White Pebble Game 25
4.3 The Upper Bound in the Black PebbleGame 3l

5 THE GENERALCASE B0 LR R R ™
5.1 Introduction. N S R PR 34 :
5.2 The Upper Bound in the Black Pebble Game 3§ |
5.3 The Lower Bound in the Black & White Pebble Game 44 ’

@ CONCLUSIONS ¢ ¢ttt et evesoseees B
APPENDIX A v v vt v vt v v e o a oo oo 0T
APPENDIXB . . . ¢ ¢ s ¢ v s s s s s s ssssessssos 99
REFERENCES ::¢¢vveeesooevesesss 61

e ———————

FIGURES:.¢¢.. cs s s e s esss e O4

LIST OF FIGURES:

Figure 1: A typical permutation graph.

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure T:

Figure 8:

Figure 9:

Figure 10: A schematic representation of G(n, k) for k == 4 with level numbers.

The bit reversal graph on N == 32 elements.
An N-superconcentrator with O(N log N) edges, N == 18,
Pippenger's recursion scheme for the superconcentrator C(N,x,6,6).

A schematic representation of the graph C(N, x, 8, &) alter unfolding

the recursion $ == 4 times.

The graph C(N,«,0;,8,) for § = 4,

The graph C(n, k).

The decomposition of G in FAST-PEBBLE.

The recursion scheme for defining G(n, k).

vi

NOTATIONAL DBEFINITIONS:

£(n) = O(g(n))
[(n) = 2(g(n))

£(n) = 6(g(n))
£(n) = o{9(n))
f(n) = w(g(n))
log =
Inz
exp(s)
l=)
[£]

[+,5]

iff there are constants ng > 0 and ¢ > 0 such that for all
n>ng, [(n) <cg(n)

iff there are constants ng > 0 and ¢ > 0 such that for all

n>no, f(n) = cgln)

it f(n) = O(g(n) and f(n) = 2g(n)).
ifT limp—vco f(n)/9(n) = 0.

i 1im a—vc0 9(n)//(n) = 0.

Binary logarithm of z.

Natural logarithm of s.

Same as ¢*.

The greatest integer y satislying y < =.
The smallest integer y satislying y > =.

The interval of integers {i,s 4 1,...,5— 1,5} Ui <
then [4, 5] is the empty set.

vii

As If we could kil time without Injuring eternity!
—HENRY DAVID THOREAU (1817-1862)

1 INTRODUCGTION

We study time-space tradeofls in a pebble game defined in [HP70] and [Co73].
The game is played on directed acyclic graphs with bounded in-degree according
to the following rules:

(i) A pebble may be removed from a vertex at any time.

(ii) If all predecessors of an unpebbled vertex v are pebbled, a pebble may be
placed on v.

(iii) If all predecessors of an unpebbled vertex v are pebbled, a pebble may be
moved from a predeccssor of v to v.

The object of the game is to pcbble each vertex in the graph at least once. (For
a comparison of slightly dilTering definitions of the pebble game see [EL78].)

The pebble game has been used to model register allocation ([Se75]), to study
flowcharts and recursive schemata ([HP70]), and to analyze the relative power of
time and space as Turing-machine resources ([Co73], [HPV77]). Furthermore it
has been used to derive time-si: - -+ .adcoffs for scveral important algorithmic con-
cepts such as linear recursion ([Cha73), [SS77]), Fast Fourier-Transform ([SS78a),
[To78]), matrix multiplication ([To78)), and integer multiplication ([SS78b]). We
are interested in the relative power of time and space as resources in the pebble
game.

The space S required by thc‘pcbbling is the maximum number of pebbles ever
on the graph simultaneously; the time T required is the number of applications
of rules (ii) and (iii), i.c., the number of pebble placements. (One could also count
both placements and removals. The results would then change by at most a factor
of 2.) The size N of the graph is the number of its vertices.

In [HPV77) it is shown that any graph of size N can be pebbled using only
O(N/ log N) pebbles and in [PT'C77) a proof is given that for certain graph families
f2(N/ log N) pebbles are necessary to pebble all vertices.

Recently interest arose in the study of precise time-space tradeoffs in the pebble

game. The rationale is that space savings are only [easible if the corresponding
sacrifice in computing time is reasonable. It is of interest to know how much the
time increases as the amount of available space, i.c., pebbles, is decreased.

The results given in [HPV77] and [PTC77] limit the range of interest for S to
(N /log N) =S < N. Two trivial observations about the pebbling time impose
a corresponding limitation on the range of interest for T

(1) Any graph of size N can be pebbled with N pebbles in time N (in topological
order).

(2) If a graph G of size N can be pebbled with § Bcbbles at all then it can be
pebbled with S pebbles in time T < Y o< <s(i) < 2V

(For the proof of (2) observe that the sum in (2) equals the number of different
configurations of at most S pebbles on G and therefore any strategy for pebbling G
whose length is greater has to repeat some configuration and can thus be shortened.)
The range of interest for T is thus 2V > T > N.

Clearly T has to increase if S is dccreased. The main open question in this
area is how much T increases as S is decreased from N towards f2(N/log N). It
is rcasonable to make the following conjecture.

Conjecture C: There are graphs of size N that can be pebbled with O(N/ log N)
pebbles only in a time that grows supcrpolynomially in N.

Theoretical computer science often assumes that polynomial time algorithms
arc feasible whereas algorithms whose Lime complexily excecds any polynomial
are not. In this scnse the conjecture asserts that there are graphs for which space
savings of S = O(N/log N), though possible, are infeasible.

If Conjecture C is true it makes scnse to look for a function S;(N) such that
f2(N/log N) < S)(N) < N and Sy(N) has the following two properties:

2

(a) If S > ¢;Ss(N) then each graph of sizc N can bc pebbled with S pebbles in
time T where T grows only polynomially in N.

(b) If S < c2Ss(N) then there are graphs of size N that can only be pebbled with
S pebbles in superpolynomial time.

(Here c1,c2 > 0 are suitable constants.) The threshold function Sj(N) locates the
asymptotic range for S where the “jump” from polynomial to superpolynomial
time occurs in the pebble game. Space savings of S > ¢,Ss(N) are always feasible, L
whereas there are graphs for which space savings of S < ¢;S)(N) are infeasible. &
(Note that because of the asymptotic nature of the analysis, Sy(N) is not uniquely (4
defined. With any function S;(N) that fulfills properties (a) and (b) above any func- l
tion that is 6(S;(N)) also fulfills the properties. Indeed, the location of the “jump”]
from polynomial time to superpolynomial time can only be defined asymptotically.) 1

Not much progress has becn made heretofore towards proving Conjecture C.
[Cha73], [Rei78], [SST7), [SS78a], [SS78b] and [To78] discuss time-space tradeofls
for natural and constructible graph families. However, all these families can be
pebbled with S = (N /log N) pebbles in linear time.

[EL78], [Li78] and [PT77] discuss graph families whose pebbling time increases
explosively from linear to superpolynomial at a certain point, as the number of
available pebbles is decreased. However, this point lies in the range S = o(IN / log N)
and for S = f2(N/log N) these graphs can again be pebbled in linear time.

H
1
|
3

In [Pip78] Pippenger proves the most dramatic time-space tradeoff known
heretofore for a family of graphs that is straightforward and can easily be con-
structed. It has the form

N, N
T---2—-l

og 5= + O(N):

For S = O(N/log N) we have T' = (N log log N).

[To78] and [Rei78] discuss families of graphs that are much harder to construct H
but have more dramatic time-space tradeoffs for S = f2(N/ log N). However, none b
of the lower bounds they prove reach

T = NN'te), for anye >0

if S = ©(N/log N). They are thus far from exhibiting a superpolynomial blow- ‘
up in time in the relevant range of S. |

Independently from the work prescnted in this thesis Reischuk proves in [Rei78]
an upper bound on S;. He shows that any graph of size N can be pebbled with
S == {}(N/log" N) pebbles (r € N) in time T where

Therelore we cannot expect to find a graph of size N whose pebbling with S >
cN/loglog log N pebbles takes superpolynomial time (¢ > 0 is any positive con-
stant). Thus

Sy =o{N/logloglog N).

(It is possible that the tighter upper bound
8y = O(N loglog log N/ log log N)

is implied by Reischuk's algorithm. As he states his result, this bound which
would follow directly from an analysis of cquation (1) cannot be inferred, however,
because equation (1) is only proved for the values S == log" N for r € N.)

This thesis proves Conjecture C, locates Sy, and contributes the analysis of
a new straightforward graph family with a rather dramatic time-space tradeoff.

Chapter 2 discusses an casily constructible graph family whose time-space
tradeoll is more dramatic than that discussed in [Pip78]. The tradeoff has the form

ST = 6(N?).

For S = O(N/log N) we have T = f2(N log N).

Chapter 3 proves Conjecture C by exhibiting a two-parameter graph family
with the time-space tradeofl

T—S§ 9(5)6(5().

T is thus superpolynomial in N for S < c¢Nloglog N/log N (c > 0 is a suitably

small constant). For S = O(N/log N) we have T' = N™loslog N),

Chapter 4 locates S; by proving a time-space tradeoll for pebbling general
graphs of the form
6
r=s92%%)

Thus Sy = @(N/loglog N). For S = 6(N/log N) we have T' = 2N™", jc., T is
exponential.

'i ‘

There is a variation of the pcbblc game which has been studied in [CS76],
|GT78] and [Me78]. In this variation pebbles of two colors, black and white, are |
available. Three additional rules govern the use of white pebbles: |

(iv) A white pebble can be placed on an empty vertex at any time.

(v) A white pebble can be removed from a vertex v il all its predecessors are
pebbled.

(vi) Ifall but one of the predecessors of a vertex v having a white pebble are pebbled,
then the white pebble can be moved from v to its unpebbled predecessor.

The object of the game is to finish with no pebbles on the graph starting with
no pebbles on the graph and pebbling each vertex at least once. The space S
required by the pebbling is the maximum number of pebbles ever on the graph }
simultaneously and the time T required is the number of applications of rules (ii), *
(iii), (iv) and (vi), i.e., the number of pebble placements. Again the size N of the [
graph is the number of its vertices. We call this game the black & white pebble
game. The white pebbles represent non-deterministic guesses during a computa-
tion. They are easy to place, since guesses can casily be made, but hard to remove,
since guesses have to be checked. In this sense the black & white pebble game is
the non-deterministic version of the usual (black) pebble game. |

|CS76] introduces the black & white pebble game and proves a lower bound on
the number of black and white pebbles necessary to pebble a certain graph family
called pyramid graphs. [Me78] extends this lower bound to all directed acyclic
graphs: If a graph can be pebbled with k black and white pebbles then it can be ;
pebbled with O(k?) black pebbles. [GT78] shows that the 2(N / log N) space lower
bound from [PTCT77] carrics over to the black & white pebble game (with different
constant factors). The main open questions in this area are the following.

(1) Are there graphs for which black and white pebbles save more than a constant .
factor of space over black pebbles? ‘

(2) If so, what is the maximum savings possible? ([Me78] shows that it has to be
of the order of the square root.)

In addition to these questions the study of time-space tradeofis in the black & white
pebble game is of interest.

Although we are primarily interested in the black pebble game, it turns out
that for the three graph familics we consider in this thesis the time-space trad<offs
in the black & white pebblc game are straightforward extensions of the time-space
tradeofls in the black pebble game. We therefore include also proofs of the following
results.

In Chaptcr 2 a time-space tradeofl of the form

2
T = e(g-,',-) +6(N).

is derived for pebbling bit reversal graphs with black and white pebbles.

In Chapter 3 it is shown that the time-space tradeoff for pebbling stacks of
superconcentrators with black and white pebbles is asymptotically identical to the
one for using only black pebbles, i.c., it has the form

)
T=5 6(3) "

In Chapter 4 it is shown that the time-space tradeoff for pebbling general
directed acyclic graphs with black and white pebbles is asymptotically identical
to the one for using only black pebbles, i.c., has the form

279(5).

A summary of the research results presented in this thesis has been published
in [LT79).

-

2 PERMUTATION GRAPHS

2.1 Introduction

Below we will define a particularly simple family of graphs, which are induced
by permutations on N elements.

Definition 2.1.1: Let x be a permutation on N elements. The permutation graph
G(x) on N eclements is the graph G = (V, E) such that

V= {01,02,...,0N, 71, T3y+.., TN} and
E = {(0i,0i41), (tiy i) [LSS SN =1}
U {(oi me() | L S § S N}

For 1 < ¢ < N, o; is called the i-th input vertex, 7; is called the s-th output
vertex; o, is called the source, Ty is called the sink. The path consisting of the
edges (0y,03), (02,03), . - . , (0N—1,0nN) is called the input path. The path consisting
of the edges (11, m),(r3,73),...,(TN—1,7N) is called the output path. (Figure 1
shows a typical permutation graph.)

A permutation graph on N clements thus has 2N vertices and a maximum in-
degree of 2. One class of permutation graphs has already been studied in [HP70},
[Cha73] and [SS77] and independently by the author. Sometimes called ladder
graphs, they correspond to the permutation x defined by x(k) =N +4- 1 —k and
rcpresent the memory allocation scheme in linear recursive programs. One ¢an
pebble ladder graphs fairly quickly: We have T' == w(N) only il § == Ne(h),

2.2 The Upper Bound in the Black Pebble Game

It is straightforward to derive an upper bound on the time-space tradeoff for '
pebbling permutation graphs.

Fact 2.2,1: Each permutation graph can be pebbled with two pebbles.

Indeed, this fact is a special case of the following more general result.

7

Lemma 2.2.2: For each permutation graph on N elements an upper bound on the
time-space tradeoff in the black pebble game is given by

N2

T_S—-l

+N.

Proof: Assume that S pebbles are available. Reserve one pebble for the output
path. In at most N steps pebble the vertices o,—1(1), - - -y Ox—1(s—1) O the input
path. Then in S — 1 steps pebble 7s_; with the pebble reserved for the output
path. Move the pebbles on the input path in N —S -~ 1 more steps as necessary
to pebble the vertices 0y~1(s), ..., 0x—1(25—2) on the input path.

(This can be done as follows. The S — 1 pebbles on the input path divide it
into S intervals of vertices. All but the first interval are such that the first vertex
in the interval is pebbled and all other vertices in the interval are not pebbled.
The first (perhaps empty) interval is entirely free of pebbles. Let C be the set
of the S — 1 vertices on the input path to be pebbled next. We will pebble C
in the order from small to large vertices. For each vertex v € C that is in the
first interval there is another interval that does not contain any vertex in C. The
pebble at the low end of this interval can be used to pebble v. When there is no
vertex left to be pebbled in the first interval we can use the pebble on the next
higher interval to pebble the first vertex in C that is in this interval. If there is
more than one vertex to be pebbled in this interval then we can again use pebbles
from other intervals that do not contain elements of C. Continuing in this fashion
we can pebble C by placing pebbles on successively larger vertices on the input
path. In this process only vertices that started out unpebbled are pebbled and
cach vertex is pebbled at at most once. Since S — 1 vertices start out pebbled at
most N — S -+ 1 placements are made.)

Use S— 1 more steps to pebble the vertex mps—3 on the output path. Continue
in an analogous fashion.

This strategy pebbles ¢y in [s25] phases, where each phase uses at most
N —S-1 placements of pebbles on the input path except the first phase which may
use NV placements. Furthermore exactly N placements are made on the output
path. Thus

TS(N—S+1)([STA_—,_—1—]—I)+2N_<_ S'fl +N. 8

Lemma 2.2.2 shows that for permutation graphs
ST < 3N2,

For ladder graphs this upper bound is not at all tight. The question arises whether
there is a family of permutation graphs for which this bound is tight up to a
constant factor. Such a family would be interesting because it would in some sense
represent the permutations that are most difficult to realize in serial computation
schemes with restricted storage capacity. Section 2.3 shows that the bit reversal
permutation is such a permutation.

2.3 The Bit Reversal Permutation

Let 0 < N == 2" and for convenience let the set to be permuted be the set
I = {i|0<s < N}. Let b be the bijective mapping b : I — {0,1}" where b(;)
is the binary string of length n representing the number ;.

Definition 2.3.1: Let b(y) == bs—1...%. The bit reversal of 5 (denoted by rev(y))
is defined to be the number 3/ such that b(;') == by...ba—1. (Figure 2 shows the
bit reversal graph on N = 32 elements.)

“The bit reversal permutation has the characteristic property that it scatters
adjacent numbers approximatcly evenly over the interval I. This property is the
key to the following lower bound proof.

Theorem 2.3.2: If S > 2 then pebbling the bit reversal graph on N elements with
S pebbles takes at least time

N? ‘

T> 165"

Proof: The proof is trivial for S > N/4. Thus assume that S < N/4. ‘

Choose the integer s such that
<2< 4S.

Consider the output path divided into 2"~ intervals of length 2°. The y-th interval
I; (0<j<2™°) consists of the vertices 53¢, ..., T(j41)20—1

Let ¢; be the first time a pebble is placed on 7(j41)2¢—), i.€., on the highest
vertex in [;. Let) := 0. Then {; > t;—) for 0 < j < 2"°. In order to
find a lower bound on ¢; — ¢;—; we observe that at time ¢,—; the interval J; is
pebble-free and thus all 2° vertices in I; have to be pebbled between ¢;_; and
¢,. By definition of the bit reversal permutation the immediate predecessors of
the vertices in I; on the input path divide the input path naturally into 2° — 1
intervals of length 2"—*, (The each immediate predecessor of a vertex in I; defines
the high limit of an interval. The intervals at the corners of the input path are
disregarded.) At time ¢;—) at most S — 1 pebbles are on the input path. Thus at
least 2° — 1 — (S — 1) = S intervals are pebble-free at ¢;_;. All of them have to
be pebbled completely before ¢;. This takes at least S - 2"~ > N/4 placements.
Therclore ¢t; — ’,_1 > N/4 [or 0 < 7 < 2", and thus before time tzu_l at least
2"'N/4> N/ 18S placements have to occur. 1l

2.4 Pebbling the Bit Reversal Graph With Black and White Pebbles

If we are allowed to use black and white pebbles to pebble the bit reversal
graph then the vertices on the output path do not have to be pebbled in sequence.
Rather we can place a certain number of white pebbles on the output path at
the beginning and then pebble the intervals thus created on the output path in-
dependently of each other. If we use this idea we can exploit a regularity of the
bit reversal permutation to speed up the pebbling such that

T = e(%:-) +6(N).

Theorem 2.4.1: The bit reversal graph on N = 2" elements can be pebbled with
S pebbles (3 < S < 3V/N) in time

2
T<35’l’—+3N

Proof: Let k be such that 3-2F < S < 3. 2%+,

Put 2% white pebbles on the outputs 7y, Taa—t, T2.98—b, T3.38—4, .. 0, T(2h—1)-2%—H
This partitions the output path into 2* intervals of length 2"—%. The j-th interval
is the interval [r,gn—s, Ti1an—r—1) for 0 < j < 2%, Each of these intervals we
consider to be broken up into 2"~2* chunks of length 2%, The s-th chunk of the j-th
interval consists of the vertices [T3n—a a8, Tjan—d (i 1)20—1) for 0 < ¥ < ge—38,

10

We now reserve 2% more pebbles (this time black oncs) for the output path,
one for cach of the intervals created by the white pebbles. We will pebble the
intervals created by the white pebbles in 2" 2% phases. The i-th phase pebbles
the i-th chunks of all intervals. We use 2* more black pebbles on the input path
to be able to pebble each chunk in one sweep.

Formally we assume inductively on ¢ that the output vertices just before the
beginning of the s-th chunks in all intervals, i.e., the vertices 7,30 20y for all
7 such that 0 < 5 < 2*, have black pebbles on them. (In the initial case s = 0
the first vertex on cach 0-th chunk has a white pebble on it and the argument
proceeds in the same fashion.) We rearrange the 2* pebbles on the input path in
N — 2* steps (N steps in the 0-th phase) such that they are on the vertices

Orev(rev(0)2°—*-2*)) Orev(rev(0)2"—*+12%+41)1 * « 1 Trev(rev(0)2°—*4-(i41)2*—1)

This enables us to sweep the black pebble on the rev(0)-th interval across the s-th
chunk. Then by advancing each pebble on the input path one vertex we pebble
the vertices

Orev(rev(1)2®—4412%) Orev(rev(1)27 4284 1)1 * < + » Trev(rev(1)27—*4(i4-1)2*—1)

and can now sweep the black pebble on the rev(1)-th interval across the s-th chunk.
Advancing pebbles on the input path in a suitable manner allows us to pebble the
s-th chunks of all j intervals in the order § = rev(0), rev(1), rev(2), ..., rev(2t—1).
It is easy to see that pebbling the i-th chunks of all j intervals takes

2 — gk (26 —1)2*
placements on the input path if s £ 0 and
2* 4 (25 —1)2*
placements on the input path if s = 0.

After all chunks are pebbled in this way the pebbles end up in a configuration
that allows the white pebbles to be taken off the graph. The whole pebbling takes
time

2" 4 (2" 4 (2t — 1)20)2n 2k — g2 — 1) < 35%’7’ +3N. 8

11

S —

i
|
|
{

Corollary 2.4.2: The bit reversal graph on N elements can be pebbled with S
black and white pebbles (2 < S <N + 1) in time

N2
T <365 +5N.

Proof: For S = 2 see Lemma 2.2.2. If 3 < S < 3v/N Theorem 2.4.1 applies. If
S > 3N the strategy given in Theorem 2.4.1 takes time at most SN. [I

The upper bound given in Corollary 2.4.2 can be matched asymptotically
with a lower bound whose proof uses the characteristic property of the bit reversal
permutation mentioned in Section 2.3.

For proving lower bounds in the black & white pebble game it turns out to
be convenient to consider the pebbling strategy to be a sequence of moves where
a move can be a placement or a removal of a pebble. The moves are regarded to
be numbered in scquence. We say that the move whose number is z happens at
time z. A vertex has a pebble (resp. is pebble-free) at time z if it has a pebble
(resp. is pebble-free) after the z-th move. As long as we are careful to count only
placcments of pebbles when we count necessary moves, this concept of time in the
end does not invalidate the [act that removals of pebbles do not take time. We will
follow this approach in all our lower bound proofs that consider black and white
pebbles. (In order to distinguish this slightly different concept of time from the
concept of time introduced in the pebbling rules (i)-(iii), we will be denote move
numbers with the letter z—for the German word “Zeit" meaning time. Intervals
of moves will be denoted by Z.)

Theorem 2.4.3: Pebbling the bit reversal graph on N elements with S > 2 black
and white pcbbles takes at least time

N2
T>§5?5+N'

Proof: For S > N/6 the thcorem holds trivially. Thus let S < N/8.
Let 6 be the integer such that

35 < 2* < 6S.

As in Theorem 2.3.2 the output path is considered as divided into 2"—* > N/6S
intervals I; (0 < j < 2"), of length 2*. The argument given in the proof of
Theorem 2.3.2 now has to be modificd, however, since the intervals do not have
to be pebbled in sequence.

12

s

Define zp :== 0. Let the set £ be the empty set of intervals. For 1 < <
[N /85?] inductively define z; to be the first time alter z,—, at which any interval
that is not in Z;_; has been pebbled and unpebbled completely. Denote this
interval by /;,. At 5; a pebble is removed from /;,, and at most S— 1 other intervals
have pebbles on them. Add these intervals and Jj, to Z;_; to define the set Z;.
Note that Z; has at most iS clements, and thus for s < [N/85%] the interval I,
exists. -

Analogously to the proof of Theorem 2.3.2 we will now argue that between
5;—) and and z; more than N /B placements have to occur. We start by observing
that at time 5;__; the interval J;, is pebble-free and thus all of I;, has to be pebbled

and unpebbled between z;_) and z;. The immediate predecessors of the 2° vertices

in I, on the input path divide the input path canonically into 2° — 1 intervals
of length 2"~°, All but S — 1 of these intervals are pebble-free at time z;_;
and all but S — 1 (different) intervals are pebble-free at time z;. Thus at least
2*— (25— 2) > S intervals on the input path are pebble-free both at z;,_; and at
z;. All these intervals have to be pebbled and unpebbled completely between 2;_;
and z;. This takes at least S-2"—* > N/8 placements on the input path. Thus

before 3 /951 more than
LALTNL
65?| 8 = 3652

placcments on the input path have to occur. At lcast N more placements occur
on the output path.]

The improvement of the time-space tradeoff for the bit reversal graph by
using black and white pebbles relies heavily on a certain regularity of the' bit
reversal pcrmutation that allows us to pebble certain chunks on the output path
with only small modifications on the input path. It is our conjecture that there
are permutations that do not exhibit any regularity of this kind and for which the
time-space tradeoff for black and white pebbles just as for black pebbles has the
form

ST = 6(N?).

13

o sgp————

|
|

3 SUPERCONCENTRATORS

.
s

3.1 Introduction

Proving Conjecture C means finding graphs of arbitrarily large size that are
very hard to pebble. As pointed out in Chapter 1, people have been looking for
such graphs for quite some time. Even though nobody was able to approach su-
perpolynomial lower bounds some graph families have been studied that are fairly
hard to pebble (see [Rei78], [To78] and Chapter 2 of this thesis.) A natural way of
constructing graphs with even more dramatic time-space tradeofls is to select one
of those graph familics and usc its graphs as basic building blocks in a construction
scheme that connects them in an appropriate way to amplify their bad properties.
For reasons that will become apparent later on, superconcentrators are a suitable
graph family for this purpose.

Definition 3.1.1: A directed acyclic graph C with bounded in-degree, N inputs and
N outputs is called an N-superconcentrator if for every k such that L <k <N
and for every pair of subsets V; of k inputs and V; of k outputs there are k vertex-
disjoint paths connecting the vertices in Vj to the vertices in V.

Note that we do not assume the ability to say which input is connected to
which output.

Definition 3.1.1 shows that superconcentrators have to be fairly dense graphs
in order to be able to achieve the routing neccessary to join inputs to outputs
in all required ways. It is therefore interesting to find out how many edges are
necessary to build N-superconcentrators. It is relatively easy to construct N-
superconcentrators with a maximum in-degree of 2, a depth (i.e. length of the
longest path) of O(log N) and O(N log N) edges (and vertices). Figure 3 shows
such an N-supcrconcentrator for N = 16. It is constructed by putting two FFT-
graphs back to back and fulfills the even stronger property that we are able to
specify beforehand which inputs have to be connected to which outputs. (Such
graphs arc called connectors.)

Valiant shows in [Va76] that N-superconcentrators exist that have only O(N)
cdges. We will call such superconcentrators lincar. Valiant bases his result on a
paper by Pinsker ([Pin73]). Pippenger ([Pip77]) gives an improved construction of
linear superconcentrators. His N-superconcentrators have a maximum in-degree
of 9, a depth of O(log N) and at most 40N edges (and vertices). However, his
construction involves a step that is based on a probabilistic counting argument.
Recently Gabber & Galil ((GG79)) explicitly constructed linear superconcentrators.

14

P ———

Intcrest in supcrconcentrators first arose in the context of telephone switching
networks. Then superconcentrators were found in graphs that represent practical |
algorithms like the multiplication of an N-vector by a non-singular N X N matrix
(see |VaT6]). The conjecture that no linear superconcentrators exist gave hope
towards showing nonlinear lower bounds on the complexity of such algorithms.
E Valiant's result shows that supcrconcentrators cannot be applied in this way to
show nonlinear lower bounds. However, it provides a family of highly intercon-
nected sparse graphs. Such graphs are very good candidates for inducing dramatic
time-space tradeoffs.

As mentioned in Chapter 1 we will include a treatment of the black & white
pebble game in our results, since it is a straightforward generalization of the black
pebble game. Specifically we will show all lower bounds using black and white
pebbles and all upper bounds using black pebbles. Since the bounds will match
cach other asymptotically, this proves asymptotically equal time-space tradeoffs
for both the black and the black & white pebble game.

Section 3.2 discusses a lower bound and Section 3.3 discusses an upper bound
on the time-space tradeoff for pebbling superconcentrators.

3.2 The Lower Bound in the Black & White Pebble Game

In [To78] Tompa shows a lemma that he uses to prove lower bounds on peb-
bling superconcentrators. We generalize his lemma to the black & white pebble
game. Let us say that we pebble r outputs of an N-superconcentrator in a time
interval Z if either Z contains r moves that pebble outputs of the superconcentrator
or r > N and at the end of Z all outputs of the superconcentrator are pebbled.

Lemma _3.2.1 (Basic Lower Bound Argument, BLBA): Inorder to pebble Sp-}S.+1 .
outputs of an N-superconcentrator starting with a configuration of at most S
black and white pebbles on the graph and finishing with a configuration of at most
S. black and white pebbles on the graph, at least N — S5y — S, inputs of the graph
have to be pebbled and unpebbled. it

Proof: The proof is indirect. Assume that there are Sy + S, + 1 outputs that
can bc pcbbled starting with S, pebbles and finishing with S, pebbles without i
both pebbling and unpebbling any of Sy 4 S. + 1 inputs. Since the graph is a ‘
superconcentrator, there are S; + S, 4 1 vertex-disjoint paths connecting these
inputs to the outputs to be pebbled. At least one of these paths starts out and
ends up pebble-frec. Its output has to be pebbled. Since the path ends up pebble-
free its input has to be pebbled and unpcbbled. This is a contradiction. B 3

15 A i

Corollary 3.2.2: Pebbling an N-superconcentrator with S black and white pebbles
takes at least £2(N?/S) pebblings of the inputs.

Proof: Iterate the BLBA [N/(25 + 1)] times. &

By Corollary 3.2.2 it is asymptotically at least as hard to pebble supercon-
centrators as it is Lo pebble bit reversal graphs. Thussuperconcentrators are a graph
family with a rather dramatic time-space tradeoll. However, this [act alone does
not make superconcentrators good building blocks for constructing bad graphs.
Bit reversal graphs for instance are not suited for this purpose. The reason why
superconcentrators are an appropriate family to use in the construction of bad
graphs lies in the existence of the Basic Lower Bound Argument. Such an argument
does not hold for bit reversal graphs. The BLBA holds for superconcentrators be-
cause their inputs (resp. outputs) are completely symmetric to each other and thus
indistinguishable. It is this symmetry and in particular its formulation through the
BLBA that we apparently have to exploit, il we want to achieve superpolynomial
lower bounds on pebbling times.

3.3 The Upper Bound in the Black Pebble Game

In this section we consider special classes of superconcentrators that can be
pebbled efficiently.

There are classes of supcrconcentrators for which the lower bound proved in
the last section is tight up to a constant factor. An example of such a class is
the class of superconcentrators constructed by putting two FFT-graphs back to
back (see Figure 3), as can be proved by an argument similar to the one given
in [SS77]. However, as of now a similarly efficicnt pebbling strategy for linear
superconcentrators is not known.

In [Pip77) Pippenger gives a recursive construction that he uses to prove
the existence of linear superconcentrators. Recently Gabber and Galil combined
Pippenger's construction with ideas of Margulis ([Ma73]) to explicitly construct
linear superconcentrators. Belore giving Pippenger's construction we have to in-
troduce another graph concept.

Definition_3.3.1: Let n, &, 6, and ; be positive intcgers such that 6; < & and let
0, | 0. Let k' = 6)x/6). An (n,x,0,,0,)-lincar concentrator is a bipartite graph
with n left and 6;[n/6;] right vertices such that each left vertex has a degree of
at most x and each right vertex has a degrec of at most x' and such that cach
subsct X of left vertices with | X| < n/2 is connected to at least |X| right vertices.
(01 < &) (An (n,x,0;,0;)-lincar concentrator has at most xn edges.)

16

Pippenger uscs concentrators in order to construct linear superconcentrators
in the following way:

Definition 3.3,.2: Let A(N) = &[N/6;]. An (N,«,0,,6)-lincar superconcentrator

is a linear N-superconcentrator that is recursively defined as follows:

(a) If N <6, then the (N, x,0,,6)-lincar superconcentrator is the complete bipar- | 3
tite graph K[N, N]. g i

(b) If N > 6; then the (N,x,0;,8)-linear superconcentrator has N inputs and N
outputs such that the following holds.

Directed edges join the inputs with their corresponding outputs.

The inputs are also the left vertices of an (N, «,0,,&)-linear concentrator Gj.
Edges in G) are directed from the left towards the right vertices.

The outputs are also the left vertices of an (N, x, 0;, &)-linear concentrator Ga.
Edges in G; are directed from the right towards the lef’ vertices.

The right vertices of G) are also the inputs of a (\(N),k, 0, 6)-linear super-
concentrator whose outputs are the right vertices of Gj.

(A schematic representation of this construction is given in Figure 4.)

Lemma 3.3.3: An (N,x,0;,8)-lincar superconcentrator has at most

2%+ 1 |

vertices and edges. Its depth is O(log N).

Proof: The proof is a straightforward inductionon N.

In [Pip77] Pippenger proves the existence of (n, 6,4, 8)-linear concentrators
and thus by the above definition also the existence of (N, 8, 4, 8)-linear supercon- l
centrators. These supcrconcentrators have 39N + O(log N) edges and Pippenger
shows in addition that they have at most 40N edges.

Recently Gabber and Galil extended ideas of Margulis ((Ma73]) to explicitly ‘
construct (n, 112, 16, 17)-linear bounded concentrators. Their construction involves *
additional technical constraints ([n/6;] has to be a perlect square) and leads to !
linear N-superconcentrators with 3825 N 4 O(V'N) edges. i

17 - ‘

We will give a pebbling strategy that pebbles (N,x,6;,8;)-linear supercon-
centrators using f2(N) pebbles in time O(N - (N/5S)°) where @ = 14 2log,, /4, .
Thus it pebbles Pippenger's (N, 8, 4, 6)-linear) superconcentrators in time O(N -

(N/S)“‘) and Gabber and Galil's (N, 112, 16, 17)-linear) superconcentrators in
time O(N - (N/S5)"**%),

Let us denote the (N,x,0;,6)-linear superconcentrator with C(N,«, 6,,).
Imagine C(N, x, 0;, ;) to be unfolded s times by applying the recursion in Definition
3.3.2. We then get a similar picture as in Figure 4, except now G; and G; are
replaced by Gj, and Gj3, which are concatenations of i bipartite graphs that
become smaller towards the middle of the superconcentrator (see Figure 5). The

superconcentrator in the middle of Figure 4 is now C(A(N),,0;,6), where, as is
casily proved inductively,

v < () v+ SR, 0

Assume that S pebbles are available for pebbling C(N,«, 6;,6,), where S >
clog N lor a large enough constant ¢ > 0. Unfold C(N,,6;,8) 5 times, where
J = j(N,S) is minimum such that C(M(N),x,6,,6) has at most S vertices. By
the above estimate (1) for m and Lemma 3.3.3

3 = 1ogayu, 5 +O(1). (2

Furthermore note that j(A(N),S) = j(N,S) — 1.

We can pebble any r outputs of C(N,«, 0,8;) with the following strategy.

O-PEBBLE(r, S):

If j = 0 then pebble C(N,x,0,,8,) in topological order.

If 7 > 0 then pebble C(N,x,0;,8) in three phases:
1. Put pebbles on all inputs of C(N(N),«,0;,8,).
2. Put pebbles on all outputs of C(M(N),,0,,8).

3. Pebble the r outputs of C(N,k,0,6), but keep permanent pebbles on all
outputs of C(M(N),x, 6;,6,).

18

>~

Thus in phase 1 we put pebbles on all outputs of Gy, in phase 2 we put
pebbles on all outputs of C(N(N),,6,,8), and in phase 3 we pebble all outputs
of Gj,3 while preserving the pebbles on the outputs of C(M(N),«, 8, 8;). Because
of the choice of j(N,S) we can pebble C(N(N),%,6;,8) in topological order and
phase 2 takes time O(S). Phase 1 takes as much time as it takes to pebble Gj;.

Let s > 0 and if s > 0 then lct 5 be such that N*—}(N) > 6,. (This ensures
that the recursion in Definition 3.3.2 can be applied ¢ times to C(N, %, 6;,8).) Let
Ci(N,x,0,,0,) be the graph which is created from C(N, x, 6;,6;) by deleting all the
edges in the graph C(AY(N),«,0,8;) that occurs in the middle of C(N, x, 6;,6;).
Note that if + = 0 then Ci(N,x,0;,8) is the empty bipartite graph with N left
and N right vertices, and if + > 0 then Ci(N,«,0;, %) follows the same recursion
as in Definition 3.3.2, except that the graph C(A\(N),x,0;,8) is replaced by the
graph Ci—1(N(N),x, 0,,8;). Figure 8 illustrates the graph Ci(N, x,6,,6;) for ¢ = 4.

Because in phase 3 pcrmanent pebbles are kept on the output vertices of
C(N(N),x,0,6;), phasc 3 takes at most as long as it takes to pebble r outputs of
the graph Cj(N,«, 6;,0:).

We will find upper bounds for the time necded for phases 1 and 3 by a rela-
tively crude argument that applies to general directed acyclic graphs G with depth
5. Then we will apply this result to G;,; and Cy(N, «, 8;, &), both of which have a
depth § = O(log N).

Let G be an acyclic graph with depth §. We can pebble G' by successively
pebbling all its outputs. Let 7 be an output of G. Pebbling r means pebbling the
graph G(7) induced by all vertices from which 7 is reachable. We can pebble G(r)
with O(8) pebbles using the procedure DEPTH-FIRST-PEBBLE given in [PTC77).
In order to find an upper bound for the time needed to pebble G(7) we investigate
the following trees.

Definition 3,3.4: Let G be a directed acyclic graph with depth § and a unique
output vertex 7. The unfolding of G is a trce Ug of depth 8. Each vertex v/ in Ug
is the image of a vertex v in G. The tree Ug is the unique tree with the following
propertics.

(n) There is exactly one image of the output vertex r in Ug and it is the root of
Us.

(b) If the vertex w' in Ug is the image of the vertex w in G, then w' has exactly
one child v’ in Ug for cach vertex v in G such that (v, w) is an edge in G. The
vertex o' is an image of the vertex v.

19

Fact 3.3.5: Each strategy for pebbling the root of Ug in time T canonically induces
a strategy for pebbling the output 7 in G in a time which does not exceed T'. The
strategy for pebbling G pebbles a vertex v whenever the strategy for pebbling Ug
pebbles an image of v and at the same time no other image of v in Ug is pebbled.
A pebble is taken off of v in G when a pebble is taken off of an image v’ of v in
Uc, and no other image of v in Ug is pebbled. Therefore a vertex v in G has a
pebble exactly when one of its images in Ug has a pebble.

Fact 3.3.6: DEPTH-FIRST-PEBBLE pebbles any tree of depth § in linear time
using O(5) pebbles. (See [PTC77).)

From the above facts we can infer that the size of Uc gives an upper bound
for the time necessary for pebbling G with O(6) pebbles. Let us first bound the
size of the unfoldings of the graphs Gj,1(7) for cach output 7 of Gj,1.

Lemma 3.3.7: For each output r of G, 1 the unfolding of Gj,)(r) has O((N /S)H'l)

vertices, where § = log,, /6,5

Prool: By equation (2) the graph G, has a depth of J = logg, s, N/S + O(1).
Furthermore it has a maximum in-degree of &', Thus for cach output 7 of Gj; the

unfolding of Gj,(r) has O(x”) = O((N/S)"*!) vertices. g

Corollary 3.3.8: Phase 1 of C-PEBBLE takes time O(N - (N/S)").

Proof: By the choice of ; the graph Gj,; has at most $/2 output vertices. Since S >
clog N for a sufficiently large constant ¢ > 0, Fact 3.3.5, Fact 3.3.6, and Lemma
3.3.7 imply that Gj,i(r) can be pebbled in with 5/2 pebbles in time O((N/s)’th
for all outputs r of Gj,1. Thus pebbles can be put on all outputs of Gj,; in time
O(S-(N/SPH)y=o(N-(N/s)f). a

Corollary 3.3.8 gives us the upper bound for the time that phase 1 takes. As
we alrcady mentioned phase 2 takes time O(S). We will now find an upper bound
on the time for phase 3.

Lemma 3.3.9: Let L(s) (resp. V(i)) be the maximum number of leaves (resp.
vertices) in the unfolding of Cy(N, x, 0;,8)(r) for any output r of Ci(N,x,6,,8).
Then L(0) = V(0) = 1. For i > 0 the following recurrences hold.

L(s) < 14-xe'L{i — 1)
V) <aV(i—1)Fra'Lii — 1) 42

20

sy
@ Tl

Proof: The case s = 0 is trivial. Assume 1+ > 0. In order to bound the size of the '
unfolding of Ci(N,x,0;,%)(r) we have to trace all possible paths backwards from

7 in Ci(N,k,0,,0;) and to bound the multiplicities introduced by the in-degrees of

vertices on the different levels.

For L(s) one leaf is contributed by the input of Ci(N, x, 6;, ;) which corresponds
to 7. The other leaves result from the three maximum multiplicities introduced
; by Gz (at most x leaves), by C;—(A\(N),x,0;,6) (at most L(s — 1) leaves) and by
G) (at most ' leaves).

For V(i) two vertices are contributed by 7 and its corresponding input of
Ci(N,k,0,,8). Since Gz has an in-degree of at most &, 7 is connected to at most
x outputs of C;_j(N(N),x,0;,8,). Each of these outputs contributes a tree with
at most V(s — l) vertices and at most L(s — 1) leaves. Since the maxnmum in-
degree of G, is ' each leaf of C;_;(A(N), , 8, 8,) is connected to at most «' inputs |
of Cj(N,k,0,,8). Therefore there are at most ‘

w(V(—1)+'Lii—1))+2
vertices in the unfolding of C;(N, «, 0;,%)(7), which proves the lemma. §
In order to solve these recurrences we give the following general theorem.
Theorem 3.3.10: Let a,b and ¢ be non-negative real constants. The recurrence
T(0) =0(1)
T() <aT(i—1)4cb* ifsi>0

has the solution

(i) = O(b") ifa<<d
T(i) = O(ib") ifa=b
T(s) = O(a") it a>b.

Proof: It can easily be proved inductively that

V(i) =a'V(0)+cb' Y, (g), 3)

I<v<i—I

If a > b then both terms in (3) exhibit cqual growth and V(i) = O(a®).
If @ = b then the second term in (3) dominates V(i) and V(s) = O(ia*).
If a < b then the second term in (3) dominates V(s) and V(s) = O(b'). @

21

The recurrences in Lemma 3.3.9 are now casily solved.

Theorem 3.3.11: Both L(s) and V(i) exhibit an asymptotic growth of o((xx")’)-

Proof: Substituting a == x!, b= 1, and ¢ = | in Theorem 3.3.10 yields L{s) =
O((x«")").

Substituting a == x, b = xx' and a large enough constant ¢ > 0 in Theorem
3.3.10 then yiclds V(i) = o((x""). 1

Theorem 3,3.12: Any r outputs of the graph C;(N, x, 0;, &) can be pebbled in time
O(r - (N/5)°).

Proof: By definition of V(s), the estimate (2) for 5 and Theorem 3.3.11 the size of
the unfolding of C§(N,«,8,0)(r) for any output r of Ci(N,«,6,,8;) is O((nx")’) =
O((xn')'°%s11 N/S) = O((N /S)°). For pebbling cach Cy(N, k, 6, 8)(r) we have S/2
pebbles available. Since S > clog N for a sufficiently large constant ¢ > 0 Facts
3.3.5 and 3.3.8 imply that we can pcbble each output of Ci(N,x,6,6) in time
O((N/S)%). In total r outputs have to be pebbled. 1§

Theorem 3.3.13: The strategy C-PEBBLE pebbles any r outputs of Ci(N, x, 6y,)
in time

T < O(N - (N/S)84/%™) 4 O(r - (N/8)' T3 180sm"),

Proof: The first term corresponds to the duration of phase 1 and the third term
corresponds to the duration of phase 3. Phase 2 is always dominated by phase 1.

Corollary 3.3.14: The stratcgy C-PEBBLE pebbles the linear superconcentrator
C(N,x,0,,8) in time O(N - (N/S)").

Proof: For r == N phase 3 dominates the pebbling time. 1§

If we compare the upper bound of Corollary 3.3.14 with the lower bound of
Theorem 3.2.2 we detect a difference of 8.84 in the exponent (for Pippenger's super-
concentrators). This is a quite considerable gap for small S. For § = (N / log N)
the upper bound of Theorem 3.3.11 lmphes, however, that T = O(N(log N)*®) =
o(N'71¢) for any ¢ > 0. The BLBA gives in this case T = O(N log N) and the gap

between the bounds is relatively small, namely a factor of O((log N))

22

- .

e

4 STACKS OF SUPERCONCENTRATORS

4.1 Introduction

In the last chapter we decided to use superconcentrators as the basis for the
construction of bad graphs. What we still need is an appropriate scheme for con-
necting several superconcentrators in a way that amplifies their relevant properties.
The most straightforward way of doing this is to stack several superconcentrators
of the same size in series. This approach is also motivated by the results given in
[PT77] and [Rei78].

It turns out that already this simple-minded connection scheme is enough
to yield graphs for proving Conjecture C. The proofl is, however, substantially
more involved than the construction itself. We are here—as often in the theory

of computation—confronted with an casy construction whose properties are hard
to prove.

The graph [amily we will consider has two parameters and is defined as follows.
Definition 4.1.1: Let n > 8. For ¢ such that 1 < s < k let C; be a copy of
Pippenger's (n,, 8), &)-linear superconcentrator. Let C(n, k) be the graph created
by joining the outputs of C; to the corresponding inputs of C;4; with directed

edges (1 < s < k). The graph C(n, k) has at lcast 2nk and at most 40nk and thus
6(nk) vertices. (Figure 7 schematically shows C(n, k).)

As we will prove in Section 4.2, as long as S < n/20, the task of pebbling
C(n, k) with S black and white pebbles takes time

nk &
T==n(67§) .

Furthermore in Scction 4.3 we will pebble Pippenger's superconcentrators
using only black pebbles in time

0.84k
T nO('-‘-")

and even in lincar time if S > 40n.

23

Pr— -

Now let S = 2(N/log N). Choosing n == 8S and k == [N/S| we get a graph
C(n, k) of size O(N) such that pebbling C(n, k) with S black and white pebbles

takes time n(g)
T=50(y) ()

(It is important to notice that the graph C(n, k) satislying this lower bound depends
on S. There is apparently no single graph that is bad for every S. Many graphs
contribute single data points to the enveloping lower bound curve.)

Moreover each graph C(n, k) of size N (2nk < N < 40nk) can be pebbled
using only black pebbles in time

O(k) O(k)
N _ N N
T<zOolz) =<sol3)
and even in linear time if k > 20N /S. Thus each C(n, k) of size N can be pebbled
in time
N.O(¥)
T=50(5) . @)

This shows that for both the black and the black & white pebble game, the
family of graphs C(n, k) has a time-space tradeofl of the form

T=Sﬂgfw{

Analysis of this formula shows that if S = O(N/log N) then T = N@(oglog N),
Furthermore T is superpolynomial aslong as S < ¢ N loglog N/ log N for a suitably !
small constant ¢ > 0.

4
Conjecture C is thus proved. Furthermore this time-space tradeoff implies a g
lower bound on Sy (see Chapter 1) of the form 5

Sy =1(N loglog N/ log N).

This lower bound does not match the upper bound on Sy that follows from [j
Reischuk's studies ([Rei78]) and has the form.

Sy =o(N/ log log log N). “

In Chapter 5 we will concentrate on closing the gap between these two bounds.

24

-

Note that the asymptotic lower bound (1) discussed in Section 4.2 can (with
different constants) also be obtained for stacks of any linear superconcentrators.
The asymptotic upper bound (2) discussed in Section 4.3 holds (with different
constants) for all (n,x,0,,6,)-lincar superconcentratars. This in particular implies
that there are constructible graph families that realize the time-space tradeofls
discussed in this chapter.

4.2 The Lower Bound in the Black & White Pebble Game

We can iterate the Basic Lower Bound Argument (Lemma 3.2.1) to find a
lower bound on the time-space tradeofl for pebbling C(n, k).

Theorem 4.2.1: In order to pebble all outputs of C(n, k) using S black and white
pebbles (2 < S < (n— 1)/4) (starting with any configuration of pebbles on the
graph) we need T placements such that

k
n
T>"(1os)

Proof: The subgraph Ci together with the outputs of Cx—; and the edges joining
Ci—) with C is an n-superconcentrator. Thus we can apply the BLBA [ﬁﬂq-]

times to prove that
(n—2S)l2s+ lJ

placements of pebbles on outputs of Ck—) are necessary to pebble all outputs of
Cy. Iterating this argument through Cy_j,...,C) we find that

e-|58 (525 (8%) (8)=(s)

inputs of C) have to be pcbbled. (Observe that n — 25 > 25 41 since § <
(n—1)/4.) (]

If the above thcorem would alrcady yicld a superpolynomial growth of T for
S = O(N/ log N) then we would have proved Conjecture C using a simple-minded
connection scheme (stacking) and a simple-minded proof (iteration of the BLBA).
This cannot be expected and indced is not the case. But the argument given in
the proof of Theorem 4.2.1 can be improved considerably. This is because we did

25

TN ¢ T A

not take into account at all how the pebbles are distributed over C(n, k). Let us
call a pebbling strategy fair if it distributes the S pebbles evenly over C(n, k) and
only assigns |S/k] pebbles to the superconcentrator C; (1 < ¢ < k). In this case
the argument given in Theorem 4.2.1 should go through, even if we substitute for
S the quantity |S/k). We would then get a lower bound of the form

k
T> nﬂ(-ngk) .

Of course there may be many strategies that are not fair in this sense but con-
centrate great numbers of pebbles on different levels at different times. However,
this means that on other levels of C(n, k) there will be fewer pebbles available at
those times. If we analyze these interdependencies accurately enough we will be
able to tighten the bound given in Theorem 4.2.1 by substituting tighter estimates
for the number of (locally available) pebbles in the individual applications of the
BLBA in the proof of Theorem 4.2.1.

Again we will use the approach of considering removals as well as placements
of pebbles as moves in the pcbble game (see remarks in Section 2.4). Since the
BLBA only counts placements this will not invalidate our results.

Let us start by considering the outputs of Ci as numbered in the order in
which they are (first) pebbled. Let z; be the time at which output ¢ is pebbled
(1 <1< n,z:=0,2,41 := number of the last move of the strategy). Let [/, 2"}
be the interval starting with move 2’ and ending with move 2” inclusively. Let
pi be the minimum number of pebbles on C; after any of the moves in [z, 2)
(1 <i<n, ppt1 :=0). Observe that p; < Sfor 1 < ¥ < n+4 1. We will
consider disjoint intervals of numbers [4, 5] C [1,n] which will represent disjoint
time intervals [z}, 27] where 2 and 2 (51 <2} <2< z)for0 < i <nare
times that will be specified later. If convenient we will not explicitly distinguish
between [4, 5] and [z}, 2]].

The disjoint intervals [i, 5] will be chosen such that the BLBA can be applied
on C; to each of them. They will generally be of different lengths depending on
the maximum number of pebbles on Cj during an interval. The objective is to
find a large number of intervals to which we can apply the BLBA with very tight
space estimates.

The applications of the BLBA to the intcrvals will yield information about
how many outputs of Ci_ have to be pebbled and how many pebbles are available
to do this. Thus we will be able to give a recursive relationship between the time
nccessary to pebble the outputs of Cy and the time necessary to pebble the outputs
of Ci—;. Solving this recurrence completes the proof.

26

For this program to be realizable the intervals [1, 7] have to be “good” acording
to the following definition.

Definition 4.2.2: An interval [3,] C [1, n] is called good if it fulfills the following
three requirements:

]

J
A J % 3
ok
P+ < e (4)
Pk>‘-7—.—;—l fori <k<j. (5)

Note that the length of each good interval is y —§ -4 1 < 8S. Good intervals
are important because of the following lemma.

Lemma 4.2.3: During the good interval [1, 5] at least n— 25 outputs of Cy—) are
pebbled.Only S — 1 — [’—5— | pebbles are available for doing this.

Proof: Assume that the interval [i, j] is good in the above sense. Then because of |
(3) there is a latest time Z (z,—; < 2' < z) such that at most (§ —1)/2 pebbles {
are on C; at 2. (Observe that move z; places a pebble on Cy and therefore at time
z; — 1 there are fewer pebbles on Cy than at time z;.) Let x’.- be the number of ,
pebbles on Ck at 7. Define 2} :=2'+ 1. A

Furthermore, because of (4) there is an carliest time 2/ (2; < < "'H-l) |
such that at most (j —1)/2 pebbles are on Cj ab time 2] (2], = z,41)- “Let] be |
the number of pcbblcs on C’g at 2. (Observe that for 1 < + < nwehave 2l < 2 \
and thus [z}, 2]] and [3}, 5} are disjoint if [, 5i] and [lz,]z] are disjoint.) Durmg
[, 7], cxactly J — 11 outputs of Ci arc pebbled starting with a configuration
of .t’ and ending with a configuration of z7 pebbles on Cj. Because of (3) and (4)
the BLBA can be applied. The apphcatlon yiclds that at least n — z! -—.1: inputs ‘
of Ci have to be pebbled and unpebbled during [2], 7). Furthermorc at z’ there
arec at most S —z’.. pebbleson Cy,...,Ci—), and at hme z” there are at most S —:t" {
pebbles on Gy, ..., Ck—). Thcrcl’orc at lcast

n— gy)= (S —#) = (S—) =n—15

outputs of Ci—) have to be pebbled during [z, 2]
27

Furthcrmore, because of (5), at all times during [#},57] more than (5 —)/8

pebbles stay on Cj and therefore at most S — 1 — [-‘-’;‘-‘j pebbles are available for
pebbling C, ..., Ci—,. Since move &} places a pebble on Gy, during (2] 4 1,27] at
lcast n — 2S outputs of C,_; have to be pebbled using at most S — 1 — [1-}3]
pebbles.]

Lemma 4.2.3 shows how we can apply the BLBA to a good interval and
proceed inductively on k. The following purely combinatorial lemma provides us
with the necessary statement about the abundance of good intervals.

Lemma 4.2.4: Let r < n. We can find a set of disjoint good intervals in 1, r] that
covers at least § —S — pr4 elements of [1,r].

Proof: By induction on r.
If r < 4S then the statement of the lemma is trivial. Thus let r > 4S.

Let ¢ be maximum such that p; < ﬂ'—}:—' (Such an ¢ exists because s = 1 is
a candidate.) For k such that § < k < i 4 | “53=] we have

r+1__.__|.r+l—tJ
r+1—k r+l—t’
> = i Z— g

Also since p; is integer
r4+1—1
n <[5

We can inductively assume that the number of elements in [1,§ — 1] that can be
covered by disjoint good intervals is at lcast

§ou] i—1 |r4-1—3s
e R 2[2 J

We have to make a case distinction.

Case 1: Assume there is a j € [i 4 [“£3="], 7] such that p;41 < |52). Let 5 be
chosen to be the smallest such point. Then [, ;] is a good interval whose length

is at least | 4= 4- 1 and thus at lcast

1—1 llr41—1 r+l !_ L

clements in [1,r] are covered with disjoint good intervals.

28

At e

Case 2: Otherwise we have p, 4y > | £54] and thus pp41 = =5, Thus

r r r+1—1 _1—1 Hr41—1
and the lemma holds again.]

We will now use Lemma 4.2.3 and Lemma 4.2.4 to construct a recursive
relationship for the time to pebble C(n, k). '

Theorem 4.2.5: Let T(n, k,S) be the time necessary to pebble [8n/10] outputs of
C(n, k) with S < n/20 pebbles. Then

T(n,1,5) > '1'3‘3;» (6)

T(n,k,S)> min 3 T(n,k—l,s—x-l";lj) fork>1, (7)

(22).-12m)ED 1<i<m

where D is an index set that contains all the ways in which we can select a large
number of good intervals. Specifically

D={(z,,...,z,,.)|m>—"— and 1<z, <85 —6Bforl<s1<m

64S
n
and z ::.-_>__-8— }.
1<i<m

Proof: By induction on k.
k=1: follows trivially as in Thcorem 4.2.1.

k > 1: Assume any stratcgy for pebbling C(n,k). Let r = [9n/10] and lct
S = 1/20. By Lemma 4.2.3 during a good interval of length z at least n —25 > r
outputs of Ck— have to be pebbled using at most S—1—| 251 pebbles. (Unless
z < 85 —B no pebbles are left for pebbling the outputs of Ci—).) Inductively this

takes at least
; : 8

steps. By Lemma 4.2.4 the total length of the disjoint good intervals we can find
is at least

r n

-—25> -,

: 4 — 8
Thus if we assume that we have m good interval with lengths z; (1 < ¢ < m)
and minimize over all possible choices of the intervals, we get the formula given

in the thecorem. [|

29

i ‘ ; i j
e " 3
i e Mt i S L PSRN TR TRE PSRy AN

i
|

All that is left in order to find a lower bound on the time-space tradeoff for
pebbling C(n, k) is to solve the above recurrence. This can be done using standard
methods of calculus.

Our motivating discussion leads us to guess that T'(n,k,S) > f(n, k,S) where

fimk, = n (%) ®

and ¢ > 10 is an appropriate constant, which turns out to be 84. This guess can

be verified inductively.
Theorem 4.2.6: If S < n/20 then

T(n,k,S) > n (é'i%)k' (©)

Proof: The theorem is obviously true if k = 1, Thus assume that k> 1.

By the inductive hypothesis we have alter eliminating the floor-function and
substituting real variables y; = z,/8 (note that f(n,k,S) is decreasing in S for
S>0)

T(n,k,S) > in mk—1,5—y, 10
k)2, min, 2 fnk—15—u) (10)

where I is the set

n

84S ad I<y <Sforl<s<m

n
and E yi?.a }
1I<Si<m

D= {(thy..,¥m) | m>

Let us first assume that m is fixed. The expression f(n,k — 1,5 — y) is a
convex function in y for 0 < y < S (its second derivative is non-negative). Thus
we have

E /(n,k—-l,S—y‘)Zmf(n,k—l,S—"i' Z ¥i)-

1I<i<m 1<is<m

30

o —— - -

Since f(n,k— 1,S — y) is also increasing in the range 0 < y < S we have

1 n
m[(n,k-—-l,S—-;ls‘zsmyg)ij(n,k—l,S—m ; (11)

The value of the right hand side of (11) can now be minimized with respect to m
by differentiation. The minimum for m > n/84 S occurs at

and amounts to

NEIAY
84S/’

This proves the theorem.]

4.3 The Upper Bound in the Black Pebble Game

The question arises, whether after the refinement of the argument used in the
proof of Theorem 4.2.1 the lower bound (9) that has been obtained on the time-
space tradeofT for pebbling C(n, k) is indeed asymptotically tight. This is the case,
and a matching upper bound is proved in this section. The pebbling strategy that
we use to establish the upper bound is derived from the strategy C-PEBBLE for
pebbling (n,«, 8;,6;)-linear superconcentrators (see Section 3.3).

Assume that S > ¢; klog n pebbles are given, where ¢; > 0 is a sufficiently
large constant. We define the following fair strategy STACK-PEBBLE that pebbles

r outputs of C(n, k).
STACK-PEBBLE(r, k, S):

Permanently essign [S/k| pebbles to Ci and the rest of the pebbles to C, ..., Ci—;.
Apply C-PEBBLE(r, | S/k]) to C; to pebble r outputs of C with its {S/k] pebbles.
This requires pebbling a certain number ¢’ of inputs of Ci and thus pebbling
(at most) the same number of outputs of Ck—). These outputs are pebbled by
recursively applying STACK-PEBBLE(”,k— 1,S — |S/k]) to C},...,Cr—.

31

e acotitnach iins i P ated Ji—

p— —

Theorem 4.3.1: STACK-PEBBLE pebbles any r outputs of C(n, k) with S pebbles

in time ree 3 (‘LS"_’E)G‘+ . (k_i)(_c_,g_k)“‘-i-ﬁ (12)

1<i<hk 0<i<k—1

where a = 1+-2logy, s, &, § = logg /4,5, and ¢z > 0 is & sufficiently large constant. .

Proof: In Section 3.3 it is shown that the pebbling strategy C-PEBBLE pebbles I
any r outputs of a (n,x,8;,0;)-lincar supcrconcentrator with |S/k] pebbles in time

T < r+(ank/S)" + n- (ank/S)°? o (13)

where c3 > 0 is a suitably large constant.
The proof of the theorem is by induction on k.
k=1: See Theorem 3.3.13.

k>1: Wehave
HER=

Thus STACK-PEBBLE(r,k — 1,5 — |S/k]) has at most ' |

¢ Y (‘13"5)“4.,. Y (k—l—t')(-‘?‘—s,"—k-)a_‘-w (14)

1<i<k—I 0<i<k—1

moves. By (13) we have

Y <1+ (cank/S)" + n- (cank/S)". (15)

Substituting (15) into (14) and adding the number of placements on Cy yields

T< (r ("'—’—S"—")+ ,.(°_=S"£)") (1 + T (%)) . '

+n 3 (k-l—s‘)("‘—‘s"ﬁ)aw

0<i<k—3 ' |

32

- (k—l—i)(c’"k)°‘+p

0<i<k—2 §

s 2 ()4 2 ea(2)7

0<i<k—1

Corollary 4.3.2: STACK-PEBBLE pebbles C(n, k) in time

ak
T= nO(-:gnE) .

Proof: Since a > f -1, for r = n the first term in (12) is dominating. i

33

i
5 THE GENERAL OASE ‘

5.1 Introduction

The discussion of stacks of superconcentrators led to a proof of Conjecture
C, and in addition to a lower bound on S of the form

Sy =N loglog N/ log N). (1) f
f E:i:huk'a pebbling algorithm (see [Rei78]) implies an upper bound on S of the
Sy = o(N/log log log N). (2) F
In this Chapter we will locate Sy and show that
Sy = 6(N/ log log N). (3)

“Thus neither bound (1) nor bound (2) is tight. Equation (3) can be inferred from
the following time-space tradeofT for pebbling general directed acyclic graphs with
black or with black and white pebbles.

r=s 229%) , (4)

(Equation (4) says that all directed acyclic graphs with bounded in-degree can be
pebbled with a sufficiently large number S of pebbles in time

re s 200

and that there are graphs for which a time

1o g 32708)

is necessary to pebble them with S pebbles.)
Moreover (4) implies that if S = O(N/logN) then T = 2N™ ¢ T is
cxponential in some positive power of N.

In the following sections we will prove (4). Section 5.2 discusses the upper
bound part of (4) in the black pebble game. Secction 5.3 shows the lower bound
part of (4) using black and white pebbles.

34

—
R

5.2 The Upper Bound In The Black Pebble Game

In [PTCT77] Paul, Tarjan, and Ccloni give a recursive algorithm BEST-
PEBBLE for pebbling any directed acyclic graph with a maximum in-degree d (d >
2) using S > ¢5(d logd)(N/ log N) pebbles (cs > 0 is a sufficiently large constant).
They do not analyze the time efficiency of their algorithm, and in fact it may
be quite inefficient. However, it is possible to modify their algorithm such that
it makes efficient use of all S pebbles that are available. We call the modified
algorithm FAST-PEBBLE. It is stated below, and its time analysis leads to an
upper bound of the form

Ja+0¥

T < S (ad)
(e8> 1 aré suitably large constants.).
(Reischuk ([Rei78]) independently uses similar ideas to prove his result that

< N 920U Flog ¥)

for S = [(N/log" N) where r € N. The function f(d) is not further specified.)

Throughout this section we wili use the sum of the number of vertices and
the number of edges as a measure of the graph size.

Let G be a graph of size m with a maximum in-degree d (d > 2). The
definition and analysis of the algorithm FAST-PEBBLE(G, S) that pebbles G with
S pebbles involves a set of constants ¢;,...,cg > 0 on which a number of rather
arbitrary-looking constraints have to be imposed. Some of these constraints are
essential for FAST-PEBBLE to work properly; others are used in the time analysis
of the algorithm. A list of the constraints and short explanations of the significance
of the constants are contained in Appendix A. An example of a set of constants
satifying all constraints is

s | SRR Rl R
1 50’ 0= 200’ J = 5, 4 = 9,
1
C5 = 100, (<} m, a 29, g = 40.

Before we can define the algorithm FAST-PEBBLE we have to give the
dcfinition of a function which plays a central role in the following discussion.

35

Definition 5.2.1: Dcfine

dm

o k) lSz(QOz —c)—(d+ l)SJ ey

We will show that if G has size m and S is large enough, then we can pebble 1
G with S pebbles using the following informally stated recursive algorithm: H
FAST-PEBBLE(G, S):
It m < S then pebble G in topological order.

If m > S then partition G into two disjoint parts G) (of size my) and Gz (of size
my) such that no edges run from G into Gj, and such that §

[-’._:—'] —laS|—d<m < [gl — S| 3

(This partition can be found by starting with G| = @ and successively adding
vertices to G) in topological order until G; has the desired size. Figure 8 illustrates - \
the partition of G into G] and G2.) Let E be the set of edges from Gj into Ga. é

Case 1 (Small Cut): If |[E| < |c;S] then partition the S pebbles into a set S ' H
of size [(1 —¢;)S] and a set S; of size |, S] . Do FAST-PEBBLE(G), [(1 — ¢1)S])

using the pebbles in S); while doing this use the pebbles in S; to permanently t
pebble all sources of edges in E. Then take the pebbles in S) off G} and do FAST- [
PEBBLE(G3, [(1 — ¢1)S1) using the pebbles in Sj. I b :

Case 2 (Big Cut): If |[E| > |c2S] then partition the S spcbbles into two sets S (for
use on G) only) and S; (for use on G; only) each of size | 2522 and a pool P of special ‘
pebbles of size dp (see Definition 5.2.1). Start doing FAST-PEBBLE(G, 125%2)) ‘
using the pebbles in S;. When a situation occurs where the output of an edge
in E has to be pebbled whose inputs in G are not all pebbled, then temporarily
suspend the pebbling of Gy. Do FAST-PEBBLE(G], [i'v'l!z]) using the pebbles in
S) and lcave the pebbles in P on all of the (at most dp) inputs of E' that directly
precede the p outputs of E that have to be pebbled next. Then continue pebbling

G

Reischuk ([Rci78]) independently uses essentially the same algorithm to prove
his upper bound result. His parameters (cspecially the number of special pebbles)
are different however, and as a consequence his bound is not tight enough to match
the lower bound proved in the next section.

36

We will start the analysis of FAST-PEBBLE by making some remarks about
notation.

Let FAST-PEBBLE be called with arguments (G, S) where G has size m. We
say that FAST-PEBBLE is called on a problem of size (m, S). In the course of its
execution FAST-PEBBLE calls itself recursively on the graphs G; and G. We will
denote the corresponding problem sizes by (m', &), so that m' is either m; or my
and ' is either [(1 — ¢;)S] or | Z522].

Define mg == c4d. The number mo marks the threshold for the graph size
above which FAST-PEBBLE will become non-trivial.

With two lemmas we will now prepare ourselves for proving the efficiency of
FAST-PEBBLE.

Lemma §5.2.2: Let FAST-PEBBLE be called on an argument of size (m, S). Assume
that m > S, m > my and if Casc 2 applies, that p > 1, i.e., the pool P of special
pebbles is not empty. Then for all recursive calls to FAST-PEBBLBE on subgraphs
of size m’ we have ' pebbles available such that S > 1 and

’

m
§_<_

—c’.

@n|3

Proof: Cases 1 and 2 are handled separately.
Case I: By definition of FAST-PEBBLE

m _m/2+aS+d
S = (l—q)S

With constraints (A3), (A4) and (A5) (sec Appendix A), using m > mg and m > S
it follows that

0 < (1= 2¢;)m — (263(1 — ¢3) + 2c2) S — 2d,
i.e.,
F+aS+d< (g—ca)(l—q)&

and thus

ml
§'S —a.

@3

37

Case 2: Because of constraint (A2) we have
m<Z—aSt+d+1)

and

s>zl 5)

We always have S’ > 1 since by constraint (Al)
S2(2cq—c3) —(d +1)S d+41
(202 —c3) — (d+1) S(('—i-)(%z—q)—(+))

m m
m
< 5(Q2a—a)
<S§
and by definition of p thus
dp<S—2.

Substituting this into (5) yields S' > 1.
Now by definition of p again
& S((2c2—c3)S — (d +1)) =

< s 1.

This implies
d+1<Qa—a)S— (g)(dw 1)
and therefore
m—3a8+(d+1) S m—(F)ds-+1) -
Because p > 1 we have

m =3+ (d+1) <m— (g)dp+ 1) —als—dp—1

i.c.

m—2e5 + (0 + 1)< (B —a)5—dp—1)

which implies that
=

' o m—2%S+d+1]) m_
SI

S—dp=1 =8

< O |

38

Lemma 5.2.2 statcs that as we descend one level in the recursion, under certain
circumstances there is a constant minimum decline in the quotient m/S of the
problem size (m, S).

Lemma 5.2.3: Let (m,S) be such that S > cs logd (m /log m). Then

(a) If m < mg then S > m, i.c., all problems of size (m,S) are terminal (do not
involve further recursive calls to FAST-PEBBLE).

(b) If m > mg then p > 1, i.e., for all problems in which Case 2 applies, the pool
P is not empty.

(c) If m > mg then for each recursive call to FAST-PEBBLE with problem size
(m",) we have S' > c5 log d (m'/ log m), i.e. the condition on S given in the
premise of this lemma is hereditary.

T T——

———

Proof: The proof is again technical.
(a) Because of constraint (AS) and m < mg we have

cs logd = (14 logey) logd
logm = logey+logd =

(b) Because of constraint (A8) we have

cs logd > 9
log s+ logd = \[2¢4(2c3 — ¢3)°

Using m 2> mo > ¢4d we get

(203 — c3)(cs log d)’m S 9
d (log m)? =2

Since S 2> c5 logd m/log m we have

(2c3 —ca) S?
dm

|

}

:

9 |
=5 ’
and with S<m

P

PZ(267-—63)5’_(d:-l)(n§‘)_221. |

dm

39

e e i - “ I s

(c) First we prove that m' > (3 — ¢;)m. With S < m and constraint (A7) we
have for m > mo 2> (d + 1)/c;

M'Zrn(%+£(62—61)—d—$—l)

2m(l+amanttl)

m
1
> ('2' —c;) m.

We know by Lemma 5.2.2 and part (b) of this lemma that

m _m

FE3—%
Furthermore we have S > c5 logd (m / log m). By constraint (A6)

—oc3cs logd < log(% —a).

Thus)
logm' > log(§ —¢1) + log m > logm — c3c5 log d.

It follows that

log m'

m _m logm

1
&5 S ologd @S glogd

(log m — c305 logd) <

This proves (c). &

The upper bound on the time T'(G, S) it takes FAST-PEBBLE to pebble the
graph G of size m with maximum in-degree d (d > 2) using S pebbles where
] (S = ¢5s logd m/ log m) can now be proved. Lemma 5.2.3 implies the correctness
of FAST-PEBBLE whereas Lemma 5.2.2 gives the basis for an inductive argument
for proving the time bound. The details are given in the following theorem.

Theorem 5.2.4: Let G and S be as defined above. FAST-PEBBLE pebbles G with
S pebbles in time T(G,S) where

cm/)

m/c;S __
2 s e, (6)

T(G,5)<d

40

Prool: The prool is by induction on the quantity

i=[(§-1)/e}

3§ < 0: In this case we have m < S, the problem is terminal and the theorem
follows trivially.

7 > 0: In this case we have m > S. FAST-PEBBLE calls itsell recursively with
arguments, say (m',5). By Lemma 5.2.3 (8) we have m > my. By Lemma 5.2.3
(c) the problem size (m', ") also fulfills the premise of the theorem. By Lemma
5.2.3 (a),(b) and Lemma 5.2.2 we have -

Thus

Thus the theorem can be applied inductively on all recursive calls. We have to
make a case distinction corresponding to Case 1 (Small Cut) and Case 2 (Big Cut).

Case 1 (Small Cut): There is only one recursive callof | .-PEBBLE on each
of G) and G, both times with [(1 — ¢;)S] pebbles. Thus

T(G,5) < TG [(1 — a)S)) + T(Gy, [(1 — @1)S])

<2 dg»l/(c:s)—l -1 g c;;gils—n |
- /S—
<d?™ 5 &7 (inced >2)

< dgm/eos -l c,c:‘ @ (since m/c3S > 1).

41

Case 2 (Big Cut): By Lemma 5.2.3 (b) we have p 2> 1. In fact by the definition

of p
d) §*

d\ §°
= (2°’_°°_ §) 3dm

since 2] — 1 > 2/3 il 3 > 2. Since S > ¢5 logd m/logm and m 2> mp > cyd we

can bound d/S from above and get

PZCoia- (M

dm
where cg > 0 is a constant that fulfills constraint (A10).

By the definition of FAST-PEBBLE, in the case of a big cut G; is pebbled once
with | 3592 | pebbles and G| is pebbled at most [T(Gg, | S5%2])/p] times, namely
at most once for each p (consecutive) placements on Gz. Thus

e 21(en| 25)+ (e | 252 e 25%]) /o]
Applying the theorem inductively to the recursive calls and using Lemma 5.2.2

and the estimate (7) for p we get

TG,5) <d

om/(eS)—1 _ 1 . /5= dm [gml/eS)—l _ | , cm/S—a
+d Sc,8 C.T—S-‘z d Sc,8

and eliminating the ceiling function, multiplying out and collecting terms

’ —1 S— S S—
T(G,S)$2d2"‘/(qs’ Sc;;g'/ i (;-I;)Sdr‘/c’ _1(%)c3cg-/ -

Since m/S > 1 and ¢7 and cg fulfill constraint (A12) we get
s /S—
rea <™=l s (142)(5) 5 @

The inequality (8) differs from the desired formula (8) only by an additional factor

; (+5)(3)

on the base line, the factor of 2 in the exponent of ¢; and the subtraction of cj in
the exponent of cg.

42

The crucial step in the argument (and the step which requires T' to grow as
a double exponential in (m/S)) is to show that adding c3 to the exponent of cg :
outweighs the cancellation of both the factor of (1 + t)(?) on the base line and |
the factor of 2 in the exponent of c;. Formally this is stated in the following fact ‘ »

whose proof is again technical.

Fact 5.2.5: It m/S > 1 then
cy m/S—c; 1
c_’(ca 2) Cg > (l -+ C-_Q.) (':S,m“). (9)

Proof of Fact 5.2.5: The expression
& / . (10)

considered as a function of z has the following first derivative.

a®
F((ln a) (Inb) zb* —1).

If this derivative is greater than 0 for all z > 1 then a minimum of the function
(10) for £ > 1 is given by its value at z = 1. If we substitute

ame U b=cs s=g

into (10) the resulting function is the function ,

1\ left hand side of (9) . _ 1
(l 6 C—o.) right hand side of (9) (11)

Constraints (A12) (A13) and (A14) assert that its derivative is positive for all
m/S > 1. Thus the minimum of (11) is given by its value at m/S = 1. By
constraint (A11) this value is greater than (14 L), which proves (9). |

We now continue the proof of Theorem 5.2.4. Using Fact 5.2.5 it follows that

m/aS __ | m/S—e 1\/m
TGS < s o (1+3)(3) |

SVl g SPT (6503'—2) g’ s“’)

ok

<d?™P—1 5 &
This completes the proof of the thecorem. B
43

r—

It should bc mentioned that at the expense of the simplicity of the argument
the constants in the upper bound given in Theorem 5.2.4 can be improved. However,
we are mainly interested in the asymptotic behaviour of the bound as described

by the following corollary.
Corollary 5.2.8: If the premise of Theorem 5.2.4 is fulfilled then

T(G,S) < S (@d)d T

where N denotes the number of vertices in G.

Proof: Since G has 8 maximum in-degree d we have m < (d-}-1)N. Using Theorem
5.2.4 we get

S S
16,9 <™~ 5 o

(ot %7

S S
< Sd% d c,‘é" g by constraint (A13)

<Sd

<S(ds "

d+1)N/S
<S@ays ",

For any constant d > 2, if S > cN/loglog N for a sufficiently large constant
¢ (depending on d) then T(G,S) is polynomial in N.

5.3 The Lower Bound In The Black & White Pebble Game

According to Section 5.1 the graph family C(n, k) defined in Chapter 4 does
not exhibit the worst time-space tradeofl possible. The graphs C(n,k) can be
pebbled with § > ¢ loglog N/ log N pebbles in polynomial time if ¢ > 0 is large
enough. On the other hand, if Sy = 2(N/loglog N) (as is stated in Section 5.1)
then graph familics have to exist whose pebbling time is superpolynomial whenever
S < cN/loglog N for small enough ¢ > 0. (Observe that N loglog N Jlog N =
o(N/loglog N.) In order to prove the lower bounds stated in Section 5.1 we
therefore have to find graph families which have even more dramatic time-space

tradeoffs than C(n, k).
44

uw—r——_:r_"f’”"*’““; =T

The cssential idca in the construction and analysis of C(n, k) was to arrange
as many superconcentrators as possible in levels one below the other, such that the 4
BLBA can be iterated through the levels. Intuitively, the more levels the graph H
has, the more frequently the BLBA can be iterated and the better the lower bound |
on the pebbling time should be. In Chapter 4 we chose k = 6(N/S) and n = 6(S) 1
as this maximized the time. However, since S == f2(N/log N) we always have '*
k == O(log N); thus the worst graphs among the C(n, k) do not have very many
levels. It is suggested that we should find some way of increasing the number of 4
levels without increasing the graph size. Obviously the only way in which this is L
possible is to use superconcentrators of different sizes. They have to be arranged (4
and interconnected in such a fashion as to retain the ability to iterate the BLBA {
through practically all levels (or at lcast some constant fraction of them). This
means that long edges have to be introduced that connect non-adjacent levels. 4

These ideas lead to the following definition of a suitable graph family G(n, k)
(again in two parameters), that is somewhat reminiscent of the graph family used
in [PTC77] to prove the space lower bound.

As in Section 5.2 we have to use a number of constants ¢;,...,c;0 > 0 satis-
fying certain constraints. A list of the constraints and short explanations of the
significance of the constants are given in Appendix B. An example for a set of
constants satisfying all constraints is:

Cy = —— C |=-.1— Cq = —— ——-_!... C =—-l—— ;T
S e T u ‘T8 180 |
1 1 |
Co = 5 c==232500 cg==103 cog==1.00001 €10 = 75

The graphs G(n, k) are defined as follows.

Definition 5.3.1: Let n be divisible by [1/c;] 2%. G(n, k) is inductively defined as
follows:

(a) G(n,1) is Pippenger's lincar n-superconcentrator.

(b) Fork > 1, G(n, k) contains three copies Chi, Cimed and Cio of Pippenger's linear
n-superconcentrator and two copics Gy and Gi, of G(n/2,k—1). Let the inputs |
of C; be denoted by 0,,c,,...,0nc, and its outputs by 1,,¢,y...,The, (¥ € g
{hi, med, lo}). Adopt corresponding notation for Gy (¢ € {hi,lo}). Then '

45

(.
. - s o bttt i ‘ " . L "M

G(n, k) contains the following additional edges:

{ (ri.an%iGaed s (TG @G [1 SV < n}
U{(ri.auo.a0) (Ti+n2,6a0%.64)
(74,6000 95,Gned) 1+ (T5,Gots Oit-n/3,Goned) +
(76,Gne01 %0,0) + (Ti4-1/2,Cnea %5 G) »
(7,600 96,G) s (T5,Gr Oiknpagd) s | 1 ST < n/2)

An illustration of this construction is given in Figure 9.

It is easily proved by induction on k that G(n,k) has between (8k — 4)n
and (120k — 80) n, i.e., ©(nk) vertices and furthermore that G(n, k) has 2¢+H! —3 1

superconcentrators. b

If we unfold the recurrence in Definition 5.3.1 we see that can represent G(n, k)
schematically (leaving out all edges between superconcentrators) as a bar graph,
where each bar represents a superconcentrator.

Definition 5.3.2: To each superconcentrator C in G(n, k) we assign a level number
ik(C) as lollows:

(a) If k =1 then G(n, k) is a superconcentrator C and
i(C) =1

(b) If k> 1 then
I(C) = 1;

for all superconcentrators C in Gy
C) :=k_(C)+ 1;

I(Cimea) 1=2F—1;

for all superconcentrators C in Gj,
W(C) 1= lh—y(C)+2*—1;

I(Clo) 1= 2¢H! —3,

In effect Definition 5.3.2 numbers the superconcentrators from top to bottom
in the bar graph of G(n, k). Figure 10 shows the bar graph of G(n, k) for k == 4.

From now on we will denote the superconcentrator at level ¢ by C;. We will
say that C; follows C; or that C; precedes C; if C; is located below Cj in the bar
graph of G(n, k), i.e., if s > ;.

106

| , —

Even though we were able to motivate the definition of G(n,k) with obser-
vations about the graphs C(n, k), no parts of the lower bound proof for C(n, k)
can be carried over to G(n, k). We have to arrange the iterations of the BLBA in
a different fashion. The following definitions introduce the essential concepts for
the lower bound proof for G(n, k).

Definition 5.3,3: Let C; be a superconcentrator such that s > 1.

(a) The parent of C; is the highest level superconcentrator preceding C; that is
larger than C; (il such a supcrconcentrator cxists, otherwise of the same size
as C;). The transitive closure of the parent relation is called the ancestor
relation.

(b) The neighborhood of the superconcentrator C; is the set of superconcentrators
including C;, its parent, and all superconcentrators preceding C; and following
its parent.

Definition 5.3.3 gives each level except the first one a parent and a neighbor-
hood. The parent of C; is larger than C;, unless C; is an n-superconcentrator, i.c.,
of the largest size possible in G(n,k). (For example, in Figure 10, Cj7,Cjg and
C21 have the same parent Cjg. The neighborhoods of Cj7, Cig and Cy; are the
scts {Cre, Ci7}, {Cie,Ci7,Cis, Cio} and {Cj7, Cis, Cig, Ca0,Ca1} respectively. The
parent of Cyg is C)s.)

Again note, that we will count placements as well as removals of pebbles.
(The same remarks as in Section 2.4 apply.) Assume that S < cxn. In the lower
bound proof we will again analyze the distribution of pebbles on the graph.

Focussing our attcntion on level s of G(n, k) we will consider time intervals
during which many outputs of some superconcentrator C; (5 <) preceding C;
have to be pebbled while a lot of pcbbles are bound on levels following s and thus
not available for pebbling C;. Again we will use the BLBA to insure that many
outputs of Cj have to be pebbled during the time interval considered.

The appropriate definitions for carrying out the program outlined above are
the following.

Definition 5.3.4: Let Z = [z, 2] be a time interval.

(8) An m-supcrconcentrator C; is called good in Z if in each subinterval of Z in
which at least [¢;m] outputs of C; are pebbled, the number of pebbles on the
ncighborhood of C; drops below ¢;m.

47

r—

(b) An m-supcrconcentrator C; is called useful in Z if C; and all its ancestors are
good in Z and at least ¢ym outputs of C; are pebbled in Z.

(c) Let C' be the parent of C;. Assume that C' is not C;_,. C' is right for C; in
Z il C' is useful in Z and at all times during Z at least c¢ym pebbles stay on
the neighborhood of C;.

By constraints (B5) and (B8) Cye+1_3 is uscful in the interval Zy, covering
the whole pebbling strategy. We will show in the following that if C; is useful
in Z we can identify two disjoint subintervals of Z during each of which cither
C;_, is uscful or the parent of C; is right for C;. This allows us to itcrate the
argument through the levels from Coa+1__3 towards C) and at each step double
the number of necessary placcments. We have to pay for making a large jump
(from C; to its parent) by “losing” a proportional number of pebbles that are
bound on the neighborhood of C; during the interval considered. The number of
available pebbles then implies an upper bound on the number of large jumps we
can make, and thus gives a lower bound on the number of times the argument
can be iterated. Each iteration doubles the number of necessary placements. The
number of possible itcrations will ultimately lead to the desired lower bound on
the time-space tradeofl for pebbling G(n, k).

In order to formally pursue this argument we have to prove a series of lemmas.
The first lemma puts the BLBA into a context that is suitable for the discussion
of G(n, k).

Lemma 5.3,5: Let s > 1. Assume that in the interval Z, [c;m] outputs of the m-

superconcentrator C; have to be pebbled starting and ending with a configuration
of fcwer than 2cym pebbles on the neighborhood of C;. Then during Z at least ¢;m/

outputs of the m'-superconcentrator that is the parent of C; have to be pebbled.

Proof: By constraint (B3) we can apply the BLBA to Z and get that at least
(1 — 4¢3)m inputs of C; have to be pebbled and unpebbled during Z. We have to
make a case distinction.

Case 1: C; is a Ch. Thus C;—; is the parent of C; and because of the edges
between Ci— and C; during Z at least (1 — 5¢3) 2m > 2¢ym (see constraint (B4))
outputs of C;__; have to be pebbled.

Case 2: C; is & Cpeq resp. 8 Cio. In this case let C’ be the corresponding Gy
resp. Cmed (i-€., C' = C;_grpm/n—3). Because of the direct connections between

C' and C; at least (1 —Bc3)m > ¢ym (sce constraint (B4)) outputs of C’ have to be
48

Wt & |

A

pebbled during Z. If C’ is the parent of C; then the lemma is proved. Otherwise,
because of constraint (B2), we can apply the BLBA to Z again to show that at
least (1 — 4c3)m inputs of C’ are pebbled in Z. Repeated application of the case
distinction to C’ then proves the lemma. §

The following lemma gives the definition of usefulness its significance.

Lemma 5.3.8: Let s > 1. If the m-superconcentrator C; is useful in Z then its
parent is also useful in Z.

Proof: Since the parent of C; is by definition good in Z = [z, 2] we only have to
show that at least ¢;m'’ outputs of the parent of C; are pebbled in Z, where m' is
the number of inputs of the parent of C;.

Since n/2% > 1/c; (see Definition 5.3.1) we have c;m > opn/25—! > 2 and
thus 6[czm] < 9eam < ¢ym (using constraint (B2)), i.c., at least 8[cam] outputs
of C; are pebbled in Z.

Let Z; be the interval during which the first [c;m] outputs of C; are pebbled.
Let Z3 be the interval during which the next [czm] outputs of C; are pebbled,
and let Z3 be the rest of Z. Then at least [cam] outputs are pebbled during Z3.
Furthermore, because C; is good during Z, sometime during Z) and sometime
during Z3 the number of pebbles on the neighborhood of C; (i.e., certainly the
number of pebbles on C; itscll) drops below ¢3m. Let this happen at time z in
Z, and at time z3 in Z3. During the time interval [z 4 1,23) C Z at least [cam]
outputs of C; are pebbled starting with a configuration of fewer than c3m pebbles
on C;. Applying Lemma 5.3.5 to the interval [z 4 1, 23] yields the result. |

We will now prove the lemma that provides us with a lower bound argument
that can be iterated on G(n, k).

Lemma 5.3.7: Let + > 1. Let the m-superconcentrator C; be useful in Z. Then
there are two disjoint subintervals Z} and Z) of Z such that in Z; (5 € {1,2})
cither C,;—) is useful or the parent of C; is right for C;.

Proof: If C;—) is the parent of C; then the lemma follows from Lemma 5.3.6. Let
us thus assume that this is not the case.

Then C;_; has half the sizc of C;. Because C; is useful in Z, as in the proof of
Lemma 5.3.5, at least 6[c;m] outputs of C; arc pebbled in Z. Let Zy := 2,1, 22,1)
be the interval in which the first 3[c;m] outputs of C; are pebbled and let Z3 :=
[21,2, 22,2) be the interval in which the last 3[czm] outputs of C; are pebbled. The
following argument can be applicd equally to both Z; (5 € {1,2}) and we will
without loss of generality consider only Z;.

49

-

g

Let 2 be the first time and 2, be the last time in Z; at which fewer than
cam pcbbles are on the neighborhood of C;. Because C; is good in Z at least
[cam] outputs of C; are pebbled in 2’ = [% - 1,2]. We make the following case
distinction.

Case 1 (Ci_; is bad in Z'): Suppose that there is a subinterval [2,2) C 2’
during which [¢c3m/2] outputs of C;_; are pebbled and always at least cym pebbles
stay on the neighborhood of C;. Without loss of generality we can assume that
at time 2z, a pebble is placed on the neighborhood of C;. Let 24 be the last time
before (and not including) z at which there are fewer than c3m pebbles on the
neighborhood of C;. Let z5 be the first time after (and including) 23 at which there
are fewer than cam pebbles on the neighborhood of C;. Let 2" ;= |7+ 1,2) and
let Z{ = [z4+ 1,20) where s = 25 il 5 = 53 and 2 = 5 —] otherwise. We
have Z} C 2" C Z'. (Furthermore note that if 2 = zs — 1 then at 25 a pebble is
removed from the neighborhood of C;.) During Z", [c;m/2] outputs of C;_, are
pebbled starting and ending with configurations of fewer than cam pebbles on the
neighborhood of C; (i.c., also on the neighborhood of C;_;). Applying Lemma
5.3.5 to Z" yields that at lcast ¢;m outputs of the parent of C;—; are pebbled
during Z". Applying Lemma 5.3.5 again (using constraint (B2)) yields that at least
2¢;m outputs of the grandparent of C;_), i.c., the parent of C; are pebbled in Z”,
i.c., also in Z. Furthermore at all times during Z) at least ¢ym pebbles stay on
the neighborhood of C;. Thus the parent of C; is right for C; in Z1.

Case 2 (C;—) is good in Z'): Otherwise any time in Z’ that [c;m/2] outputs of
C;_1 are pebbled the number of pebbles on the neighborhood drops below cym.
Because of constraint (B5) this means that C;—) is good in Z’. We make another
case distinction.

Case 2.1 (C; is large): The parent of C; has the same size as C;. In this case the
parent of C; is also the parent of C;__;. Thus C;_; and all its ancestors are good
in Z'. But in 2’ we have to pebble [czm] outputs of C; starting and ending with
configurations of fewer than c3m pcbbles on the neighborhood of C;. By the BLBA
we have to pebble in Z' at least (1 — 2¢c3)m inputs of C;, and because of the edges
between C;—; and C; at least (1 — 4c3)m/2 outputs of C;_—;. Because of constraint
(B4), Ci—; is uscful in Z}| :=2".

Case 2.2 (C;is small): The parent of C; is larger than C;. We have to make a
third case distinction.

Case 2.2.1 (The parent of C; is bad in Z'): Assume that there is a subinterval
[#7,) C Z' in which [cam] outputs of the parent of C;—) are pebbled while always

50

i

T ———————————

at lcast cym pebbles stay on the ncighborhood of C;. Without loss of generality ‘
we can assume that at time z; a pebble is placed on the neighborhood of- C;. !
Let 2 be the last time before (and not including) 2 at which there are fewer
than c3m pebbles on the ncighborhood of C;. Let zj9 be the first time after (and
including) 2 at which there are fewer than c3m pebbles on the neighborhood of
Ci. Let Z" := [+ 1,2)0) and 2} := [+ 1,2;1) where 2y = 20 il 210 = 28
and 2); = 20 — 1 otherwise. We have Z} C Z" C 2'. (Furthermore note that
if 21y = 210 — 1 then at 39 a pebble is removed from the neighborhood of C;.)
During 2", [c;m] outputs of the parent of C;_; are pebbled starting and ending
with a configuration of fewer than cm pebbles on the neighborhood of C; (i.e.,
also on the neighborhood of C;—;). Applying Lemma 5.3.5 to Z" yields that at
least 2¢;m outputs of the grandparent of Ci— (i.¢., the parent of C;) are pebbled
during 2", i.c., also during Z). Furthermore at all times during Z} at least cym
pcbbles stay on the neighborhood of C;. Thus the parent of C; is right for C; in
Z\.

-

e

C .32 2.2.2 (The parent of C; is good in Z'): Otherwise any time in Z' that [c;m]
outputs of the parcnt of C;—) arc pebbled the number of pebbles on the neigh-
borhood of C; drops below ¢ym. Thus the parent of C;—; is good in Z', and thus
Ci—) and all its ancestors are good in Z’. As in Case 2.1 we can infer that C;_,
is useful in 24, :=2".

We are now able associate with the strategy for pebbling G(n, k) a rooted ‘1
binary trce according to the following definition. r
!

Definition 5.3.8: Let R be the rooted binary tree such that each vertex in R is an ;
ordered pair (1,Z) where 1 <+ < 2kl 3, Z C Z, is a time interval and C; is]

useful in Z. Furthermore ;
(8) The root of R is the vertex (251! — 3, Z.).

(b) Each vertex v = (5, Z) in R such that § > 1 has two children (5, 27), j € {1,2}
where Z; is defined as in Lemma 5.3.7 and C;, = C;—, if C;—) is useful in
Z;-, ;)therwisc Ci, is the parent of C; (and C;, is right for C; in Z;- by Lemma i
5.3.7).

R —

(c) Each vertex v={(1,Z) in R is a leal.

Thus all leaves of R are vertices v; == (1,Z;) where the Z; are pairwise disjoint
subintervals of Z, during which C) is useful. By constraint (B2) at least 8[czn]
outputs of C} are pebbled in each of the Z;. The BLBA can be applied twice (see

51 |

of the Z;. Thus il b is a lower bound on the number of leaves in R then 2(1 —c3)nb
is a lower bound on the number of placements of pebbles on inputs of Cj, and
therefore also a lower bound on the time necessary to pebble G(n, k).

We can therefore prove tl.e following theorem.

Theorem 5.3.9: In order to pebble G(n, k) with S < csn pebbles, a time T is
necessary such that

r2(153) » 20l

Proof: We will prove in the following lemma that R has at least 2(—3%/cg2**+!—3
leaves. ¥

Lemma 5.3,10: The number of leaves in R is bounded from below by

2(1 s QC5/64) 2k+l.

Proof: Each non-leal in R has two children. Thus if we prove that each path in
R has a length of at lcast b than we can infer that there are at least 2% Jeaves in
R. Therefore the lemma follows from the following lemma. |

Lemma 5.3.11: Each path in R has a length of at lcast
g
¢4

Proof: Consider an arbitrary path p = (i1, 21),. .., (i, Z;) in R, where 3 = 2¢+1—
3, Zy=2y twr=180d2 D% D DZ. LetI:= {i...,4%} and

= {1,...,2%+! — 3} — I. Each level v € B fulfills §§ > v > %4 for some
! (1 <1< r). Furthermore C,, is the parent of C; because by the definition
of R otherwise C; ,, = Cj—;, which is impossible. Thus C; ,, is right for C; in 2.

By Definition 5.3.4(c) if C; is an (n—2*—)-superconcentrator then its neigh-
borhood contains at least ¢yn/2¥—7 pebbles during Z. But it also has at most
29+1 — 2 Icvels. All of these levels except 4 and 4.4 are in B.

52

\
F- ;
aiach AM

Thus the operation of including a certain number of levels in D is accompanicd
by “using up" a certain number of pcbbles that are permanently bound on those
levels during Z, C 2. Wec will express this fact by “charging” a proportional
amount (namely cyn/2*+!) of all pebbles bound on the neighborhood of C; to
cach level in B that is in the neighborhood of C;,. This procedure can charge each
pebble used for pebbling G(n, k) to at most 2 levels (namely levels v and v/ such
that 4—1 > v > § > .V > 44, if the pebble stays on C; during Z,). Therefore
at lcast &

1Bl s ok+3
pebbles have to stay on G(n, k) during Z,. Since only S < csn pebbles are available,
we get
Bl < 294+
C4

and thus
re=2t1_3_ B> (x—z?)wl =3 0
S

We will now adjust k and n such that we can infer a lower bound from Theorem
5.3.9 that asymptotically matches the upper bound given in Section 5.2.

Let S be a function of N and let N/logN < § < N. Choose k = [csN/S]
where cp fulfills constraint (B7), and choose n to be the unique number in the
interval [[1/cs]S, [1/c5]S + [1/c2]2¥ — 1] that is divisible by [1/c2]2%. Define the
graph G'(N, S) := G(n, k). Then G'(N,S) has at most

120nk <120 (c,’-;’- P 1)([c1513 + [:_2]2c.~/s+x)

o[-+ af e+ [+ [l

SI20N ([gl(vo-l- 1)+ 2%&] log N No—1 2N~-')

vertices. Maximization with respect to N yields that G'(N, S) contains at most
crN vertices, where ¢7 fulfills constraint (BS).

Theorem 5.3.12: In order to pebble G'(N,S) with S pebbles, where N/log N <
S < N a time T is necessary such that
M/S
T>c¢oS c:P

53

B

where M is the size of G'(N, S), cg fulfills constraint (B9), cp fulfills constraint (B10)
and cjo fulfills constraint (B11).

Proof: Substitute n > [1/c5]S and k > cgN/S in Theorem 5.3.9. §

An analogous remark as in Section 4.2 applies here: G'(N, S) has to be chosen
in dependence of S. There is no single graph G(n, k) that has a dramatic time space
tradeofl for all S. The lower bound curve given in Theorem 5.3.12 is an envelope
of the lower bound curves for the G'(N, S) for all S. We strongly conjecture that
there is no single graph whose time-space tradeoff has a lower bound as given in
Theorem 5.3.12 for all S.

54

6 CONCLUSIONS

The results proved in Chapter 5 answer the basic open question in the area of
graph pebbling—the question of the location of the range S; where space savings
become infeasible because the accompanying sacrifice in pebbling time is super-
polynomial. In a certain sense this closes the area of general research concerned with
graph pebbling. However, there are a number of generalizations and extensions
that may be worth studying. '

The uppet and lower bounds proved in Chapter 5 are asymptotically tight,
but the constants are very far apart. The two constants in the doubly exponential
time bound are 29 and 40 in the upper bound and 1.03 and 1.00001 in the lower
bound. With these constants the bounds are only of theoretical interest and be-
come insignificant for practical purposes. However, we assume that especially the
constants in the upper time bound can be improved significantly. The algorithm
FAST-PEBBLE should in practice perform much better than the constants given
in Section 5.2 suggest.

Furthermore, so far the graph families that realize superpolynomial lower time
bounds—and in fact even the graph families discussed in [PTCT77] that realize the
lower space bound—are very hard to construct and rather obscure. Their essential
element is the superconcentrator, and until very recently superconcentrators could
not even be constructed at all. Their role in the context of practical algorithms is
not very well understood. On the other hand, if we confine ourselves to the study
of graph families.that arise in algorithmic context and are simpler to construct, we
can only derive much less dramatic time-space tradeolls. It would be interesting
to find out if the lower bounds given in Chapters 4 and 5 and in [PTC77] can
also be realized by such graph families. There are two ways of trying to answer
this quéstions affirmatively. Firstly, one could try to attach strong algorithmic
significance to ccrtain linear superconcentrators. Secondly, one could try to prove
" the lower bounds using other simpler graph families. On the other hand one could
give evidence for the fact that practical graph families are indeed much easier
to pebble than Chapters 4 and 5 and [PTCT77} suggest, by defining a subset of
" practical graphs” and proving better upper bounds for all graphs in this subset.

Part of the motivation for studying graph pebbling arose from connections be-
tween the pebble game and Turing-machine complexity (see [HPV77) and [Pa76]).
In this rescarch area upper bounds on Turing-machine time complexity are derived
in two steps. In the first step certain Turing-machine computations are represented
by directed acyclic graphs that are called computation graphs. In the second step a

55

Turing-machinc is constructed that simulates a pebble game on these computation
graphs with a certain given number of pebbles. We conjecture that the lower
bounds in Chapter 5 and in [PTC77] can be realized with computation graphs.
This would give some support towards conjecturing that the upper bounds on
Turing-machine complexity that are derived in [HPV77] are tight.

The black & white pebble game is largely unexplored and several open ques-
tions have been posed by [CS76) and [Me78]. The most interesting question here
is whether the addition of white pebbles can save more than a constant fraction
of space on certain graphs (see Introduction). Also it can be noted that, while
Chapters 4 and 5 and [GT78] show that white pebbles do not improve the general
lower bounds, as long as one is dealing with specific graph families, white pebbles
often scem to improve the time-space tradeoffs. Ladder graphs for instance can
be pebbled with one black and one white pebble in linear time. And Chapter 2
exhibits an improvement also for bit reversal graphs if black and white pebbles
are used.

Finally one can make investigations in graph pebbling more applicable by
introducing slight modifications of the pebble game that implement certain specific
features of machine architecture (like two-address instructions).

56

APPENDIX A

Table of constraints for the constants Ciy...,c8 > 0 used in Section 5.2:

G < 29
q > 29

1
ata < 5

1—2¢; —2¢
2—2q

)
“ 2 (T —2c;) — 263(1 — &1) — 205

lo 1—¢:
g 2 1

a <

2....

s > (1+1°864)‘/2QT2:_~63)

s = l1+4logey

0 < 3 < (2cz—ca)—l—+cgﬂ

c,,(“?"z)cs—“ > 1+l
cs
a > 1, g > 1

@ge > 2

2
(l—aé)calno;lnca > 1

57

(A1)
(A2)

(A3)
(A4)

(AS)

(A8)

(A7)

(A8)
(A9)

(A10)

(A1)

(A12)
(A13)

(A14)

a
a
a

cs

Explanation of thc constants:

constant factor in the critical size of the cutset E
constant factor in the displacement of cut from the middle of G
minimal decrease of m/S per recursion level

constant factor in the threshold on the graph size for which FAST-PEBBLE
becomes non-trivial

constant factor in the lower bound on the size of S
constant factor in the lower bound on the size of P
first exponential in upper time bound

second exponential in upper time bound.

% APPENDIX B

Table of constraints for the constants ¢;,...,c;0 > 0 used in Section 5.3:

q < 1

9 S a
a < ol
1—6c; = «
a < a2
s < a2

o < 1

e o)

cs < 22—463/(:.

o < 200
1—63

< A
W= 4]

59

(B1)
(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

P ——————— -

Explanation of the constants:

C)

2

€3

C4

Cs
Co
oy
cs
Sy

constant factor in the upper bound on the outputs pebbled (definition of
usefulness)

constant factor in the upper bound on the separation of two locally sparse
configurations (definition of goodness)

constant factor in the upper bound on the number of pebbles in locally sparse
configurations (definiton of goodness)

constant factor in the lower bound on the number of pebbles in locally dense
configurations (definition of rightness)

constant factor in the upper bound on S

proportion for k = 6(N/S)

constant factor in the upper bound to the size of G'(N/S)
first exponential in the lower time bound

second exponential in the lower time bound

cjo constant factor in the lower time bound.

60

REFERENCES:

[AHU 75] A.V. Aho, J.E. Hopcroft, J.D. Ullmann, The Design and Analysis

[Cha 73)

[Chu 78)

[Co 73]
[CS 78]
[EGS 75)

[EL 78)

[GG 79)
[GLT 79)

[GT 78]

[HP 70]

of Computer Algorithms, Addison-Wesley Publishing Company,

Reading, Mass. (1975).

A.K. Chandra, “Efficient compilation of linear recursive programs,”
14th Annual Symposium on Swilching and Automata Theory
(1973).

F.R.K. Chung, "On concentrators, superconcentrators, generalizers,
and non-blocking networks,” Bell Laboratories, Murray Hill, N. J.
(1978). -

S.A. Cook, "An observation of time-storage tradeoff,” Sth ACM-
STOC (1973), 29-33.

S.A. Cook, R. Sethi, “Storage requirements for deterministic polyno-
mial finite recognizable languages," JCSS 13 (1978), 25-37.

P. Erdos, R.L. Graham, E. Szemerédi, “On sparse graphs with dense
long paths,” Comp. & Maths. with Appls. 1 (1975), 365-369.

P. van Emde-Boas, J. van Leeuwen, “Move rules and trade-offs in the
pebble game," Technical Report RW-CS-78-4, University of Utrecht,
Utrecht, Netherlands (1978).

O. Gabber, Z. Galil, “Explicit construction of linear size concentrators
and superconcentrators,” personal communication (May 1979).

J.R. Gilbert, T. Lengauer, R.E.Tarjan, “The pebbling problem is com-
plete in polynomial space,” 11th ACM-STOC (1979), 237-248.

J.R. Gilbert, R.E. Tarjan, “Variations of a pebble game on graphs,”
Stanford Computer Scicnce Report No. 681, Stanford University,
Stanford, CA (1978).

C.E. Hewitt, M.S. Patcrson, “Comparative schematology," Project
MAC Conf. on Concurrent Systems and Parallel Computation,
Woods Hole, Mass. (1970), 119-127.

61

[HPV 77)

[LT 79)

[Li 78)

[Ma 73]

(Me 78]

[Pa 76]
[Pin 73]
[Pip 77)
[Pip 78]
[PT 77]
[PTC 77]

[PV 70]

[Rei 78]

J.E.Hopcroft, W.J.Paul, L.G.Valiant, "On time versus space,” Journal
ACM 2 (1977), 332-331.

T. Lengauer, R.E. Tarjan, “Upper and lower bounds on time-space
tradeoffs,” IIth ACM-STOC (1979), 262-2717.

A. Lingas, “A P-space complecte problem related to a pebble game,” in
Automata, Languages and Programming (Fifth colloquium, Undine
1978), Springer Lecture Notes in Computer Science No. 62 (1978) 300-

321.

G.A. Margulis, “Explicit constructions of concentrators,” Problemy
Peredachs Informatsis 9 (1973) 71-80 (English translation in: Prob-
lems of Information Transmission, Plenum. New York, 1975).

F. Meyer auf der Heide, A comparison between two variations of
a pebble game on graphs,” University of Bielefeld, Biclefeld, West-

Germany (1978).
W.J. Paul, "On time hierarchies,” 8th ACM-STOC (1976), 218-222.

M.S. Pinsker, “On the complexity of a concentrator,” Proc. Seventh
International Teletraffic Congress, Stockholm (1973), 318/1-318/4
(available from Secretariat, Televerket S-12386, Farsta, Sweden).

N. Pippenger, “Superconcentrators,” SIAM J. Comp. 8 (1977), 298
304.

N. Pippenger, “A time-space tradeoff,” Journal ACM 25 (1978), 509-
515.

W.J.Paul, R.E. Tarjan, "Time-space tradeoffs in a pebble game,” Acta
Informatica 10 (1978), 111-115.

W.J. Paul, R.E. Tarjan, J.R. Ccloni, "Space bounds for a8 game on
graphs,” Math. Sys. Th. 10 (1977), 239-251. .

N. Pippenger, L.G. Valiant, "Shifting graphs and their applications,”
Journal ACM 23 (1976), 423-432.

R. Reischuk, “Improved bounds on the problem of time-space tradeofl
in a pebble game,” 19th IEEE-FOCS (1978), 83-93.

62

[Se 75)
(SS 77]

[SS 78a)

[SS 78b]

[To 78]

[Va 76)

[Va 77)

R. Sethi, “Complcte registcr allocation problems,” SIAM J. Comp. 4
(1975), 226-248.

J.E. Savage, S. Swamy, “Space-time tradeoffs on the FF T-algorithm,”
Technical Report CS-31, Brown University, Providence, R.I (1877).

J.E. Savage, S. Swamy, “Space-time tradeoffs for oblivious iortin;
and integer multiplication,” Technical Report CS-32, Brown University,
Providence, R.1. (1978).

S. Swamy, J.E. Savage, “Space-time tradeoffls for linear recursion,”
Technical Report CS-36, Brown University, Providence, R.L (1978).

M. Tompa, “Time-space tradeoffs for computing functions, using con-
nectivity properties of their circuits,” 10th ACM-STOC (1978), 196

204.

L.G. Valiant, “Graph-theoretic properties in computational complex-
ity," JCSS 13 (1976), 278-285.

L.G. Valiant, “Graph-theoretic arguments in low level complexity,”
Symposium on Math. Foundations of Computer Science, Springer
Lecture Notes in Computer Science No. 53, New York, N.Y, (1877),
162-176.

63

FIGURES

Azz v :;;;2.«23;&!. arisaii
OISTPIEIZITIONGBLO S VET T

ydes8 uvonywynwaad [eaidLy y i1 danBi g

oy STy Yy €Ty 141 11 (11 6y 7} ¥} 17 1 1) 1]}

- 4 s

0lo sTo ¥ilo

s ol

e

. b‘ ‘ ' ‘44 :

7 A\

D
& v/’\\ .

A
e

§
&
¢
S N
€ -
§ [
§ , 'y
§ — < e
’ " & b — =< —— 2

b -
g
(=1
-
(-]
<
8
~
&
[-3
[
n
<
~

7 Xai it N T

N % hie
‘. 2 \. \Y *
N

(14314 33 spaemoy pajdauip uv 533pa |ie)
91 == N ‘033pa () 3o)0 Y3M J0jmijuadUCDIAdNS-pf Uy i 3anBiy

A\ -/

A
N TR S
N S—— e\
\\ XX/ / o < < N\ MWOXXK//
N ¢w~ NV
00000 T
AN A0

NS 7SS X000

[/LRNN\NK X
[1/ANNX XX

XXX
XXX XLLAN

7N /AR
N VIVQ"VA!O\ |

‘ \/ \

-

(% ‘9 ‘% N)D 109949udu0013dns 3y J0) JwaYds UOISINIAI 8,493uaddid :p 2anB1 g

8301149A JO UOLIROYIJUIPY - --c v eoee
SUOIJUUOD AP @—

| \ﬁ
/: : ok ﬁ m
o CREAVS %
...
... \L oo sen F/ |
.... .ﬁ J

Sawl) p == § UOISINI3I 3Y) Buipjojun 139u (% ‘T ‘! N)D ydead 3yy j2 uolywiussaadal dpewoyds vy :g aandi g

gm‘hﬂ’ ﬁc =°mﬂ3am&=”Vm EEEEREEERE TR

SUOI129UUOD 12Ip <

.ﬁj _ _Ti
! A1k

¥9 (%% ‘(N0 15

; |
.L\ k\ [[| ¢
H..ﬁ4

o il

s
e

b =3 40] ('T9'5'N)'O ydwmad oy, :g aundiyg

§32{343A Jo uonywOYIHuUIPL -
SUOIJ2IUUOD J2AIp *-—e

1
\j\" _

—...»U

G

Cr—1

Ck

e

]

Figure 8: The decomposition of G in FAST-PEBBLE

%

Ch b

= %

:]

£

Gy 4
Cmed

Gio

G

Figwre 9 The recursion scheme for defining G(n, k).

1
2 [) ,
3 g il
4
* 5 | R
6 V)
7 R
8 (]
9 | IR
* 10]
11 | e
12)
13 |)
14 []
15 [1
16 [| :
17 | TR ,
18 iy
19 | SRR
20 N
21 DR
22 []
23 il
24 g
25 T
26 il
27 Bt il
28 [-
29 []

Figure 10: A schematic representation of G(n, k) for k == 4 with level numbers

