AD-A07	6 253 SIFIED	BOEING JET EN APR 79 D3-115	WICHI NGINE DI R E 1 527-1	TA CO EMOUNTA BALLARD	KS BLE TES , W F	T CELL BYERS	EXHAUST	SYSTER	M PHASE N0014	- COAN	F/G 1/5 DA/ET 1229 NL	c(U)	
	OF AD- A076253						Transferrer Laurensen		Market Street				
								No.		Lease			
								and the second second			[編]		
										1	-		
					1000	NW.	NBM.						A Company of the second s
								19-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A					SAN S
			The second secon		The second secon				END DATE FILMED				
						-							

LAKEHURST. N.J. 08733

DA076253

79 11 .05 .104

REPORT NAEC-92-112

NAVAL AIR ENGINEERING CENTER

JET ENGINE DEMOUNTABLE TEST CELL EXHAUST SYSTEM PHASE

COANDA/REFRACTION NOISE SUPPRESSION CONCEPT ADVANCED DEVELOPMENT

> Propulsion Support Equipment Divison Ground Support Equipment Department Neval Air Engineering Center Lakehurst, New Jersey 08733

> > April 1979

Technical Report Airtask A3400000/051C/6WSL57001

> Approved for Public Release Distribution Unlimited

Prepared for: Commander, Naval Air Systems Command AIR-340E Washington D.C. 20361

AND MARC 3213/3 (Rev. 10-77)

NAEC-92-112

JET ENGINE DEMOUNTABLE TEST CELL EXHAUST SYSTEM PHASE

COANDA/REFRACTION NOISE SUPPRESSION CONCEPT ADVANCED DEVELOPMENT

Prepared by: Robert E. Sellens

Willing TRuns

Imotron D. L. Armstrong, Boeing Wideita Company

Reviewed by:,

D. D. Croce Advanced Technology Section, Propulsion Support Equipment Requirements Branch

Approved by:

zven F. E. Evans

Ground Support Equipment Superintendent

NOTICE

Reproduction of this document in any form by either than naval activities is not authorized except by special approval of the Secretary of the Navy or the Chief of Naval Operations as appropriate.

The following espionage notice can be disregarded unless this document is plainly marked CONFIDENTIAL or SECRET.

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

10-24-79 da

19 PEPOPT DOCUMENTATION P	AGE READ INSTRUCTIONS
REPORT ADUBER	GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
NAEC-92-112	The first spirit of the root ingities and the
TITLE (and Subtitle)	TYPE OF REPORT & PERIOD COVER
Jet Engine Demountable Test Cell	9 Technical Report,
Exhaust System Phase - Coanda/Refraction	
Noise Suppression Concept - Advanced Dev	elopment . 1403-11527-1
AUTHOR(.)	CONTRACT OR GRANT NUMBER(+)
R. E. Ballard, W. F. Byers C. L. Armstron	19 15 N00140-76-C-1229
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TA
Division of The Boeing Company	AIR TASK A3400000/051C/
Wichita, Kansas 67210	6WSL57001
L CONTROLLING OFFICE NAME AND ADDRESS	(1) 12 REPORT DATE 13. 9
(AIR-340E and AIR-53431B)	
Washington, D.C. 20361	91
A MONITORING AGENCY NAME & ADDRESS(II different I	rom Controlling Office) 15. SECURITY CLASS. (of this report)
Naval Air Engineering Center	UNCLASSIFIED
Ground Support Equipment Department (926 Lakehurst, New Jersey 08733	23) IS. DECLASSIFICATION/DOWNGRADIN SCHEDULE N/A
. DISTRIBUTION STATEMENT (of this Report)	The WILLEH
	10 WSKOT
Approved for public release; distribution unlin	nited.
	(17) WSL 57001
7. DISTRIBUTION STATEMENT (of the abstract entered in	Block 20, 11 dillerant from Report)
	DRORM
Approved for public release; distribution unlin	nited.
	US NOV 7 190
SUPPLEMENTARY NOTES	
	A
. KEY WORDS (Continue on reverse side if necessary and	(dentify by block number)
Coanda jet deflection, around nun up noise a	uppression, jet engine exhaust noise, test cell acoustic
enclosures, acoustic refraction, aerodynamic	s, thermodynamics, acoustics.
0. ABSTRACT (Continue on reverse side if necessary and i	dentify by block number)
-> The successfully demonstrated Coanda/refri	action air-cooled exhaust noise suppressor system in
applied to the Navy requirement for effective en	xhaust noise suppression in jet engine demountable tes
cells. The technical approach consists of an	alytical studies and one-sixth scale model tests using
simulated afterburning engine exhausts. Revi	isions are made to the previously developed system to
improve noise suppresssion capability while re include moving secondary air inlets to reduc	e enclosure size and improve cooling, shortening the
Coanda surface to provide more acoustically tr	reated exhaust stack and providing variations in exhaus
D FORM 1473 EDITION OF LINDE ALL CONTON	
I IAN TI INTO LOTTION OF THOVER IS OBSOLE	Unclassified
5/N 0102- LF- 014- 6601	SECONT I CLASHFICATION OF THIS PAGE (When Date)
5/N 0102- LF- 014- 6601	
5/N 0102- LF- 014- 6601	189 650

I

I

l

I

I

1

0

0

[]

ß

0

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

20. Abstract (Cont'd)

stack configuration such as single and dual acoustic splitters and acoustic wedges up the back wall. Extensive data were recorded and analyzed to identify the aerothermodynamic and acoustic trends related to these configuration changes. Results present recommendations for an air-cooled Coanda/refraction exhaust system for application to demountable test cells.

S/N 0102- LF- 014- 5601

Unclassified

SUMMARY

A one-sixth scale model test program was conducted in the Boeing-Wichita Acoustic Arena with the purpose of improving the previously developed Coanda exhaust suppressor system by reducing the size and cost without reducing noise suppression capability. This improved exhaust suppressor system would then be placed behind a test stand enclosure to form a complete demountable test cell system. The reduction in size of the exhaust suppressor system was accomplished by: (1) moving the secondary air inlets from the side to above the ejector/Coanda which greatly reduced the width and (2) by reducing the Coanda surface length from a 90° turn to 65° which shortens the Coanda height and allows a shorter stack weight while maintaining the required length of acoustically treated exhaust stack.

Flow dynamics and acoustic testing were accomplished with several exhaust muffler (stack) configurations including short versions with single and dual acoustic splitters and acoustic wedges at the back wall and a tall stack without splitters or wedges. These tests were run using a nozzle flow that reproduced (as near as possible) the afterburning flow conditions (Tjet = 3170° F, Pt/Pa = 1.943) for the TF30-PW-412A engine. The model nozzle diameter was one-sixth that of the full scale engine nozzle throat at full afterburning.

The results of these tests indicated that the exhaust stack configurations with acoustic baffles (splitters) in the flow should not be used in production with the current Coanda configuration. This was concluded because of local hot areas on these splitters with measured temperatures as high as 1370°F. The dual wedge configuration did not demonstrate any such temperature problem; however, the improvement in acoustic attenuation was not significant enough to allow a reduction in stack height to the 30-foot full scale height simulated. It is possible that configurations with acoustic splitters could be used if the mixing in the ejectors and Coanda turning were increased to lower the temperature of flow into the stack. It may be possible to do this with the development of a wider ejector/Coanda system.

The recommended configuration from the results of these tests was a 40-foot stack height with no splitters or wedges in the stack, the 65-degree Coanda surface and three-ejector transition with an enclosure that places the secondary air intakes above the Coanda/ejector set.

10.0.6.00.0	OED FOR	1	-
		V	
Terr			
AT & annum			
			-
A			
AVAIL			
Aveil		1/or	
Aveil Dist	Availan apecia	1/or 1	
Aveil Dist	Availan specia	1/or 1	
Aveil Dist	Availan specia	1/or 1	

PREFACE

The development of the Navy Coanda exhaust suppressor system began in 1971 with the awarding of a feasibility study contract to Boeing-Wichita. Existing ground range suppressors for military afterburning engines were water-cooled units pumping up to 800 gallons of water per minute into the exhaust plume to cool the 3000°F exhaust gases and reduce the flow velocity. This resulted in excessive maintenance problems due to corrosion and a dirty, sooty exhaust and compounded operational and system complexity with controls, plumbing, pumps, etc. The Navy recognized the life cycle cost advantages of an air-cooled system and that the Coanda effect may be the key to development of an operationally successful afterburning jet deflector since it requires no components of the suppressor in the exhaust flow.

The success of the original feasibility study resulted in follow-on development work by Boeing-Wichita for the Navy, culminating in a full-scale Coanda exhaust suppressor demonstration unit that was successfully demonstrated in late 1975.

Since that successful full-scale demonstration of a demountable suppressor, the Navy has awarded Boeing-Wichita a contract to develop specific adaptations of the Coanda suppressor for improved demountable configurations, retrofit of existing class "C" test cells and "hush-house" (aircraft enclosed) type ground runup suppressors. This document reports the results of the analysis and tests performed to improve the demountable test cell configuration by reducing size and cost.

ü

TABLE OF CONTENTS

1

the second

1

1

0

T

I

Section	Subject	Page
	SUMMARY	i
	PREFACE	ii
	TABLE OF CONTENTS	
	LIST OF ILLUSTRATIONS	iv-v
	LIST OF TABLES	vi
L	INTRODUCTION	1
н.	TEST EQUIPMENT AND PROCEDURES	3
	 A. Test Equipment 1. Test Facility 2. Data Acquisition Equipment 3. Model Description 4. Instrumentation 	3 3 3 7 24
	B. Test Procedures	34
Ш.	TEST RESULTS	39
	A. Aerothermodynamics	39
	B. Acoustics	49
IV.	CONCLUSIONS	76
٧.	RECOMMENDATIONS	77
VI.	REFERENCES	78
VII.	LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS	79

iii

-

LIST OF ILLUSTRATIONS

1

0

0

D

0

D

0

Figure	Title	Page
1	Acoustic Arena Model Scale Test Facility	4
2	Burner and Airflow Controls	5
3	Data Acquisition Equipment	5
4	Acoustic Arena Data Acquisition System	6
5	Far Field Acoustic Microphone Array	8
6	Example of Individual Microphone Acoustic Data	9
7	Example of Acoustic Summary Data	9
8	Example of Tabulated Pressure and Temperature Data	10
9	Example of Exhaust Velocity, Inlet Airflow Velocity and Airflow Data	10
10	Coanda Demountable Test Cell (Cutaway)	11
11	Coanda Enclosure Model Installed on Support Floor	12
12	Coanda Demountable Test Cell Model Installed in Test Arena Facility	13
13	Acoustically Treated Test Cell Model Inlet Cover	14
14	Schematic of Single Splitter Exhaust Stack Configuration	15
15	Single Splitter Exhaust Stack Model	15
16	Schematic of Single Splitter Exhaust Stack Configuration	16
17	Dual Splitter Exhaust Stack Model	16
18	Typical Exhaust Stack Splitter Construction	17
19	Schematic of Acoustic Wedge Exhaust Stack Configuration	18
20	Acoustic Wedge Exhaust Stack Model	18
21	Dimensional Schematic of Model Ejectors and Coanda	20
22	Ejector Set Installed on Ground Plane and Support Structure	21
23	Coanda and Ejector Set Installed on Ground Plane and Support Structure	
	with Burner Acoustic Cover	21
24	View Showing Interior of Burner Acoustic Cover	22
25	Relationship of Nozzle, Ejectors and End Plate of Burner Acoustic Cover	22
26	Model with Short Exhaust Stack, Wall Transmission Insolation (Sandbags)	
	and Burner Acoustic Cover	23
27	Model with Tall Exhaust Stack, Wall Transmission Isolation (Sandbags),	
	Burner Acoustic Cover and Secondary Air Inlet Acoustic Cover	23
28	Schematic of Ejectors and Coanda Surface Test Setup and Instrumentation	25
29	Coanda Exit PT and TT Rake Installation	26
30	Exhaust Stack Exist PT and TT Rake Installation	26
31	Schematic of Enclosure Instrumentation - Single Splitter Exhaust	
	Stack Configuration	27
32	Schematic of Enclosure Instrumentation - Dual Splitter Exhaust	
	Stack Configuration	28
33	Schematic of Enclosure Instrumentation - Acoustic Wedges Exhaust	
	Stack Configuration	29
34	Secondardy Airflow Inlet PS Rake Installation	30
35	Short Exhaust Stack Model with Near Field Microphones Installed	31
36	Tall Exhaust Stack Model with Near Field Microphones Installed	32
37	Arena Facility Afterburner Schematic	35
38	Secondary Air Inlet Pressure Loss Versus Inlet Airflow	41
39	Coanda Surface Pressures and Temperatures - No Acoustic	
	Enclosure Configuration	43
40	Coanda Surface Pressures and Temperatures - Short Exhaust Stack with	
	Single Splitter Configuration	44

LIST OF ILLUSTRATIONS (CONT'D)

Figure Page Title Coanda Surface Pressures and Temperatures - Short Exhaust Stack with Dual 41 42 Coanda Surface Pressures and Temperatures - Short Exhaust Stack with and without Dual Wedges 46 43 Coanda Surface Pressures and Temperatures - Tall Exhaus. Stack without 44 Coanda Exit Flow Velocity, Mach Number and Temperature Profiles -45 Exit Flow Velocity, Mach Number and Temperature Profiles - Short Exit Flow Velocity, Mach Number and Temperature Profiles - Short 46 Exhaust Stack with Dual Slitter Configuration 51 Exit Flow Velocity, Mach Number and Temperature Profiles - Short 47 48 Ground Plane Reflective Interference Correction Factor for Five-Foot Far Field Acoustic Data - 15°, 30°, 45° and 60° Positions - Short 49 Far Field Acoustic Data - 75°, 90°, 105° and 120° Positions - Short 50 Far Field Acoustic Data - 135°, 150°, 165° and 180° Position - Short 51 Far Field Acoustic Data - 15°, 30°, 45° and 60° Positions - Tall 52 Far Field Acoustic Data - 75°, 90°, 105° and 120° Positions - Tall 53 Far Field Acoustic Data - 135°, 150°, 165° and 180° Positions - Tall 54 Far Field Acoustic Data - 15°, 30°, 45° and 60° Positions -55 Far Field Acoustic Data - 75°, 90°, 105° and 120° Positions -56 Far Field Acoustic Data - 135°, 150°, 165° and 180° Positions 57 58 Far Field Acoustic Data - 15°, 30°, 45° and 60° Positions -Far Field Acoustic Data - 75°, 90°, 105° and 120° Positions -59 60 Far Field Acoustic Data - 135°, 150°, 165° and 180° Positions -Near Field Acoustic Data - Short Exhaust Stack 61

NAEC-92-112

LIST OF TABLES

Table	Title	Page
1	Instrumentation Requirement List	33
2	Environmental and Flow Condition Data Requirements	34
3	Model Test Configuration and Run Table	& 38
4	Model Afterburner Exit Temperature Calculated from Enthalpy Rise	40
5	Secondary Air Entrainment Data	42
6	Ejector Surface Temperatures - Top, Centerline	53
7	Ejector Surface Temperatures - Side, Centerline	54
8	Exhaust Stack Wall Temperatures – Short Stack with Single Splitter Configuration	55
9	Exhaust Stack Wall Temperatures – Short Stack with Dual Splitter Configuration	56
10	Exhaust Stack Wail Temperatures – Short Stack with Dual Acoustic Wedge Configuration	57
11	Exhaust Stack Wall Temperatures - Tail Stack Configuration	58
12	Acoustic Panel Properties	59
13	Accustic Test Configuration Summary	60

0 0 0 Ű B

I. INTRODUCTION

In 1971 Boeing-Wichita was awarded a competitive Navy contract (N00156-72-C-1053) to study the feasibility of utilizing the Coanda effect as an afterburning jet exhaust deflector in an air-cooled ground runup noise suppressor. Most U.S. military ground runup suppressors existing at that time were water-cooled, utilizing up to 800 gallons of water per minute to cool the higher than 3000°F afterburning exhaust plume. This resulted in corrosion problems, a dirty, sooty exhaust and compounded operational and system complexity with controls, plumbing, pumps, diffusers and water supply. Military suppressor users preferred an air-cooled system but none had been developed that were operationally successful.

The 1971 Navy contract was the first of four Navy Coanda noise suppressor contracts awarded to Boeing-Wichita. The analysis and model tests accomplished under that contract (reported in Reference (a)) proved the feasibility of using the Coanda effect for jet deflection and illustrated the advantageous noise directivity change due to refraction. The second contract (N00156-73-C-1794 awarded in 1973) made use of scale model testing to develop a configuration suitable for full-scale demonstration. The results of that contract were reported in Reference (b). In 1974 the third Navy contract (N00156-74-C-1710) was awarded under which a full-scale Coanda suppressor demonstration unit was built and successfully demonstrated. The full-scale test program was reported in Reference (c). Additional model scale testing included in that program was reported in Reference (d).

The fourth Navy contract, under which the work described in this report was accomplished, was awarded in 1976. This contract (N00140-76-C-1229) had the following multiple task objectives:

- Jet Engine Demountable Test Cell Phase
 Improve the demountable test cell configuration by
 increasing exhaust muffler noise suppression to allow a reduction in exhaust system size and cost.
- Jet Engine Class "C" Test Cell Exhaust System Phase Develop a configuration for retrofit of existing "C" test cells to the Coanda air-cooled exhaust suppressor system.
- Aircraft "Hush-House" Exhaust System Phase Develop a means of adapting the Coanda air-cooled exhaust suppressor system to a "hush-house" application.
- Coanda Exhaust Suppressor System Design Handbook Develop the necessary procedures and parametric data necessary to provide a comprehensive outline of the method used to make a "first cut" design of a Coanda exhaust suppressor system with a given set of exhaust conditions.

Each of these tasks is reported in separate final reports. The task results reported in this document are for the Jet Engine Demountable Test Cell Phase.

References

- a. Ballard, R. E., Brees, D. W., and Sawdy, D. T., "Feasibility and Initial Model Studies of a Coanda/Refraction Type Noise Suppressor System," The Boeing Company, Wichita, Kansas, Document D3-9068, January 1973.
- b. Ballard, R. E., and Armstrong, D. L., "Configuration Scale Model Studies of a Coanda/Refraction Type Noise Suppressor System," The Boeing Company, Wichita, Kansas, Document D3-9258, October 1973.
- c. "Test Cell Experimental Program Coanda/Refraction Noise Suppression Concept Advanced Development," Final Technical Report for Navy Contract N00156-74-C-1710, Navy Document Number NAEC-GSED-97, The Boeing Company, Wichita, Kansas, March 1976.
- d. "Aircraft System One-Sixth Scale Model Studies, Coanda/Refraction Noise Suppression Concept – Advanced Development," Final Technical Report for Scale Model Portion of Navy Contract N00156-74-C-1710, Navy Document Number NAEC-GSED-98, The Boeing Company, Wichita, Kansas, March 1976.

The primary objective of this task was to "streamline" the operational configuration of the existing full-scale demonstration unit by reducing the overall suppressor size while maintaining or improving its noise suppression capabilities. This was to be accomplished with analytic studies and one-sixth scale model tests. The principal configuration changes attempted were:

- Reduction of Coanda surface turning angle from 90° to 65° thus allowing a shorter stack height.
- Reduction of the Coanda enclosure size.
- Movement of the secondary air inlets from the sides to the top of the enclosure. This allows a large reduction in suppressor width.
- Several exhaust muffler configurations such as single and dual acoustic splitters and acoustic wedges at the back wall of the enclosure.

This work will finalize the recommended design for a production version of the recently developed Coanda exhaust suppressor system for demountable test cell application.

II. TEST EQUIPMENT AND PROCEDURES

A. Test Equipment. The following paragraphs describe the test facility, the data acquisition equipment and the test model, including the instrumentation used.

1. TEST FACILITY. The model testing was accomplished in the Boeing-Wichita Acoustic Arena facility shown on Figure 1. The Arena wall is 16 feet high, inclined at an angle of 30 degrees to the vertical and is 100 feet in diameter at the base. The burner (hot gas generator) is a two-stage configuration. The first stage is a J47 jet engine burner can and spray nozzles, capable of reaching gas temperatures of 1500°F at the 15-pound per second maximum airflow rate. The second, or afterburning stage, consists of a central fuel spray nozzle and eight radial spray bars and a flame holder. This stage is water jacketed and can boost the jet exhaust temperature to 3300°F. The primary airflow source has 300 psia line pressure. A secondary airflow source is available with a 60 psia line pressure with a maximum flow rate of 40 pounds per second of cold air to simulate fan flows. The burner control instrumentation, fuel and airflow controls are housed in a small building next to the Arena with a window for visual observation of the model. These controls and instrumentation are shown on Figure 2.

2. DATA ACQUISITION EQUIPMENT

a. The data acquisition instrumentation, computer and printer are housed at a remote site and are shown on Figure 3. A pictorial block diagram of the Acoustic Arena data acquisition system is shown on Figure 4.

b. The Arena data acquisition system is built around the Varian 620/L Mini-Computer, which is a general purpose digital computer. The central processing unit of the computer has a 12K memory system. The input/output system provides the interface between the computer electronic system and the electro-mechanical devices that input data to the computer or output the computer results. The Beehive CRT (cathode ray tube) terminal enables control of the computer and the printer lists the data. The Tri-Data model 4036 provides program loading or storage of data on magnetic tape. The multiplexer allows each channel to be sampled sequentially or randomly, as required. The A/D converter converts the analog signal to a digital voltage level. A pressure scanner valve allows all the total pressures to be measured by the same \pm 5.0 psid transducer. Ambient pressure was measured by a 15 psia transducer. A second pressure scanner valve and a \pm 2.5 psid transducer were used to measure static pressures. Statham pressure transducers were used.

c. Temperature measurements were taken through four temperature scanners. Thermocouples were iron-Constantan and Cromel-Alumei; Pace and Research Incorporated reference junctions were used.

d. For both temperatures and pressures, signal processing was accomplished by use of a B & F instruments, Inc. signal conditioner and a Dynamics amplifier. The conditioned signal was connected to a monitor panel which permitted manual monitoring capability as well as calibration monitoring.

I

I

T

0

[]

0

0

0

1

THE R

I

I

I

I

FIGURE 2: BURNER AND AIRFLOW CONTROLS

FIGURE 3: DATA ACQUISITION EQUIPMENT

NAEC-92-112

FIGURE 4: ACOUSTIC ARENA DATA ACQUISITION SYSTEM

e. The fuel flow was measured by a 1 gpm turbine-type flow transducer in the primary fuel line and a 5 gpm turbine-type flow transducer in the afterburner fuel line. The signal was conditioned by a Cox signal conditioner and the signal sent to the monitor panel. The flow rates were also displayed on digital voltmeters in the test control room. The monitor panel inputs were paralleled to the multiplexer input panel where further monitoring was possible. The signals then went into the multiplexer for processing.

f. The acoustic instrumentation system begins with the Bruel & Kjaer Models 4135 and 4136 microphone buttons. These are coupled to General Radio Model 560-P42 preamplifiers. A microphone scanner selects the proper channel for input to the autogain amplifier for signal processing. The General Radio Model 1925 Real-time Analyzer integrates the signal over an eight-second time interval and the computer interfaces the signal to the computer input. The far field acoustic microphones are flush mounted in disks, as shown on Figure 5, to obtain ground plane data that are free of reflective interference. Two computer programs were used for data acquisition. One program was used for performance data and the other for acoustic data, when recorded.

g. The acoustics program allows manual selection of the microphone data to be recorded. When the data from each microphone are analyzed, the computer signals the microphone scanner to advance one position. Data are taken sequentially. The analyzed acoustic data are printed in tabular form and plots of SPL versus frequency in one-third octave bands. Compilations of OASPL and PNL converted to full-scale equivalent distances are also provided. Examples of the acoustic data output format are illustrated on Figures 6 and 7.

h. The performance program provided automatic data acquisition. Once the program was started, all parameters were sampled and the scanners automatically controlled by the computer. The raw performance data, in the form of digital voltages, were converted to engineering units and calculation performed in the CPU. The data were then listed in tabulated form. Typical sample performance data output formats are illustrated on Figures 8 and 9.

3. MODEL DESCRIPTION

a. The Coanda demountable test cell has two enclosure sections: the test stand enclosure, including the primary air intake; and the ejector/Coanda enclosure, including the secondary air intake and exhaust muffler (stack). Only the latter enclosure was simulated in these model tests. A cutaway drawing of the complete test cell as it is currently visualized is shown on Figure 10.

b. The ejector/Coanda enclosure was fabricated in two sections. The forward section, which includes the secondary air intake, was fabricated of wood and simulates the internal lines of the enclosure and the secondary air intake. The aft section of the ejector/Coanda enclosure which includes the exhaust muffler (stack) was fabricated of sheet steel and simulates the enclosure and stack internal lines. Both sections are shown on Figures 11 and 12 with a short stack configuration.

c. The secondary air intake baffles were fabricated with wooden frames, an impervious septum in the center and 50 percent open area perforated steel plate face sheets on each side. The acoustic backing material was one inch thick Johns-Manville Glas-Mat 1200 fiberglass. The baffle leading edges are rounded to produce inlet bellmouths. The secondary air intake consists of 17 flow passages that simulate full-scale dimensions of 4.875 inches by 14 feet (96.69 ft²). The baffles are 24 inches long which simulates 12 feet at full scale. An acoustically treated secondary air intake cover was provided with an opening facing forward for the purpose of isolating the noise emitting from this inlet from the far field microphone measurements. It also shields the microphone placed above the inlet (to measure the attenuation provided by the intake baffles) from noise emitting from the exhaust stack. Figure 13 shows the intake cover installed on the model.

d. Several exhaust stack configurations were tested, as shown on Figures 14 through 20. For each configuration, the sidewalls of the lower aft enclosure, as well as all inner surfaces of the exhaust stack, are acoustically treated with Johns-Manville Glas-Mat 1200 fiberglass backing and 50 percent open area perforated face sheet.

I

T

1

1

0

0

[

[]

0

0

STIC FIGURE 7: EXAMPLE OF ACOUSTIC SUMMARY DATA

FIGURE 6: EXAMPLE OF INDIVIDUAL MICROPHONE ACOUSTIC DATA

		Image: base in the state i		PTHCPSIA) 27	AS (MPH) 9 NOZZLE PROPRETERS INE (DEUP) 68 5	R H CO CO CO
(100) (100) <th< th=""><th></th><th>1000 <th< th=""><th>(0606) 1111 4 1111 4 179 2 179 2 179 2 179 2 179 2 179 2</th><th></th><th>EXIT NOVE VELOCITY PROFILE</th><th></th></th<></th></th<>		1000 1000 <th< th=""><th>(0606) 1111 4 1111 4 179 2 179 2 179 2 179 2 179 2 179 2</th><th></th><th>EXIT NOVE VELOCITY PROFILE</th><th></th></th<>	(0606) 1111 4 1111 4 179 2 179 2 179 2 179 2 179 2 179 2		EXIT NOVE VELOCITY PROFILE	
1 1	0 0	Matrix Matrix<	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 017400		000 0 1000 0
M M	M M	1000000000000000000000000000000000000		-72.6		
M T	M M	M M	1 11	+ 21- 50	× 11.75" L	FWD WALL
0 131	No. No. <td>0 0</td> <td></td> <td>. 12- 10</td> <td>×</td> <td>DE STACK</td>	0 0		. 12- 10	×	DE STACK
0 00000 000	0 0	0 0	1 11 1	- 18.	*	or since
0 0 0 1 0 1 0 1 0	M M	0 0	1 14 10	-	* 1	
	0 0	0 0	1 14 791			
10 11<	M M	0 77.1 0.0000	1 1 1	1 110 1	KOODOOOK	
		11 11<	1 1 1	1 511 00	000000000000000000000000000000000000000	
11 11 11 11 11 11 1000000000000000000000000000000000000	11 11 12 22 000000000000000000000000000000000000	11 11 <td< td=""><td>1 1 4 50</td><td>69 436.4</td><td>000000000000000000000000000000000000000</td><td></td></td<>	1 1 4 50	69 436.4	000000000000000000000000000000000000000	
11 131 311 311 311 3000000000000000000000000000000000000		11 11 <td< td=""><td>1 1 1 90</td><td>10 502 4</td><td>x0000000000000000000000000000000000000</td><td></td></td<>	1 1 1 90	10 502 4	x0000000000000000000000000000000000000	
11.1 11.1	11.1 11.1 <th< td=""><td>11.1 11.1</td><td>1 43 1</td><td>11 331.5</td><td>000000000000000000000000000000000000000</td><td></td></th<>	11.1 11.1	1 43 1	11 331.5	000000000000000000000000000000000000000	
1/1 1/1 <td>1/1 1/1<td>II. II. II. II. II. II. II. II. II. II. III. IIII. III. III. III. III. III. III. III. III. III IIII IIII</td><td>1 1 1</td><td>12 043 1</td><td>000000000000000000000000000000000000000</td><td></td></td>	1/1 1/1 <td>II. II. II. II. II. II. II. II. II. II. III. IIII. III. III. III. III. III. III. III. III. III IIII IIII</td> <td>1 1 1</td> <td>12 043 1</td> <td>000000000000000000000000000000000000000</td> <td></td>	II. III. IIII. III. III. III. III. III. III. III. III. III IIII IIII	1 1 1	12 043 1	000000000000000000000000000000000000000	
6 7 31180* 1.0 5511 1.1 1.1 </td <td>No. State S</td> <td>1 1</td> <td>1 1 4 689</td> <td>11 349 1</td> <td>000000000000000000000000000000000000000</td> <td></td>	No. State S	1 1	1 1 4 689	11 349 1	000000000000000000000000000000000000000	
	No. State S	1 1	1 11 01	1 7.96 11	000000000000000000000000000000000000000	
001 011 <td>No. Stress Stres Stres Stres</td> <td>1 5 5 5 6</td> <td></td> <td></td> <td></td> <td></td>	No. Stress Stres Stres Stres	1 5 5 5 6				
MI KI MI MI<	NIII STILL	1 1				
01 101 57000 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 00 011 </td <td>NIL SULL SULL</td> <td>1 1</td> <td></td> <td></td> <td>SECONDREV ALR IN ET FLOW PRENE</td> <td>TERS</td>	NIL SULL	1 1			SECONDREV ALR IN ET FLOW PRENE	TERS
001 011 0	000 000 <td>81 91 541 91 641 641 641 641 641 641 644<</td> <td></td> <td>100</td> <td>MCH II</td> <td></td>	81 91 541 91 641 641 641 641 641 641 644<		100	MCH II	
001 011 <td>01 011 7701 0701 017 012 017 012 017 012 017 012 017 012 017 012 017 012 017 012 017 012 017 012 017 012<!--</td--><td>0111 0111</td><td>0.12 921 2</td><td>(PSIA)</td><td>0 NO (DEOF) (F)</td><td>TASEC) (LEASEC)</td></td>	01 011 7701 0701 017 012 017 012 017 012 017 012 017 012 017 012 017 012 017 012 017 012 017 012 017 012 </td <td>0111 0111</td> <td>0.12 921 2</td> <td>(PSIA)</td> <td>0 NO (DEOF) (F)</td> <td>TASEC) (LEASEC)</td>	0111 0111	0.12 921 2	(PSIA)	0 NO (DEOF) (F)	TASEC) (LEASEC)
001 977 001 977 001 977 001 005 970 970 970 970 970 970 970 005 970 970 970 970 970 970 970 005 970 970 970 970 970 970 970 005 970 970 970 970 970 970 970 005 970 970 970 970 970 970 970 005 970 970 970 970 970 970 970 005 970 970 970 970 970 970 970 005 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 970 <t< td=""><td>000 977 971 970 974 970 974</td></t<> <td>91 91<</td> <td></td> <td></td> <td>2 8736 61.2</td> <td>11 . 12</td>	000 977 971 970 974 970 974	91 91<			2 8736 61.2	11 . 12
	000 501 5	000000000000000000000000000000000000			C 13 512	
	000 00000 0000 0000	No No<				
	000 0	0.000 0.000 <td< td=""><td>A STR T</td><td></td><td></td><td></td></td<>	A STR T			
000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000 0000 0000 000 0000 0000 0000 0000 0000 0000	000 0	0.0001 0.0101	6 213 9			101 0 101
000 0001 0011 0001 0011 0001 0011 0001 00111 0011 0011 0011	000 0001 5000 111 101000 1010 101000 101000 <t< td=""><td>000000000000000000000000000000000000</td><td>194 3 MA</td><td></td><td>0 .00% 61.2 1/</td><td>191 191</td></t<>	000000000000000000000000000000000000	194 3 MA		0 .00% 61.2 1/	191 191
Mill 46.7 Some 14.11 102006 727 0 14.01 102006 727 0 14.01 102006 727 0 14.01 10.01	Mit 46.7 Specie 11.1 10.004 727 0 11.4 10.004 11.4 Mit 37.6 Specie 11.1 10.004 77.7 0 11.4 10.004 11.4 Mit 37.6 Specie 11.1 10.004 77.7 0 11.4 10.004 11.5 Mit 56.7 Specie 11.1 10.004 7.7 0 11.6 11.6 Mit Field 17.1 Specie 17.1 Specie 17.5 11.5 11.6 Mit Field 17.1 Specie 17.1 Specie 17.6 11.6 11.6 Specie 11.1 Specie 11.1 11.6 11.6 11.6 11.6 11.6 Specie 11.1 Specie 11.1 Specie 11.6 11.6 11.6 Specie 11.1 Specie 11.1 Specie 11.6 11.6 11.6 Specie 11.1 Specie 11.1 Specie 11.6 11.6 Specie 11.1 Specie 11.6 11.6 11.6 11.6 Specie 11.1 Specie 11.6 11.6 11.6	01 757 50000 777 00 14.00 777 00 14.00 17.00 14.00 17.00 14.00 17.00 14.00 17.00 14.00 17.00 14.00 17.00 14.00 17.00 14.00 17.00 14.00 17.00 14.00 17.00 14.00 14.00 17.00 14.00 17.00 14.00	918 SM		1	92 6 151
711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 711 71	No. 710 5946 1411 600 61 61 61 61 61 61 61 61 1411 600 1411 600 1411 600 1411 600 1411 600 1411 600 1410 61 1410 600<	01 31 5996 1111 10104 10104 10104	0 404 MM		0 010 010	
73 73 74 74 74 74 74 74 74 74 74 74 74 74 75 74 74 74 74 74 74 75 74 74 74 74 74 74 75 74 74 74 74 74 74 75 74 74 74 74 74 74 75 74 74 74 74 74 74 75 74 74 74 74 74 74 75 74 74 74 74 74 74 75 74 74 74 74 74 74 76 74 74 74 74 74 74 76 74 74 74 74 74 74 76 74 74 74 74 74 74 76 74 74 74 74 74 74 76 74 74 74 74 74 74 76 74 74 74 74 74 74 <	73 73 74 <	97.9 97.9				
0 3 3 3 4 3 4 <td>77.0 57.0 57.0 67.0</td> <td>97 <td< td=""><td>MI 433.1</td><td></td><td></td><td></td></td<></td>	77.0 57.0 57.0 67.0	97 97 <td< td=""><td>MI 433.1</td><td></td><td></td><td></td></td<>	MI 433.1			
01 37.0 SPME 14.11 400.01 47.7 10 14.00 14.7 10 14.00 14.1 10.0 14.0 10.0 14.0 10.0 14.0	01 97.0 57.0 57.0 10 14.0 10.0 14.0 10.0 14.0 <td< td=""><td>91 97.0 57.0 59.0 11.1 11.0 <</td><td>1 1 2</td><td>14.0</td><td>1</td><td>97.6 159</td></td<>	91 97.0 57.0 59.0 11.1 11.0 <	1 1 2	14.0	1	97.6 159
61 67 54 67 11 14 600 61 90 501 500 60 60 60 61 90 61 90 501 500 60 60 60 60 61 90 90 501 500 60 60 10 14 90 90 90 501 500 60 60 10 14 90 90 90 501 500 60 60 10 14 90 90 90 90 90 500 500 500 60 10 14 90 <	61 67 591 594 141 5960 17 14 600 612 77 10 501 591 5946 151 51000 77 11 14 600 612 77 10 501 594 151 51000 77 11 14 600 612 77 10 501 594 151 51000 477 11 14 600 612 77 10 501 594 151 51000 403 15 14 600 612 77 10 501 594 151 51000 403 15 14 600 612 77 10 501 594 157 14 5000 403 17 14 600 612 77 10 501 594 171 5000 403 17 14 600 612 77 10 501 574 500 17 14 600 244 244 612 77 10 501 594 17 14 5000 27 10 14 600 612 74 <tr< td=""><td>6 7 7 11 14 6 7 11 14 6 7 11 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 14 14 14 16</td><td>1 47 7</td><td>10 14 0</td><td>1 . 61.2</td><td>149 149</td></tr<>	6 7 7 11 14 6 7 11 14 6 7 11 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 12 14 6 7 14 14 14 16	1 47 7	10 14 0	1 . 61.2	149 149
301 6.23 7 12 14.00 0.77 12 14.00 502 031 59946 14.11 510004 47.7 13 14.00 501 340 347 11 14.00 007 61.2 97.9 501 340 59946 14.11 510004 47.7 13 14.00 501 340 59946 14.11 510005 40.7 14 14.00 501 59946 14.11 510005 40.7 14 14.00 007 501 59946 14.11 510005 40.7 14 0000 61.2 14.1 501 59946 14.11 510006 40.7 14 0000 61.2 14.1 501 5994 14.11 510009 40.7 14 0000 61.2 14.1 501 5994 14.11 50000 40.7 14 0000 61.2 14.1 501 501 50000 40.7 14 0000 14.1 14.0 14.1 501 501 50000 40.7 14 0000 14.1 14.1 501 501000 40.7 </td <td>623 733 734<td>0311 Free 1111 510000 477 11 1100 001 11 1100 1100 1100 <td< td=""><td></td><td></td><td>C 13 1000 0</td><td></td></td<></td></td>	623 733 734 <td>0311 Free 1111 510000 477 11 1100 001 11 1100 1100 1100 <td< td=""><td></td><td></td><td>C 13 1000 0</td><td></td></td<></td>	0311 Free 1111 510000 477 11 1100 001 11 1100 1100 1100 <td< td=""><td></td><td></td><td>C 13 1000 0</td><td></td></td<>			C 13 1000 0	
581 591 5746 111 110004 7.7 11 1100 581 582 574 514 50005 47.7 11 1100 581 574 5746 1414 50005 47.7 14 14.00 581 574 574 574 14 14.00 61.2 91.1 581 574 574 14 14.00 61.2 91.1 581 574 574 14 14.00 61.2 91.1 581 574 59003 40.3 17 14.00 61.2 91.1 581 574 574 14 56003 40.3 17 14.00 10.2 581 574 574 14 56003 40.3 17 14.00 10.2 581 574 574 14.11 56003 40.3 17 14.00 14.1 581 574 574 14.1 56003 40.3 17 14.00 581 574 574 56003 40.3 17 14.00 14.1 581 574 56003 40.3 17 14.00 14.1 581	501 502 501 500 51 14	01 92 91 974 11 144 94 11 144 01 92 94 144 94 14 144 94 14 01 92 94 144 94 14 144 94 14 01 92 94 144 94 14 144 94 14 01 94 94 14 94 14 94 14 94 02 94 144 94 14 94 14 94 14 03 94 94 14 94 14 94 14 94 04 144 94 14 94 14 94 14 94 05 94 94 14 94 14 94 14 14 05 94 94 14 94 14 94 14 06 94 94 14 94 14 94 14 07 94 94 14 94 14 94 14 07 94 94 14 94 14 14 14 01 <td< td=""><td></td><td></td><td></td><td></td></td<>				
500 500 <td>92.1 92.1 97.0</td> <td>0.01 9.01</td> <td></td> <td></td> <td></td> <td></td>	92.1 92.1 97.0	0.01 9.01				
561 962 9 570 50 40 7 14 14.02 770 61.2 770 564 60 5 104 5 59406 40 5 15 14.02 770 61.2 70 565 740 5 5946 14 11 510006 40 5 15 14.02 61.2 70 14.0 566 757 1 5946 14 11 510006 40 5 17 14.00 61.2 70 14.0 566 757 1 5946 14 11 510006 40 5 17 14.00 61.2 70 14.0 566 757 1 5946 14 11 55000 40 5 17 14.00 0005 61.2 70 14.0 560 571 0 5746 14 11 56001 40 5 17 14.00 2.64 11.1 561 617 1 57901 47 7 7 10000 2.64 2.64 11.1 561 617 1 59901.2 47 7 7 10000 2.64 2.64 11.1 561 617 1 59901.2 47 7 7 7 10000 2.64 11.1 511 602 7 59901.2 47 7 7 7 10000 2.64 10.1 512 611 1 59901.2 47 7	561 92.9 5746 14.14 526865 47.7 14.42 67.2 64.2 64.2 14.7 564 61.4 59686 49.5 15 14.42 64.2 64.2 97.9 14.7 564 57.4 59686 14.14 596809 49.5 17 14.46 64.2 94.5 14.7 564 57.4 59689 49.5 17 14.46 64.2 94.5 14.7 564 577.4 59689 49.5 17 14.46 64.2 94.5 14.7 564 574 59642 47.7 56466 47.7 5646 47.7 564 510 67.2 5744 2644 2.64 64.2 94.5 14.7 511 57466 14.14 564043 47.7 564 2.64 54.4 511 57466 14.14 564041 47.7 56.4 56.4 56.4 56.4 56.4 56.4 512 67.3 57.7 56.4 2.64 2.64 2.64 56.4 56.4 56.4 511 57466 14.14 576414 2.64 2.64 56.4 56.4 <td< td=""><td>01 982 9 982 9 982 9 970 61.2 97.9 14.0 05 745 5996E 14.14 59606 40.5 15 14.0 0000 61.2 96.3 14.1 05 774 5996E 14.14 59606 40.5 17 14.00 0000 61.2 96.3 14.1 06 327 5996E 14.14 59600 40.5 17 14.00 0000 61.2 96.3 14.1 07 10 212 9996E 14.14 59601 47.7 96.5 14.00 2.64 14.2 96.5 15 06 712 9997 5966E 14.14 59601 47.7 96.5 14.00 2.64 14.2 96.5 15 11 9197 9992 5966E 14.14 57601 47.7 96.5 14.00 2.64 14.2 96.5 162 11 9197 9992 5966E 14.14 57641 47.7 96.5 162 14.6 14.7 14.7 14.00 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1</td><td>1 47.7</td><td></td><td></td><td>1 3 1 1 2 2 3</td></td<>	01 982 9 982 9 982 9 970 61.2 97.9 14.0 05 745 5996E 14.14 59606 40.5 15 14.0 0000 61.2 96.3 14.1 05 774 5996E 14.14 59606 40.5 17 14.00 0000 61.2 96.3 14.1 06 327 5996E 14.14 59600 40.5 17 14.00 0000 61.2 96.3 14.1 07 10 212 9996E 14.14 59601 47.7 96.5 14.00 2.64 14.2 96.5 15 06 712 9997 5966E 14.14 59601 47.7 96.5 14.00 2.64 14.2 96.5 15 11 9197 9992 5966E 14.14 57601 47.7 96.5 14.00 2.64 14.2 96.5 162 11 9197 9992 5966E 14.14 57641 47.7 96.5 162 14.6 14.7 14.7 14.00 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 1	1 47.7			1 3 1 1 2 2 3
584 814.5 5946 14.14 5100.66 40.5 12 14.02 60.0 61.2 70.1 580 740 59946 14.11 540607 40.5 17 14.01 640.2 76.1 14.1 580 740 59946 14.11 540407 40.5 17 14.01 640.2 74.5 580 122 59946 14.11 560409 40.5 17 14.01 640.2 12 74.5 580 5731 59946 14.11 560409 40.5 17 14.00 64.2 74.5 580 5786 14.11 560403 40.5 10100, FLOM 2.614 2.612 74.5 580 5710 47.7 510 2.614 2.614 2.614 2.614 511 602 5994 7.7 5010, FLOM 2.614 2.614 511 602 599 7.7 512 513 514 511 612 7.7 514 2.614 2.614 512 599 599 7.7 514 2.614 513 5946 14.11 5944 7.7 514 5	564 614 57966 14 13 14 62 13 14	04 034 5 5746 14 15006 15 14.02 000 61.2 001 14.0 05 740 5 5746 14.11 54600 40.5 15 14.01 000 61.2 001 14.0 05 122 5 5746 14.11 54600 40.5 17 14.00 042.2 61.2 001 147 05 520 5 5746 14.11 55600 40.5 17 0405 61.2 91.5 157 05 50 5 544 2.64 0.5 14.00 2.64 0405 61.2 91.5 157 05 50 5 544 2.64 0.5 14.00 2.64 0405 61.2 91.5 157 05 5 5 544 2.64 2.64 2.64 16.7 16.2 16.7 11 90.2 5 5 5 14.11 577 17.7 16.6 17.7 16.6 17.7 11 90.2 5 5 5 5 14.11 5 17.7 14.6 16.6 14.1 11 90.2	1 14 580	14 14 0	2 .0770 61.2	142
565 740 570 570 60 16 14 64.2 56.3 586 137 570 570 60 17 14 64.2 56.3 586 137 570 60 10 17 14 64.2 56.3 586 137 570 14 550 17 14 64.2 51.2 580 112 570 14 550 17 14 64.2 51.2 580 511 570 14 570 17 14 64.2 51.3 580 511 570 14 570 17 14 64.2 54.3 511 671 570 61.1 7.7 7 7 94.3 511 602 54.4 7.7 7 7 94.4 511 570 14.14 590.12 47.7 7 511 611 590.12 47.7 7 94.4 7 511 570 14.14 590.12 47.7 7 511 570 500.11 47.7 7 7 511 570.11 570.1 14.14 7	500 740 570 570 570 570 612 550 15 15 15 500 122 570 570 60 6 17 14 662 61.2 95.5 15 500 521 570 570 60 6 5 17 14 662 61.2 95.5 16 500 521 570 570 6 5 17 14 6 61.2 95.5 16 511 570 570 671 77 77 107 16.0 2.614 61.2 95.5 16 511 570 570 17 16.0 2.614 2.614 2.614 16 16 511 570 570 17 17 1.14 570 17 16 511 570 570 17 17 17 17 16 16 512 611 7 7 7 7 17 16 16 513 612 7 7 7 7 16 17 16 513 67 7 7 7 7 17 16 <	05 740 5704 5704 5404 40.5 16 14.0 062 61.2 56.5 15 06 322 5704 5704 40.5 17 14.0 061.2 56.5 15 06 322 5704 14.1 5704.0 40.5 17 14.0 061.2 56.5 15 06 521 57046 14.1 5704.0 40.5 17 14.0 060.0 61.2 56.5 16 06 531 57046 14.1 5704.0 47.7 1004 2.644 61.2 56.5 16 081 57046 14.1 5704.0 47.7 17 14.0 2.644 2.644 61.2 56.5 162 11 57046 14.1 5704.0 47.7 17 2.644 2.644 2.644 162 11 57046 14.1 5704.0 47.7 2.644 2.644 2.644 162 11 57046 14.1 5704.0 47.7 2.644 2.644 2.644 162 2.644 12 011 57046 14.1 5704.0 47.7 2.644 2.644 2.644	(86 48 5	13 14 0	2 .0000 61.2	1 147
586 357.4 5998 14.14 596000 40.5 17 14.00 000 61.2 99.5 162 580 5238 59946 14.14 556000 40.5 1010 7.64 000 61.2 99.5 162 580 5238 59946 14.14 556000 40.5 1010 7.64 000 61.2 99.5 162 580 5238 59946 14.14 596413 47.7 7 7 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 16 17 16 17 16 17 16 17 16 17	56 377 5 PWE 14.14 550000 40 17 14.00 000 41.2 95.5 14.2 15.2 14.2 <th14.< td=""><td>07 122 5 PME 111 5 MACH 111 5 M</td><td></td><td></td><td>C 12 C700</td><td></td></th14.<>	07 122 5 PME 111 5 MACH 111 5 M			C 12 C700	
500 122 9 5794E 1414 50000 40 14 9 14 9 14 9 14 9 14 16 17 17 16 16 17 17 16 16 17 17 16 16 17 17 16 16 17 17 16 16 17 17 16 16 17 17 16 16 17	ONG Direct Initial Direct Direct <thdirect< th=""> <thdirect< th=""></thdirect<></thdirect<>	Product Product <t< td=""><td></td><td></td><td></td><td></td></t<>				
507 122 0 SFMEE 14.14 S68009 40.5 TOTAL FLOM 2.614 508 528 SFMEE 14.14 S68011 477 7 519 SFMEE 14.14 S68011 477 7 511 SFMEE 14.14 S68011 477 7 511 SFMEE 14.14 S68011 477 7 511 B02 SFMEE 14.14 S68011 477 511 B02 SFMEE 14.14 SFME 477 511 B11 SFMEE 14.14 SFME 477 512 B11 SFMEE 14.14 SFME 477 513 B12 SFME 14.14 SFME 98.7 6 SFMEE 14.14 SFME 98.7 7 7 SFME 14.14 SFME 98.7 7 7 SFME 14.14 SFME 98.7 7 7 SFME 14.14 SFME 98.7 7 8 SFME 14.14 SFME 98.7 7 7 SFME 14.14 SFME 98.7 7 8 SFME<	S00 122 S 500 S 60 40 T 000 FLOM 2 614 S00 520 S 500 570 47 7 7 7 S10 577 S 600 47 7 7 7 7 S10 671 S 570 570 47 7 7 7 S10 671 S 570 47 7 7 7 7 S11 602 S 57946 14.14 S 6964.13 47<7	0 122 9 59% 101 104 2.614 0 77 59% 60 77 7 7 7 0 77 59% 60 77 7 7 7 11 697 9 59% 111 59% 7 7 11 697 9 59% 111 51% 7 7 11 692 9 59% 171 7 7 7 11 692 5 5% 141 5% 47 7 11 693 5 5% 17 7 7 7 12 611 7 7 7 7 7 7 13 619 5 5% 66 47 7 7 14 176 5% 47 7 7 7 7 12 614 5% 6% 47 <td>C 84 80</td> <td></td> <td>2 19 6868</td> <td>291 . 295</td>	C 84 80		2 19 6868	291 . 295
500 520 2 SPRAGE 14 5784.10 477 5 509 571 0 SPRAGE 14.14 5684.11 477 5 510 0 57946E 14.14 5684.11 477 5 511 0 57946E 14.14 5684.11 477 5 512 0 11 5698.11 477 5 5 5 511 60.20 57946E 14.14 56946.1 477 5 512 0.01 57946E 14.14 5994.6 477 5 51 0.03 59942E 14.14 5994.6 477 5 5 999.2 59946E 14.14 7 7 5 6 0 59446E 14.14 7 7 5 6 0 59446E 14.14 7 7 5 6 0 59446E 14.14 7 7	528 57946 14 5784.10 47 7 539 571 9 57946 14 5984.11 47 7 549 571 9 5994.11 47 7 7 7 511 9 5994.61 14 5984.21 47 7 512 011 5994.61 47 7 7 7 512 011 5994.61 47 7 7 7 513 5994.61 14 6184.4 47 7 7 513 5994.61 14 14 5994.61 47 7 513 5994.61 14 14 5994.61 47 7 513 5994.61 14 14 5994.61 47 7 6 9 5994.61 14 17 5994.61 47 7 6 9 5994.61 14 17 5994.61 14 7 <td>00 528 5 Prote 111 5 Pr</td> <td>5 84 680</td> <td>TOTAL FLOM</td> <td>2 614</td> <td></td>	00 528 5 Prote 111 5 Pr	5 84 680	TOTAL FLOM	2 614	
500 511 6 Street 14 500x11 47<7 51 510 071 9 Street 14 500x12 47<7	501 STORE 14.14 SOM(11 47.7 SOM(12) 47.7<	00 511 0 574 5664.11 477 110 002 9 57966 14.14 5664.11 477 111 002 9 57966 14.14 5664.11 477 111 019 1 57966 14.14 5664.11 477 111 019 1 57966 14.14 5694.1 477 111 57966 14.14 5694.6 477 5796 112 57966 14.14 5796.6 477 113 57966 14.14 5996.6 477 114 766 477 596 77 113 57966 14.14 5996.6 477 114 766 98 7 98 114 776 98 7 98 114 776 98 7 114 776 98 7 114 776 98 7 114 776 98 7 114 776 98 7 114 776 98 7 114 776 98 7 114 77 98 7	11 47 7			
510 871 9 SPRE 14 5904.12 47 7 511 822 9 SPRE 14 5904.12 47 7 512 811 1 5904.12 47<7	510 671 5 SPARE 141 7 T </td <td>0 0719 5996E 1414 599412 477 11 682.9 5996E 1414 569613 477 12 811 5996E 1414 560613 477 12 819 5996E 1414 56061 477 13 819 5996E 1414 77 13 5996E 1414 787 9617 14 787 966 477 7 15 5996E 1414 787 961 16 66 786 967 7 14 787 966 7 96 14 787 966 7 96 14 787 966 7 96 16 67 7414 77 96 14 74 7 96 7 15 5996E 1414 787 96 16 67 78 96</td> <td></td> <td></td> <td></td> <td></td>	0 0719 5996E 1414 599412 477 11 682.9 5996E 1414 569613 477 12 811 5996E 1414 560613 477 12 819 5996E 1414 56061 477 13 819 5996E 1414 77 13 5996E 1414 787 9617 14 787 966 477 7 15 5996E 1414 787 961 16 66 786 967 7 14 787 966 7 96 14 787 966 7 96 14 787 966 7 96 16 67 7414 77 96 14 74 7 96 7 15 5996E 1414 787 96 16 67 78 96				
311 992 9 SPHRE 14 14 5000.12 47 7 511 994 14 14 61881.3 47 7 513 819 1 SPHRE 14 14 61881.3 47 513 819 1 SPHRE 14 14 51881.4 47 7 513 819 1 SPHRE 14 14 51881.4 7 7 7 989 7 7 7 7 7 7 7 989 7 7 7 7 7 8 989 7 7 988 7 7 8 9 7 7 988 7 7 8 9 7 7 988 7 7	BIL STORE IA SOUTH IA IA<	11 00.2 5 Prefix 1.1 6 Prefix 1.7 1.4 1.7 <				
511 602.2 5 SPYRE 14.1.4 6 60×13 4.7.7 51.2 0.11.1 5 SPYRE 14.1.4 6 40×13 4.7.7 51.3 0.19.3 5 SPYRE 14.1.4 SPK 4.7.7 51.3 0.19.3 5 SPYRE 14.1.4 SPK 4.7.7 51.3 0.19.3 5 SPYRE 14.1.4 TREF 90.8 7 7 51.3 0.14.1.4 TREF 90.8 7 7 51.3 0.14.1.4 TREF 90.8 7 7 51.3 51.4	511 602.9 57946 1.4 6004.13 4.7 7 512 011.1 57946 1.4 57944 4.7 7 513 019.2 57946 1.4 57946 4.7 7 6 093.2 57946 1.4 1.4 7 7 6 0 57946 1.4 57946 0 7 7 599.7 57946 1.4 7 7 7 57946 1.4 57946 0 7 8 0 57946 1.4 57946 0 7 57946 1.4 57946 0 7 8 0 57946 0 5 5 9 57946 1.4 594.7 0 5 8 0 57946 0 5 5 9 57946 1.4 594.7 0 5 9 57944 5	11 002 9 SPAGE 14 600X13 7.7 7 12 011 SPAGE 14 600X14 47.7 7 12 012 SPAGE 14 14 600X14 47.7 13 012 SPAGE 14 14 600X14 47.7 13 012 SPAGE 14 14 7 7 14 TREF 968<7	1 14 20			
512 011 1 SPARE 14 14 618414 47 7 513 019 1 SPARE 14 14 SPARE 47 7 F 909 2 SPARE 14 14 TREF 900 7 RE 0 SPARE 14 14 SPARE 0	512 6311 SPARE 14 6184.14 47 7 513 619 3 5PARE 14 5PARE 47 7 513 619 3 5PARE 14 5PARE 47 7 6 3 5PARE 14 14 5PARE 47 7 6 5 5PARE 14 14 5PARE 0 5 7 6 5 5PARE 14 5PARE 0 7 8 5 5PARE 14 5PARE 0 7 0 8 5 5 5 5 5 0 5 0 9 5 5 5 6 0 5 5 0 9 5 5 5 6 0 5 5 0 9 5 5 5 5 5 5 0 5 5	12 011 SPARE 14 6181.4 47 7 13 019 SPARE 14 SPARE 47 7 13 019 SPARE 14 SPARE 47 7 14 TREF 968<7	1 47 7			
Subsection Subsect	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY. INLET AIRFLOW	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY, INLET AIRFLOW				
513 019 3 SPRAGE 14 14 SPPAGE 47 7 F 949 2 SPPAGE 14 14 TREF 948 7 RE . Ø SPPAGE 14 14 SPPAGE . Ø	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY. INLET AIRFLOW	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY, INLET AIRFLOW				
F 949 Z SPARE 14 14 TREF 948 7 36 8 SPARE 14 14 SPARE 8	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY. INLET AIRFLOW	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY, INLET AIRFLOW	SE 47.7			
e 34445 11 13 38445 e 34	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY. INLET AIRFLOW	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY, INLET AIRFLOW	- 9440 7			
	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY INLET AIRFLOW	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY, INLET AIRFLOW				
	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY. INLET AIRFLOW	PLE OF TABULATED PRESSURE AND FIGURE 9: EXAMPLE OF EXHAUST VELOCITY, INLET AIRFLOW				
E OF TABULATED PRESSURE AN	ATA DATA	ENAIUNE UAIA				0 0

E

[]

FIGURE 11: COANDA ENCLOSURE MODEL INSTALLED ON SUPPORT FLOOR

FIGURE 13: ACOUSTICALLY TREATED TEST CELL MODEL INLET COVER

0

NAEC-92-112

town of

P

FIGURE 14: SCHEMATIC OF SINGLE SPLITTER EXHAUST STACK CONFIGURATION

FIGURE 15: SINGLE SPLITTER EXHAUST STACK MODEL

FIGURE 17: DUAL SPLITTER EXHAUST STACK MODEL

FIGURE 20: ACOUSTIC WEDGE EXHAUST STACK MODEL

e. The single splitter exhaust stack configuration (Figures 14 and 15) has a single splitter attached to the forward and aft stack walls and centered on the Coanda flow. The splitter is equivalent to 36 inches thick (full scale) with a center impervious septum, Johns-Manville Glas-Mat 1200 backing material and 50 percent open area perforated plate face sheet. A sloping back wall that reaches to the floor has similar acoustic treatment that is equivalent to 24 inches thick (full scale). An exhaust stack extension that is equivalent to 24 feet (full scale) was provided that is acoustically treated and has the same cross sectional dimensions as the lower stack outer walls. This stack height provides a configuration with the same L/H ratio (1/2 x acoustically treated area/flow area) as a stack with a total height of 40 feet and an internal width dimension equal to 80 inches (full scale). This is the same flow passage width as the configuration with the splitter when the splitter width is excluded. Both the sort stack outer walls and the stack extension are provided with the capability of hard wall covering the acoustic treatment.

f. The dual splitter configuration (Figures 16 and 17) is similar to the single splitter except that two splitters, each equivalent to 18 inches (full scale) thick, are placed in the short exhaust stack. The same acoustic treatment as was used for the single splitter is used, only half as thick. The stack walls are left the same as with the single splitter.

g. Figure 18 illustrates the typical construction of the exhaust stack splitter with the perforated face sheet and acoustic backing material removed.

h. The acoustic wedges up the back wall of the enclosure and stack, shown on Figures 19 and 20, have the effect of producing a large L/H ratio while removing the splitter from the hottest and highest velocity flow. These two wedges are equivalent to eight feet deep (full scale) and each has a base width that is half the width of the back wall. The face sheet is 50 percent open area perforated plate and the backing material is Johns-Manville Glas-Mat 1200. The remainder of the stack and enclosure walls is left the same as in previous tests.

I. A dimensional schematic of the ejector set and Coanda surface used inside the enclosures described above is shown on Figure 21. The ejector set is fabricated of .090-inch thick stainless steel and the Coanda of .25-inch thick mild steel. A support structure and ground plane are provided for the ejectors, Coanda and acoustic enclosures. The ground plane simulates a 60-inch (full scale) distance below the engine centerline. Figure 22 shows the ejector set installed on the ground plane and support structure, and Figure 23 shows the addition of the Coanda surface and an acoustic burner cover. The purpose of the burner cover was to isolate any burner noise generated from the microphone locations since only the exhaust noise was to be measured. Figure 24 shows the interior of the burner cover and Figure 25 shows the exhaust nozzle, ejector and burner cover end plate interface. The burner cover end plate was used only when no ejector/Coanda enclosure was present. The forward wall of the ejector/Coanda enclosure became the divider between the burner cover and enclosure whenever an enclosure was being tested (see Figure 11).

j. Burlap bags filled with sand were used around the entire lower enclosure, as shown on Figures 26 and 27, to isolate the wall transmitted noise. This was necessary since it is very difficult to simulate full-scale wall transmission characteristics in model scale, and previous full-scale testing has shown adequate wall transmission loss capability.

NAEC-92-112

FIGURE 21. DIMENSIONAL DRAWINGS OF SCALE MODEL COANDA SURFACE AND EJECTORS

FIGURE 22: EJECTOR SET INSTALLED ON GROUND PLANE AND SUPPORT STRUCTURE

City of

1

The second

tours.

T

1

I

I

FIGURE 23: COANDA AND EJECTOR SET INSTALLED ON GROUND PLANE AND SUPPORT STRUCTURE WITH BURNER ACOUSTIC COVER

FIGURE 24: VIEW SHOWING INTERIOR OF BURNER ACOUSTIC COVER

FIGURE 25: RELATIONSHIP OF NOZZLE, EJECTORS AND END PLATE OF BURNER ACOUSTIC

FIGURE 26: MODEL WITH SHORT EXHAUST STACK, WALL TRANSMISSION ISOLATION (SANDBAGS), AND BURNER ACOUSTIC COVER

1

I

I

I

I

FIGURE 27: MODEL WITH TALL EXHAUST STACK, WALL TRANSMISSION ISOLATION (SANDBAGS), BURNER ACOUSTIC COVER AND SECONDARY AIR INLET ACOUSTIC COVER

4. INSTRUMENTATION

a. Figure 28 shows the relationship of the exhaust nozzle to the ejectors and Coanda surface. The location of the ejector and Coanda surface pressure and temperature instrumentation is also shown. Each of the three ejectors has four static pressure ports and four outside surface temperature thermocouples. The Coanda surface has eight each of static pressure ports and outside surface temperature thermocouples at approximately 10-degree intervals on the centerline starting at the entrance to the Coanda.

b. The exhaust flow characteristics above the center of the Coanda surface were measured by an exit rake (shown on Figure 29) which has 14 each of total pressure probes and total temperature probes. The probe positions are incremented based on a logarithmic scale with the smallest increment nearest the forward wall of the Coanda. This was required to measure the most number of points where the velocity gradient was largest. Figure 30 shows the exit rake installed at the exhaust stack exit indicating how exhaust flow characteristics were measured with the enclosure around the Coanda surface.

c. Figures 31, 32 and 33 show the location of the thermocouples added to the enclosure and exhaust stack for the single splitter, dual splitter and acoustic wedge configuration, respectively. These thermocouples were to measure the surface temperatures attained by the enclosure and exhaust stack inner walls.

d. Four static pressure probes were located in the enclosure interior with two centrally located below the inlet (one on each sidewall) and two centrally located below the exhaust stack (one on each sidewall). The probes were positioned 10 inches above ground. These probes determined the cell depression in the inlet and exhaust areas of the Coanda enclosure system.

e. The enclosure inlet(s) was instrumented to determine the secondary flow entrainment. Each channel in the inlet had a static pressure port at the centerline approximately 0.75 channel widths downstream from the start of the constant area section after the bellmouth. These static pressure pickups were placed on a movable inlet rake as shown on Figure 34.

f. The acoustic instrumentation included 12 far field and 3 near field microphones. The far field positions were at 15-degree intervals between 15 degrees and 180 degrees from the nozzle exit plane at a radial distance of 250/6 = 41.67 feet. The far field microphone array was shown in the photo on Figure 5. The near field positions included two exterior and one interior to the enclosure as shown on Figures 31, 32 and 33 in the photos on Figures 35 and 36. Acoustic data recorded was 24 one-third octave bands between 315 Hz and 65 KHz (model scale) which was converted by the computer to full-scale equivalents between 50 Hz and 10 KHz.

g. Table 1 is a list of the instrumentation used and the accuracy requirement placed on that instrumentation.

FIGURE 29: COANDA EXIT PT AND TT RAKE INSTALLATION

FIGURE 30: EXHAUST STACK EXIT PT AND TT RAKE INSTALLATION

FIGURE 32: SCHEMATIC OF ENCLOSURE INSTRUMENTATION -DUAL SPLITTER EXHAUST STACK CONFIGURATION

FIGURE 33: SCHEMATIC OF ENCLOSURE INSTRUMENTATION -ACOUSTIC WEDGE EXHAUST STACK CONFIGURATION

.

FIGURE 36: TALL EXHAUST STACK MODEL WITH NEAR FIELD MICROPHONES INSTALLED

TABLE 1 INSTRUMENTATION REQUIREMENT LIST

Location and Measurements	Units	No.	Range	Accuracy
Ejector static pressure	pela	12	10.0 to Amb.	±1%
Coanda surface static pressure	pele	8	10.0 to Amb.	±1%
Enclosure inlet static pressure	pele	17	13.0 to Amb.	±1%
Enclosure interior static pressure	pele	4	13.0 to Amb.	±1%
Exit rake totel pressure	pele	14	Amb. to 17.0	±1/2%
Ejector metal surface temperature	۰F	12	Amb. to 1300	±2%
Coanda metal surface temperature	·F	8	Amb. to 1200	±2%
Enclosure interior sidewall temperature	·F	3	Amb. to 600	±2%
Exhaust stack metal surface temperature:			a Consequence and	
Tail stack without splitter	۰F	17	Amb. to 1000	±2%
· Short stack with single splitter	•F	17	Amb. to 1200	±2%
· Short stack with dual splitter	·F	16	Amb. to 1200	±2%
· Short stack with dual wedges	۰F	19	Amb. to 1000	±2%
Exit rake total temperature	·F	14	Amb. to 1400	±2%
Far field microphones	*dB	12	50 to 140	±1 dB
Near field microphones	*08	3	70 to 160	±1 dB

* Data are recorded in one-third octave SPL (re. 0.002 dyne/cm2)

Postania di Constanta

h. In addition to the instrumentation listed, the following (Table 2) environmental and flow condition data were recorded:

Location and Measurements	Units	No.	Range	Accuracy
Ambient pressure	psia	1	13.8 - 14.2	±1/2%
Nozzle exhaust total pressure	psia	1	Amb. to 35	± 1/2%
Nozzie exhaust pressure ratio	-	1	1.2 - 2.5	±1%
Amblent temperature	۰F	1	ne - the Superficient	±2%
Nozzle exhaust gas temperature	"F	1	Amb. to*	±2%
A/B cooling water in temperature	۰F	1	40 to 80	±2%
A/B cooling water out temperature	۰F	1	40 to 180	±2%
Nozzle airflow	Ib/sec	1	0 to 7.5	±1%
Primary burner fuel flow	Ib/sec	1	0 to .1	±2%
Afterburner fuel flow	Ib/sec	1	0 to .3	±2%
A/B cooling water flow	Ib/sec	1	9 to 12	±2%
Wind speed	mph	1	0 to 20	±5%
Wind direction	deg.	1	0 to 360	±15°
Relative humidity	*	1	0 to 100	±2%

TABLE 2 ENVIRONMENTAL AND FLOW CONDITIONS REQUIRED

XAfterburner temperature is calculated from airflow and fuel flow data used to set up afterburner condition.

B. Test Procedures.

a. The target values of afterburner nozzle pressure ratio and exhaust gas total temperature were 1.943 and 3630°R, respectively, for simulation of the exhaust of a TF30-P-412A engine. Exit temperature was set for each run by setting to a constant value of burner fuel flow at the target afterburner nozzle pressure ratio. This method of setting exhaust temperature was necessary due to lack of instrumentation capable of measuring the extremely high exhaust gas temperatures used for the test.

b. A calculation procedure was developed to determine the exhaust gas temperature based on the burner fuel flow, airflow, water jacket heat loss and an assumed burner efficiency of 95 percent. A heat balance was written about the afterburner shown schematically in Figure 37, resulting in Equation (1).

FIGURE 37: ARENA AFTERBURNER SCHEMATIC

$$\hat{W}_{fA/B}(h_{fa} + \eta_{B}H_{v}) = \hat{W}_{out}h_{out} + \hat{W}_{H_{2}O}C_{PH_{2}O}(\Delta T_{H_{2}O}) - \hat{W}_{in}h_{in}$$
 (1)

Solving Equation (1) for exhaust flow enthalpy (h out) results in Equation (2):

$$P_{out} = \frac{W_{fA/B}(h_{fa} + \eta_{B}H_{v}) - \dot{W}_{H_{2}O} CP_{H_{2}O}(\Delta TH_{2}O) + \dot{W}_{in}h_{in}}{\dot{W}_{out}}$$
(2)

Equations (3) and (4) below are stated equations for combustion products from Reference (e).

$$h_a = R_8 T^8 + R_7 T^7 + R_6 T^6 + R_5 T^5 + R_4 T^4 + R_3 T^3 + R_2 T^2 + R_1 T + R_0$$
(3)

(R o through R are constants defined in Section VII.)

(R 10 through R 18 are constants defined in Section VII.)

Equations (3) and (4) from Reference (e) have a stated temperature range of 300° to 4000°R. However, the effects of disassociation are not believed to be included in the equations.

$$h = \frac{h_{a} + (f/a)h_{fc}}{1 + (f/a)}$$
(5)

Using Equations (2), (3), (4) and (5) with appropriate test data allows an iterative solution for jet exit temperature.

Ref. e: "GENEG-A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines," NASA – Lewis Research Center Document Number TND-6552, February 1972. b. The model configurations tested and the data recorded during those test runs are shown in Table 3. Each test condition was set up as near the desired nozzle pressure and exhaust temperature as was practical. A period of time for thermal stabilization was allowed at each power setting prior to recording data. Measurements were recorded for all instrumentation within each data column checked for each configuration.

c. Tabulations of the standard environmental and flow condition data were recorded for each test condition, as well as model configuration identifying information. All static pressure probes, metal surface temperature thermocouples, and Coanda exit rake total pressure and temperature probes were assigned identification coding. The measured data were recorded in tabular form for each test condition in the units specified by the instrumentation requirements.

d. Total secondary air inlet airflow was obtained by calculating and summing the airflow through each channel. Cross sectional area for each channel at the probe location was determined by the channel width and increment between probe movements. A discharge coefficient for the secondary air inlet bellmouth of 0.98 was used in the airflow calculation.

e. Exit rake total temperature and total pressure data were used to calculate Mach number and velocity of flow at each probe location. These data were tabulated and the velocity profiles computer plotted.

f. Acoustic data reduction included conversion of the 24 one-third octave band model scale measured data to full-scale equivalent frequencies, including conversion to standard day conditions and application of absorption coefficients for the model scale frequencies and distance. The data were tabulated in one-third and full octave band SPL as well as computed OASPL and "A" weighted SPL. The one-third octave SPL values were computer plotted.

TEST CONFIGURATIONS & DATA REQUIREMENTS

Ī

I

1

Π

Π

Transa d

Π

Land Land

I

I

I

I

Mag -	2	-							T	- OF	lingle	Duel	1					3	-		0	Den.	X			
-	1	-//-	-	Pert	tard	Pert	Hard	S.	ž	blit	Split	Split	Wedge	Peer	Hard	Inter	Burner	4	-	4	-	-	-	Ex	Tiel I	
	-	1.943	A	1	T	T.	ction				Nozzle	Onty			-	1.54					-	-	-	-		
2	-	1.943	3170	1	1	-	2	-		- North	Only	(0C.4.1				10							-	-	*	
=	-	2.43	3095	1	1	-	2			Mozza	Only	1515											-		×	
2	34	1.943	3170	1	Non		Ejecto		Ĩ							1	-	×	×						×	
2	2ª	2.105	2+	1	ž	ale.	-		Con	-0-				1				×	×					×		14
8.2	34	1.943	3170	1	2		picto.		-0-	-0-						-		×	×					× (30	(24) X	
8	-	-	-		Nor	He. E	ector		Com	ta Oni		- 26					×	×	×		-	-			*	-
**					×	22		×			×			×			×						(E) 28	An	×	E×
ä					×	24		×	-		*			×		×	×	×	×	×	×	*			×	×
8			-		×	24		×			×			×		×	×	×	×	×	×	×		-	*	*
8			-		×	275		×	14	×						×	×	×	×	×	×	-	-		×	×
*					×	2.75 The			×	×						×	×	×	×	×	×	-	-		*	*
37					×	2.75 The			×	*							×	×	*	×	×	-		-	*	*
8		1			×	2.75		×			×				*	×	×			-	-	-	-	-	*	*
*			3170		×	-	×	×			×				×	×	×		-	-					*	-

NAEC-92-112

	ŝ
	Ē
	£,
	2
	S
	ž
a	-
E	F
×	*
ŭ	-
=	•
3	5
۳	6
ā	ž
<u>ح</u>	4
-	ď,
	2
	¥
	Ż
	ō
	0

ustic		Field	×	×	×	×	×	Π	*	×	×	×	×	(SS) X	×	Ē×	(62) ×
Aco		Field	×	*	×	×	*		*	×	*	*	*	× (55)	*	E×	(23) ×
	1	Exit						Π								A*.	2
_	2	Inter					×	Π	×					A's			
Det	tier	T						Π		×		×	×	×	×		
-	N N	4						Π									
Lon		-		1			1	Π		×	×	×	×	×	×	×	×
2	Stu	4								×	×	×	×	×	×	×	×
	CL.	-			-		-	11	-	×	×	×	×	×	×	×	*
	18	•				_		\square		×	×	×	×	×	×	×	×
ustic	-	Burner	×	*	×	×	*		*	×	*	×	×	*	×	*	*
Aco	3	Inter	×	×	×	×	1.00	Π		×	×	×	×		×	×	×
	1	Hard						Π								×	×
lion		Pert					1			×		×	×	×	×		
Infigurat		Wedge						Π					×	*			×
tter Co		Splitt			+		1	Ħ	+	×					×	×	
Spli		Split						T				*					
		Split	×	×	*	×	×	Ħ	*		×		×	×			
-	E	3		×		×	×	H	+								
onfi	1	30.	×		×		-	\square	×	×	×	×	×	×	×	×	×
ack C		Hard	×	×			1									×	×
-		Pert			12	12	32	5	52	12	12	12	112	112	24		
9		tard	×	×	×	×	×	Π	A*					6	*	×	-
Enc		F					1		T	81	81	81	81	81	1		
		F	24		-				1	-		-		-		1.	120
	Gillon		-	-	-	-	-	Ħ	+		-	-	-	-	-	1.	3
2	5		24	-	-				+							1.	-
-	1	9	\$	=	3		*		-		3	3	8		=	195	
-	1							1.				-	1		-	-	-

38

[]

[]

П

[]

III. TEST RESULTS

The pertinent results of the testing previously outlined are discussed in the following paragraphs:

A. Aerothermodynamics

1. The calculation procedure described in VII.B. above was used to calculate the exhaust gas temperature for each valid data run based on the pressure ratio and fuel flow values recorded. The resulting exit temperatures are listed in Table 4. The average exhaust temperature of 3551°R was deemed adequate although it was about 80 degrees below the target temperature of 3630°R.

2. Figure 38 compares the measured secondary inlet pressure loss with the predicted loss calculated from boundary layer solutions for the inlet flow. The secondary airflow rate was calculated from the inlet rake static pressure measurements taken in the constant area section of the inlet flow passages. The rake was positioned on the inlet centerline for Runs 26, 46 and 48. The rake was located in four different positions for Runs 27 through 30 and 51 through 54 to measure inlet flow profiles for each position. The resulting area weighted flow rates were summed to obtain an estimate of the total secondary air inlet flow rate.

3. Table 5 presents secondary air entrainment data including a breakdown of entrainment by individual components. The entrainments at the ejector inlets (W_{e1} , W_{e2} , W_{e3}) are calculated values obtained with Boeing computer codings. These values could not be accurately measured without costly additional instrumentation. The total secondary air entrainment at the second and third ejectors and the Coanda surface is a value measured at the secondary air inlet (W_{s}). The total system entrainment would include the calculated first ejector entrainment and the measured inlet airflow ($W_{e1} + W_s$). The Coanda surface secondary air entrainment (W_{c3}) is the measured inlet secondary airflow (W_s) minus the calculated second and third ejector entrainment ($W_{e2} + W_{e3}$). The Coanda surface entrainment coefficient (α), shown as Equation (6), is the ratio of Coanda surface secondary air entrainment to the total airflow entering the Coanda surface (W_{cp}).

$$\alpha = \frac{\dot{W}_{cs}}{\dot{W}_{cp}} = \frac{\dot{W}_{s} - (\dot{W}_{e2} + \dot{W}_{e3})}{\dot{W}_{jet} + \dot{W}_{e1} + \dot{W}_{e2} + \dot{W}_{e3}}$$
(6)

4. Figure 39 gives surface temperatures and pressures along the centerline of the Coanda surface at the locations shown on Figure 28 without the acoustic enclosure. The static pressure data indicate good flow attachment through the length of the surface. The surface temperature data indicate a peak temperature of 1628°R (1168°F) which exceeds the design goal by 168 degrees.

5. Figures 40 through 43 present Coanda surface temperatures and pressures along the centerline at the locations shown on Figure 28 for configurations with the enclosure. These data show that the stack configuration had little effect on the Coanda surface pressures and temperatures which indicate, in turn, a negligible effect on Coanda flow attachment and mixing. However, when these data are compared to Figure 39, it is apparent that the presence of the enclosure is beneficial to Coanda surface cooling. With the enclosure, the peak surface temperature was 1481°R (1021°F) which is 147 degrees cooler than without the enclosure. The reason for the increased cooling is the position of the secondary air inlets. The ejectors and Coanda surface are immersed in the cool secondary air being entrained by the Coanda surface mixing. Efforts to normalize the Coanda surface temperatures by referring to ambient or primary jet temperature were abandoned because the mixing process precludes agreement throughout the temperature range. Actual measured surface temperatures are therefore presented on Figures 39 through 43.

6. Figure 44 shows the flow conditions at the exit of the Coanda surface with no enclosure present as illustrated on Figure 29. These flow velocity, Mach number and exit total temperature profiles indicate excellent flow attachment to the Coanda surface at the exit (65-degree) position. The peak flow velocity is seen to be only five inches (model scale) from the Coanda surface. Coanda surface cooling is also excellent as seen by the peak flow total temperature of 1750°F at approximately two inches from the Coanda surface while the metal surface temperature of the Coanda at that point was only 1425°R (average from last thermocouple – see Figure 39).

Run No.	Exit Temp. "R	Run No.	Exit Temp. °R
10	3515	45	3521
15		46	3540
20	3573	47	3559
21	1170	48	3523
24	3581	50	3528
25	3529	51	3586
26	3390	52	3562
27	3496	53	3620
28	3492	54	3538
29	3572	55	3573
30	3606	56	3648
31	3507	57	-
32	3578	58	and a straight of
33	3522	59	-
34	3553	60	3563
36	3561	61	3534
37	3548	62	3582
38	3645	63	3569
39	3585	64	3551
40	3558	65	3588
41	3509	66	3568
42	3543	67	3528
43	3555	68	3514
44	3506	69	3566
		71	3571

	T.	ABLE 4		
MODEL A/B EXIT	TEMPERATURE	CALCULATED	FROM ENTHALPY	RISE *

*Enthalpy rise based on fuel flow, LHV = 18,400 BTU/Lb and a burner efficiency of 95 percent.

Test average exit temperature = $3551 \ ^\circ R$ Standard Deviation = $\pm 43.4 \ ^\circ F$

FIGURE 38: SECONDARY AIR INLET PRESSURE LOSS VS. INLET AIRFLOW

41

U

TABLE 5 SECONDARY AIRFLOW ENTRAINMENT

Run Number	Model Configuration	A/B Nozzie Mass Flow Wjet (Lbs/Sec)	Secondary Inlet Airflow Ws (Lbs/Sec)	1st Ejector Secondary Entrainment Ŵe ₁ (Lbs/Sec)	2nd & 3rd Ejector Entrainment Ŵe ₂ + Ŵe ₃ (Lbs/Sec)	Total Flow Entering Coanda Ŵcp (Lbs/Sec)	Coenda Secondary Entrainment Ŵcs (Lbs/Sec)	Coenda Entrainment Coefficient Ŵ _{CS} /Ŵ _{CP}
26	Short stack with single splitter	7.41	20.96	2.35	1.51	11.27	19.45	1.73
27-30	Short stack with single splitter	* 7.33	19.97	2.32	1.50	11.15	18.47	1.66
46	Tall stack without splitter	7.45	17.87	2.34	1.51	11.30	16.36	1.45
48	Short stack with- out splitter	7.44	16.56	2.35	1.53	11.32	15.03	1.33
51-54	Short stack with dual wedges	*7.42	17.65	2.33	1.52	11.27	16.13	1.45

* Average values for the run numbers shown

Burner inlet airflow plus fuel flow

Referred to standard day conditions (Ŵ Vea / ba)

FIGURE 40: COANDA SURFACE PRESSURES AND TEMPERATURES - SHORT EXHAUST STACK WITH SINGLE SPLITTER CONFIGURATION

.

FIGURE 42: COANDA SURFACE PRESSURES AND TEMPERATURES - SHORT EXHAUST STACK WITH AND WITHOUT DUAL WEDGES

(A

I

FIGURE 44: COANDA EXIT FLOW VELOCITY, MACH NUMBER AND TEMPERATURE PROFILES - NO ACOUSTIC ENCLOSURE

7. Figures 45 through 47 present exhaust stack exit flow velocity, Mach number and temperature profiles for each of the three short stack configurations tested (single splitter, dual splitter and dual wedges). All three configurations illustrated a region of reverse flow (shown by negative velocities) near the forward wall of the exhaust stack. This is caused by the 65-degree exit from the Coanda surface into a vertical (90-degree) exhaust stack. The velocity in these reverse flow regions was estimated using the pressure reading from the exit total pressure rake as a static pressure and ambient pressure as the total pressure. This procedure was used when rake pressure measurements were below ambient which indicates local reverse flow. Use of these rake pressure readings as static pressures is an acceptable procedure due to the low velocities in the reverse flow regions.

8. Tables 6 and 7 list the ejector surface temperatures along the top and side centerlines, respectively, for the various model configurations. The locations of these thermocouples were shown on Figure 28. The values shown are averages for all test runs of that particular configuration, along with the maximum and minimum deviation from that average. The ambient and afterburning nozzle temperatures are also presented. In general, there is no significant change in ejector surface temperatures due to changes in stack configuration or removal of the acoustic cover from the secondary air inlet. There is a significant change in ejector surface temperatures and those that are enclosed. The reduced ejector temperatures with the enclosure present are due to the secondary air inlet position just as was discussed earlier for the Coanda surface temperatures. With the enclosure installed, the maximum average temperature was at the exit of the first ejector and was 986°F which is below the design goal of 1000°F.

9. Tables 8 through 11 list the exhaust muffler internal surface temperatures for the various model configurations at afterburning primary nozzle conditions. The location of the thermocouples where the measurements were taken was shown on Figures 31, 32 and 33. The values listed are averages of all test runs of that particular configuration. Also listed are the maximum and minimum deviations from that average. The large deviations shown are not the result of poor instrumentation but rather from the large fluctuations within the exhaust stack due to turbulent flow. These data indicate that Coanda surface mixing has to be improved before a configuration with splitters could be used. The single splitter had local areas that reached 1295°F average temperature while the dual splitter configuration reached 1370°F. These temperatures exceed the 1000°F design goal by too much to ensure expected life cycles. The dual wedge configuration did not demonstrate any such high temperature regions because there were no components immersed directly in the hottest portion of the exhaust flow. This was also true for the tall stack configuration which had no splitters or wedges.

B. Acoustics.

1. The use of models for acoustic testing will give indications of configuration superiority when the same acoustic lining design is used. The magnitude of the attenuation obtained from model testing may not be attributed to full-scale hardware since the lining materials were not physically scaled; for example, the ratio of fiber diameter to wavelength or the scaling of perforated sheet hole diameter and thickness. Therefore, the direct comparison of model acoustic results to full-scale criterion must not be interpreted as having or not having satisfied a particular full-scale criterion, since the linings were not and possibly cannot be precisely scaled. However, as stated above, indications can be gained as to which configurations are superior acoustically. Full-scale linings must then be optimized and designed to provide the necessary suppressor noise reduction to satisfy the acoustic criterion.

2. The primary acoustic objective of this program was to compare (by one-sixth scale model tests) several configurations of exhaust muffler for a demountable exhaust suppressor system utilizing the Coanda air-cooled concept as applied to a Model TF30-P-412 nozzle at afterburning operation. Two lining thicknesses of stack wall lining were tested for relative acoustic performance to determine the additional low frequency attenuation of the thicker lining, if any. Four different short stack configurations were tested to establish which design was acoustically superior. These consisted of no splitter, single splitter, dual splitter and dual wedge short stack configurations. The test results were compared to MIL-N-83155B, Grade II criterion on a 250-foot scale radius.

I

Trime of

the second

[]

FIGURE 47: EXIT FLOW VELOCITY, MACH NUMBER AND TEMPERATURE PROFILE - SHORT EXHAUST STACK WITH DUAL WEDGE CONFIGURATION

TABLE 6 TOP CENTERLINE EJECTOR SURFACE TEMPERATURES TEST AVERAGE TEMPERATURE ("F) WITH MAXIMUM AND MINIMUM DEVIATION

I

ţ

B

0

0

0

0

0

0

0

0

0

0

	Ambient	Ambient	Ejecto	r No. 1	Ejecto	r No. 2	Ejecto	r No. 3
wooel comiguration	Ta	Tjet	r,	T ₃	TS	77	T ₉	TII
Ejectors and Coanda only, no acoustic ancioaure	79-5	3101 +20	380 + 19	1060 ⁺⁴⁶ -34	190 ⁺¹² -15	674 +31	780+36	932 ⁺³³ -28
Short stack without splitter and without inlet acoustic cover	8	3063	292	999	139	552	544	763
Short stack without splitter and with inlet acoustic cover	11+ 11- 11-	3069 + 29	314 +53	909 ⁺⁵⁵	145+16	556 ⁺³⁵ -29	641 ⁺⁴¹ -35	782 +48
Short stack with single splitter and without inlet acoustic cover	70 ⁺¹⁷ 70 ⁻¹²	3060 + 86	307 ⁺²⁷ -20	12+216 12+916	147 +17	574 +27	652 +41	05- 65+ 81
Short stack with single splitter and with inlet acoustic cover	70+23	3100 ⁺⁸⁵ -53	298 ⁺¹⁰ -11	885 ⁺²⁷ -36	145+24	549 ⁺²⁸ -28	617+32	766 +28
Short stack with dual splitters and without inlet acoustic cover	45 ⁺² 45 ⁻²	3067 ⁺²⁴ -33	285+34	966 ⁺ 26	129 + 6	597 ⁺¹⁶ -13	672 ⁺¹⁵ -17	854 +20
Short stack with dual wedges and without inlet acoustic cover	48+2	3113 ⁺¹⁵ 3113 ⁻ 22	288+19	905 ⁺¹¹ 905 ⁻ 9	136 + 2	606 ⁺ 4	686 ⁺ 8 - 5	854 + 7
Short stack with dual wedges and with inlet acoustic cover	2	3068	274	998	121	848	612	775
Tall stack without splitter and without iniet acoustic cover	71 ⁺¹⁴	3084 +4	294 +4	886 ⁺¹⁷ -18	144 +16	549 ⁺²²	627 ⁺²⁸ -29	764 +15
Tail stack without splitter and with inlet acoustic cover	64 ⁺¹⁸ -11	3078 + 23	305+32	908 ⁺³⁰ -27	140+23	551 ⁺¹³	625 ⁺²³ -26	783+23

NAEC-92-112

۹.

•

TABLE 7	SIDE CENTERLINE EJECTOR SURFACE TEMPERATURES	ERAGE TEMPERATURE ("F) WITH MAXIMUM AND MINIMUM DEVIATION
	SIDE	AVERAGE
		TEST

Madel Parliamentar	Ambient	Ambient	Ejector	No. 1	Ejecto	r No. 2	Ejecto	r No. 3
	Ta	Tjet	T2	14	T6	T.8	T10	T12
Ejectors and Coanda only, no acoustic enclosure	79 ⁺⁴ 79_5	3101 + 20	179 ⁺²⁶ 179 ⁻²⁵	694 +65 -56	683 ⁺⁴⁸	804 +56 -50	765+49	862 ⁺⁵⁶ -50
Short stack without splitter and without inlet acoustic cover	\$	3063	175	712	677	Yer	753	635
Short stack without splitter and with inlet acoustic cover	11+19 11-19	3089 ^{+ 29} - 43	166 ⁺²⁷ -36	640 ⁺⁶⁵ -65	631 + 43 - 64	734 +58	702 +42	780 +52
Short stack with single splitter and without inlet acoustic cover	70 ⁺¹⁷ -12	3060 ⁺ 86	174+13	690 ⁺³⁹	651 +44 -68	19- 11	718+40	814 +41
Short stack with single splitter and with inlet acoustic cover	70+23	3100 + 85 - 53	174+19	660 ⁺⁵⁴	644 +54 -93	753 +59	705+51	18-181
Short stack with dual splitters and without inlet acoustic cover	45 ⁺²	3067 +24	156 ⁺¹² -14	661 ⁺³¹ -32	625 +41	744 +40	669 + 35 - 30	799+73
Short stack with dual wedges and without inlet acoustic cover	48+ 5 - 1	3113 +15	167 + 6	680 ⁺¹⁰ -16	641 +9 641 -20	757 + 9	716 + 9	791 +12
Short stack with dual wedges and with inlet acoustic cover	\$	3068	172	701	664	782	745	615
Tail stack without splitter and without inlet acoustic cover	71 ⁺¹⁴	3084 +4	167 ⁺¹² -13	636 ⁺³⁹	606 ⁺²⁸ -28	713+42	680 ⁺²³ -23	759+34
Tail stack without splitter and with inlet acoustic cover	64 + 18 64 - 11	3078 + 23	166 +22	637+48	624 ⁺³⁵ -22	730+47	685 ⁺³⁶ -20	768 +50

[]

NAEC-92-112

				TABLE	8		
		EXH	AUST M	UFFLER TE	MPERATURES	-	+17
SHORT S	STACK	WITH	SINGLE	SPLITTER	CONFIGURAT	ION (T	= 70_10 °F)

I

I

To a

1

1

0

0

0

U

[]

0

0

[]

Thermocouple Number (See Fig. 31)	General Location (See Figure 31 for Exact Location)	Average Measured Temperature With Maximum and Minimum Deviation (°F)							
T23	Stack Forward Wall - Lower	781 + 64							
T24	Stack Forward Wall - Upper	386 + 38							
T25	Stack Sidewall - Upper Forward	837 + 23 - 33							
T26	Stack Sidewall - Upper Aft	963 + 49							
T27	Stack Sidewall - Center	1023 + 21 - 45							
T28	Stack Sidewall - Lower Forward	802 + 54							
T29	Stack Sidewall - Lower Aft	888 + 60							
T30	Stack Aft Wall - Lower	884 + 32 - 36							
T31	Stack Aft Wall - Upper	986 + 53 - 59							
T40	Splitter Leading Edge - Forward	1294 + 32 - 32							
T41	Splitter Leading Edge - Center	1129 + 38							
T42	Splitter Leading Edge - Aft								
T43	Splitter Sidewall - Upper Forward	922 + 26 - 16							
T44	Splitter Sidewall - Upper Aft	1034 + 37 - 51							
T45	Splitter Sidewall - Center	1136 + 31 - 58							
T46	Splitter Sidewall - Lower Forward	1295 + 26 - 31							
T47	Splitter Sidewall - Lower Left	812 + 58							
T65	Enclosure Floor - Aft	208 + 45 - 38							
T66	Aft Enclosure Sidewall - Upper	568 +113							
T67	Aft Enclosure Sidewall - Lower	497 + 46							

TABLE 9 EXHAUST MUFFLER TEMPERATURES - +10 SHORT STACK WITH DUAL SPLITTER CONFIGURATION (Ta = 54 -9° F)

Thermocouple Number (See Fig. 32)	General Location (See Figure 32 for Exact Location)	Average Measured Temperature With Maximum and Minimum Deviation (°F)						
T65	Enclosure Floor - Aft	210 ± 8						
T69	Aft Enclosure Sidewall	738						
T70	Aft Enclosure Sidewall	649						
T71	Stack Sidewall - Upper Forward	772 ±28						
T72	Stack Sidewall - Upper Aft	970 ±31						
T73	Stack Sidewall - Center	1019 ±33						
T74	Stack Sidewall - Lower Forward	803 ± 9						
T75	Stack Sidewall - Lower Aft	901 ±23						
T76	Stack Forward Wall - Upper Outboard Passage	317 ±19						
TT	Stack Forward Wall - Upper Center Passage	924 ±20						
T78	Stack Forward Wall - Lower Outboard Passage	1164 ±11						
T79	Stack Forward Wall - Lower Center Passage	1318 ± 7						
T80	Stack Aft Wall - Upper Outboard Passage	982 ±27						
T81	Stack Aft Wall - Upper Center Passage	1005 ± 4						
T82	Stack Aft Wall - Lower Outboard Passage	925 ±27						
T83	Stack Aft Wall - Lower Center Passage	870						
T84	Splitter Sidewall – Upper Forward Outboard Passage	737 ±40						
T85	Splitter Sidewall - Upper Forward Center Passage	1302 ±14						
T86	Splitter Sidewall - Upper Aft Outboard Passage	1043 ±31						
T87	Splitter Sidewall - Upper Aft Center Passage	1088 ±11						
Tas	Splitter Sidewall - Center Outboard Passage	1115 ±37						
T89	Splitter Sidewall - Center - Center Passage	1229 ±10						
T90	Splitter Sidewall - Lower Forward Outboard Passage	1197 ±33						
T91	Splitter Sidewall - Lower Forward Center Passage	1370 ±12						
T92	Splitter Sidewall - Lower Aft Outboard Passage	860 ±23						
T93	Splitter Sidewall - Lower Aft Center Passage	899 ± 5						
Tg4	Splitter Leading Edge Forward	1368 +26						
T95	Splitter Leading Edge - Center	1219 + 21						
Tas	Splitter Leading Edge - Aft	893 ±12						

I

I

I

The second

[]

1

-

Ĩ

T

I

I

I

I

TABLE 10 EXHAUST MUFFLER TEMPERATURES -SHORT STACK WITH DUAL ACOUSTIC WEDGE CONFIGURATION (T_a = 45 $^{+2}_{-6}$ °F)

Thermocouple Number (See Fig. 33)	General Location (See Figure 33 for Exact Location	Average Measured Temperature With Maximum and Minimum Deviation (°F)						
T ₆₉	Aft Enclosure Sidewall - Upper	517 + 65 - 35						
T70	Aft Enclosure Sidewall - Lower	418 + 26						
771	Stack Sidewall - Upper Forward	588 + 41						
T72	Stack Sidewall - Upper Aft	874 + 28 - 25						
T ₇₃	Stack Sidewall - Center	902 + 23 - 21						
T74	Stack Sidewall - Lower Forward	810 + 27 - 33						
T ₇₅	Stack Sidewall - Lower Aft	722 + 18 - 19						
T76	Stack Forward Wall - Upper Corner	331 + 37 - 31						
TTT	Stack Aft Wall - Upper Center	119 + 20 - 17						
T ₇₈	Stack Forward Wall - Lower Corner	517 + 40						
T79	Stack Forward Wall - Lower Center	519 + 27 - 17						
T80	Stack Aft Wail - Upper Corner	865 + 46 - 29						
T ₈₁	Stack Aft Wall - Upper Center	876 + 54 - 34						
T82	Stack Aft Wall - Lower Corner	807 + 41 - 38						
T83	Stack Aft Wall - Lower Center	808 + 62 - 42						
T97.	Wedge Leading Edge - Upper	924 + 36						
T98	Wedge Leading Edge - Upper Center	840 + 67 - 36						
T99	Wedge Leading Edge - Lower Center	545 + 41						
T100	Wedge Leading Edge - Lower	392 + 33						
T ₁₀₁	Wedge Sidewall - Upper Center	795 + 52						
T102	Wedge Sidewall - Lower Center	671 + 56						
T103	Wedge Sidewall - Lower	464 + 61 - 49						

10

TABLE 11 EXHAUST MUFFLER TEMPERATURES -TALL STACK CONFIGURATION (Ta = 82°F)

0

[]

0

0 0

Thermocouple Number (See Fig. 31)	General Location (See Figure 31 for Exact Location)	Average Measured Temperature With Maximum and Minimum Deviation (°F)
T23	Forward Stack Wall - Lower Section	855
T24	Forward Stack Wall - Lower Section	958
T25	Stack Sidewall - Lower Section	1058
T26	Stack Sidewall - Lower Section	954
T27	Stack Sidewall - Lower Center	119
T28	Stack Sidewall - Lower Section	1043
T29	Stack Sidewall - Lower Section	641
T30	Aft Stack Wall - Lower Section	151
T31	Aft Stack Wall - Lower Center	929
T ₃₂	Forward Stack Wall - Upper Section	464
T33	Forward Stack Wall - Upper Section	746
T34	Stack Sidewall - Upper Section	577
T35	Stack Sidewall - Upper Section	888
T36	Stack Sidewall - Upper Section	952
T37	Stack Sidewall - Upper Section	1028
T38	Aft Stack Wall - Upper Section	941
T39	Aft Stack Wall - Upper Section	1001
T65	Enclosure Floor - Aft	216
T 66	Aft Enclosure Sidewall - Upper	415
T67	Aft Enclosure Sidewall - Lower	193
T68	Forward Enclosure Sidewall	94

3. All lined surface areas consisted of Johns-Manville Glas-Mat 1200 material covered with perforated sheet of 45 percent open area, 5/64-inch diameter holes and .047-inch thickness. This material is a mechanically bonded glass fiber insulating blanket for use to 1200°F. It is manufactured entirely of long textile glass fibers and contains no binders, thereby assuring mechanical integrity during extended exposure at elevated temperatures.

4. No attempt was made to optimize the lining design experimentally to obtain improved acoustic performance. The material selected was based on temperature requirements and lead time availability. The acoustically preferred material (J-M Cerafelt) had a lead time incompatible with the test schedule. It is anticipated that the Cerafelt would perform better than the Glas-Mat 1200 but the magnitude of improvement is uncertain without testing.

5. The lining material, as manufactured and delivered, was not of uniform thickness and density. Therefore, the material for each acoustic panel was weighed and an average density calculated. The lining material acoustic properties are thus given in terms of the average density (pcf) and average resistivity (rayl/cm). The resistivity was determined by flow resistance testing and defined as a function of density by:

 $R = .118 \rho^{2.75}$ (rayl/cm)

where p is the density (pcf).

The acoustic panels for the suppressor components had the properties given in Table 12.

	Lining Thickness (Inches)	Average Density (PCF)	Average Resistivity (RAYL/CM)		
Short stack walls (1)	2.75	11.63	100.5		
Short stack walls (2)	4.13	11.58	99.33		
Tall stack extension (1)	2.75	11.48	96.99		
Tall stack extension (2)	4.13	11.79	104.4		
Single splitter	2.75	11.7	102.2		
Dual splitter	1.38	11.26	92.0		
Dual wedge	*	10.59	77.69		
Enclosure back wall	4.13	12.18	114.1		
Enclosure lower sidewalls	4.13	11.43	95.8		
Secondary air inlet	.94	10.45	74.9		

TABLE 12 ACOUSTIC PANEL PROPERTIES

*See Figure 19

Note: Lining thicknesses are model scale.

	BACK BACK STRAND	Run Number																				
		10	26	31	32	33	36	37	38	39	40	41	44	45	46	55	58	59	60	61	62	71
1.	Model nozzle	x	x	X	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	X	x	x
2.	Secondary air cover			x	x	x	x		x	X	x	x	x	x								
3.	Short stack (1)		x	x	x	x			X	x	X											
4.	Short stack (2)												X			X	x	X	X	x	X	X
5.	Tall stack (1)						x	x				x										
6.	Tall stack (2)													x	x							10
7.	Back wall lining		x	X	x	*	x	x	x	x	X	x	x	X	X	X	x	X	X	X	X	*
8.	Lower wall lining															x	x	X	x	*	*	*
9.	Single splitter		x	x		x			*	*									x			
10.	Dual splitter																	x		x		*
11.	Dual wedge															X						

TABLE 13 ACOUSTIC TEST CONFIGURATION SUMMARY

Notes:

All runs had burner cover except Run No. 10

*Denotes hard wall elements

(1) Denotes 2.75-inch lining thickness (16.5-inch full scale)

(2) Denotes 4.13-inch lining thickness (24.8-inch full scale)

6. The test configurations that produced significant acoustic results are defined in Table 13. These configurations represent a parametric variation of suppressor elements to determine which combination produced the best noise suppression using the lining design discussed above. The short stack (full-scale 30-foot height) and tall stack (full-scale 54-foot height) utilized two lining thicknesses, 2.75-inch and 4.13-inch model scale (16.5-inch and 24.8-inch) full scale, respectively). The acoustic effectiveness of each lining element was determined by testing with hard walls substituted for the linings.

7. The walls of the suppressor were sandbagged (Figures 26 and 27) to prevent sound transmission through the walls from establishing the acoustic noise floor for the suppressor system. An acoustically treated burner cover (Figures 23, 24 and 25) was placed around the primary burner and afterburner section to stimulate the engine test cell. The sandbagged walls and the burner cover permitted the acoustic evaluation of the secondary air inlet and exhaust stack without significant noise contribution from the walls and simulated engine enclosure. This condition was verified experimentally.

8. The one-sixth scale model sound pressure levels were measured at ground level on a 41.67-foot radius (250-foot full scale) at 15-degree intervals from 15 degrees to 180 degrees. The atmospheric absorption was removed from the third octave band model scale data, the frequencies translated to full scale and the standard day (77°F and 70 percent relative humidity) atmospheric corrections applied to obtain the full-scale 250-foot data. The third octave band data were converted to full octaves so that direct comparison could be made to the Grade II criterion of MIL-N-83155B.

The Grade II criterion applies to a microphone height of five feet above the ground plane. Sound pressure levels measured near the ground plane will not exhibit the amplitude interference produced at the five-foot microphone by acoustic path length differences between the direct and ground plane reflected signals. Therefore, the ground plane acoustic data presented here will be conservatively high. A theoretical estimate of the magnitude that the ground plane microphone exceeds that of a five-foot high microphone for source heights of 30 feet and 54 feet (exit of short and tail stacks) at a horizontal distance of 250 feet is shown on Figure 48. These corrections should be subtracted from the ground plane measured data for a more accurate comparison to the MIL-N-83155B, Grade II criterion.

The far field data are presented in four sets so that direct comparisons can be made to determine the relative acoustic efficiencies between configurations. The baseline data for the TF30-P-412 model nozzle at afterburner condition and the MIL-N-83155B, Grade II far field criterion are represented on each data set for the 12 angles between 15 degrees and 180 degrees.

The first data set, Figures 49 to 51, determines the lining efficiencies for the short single splitter stack configurations with the 2.75-inch wall lining. Refer to Table 13 for the exact configuration definition. These comparisons show the effectivity of the lined stack walls and the lined splitter relative to their hard wall counterparts. The data indicate that the suppressor redirected the sound radiation producing levels higher than the baseline at several angular locations. This set of data shows that significant attenuation (10 to 15 db in the midfrequency range) can be obtained with a single splitter short stack using the lining design discussed previously. The overall A-weighted sound pressure level (OA dBA) is also given for each configuration.

The second data set, Figures 52 to 54, compares the performance of the tall stack configurations utilizing 2.75-inch and 4.13-inch wall linings and with and without the secondary air inlet cover. The effectiveness of the wall lining was determined relative to the hard wall configuration. The comparisons show that the 4.13-inch lining does not produce significantly higher attenuations than the 2.75-inch lining and, therefore, for this lining design, the thinner lining was as effective. The configurations with and without the secondary air inlet cover indicate that the air inlet did not contribute significantly to the far field levels. Therefore, the far field levels are determined by the noise radiated from the exhaust stack, since the noise radiated from the sandbagged suppressor walls was insignificant.

The third data set, Figures 55 to 57, compares the configurations that show the transition from the 30-foot (no splitter) to the 54-foot full-scale stack height. Originally, two full-scale stack heights were selected to be tested, a 30-foot stack with one or two splitters and a 40-foot stack without splitters. The 30-foot stack single splitter divided the flow area into two passages with 40-inch full-scale duct heights. The proposed 40-foot stack was to have the same flow area. To prevent the necessity of modifying the structure of the model at the stack location, the length of the short stack was extended to a height of 45 feet (full-scale) which results in an equivalent length to duct height ratio to that of the proposed 40-foot stack. Therefore, the 54-foot and 40-foot stack will provide similar acoustic attenuation; however, the 14-foot increase in stack height will result in lower levels on the ground plane at the 250-foot full-scale radius due to the directivity of the stack. Assuming a linear relationship between the stack height and directivity effect, the amount to be added to the measured 54-foot stack data to obtain the approximate 40-foot stack levels can be obtained. Thus, comparing Runs 40 and 41 for the 30-foot and 54 foot hard wall stacks and adding 14/24 of the difference to the levels for the lined 54-foot stack data will give the approximate levels for the 40-foot lined stack. This computation was not applied to the data since the important feature of the comparisons is the relative performance of the different configurations. The spectrum differences between the hard wall and lined configurations for the two stack heights give the respective lining attenuations.

The fourth data set, Figures 58 through 60, compares those short stack configurations that utilize either splitters or wedges. The wedges were tested to determine their low frequency effectivity. The comparisons show that they provide more attenuation at the low frequencies (below 500 Hz) but less at the high frequencies than the dual splitter configuration.
Symbol	Acoustic	Configuration

30-Ft. Source Height, 5-Ft. Microphone Height @ 250 Ft.

0

54-Ft. Source Height, 5-Ft. Microphone Height @ 250 Ft.

FIGURE 48: GROUND PLANE REFLECTION CORRECTION FACTOR FOR 5-FOOT MICROPHONE HEIGHT

I

Ĩ

1

0

NAEC-92-112

FIGURE 50: FAR FIELD ACOUSTIC DATA - 75", 90", 105" AND 120" POSITIONS - SHORT EXHAUST STACK WITH SINGLE SPLITTER CONFIGURATION

Identification (See Table 3)

Far Field Criteria MIL-N-831558 Grade II Baseline, TF-30-P-412 Afterburner Nozzie Total Stack Lined W/O Inlet Cover Total Stack Lined W/Inlet Cover

OA DBA

165°

90.00

108.71

104.47

180°

90.00

98.71

102.58

150

90.00

122.47

103.52

Symbol Run

10

26

1

[

[]

135°

90.00

128.74

101.45

SHORT EXHAUST STACK WITH SINGLE SPLITTER CONFIGURATION

1

1

Contraction of the local division of the loc

C. Martin

I

1

FIGURE 54: FAR FIELD ACOUSTIC DATA - 135", 150", 165" and 180" POSITIONS - TALL EXHAUST STACK WITHOUT SPLITTER CONFIGURATION

0

[]

1

[]

EFFECTS OF STACK HEIGHT AND LINING THICKNESS

[]

FIGURE 58: FAR FIELD ACOUSTIC DATA - 15°, 30°, 45° and 60° POSITIONS - COMPARISON OF SINGLE AND DUAL SPLITTERS AND ACOUSTIC WEDGES

Ø

FIGURE 60: FAR FIELD ACOUSTIC DATA - 135", 150", 165" and 180" POSITIONS - COMPARISON OF SINGLE AND DUAL SPLITTERS AND ACOUSTIC WEDGES

The near field data are presented on a one-third octave band basis on Figure 61. The microphone locations and identification are given on Figure 31. These data are representative of the sound pressure levels that exist interior to the suppressor system. These data are from Run 39 for the short single splitter stack configuration with the stack and splitter walls hard. The effectivity of the secondary air inlet lining is indicated by the difference between the levels of microphones N4 and N6. The acoustic performance of the secondary air inlet was adequate relative to the performance of the exhaust suppressor system. An accurate determination of the sound radiated from the secondary air inlet could not be obtained since the noise radiated from the exhaust stack exit was the dominant noise source of the suppressor system.

IV. CONCLUSIONS

The conclusions that may be drawn from his series of model tests are:

- The 65-degree Coanda flow turning was sufficient to allow the flow to exit vertically from the stack without detrimental impingement of the aft stack wall. The acoustic wedges seem to cause more attachment to the aft stack wall than the other configurations. For that configuration, a greater turning angle (i.e., 73 degrees) would cause a more uniform stack flow. However, for acoustic reasons, this would probably require an increase in stack height.
- Movement of the secondary air inlets to above the ejectors and Coanda surface proved advantages because of the additional cooling provided to those components.
- The configuration utilizing acoustic splitter panels in the exhaust muffler is not acceptable (as currently designed) from a metal surface temperature standpoint. The tall stack without splitters and the acoustic wedge configuration, however, demonstrated acceptable exhaust muffler surface temperatures.
- The 2.75-inch stack lining performed comparable to the 4.13-inch lining. This indicates that these
 lining designs have thicknesses such that, for the frequency range tested, the surface impedance
 of the linings approximates the characteristic impedance of the material (J-M Glass-Mat 1200).
 This indicates a possibility that the thickness of the model lining could be reduced further.
 Additional testing would be required to determine the minimum lining thickness.
- The tall (54-toot) stack was the superior acoustic configuration tested.
- The best short stack configurations, from the acoustic standpoint, were the dual wedge and dual splitter configurations. The superior configuration of the two would have to be decided from full scale optimization studies.

V. RECOMMENDATIONS

The following recommendations are made based on the results of the testing described in this report and the primary goals of the Navy Coanda ground noise suppressor program:

- Model testing should be accomplished with the goal of improving the mixing in the ejectors and Coanda flow turning. The result of improved mixing would be lower temperature and lower velocity flow through the exhaust's muffler (stack) so that configurations with splitters could be used. This could possibly be accomplished by widening the ejectors and Coanda surface thereby increasing the area of flow available for mixing, reducing the height of the sheet of hot flow entering the Coanda surface which, in turn, would reduce the mixing length.
- The recommended production configuration consists of an exhaust stack without splitters or wedges and with a flow exit area equal to that used for the configurations with splitters (6.67 feet wide by 19.67 feet deep which is 131 square feet full scale). The stack height above ground should be at least 40 feet with the capability of adding to this height, if necessary, to improve acoustic suppression. The exhaust muffler stack walls and lower enclosure back wall should be lined with at least 35 percent open perforated sheet backed by 18 inches of acoustic treatment (Johns-Manville 1000 series Spinglas or equivalent). The lower enclosure should be the double, isolated wall construction developed previously and reported in Reference 3. The secondary air inlets should be placed above the ejectors and Coanda surface as in the model tested. The ejector and Coanda surface configurations shown on Figure 21 scaled up to full size (6 x model) should be used. This recommended configuration is presented in more detail on the Reference (f) configuration control drawings supplied to the Navy.
 - Reference (f): Naval Air Engineering Center Drawing 690AS108, "Drawing Tree Noise Suppressor System, Coanda/Refraction."

VI. REFERENCES

- a. Ballard, R. E., Brees, D. W., and Sawdy, D. T., "Feasibility and Initial Model Studies of a Coanda/Refraction Type Noise Suppressor System," The Boeing Company, Wichita, Kansas, Document D3-9068, January 1973.
- b. Ballard, R. E., and Armstrong, D. L., "Configuration Scale Model Studies of a Coanda/Refraction Type Noise Suppressor System," The Boeing Company, Wichita, Kansas, Document D3-9258, October 1973.
- c. "Test Cell Experimental Program Coanda/Refraction Noise Suppression Concept Advanced Development," Final Technical Report for Navy Contract N00156-74-C-1710, Navy Document Number NAEC-GSED-97, The Boeing Company, Wichita, Kansas, March 1976.
- d. "Aircraft System One-Sixth Scale Model Studies, Coanda/Refraction Noise Suppression Concept – Advanced Development," Final Technical Report for Scale Model Portion of Navy Contract N00156-74-C-1710, Navy Document Number NAEC-GSED-98, The Boeing Company, Wichita, Kansas, March 1976.
- "GENEG-A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines," NASA – Lewis Research Center Document Number TND-6552, February 1972.
- f. Naval Air Engineering Center Drawing 690AS108, "Drawing Tree Noise Suppressor System, Coanda/Refraction."

	VII. LIST OF ABBREVIATIONS, ACRONYMS AND SYM	BOLS
A.R.	Ejector area ratio - ratio of ejector minimum flow area to pri	mary exhaust nozzle area
CPH20	Specific heat of water	
t/a	Fuel-to-air ratio	
h	Total enthalpy, btu/lb	
ha	Total enthalpy for air, btu/lb	
hta	Enthalpy of incoming fuel (assumed to be 23 btu/lb)	
htc	Enthalpy correction factor for combustion products, btu/lb	
hin	Total enthalpy of afterburner inlet airflow, btu/lb	
hout	Total enthalpy of afterburner exhaust, btu/lb	
Hv	Lower heating value of fuel, 18,400 btu/lb	
Pa	Ambient pressure, psia	
Ps	Static pressure, psia	
P.R.	Nozzle pressure ratio - exit total pressure/ambient	
R	Resistivity, rayl/cm	
RO	-1.7558886	
R1	2.5020051 × 10 ⁻¹	
R ₂	-2.576844×10^{-5}	
Rg	2.1839826 × 10 ⁻⁸	
R4	-1.6794594 × 10 ⁻¹²	
R ₅	-3.0256518 × 10~15	
. R ₆	1.270263 × 10 ⁻¹⁸	
R7	-2.0752522 × 10-22	
Re	1.264425 × 10 ⁻²⁶	
Rto	30.58153	
Rf1	7.3816638 × 10 ⁻²	
Rt2	6.129315 × 10 ⁻⁴	
Rt3	$-4.5906332 \times 10^{-7}$	

I

I

I

R

[]

[]

0

0

0

Π

[]

I

Rt4	2.4921698 × 10 ⁻¹⁰
Rts	-8.4102208 × 10 ⁻¹⁴
R16	1.7021525 × 10 ⁻¹⁷
Rt7	-1.9050949 × 10 ⁻²¹
Rtg	9.0848388 × 10-26
т	Temperature, *R or *F
Tin	Afterburner inlet temperature, "R
Tout	Afterburner exhaust temperature, "R
TLHOO	Cooling water inlet temperature, *R
THHO	Cooling water outlet temperature, *R
ATH20	Cooling water temperature rise, degrees
ŵ _{cp}	Total airflow at Coanda entrance, Ib/sec
ŵ _{cs}	Secondary airflow entrained along Coanda surface, lb/sec
ŵe,	Secondary airflow entrained at first ejector entrance, lb/sec
we2	Secondary airflow entrained at second ejector entrance, lb/sec
ŵe3	Secondary airflow entrained at third ejector entrance, lb/sec
ŵr A/B	Afterburner fuel flow, lb/sec
ŵ _{tp}	Primary burner fuel flow, Ib/sec
WH20	Cooling water flow rate, Ib/sec
WA/B. Wjet	Total jet exhaust flow, lb/sec
ŵs	Measured secondary air intake airflow, lb/sec
a	Coanda entrainment coefficient - Wcs/Wcp
θa	Ambient temperature (°R)/518.67
ða	Ambient pressure (psia)/14,696
P	Density, pcf
ηΒ	Afterburner efficiency

0

0

0

0

0

¥.

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS (CONT'D)

80

The second and the second se

The second

DISTRIBUTION LIST

REVISION LIST

REVISION	PAGES AFFECTED	DATE OF REVISION

4ND-NAEC 5213/38 (10-77)

1

1