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This report studies radar backscattering from a vegetated
terrain. Tae vegetation 18 mocdelled by spherical water droplets
whtich can be treated as Jdiscrete scatterers. The vegetation is
assumed suflicisantly lossy so that the underliying ground is not
roticesble.  The method of Foldy is used to evaluate the mesn
field in the vegetation when the wavelength of the incident radi- ‘
&tion ix large compared to the droplet size. Once an equivalent ‘}fhf
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dielectric constant for the vegetation is obtained by the Faldy
technigue, single scittering is employed to evaluate the back-
scartering cross section. The resulting expression is found to
compare favorabiy with experimental data. In addition to the
three dimensional work, & one dimensional problem is analyzad.
This analysis is compared with the Foldy approximation in the high
dengity limit.
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I. INTRODUCTION

This report stcudies microwave backscattering from vegeta-
ted terrain. Discretc random media theory i1s employed in an
effore to relate the backacattering cross section to charac-
teristic oblects in the vegetation. The resulting theory is
then compared with results cbtained by more empirical methods.

The study i{s motivated by the need to relate radar return
o the characteristics of the scattering objects. This situ-
ation is particularly complex in the case ¢ vegetated terrain
which conglisgts of an ensemble vf many highly irregular objects
placed in a more or less randem fashion. Using the gcattered
return from a vegecated terrain one would like to cbtain such
information a3 heisht, density and moisture coatent of vege-
tated regions in additicn to obta.ning the characteristic
shapes of scatterers, x¢ that the vegatation can be clasgi-
fied. This tvpe 0f information would ke impertant for

military anaiysis of the terrain. In addiz:ion, 1f the terrain

"

could he determined adeguately from an ersctromagnetic point
of view, the bacxscatterer informasicn ceunlid be used Lo pre-
dict returns at cother angles and freguencies not measured,

This would be of great s:d to the develcopment of manageable

daca bases for radar sinulations,
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The above applicaticas ° ger ool
the levelopment of electromag. 2n.o wsrdels for the vegystated

),

terrain, These models have bhean Conwiracved Dy replacing the
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i characteristics ace related to the physical guantities in the
medium. The models can be divided into two catagories:
continuous and discrete. In the confinwus case, the vegeta-
tion i3 modeled by agzsuming its permittivity <(r), is a random
process whose moments are known. The average hackscattering
cross-section is then ca culated from a knowledge of the sta-

tistics of ¢(zr). Usually just the mean and correlation of the

permiteivity are required. Following this, some gquasi quanti-

tative technigues are used to relats the medium's statistics

to the actual vegetation under ccnsideraticn. General devel-

: . ] i
opment of these technigues are attriluted to Kaller( )

v c (2 Coen :
Tatargkil and Gertsenshtein , however, particular applica-

(3
ng ),

and

ticns o vegetated terrain have been made by La

4) {(3)

¢ o
Heveanor and Fung

Wwhen model ing ts done by the discrete

Isl
43

chhigue, Oon the

14

2 other hand, the indiv:idual objects in the medium, sSuch as

s

leaves, are ldentified by their Zeterministic Cross section,

and then each oblect 18 placed randomiy and 1ts position 18

y—

jiven by means of a probabilicy density funcrion. The average

backscattered oross secticon s computed in such a raay that all
B multiple interact.:ocn between obrects 1s acceunted for. The

slopment =f these technigques has been made by
7 (8

gvstematic dev
{6 . (7}

Foldy , —ax and Twersky discrets
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rechnigue Lo vegetastiscn, tnera 13 no nead ©o relate thae oor-

Function of the medium ©o the scattaring oblect, as
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As mentioned earlier, we will employ discrete scattering
technigues to model the vegetation. We assums a lossy half
space of vegetation is present, {.e., one in which the ground

is not visible. UWe then consider the vegetation to be made up

of small water droplets which are randomly distributed. In
Section II, the aversge backscattaring cross section is found
by asguming the electromagnetic fiei1d can be freated as a
scalar field. The Foldy technigue ig employed to calculate
the field. This technigque regquires that the scatterers be in
the Rayleigh regime, i.e., small compared to the wavelength,
The use of the scalar assumption introduces difficulties in
explicitly evaluating the <ross section. Thesa difficulties

are removed in Jecticn IIX where the full electromagnetic

(]

problem is trested for horizontal polarizaticon. In Section

IV numerical results are presented and compared with data

from nther gour~ag, Tarv_ i3 reg% - Llons are placed on the
use of Foldv'ec technique in Section V. There a cne dimanaion-
al model s analvyvzred exactiy and examined in the thermodynamic

Yo

{ . wy s ¥ N AP o &
iscn 18 made wilh wie zpproxinate Jeswall X

[
Jo
5
-
I3
>
s
2 )

s
2]
&4

(44
o 5
[+
)
O
? -
[N
S
®
-~
54
&
[0



R W-ﬂ-mwﬂwm--wmmmwn-- ST T R T AT A T TR R T T R R R R e AR

IT. TISOTROPIC SCATTERING BY A HALF-SPACE OF RANDOMLY

DISTRIBUTED SPHERES

In this chapter the problem of multiple scattering of
scalar wvaves by a half-space of randomly distributed dielec-
ric spheres is considered, The spheres are assumed to be of
the same size and their radius is taken much smaller than the
wavelength of the i{ncident wave. In addition, we also assume
that the spheres zre independent and unifcormlyv cistributed.

An approximate expression for the mean field .3 derived
by employing Foldy's msthod(s). This approximate mean fileld
is then used along with the Born approximation <o calculate
the backscattered Zield. The scattaering ccefficient 1is than

obtainad from tne backscattered field.

2-1 SINGLE SCATITERING
Consider a half-space {(2>C) of randomly distributed
sphe-es (see Fig. 2-1)!. A scalar wave JO(E) w axp (-jﬁo-r)

with harmonic vime dependence exp (j.t) is incident upcen the

Lo

scatterers. The angle of inctlence i3 <. In free space .,

gatisfies the wWwave eaguation.

wvhore w, = APZOEB and

WA

Ly

and ¢ are the “ree ‘.’IE' it 4 I TR AL
ity and permitivity respectivelr,
¥ & J L

]

The wave scottered by & single ephers whnich s small com-

CAred T owans.Length a% given Dy

g e e
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y (r) = A Sir~r {2-

here

qo(g) = exp (-jko r /47 x {(2-2a&)

is the free space scalar Green's function which satisfies the

wave equat.on:

[

',':r'('X}“K
10;-@{1

3

r-r |}
2= ~n

- —f{

) (2-3)
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§ o.zperties of the scheres are characterized by
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which makes ~he strengsn 0f ¢the scattered wave Irom the n-—
sphere croporz.cral to the externa. field |
1t. The proportionality onstant « 18 calied the scattering
coefficient and 1s the same f0r 3.! upheres. The simple
spherica. wave behav.or 53¢ zhe gcattered frell results from
the assunptoon what the fields are aporoximately constant in
the virwn:ity of the sphere. As 5 resust, #ach sphere can be
repiaced Ly a point source located at 1is origin (Rayleigh =z2s-
sumption’

-2 MEAN FIELD

Now consilder scattering by N spheres which are all small

o - oy . N ¥ gy T I
sompared T wavelength and distribuved randumay 03 VOOANe v
s ; P - “ ey P P L 2 P R S s = b PP oy ey
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particular scatterer is locared in the volume V is independent

of the locations of the other scatterers, thus wa o2n write
PUXy Zoveo By) = PIEIR(E,) ...l (2-5)

where p (r,? = é. {(2-6)

The fundamental equations of multiple scattering will
now he formulated. Consider a particular configuration of the

spheres., The wave function at the int r is given b
P z

n .
- {n} -
gir) = y_(r) = . ¥ e glrer ) Y o™
- o= el w (-—ﬂ &UE. in {2=7)

The eguat:on represents zhe fiagld ag the sum of the incident

wave and spherical waves diverw:nc from each of the spheres.

The external field acting con the nth scatterer .5 then
. N .
L A T N 'w(a?,r g4z, =€ ) {2-B)
et g =n P A U T
L9 ot

The equations (2-7) and {2-8) represent the fundarental egua-~

tiong of muliple sTcartering.
T™e direct method of solwving the problem would then con-

818 Of solving the set of s.multaneous linear algebrailc Egs.

int N

(2-8Y for we . {r 1 and substicuting these in Eg. (2~7),
thus giving «{r; as a function 0f the pos.tions and scettering
paramaters of the spheres. Taking the mean va.ue of this

§

guant ity wouid then give us the Jdesired results.
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Unfortunately, it does not seem possidble to carxy out this pro-
cedure bevause of 1ts complexity when N isg large and it is
necessary to resort to another procedure., This alternative
method consists of attempting to find an approximate equat.on
satisfied by -, {r)- and then solving this equation for the
SR 8 IR

We now proceed to find an approximate eguation for «,(r)> by
taking the mean value of both sides of Fgq. (2-7). We hawve

. (:_n)qga_{ E_ﬂ) {2-9)

By using the defanstion of the mear value we have for the

bracketed part of the right hand side

(n} A : (n) .
< ) p b om SR NG S SIS SR A O SR S A OGd -
(rWptr-r, j f 1 “iptth ST (£, rofr ‘g-n)

{2-10)

From probability theory we know that (10)
R R P RA TS BRSO A (2-11)
Noate thoar ) (r 1, as we can sec from Eg. (2-8), depends

on the paosition of ail the other aspheres but (;U{z'~rn) depends
only on the pos:tion of the nth sphere.  Incorporating Eg.

(2-11) anto Egq. (2-10) we obtarn

Kal
. r Wy -y e odr Qfr=~y Jplr ) SN QPPN ¢ X
(r Mo n J n R N R N S AR S fhnelfenel’ ’
Yo ) (¢ 1 dr dx dr
; HIER JEEFSRNE S PR .
H o IR A ~n=1"=n+ 1 ~N
{2-1 41
-

RN
o N T e o R .
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Denote

: " {n!,
<yl x ) e F 0 e L, .0 r PR SV e e ddy,, ...
“ i ) wi jg -1’ D R T S N TR S !

. Vo] O
dgn“ldgn*L”*“’dEN {2~13)

The quantity t;(§n75ﬂ)> represents the external fiasld

. th Y e .
acting on the n gphers aversged over all possiblie configu-
rations of all the other spheres. For large N we approximate

th .

the external f:el!d on the n sphere by the mean field which

. , ‘ th
would exist at the position of the n  sphere when the sphere

i3 not present. Thus we can writ

“wlr e le o) {2-14)

By using £ge. (d~14)}, 1l-13), Eg. (2«12} becones

(o) .. . s
v ir Fglz-x > om fdr Fglrer Segiz depir) {2-1%5)

The guantivy < (£, Mylr-x 1 * 13 the same for all the

spheres. Suabsvistuting Lg. (I~15) ante Bz, (2-9) va obtain

-
LRI ‘x B . ¥ # N :-j - “:'*Yi o . oo \ { 2-“ e g
i "3 IR Sl Yol beA oy +9)
. . . . ¢ e - N
But fxow Eg. (21-6) we have I *l% thus Bg. (2-16) becomas
Twlrle e o o{ri s ot B {2-17)
W =%
Taking the limyr af neon gidew asg o and New ga nave
"
§
-t e . - . v e - SRR
o LY vt T I=F R WSl 4 - S ;'?if‘l ¥ v
-

W

o i s s =
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To ses the physicel sigrificance of the Fg. (2-18), let

us apply the operator, 77 + ké to both sides of Eq. (2-18)

724,",(‘.:;)) > k«;("‘(fm} o (72*‘;‘?;
{(2-13)

. . 2 d .
g - x Y - £ ) >
vf[ﬁg (VirRraIGglr-x 1<vlg )

By using Egs. {2-1) and (2-3), Eg. {(2~19) becomas

where

we sae that <u(g)> in the reqgion >0 satisfies the wave egua-
tion 1n & "continuous medium”® in which the wave number depends
upen the scatter:ing ccefficient and density distribution of
the spheres.

The praﬁlam of finding the sverage value of the wave
function has been esgwntissly reduced to solving a bocundary
wvalue problem for the wave squat:on and determining the value
of v, Carrying out zhis calculation, we find that the mean

wave .n the equivalent or effective medium is

cof{ris = 7T @ ’ . PV (2=22)
whar s
T { P

T . ]
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-k : tak <0 (2-24)
VAT ok * <@ -
ky = AIo-kt Tmk § <0 (2-25)

and

kK = k _sind {226}

-3 CORRELATION FUNCTION QI THE SCATTERED FIELD

We now obtain an integral representation for the total

scatterad intensity. The second term of the right hand side

of Bgg., (2-7) gives the total scattered wave.

N
" N o T L (Nl - T
v (L) oy Y ‘e tgtr-x,) (2-27)

Since the scattered fiald radiates into the eguivalont
ayerd § uim, keq' we have used the Green's function g(r) instead

uf goig) whare

LIRS
Mgy 2

glr) = S {2~28)
r g

To cbtain the mean value of ' (r)'® we follocw an analogous

3

procedurs to that used for <pi(g)>, but the analysis now be-

comes somewhat more involved. To begin we [irst multiply the

sxpression for u$§§? a8 givaen by Egq. (I-J7) by the correspon-~

ding expression for E;§m§gﬁhﬂ$ we have

e,

g
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( lf’<§ r g ygn tigr 14" ™ (g )
<G {r . [y , N Y ¥ £ t.E - » (x- 2 " r '.‘J VA g )
Va ....A‘L)V'(rz) & nel mel 12y 9 =9 I'm)r' = =

{2-29)

We next assuma that the external field at the nth sphere

can be replaced by the mean field; thus we have(s)
. N N
<y (£, 9t (r,) ey = L og(r,~e ) g*{r,-r tcylr, }><y*(x_)>
s =1" "8 22 nel mel 30 =2 "m =-n ~m /)

(2=30)

1f we let h(gn,gm) ~9(£1-£n)g'(52°gg<v(£ﬂ)><V'(£m)>,5q. (2~ 31)

i8 wrirten as

s N N
" Y P o P2 - - -
gl agizy)e v <n;l h(mgeny) ) (2032
‘ /

Using Egqs. (2-5) and (2-6) we obtain for the bracketed term

at the right hand zide

/N N \ 1 N[ N N
. I I hir_,x ) )= (—) [ z 2 h(r .r )Jdr dr_...dr
\ne] mel % '«m/ v j el mel ~n - =17 =2 ~N
N[ h]
- (N -N /‘m: K i'dr‘d;f../‘;’ dr .
( ) . ' ®m Csn Y m Lep i
ivn,m
N {2-33)
¥, % §
. ifkfgn,{n;dgn/i.;/xl'drij
® - =
I¥n
HPES

RSB SR T R N SRR



The first integral consists of the {Nsz) terms where ngm,

while the second intagral consists of N terms where n=m.

Since
[./T dr - VN'-z (2~ 34)
ifn,m
and
N
[f‘f dr. = V7L (2= 35)
im) %
S
Therefore
/N N
K b z h(gn,r ) r',r*drdr” + 5> fh(g', r')dr"’
‘nm)l me]
7 (2-36)
where for large N and Vv
n¥on n% 2 .
vz‘ - -I - v (“37)

Substivuting Eq. {2~ 36} into Eg. (2~ 30) we have

(2~38)
Qr
.. T .- Y .,1\2 . § b " - - ~ - Do 4 O PR #
egnivyiEy e ov J[["_i:.*..g:? ceip')o<eipT)odrran”
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i-4 EVALUATION OF THE TRANSVERSE SPECTRAL DENSITY AND BACK-
SCATTERING COEFFICIENT

In this section we evaluate the transverse power spec-
tral density of the fluctuating portion of the scattered
field. From this spectral density & dirvect calculation
yieldas the backscattering coefficisnt as we show in Appendix
B.

We start by defining the fluctuating portion of the

scattered field by

belr) = v (x) - <v ()~ (2-40)

where we note that -v(r)>=0. The spectral density can be ob-
tained by Fourier transforming the correlation function of

vffg). We proceed by calculating the correlation of *f(ﬁ"

el wgir,)> m i, Ar =<y (r ) ) u2(r J-<o%(xr ) ~)>
LS U Y s -1 £7-1 5 2 5 -2 (2~41)

RN SRS P LA PR SR AR RS PP R

Equation {2-41) shows that at r =r, the fluctuating in-

1

tensity is the total intensity minus the coherent intensity.

By using Eqs. (2-3%) and (2-18) in Eg. (2-41), we find

wglr ety w I gz et r b vt P (2-42)

Yow proceed by taking the vransverse Fourier transfcrm of Eg.

{2-42) wich resgpect to . and Lo whére
“t, e
ES

-

P e

S R AR




e T T, S Y

e i

R et b ¥ YT ik v WA RE

Eti - X +yt ; iml.2

with a  and a, being unit vectors in the x and y dirsctions

Y

respectively.

Wa have

N N : o Lyl? ,

—t2 (24) S R (2-43)
"’J (E ° E "‘E - £ )
g(rl~r }g (r ~r')leyplef) >
Here we have defined Ve by
~ jk °r
Velk, . z) = J{égtgfdg)e (2~44)

and

the interface that is related to the backscattering coeffici-

ant.

Etmkxﬁy4kyay°

We now set 21

To simplify Eq. {(2=4¢) represent the Green's

by their transverse Focurler representation, i.e.,

4 3)

-3(x, [z lek x)

T
1 @
glr) = ) dj_(.t ' I I
(2v) iz
TTYLTTTY P
“ eqwésﬁ‘ . ardd use the axplicit expression

{2+«22) for the mean leld. Substituting these

a d simplifying, we cgbtain

Y - .
b R ik, L0 Sk, K, R
[ |- A —- TRy TR
£ s S & Fe
-3 5.

»z.=0 since it is the spectral density at

functions
{245
given in
in Eq. (2~
S 1.3

e

R AT T,
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whaye
+iImig' ¢Rk*')2?
z p4

. .2 wg@ i
stkt } o= jayTi%, {2~47)
0 i<y 1
k4
1

with <! =/%° -1k ‘TT.Imx >3 and k! being given in Eg. (2-25).
2y eg ‘-t 7 z
The quantity S({gt } is the transverse power spectral density
1
at the interface. The expression for it given in Eq. (2 47)
can be further simplified by performing the integration. We

nave
| N
LTYT T O

Sk, ) = - (2-48)
.‘»t‘g ' ;\i I..'ni'k" -}
o~ : 2 N z

HNow applying the rasulvs of Appendix B relating >°, the

backscattering coefficient directly to S(%t ), we have

1
o2 2,
NQCO!&‘ g
A B T (2-49)
4 o
W?}ﬁn k uk .’5.&,:\“& . thlm-- thﬂt W;}ﬁr& k .}{ Wi ha\;@ < nk_.
o 0 Iy ) g et SAL S 7 2
0 1 0 1
swd thus
2,2 2
o= v (2-50
87 k' Y Imk’
5 z i 4 z
where k' = .k mxgsinzg
4 &g 4]
i e T AR TS i, ¢ K Bhn e en b e -
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This is the final expression for the backscattering co-~
efficient. Because of the scalar treatment of the problem the
conatant y can not be evaluated. The saituation will he rema-
died in the next section where the same techniques as used

here are applied directly co the more complex vector casge,

—d

B e
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3IXI. MULTIPLE SCATTERING OF A HORIZONTALLY
POLARIZED WAVE BY A HALF-SPACE OF
(UNIFORMLY DISTRIBUTED DISCRETE SCATTERERS

The problem of multiple scattering ¢f a horizontally
polarized plane wave is considered in this chapter. The wave
is assumed to have unit amplitude and a harmonic time depen-
dence of exp(jwt). It is incident at angle 2 on the half-
space coccupied by the scatterers. We model the scatterers by
dielectric spheres. Asg :in Chapter Two we assume that the
spheres are identical and randomly distributed. The size of
the spheres is again taken much smaller cthan the wavelength
0of the incident wave [Rayleijh scaztering..

The main quantity of interest in thisg chapter, as in
Chapter Two, s the backscattering coefficient, r°. In this
chapter, in contraat with Chapter Two, the scattering coeffi-
cient 1% evuluated directly in terms of the geometric and
electrical properties of the spheres. This allows ux to find
an explicit exprassion for »° in terms of “nown guantities.

In determining the expression for ° we follow basically

the same steps az in Chapter Two.

3-1 PROBLEM PORMULATION AND FUNDAMENTAL EQUATION
A horirontally polarizad plane wave 18 (ncident upen the

half space of random spheres st an angle °. The incident

.

alact

L)

£ Fiven as

rw
.
&
VP
G
i ¥,
b
{i¢
e




The incident fiald ie scattered by the dielectric spheres, and thus

gives rise to a scattered field, E_/r). The geometry ©f the

s
problem is basically the same as the scalar problem shown in
Pig. 2-1.

We now derive the fundamental equations fcor the multiple
scattering of an electromagnecic wave in the Rayleigh limic.
As we have shown in Aprendix A, the spheres can be represent-
ed by an equivalent dipoie current. From electromagnetic

theory we Know that a current distribution J(r') produces an

. ‘ 9)
elecerric fiald given by(
o= g, G ~r'y . I, (rt A 3-2
E, (D) = i, [ma(g_ o trt i (3-2)
J -
v
where Go(r~r') 18 the fres space dyvadic SGreen’s function, and
qo(rW the zotal current Jdistribution in volume V.
The free space dyadic Green's function satisfles the fol-
lowing equations
2 ‘
(TMA\~kq§GO’r~r') = 1 e S {33
. . LI \ .
EIOIE’_"S_ ;o= ft" :“:y ,O{E“F ) {1-4)
- o
where I=a & +a a +35 &_ 18 the unit Jdyadic and 3,(z) ia the
N G, PR TRR R
free space Green’'s given by Ey. (J-Ja)
TheE total current J ot ois Gowven by

C e ETYRE TR



where N 18 the number of dielectric =apheres in tihe volume V

¢ F
and (P v sphere.

-
By uging Eg. {(A-%) 1t Eg. (3-5) becomes

{(r') is the dipels current induced in the n

3 N "
Jolx ) o= Jwﬁwcoxa . E

n=1

where E(n){gn) is the external field acting on the nth sphere,

and Kn(er»l)/(ar+1) with € being the relative dielectric con-

stant of the spheres. By putting Eq. (3-6) into Eq. (23-+2) we

ohtain
N -
. Anij . )
(r) = »~ - G,{r-x ).E (r 1a {3-7)
— - v -9 = =n o~y
n'ﬂs
wheaere

Al
ow §TKa o« (3-p0

The total electric fiald at the position v 18 the sum of

he tnctdent field and the tortal scattered eolectric field,

ry

rthad we ¢an write

E{r) = E (ries Golr-r VE ) a (3-9)

1

. v e y
The external field acting o the n #phaera s Lhe sum

-

a¥ tha anesdent fleld and the scattered fileld by ali the othey
* ¥
. th YPNE -
Tpheres al tha posalion ¥ =ith the n sphere removed. Wa

Y
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i
|
|
E
t

:

(n) Y (1)
- [ 1 : o - . 92
E V5 (r ) Eqglz,t+d - Uglr = )2 (Ez’ﬁy (3~10)

L¥n

Eqs. (3~9) and [°~10) are the fundamental equations of
sultiple scattering of an -.lectremagneiic wave from a random
collection of dielectric sphares which are small compared to

wavelength,

J=2  BVATUATIGW ¥ THE MEXN FIELD CF

jtg

(r)
We now proceed to find an approximate equation for
<E{x)». Following the same steps as in the derivation of Eq.

{2-+18) in {(hapter TwWo we have
<E(r) = §O(£)*:£jrd£n?o(£~£n).<§{£n)> {3~11)

where © i3 the density of the scatterers.

¥
-

Qpearating ¢n both gides of Eg. (3-11) by "x7» & have

YRURCE(x) > ow TxTxE (r)+o3 fdr UXTxG {(r~r ) .<E(r > 3-12}
(HeRZIZ =0 = = -0 = =n - ¢ ( -
Wote thart the incident wave Eoix} satisfies the wave eguation
tn ITee slace

- 4. ,

{ XTxen B ry o { {3~13)

By uging Egs. {2-13; and {3-1), EBEq. {3-12: beccnes

TwUx e F oA i Lol
,.} -1 ! o Iy
4 1 oa-
i-141
= o = e e -
s R,OE_pos = Frr
TS B - U

~4




TRINTT IR Aot A th g LA

By using Eg. (3-11) we have

TXTXSE(D) » @ 28<E(x) »+kA<E(x)> (3-15)

W& carn write thls as

?x?x(E(£)> ™ k2q<$(£}> {3=-16)
wharea
k2 kz )
- 4 "o .
® 9 . F (3~-17)

We see that <E(r)> satisfies theé wave equation in &
“continuocus med.um” in which the propagation constant depands
upon the scacttering coefficlients and ZJensity of the scattar-~
@rsg. Thus the prublem of finding ths average value of the
elactric field has been essentially reduced to finding the
transamittel f£-eld, in & half-gpace [(2°0) of "continuous medium™.

Carrying out this calculation, we find that the mean wave

in the eguivalent medium 8

<E{r)!> = Tl“ a , 2> (1-18;




e mﬂ‘,,“ - ’,, P P D P D SR

o7

and kz snd kx are given by &g, {(2-24) and (2-26) respectively.
For parameters values typical of veagetation, we will find that

3«<] which implies the Te&l,

3-4 EVALUATION OF THE TRANSVERSE SPECTRAL DENSITY AND
BACKSCATTERING COEFFICIENT
In this section we eavaluate the transverse power sprctral

density. The procedure differy slightly from the previcvus

gaction., Here the Fourier transformm of the scsttered field iy computed
first and then the spectral density is obtained. Praviously
we computed che covrslation ¢f cthe scatterel field and then
transformed it.

The single acattered field in the egquivalent medium is

obtained by modifing Eg. {(3~d). We have

L
; E (x') = wjm‘\.}j‘(}frw:“) it (3-21)

-

whare & and J have raplaced &, and §@~ Here G is the dyadic

0

Greaen's function in the eguivalent medium. It s giliwen by

LN

Glr) o {Te o] 500) (3=22)
Toow”
g
and
giy) = {3 3

wi th Kﬁ? Eaying gaven in Eg. (J=-17). The inducead current “(r:
ol = = e i
. Ny . o c oy
g the satw ag J, () with E vl oreplacsd by the aversge fleld
LA =
{\3‘~
o R e VEEE L I T
noche esogioslent msdium, t.a., CE R L
-2 3

ettt mmﬁﬁ‘iﬂ

&EMNMm SobbAo il it A A0 i 3o [IRERRR Rty Y s o BRI i e
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:} (:r Yy ow ;.«'.L.‘..
3500 ped

A N
A tr, 1> Mr m_r",‘n.) ﬁy (3~24)

Next we take the Lrewwaverse Pourler transform of the
scatteared field (the transform was defined in Eq. (2-44)).

Noting the fact that Eg. (3-21}) is a convolution, we have
- PO p - ¥ : ’ ' -
Eyike ) ngnJ[§(Eﬁ,z 2ih.dik, .2 Ydz {3-2%)

where £ (k_,2) 18 the Pourier transform of E_(r!},

N 3&&5
Ttk oz » far Jre

N N 1k, .x
» Yo - fE{r )e ’ a &z’ “-zni‘
hid LA#AO“ et
0 n=l

and

Jac, e crtels (327
P
* ‘?”j;‘t@ti* M?W‘jii‘lt‘ .\}\r_)& {3-28)

F
e

P

o

AR, Ry = dr uiyie T m ey {3-29)
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. «Rﬁq»!ﬁt;’ ) InK <0 {3-30)

I{ we now integrate tha second term in Eg. (3=~28) by parts

O ramove the derivativesx with vespect Lo x and y, we obtain

Glk,,2) = Lk, , 2} qlk,,2) {3=31)

whaetre

~

Lo Xad
A

;2 I+ *-:.;-"- {3-32)

g
and
Tow ik bx oA (3-33)

The Fourier tranaform of the gscattered field can now be
computed explicicly. By using fgs. {3«26) and (3-31) in Eg.

(3258, wg obtain

- - (), «
SN S 3 S s (k. _.z:r ) =34
e b e Se T In ( )
aw ]
whara
Y 5 RELTE
g {x, ,2:r w ATk j.a g9k ,B=% J<Ed > T ( 3=
fa Rordir, ] Lk, B 31K 0’ £,) e {3-35)

Next wé remdve Lhe spectular fleld from consideraticor by de-

2%

B Wy e B, v  fn oy . 4 T N * it ¥ g
iy ohe flactusting fiedd as follows:

LI RS SO AT

PR Sy " «L’ﬁ§w [a-38)




Now we form the dot product of E, with its conjugate and

average. Letting V, N-—= guch that N/V=;, wa find

o - Rty ey o(m)e vy e
Ef‘ﬁtl*zl’gifﬁt2'22)’ o Be (Be o#iETEgT U oEpix rex

(3-37)

Substituting Eg. {(3-35) into Eq. (3-37), it follows that

(‘ . £ " - 2'" 52«'/‘" t !
Eplhe o7 Rtk bzp)> m @mtismds | ent g, oz

+2I k'z'
~ e ¢ ~ - ! m 2z
ﬁyg‘ﬁtl'zl ). %'(xtzvzz}ﬁyg (Ktzrzz z') e
e ke ) (3-38)

where the maan Jield from Eq. (3-18)

has bhean used.

Since we reguire the spectral density in the z=0 plane

wa Zirst use the fact that

\ ~ - - T {3 P RN -y b 3 - .
2(§ti.zi),!§ti,21 ') f(ﬁti, z sq(gti,zi z') , iel,2 (3-39;

in Bg. {(3-38) andu then set 2,=2.=0. We obtaxin
-

E (kO3 E (k ,0)> = s(k 5k -k

"ty ==t ~t, ~t; ~t,
where
- . w - P L
ooy . - ! v,“‘“‘ ") &: ¥ v 3 " B § 2 Himkz“
;\kt pow (g} 8T, » !‘ az ’Liﬁn -2} a g(xt SETY 2
Sy ws ~ L1 =y ~.l
{3-40}

From sappandix B, wa haire
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kzconza

g° & s{k. ) , 4 = k_ sinfa (3-41)
_;;}“" ~tq —ta 0 -X

Since there is no ky component of the incident wave, we& have

L“it .-2')._§y = 2? (3-42)
~ 0

Now putting Eq. (i-40) into Eq. {(3-41l), we obtain

2 3 13 2 a - ] []
Jko iT!‘cos’ Jf 2 +2Imkzz
0

dz' 3k, .2') e (3-43)
0

"

By using Egq. (3-29) in Eq. (3-43) and evaluating the inteqgral,

wa find
ot g ﬁszcosze
29 5 {3~44)
167 k' ° Imk'
2
with
kx - vﬂﬁcogz%+:£ (3-49)

In the study of vegatation such as forest cancples, we

£ind that o53¢<1l. Then Eq. (3-45) can be written approximately

asg
. . ad o ; .
¥ @ K OGN emeitie + Q0 08) {3-486)
z v Ik cusd
LI
Using this in Eg. {(3~-191, we ses T 1, 1.e., there (5 very
little reflection av the interface. Employing this result

L N b .1 b e il




e e i T

— R %
L+ Bl oo

giries s

et e eI RS

and the asmall of approximation given in Egq. (3-46), the for-
mula for o° given in Eq. (3~44) can bu substantially simpli-
fied. We find

|K§z(koa)’CQse
Y - -
7 TTIER] (3-47)

Thias is our final result. We see that it is independent
of the density o to first order in p8. Tha angular variaticn
is a cosine. This angular dependeéence corresponds to the third

.11
p(m 1 ¢+ however, Clapp did

empirical model proposed by Clap
not determine the multiplicative constant as we have for the
case of small spheres,.

Various limitations on the above formula should be point-
ed out: first, the Foldy closure assumption which allowed us
to obtair an equation for the mean “ave is most likely only
good when fo<<1l; second, the backscatter angle must be bounded
daway from grazing or the approximation in Eg. (3-46}) will not
be valid: and third, the spheres must have sufficient los.s 80
that the mean wave does not penetrate toc far into the madium.

This insures the appliability of the Born approximation to

compute the backscatter.

S o ARG TR NI
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IV, EMPIRICAL TECHNIQUES AND NUMERICAL RESULTS

In this chapter we compare our results to an empirical
model developed by Attema and Ulaby(lz). The comparison sids
in the physical interpretation of the results obtained in
Chapter III. Following this, we evaluate the backscattering
crogs~section cbtained in Chaptex III for varicus paramaters.

Plots of o° versus the angle of incidence, ¢, are presented

for differant values of frequency and sphere radii a.

§4-1 BMPIPICAL MODELING

We have studied the scattering properties of vegetatad
terrain by treating the target as a coliection of lossy die-
lectric spheres and deriving the backscattering cross-section
directly from Maxwell‘s equationsa and the statistics cf the
wedium. Attema and Ulaby treated the same problem by a more
empirical approach which we will describe below.

They assumed the veystation could be modeled by a layer
of water droplets having thickness h. The basic geometry of
the model is shown in Fig. 4~1. To keep the model as simple
ag posaible, the fcllowing assumptions were made: first, the
water dioplet cloud representing the vagetation congisted of
identical water particles, uniformly distributed throughout
the laysr; seccnd, only “single scattering” was considered.
Here sincle scattering wam taken to mean single scattering by
the effsctive or average wave in the sediun.

The reflactivity factor or radar crogf-s&cticon per unit

volwne snd the power attenuation coefficient per unit length




\ Ajrr

Free spaca

~
>

Vegetation

Soil

£ Vegetation

Fig. 4+ - 1 Bean Incident Upcn Slab o

ware exprassed as

(4~2)

where . is the number of water particles pay unit volume, o
is the radar backscattering cross-section of & single drovlet
; total attenuation crons-section for s single par-

and o is the

ticle.
Aue bo vhe

To calculate the aversce backiacsttered power
incadent radar bear, cthe contributions by all particles in the
hean are summed, taking into oha twoeoway attsnuabtion
by the vegetalicn laysay b goattering particie and

3 % ety e
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the vegetation surface. Referring to Figure 4-1, the inci-
dent w:ve 1s assumed tC be a plane wave with power density S
confined to an ideal cylindrical beam illuminating the surface
at an angle of incidence 3. La&t the illuminated area, Aill‘
be defined as the intersection ot the beam with the horizon-
tal plane at the top of the vegetation layer. The incident

power Pi will then be given by:

Pi = SAillcosE (4=3)

and the average backscattered powar <?r> is then found to be

[“h/cosa
<P_> e 53 ok T ~Jazidz (4~
F!‘ ill\.uap “’0 EXP(~4Lx 4)
Consequently,
<P >
° r [oN v . o R i 0y
3% ® g w fgw)tl«axp(»¢¢h/coan;cos; (4=5)
3A 3
i1l
This is the final formila they ugsed to velate ' o the me-

dium cross sections apd Jdansioy.
Por our purposes the [ormula can be simplified by firsc
assurming ah>>1l; thus Eq. (4-5; becomes

53 N . -
SV e o0 2 R Rd-¥
£33

Now we specialise considerations to Rayleigh scattering, i.e&.,
wa agsume the weavelangtd is large conpared to the droplet size.
12 we further assume the Jdroplets are sphersws Of radius a,

than the Dackscsttarliag crousz-section of an iadividual spnere

R s R T



is given approximately by(13)

x| %a® {4-7)

where K has been defined in Appendix B. Next, we write Q as
a sum of an absorption cross sections Qa' and scattering

croag~gsection, Q’

Q=Q, + Qg (4-8)

In the Rayleigh limit for spherical scatterers, we have(lj)

41k, InK a3 (4-9)

a 0

0
| 1

and

(4-10!

[ 9]
8
«.1
by
o
=
o

For the X band region of the spectrum under conaitderation, the
attenuation cross-section is much larger than the scattering

cross-section; i.e., Q {.Qa“ Thus
N o= 4wk ImK oA {4-11)

Now using Egs. {(4-1), (4-7) and 4-11) in Eq. {(4-6), we ob~

tain
.2 1
(K tk(ia} T s
-8 1 g AR g R s e mt emvenh { i 2
®TUUTUTHR (4-12)

taingd for o in Chapter ({1,

This is exactly the expression
Thus we ses in the Raylaigh limiv fov spheres we oan e aa-

tigfied That the empirilceal technoigue angd the snalytlio vector
b ¥
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method give the same results.

4-2 NUMERICAL EVALUATION QF c¢°

In this section the backscattering cross-section as
given in Eg. (4-12) is evaluated fcr several sphere sizes
and frequencies as a function of incidence angle, 3. We as-

sume that the spheres are droplets of water. The complex
(16)

permitivity of water as given in Peake is
75
Eru5+ 3T YA

where 1 is the wavelangth jiven in centimeters.

The plots are shown in Figs., §-2 and 4-3. The freguen-
cias used were 3 and 15 GHz respectively. An examination of
the plots shcws that the general behavicor of the plots is in

, ) {12
agraement with experimental dats 12)

if spheres in the order
of a few millimeters are chosen. To obtain more definitive
information the mcdel in Chapter III would have to be gener-

alired o consider discs and cylinders. This work is in

progress.




AT

R IR

ZHH & I® IUSBPIOU]

2 0L 09

3o e1buy sneIaa JUBIOTIia0N LuTlinyipogyovry

(8aa1b8pjg

0 0S 2CY Y <07 R gl
e i 1 2

UM = —oes

w e

ww e

.

e e [
e I g «

H
: -
: - -
[ e P £
; i
; L
o i
H 3
H .
:
_ b
b Z
i i

e e e e e i e




TR TR

m

TR S,

ZHO §T 3% 1u2pToUl 30 @1huy SNSI’A JUSTOTZ 20D DHuriaziedsyreg - -

204

<29

(saaibap)u
635 Q@W o 0F 4 43

3 M.»l 3 e
~_
~
L Gl / _n
) dli‘«[ -
o
T~ .,
———
ey
T —— e —
-
//f
LN..//
-
Ry F=9 - :
R
b,

P

i
e —i

H
;
1
3
E]
1

i

N e MIVTRL




T, T TN YN T T ST TR AR e

V. DRISCRETE QNE DIMENSIONAL RANDUM SLAB

The praceeding 2wo chapters have been concerned with
backscattering from three dimensional scattersrs that were
randomly distributed. The calculaticn cf the backscattering
coefficient was perfc med by employing Foldy's approximate
method to calculate the mear field. In this chapter we will
compare zhe Foldy approximation for the average dielectr.c
conscant to the expression obt ned in the thermodynamic lim-
i, that is, in the limit when particle size becomes small
and particle Jdunsity large. To sccomplish thig, we will re-
strict our attention to one dimensicnal discrete models.
Here the medium 18 composed of identical d:ielectric slabs
which sre distributed probalisticaily. The resulrs obtained
should carry cver to the three dinen®ion case, however, this
E work hes not heen compieted at th's time.

The methods used in fhis cha ter Jd:ffer gubstantially

from those amployed previocusly. First,.dent:cal slabs

£ width "a" sre chosen go that they obey a renewal process

which will be descrived in more detall in ths neax:t ssction.
This process has the luportant property that overiapping of

i

¥ oneg chooses the slal position to be

glabs nevar 9

2

2§ . iy s i & - T % R S - 4~ IS T S g
Gistriputed L0 oa POolgson manhner, then OoVeEriSpRping «ils Coour.
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Uging a process without overlapping is desirable since this
corresponds tc more physical situations of interest.

Follow.rg the choice of the renewal process,
differential equations are found for the probahiilty of occur-
ence and noncccurence of a slabh. The sclutions to these
aquations enablie one to calculate the average dielectric
congrant of the random mediam exacrly.

In the remainder cf the chapter, the renswal process is
used to drive a nonlinear system of ordinary differential
gquations having solution u(t)j. X diffusion equation is de~
rived for the probability density of u(t; and the solution to
thiy squation ia cobtained in the thermodynsmic liwmit. Final-
iy, these ganeral resulcts are spplied to the ors dimengional

plab aasd compared to Foldy's results.

5-1 SLAB RENEWAL PROCESS

4t s section we wiil dagoribhe the random process that
wWé Wi Ll use 1o model vhe one limensional random medium. T

£ v

medium will he composed of dielectric slabg of width “a

P

- wn Ay Frag P T .3 F— . ony e " w . g e NP 5 Rl ™ H
whioh ave paaced on & random manne&r Lo be spsci fisd.,  The die-

£

#lectyid variacion, i3 Of The medium % related o ohe random

B N T - . o v
RS AW S8 DO L OwWR
Y : PRy
¥ T g g . 3 > Yo R
&

i

;
b VAL R, s Y
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whayra £ is the f{ree space permittivicy and 2 is a constant
darermining the srvength of the flucvuations. The process
riz) takas on values 0 or 1 1¢ 2 is cutside a giabh or in-
side & slab respectivelv.

Tha probabilistic characzer 3¢ the process r(z) will
now e apecified. Assocliate the rardom variable Zi with thy

- th :
tra)ling edge of the 1 slab. Rather than rpecify the ZL

directly, we form the difference

W, = L - 2 ‘ Low 1,02, 3, ... (£~27

i i “1-1
where z@ = 3. The wl are tust the Jistsnce between trailing
adges of adsacent slabs. We sssume that the wk are independent
identically distribured rardom variables., This definit
the W, forces the process rig' o D¢ a4 renawal process .

&

choose the distribution of tha W, to be

w i -} . ;
Pooiw ow o e TR (5~3)

whepe Q7w 1% the step furction, For smail "a”, the parameter

»

ocan e snterpreted as tow numeoer of pulsas per unit length

by g o By g sy w ¥ s el weoge 4 M e
ST LNte Do TenmLLC.

Thig assurmgd disoribotion has LWo Lmporant properties.

0y . oy v ¥ W e et S . L A B VN 1w g ey 8 g
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second property of Eg. (5-3), i3 that for small "a" the dis~-

tance between slabs is approximacely exponentially distributed
This implies cthat che slabs are randomly distributed which is
physically appoealing. 1Y the zi had been chosen to bhe uni-

-

formiy distribuved At the outset, then the process would have

bean Poisson. This is & usual assunption made, however, it
2 leals to an overlap problem,

Since tha process r{z) has now beer defined, some of its
propecties can be calculated from its probability density Er(z)

where

(54

pLiﬂ) . rmw}

Hare péiz' 18 the probability that the point ¢ is outside a f
slab while pliza is che probability that 2 is located inside

: & 2libh., We ses thaco

§ cgiZ) > w x0<(1«4<£:x§33 (53
!
angd
crcxye o ow Oep tEdoe LRt {Hwb,
§ "“LA A
§ e pl{&

4
Z
}/f
$oo
5o

Thus & xnowledge of p. (2! aliov us o calculate ths average

drelectric ¢onsgtanc., Using vhs method of conservation of pro-

) B
(L2

bability ona can show Lhat g, idy) and glix} satisly the
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Eq. (5~7) can be solved by employing lLaplace transform tech-

nigques.
i.e,
L
: -8z
9 o
0\&) - po(z) e az
‘o
the soluticn to Eg. (7) becomaes
1
ao(s} = -~
g+y - g 2%

dencoting 00(53 a8 the Laplace transform of po(z),

{5-9)

{5-~10)

Now employing the inverse Laplace *ransform po(z} becomes

LR
] ? as <40
. - - — s b -
Py () =T T oas (5-11)
§im ° ‘
Now using Egs. 5-3) (5-6),we find
[0 _eff s (5-12)
celzi> o= {03 Lexf b 53 s i g+ - 2% '

In general the mesan will be a

however,

cegs i3 not stationary:
for larae » shows 1t approaches a
she Yainal value +<hecrem, we find
lim Pm{:)“ lim sssas¥
P e ey !-OC
yows Dy Jegrarled calculanion shows

- O~

function

few Dulszse Jdisc

of z and thus the pro-

an examination of the maan

constant value. By using
A {5-13)
T+%a

tat tnid COnNEtANnT mean is
Ances Thus tne nonstation-

e e A AR
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at zwo.
Before concluding this section, we will discuss the

thermodynamic limit. In this limit we let the pulse width
a-0 as the pulse densicy i~=, We do this in such a way that
\asconstant=y ., In this cagse, the medium approaches a non-
trival limit which we call the macroscopic or thermodynamic
limit. Performing this limiting operation on Eg. (5-12), we
€ind

1
<g{z)> = 603 l*w(l'tm)z . k- de) (5-14)

Thus we see¢ the mean has a constant value for all i greater

than zero. We shall return to this behavicr at a later point.

5-2 NONLINEAR SYSTEM DRIVEN BY RENEWAL PROCESS

We will now diver:t our attention from the specific study
of the cne Jdimengicnal problem and obtain & result that will
be needed in the next section. Consider and Nth order systam
of nonlinear ordinary differential equations driven by a re-

newal process iz} 1.m.,

dUvz) )
where
Blo) = g . w.p. 1
Here U, u_ and ! are N dimensional vectors. Now by employing
. 1i5] : A
the conservation of prchabilisy argument , & diffusion squation

can be dfer:ved for the iloint probability densitvy

wd ]
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P,(4,2) where

p;(u,2)du = Prob }(gﬁg(z)ig+dg)(r(z) = i)f' {(5-16)
N
with du = « dui. The diffusion equation is
1w}

apo(g,z) N 3
— - - E (fi(g,o,z) pytu.z) - ip iy, z)

+J(z-a,u,2z}p (U(z-a;u,z),z-a)u{z~a) (5-17)

o]

p.{u,0) = giu-u

Q -0

[ 2]

where §{u-u ) is an N dimnensiocnal delta function. Here

Q

(2;u,2) is ~he solution to the final value problem

ie

[#9
o]

g - E{Qllti) ’ t:'cz (5"’18)
[4
d1z;u,zi=u

and T{f,u,2)is the Jocabian 0of the transformaticn from u oo

g,
J{t.u,2) = det (33‘) ; '5-19
1

Although the equation i1s complicated, one must renlize {t is
AN exact eqguation with nc apprexirat:ions for P, (U, 2] and the

equation 1s deterministio.

Again empioving crngervation of probability argquments,

)
184

&n add. rional eaguation can be obtained that relarzes o, lu,2)

da

v
1
+
(2]
44
b
l




? e T TP T WP T P Y R TR0 e " T T AT R e R et L L TR TSR SRS xe R T —_——
AR

pyla.z = Al potiCiiy,2), 00008, u,2)4¢8 (5220)
(z-a)

'
re
~
v
3
s
o3
[#3

whare plis defined in Eq. (5~i6) and (z), is 2

We would now like o see how these eguations reduce in
the tharmodynamic limit, i.e,, 28 a-0o and ‘~= suych that ai=a,
Expand.ng Egs. (5-17) and (5-20) in a powear series in “a”, re-

placing + by 1/a and keeping only dominant terms, we obtain

3p, {u,z) Y.
r~9 - " - ri. —ff: (u,0,2)
3Z L+ 3ui {rne~y po (5”21)
i=)
N
- & : £ ¢ . a
o7 Lo T (T (2edizimg
im} O F
PO(J.O) = [Tf“5(£“_@’
Py{u,2) = agp (u,z) (5-22)
£ ] —

The probablility density with respect to just u can be obrained

DY SUMmING out the v variabie. We have

Plg, ) = pmig,z) + pliﬁ'Z) (§=21)

By using Egs. (9-21) and (5-22) an equation
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If we now make the important assumption that { depends

linearly upon the renewal process r then we can write

<f (u,r,z2)>wm £ {u,<r>.2) (5-25)
'3 L

!

Using this result in Eq. (24) one has

3
--?£~m 3 S ]
T3 ?E; fi(h,~$>,zip (5-26)
fwe}

plu,0) = Slu-u,)
B3y direct supgtitution, it can be shown that the soistion to
9. (5-26) 18

plu,2z) = $(u-g(z) (5=27)

whare
da "
i & f (dl(r)pz) (5“23)
dz -
uio) = u

Thus we see the probability density in the thermodyvnamic limit
is a delta function, l.e., at sach poing I,u only takes on one
value ui(zi. Therefore the sclution is Cdeterministic. ‘lote

that this deterministic gsolurion, Q(z}. obeys the sesme eguation
as the vandom soluation, Udz), Eg. (5~L% with r rsplaced by «<r>.

Thus 10 this limit the process acts in a deterministic way.

-

Theare are 8C many particles per unit leangt

o

i
ad
b

Bt
b

that the system o

geas the avearage effact of the perticles. This resulec will

o
2

afed .0 the naxt section.
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118 ESCUIOn wa will concldade the Jdiscussion 0f One
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random medium. We shall calculate the sverage

Mtk

rae-

flected wave and compare these results with those obtained

by rhe Fcoldr'as technijue.

Consider a 3calar problem having field —component u which

obeys the reduced wave sguation:

ad

— i
—epe K

dz”

~-mLPT ™

when x 18 the free sSpace wave nunber of

i3 the dielactric permitrivity. The domain of

permittivity 13 confined zo o«z<L.

S

~“3k®*s 11 A constant value one. Inside the slab

dislectoric

follows: 1

where r({z;, has bLeen defined earlier. WwWe assume

1% normally incildent upon the slab

the medium and <(2)

(5-29)

A

the variable

Qutside this region c(z)

regior. the

fluctuations 2re mocelled by a renewal process as

A
£
o
«Q

2 plane wave

from c¢he right and a re-

fiecte and t“rangmitted wave 15 generated in the homogeneous
agion to the right and jefe of the slab respectively. This
13 shown i1n FIy. 5«1
The field 1n the homogeneous regions can be written as
( ik z-10
=rriz=Ll_ ... N
2 = & “ * et 8 e - <
. ; ~1K2 [ R T
( TiL) & ° FEREY
whers UL 18 the refliacrion coefiiciant of rhe slab and T 5L
1 othe tranamission Joefflioisnt. wWe have explaicitly indioared
g G
o i " ot NN ), o Wl s -
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Fig. 5 = 1 One-Dimensional Random Slab
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that borth T and T are functions of the glab thickness.

Since we want to draw upon the results of the lags section,
the boundary value problem of Egq. {5-25) will have to be con-
verted to an initial value rrcblem. This can be accomplished
by looking at the reflection coefficient T(L) rather than the
fi1eld ui{z). OCne can derive a Ricatti equation f>r this re-

flection coefficient. It is

2 (5~ 32)

dr . - fokr (L)
-—EE- LXK 3 (

Tlo) = o {5~ 133)
We see 1t 13 a first order ncniinear ordinary differential
equation. The problem i3 now an initial value problem since

cthe condition :n Eg. (5=33/1s only given at one point.

The problem has almost bheen cast in the “orm 0f the last sec-
tionexcept for the fact that Eg. (3-3) is complex. To trans-

1

form Eq. (5=-30lintc a real form, we let

T e et? (5= 134"

where . 1s the amplitude of 7 and » 18 its phase. Plugging

this 1ats Eg. (5-3) and ejuating real and imaginary parcs, we

find
£ [
"1\*3;";
This 3 thie same as the& svstam Jiven 1o Eg. D-i5) witn o2
§ Y
]
S _ . S
N -




replaced by L and with

In addition, since the system 1s linear in r{(l), the results
derived for the thermcdynamic limit hold for Eg. (5-35). Bas-
ically this says that when a-o and ‘-~ such that al=a the
golutiern for o and ¢ is determinmistic and can be obtained by
replacing r(L}) by <r{L)». Physically this says that in the

thermodynamic limit the soluticn to the problem can be ob-

tained by replacing the statistical medium ri{z}) by its average
r(z)-. Thus the medium can be replaced by ¢ne having an

average llelectric constant of

€{z) = € fl+c-or(zyoed
[ .
(5~ 38)
3
-t\'z) = D b . S ——

An analiysis of the cne dimensional problem by the Uoildy
technigue leads to the following result tor the average d1-

electris consgtant:

.

{hus we see that the results from the Foldy rechnigue over-
fap with the thermodynamis J1mit resulass when 0 -1, It also
indicates that the Foldy mechod 13 not corveat when -»», 8-0
Al a8 waderarte oo large.

Althouah the analvgis at present has not resolvesd the

nature oU the Jdifferenvs betwsen the “analtio tbhosvy”™ and the

@xiatance ol oan exact saguation for the
i
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probaprlity density should prove to be a useful tool in

the future.
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Iv., CONCLUSION AND RECOMMENDATIONS

We have developed and anslyred a model for a half space

of vegetation. This modal views tha vegetation sz a collection

nf lossy dislectric spheres. Within the constraints of this
model the backscatcering oross section has haasn related o

¢ here size and dielectric constant.

in Section II the scalar problem was anslyzed by the Foldy

zechnigquea. This section served the purpose of illustrating
the techrigue, howevsy, because of the scalar nature of the
probiam & complets relationship betwesn the medium parameters
and Dackscattering crozs section could not pe obtained. In
Section IIl this defect was remedied by applying the Foldy
technigue to the cimplete electromagnetic prcblem. The case
of herizontally polarized waves was treated and an exgression
was obta.nsd relating the radar crocs saction to the maedium
parameters. :his expression was found {n agreement with the
angular depwndence of Clapp's third model. An interesting
feature of +“hiy expression i3 thet 1t was independent of den-
ity .

In Section IV the results of Section lII were compared
with the dara preasented by Attema and Ulaby. The agreasment
was found o be gquite good for water droplets of 1 to 5 mam 4in
tha X band region of the spectrum. In addition & connaecticn
wik established hetween the mores empirical arslysisz of Attams
Viaby and the systematic procedurs smployved in Section

1Y, The connectl

ghowsd that the method we amployed hew,
Ao #ffect, Apsumed that the scsttaring Uross saction o8 an

ey

ol

42
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individual particie 18 small compared to the asabaorpticn cross
section. The validity of this assumptior in the {frequency
range of interest is shown in Figure 4§-4.

Finally in Section V, we axpiored some fundamentsl limi-
tations ¢f the Toidy technigua. There we saw by wmploying a
one dimensional mode, that the Foldy aspproximstion only gives
correct resul+t when the product of glub widith ard dewnasily ave
small.

Iin view of the succwss of the methed we used in raiating
physical parameters of rthe zodi . ¢ "wokycattocing Srosy gec-
tion, we make the lollowine cecomrendAaticis.

1. Anslyze 2 medium represenced by discr heving a rsn-
dom locatio: and a probabilistic sngulaxr orientaticon.
$ince the Adisce would roorasert leaves, the wave-
length would be of the order of the scaituvaving object,
Twersky's wachnique (a genaraliazction of Foldy's me-
thod which removes the Rayleigh assumption) would be
employsd. The reaults would de compared to “hose !
Quiléﬁ who ~alculacved backscattering from lesvas by

a differenc, more heuristic, techrijue,

[

By using the umchn.que aaployved in racommendartion 1.,
analyie tha efdect oY groand lylng under the vaaata-
tigr. Thif regui.ces the anziysis 2F the siab prodien,
3 nvestigete the effacts of depolarization. Sas how
they compare ~o rthe resuvlis of ocontinuous random me -

Ailve oodals.

e e e
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Ap endix A

Induced Current on a Dielectric Sphere

wWheén the size of a dielectric sphere is much smaller than
the wavelength of the radiation incident upon it, the electric
field within and near the sphere behaves like a constant slec-
trostatic field. From elementary electrostatics, wa know the
scattered field can be representad by a dipols located at the
center of the sphere. In this appendix we will calculate the
squivalent current E«q(i)' This will be derived from the in-
duced dipole moment 28 given by Stratton.

L.et us assume there is an electric field E(E)gy incident
upont a sphere of radius a whose center is located at rsr',
If the sphere’'s radius i3 small compared to wavelength then

the induced dipole moment density P(r! is given by(g)

Bir) = P(ria, ~ 4Tegka’E(r)s(r-r"a, (A1)

vhare Km(er~];/(£r*2) and €y is the relative dielectric con-
stant ¢t the dielactric sphere.

The squivalent charge density p‘q(gi used to represent
the scactered field is then

Qq(_x‘_) w ~7.P(r) (A-2)
2 ot . o
= ~&wﬁ3ka Eqrt) e 3 (y=y") i (g2 ") {A-1)
whan '{z) is the derivative ¢ ‘{(z; with respect to z. From

theée continuiity equation




R A LA

Vedeq D) = ~Juwpgqlr) (A-4)

q

we find

Jeqlk) = Jpélr-zr'la, (A=53)

where

3, = jwdnegka’E(r) (A=6)

0

Thus wa can replace each sphere whose radius is small compared
to wavelength by eguivalent dipole current as given in Eqs.

(A-5) and (A-6).

.55 =




Appendix B
Relationship Betwean Backscattering Coefficient and Transvarss

Spectral Density

In both Chapters II and III we have used the relationship
between trangverse powsr spactral density S(5t) and ¢°. 1In
this appendix we will derive that relationship.

Assuma that a vector component of the scattersd fielid,
say @’(gt,O) is known on the boundary (z=( plane) betwaen the
random medium (2>0) and free space (z<0). Then the far field

in the free space region due to a region A on tha plane z=0

18 giver by the Kirchhotf diffraction formula'l’', It is
jkacosﬁs jf jkox'sine
@ {r? N -
LAY Y ET 7 dglzes0le dre {B-1)

where 9 is meazured with respect to th® normal to the z=0

plana as ig shown in Fig. 2-1 and tw§£iu/§T:; rz.

Tha backscattering coefficient ¢® is defined as

acls_
¢® ® Lim —oyT

where Ir is the average intensity at the receiver of .ae fluc=-
tuating scactered field, i.e.. Xr»<@f(£}z§e£)> Where TP B

and Xi i the fleld intsnsity incident uporn the illlunina-

tead area A, Assuming an inclidant field of cthe form

ﬁkq53§ihﬁutﬁﬁﬁﬁ)

o =oe (83}

E
¢




2
then we have Iiu!@iig)! wl.

The average at the receiver from Eq.(B-l) is given by
Ir = <a£(£)$§(£)>

2 2

kocoa & ir jkC(x'~x")sine
T S— dar! dr? <p (x},0)¢3{x},0)>e
(znr)a A ""'t- "'tl f ""t' f ""t (3_4)

¢ - L - 1) - -
vhere $£(tt’0) @s(£c,0) <°f(£t'0)>‘ Using Egs. (B~1}) and (B-4)

in £g. (B-2), we have

g:asze | Jf jke(x'«x")
% w et ’ " v - v
a Lim =) wa— drl dr <¢f(rt,0)a£(rt,0)>@

(B=5)

we will now use the transver e Foarier transform of ¢t(£t,0)
and its conjugata. Denotin the = ns "orm of .¢{£t,@) by

‘3:(&‘;3' 0} , WE hav&

. B .
delz, Q) = - telk, Ule (4-6)
‘ (s T
Using this in Eqg. (8-3,
kicou‘s | . -
S e S i§£§¥§ . 4§zﬁ$¢§§7;0}%; Kg.ﬁ)>
Aww (Jw} Twp T b R "
> x')
. s
Now wa nade use ol Lo oEhe op o b % wWade . O R
LLONALY process, L R
€7

sind

z
’
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<Pplki,0053(k2.C)> ~ S(k!)S(k!~k?) (B-8)

whear # S(ké) is the trangverse power spectral density of the

interface field. Putting Eq. (B-8) into Eq. (B-7) and making

the change of variables

{B-~9)

we find

cos 2y 1 -j(&é.g»keibinQP
* - .
U ifﬁ f"?“" er ] dr t(kl)e (B-10,
‘

ILluminating the whole plane (A-=), the £fi11al result 1s

obtained. It is

3 ] ",
] kScom“S
o (] e i i 3 -
E Q = ‘.T S{E_K_tb {B=-11)
¢
where Et-kasinégy

o o
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