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dielectric con&tant for the vegetation is obtained by the Foldy

technique, single scattering is employed to evaluate the back-
scattering cross section. The resulting expression is found to

compare favorably with experimental data. In addition to the

three dimensional work, a one dimensional problem is analyzed.
This analysis is compared with the Foldy approximation in the high

density limit.
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S I. INT~RODUCTtC'N

WI

This report studies microwave backscattering from vegeta-

ted terrain. Discretc random media theory is employed in an

etfort to relate the backscattering cross section to charac-

teristic objects Ln the vegetation. The resulting theory is

then compared with results obtained by more empirical methods.

The study is motivated by the need to relate radar return

to the characteristics of the scattering objects. This situ-

at'on is particularly complex in the case -f vegetated terrain

which consists of an ensemble of ,Any highly irregular objects

placed in a =-re or less random fashlon. Using the scattered

return fr-m a vegetated terrain one would like to obtain such

information as height, density and moisture content of vege-

tated regions in addition to obtadning the --aracte ristic

shapes of scatterers, ro that the vegetatitzn can be classi-

fied. This type of information would be imnportant for

nmil.-tarv anai.ysls of: the terran. In adi••.cn, if the terrain

cc-ul1 be determined adequately rom an ei ct ..... t. C i.nt

o f eve, t.he barc-scatterer ifor on cac':>1o be used to ;re-

d Lct returns at other ancles and freqoenc•,es not neassored,,

Th.is would be of .reat • ,2 to tne development cf manag•eable

dIata bases for radatr si:-,ulations.

The above applicat.1os , -i as : a 1 o n r

Me !-ei-A n~.ceLs For the ve,4ta¶'ed

b, e

""t AYsIq

A



char..ctez",.stics are related to the physical quantities in t*he

m e41m 4t. The nodels can ce divided into two catagor.'es:

continuous and discrete. In the continu-,us case, the vegeta-

tion is modeled by assuming its permittivity £(r), is a random

process whose moments aze known. The average backscattering

cross.-section is then ca Culated from a knowledge of the sta-

tistics of c(). , Usually just the mean and correlation of the

permittivity are required. Following this, some quasi quanti-

tative techniques are used to relate the medi=m's statistics

to t1he actual vegetation under consideration. General devil-'

opment of these techniques are attributed to Keller(1) and

Tatarskii and Gertsenshtein , however, particu.ar applica-
(3)

tiors to vegetated terrain have been made by Lang (

(4)()Hevenor and Fing(

When ,odel ng is done by the discrete tech'ilque, on the

other hand, -b idtdua. tbjects •n the med-•,, such as

leaves, are identified by their !eterrIn'stic cross section,

and then each ob-ect is placed randcn;y and its positioon -'s

4iven bLr means of a prcbabiiity den•lt'y fufnction. "he average

backscattered s ectic.n ,s computed _n nukh a ,-ay that a.l1

rimultiple nteractv_ between ob~ects is accounted for. The

svstematic development these techhrsues `-a been made by

c-1,w (d,; _4. a n (I ~ ; - 8 Y

ech ton t-rera .is -eed h0 relate the -

- to the eCing ,b~kct as

•,•• ~ ~ ~ ~ ~ ~ t i ýhaqe !,,[,•tn C.... *1: CS.v: • ... a r e v b ¢ :•- .:



As mentioned earlier, 4a will eamply discrete scattering

techniques to mdel the vegetation. We assume a lossy half

apace of vegetation is present, i.e., one in which the ground

is not visible. We then consider the vegetation to be made up

of small water droplets which are randomly distributed. In

Section II, the averi.ge backscattering cross section is found

by assuming the electromagnetic fieid can bc treated as a

scalar field. The Foldy techni.que is emnployed to calculate

t-he field. This technique requires that the scatterers be in

the Rayleigh regime, i.e., small compared to the wavelength.

The use of the scalar assumption introd,ices dificulties in

expliCitly evaluating the cross section. These difficulties

are removed in Secti.,n 111 where the ful, eiectromagnet c

problem is trezted for horizontal polarization. :n Sec.tion

1V numerical results are presented and corpared with data

from -- t-her set:r---, Cer2.in rest. os a r a placed on the

use of Foldy'L technique in Section V. There a one dimenjior-

al modej .s 4 nalzed exact:y nnd examined In the thermodynamic

I ml t. A ccmpariscrn .s :rade ::f

-he .oldy method.



II. ISOTROPIC SCATTERING BY A HALF-SPA2., OF RANDOMLY

DISTRIBUTED SPHERES

In this zhapter the problem of multiple scattering of

scalar waves by a half-space of randornly distributed dielec-

tric spheres is considered. The spheres are assumed to be of

the same size and their radius is taken much smaller tlhan the

wavelength of the incident wave. In addition, we also assume

that t-he spheres are independent and uniformlvy aistributed.

An approximate expression for the mean field is derived

by empioying Foldy's method (6) This apprxixnate mean field

is t.en used along with týe Born apprcxiaticn to calculate

tne backscattered field. The scatteringa coefficent is then

obtained from tne backscattered field.

2-1 SINGILE SCAl"TERING

Consider a half-space (z:0) of randomly distributed

sphe-es (see Fig. 2-1). A scalar wave ;0(r) - exp (-jko-r)

with harioni• t:ime dependence exp ;>t) is ,nc ...en.t upen the

scatterers. The angle of inc' :ence is :n free space 1,(r)

satls fles t1o wave equat;con.

0

and an d are the o Ire

it; tne, p-er:•=it-ity respe•ct vel-%-

. he wav c.tterel y 43_nqle sphere 'w n v',h eS

A L
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(r)$)-A:r (2-2)

here

g3 (r) -exp ~-k /'r(2-2a)

is the free space scalar G-reen's !unct~on which satisfies the

wave eq,,,at In:

Ur -r. (2-3)

The scat:ering p :,perties of t~he spheres are zharacter.,zed by

the reiat!ýor~s!-ip

A -. ~ r(2-A)

which makes thie streng-n, of the scattered wave frznm the n-t

sphere prspFCrt.CnaL to thýe externav. ,;.eIJ _ 4 ictinq on

It. The Iry~:n.t o~tn S ca..ee thte scarrer:0c

zoef!1M-,enr and :s the saz-e for ill sphe-res. The stm.pl~e

spherical! wave behavor Oif :ne sctee ~lires-,;ts from

the tts txj dt marthe ie'-Is -ire ip o-mt -oflsta.n i~

twe v~ni~ ;f he sheT-e. As irs 4  eachA- sphere can be

:ic ;c ~t~erscazer~gby, N ssheres shilch Atre all small

;~sma: s ½ avoonjh An t rt ~ umci a nuvi 4_ 1

'The ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ x S~~Tt rf,~ t ~ t ec&e - h



p&rticul1ar scatterer is locafed in the volume V is independent

of the locations of the other scatterers, thus w,- ctn writc

p(r 1 ,r 2 o.. ) -, P(rl)p(r 2 )...p( ) (2-5)

where p (E) (2-6)

The fundamental equations of multiple scattering will

now be for-mulated. Coonsider a particu~lar cc-nfiguration of the

spiperes. The wave function at rthe point Ir is qiven by

S4Hr)_ - y0.) .. Y', (r g~r• "-'n (2.71
i ( n-

n~1

The equat;,on represents the field as the sun of t:he incident

wave and spheri.cal waves d'ver;nq.. fr.m each -f the spheres.

The *external fi#ld acting cn *Uhe th scatterer is then

(n).ll'i 
r n 0

The equations (2-7) and (2-8, represent the fundaiental equa-

Th Eec' •- et •hcd cf 32 : problem would then ccn-

s .s .I•g . the set ,f s>ucs i:.near algebraic Eqs.

(2-) u fr t-n ' ir e and stibst"t" . •nq these in Eq. (2-,7)

thus ,irl as a .ctor. *of the tcst.ons and sc ttdring

paramete~rs 31, the spheres - the aen ~~u

qua ! i wou~. t2ýhen PA~ the devi fred res3u' t:

<±'t~



('n fort unate, ly, it does not seem J.,ý)ssible to c,•rry out this pro-,

cedure because of its complexitg whon N is Iarge and it is

necessary to resort to anothez pxxcedure. This ai ternat ive

method consists of attemptinq to find an approximate equatAon

satisfied by ,, (r) and then solvinq this equation for the

We now proceed to find an approximate equation for * (r)-. by

tak inq the rean value of both sidvs of Eq. (2-7). We have

N
0 ( 11 )q -r-r ) (2-9)S•n , --n - -~

By us; n. the dv i n i•t.o, of thv i m,' ' - va I uv we have for the

.b r r]acketed I tf /,ro. r*.dlh han'! N, it

(2-10)

Fr-o- [roball'.) V the<ory we knor " that ( 0

wt c 'R I -om -n (

N 0 t * r , we can sec tarom Li;. (2-8 ), depends

or the p.. n (f th( fith sphere. In1orporat. nq Eqi

I2- 1 . . I ( 2- 10) We o!t

nin

T1r d ~ r Qr d .. r

"A'' -d (It d-

(i- LI



Denote

•i ~dr_ Idrn ... E•N (2- 3 )

The quantity n!r ) ropresents the external fiald

actinq o the n• sphere averaged over al. possible configu.-

rations of all the other spheres. For large N we approximate
th

the external !.eld on the nT sphere by the mean field which

would exist at the .sitIon of the n sphere when the sphere

is not Prestnt. 'T'hus we can w re

~z~(r:r )~ K ~) ~i2-14)
t-n -n-

<" t-2. .,n (r~- V :) r 2 2- 15)

The :•l:tl ":"•,•(n)
.--he ;-,z le s fae $or all th*

spheres. S ut) ,oL .... 1" F,;....9r io obtain

But Eq ha-,cv~t

r (2- 17)

rQ)

| •

14



LN ZI N

V*"-,

To See the physical siq•tificaf.ce of the Eq. (2-18), let

us apply the operator, "'7" + k0 to botri sides of Eq. (2-18)0

<V + k2 k<co(r) 0 '" (7 2 -k I)•0r)

y'a dr ('> o . ,,D +-n ,,%r-_rn < (r) >

By using Eqs. (2-I) and (2-3) , Eq. (2-19) becomes

,() > k¼4r)> - 0 (2-20)

where
k' - ý 2 ' ( 21;

eq k0

We See that < .1:1in the region :.0 satis fies triot wave equa-

tion in a "continuous medium- " in which the wave number depends

upo•n thTe scattering coefficient and 2ensity distribution of

the stpheres.

The problem of finding the ,verage value of the wave

fumnct'on has been esr 9 nt y reduced to so>:n' a boundary

vs>.1e, 0ttlfmcz tle waroe quaz:;r-r an~ ea2 rn the valh.4e

of r-n,- q OUt th,-; i Lý, uIC t:n1 we ... fnd that th* mean

wave :n cue ecnzitalent or effective mediunt is

1,q,, ,2
w-hAr' • - ' tt'<,(2 2

-' t

9& :



k. TIrk <0 (2-24)*0x

k' -Tmk t <0 (2-25)

and

k - k sine (2-26)

2-3 CORRELATION FUNCTION Or T•E SCAT'fERED FIELD

We now obtain an integral representation for the total

scattered intensity. The second tarm of the right hand side

of Eq. '2-7) gives the total scattered wave.

W
0s~~r)_ -•n n)g(rn -r (2 -27)

n-1

Since the scattered field radiates into the equivalent

modiu , i q, we have used the Green's alunction g(r) instead

of g0-r) where

-jki .t
e

g(r) -223)
4- r

Is cvta•. the mean vale of o (r) w we follow an analogous

pr~oc d~xe u< that used for < p(r) ), but the analyaia now be-

canrm somnewhat imore in,,olved. To beqin we first multiply the

z~.si ' - r~ &ma ;1v-vs 10, E: -I bty t~he crepn

.1~~~~~ i:,q wxret e!~ !i &,r e~(t



r -- n (Eta .. r4~

rn- 2 2i
(2-29)

th
We next assume that the external field at the n sphere

can be replaced by the mean field; thus we have 1

N N
_: : g %-r)9(r -r )g _( >/; (m

(2-30
If web: hlet 7r )9-g(rl-Qg(r 2 -r,<h¾(rnhc'(r )',Eq. (2-31)

in writ~ten as

< (r ). (r ),...€ •• -.r h([nr m) r 12-32)

Using Eqs. (2-5) and (2-6) we obtain for the bracketed term

at the right hand side

N INfr N N
h(r ,r) -2 - ... dr.-\n

-I~~N ri/ 4 [~ mih% 'r dr.' .. dr.

i~n, mn

rN ddi2-33)-••n t•,r~o. ---n

iin



The first integr&l consists of the (N 2-N) te-ms where n~m,

while the second integral consists of M terms where n-m.

Since

. dr (2-34)

i~n,m

and

f d -- (235)

Therefore

Sh(r ,rm - h(rf,r")dr'dr" + h(r',r)dr'
'n-i m1l -

V (2-36)

where for Iarge N and V

N2-N N2 2

V V

Substitut.ng Eq. 2 - 36) into Eq. (2- 32) we have

• ;f• f• r" h 'I hr dr'

S( Q(2-33)

or

. , - • •..<€ -r (r" -dr'

-13.

S39

U
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2-4 EVALUATION OF THE TRANSVERSE SPEXCTRAL DENSITY AND BACK-

SCATTERING COEFFICIENT

in this section we evaluate the transverse power spec-

tral density of the fluctuating portion of the scattered

field. From this spectral density a direct calculation

yields the backscattering coefficient as we show in Appendix

We staxt by defining the fluctuating portion of the

scattered field by

fP -fr(r) - <p (r) (2-40)

where we note that • 4rV-0. The spectral density can be ob-

tained by Fouzier transforming the correlation function of

(r). We proceed by calculating the correlation of 1,f((r):

S2-20-41)

(r 1 . *(r 2 - (r )-,'

Equation (2-41) shows that at r1Ir 2 the fluctuating in-

tensity is the total intensity minus the coherent intensity.

By using Cqs. (2-39) and (2-10) in Eq. ,2-41?. we find

":v ~ l) ' (r 2) :', " I•! 9 r } ' r -'... • r ) i d ' ( -

,O%,w proceed by takinq the trmnsverae Fourier transfcrm o. Eq.

(2-442) with respect to r and r where

1!4-I.'



r tWx a +yaý 1 -1..2-t. i- ix+ i-y i-

with a. and ay being umit vectors in the x and y directions

respectively.

We have

1f( 2 > (2.r) J _ t- - (2-43)

-t E2t
gtr-r)gr 2 -)!i~') 2e 1 2

Here we have defined pf by

k 't. - rtr ,) e (2-44)

and ktvk a ,-k a
x-y y y

We now set z -Z0MO since it is the spectral density at

the interface that is relate to the backscattering coeffici-

ent. To simplify Eq. (2-42) represent tlhe Green's functions

by their transversa Fourier representation, i.e.,

I(r) - (2-45k
& t(2-i)• - 1 2

w.th ard anse the 'txpl,•it e8"ic, ;, t in

z eq -,t

Eq. (2-22 for the I 'ele fie.d. Stibatitutin these -n Eq. 2-

4) d sp-I±yIfnq, um obtaln

S4.6'



whe• re

S(kt -Y 1 (2-47)Sz z

z1

withi to im< >0 and kI being given in Eq. (2-25).
eq X z

The quantity S(k t is the transverse power spectral density

at the interface. The expression for it given in Eq. (2 47)

can be further simplified by performing the integration. We

have

t~ky,) (2-48)
tm. ' Z2. Z -.

Now applyinq the results of Appendix B relating z*, t!he

backscattering coefficiont directly to S(kt , we have

k2 2.
i~~ ~~ ("A to.. -- ~ (2-49)

wh•en k -k .I•& Notinq tha!it when k -k we have K -k'-- t ) -t 0t z z
&?A.! thus

-2 2
).T! k 0 cos%

- ---- ~------ ~(2-50',

2 Z Z

Sdhre kq -

B'ft;rkm
ILi K41



This is the final expression for the backscattecing co-

efficient. Because of the Scalar treatment of the problem the

constant y can not be evaluated. The situatxon will be reme-

died in the next section where the same techniques as used

here are applied directly co the more complex vector case.

I



IIII. HULTIPLE SCATTERING OF A HORIZONTALLY

POLARIZED WAVE BY A E1ALF-SPACE OF

UNIFORMLY DISTRIBUTrED DISCRETE SCATTERERS

The problem of multiple scattering of a horizontally

polarized plane wave is considered in this chapter. The wave

is assumed to have unit amplitude and a harmronic time depen-

dence of exp(j.t). It is incident at angle 9 on t-he half-

space occupied by the scattezers. We model the scatterers by

dielectric spheres. As In Chapter Two we assume that the

spheres are identical and randomly distributed. The size of

the spheres is again taken much smaller than the wavelength

of the incident wave fRayleigh scattering'.

The main quantity of interest in this chapter, as in

Chapter Two, is the backscattering coefficient, ", In this

chapter, in contrast wlth Chapter Two, the scattering coeffi-

clent is evalusted directly in terms of the geometric and

eleý-trical proport.es of the sp1heres. This allows us to find

an explicit eXjPess5o5 C,1 r ' in ter-is of nown quantlties.

in deter~rdninq the expression for ` we follow basicaily

the saai steps az in Chapter Two.

3- i"O ý,. N3-i ?PRZO £• ¶LT Ž A , DNDAME•. ;•7L EQLATXI 0,

A h.r.zont-. Li l.ia z, ne w nc, icent uirn the

hal f spauc: randcom spheres t an .nqle . The an .Jiert

e f ., ;v,,en aas

x Ia-

%I



The incident field is =Atter by tŽa 4ie~ectric spheres, a'n "thus

gives rise to a scattered field, • 4 rV The geometry of the

problem is basically the same as the scalar problem shown in

Fig. 2-1.

We now derive the fundamental equations for the multiple

scattering of an electromagnetic wave in the Rayleigh limit.

As we have shown in Appendix A, the spheres can be represent-

ed by an equivalent d.ipole current. From electromagnetic

theory we know that a current distribution J(r') produces an

electric field given by 9

E(r) f Gk(r-r') J (rl' (3-2)

V

where G0 (r-r') is the free space .yadic Green '3 uncttion , and

J (r'ý t1he total c'Jrrent d tribut-un v vclu?

,The fre. space cdyadic Green's fancti.n satisfý.es the ful-

lowing equations

1

,.-r ( 3-"J)

where [-& a # &a a lS the Urnt, dya~dic and ,-:( V(-) ia the

-.- x-• .... b-y E -;.- 2 ,!'

' N

J -r



where N is the number of dielectric spheres in the volune V

and j (n)(r') is the dipc-.e current indJuced in the ntN sphere.-eq -

By using Eq. (A-5) In Eq. (3-.-5' becomes

J 0 (r') - j,-,4- 0 Ka n= n E'n (r) n (r'-r )a (3-6)

(n) th
where E (r ) is the external field acting on the n sphere,

and K-(cr- 1)/U: 1) with E r being the relative dielectric con-

stant of the spheres. By putting Eq. (3-6) into Eq. (3-2) we

obtain

N
E: r) G : . o(r z .E (3~ ( -,7)

n-i

where

44

ThC total t.ic f *• ½f jt tiIf 1G5st Zi 5 i3 the i um f

the C.'c. Cdert. field I k aI e t'! !'al ,tt e d,

th<ii we 1-8n wrlte

N
-i ] E,.J (n +:, (E(• , )., (• r ) a (3-,

-- y

th

re'

Si f0



E, (E) E(r+ r-rZ (.ri a (3-10)
S•On

Eqs. (3-9) and ',.7-10 are the fundamental equations of

mu,•tiple scattering of arn .. kectrcmagnCuic wave from a random

collectiotn of dielectric spheres *,hich aru- small compared to

wavv length.

3-2 F DL THE MEA.N FIELD OF E(r)

We now proceed to find an apptoxi.ate equation for

<E(r). FollowiAng the saame steps as in the derivation of Eq.

(2-18) in C-aoter A."'o we have

<E(r) - E (r)+-t dr G (_-- .<E!,:[) (3-11)

where is "he densijv of the scatterers.

Operat-nq Cn both sides of Eq. (3-11) by 7xTN a have

"7x"xE(r),- - x-X.xtr~dr.:-9fdnTXG (r-&n. KE( > (3-12)

SNo t hat the inc ient wave -z. sasfes the wave equat.ion

n f-ee a,.a- e

-, ... ... d 13 - L beCCre S

IniT



0', using Eq, (3-11) we have

x7xx<E (r) a6<fE(rh -+k<F (r) > (-

WA cnr. wrtt.e thIs as

?7xz<E(r)> - <S(r)> (3-16)

where

k2
- * ' (3•-17)

eq 0

Wme see that, <E(r) satisfies tŽ't wave equation in a

"Wcontinuous -ed-.,= In which the propagation constant depands

upon the scattering coefficients and dns of th scattr-

er•. Thus the problem of finding tht average value of tvhe

electric field has been *ssentially reduced to finding the

transmitteC f•old, in a half-space '=,0) of "continuous ,edi=".

Carrying out this calculat ion, we :ind that the wean wave

in the equivalert ,aedium i.s

flk xx-k ,fl
LE(rf *Te " a z>O (3-l$Y

whe re

}f

b z

--



and kz snd kx are givýn by tqg. (2-2411 and (2-26) rassectiveivy.

For paraimters values typical o. vegetation, we will, f.ind that

:3<I which ifplieS the T41.

3-4 EV&LULATION OF THE TRANSVERSE SPECTRAL DENSITY AND

BACKSCATTERING COEFFICIFINT

In this section we evaluate the transverrse powaz apictral

density. The proceduxe dxfferu slightly from th. previt,,us
s ection. Hors the Fourier trrustoc of th± scautared field is ccrputed

first and then the spevatral density is obtained. Previously

we contuted the correlation of the scattcro;. fiecld and t•hen

transforrmnd it.

The single scattered field tn tfle equivalent me-dium is

obtaiLned by uodiifznqg Eq. l2i2). We hav*

E-(r' •j . (3,x-21)

where G and J have riplaced G mnd J Here G is t.he dyadic

Green's function xan ',-h* equlvalent :ned a,. 't is q•t-v•,", by

eq

and
eq

Wi tt k 3t7K

it~~~~~i cc .af& s.r Un74'~V <; rese



,2 N

Jr W)(rr )a (3-24)

Next we take the tr, iMverse Four,,r transform of the

scattered field (the transform was defined in Eq. (2-44)).

Noting the fact that Eq. (3-21) is a convolution•, we have

E (ktsZ) - "'J'of<((Ktsz )dz' (3-25)

wbere E. 1k Z) XS the Focgurier transform of E (ri,

a r

(3-26)

). :e a C(z' -z

and

rk .... 8 )

k

4%. zi+ty~ ~r~7¾ ( e 3-29)

j (3-,9)

4 ;%

-ii~i • f! ...
" N'1 •.:, ,



z q '"t (-0

if we now LWtegra•e the second term in Eq. (3-28) by parts

to r.move ti t e derivatives with '•ýepect to x and y, we obtain

G(k ) z) L( ) 3-31)

whare 7-

eq

an-:

AL? Z) 1 • (3-32)

he• Fourier tran•,form of t~he scattered field can now be

:o mput*±d 4;qf.l-citIyI 3y using £qs. (3-26) and (3-31) ln Eq.

o25) we obtaita,

OK N

A ,t -fL (k- a -2'y < 2 r ) -t(3-35)

,=4

ax ti: we remove t, spact-,,'ar f teld grom consideratlce by do-

I .. ,. ::'



No's; w form the dot product of Ef with its conjugate and

average. Letting V, N'-- such that N/V,-, we find

<CE(k t *. )2> a f (n)2 (kt x ;r'').-(En)- (_ ,z2;r')dr'
1 f" tý 2 1f 2

(3-37)

Substituting Eq. (3-35) into Eq. (3-37), it follows that

Kfk )z1 E;(k~ ,22  (2t2,hsT:% dz'ELL(¾ O2
12 0

, , 
'. 'L •ZI) m Y

"Z( .- k ) (3-38)
-1 2

where the mean field from Eq. (3-18) has been used.

Since we reqculre the spectral density in the z-0 plane

we first use the fact that

- 02-t zi)4'(kt iz- 2') L(k '-1,2 (3-39

tt ýE siZ' g i-i (33

in Eq. -3-38) anU t-hen set zl-zlmO. We obtain

t ,L2 t (2

where

Yb1 f ') g(k ,1 a

From ,-40
i •:~roa a ppsi:d.ix B, v• h av.e

.ic)~ -



k 2 cos2%
° S(k ) , kO - kosinea (3-41)

4w 30-t o -x (-1

Since there is no k component of the incident wave, we havey

r k ,-)a -a0 Z' ) - _ay (3-42)

Now putting Eq. (1:-40) into Eq. (3-41), we obtain

A32 ?'; Io'~ 2mcz

-a 0 dzZ( g')'2 e ( (3-43)

By using Eq. (3-29) in Eq. (3-43) and evaluating the integral,

we find

2 2 2
.k0 cos 9

-(3-44)

t z

with

S COS 4*3 (3-45)

if the study of vegetation such as forest canopies, we

find that o32S . Then Eq. (3-45) can be written approximately

as

o a 8 S) (3-46)K 0 2k ccjo,•-

•k.k

tin ths .n we ( h , v e T hra eLe there is ier*-

Utte rtictxn t the :nte~rt'!C,. Emploýytog th-s result



and the small o6 approximation given in Eq. (3-46), the for-

mula for a* given in Eq. (3-44) can bh substantially simpUi-

fied. We find

JK (k 0 a) 'c")N
J- (3-47)

Thia is our final result. We see that it is independent

of the density ) to first order in oS. The angular variation

is a cosine. This angular dependence corresponds to the third

empirical model proposed by Clapp(10,) , however, Clapp did

not determine the multiplicative constant as we have for the

case of small, spheres.

Various limitations on the above formula should be point-

ed out: first, the Foldy closure assumption which allowed us

to obtai:- an equation for the mean wve is most likely only

good when B<-l; second, the backscatter angle must be bounded

away from grazing or the approximation in Eq. (3-46) will not

be valid; and third, the spheres must have sufficient loos so

that the mean wave does not penetrate too far into the medium.

This insures the appliability of the Born approximation to

compute the backscatter.



IV. EMPIRICAL TECHNIQUES AND NUMERICAL RESUTLTS

in this chapter we compare our results to an empirical

m~odel develope~d by Attema and Glaby (12) . The comparison &ids

in the physical interpretation of thie results obtained in

Chapter III. Following this, we evaluate t-he backtcattering

cross-section obtai±ried i~n Chapter ilI for various parameters.

Plots of j* versus the angle of incidence, e3, are presented

for different values of !requency and sphere radii a.

4--1 M~PIRCAL MODELING

We have studied the scattering properties of vtgetatad

terrain by treating the target as a collection of lossy die-

lectric spheres and deriving tl~e backscattering cross-section

directly from "~xwell's equ~ations and the statistics of the

mediwu.. Attema and Ullaby treated the saze -problemn by a mof

*mpirical approach which wie will describe below.

They assumad the vagetation could be mo~deled by a layer

of water droplet3 having thick:neso 1. T, basic qeoometry of

the mcdel is shown in Fig. 4-1. '.o keep tlhe nmodel as simple

as poetible, the follovilnq assumptons were made: first, t-he

waiter dioplat cle.ud representing the v~getati.1on conxistee of

identica,'. water particles, %iniformly ,distributed thx-jouqhoi~t

tho ;JaYtr7 seccad, on'&y "sin~gle scattering" was c~onsidered,

Here siznyie zacttor:.n was ta.Mier, to mean s-ingle scattaring by

t..0, offi-t-1vz ol- average wave, 1; Itl ed itn

The ffýtjiyfct~ r rajc4Accros ,t-,v por utini

;Yý*rtta. Ati t" eqt

--- --- --



Free space

Soil

Fig. 4 - I Bean incident Uipon Slab of V.egetation

were expressed as

where Is the* number of water rtricles . :wtVfiro

is the radaz- bac,,,kscat.ter in~cas-ec o o', a sinigle droplet

andJ -- x n ttlatr a a roiis ttctianfl or ~n par---

to) calcuflae týhe avetaqe ;xkýateedpwe r The o 1, nt."

isa: ~dent radctr 1beAn, ba otcttnb," al,`, tilsinai

beam s('r sumaud.e taý inrq tt auku-a w# Oxy att t en uat I",

ý,vv bet.,w*ton ttgi1 a 3* "q:ir2Ci

j L~ ZJG V;BX a 1 £ka -30 -



the vegetation surface. Referring to Figure 4-1, the inci-

dent wiuve is assumed tc be a plane wave with power density S

confined to an ideal cylindrical beam illuminating the surface

at an angle of incidence i. Let the illuminated area, A ,ue

be defined as the intersection oi the beam with the horizon-

tal plane at the top of the vegetation layer. The incident

power P. will then be given by:

P Pin SAillcose (4-3)

and the average backscattered powe:: r> ' i2 then fouid to be

fh/cose
r SA'ill COZG- (4-4)

Consequently,

<p>rJ " (t "•'V) [l-•xp(-2:;ahiccs$)' •c, (4--5)
74L

This is the final forxnala thev :.sed to relate : to h C-e e-

dl= crri s sections a.' delnsttv.

For our purposes the formula can be a i iei by first

assuming ih>,l; thus Eq. A4-5) bezcomes

r-' , 7?

I4
Now we wpec-kAtzze6 eonniderattýOna to f'iayieiqh icarrer_:1.:~, i.0.,

,-t* 'assImo tI'e wemqhi's Large coa'wpa^'eda w'c -he dIrop3et Size.

~-r ass',r'e Ir: 'ýt are S*nrn.-V, 4 a~ ,

bsn th'e bakcttrLtc~sSCino n vdikuc plr



is given appruximately by (13)

S4k 4 1K!I2a 6  4-7)

where K has been defined in Appendix B. Next, we write Q as

a sum of an absorption cross sections Qa' and scattering

cross-section,

Q 3 Q Q s (4-8)

In the Rayleigh limit for spherical scatterers, we have(1 3 )

Q i 41k 0  K a 3  (4-9)

and

8- .4 2 a6 (4-10)
1 - 0KO

For the X band region of the spectrum under consideration, tho

attenuation cross-section is much larqer than the scatterinq

cross-section; i.e., Q" Thus

3
S 4-k0 L1 (4--I I)

Now u-ainq Eqs. (4-2) , (4-7) and 114-11) in Fq. C4-6), we ob-

tain

i 02

tChis 14 exnc't.ly the expre'svlaon. CTht~a .1_N o r i C' , ý-p tctr I t 1

7hus we set' In the Ray I jm'ýý ". " :k f J, , ,

t

I1!



method cive t-he samne results.

4-2 NUMEURCAL EVALUATION OF o

In this section the backscattering cross-section as

given in Eq. (4-12) is evaluated fcr several sphere sizes

and frequencies as a function of incidence angle, 6. We as-

sume that the spheres are droplets of water. The complex

(16)per-mitivity of water as given in Peake is

C 
5 +

r

where '% is the wavelength given in centimeters.

The plots are shown in Figs. 4-2 and 4-3. The frequen-

cies used were 9 and 15 GHz respectively. An examination of

the plots shows that the general behavior of the plots is in

agreament wit. experimental data'12) if spheres in the o>rder

of a few millimeters are chosen. To obtair more definitive

information the .model in Chapter III would have to be gener-

alized to consider discs and cylinders. This work .s i

jiroqress.

ii
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V. DISC 'VE ~ DIMSNSIONAL RANDONM SLAB

The proceeding two chapters have been concerned with

backscattcrrng f-rom three dimensional scatterers that were

randomly distributed. The calculation of t~he bacicacattering

coefficient was perfc-med by employing Folily's approximate

method to calculate t~he mvsan field. in this chapter we will

compare the Foldy approximation for- the average dielectri.ta

censtant to the expression obL, -nd in the ther:odynamic lim-

itý, t~hat is, in the 'Limit when particle size becomes sm~allI and particle density l~ar.7e. To scecomplish thic, we will re-

strict our avtentlon to one d.4mensional discrete models.

Here the mod.:.,= is composed ofa zdent~lcC_ dlalectrlc slabs

which are distributed probalxstically. T"he results obtained

should carr-y o-ver to the three ax~n~ncase, hwvcthis

work has not been ;Corpi-Aeted at t

The moethods usedI in thxim '-hter 4:-fftex suahstantiaflly

from t-hose ermployed previously, First. dent :cal. slab$

of w;dth 'a' are chsnso that they obey a renewal process

whicr',ý will be 4escrIb.I*d in miore 'It~ n rzJhs neiný section.

-hprpet tjiA, - ceriapping of

s _b tS :ev~ c± r .. tfl _ý htu; _h.s a?'_ at p$s t to n V

cuatrilauted U. i tt' ~~~~~Ist . r' 0tk&)US4 cca



F

U•ing a process without overlapping is desirable since this

correrponds to more physical situations of interest.

Follow,:' the choice of the renew&.1 process,

differential ekuations are found for tha probability of occur-

ence and nonoccurence of a slab. The solutions to tho•se

equations enable ore to ca2,culate the aver&ge dielecrr-c

constý4nt of the random mediiL exactly.

In the remainder of tho chapter, .he renmwal process is

used to drive a nonlne~r system of ordinar-: differential

*quatiors having solution u(t). A diffusion equation is de-

rived for the probab4.1ity d~ensity of u(ti and the sol.ution to

t-hiA equation Is obtained in t•he therrnodynamic li-vit. rinal-

ly, these general, resilts are applied to tlh,,, dimenuion&2,

9i!.ab and compared to Foldy's results.

5-I SLAB RENEWAL PROCESS

*n ~ ~ ~ w %wl " et~... escribe the ra~o pr-zcess th~at

; 2.D12a,• O Cf dielectric slabs 'a'"tf tO th •an

-.. tc d a ~ dk.i-t 'e-ht01

e. c r .3 r.... mo ,,i ,I e at d o t s r n o

7--- Z'"' .



whýrm s is the free space permittivlty and is a corstent
o

daterm~i•,tnm, the so-ength of thos .l~uvcoat-ions. The process

r z'ý takes ý,ýn vslu~es 0 or I j f v is outside a s t..eb or in-

side a Slab respectively.

The probabilistic character '•f the process r(z) will

now le -specif•ed. Associate the random variable Zi with th&

traxi' .. edqe of the i slab. Rather than specify the Z

i...ctU,' we form the d:fference

W. I : i - z _1 , -,- ., 2, 3.

where Z - O. The W are us',i the 2istsnce between trailihg
ecdiqs of ad.-acent slabs. We asnime that- the W arc independent

identicx ally dxstrtbutedl rar.om ".Ills of
414)

ahe W, forces 'the process rA'Z to to A f:enewal Wrocess We now

cov ... the dhstAribution of the W to be

(.. •{w-.,s) (5-3)

"a :rS tai. e ste. p ftu t o '.. o s ............ *" " ,ameter

<za nt mN~pe e st2 aEra per unit- leniq .hi1

"flu a:~±t~j2.L~tlntonha.s itwo ;mrpctrtant pzopezxatis.

,..4

& .4', , 4......
a

s -K. e t: .IT.4ý



3econd property ot! Eq. (5-3), is chat for small "a" the dis-

tance between slabu is approxxrmaxel, exponentiall.y distributed.

"This implies that the slabs are randomly distributed which is

physically appoalI&ng,. 1f the Z i had been chosen to be uni-
tcrmty distributed at the outset, then the process would have

been Poisurn. This is a usual assumption made, however, it

leasis to an overlap problem.

Since the process r(z) has now beer. defined, some of its

properties can be calculated from its probability density Pr (Z)

where

SPO ( Z) r- 0
~ p 0 (z 3 2:(5-4)

I PlH) r* i

Hare po z is the probebbilty that t.he point z is outside a

slab while p 1 (z', is the probabLlIty that z is located inside

a slab. We see that

z- x ~ r)~ 5and

STh-•.s• o :ncwedqa p. .. w t I ?, Al• .... us to calculate th. averaqe

ie: one anc .h t 'mthJ hcr"'&-o 0:f pro-

b a bil I5C CAC on* 4t PO- (2 and Ptz2 54'%Sty the

A.k

Vl



Eq. (5-7) can be solved by employing Laplace transform tech-
niques. Denoting C(s) as the Laplace transform of p0(z),

i.e.

p f1) p(z) ea-Zdz (5-9)

the solution to Eq. (7) becomes

1

0o S - 'ki-as (5-10)

Now employing the inverse Laplace transform p0 (z) becomes

P ( 1 , f>0 (5-11)

f s J ' e- -as

Now using Eqs. -we-5 f5-6"; find
I ( 1 dsf6+ =• ÷:I • i- (5-12)

~(z) * l~-Il-as

in general the mean will be a function of z and thus the pro-

cess is nct stat1:narv;: however, an examination of the mean

o Iar'A e z sow4s " t a0 proaches a constant value. By using

tlle val,,e *heorm, we finid

i o s; sm - -- 13)

S...... tat tniis consranz mean I.s

'I few' C L' pISe :Sce. -"3 nn Con e~ S n-

t~ ~ ~ ~~~~~~~ rJ menst'l -Y-rda-,i et



at zVO.

Before concluding this section, we will discuss the

thermodynamic limit. In this limit we let the pulse width

a.-o as the pulse density \--. We do this in such a way that

ka-constant-a. In this case, the medium approaches a non-

trival limit which we call the macroscopic or thermodynamic

limit. Performing this limiting operation on Eq. (5-12), we

find

<clz)> - C 1O + (÷ -I - • ,K >O (5-14)

Thus we see the rmean has a constant value for all z greater

than zero. We shall return to this behavior at a later point.

5-2 NONLINFAR SYSTEM DRIVEN BY RENEWAL PROCESS

We will now divert our attention from the specific study

of the one dimensional problem and obtain a result that will

be needed in the next section. Consider and N th order system

of nonlinear ordinary differential equations driven by a re-

newal process r~zý I.e.

dU~zi
•-iF r F (• rtz)_ , z) , z >o (5-15)

where

0Joý w.p. I

Her 1 1, 'i and A are N !iensot ec ors .4C b, el 20'111?7

z.he no 'seratiir. of prcbabt.iJty argument a diffsion equation

- e !er,,vod for the cion probabl t -!eri;iity



PO (u,z) where

P.(u,z)du - Prob (u<U(z)<u+du)(r(z) - i) (5-16)

N
with du - , du . The diffusion equation is

L1-1

aPo0(U z)
•p~uz) - L---(f i(uoz) Po(u,z) - lpo(Uz)

i-i

•J(z-a,u,Z)po('Jiz-a;u,z)_ ,z-a)t•(z--a) (5-17)
0-

PO(.1,o) ( u-

where 3(u-uo) is an N dimensional delta function. Here

u(ru,z) is -he solution to the final value problem

Sz u, z) -u

and 'i• ,,)is the Jocabian of the trans frmaticn from u to

;, i.d.

,-(,•z ,, et (• 5 :-19,

Although the equation is omplitcated, o:re must realize it is

an exact equation with no approximations for p 0u,z) and the

t ---

eq,,ia t i c) i s ! e t .... ...

Aj a n em p, I i n, q "n serv a t jo ) ,7i •r rýa llt ii a~q iIn e _3,

"I At

I



PI(Uz) (Z(H;_ UZ)U u d_ '5-20)

where pis defined in Eq. (5-16) and (z)÷ is z if z'> and

zero if z<o.

We would now like to see how these equations reduce in

the thermodynamic limit, i.e., as a-o and \-- such that ak-a.

Expand.ng Eqs. (5-17) and (5-20) in a power series in "a", re-

plac.ng 'N by i/a and keeping only dominant terms, we obtain

N

N (- - o

p-•iZ a pki,z) (5-22)

The probab~iiy density with "respect to j..st u can be obtairned

by .u~n •., e -ar'rable, we hav

po~u~Z) p .u Z) ÷ p (j,z) (5-23)

By usn Eqs. .$-22.i and 5•-2.2. an equatiocn for p,,)

4P N

0,

(U o) I



I we now make the important assumption that f depends

linearly upon the renewal process r then we can write

(urz)>* f,(u,<r>z) (5-)

Usinq this result in Eq. (24) one has

Iz u!i (fI (u,->,Z) (5-26)

p(uI,o) - (u-u I

By direct substitution, it can be shown that the solution to

Eq. (5-26) is

p(u,z) =' 3(u-aU(Wz (5-27)

where

f (j(5-28)

-i - -- <)

Thus we see the probabLlity Jeonsity in the thermodynamic limit

is a delza function, i.e., at each point z,u only takes on one

Value `,z . Therefore the solu-ion is detern!nistic. Nlote

that th s determxnisttc solurz:on, d(z , obeys the seime equation

as th -,, ando,- sol2tior, * ) £q. w5-Ž) with r replaced, by <r-.

Thus~> ~i~ :UIIte prucese, acts xn a ceetnsicway.

Theare so :many parttllea per ufl&t ienc, th tt the systler only

se:s tte avera;.e effect of the part ,clcs. This rtsult will be

led ': t'he lifixt JectiOn.

5 ý 2 !CFLECT ICO Ný W'ýM ASC:r :MNSGALLB

A ~ ~ ~ ~ ~~' tL C (! c 411ae S k c± zfl

-LQ "S' Lvý 40nY~ ~os1!~~~~~ dh r~at fl t a!lu n ~i~~ra~~~

ARM-~anz thtaa~-~--' --



random medium. We shall calculate the average re-

flected wave and comoare these results with those obtained

by the Fold'-"s te.zhn'ue.

Consider a scalar problem having field component u which

obeys the reduced wave equation:

k 2(z)u - 0 -M<< (5-29)
dz*'

when k is t.:-e free spzce wave numter of t-he mediumi dnd -(z)

is the dielectric permittivity. The domain of the variable

permui ttivity is confined to o<z<L. Outsi.de this regimn c(z

•skes -n a constant value one. inside the slab region the

dialectr:1 fluctuations :re macelled by a renewal process as

follows

z) -o-z<L 
~(5-30)

1 • Z<O

where r.'z has -been defined earlier. We assume a plane wave

is nlormally Inciden upon tne slab froaz the right and a re-

f lecte and transmnitted wave is gener.ated. the ihomoqereeou.s

-:egiicn t , the right and le f the slab respect %vel. This

is shown in F:,;. 5-7.

Thne fi Id i l~ te horiogeneous -eqO.nT car. be writtnr. as

co e t,

13 z e
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that both 7 and T are functions of the slab thickness.

Since we want to draw upon the results of the JAs- soctinn,

the boundary value problem of Eq. (5-29) will have to be con-

verted to an initial value prcblem. This can be acc7omplished

by looking at the reflection coefficient "(L) rather than the

field u(z) . One can derive a Ricatti equation f-)r this re-

flection coeffi.cient. It is

dr i'+ k' (L) ,. 2 (5- 32)

• -- )ik"- + 2 + A

"(o) - o (5- 33)

We see it is a first order non!lnear ordinary differential

equation. T-he problem is now an nitial valse problem since

the condition ,n Eq. ý'5-33) is only given at )ne point.

The problem has almost been cast in th form of the last sec--

zionexcept for the fact th.4t Eq. (5-32) '.s complex. To trans--

form Eq. 15-30)into a real form, we let

is (5- 34

where : is •he amplit.•de of and : is its phisel Pl•i i

th _,, Eq. 5-32) and e-quat•,ng real ,ind •na .nac v parIts, ''e

find

f4 1 1

IL 2 .... .. .... i n ,'< 5 -.,:
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replaced by L and with

u :)

In addition, since the system is linear in r(L), the results

derived for the thermodynamic limit hold for Eq. (5-35). eas-

ically this says that when a-o and ,I- such that a•-• the

solution for i and : is deterministic and can be obtained by

replacing r(L) by ýr(L)',. Physically tnis says that in the

thermodynamic limit the solution to the problem can be ob-

taied by replacing? the --,statistical medlium r(z) by its average

•r(z)-. Thus the medium. can be :-epIaced by orie having an

average ,uielectric co-stant of

• Z ) • - , -- r ( z,,' "1S'" (5- 36)

Sr Z) "' • pl .. t

An analvis -) uf te one Jimensionalr poble , by the, o. .

t.e l'.h rnl ,41C I eadi to the fDI lowing result. tor the average di-

+(5- 7

1_5 f SŽe hthe zfe;ý_' tr.'ýM the Fo J echnru pie over-

, . . i t h h e th e rm , " , m. t t , h e - 1 t V .i. so

(,c' ste .hat the $Pol'iy mnlethod 1- .rot : 'e' when - ' a-o

thc AL-i! i9S 't _ rf.sept a n.t re*"', h

'~ . b~w eo ~ ~-j ~ :~.*-~~ ~'he *-

.....



probaonlity density should prove to be a usefutl tooi in

the f uture.

AI



IV. CONCLU~SIO2N AND RECOMMENDATIONS

Wchaves developed and analyzed a mocdel for a half spaca

of vegetation. This model views the vegetation as a collect'-on

of lousy dielectric spherez. Within the constraints of this

model, the hackscýNterinqj cros* section has been related to

c~ lere sixt~ and dielectric constant.~

In Section II the scalar problem was analyzed by the Foldy

technique. This section served the ptrpose of illustrating

the tvchr.ýLcpie, haow ?~rir because of the scalar natur'e of the

pob:.ei a complete relationship between the medium parameters

and !%,ickscattering zross section coulid not oe obtained. In

Sectioni AT1 th~.3 defect was remedied by applying the PFoldy

technique to thoe c;.mplete electromagnetic prcblem. The case

of horizonttlly pal.ar,.zed waves was treated and an expression

was obtained relatLing the radar cro~cs section to the mcsdium

paramepters. ihisj expression was found in agreement with the

angular def.:inderice of Clapp's third model. An interesting

featuxre u.' exress.`n is thet It was independent of den-

In SactiýcnP 1% tie rfifi.~ts of Section !A" were compared

with the datai presented by Attemia and Ulaby. The agreement

-ias found to be quite qgood for water droplets. off 1 to 5 mmn in

the X band~ region of the spectrumi. Inl addition a cormoctiofl

was Qs1stbl shad hetw~eer, the more *mpirical airalyxiý, of Atai

An.. ',',0 l .nd- t~he 4 Y 9temst\C Ic ~ 1poocU-*tmp 1oved Ln soc t ion

lla conc-.11 sho'Wed tha the 3nethod we *Ap-ywl laý

E ~ ~ ~ V 2UMd httdRCti t

toN



indiv~idu~al particleO ias mall compared to tbe abnorp "ion cr'f.,)ae

soction. The validity of this assLumptior in theteqmc

ra~nge of interest is shown in Figure 4-4.

Finally in Section V, we explored some fundornental lim~i'-

tat~ons cf the roLAy technique. There we s~.w by empioyirn: a

one dimensional rmoied, that the 1'cldy approxtmat3.on only Qivea

correct resulr!ý when the p1roduct of slab width arA,ý, dttnsiiy ar*

small.

In view of the cuccess cof thu wntc e u~eci in r-.Jýtxsinc4

physical parar~teris of the .~:, ~krctw~r re~&C

tion, we maktb thsý tl;wn. ,mndtic 4 a.

1. Analyze i medium reprevktavýed by ciacr having a tin-

dom Ln~tand a probabilistic, angular inctin

Since the discs would i:1nnszert iC~vs, tiw' wave-

lengt~h woulld b~o oft -he ordor of the scatttt&,t rm) object.

TIN~erskyaz technique (a g~eaiLt~ Of Foldy's me-

tto44 whi~c-1 rnrwvea the Rayleigh asuultpt.Low) would ble

employrdPý. The resutlts w-ouid be compared to thioae cts

wt~o alua'dhackscatterini frori lkxavts by

2, By usng the -At*chniaque ewpasiye&d in racurn*ndation I.,

analyze thd eftýect a3_ qrond iynq ½il.the viecota-

t icr. Thit rwquti,ý@s CantaI ~iy&s -:t tht slab:.be.

'N3 J:nvestlqtte the offocts of depoiarýi±~ticvn. t ~ahow

N~~~~~ tt rp cS esC! .n nuu adMvt
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Ap endix A

Induced Current on a Dielectric Sphere

When the size of a dielectric sphere is much smaller than

the wavelength of the radiation incident upon it, the electric

field within and near the sphere behaves like a constant elec-

trostatic field. From elementary electrostatics, we know the

scattered field can be represented by a dipole located at the

center of" the sphere. In this appendix we will calculate the

equivalent current J q(r). This will be derived from the in-

ducod dipole moment as given by Stratton.

Let us assume there is an electric field E(r)ay incident

upon a sphere of radius a whose center is located at r-r'.

If the sphere's radius is small compared to wavelength then

the induced dipole moment density P(r) is given by(9)

P(r) - P(rlaY - 4!rc 0 ka3E~r) i(r-r ) a (A-1)

-whore f,-t Er- I/(L2) and cr is the relative dielectric con-r ~rr

stant cf: the dielectric sphere.

The equivalent charge density •e(r) used to represent
eq-

the scatter*d field is then

O (r) -- 7 .P(r) (A-2)

• " -4-,-' kA E (r') ý x,-x"....o a' • Y.-y' Z ( Z•-,z A
3

whan %,I,, is tha dUrivati.e of L(z) w.tlh respect to z. Froni

-54--



V.J eq(r) - j-j<O eq(r) (A-4)

we find

J eq(r) J 0 6(r_-r)a (A-5)

where

Jo - J'f4it 0ka 3E(r') (A-6)

Thus we can replace each sphere whose radius is small compaxed

to waielength by equivalent dipole current as given in Eqs.

(A-5) and (A-6)

I



Appendix B

Relationship Between Backscattering Coefficient and Transvirse

Spectral Density

In both Chapters II and III we have used the relationship

bet;ween transvwrse power spectral density S(kt) and a*. In

this appendix we will derive that relationship.

Assume that a vector component of the scattered field,

say ; s (r&t,O) is known on the boundary (z-0 plane) between the

random medium (z>O) and free space (z<O). Then the far field

in the fre* space region due to a region A on the plane z-0

(17)is given by the Kirchhoff diffraction formula It is

-kr
jk 0cos8e Jk 0 x'sinec(r) ". •-r~(r'0)e dz' (B-i)

2--t - -rt

where 9 is measured with respect to thm normal to the z-0

plane as is shown In Fig. 2-1 and +

The backscattering coefficient :0' is defined as

4'Tr 21:.
1 10 

(3-2)

wnere Ir is t.he average intensity at the receiver oZ .. fluc-

tuating scattareC fisid, i.e., Ix (r) z(r)> >e

'aU1d 1i 19 tre field i.ntensity incident upon %he i

ta'd'arta A. As* nq an onc nt fi*i:f oche form

1k (Xsi.nA--aC086)
(a-3)

I I -



then we have 1i!ir 2I

The average at the receiver from Eq. (B-I) is given by

k 0cod a Jk C (x'-x") sin6
k~c°2• fdzrý. f dEZ •f (r 1,0)0*(r", 0) >ek¢x-'i

(2,r) A (B-4)

*se f(r%'O)o .(r- )'<f(qt0)>. Using Eqs, (B-3) and (B-4)

in Sq. (B-2), w* have

k 2 Cos2 1 jk (x'-x'n sine

(B-5)

We will now use the transvex ýe Ft irier transform of f(Et,O)

and its conjugate. Denotin the 'ns 'ore of f r r,O) by

@f(tt,0), we have

usin~g thi i-. Eq,;ýi-6

2

4ow we made ..

let~



whes S~kl) in z'he transverse power spectral density of tho

in:erface tield. Putting Eq. (B-)8 into Eq. (B-7 o and mking

the change of variables

r rt -rio

dk(we find

S~Illuminati•ng the whole plane (A,•), tŽhe fl ~J re~ult Li

where kt-k Sir:1a

Lb
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