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" ABSTRACT

\/

A theoretiégi-a;veloameut‘;E small ampliéude wave disturbances
on oceanic fronts is presented. The prototype front is the inshore
boundary of the Gulf Stream, althaugh the model encompasses a wider
range of applicability. This work is an extension of recent research
by Garvine which showed the importance of dissipation near the surface
front, and earlier work by Duxbury on large scale time varying inviscid
flow regimes. A two-layer model is considered in which the lower layer
is much deeper than the upper, lighter layer. The upper layer, includ-
ing the frontal zone, is then dynamically uncoupled from the lower
layer. The frontal zone that forms the ﬁorizontal boundary of the upper
layer is divided into two regions, a smaller, inner region in which the
flow is dissipative and depends upon interfacial mass entrainment and
turbulent friction, and a larger, outer region in which the motion is
inviscid. The boundary between these two regions is placed where the
internal Froude number is of order one.

Both geostrophic and ageostrophic basic state (non time varying)
flows are considered under the f-plane approximation. The geostrophic
case is a modification of Duxbury's two-layer model to include the
inner dissipative zone described by Garvine. The ageostrophic basic
state is similar to one originally suggested by Stommel as a more

realistic model of the geometry of the Gulf Stream front. Nonzero
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cross-stream flow is allowed in each basic state which is con-
sistent with mass entrainment within the inner regionm.

Small perturbations to the basic state are then assumed with

time-harmonic and space-harmonic dependence in the direction parallel
to the front. A system of coupled, linear ordinary differential

equations is derived in the perturbation variables. Their solution

is developed using a small parameter expansion, the small parameter
being the ratio of the cross-stream to the downstream basic state
velocities. Application of appropriate physical boundary conditioms ;
le;AS to zeroth and first order dispersion relations. To lowest order, 5
for both the geostrophic and ageostrophic basic state flows, the dis-

persion relation is linear. All waves are therefore stable to lowest

order, and a continuum of wave modes is allowed. To first order, that

is, when finite cross-stream flow occurs, the dispersion characteris-
tics are nonlinear and admit complex wave frequencies that lead to
instabilities. The stability characteristics are found to be inde-
pendent of the shear velocity between the frontal zone and ambient
fluid and depend only upon the frontal zone interfacial depth at

the origin. Comparison is made between Duxbury's analytical model

and observational data for Gulf Stream meanders. Disturbance 4

e

periods generally in the range 3-20 days are predicted which de-

crease with increasing latitude. The results compare well with

.
R B e s s

recent satellite data for the Gulf Stream.
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Arcturus encountered the filamentary surface manifestation of Beebe's

CHAPTER 1

INTRODUCTION

1.1 OBSERVATIONS OF OCEANIC FRONTS
Oceanic fronts have undoubtedly been observed for centuries by {
those who sailed the sea. Perhaps they have even been understood on |
an intuitive level, as, for example, by the Japanese fishermen who
regularly exploited their biologically rich waters. However, their
scientific study as prominent and important geophysical features is
of a far more recent origin. One of the earliest published accounts
describing what we recognize today as an oceanic front appeared in .

William Beebe's book The Arcturus Adventure (1926), in which he devel-

oped the metaphor of an invisible wall separating two very different

water masses. Steaming in the mid-Pacific just north of the equator,

invisible wall, a region he described as "

+e..a world, not of two, but

to all intents and purposes, of a single plane - length.” He continued:
"From first to last we followed its course along a hundred miles, and
yet ten yards on either side of the central line of foam, the water

was almost barren of life. The thread-like artery of the currents'
juncture seethed with organisms ~ literally billions of living creatures,
clinging to its erratic angles as though magnetized.'" Beebe's quali-
tative description included many of the important features character-

istic of oceanic fronts, features which have been observed often in

subsequent investigations.




Fronts occur at the boundary between two water masses with

different physical properties. Thus, they generally exhibit a long,
thin geometry. Their presence is frequently revealed at the sea- 4
surface by a foam line (as observed by Beebe), debris accumulation,
or an abrupt change in some visible surface property, such as sea s !
state, water color or transparency. Although none of these surface
manifestations is necessary for the existence of a front, one or more
of them often accompanies an oceanic front, as observed by Beebe and - :
others (Amos, et al., 1972; Cromwell and Reid, 1956; Knauss, 1957;
Garvine and Monk, 1974; Stommel, 1976; Zaneveld, et al., 1969).

The near-surface zone associated with an oceanic front is also

frequently characterized by considerably enhanced biological activity ‘

compared to the surrounding waters. Beebe (1926) considered this
discovery one of the most remarkable features of the "current rip"
described in his book, and attributed the large number and variety

of living organisms to the shelter provided by the debris accumulated
along the foam line. There is not necessarily any correlation between
biological activity and debris accumulation, however, since fronts have
been observed in which the former was present but not the latter
(Knauss, 1957). The front studied by Knauss in the eastern equatorial
Pacific was, nevertheless, easily observed by eye. The colder water on
one side was darker in color with shorter-crested waves than the water

on the warm side, where most of the biological activity was concentrat-

ed. In this case, the biological activity was apparently promoted by




higher levels of suspended and dissolved nutrients near the surface
front than in the surrounding waters.

Observational data also show that fronts tend to be regions
of surface convergence, that is, surface water moves toward the front
from both sides, subsequently sinking (Garvine and Monk, 1974; Ingram,
1976; Voorhis, 1969; Wooster, 1969). No observation of surface diver-
gence has apparently been made. In addition, fronts are not fixed in
space, but frequently wander about the ocean (Garvine and Monk, 1974;
Katz, 1969; Wooster, 1969). 'They occur on a variety of length and
time scales, from tens of meters to-thousands of kilometers and from
hours to years (Beebe, 1926; Garvine and Monk, 1974; Ingram, 1976;
Knauss, 1957; Pak and Zaneveld, 1974).

In view of the number of characteristics that may be associated
with an oéeanic front, Cromwell and Reid (1956) provided the first
precise definition of the term in an attempt to introduce a standard-
ized nomenclature and to isolate the essential physical processes.
They defined an oceanic front as a band along the sea surface across
which abrupt changes in the water density océurred. In their study,
they correlated abrupt temperature changes with abrupt density changes,
since their measurements were made whete‘appreciable salinity contrast
across the front was absent. More recent studies, however, have been
made of fronts with nearly uniform density as a result of offsetting
temperature and salinity effects (Maul and Hansen, 1972), and of fromts
whose density contrast was a consequence, instead, of salinity differ-

ences alone (Amos, et al., 1972). It is thus apparent that Cromwell
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and Reid's definition should now be broadened to include these other
possibilities. The essential notion conveyed by the term "oceanic
front" is that the front constitutes a well-defined boundary between
two water masses with different physical properties (density, temper-
ature or salinity), across which sharp changes occur with little mixing
between the two regions (Katz, 1969). Changes in the physical proper-
ties of the water masses are, moreover, often accompanied by sharp
gradients in other properties, for example, current velocity, concen-
tration of suspended and dissolved materials, water color, transparency,
and surface wave action.

In describing the Arcturus observations, Beebe (1926) referred
to the surface expression of the water mass boundary as a "current rip",
since he observed a strong velocity shear parallel to the foam line,
as have other investigators (Cromwell and Reid, 1956; Zaneveld, et al.,
1969). But Cromwell and Reid recognized the similarity between oceanic
and atmospheric fronts as boundaries between fluid masses of different
density, and therefore adopted the meteorologist's terminology. However,
their definition was too limited, since, in addition to allowing only
density differences, it considered only the surface expression of the
boundary. Instea’, the sur“ace separating the two water masses gener-
ally slopes down and away from the surface front into the ambient water.
In this paper, therefore, the term "front" refers to the entire discon-
tinuity surface that separates two water masses with different proper-

ties.
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Three observational papers that provide some quantitative insight
into typical frontal length and time scales, density, temperature and
salinity contrasts, and circulation patterns are Katz (1969), Voorhis
(1969) and Knauss (1957). These papers are particularly relevant, since
they examine typical large scale upper ocean fronts, and the theoreti-
cal work presented here addresses the dynamics of such large scale
structures. Katz' investigation involved a front near 30°N, 70°w
whose linear extent was at least 200 km oriented approximately north-
west-southeast. The entire frontal zone was observed to translate in
a west-southwest direction with a maximum average velocity of 15 cm/s.
In addition, a definite meander (or "wiggling') of the frontal boundary
was observed, giving rise to a roughly sinusoidal surface shape of
small amplitude and about 180 km wavelength. Water to the north of
the frontal boundary was found to be characteristically 1°C colder than
water on the southern side, with a corresponding salinity contrast of
approximately 0.1°/oo. The variation of g, across the front was on the
order of 0.25. Over a surface range of 20 km, the depth of the boundary
between the warm southern water and the colder northern water increased
from zero to about 150 m, corresponding to an interfacial slope on the
order of 10-2, and thereafter more gradually increased to about 175 m
depth. Measurements were made with a depth resolution of approximately
2 m, and on that scale no mixing was observed between the two water
masses. The frontal boundary was therefore very sharp and well-defined.

Evidence was found for a circulation pattern that included convergence




of the surface waters followed by sinking along the 1hterface between
the two water masses. The frontal zone Rossby number was estimated to
be 0.1, indicating nearly geostrophic flow. Estimates of surface veloc-
ity were then based upon geostrophy. A surface velocity shear of
approximately 80 cm/s was computed and found to agree quite favorably
‘with limited direct velocity measurements.

The Sargasso Sea front studied by Voorhis in 1969 exhibited
features similar to those described above. The surface expression of
the front was tracked over 1000 km extent and was marked by the 21.5°C
and 23.5°C isotherms, with the 2°C temperature contrast being confined
to a region sometimes less than 1 km in lateral extent. The correspond-
ing salinity and 9, contrasts were found to be approximately 0.1°/oo
and 0.4, respectively. A high velocity jet was observed on the warm
water side with central currents as high as 80 cm/s. The oppositely
directed cold water current, which provided the characteristic fromtal
zone shear, was much lower at 10 to 30 cm/s. The warm-cold water
boundary gradually sloped down from the surface to a depth of 50 m over
a horizontal range of 10 km (slope of order 10-3), with the less dense
warm water wedge floating on the more dense colder ambient water. A
drogue study provided evidence for surface convergence along the frontal
interface. In addition, the surface front was marked by the accumulation
of Sargassum weed, a further indication of surface convergence. Air-
craft infrared studies were performed during a five month period in

order to determine frontal zone persistence and motion. A well-defined
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front was observed to preserve its identity throughout this period,
but with marked changes in its configuration.

The front studied by Knauss in the Pacific was close to the

.equator (2°46'N, 120°39'W) corresponding to small values of the

Coriolis parameter, unlike the Sargasso Sea fronts. Bathythermograph
measurements in the frontal zone, whose surface expression was confined
to a band some 100 yards wvide, revealed temperature, salinity and o,
contrasts of about 3°C, 0.08%°/00 and 1.0, respectively. The front was
observed to translate normal to itself at a speed of about 50 cm/s. In ]

addition, surface convergence and a strong velocity shear of nearly

2 m/s were observed.
A very important feature of oceanic fronts, and the one addressed
theoretically in this g;per, is their tendency to develop wavelike dis-
turbances which propagate along the frontal interface. On fronts
marked by some visible surface expression, such as a foam or debris
line, these wavelike distortions of the boundary between two water f
masses are frequently manifested as roughly sinusoidal lateral displace- |
ments of the surface foam or debris line (Zaneveld, et al., 1969).
Frontal waves have been observed on several large scale upper ocean
frontal systems, for example, the Kuroshio Current (Uda, 1964), the
California Current (Bernstein, et al., 1977), Sargasso Sea fronts
(Katz, 1969), the Norwegian Current (Mysak and Schott, 1977), and the
Gulf Stream (Hansen, 1970; Maul, et al., 1978; Stommel, 1976; Webster,

1961). The Gulf Stream Front separates cold Atlantic slope water from




the warmer Sargasso Sea water. The waves, or meanders as they are

frequently called, sometimes grow to such an amplitude that vortex

T T

ﬁ rings, or eddies, actually detach from the front.
il In his study of Gulf Stream meanders off Onslow Bay, North Carolina,

Webster (1961) performed a spectral amalysis that revealed dominant
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periods of 6.9 and 3.9 days, with amplitudes of about 10 km. Periods

on the order of 1-2 weeks seem to be characteristic of wave distur- Q

bances on the Gulf Stream Front. Hansen (1970) examined wave distur-
. bances on the Gulf Stream east of Cape Hatteras. He found an eastward

propagating wave pattern out to about 60°W with typical wavelengths in

the range 200-400 km and phase speeds on the order of 5 cm/s. He

also observed a generally increasing amplitude with the wave's eastward
progression, with initially small disturbances growing to some 200 km
amplitude, indicating a possible i;stability in the system. Recent
satellite infrared studies of the Gulf Stream (Maul, et al., 1978)
revealed dominant wave periods of 30 and 6 days off Onslow Bay and 45
and 5 days off New England. Wavelengths of 500-900 km have been
observed for meanders of the Kuroshio system (Uda, 1964); 300-500 km

in the Califoinfa Current (Bernstein, et al., 1977); 50-125 km in

the Norwegian Current (Mysak and Schott, 1977); and approximately 100 km
in a typical Sargasso Sea front (Katz, 1969).

Atmospheric frontal systems also support wavelike disturbances

which are, in many respects, quite similar to those observed on oceanic

&y i
fronts. Oceanic and atmospheric fronts are not isomorphic, however. ﬁ
|




The latter may be conveniently divided into two categories, lower and
upper tropospheric fronts.

Lower tropospheric fronts, the first category, are those where

a thin wedge of cold air at the earth's surface is overlain by a warm

air mass. These are least similar to upper ocean fronts. For the |

lower tropospheric front, the important external boundary is the
earth's surface. There the no-slip condition must be satisfied with
the consequent development of a frictional boundary layer. The hori-
zontal convergence of this layer at the surface front, in turn, pro-
duces a vertical component of flow there. In the oceanic case, on the
other hand, the relevant external boundary is the ocean's free surface,
along which a specified pressure distribution must be maintained. 1In
the absence of wind shear, frictional surface boundary layers will not
be present, so that some other physical mechanism is required to
explain the observed sinking along oceanic frontal interfaces.

Upper tropospheric fronts in the atmosphere, the jet stream or

e S AW 5

polar front, for example, are far more similar to upper ocean fronmts.

Newton (1978) has made a detailed comparison of the Gulf Stream front 1
and the atmospheric jet stream front under the assumption that similar-

ity of structure implies similarity of physical processes. The Gulf

Stream and jet stream fronts are geometrically very similar, each
having a high velocity filament of fluid ("jet') that floats buoyantly

on a relatively deep layer of denser, ambient fluid (the "troposphere").
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The fully developed frontal zone in each case has a depth whicﬁ is
typically 10-20% of the total ambient depth, that is, on the order of
1.2 km and 12 km for the Gulf Stream and jet stream, respectively. The
frontal zone width is likewise in the ratio 1/10 for the oceanic vs.

the atmospheric front, while the interfacial slopes are of the same
order (10-2) for each. The velocity fields, however, are considerably
different, with the maximum velocity in the jet stream being some 30
times larger than in the Gulf Stream. Typical wavelengths for dis-
turbances on the Gulf Stream are on ﬁhe order of 200 km, while the
corresponding value for the jet stream is on the order of 4000 km, a
ratio of 1/20. The same ratio is preserved for the small amplitude
phase velocities, which, according to Newton (1978), are typically

0.4 m/s and 8 m/s. The amplitude-to-wavelength ratio in both cases is
approximately 1/10. Small amplitude disturbances, which are the subject
of this investigation, thus apparently exhibit considerably larger phase
velocities than the large amplitude waves into which some of them
eventually evolve (only about 5 cm/s for the Gulf Stream from Hansen,
1970).

The limited observations that have been made of oceanic fronts
emphasize the variety of phenomena associated with them and the wide
range of spatial and temporal scales on which they exist. Their complex
structure and dynamical behavior, however, remain largely unexplained

by available theory. The work presented in this paper is a theoretical
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model of baroclinic instabilities on large-scale upper ocean density
fronts. Such instabilities produce the meanders and eddy detachment

observed on many oceanic frontal systems. In view of the nature of

this work, a brief review of earlier theoretical models for atmospheric

and oceanic fronts is presented in the next two sectionms.

1.2 THEORETICAL STUDIES OF ATMOSPHERIC FRONTS

In a theoretical consideration of oceanic fronts, the similarity
to their atmospheric counterparts leads naturally to a review of
attempts at understanding the dynamical processes in atmospheric fronts.
One of the most complete discussions of the theory of atmospheric fronts
was provided by Stoker (1953). He made no attempt to solve the frontal
problem, but pursued the more limited objective of rigorously formu-
lating the full nonlinear problem. Starting with the fluid dynamic
equations for momentum and continuity, as well as certain simplifying
assumptions, Stoker developed a sequence of four hydrodynamic models
of decreasing complexity, each, however, being more restrictive than
its predecessor. In each of these problems, the flow was taken to be
inviscid and incompressible (no thermodynamic processes), the earth's

sphericity was ignored (f-plane approximation), and the initial steady

state was taken to be geostrophic, that is, a balance between horizontal
pressure gradient and Coriolis force. The front was defined as the
discontinuity surface separating a thin wedge of cold air adjacent to

the earth's surface from an overlying region of warm air of lower

e
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density. Problem I consisted of the momentum and coﬁtinuity equations
subject to the restrictions listed above, in which the velocity and
pressure fields were treated as unknowns, along with appropriate
boundary and initial conditions as follows: the pressure field and
normal velocity were required to be continuous across the front, the °
no-slip condition was imposed at the earth's surface, and the shape
of the discontinuity surface was presumed known initially.

Stoker's Problem II added the assumption of vertical hydrostatic
balance, that is, vertical accelerations were considered negligible,
as a consequence of which the horizontal velocity field was vertically
uniform. In Problem III, two further assumptions were added: fluid
elements initially on the discontinuity surface remained there for all
time, and the motion of the warm air region was completely unaffected
by the motion of the cold aif region. This latter assumption is
equivalent to requiring that the cold air (lower) layer is vanishingly
thin ccmpared to the upper layer. In Problem IV, Stoker introduced the
displacement distance of the front normal to its stationary position
as an additional dependent Qariable and assumed that the horizontal
velocity perpendicular to the initial front vanished far from the
front. However, even Problem IV could not be solved analytically and
presented difficulties that made numerical solution impractical at
that time. In a companion paper to Stoker's, Whitham (1953) pro-

vided a heuristic development of an essentially graphical solution to

Problem IV using the method of characteristics which exhibited the

o
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nonlinear nature of wave propagation along frontal surfaces and also
demonstrated the tendency towards occlusion and, ultimately, cyclo-
genesis. Unfortunately, Problem IV was burdened by so many restrictions
that it constituted a rather poor model of atmospheric frontal zomes,
and. as a consequence, it was of limited utility.

Stoker's frontal models led to mathematical problems that could
not be solved analytically. At the time his work was completed, even
numerical solutions could not be implemented, since adequate computers
were not available. Recognizing the futility of attempting a solution
for even the simplest of his frontal models, Stoker went no further.

The problem of nonlinear frontal dynamics lay dormant for more than

ten years, when, with the advent of sufficiently large, high-speed
computers, Kasahara, et al., (1965) provided the first numerical solu-
tion. Kaéahara built directly upon Stoker's previous modelling efforts,
and solved Problem III described above using a finite difference numeri-

cal method. His results showed clearly that initially sinusoidal

frontal disturbances propagate from west to east and have a tendency
towards occlusion and, eventually, cyclogenesis.

Another numerical study of essentially the same nonlinear problem
was performed by Grammeltvedt (1970). His results also clearly demon-
strated the tendency for frontal disturbances to develop the charac-
teristic asymmetry that ultimately leads to occlusion. To obtain
numerical solutions; however, he found it necessary to introduce an

artificial dissipative mechanism in order to maintain stability in the
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numerical integration. It appears, in fact, that soﬁe physical
dissipative mechanism, turbulent friction, for example, is an essential
ingredient in any realistic fromtal model; The instabilities encounter-
ed in performing a numerical integration of the nonlinear dynamical
equations are apparently not simply numerical instabilities associated
with a particular integration algorithm, but rather important conse-
quences of the inviscid dynamics assumed.

Even though no known method of exact solution exists for the com- ; 3
plicated system of equations that describes frontal motion, certain
theoretical results are nonetheless available using the approximations
of classical stability and small perturbation analysis. The numerical
models that demonstrated frontal wave instability provided impetus for

renewed analysis, since even approximate solutions to the dynamical

equations can provide considerably more insight into the physical pro-
cesses at work than numerical results. Since wavelike disturbances of
the frontal zone are observed, it is reasonable to assume a priori that
there exist wavelike solutions to the dynamical equations; in particular,
solutions which contain an explicit time-harmonic dependence and which
permit complex-valued circular frequencies. This is the approach
adopted in classical stability analysis. Solutions exhibiting purely i
real.circular frequencies are bounded for all time and therefore termed é
stable. Solutions whose frequency contains a nonzero imaginary part, :

however, correspond to a time-dependent amplitude that either decays or

= ARy

grows exponentially, depending upon the sign of the imaginary part.

Waves of the first type are termed evanescent, while those of the i {

second type are termed unstable. 4
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The simplification afforded by assuming wavelike solutioms,

however, is not alone sufficient to render the dynamical equations
tractable, since they remain inherently nonlinear. Linearization

of the fundamental equations is accomplished by using classical small
perturbation theory, in which it is assumed that wave disturbances to
the system constitute small departures from a known, time invariant
equilibrium state. Each dependent variable in the problem is thus
decomposed into the sum of an equilibrium state component and a harmonic
perturbation component whose amplitude is small by comparison. This
scheme results in a linear system of equations for the perturbation
variables which may then be solved using standard analytical techniques.
The principal objective of this synthesis of stability and perturbation
analysis is the derivation of a dispersion relation, that is, a function
which reiates the disturbance wavelength to the frequency. This rela-
tion then can be used to identify unstable modes in the system.

Using such a combined stability/perturbation approach, Orlanski
(1968) examined the propagation of atmospheric frontal waves and achieved
some measure of success. The system he modelled was essentially the
same as that used by Kasahara and Stoker, although he considered the
coupling of the dynamics in each of the two frontal regions to first
order in a small parameter, which was not a feature of the Kasahara/
Stoker model, Orlanski's efforts were subsequently extended by Kasahara
and Rao (1972), who employed the same frontal model and stability/

perturbation treatment in order to extend the analysis to regions of the
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problem's parameter space that had not been previousiy considered.
Their results were very similar to Orlanski's. However, like his,
theirs did not include any dissipative effects, even though
Grammeltvedt's numerical work provided indirect evidence of the impor-

tance of dissipative mechanisms in modelling frontal dynamics.

1.3 THEORETICAL STUDIES OF OCEANIC FRONTS

Garvine (1974) published a model of quasisteady, small scale
oceanic frontal dynamics in which frictional dissipation and mass
entraimment figured prominently. His model ;howed clearly that a
steady state frontal structure can exist only if friction and/or mass
entrainment are present to balance the net horizontal pressure gradient.
Otherwise, the sloﬁing Interface between two different water masses
cannot be maintained. In contrast, the models of large scale atmos-
pheric fronts described in Section 1.2 are all inviscid'and invoke a
basic balance between horizontal pressure gradient and Coriolis force.
Only in large scale oceanic fronts where Coriolis effects will be signi-
ficant can dissipative effects be expected to play a lesser role.

Garvine (1979a, 1979b) has expanded his small scale model, in
which Coriolis effects were neglected, to include quasisteady large
scale oceanic fronts whose dynamics involve friction, mass entrainment,
wind stress and Coriolis force. In wview of the inherently turbulent
nature of geophysical flows and the attendant analytical difficulties

in treating the turbulence structure in detail, Garvine parameterized
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the effects of friction and mass entrainment by introducing frictiom
and entrainment coefficients whose values reflected the bulk influence
of these effects. He also wrote the momentum and continuity equations
in vertically integrated form. His model showed that the steady state
frontal zone is characterized by two length scales, the baroclinic
Rossby radius of deformation and a turbulent transport length scale.
Their ratio he called the "rotation parameter", which was the major
parameter characterizing the frontal zone structure. For nearly non-
rotating systems in which Coriolis effects are small, the fromtal zone
scale is the turbulent transport scale, and the frontal zone is dissi-
pative throughout its domain. This limit corresponds to Garvine's

1974 model which considered only nonrotating systems. Small scale
frontal structures, such as a river plume front (Garvine and Monk, 1974),
exhibit sméll values of the rotation.parameter.

In contrast, large scale fronts, such as the Gulf Stream, are
strongly affected by earth rotation, but only weakly by dissipation.
Their corresponding values of the rotation parameter are large, and
the scale of the front is the Rossby radius. The weak dissipative pro-
cesses of friction and entrainment are active only in an inner zone
bordering the surface front where the gradient Richardson number falls
below a value of order one due to the large vertical shear there.
Typically, the lateral extent of this region is 10-20% of the Rossby
radius. Hence, in this zone, inviscid dynamics are not valid. Beyond

this zone, the flow is nearly inviscid; but even here the motion is
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indirectly affected by the dissipative effects of ché inner zone.

Any vertical mass entrainment across the frontal interface occuring in
the inner zone must be balanced by horizontal, cross-stream mass flux
above the interface; i.e., flow toward or away from the surface fromt.
This mass flux, in turn, must be continuous across the boundary between
the inner region and the outer inviscid one. Hence, the inviscid region
responds indirectly to inner zone mass entrainment. If the entrainment
there is downward, mass is lost to the ambient water below, and the in-
viscid outer zone must supply balancing cross-stream mass flux (flow
toward the surface front). The opposite occurs for upward mass entrain-
ment.

In this paper, we will comsider only upper ocean density fronts
with large values of the rotation parameter, so that dissipative effects
are subordinated to earth rotation effects. Typical of the large-scale
oceanic fronts to which this model applies are the Gulf Stream Front and
the Sargasso Sea fronts, for which Garvine (1979b) estimates rotation
parameter values of 9 and 4, respectively. For the Gulf Stream, the
baroclinic Rossby radius is on the order of 100 km, so that dissipation
is confined to a zone approximately 10-20 km wide. It will be seen be-.
low that there does exist a third length scale in the frontal problem
which 1is imbed&ed in the dissipative zone. On this scale, which is an
advective scale length, the cross-flow Rossby number becomes order onme.

The work presented in this paper is an analytical study of the
stability characteristics of large-scale upper ocean density fronts.

The model is developed by assuming wavelike disturbances to the system,
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which are then treated as small amplitude perturbations to a stationary
equilibrium flow. As outlined in Section 1.2, the perturbation variable
decomposition is a standard technique in the atmospheric literature,

and also in prior modelling efforts on time-dependent, inviscid oceanic
fronts (Duxbury, 1963; Mysak and Schott, 1977; Orlanski, 1969; Stommel,
1953; Stommel, 1976). Time-~dependent numerical models have also been
developed of both small scale fronts (Kao, et al., 1977) and large

scale fronts (Kao, et al., 1978), but not with the objective of study-

ing wave disturbances on established frontal structures. Both of these

papers instead address the problem of frontogenesis with the ultimate
development of a steady state frontal structure.

The present model first extends Duxbury's (1963) treatment of an
inviscid density front with a planar discontinuity surface. It is
significahtly different, however, in that it subsequently examines ah
exponential discontinuity surface. This form was suggested by Stommel
(1976) for the Gulf Stream front. The model also includes the important
effect of a cross-stream velocity component (flow perpendicular to the
surface front) in the equilibrium flow. Duxbury's system included a
constant velocity shear across the boundary between the frontal zone
and the ambient ocean, but had no cross-stream velocity. It was found
to be dynamically stable for all values of frequency and wave number.
Orlanski's (1969) work showed that systems in which the dynamics of the
lower layer are neglected in a two-layer frontal model are inherently

stable. However, he too did not admit any equilibrium cross-stream
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flow. In this paper, we see that, even neglecting the dynamics of the
lower layer, a frontal system subject to harmonic wave disturbances may
be unstable if a nonzero cross-stream velocity is present in the equi-
1librium state. The source of this cross-stream velocity, in turn, is

mass entrainment in the inner dissipative region.
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CHAPTER 2

THE EQUILIBRIUM STATE AND PERTURBATION EXPANSION

2.1 INTRODUCTION

As discussed in Chapter 1, the term "oceanic front" in this paper
refers to the discontinuity surface that separates two water masses of
different density. The "frontal zone" is a wedge shaped body of fluid
that floats on an ambient ocean of slightly greater density, as illus-
trated in Figure 2.1. Its thickness is small compared to the total
depth, and, as a result, the ambient horizontal pressure gradient field
is unaltered by the presence of the frontal zone. The dynamical be-
havior of the frontal zone and that of the underlying ambient fluid are
therefore uncoupled, which is equivalent to assuming that the ambient
fluid is effectively infinitely deep. Recall that this restriction was
also implicit in Stoker's (1953) model of a lower tropospheric front in
the atmosphere. The frontal zone is free to move about and propagates
into the ambient fluid with a velocity 6f = (Uf, Vf, 0) relative to an
earthfixed Cartesian coordinate system labeled x', y' and z' in Figure
2.1. The location of the coordinate system origin is arbitrary, and
the z' axis coincides with the local vertical. The y' axis is parallel
to the surface front, with the x' axis being perpendicular to it into
the frontal zone.

In nature, oceanic frontal zones, the Gulf Stream front, for

example, are long and thin with a characteristic velocity shear across
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As discussed in Chapter 1, the term "oceanic front" in this paper
refers to the discontinuity surface that separates two water masses of
different density. The "frontal zone" is a wedge shaped body of fluid
that floats on an ambient ocean of slightly greater density, as illus-
trated in Figure 2.1. Its thickness is small compared to the total
depth, and, as a result, the ambient horizontal pressure gradient field
is unaltered by the presence of the frontal zone. The dynamical be-

havior of the frontal zone and that of the underlying ambient fluid are

therefore uncoupled, which is equivalent to assuming that the ambient

fluid is effectively infinitely deep. Recall that this restriction was
also implicit in Stoker's (1953) model of a lower tropospheric froant in l
the atmosphere. The frontal zone is free to move about and propagates |

into the ambient fluid with a velocity 6f = (Uf, Vf, 0) relative to an

earthfixed Cartesian coordinate system labeled x', y' and z' in Figure
2.1. The location of the coordinate system origin is arbitrary, and
the z' axis coincides with the local vertical. The y' axis is parallel
to the surface front, with the x' axis being perpendicular to it into
the frontal zone.

In nature, oceanic frontal zones, the Gulf Stream front, for
example, are long and thin with a characteristic velocity shear across
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the front in the direction of its maximum extent. These features
motivate the "long-stream' and "cross-stream" terminology introduced in
the figure. The long-stream direction coincides with the direction of
maximum extent of the filamentary frontal zone, while the cross-stream
direction is perpendicular to it and taken positive toward the less
dense fluid. The frontal zone's long-stream length scale is typically
an order of magnitude or more larger than its cross-stream length scale.
The velocity field in the frontal zone exhibits similar behavior, with
the long-stream component being much larger than the cross-stream com-
ponent, but not necessarily in the same ratio as the length scales.

The spatial rate of change of the velocity and pressure fields, however,
behaves in the opposite manmner, with derivatives in the long-stream
direction being generally much smaller than derivatives in the cross-
stream &irection.

The discontinuity surface which defines an oceanic front thus
divides the fluid into two quite distinct regions, the (uncoupled)
dynamics of which are taken to be inviscid in this model, except for
the innermost portion of the upper layer. The model assumes that the
fluid is incompressible, and ignores surface wind stress as a driving
force. We will later introduce wavelike disturbances of the frontal
zone, such as would be initiated by some driving agent (such as surface
wind stress) which is no longer active. 1In typical upper ocean fromtal
zones, the lateral extent is sufficiently small compared to the plane-
tary scale that Coriolis acceleration is adequately approximated on the

f-plane, which is the assumption made here. In addition, the vertical
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dynamical balance is assumed to be everywhere hydrostétic, in view of
which the horizontal velocity field is vertically uniform. The hori-
zontal dynamical balance in the ambient fluid is taken to be geo-
strophic, that is, a balance between Coriolis force and horizontal
pressure gradient, and, moreover, is unaltered by the presence of the
frontal zone.

The model is hydrodynamic in nature, not thermodynamic, since the
fluid densities, P, and p_ ~ 4o in the ambient fluid and in the frontal
zone, respectively, are specified a priori. Both p, and Ap are positive
constants with %9- <<.1. Specification of the density field in this
manner leaves on;y the velocity and pressure fields as unknown quanti-
ties, thereby eliminating the need for an energy equation that couples
the density field and frontal zone dynamics.

The model is restricted to upper ocean density fronts which, in
Garvine's (1979a, 1979b) model, are characterized by large values of the
rotation parameter. The frontal zone dynamics are therefore rotation-
ally dominated, and the zone's cross-stream length scale is the baro-
clinic Rossby radius of deformation A. Even though dissipative pro-
cesses are unimportant over most of the scale A, a narrow dissipative

region, whose lateral extent is approximately 0.1A -0,2), exists near

the surface front as shown in Figure 2.1. Garvine (1979a) has developed

the quasi-steady dynamics for this case.
E In the present work, wavelike disturbances of the frontal zone,

including those leading to instability, will be investigated in detail
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dynamics of which are taken to be inviscid in this model, except for
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fluid is incompressible, and ignores surface wind stress as a driving
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dynamical balance is assumed to be everywhere hydtoatétic. in view of
which the horizontal velocity field is vertically uniform. The hori-
zontal dynamical balance in the ambient fluid is taken to be geo-
strophic, that is, a balance between Coriolis force and horizontal
pressure gradient, and, moreover, is unaltered by the presence of the
frontal zone.

The model is hydrodynamic in nature, not thermodynamic, since the

fluid densities, p_ and o - Ap in the ambient fluid and in the frontal

zone, respectively, are specified a priori. Both p_ and Ap are positive | H
constants with %ﬁ << 1. Specification of the density field in this
R

manner leaves only the velocity and pressure fields as unknown quanti-

ties, thereby eliminating the need for an energy equation that couples

the density field and frontal zone dynamics.

The model is restricted to upper ocean density fronts which, in

Garvine's (1979a, 1979b) model, are characterized by large values of the
4 rotation parameter. The frontal zone dynamics are therefore rotation-

ally dominated, and the zone's cross-stream length scale is the baro-

clinic Rossby radius of deformation A. Even though dissipative pro-
i i cesses are unimportant over most of the scale A, a narrow dissipative
region, whose lateral extent is approximately 0.1) -0.2), exists near
the surface front as shown in Figure 2.1. Garvine (1979a) has developed
the quasi-steady dynamics for this case.

In the present work, wavelike disturbances of the frontal zone,

including those leading to instability, will be investigated in detail
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for the outer inviscid scale. The model will assume that, as the wave
disturbances develop horizontal distortions of the surface front and
adjacent dissipative region, the response there is simply to displace
this region without changing its steady state structure. In other
words, at a fixed long-stream position, wave disturbances will simply
advect the dissipative zone structure in the cross-stream direction.

The inviscid zone dynamics, on the other hand, is treated as explic-

e R B T R
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itly time dependent, but at the inner boundary of this zone, boundary

conditions are imposed so as to match the corresponding values at the

1 outer edge of the oscillating dissipative zone.
- 2.2 THE EQUILIBRIUM STATE
b Figure 2.2 provides a cross-sectional view of the idealized

geometry that is assumed for the equilibrium-state frontal zone. In
the equilibrium, or "basic", state, the frontal zone geometry shown in
Figure 2.2 is quasi-steady. Variations in the frontal zone structure
are thus assumed to occur on a time scale that is much larger than that
on which the wave disturbances considered in this paper occur. Obser-
vations show that wave disturbances on large-scale upper ocean fronts
typically exhibit periods measured in days or weeks while the frontal

zone itself persists in a stable configuration for a much longer inter-

A L BT A M L 9

val, typically months or years. The quasi-steady assumption is there-

fore consistent with the observed characteristics of large-scale frontal

zones.
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o

The dissipative region, whose cross-stream extent is some small

fraction of the baroclinic Rossby radius, )A,lies between the surface

front and the outer inviscid region. The ambient ocean is labeled Region

II, while the frontal zone is labeled Region I. An earth-fixed

‘-—-—————-HM

y —————




\ 2' (VERTICAL)

N

SURFACE
FRONT

BOUNDARY BETWEEN
DISSIPATIVE AND INVISCID REGIONS

CROSS-SECTIONAL VIEW OF THE
IDEALIZED FRONTAL-ZONE
GEOMETRY IN EARTH-FIXED

COORDINATES

FIGURE 2.2

FRONTAL
ZONE
hi X
CROSS-STREAM DIRECTION .
ik i , A
DISSIPATIVE x
REGION Uf y'=-AXIS REGION I
l (INTO PAGE) |, p=P=-t0
U o S 0 |(INVISCID)
Vf(INTU PAGE)
=}
Va(INTO PAGE)
REGION 1II
AMBIE&I OCEAN DISCONTINUITY SURFACE

i o i Sl




27

(primed) right-handed Cartesian coordinate system is established in
which the spatial axes are labeled x', y' and z', with t' designating
the time. The z' axis is taken to be along the local vertical, and the
y' axis is oriented parallel to the surface front. The boundary between
the dissipative and inviscid domains in the frontal zone is therefore
parallel to the plane x' = 0. The sea surface elevation above the
reference plane z' = 0 is designated hi and hi in Regions I and II,
respectively, while the depth of the discontinuity surface in Region I,
that is, the "interfacial depth", is denoted D'. The fluid densities in
Regions I and II are pg-Ap and P respectively. Note that the dissi-~
pative region is part of the frontal zome and contains fluid of demsity
P, b0 Note also that the x' velocity at the boundary between the dissi-
pative and inviscid domains in the frontal zone will not, in general,
be zero, which reflects mass entrainment through the discontinuity sur-
face in the dissipative regiom.

Under the assumptions made in Section 2.1, the general time-
varying x', y' and z' momentum equations, and the continuity equation for

the outer, inviscid region in the primed coordinates are, respectively:

du'/3t"+u' (3u'/3x')+v' (3u'/3y")+w' (3u'/3z')-£fv'

=~(3p'/3x")/p (2.1a)

av'/at'+u' (av'/3x")+v' (av' /3y )+w' (3v'/3z" ) +£fu’
=~(3p'/3y") /o (2.1b)
O=pg+(3p'/3z') (2.1¢)

du'/ax'+av' /3y '+3w' /3z2'=0 (2.14)




o jec

In (2.1), u', v' and w' are the x', y' and z' velocities, respec-
tively, p' the pressure, p the density, g the gravitational acceler-
ation, and f the 6oriolis parameter. All variables are dimensional.

(2.1) constitutes a system of four coupled nonlinear partial differen-
tial equations (PDE's) for the four dependent variables u', v', w'
and p', each of which is a function of position and time (x', y', z', t').

The horizontal velocity field in thé ambient ocean is assumed

to be invariant in space and time, and is denoted 33 = (Ua,Va,O),
where Ua and Va are the ambient x' and y' velocity components as shown
in Figure 2.2. Horizontal pressure gradients in the ambient fluid are

induced by the sloping free surface in Region II, whose elevation above

the plane z' = 0 is related to Ua and Va by

£V_=gdh, /3x’ (2.2a)

- = 1] ]
fUa gahzlay (2.2b)

as a consequence of the assumed geostrophic balance. The ambient sea
surface height is therefore a time~invariant plane in the primed coord-
inate system whose uniform slope in the x' and y' directions drives a
uniform geostrophic flow in the orthogonal coordinate direction.

The thin wedge of lighter fluid that constitutes the frontal
zone propagates into the ambient fluid with a constant velocity in the
primed system, Uf in the x' direction and Vf in the y' direction as
shown in Figure 2.2. The free surface elevation in Region I, the

frontal zone, 1s.therefore time-dependent in earth-fixed coordinates,

hi-hi(x'.y',c'), as is the interfacial depth D'=D'(x',y',t'). The

explicit time dependence in hi and D' is analytically cumbersome, and
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% it is conveniently removed from the equilibrium state by transforming
§ into a new Cartesian coordinate system whose origin translates rela-
tive to the earth at the frontal zone velocity 6f=(Uf,Vf,0). In the !
new coordinate system, the same symbols are retained for the dependent

and independent variables, but without the prime. The transformation i
is defined by
x=x'-U_t

y = y'-V_t

T LT ST UR T Yy

t=t' (2.3)

v =v'-V

w=Ww

in view of which (2.1) becomes

u£+uux+vuy+wuz-f(v+vf) = -px/o (2.4a)
vt+uvx+vvy+wvz+f(u+uf) = -py/D (2.4b)
0= g+pz/p (2.4c¢)
ux+vy+wz =0 (2.44)
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(2.4) has been simplified notationally by marking partial der-
ivatives with a subscript following accepted convention. This notat-
ion is used hereafter whenever possible, with the significance of
subscripted variables that are not derivatives being clear from con-
text. Figure 2.3 provides a cross-sectional view of the frontal zone
geometry in the translating coordinate system. As before, the sea

surface elevations in Regions I and II are denoted h. and hz, respec-

1
tively, while D denotes the interfacial depth. The free surface

1
h1 and D in the equilibrium state are not. It will be seen in what

height hz is now explicitly time-dependent, as was h. previously; but
follows, however, that only the uniform, constant velocity in the
ambient ocean enters the equilibrium state equations for the fromtal
zone velocity field and interfacial depth, so that the time dependence
in hz(k,y,t) is of no consequence. The ambient fluid velocity in the
translating coordinate system is labeled u along the x-axis and .
along the y-axis, where u_ and v, are constants related to the earth-

fixed ambient and frontal zone velocities by

W Ua-Uf (2.5a)
The density field for x > 0 is specified as
p = P z <=D
(2.6)

P = p,-bp , =D <z <h R

where A4p>0, D>0 and (Ap/pu)<<l.
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The pressure field is calculated by integrating the hydrostatic

equation, (2.4c), using (2.6), with the result
p = g(pP-0p) (hl-z) . -D <z <h (2.7a)
P = 8(pm8p)h, ~glp z+80D) , z <-D (2.7v)

Neglecting terms of order (40/p_) compared to unity, the hori-
zontal pressure gradients in the half space x > 0 are computed from

(2.7) as

Vhp/p = thhl =B <z % hl (2.8a)

Vup/e = g 9, (h -80D/p,) gie Ayt (2.8b)

where Vh -(alax)£+(3/3y)5 is the horizontal gradient operator. Note
that the horizontal gradients of the pressure field are discontinuous
across the frontal interface marked by z = -D, whereas the pressure
field is continuous, as it must be.

Below the frontal interface in Region I, the fluid is assumed
to be in isostatic balance, that is, the ambient horizontal pressure
gradient field is unchanged by the presence of the frontal zone above.
This restriction is equivalent to assuming that the ambient fluid is
infinitely deep, and, therefore, that its (geostrophic) dynamics are
unaltered as the frontal zone propagates into the ambient fluid. The

velocity and pressure graduent fields in the ambient fluid are then

related by

Vp/e = (v #V)1-(u )3} . (2.9)
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33 ;
(2.9) follows from (2.4a) and (2.4b) and is analogous to (2.2) in
earth-fixed coordinates in which the pressure gradients have been
written in terms of the free surface slope.
In view of (2.8), the horizontal gradients of the sea surface “
elevation and interfacial depth, and the velocity field are related
as follows:

U, (hy-80D/o,) = (£/g){(v 4V )i-(u Ui} . (2.10)

Integrating (2.10) subject to the boundary conditioms hl(0,0)-O
and D(0,0)=Df(0), where Df(O) is some known constant, yields the

following relationship between hl and D:

h, (x,y) = (Ao/om)(D(x,y)—Df(O)}+(f/g){(vw+vf)x-(um+Uf)y} (2.11)

In the inviscid zone, mass entrainment is not permitted through
the discontinuity surface. However, entrainment through the discontin-
uity sufface is allowed'in the dissipative zone shown in Figure 2.3,
which produces a nonzero cross-stream volume flux in the plane x=0.
This, in turn, leads to a velocity boundary conditiom at x=0, since
we demand that the cross-stream velocity component be continuous across
the boundary between the inner dissipative region and the outer in-
viscid region.

The requirement that fluid elements initiall on the :aviscid
zone discontinuity surface remain there for all time may be stated

rigorously as

11im g—t-(hl—z) =0 (2.12a)
z-»h1
o 'g—t(D-G-z) - (2.12b)
z+-D

where D/Dt = 3/3t+u(3/3x)+v(3/3y)+w(3/3z) is the convective derivative.

* Denoting the frontal zome vertical
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2.3 PERTURBATION ANALYSIS

In this section, the general nonlinear time dependent frontal
zone momentum and continuity equations will be linearized by assuming
a perturbation expansion for each of the dependent variables u, v, and
D. Such a linearization scheme is applicable only if the perturbation
amplitude is small compared to the time invariant equilibrium state
value of a given variable, and this restriction is implicit in all of
what follows. For large deviations from the equilibrium state, the
frontal zone dynamics are essentially nonlinear and must be treated
accordingly. The purpose of this paper, however, is to address the
question of stability of the frontal zone flow, and instabilities that
grow to large amplitude in time must be small initially. Large ampli-
tude frontal disturbances are therefore not within the purview of this
analysis, but the conditions under which they develop are.

In analogy co (2.16), the general time varying momentum and con-

tinuity equations are

u +uu +vu -fv = -g'D -fv (2.17a)
t X y X o
v +uv_+vv +fu = -g'D +fu (2.17b)
t % ¥ y =
u+v+w =0, (2.17¢)
Xy 2z

in which u, v and D are functions of (x, y, t) and w = w(x, y, 2z, t).
g' is the "reduced gravity" defined as g' = g (%g . (2.17) makes no
assumption about the frontal zone geometry. As :efore, all variables
are dimensional. In (2.17a) and (2.17b), the horizontal pressure

gradients have been written in terms of the interfacial slopes, 9D/3x

and 9D/3y. 1In order to eliminate the vertical velocity, w, in (2.17¢),
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a vertically integrated form of the continuity equation is introduced
by following the same procedure employed in the previous section, but
with h, and D now functions of time as well as space. Neglecting terms

1
of order hl/D compared to unity, the counterpart of (2.15) is then

(uD)x~+'(vD)y+Dt =0, (2.18)

which replaces (2.17c) and is used exclusively hereafter.

We now assume that the dependent variables may be expanded as

o> <

D=0D+

where';,'; and D are the equilibrium state velocities and fnterfacial
depth, respectively, and where the perturbation (caret) variables are
small by comparison. This decomposition and the subsequent lineariza-

tion of (2.17) are therefore valid only if

la/al<<r, |o/5]<<1,  |D/B|<<1. (2.20)

The basic state variables in (2.19) are solutions to the basic state
equations given in (2.16). The planar front solution to this system
is developed in the next chapter, wWhile the exponential front solution

is derived in Chapter 5.
Substituting (2.19) into (2.17a), (2.17b) and (2.18), expanding,

and neglecting second order terms (products of perturbation variables)

A e
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leads to the following system of linear partial differential equationms

(PDE's) in the new unknowns @i, ¢ and D:

A A A b |A =
ut+uux+vuy+uxﬁ fi+g Dx 0 (2.21a)
$_+ub +v0 +v GHEd+Hg'D = 0 (2.21b)
t b 4 Yy x y
b i i als L= 4
(uD)x (vD)y+(Du)x (Dv)y+Dt 0. (2.21¢)

The linearized system in (2.21), written in dimensional variables,
is general and therefore applies to both the planar and expomnential
fronts. In the planar front case, which is developed in detail in the
next two chapters, (2.21) simplifies considerably, since the equilibrium
velocity is spatially invariant and its spatial derivatives consequently
vanish. In Chapter 5, which introduces the exponential front, an ageo-
strophic equilibrium state is considered. Terms in (2.21) involving
spatial derivatives of the basic state flow must then be retained, g
leading to a more complicated system of perturbation equations. Note
that the time independent equilibrium state variables appear in (2.21)
as non-constant coefficients, but not as forcing terms. The perturba-
tion system is thus homogeneous. Perturbations to the basic state flow
are assumed to have developed from an external forcing, surface wind
stress, for example, which is no longer active. Moreover, in view of
the homogeneity of (2.21), the perturbations are not forced by the

equilibrium state variables.

AT A
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CHAPTER 3

THE PLANAR FRONT

3.1 INTRODUCTION

In this chapter, the equilibrium state solutiomn to (2.16) is pre-
sented for the planar front, wavelike solutions are then assumed for
the perturbation equations in (2.21), and the general equation for the
amplitude of the depth perturbation is derived and solved. Dimension-
al variables are used throughout in order to compare the results de-
veloped here with those of Duxbury (1963). It is shown that the generni
ordinary differential equation (ODE) for the depth perturbation ampli-
tude (DPA) reduces to Duxbury's second order equation for the case of
zero cross-stream flow. In its general form, however, which allows
nonzero cross-stream flow, the DPA equation is a seventh order QDE, the

implications of which are discussed in this and the next chapter.

3.2 THE PLANAR FRONT EQUILIBRIUM STATE
For the planar front, the solutions to the time independent basic

state equations (2.16) are

D(x,y) = D (0)+(£8/g") (-v_x+u_y) (3.1)
u= (1-8)u_ (3.2)
v = (1-B)v_ (3.3)

in which B8 is an arbitrary constant. (3.1)-(3.3) completely specify
the equilibrium state velocity field and interfacial depth for the

planar front, which then appear in the perturbation system (2.21) as

38
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variable coefficients. The discontinuity surface that separates the
frontal zone from the ambient ocean is, in view of (3.1), a plane;
hence, the term planar front. The free-surface elevation, which is
related to the interfacial depth by (2.11), is therefore also a plane.
The horizontal velocity field is spatially invariant, and includes a
nonzero cross-stream velocity. The resulting nonzero cross-stream
volume flux at x = 0 is driven by mass entrainment through the discon-
tinuity surface in the dissipative region. The bulk effect on the outer
(inviscid) region of dissipation near the surface front is therefore
parameterized here by the single free constant 8.

3.3 HARMONIC SOLUTIONS TO THE PLANAR FRONT PERTURBATION EQUATIONS

. -

.- "Even with the level of simplification achieved by introducing the

perturbation expansion in Section 2.3, the analytical solution of the
sttem (2.21) constitutes a formidable, if not impossible, task. Since
we anticipate wavelike disturbances of the frontal zone flow field and
interfacial depth, a further simplification is introduced by assuming

time and space-harmonic solutions to (2.21) of the form

d(x,y,t) = X(x)exp{i(ky-Qt)} (3.4a)
¥(x,y,t) = Y(x)exp{i(ky-Qt)} (3.4b)
ﬁ(x,y,t) = Z(x)exp{i(ky-Qt)} (3.5)

1/2, Q2 is the disturbance circular frequency, and k the

where { = (~1)
wavenumber. X(x), Y(x) and Z(x) are the (complex-valued) x-dependent
amplitudes of the perturbations to the x and y velocities and inter-
facial depth, respectively. In addition to specifying the y and t

dependence explicitly, solutions harmonic in these variables provide

the addicionai advantage of not requiring boundary conditions in y or
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t. The x-direction boundary conditions are formulated rigorously in

Chapter 7.

Substitution of (3.4) and (3.5) into (2.21) along with the basic

-

state equations (3.1)-(3.3) reduces the system of perturbation PDE's

for 4, ¢ and D to a system of ODE's for the planar front perturbation v

amplitudes X(x), Y(x) and Z(x) as follows:

iuX-fY+uX'+g'2' = 0 (3.6a)
LwY+EX+uT+ikg'Z = 0 (3.6b)
iwZ+uz '+(5y+1k5)v+§xx+ﬁx' =0, (3.6¢)

vhere w = kv - Q 1s the Doppler-shifted disturbance frequency. Since
(3.6) contains only derivatives with respect to x, it has been simpli-

fied notationally by marking derivatives with a prime; for example,
2' = dzZ/dx.

3.4 DERIVATION OF THE PLANAR FRONT DPA EQUATION

A single ODE for the DPA (depth perturbation amplitude), Z(x),
may be developed by eliminating X(x) and Y(x) in (3.6), which, in turn,
is most easily accomplished by writing the system (3.6) in operator
matrix notation. The interfacial slopes in the x and y directioums,

respectively, will be denoted a, and a,, 8o that the equilibrium inter-

facial depth (3.1) becomes

D(x,y) = Df(0)+alx+azy. (3.7)

b ey el s Nl D i o

Gkttt




i s e e i o AT SN
. — ——— - - -

41

Replacing the total derivative operator by the symbol p; i.e.,

p = d/dx, (3.6) thus becomes

L1 -f g'p rx
£ L, ikg' Y| =o, (3.8)
ajtlp  a,+ikD L, . zJ

After considerable manipulation, this matrix may now be reduced to the

triangular form:

P Es =,
L, -f g'p | x
2 2
0 £4L] L, Y| eo, (3.9)
(£21L
. 0 +A(p}L ? z
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where the operators L, and A(p) are defined by

L, = iw+up (3.10a)
= = 2 -

L, = a,fuptfL, (a, +Dp)+L) (a,+1kD) (3.10b) S
E (o 2 ' ~4 3 - .;

L, = a,8'up+g L1(31+Dp)p-tl (3.10¢) :
3 L, = -fg'p+ikg'L (3.104d) o~
3 4 1
% B 2.2

Lg L,L +(f +L))L, (3.10e)

* () (2a0) = k= (£+ 34ka) pwa (24€-3ka) p>

=2 - 3 (3.101£)
+u (f+iku)p &
The final form of the ODE satisfied by Z(x) is therefore
2242
{((f +L1)L5+A(p)L4}Z(x) = 0. (3.11)

An examination of the operators in (3.11) shows that the order of

the highest derivative of Z(x) is seven; that is, Z satisfies a seventh -

order, linear, homogeneous ODE. The explicit form of the equation for
the depth perturbation amplitude is obtained from (3.11) by expanding
each of the operators using the appropriate definitions. Although
straight forward, the expansion for the general case is tedious, and is et

therefore not reproduced here.

e = e e T e S e e
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The special case of zero equilibrium cross-stream flow (u = 0),
however, is readily derived and is of considerable interest, since
it corresponds to Duxbury's (1963) model of the planar fromt. In (3.11)
we set u = u, = D = a, = 0, and upop simplification arrive at the

y
following equation for Z(x):

'{(uz-fz)/g'+falk/w-k213}z(x)+a1(dz/dx)+5(d2z/dx2) o8 (3.12)

Rewriting (3.12) in Duxbury's notation, which is discussed in Appendix
24 recoveis precisely his equation (49), thereby verifying (3.11) in
this limiting case.

For the general case (u # 0), the explicit form of the equation
satisfied by Z(x) is ‘

7
Z (v, x+Y_) (d"z/dx™) = o, (3.13)

n=0

where the Vn and Y, are complex constants given in Appendix 1, eq.

(A.1.). Note that the Y, may contain a parametric dependence on y.

3.5 SOLUTION OF THE DPA EQUATION FOR THE PLANAR FRONT

The ODE for the depth perturbation amplitude 2(x), (3.13), has an
irregular singular point at infinity. Its nature there is ascertained
by transforming to the new independent variable s = 1/x and considering
the behavior of the solution Z(s) for s + 0. The details are not in-

cluded here. However, one finds that the point at infinity is an

T ———————\SSMSSSU
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irregular singularity, so that no power series expansion exists for the
solution Z(x) as x + », Thus, the method of Frobenius (Hildebrand,
1962, Ch. 4) is not useful in developing the solution for large x. An
asymptotic normal form solution does exist, however, as x grows arbi-

trarily large (Ince, 1956, Ch. XVII), its form being

Z(x) v xreaxW(x) for xo (3.14)

where

W(x) = 1+(w1/x)+(w2/x2)+. 5 (3.15)

a, r, and the w, are all constants to be determined. Both the expo-
nential factor in (3.14) and the series W(x) in (3.15) are non-dimen-
sional. It is therefore understood that the constant 1 with dimensions
of length raised to the (1-r) power multiplies the right-hand side of
(3.14), rendering Z(x) dimensionally correct. The constants a, r and
W, are determined by substituting (3.14) with (3.15) into (3.13),
expanding in powers of x, and equating coefficients of like powers.

The significance of (3.14) is that it sets the cross-stream decay
scale through the parameter a. This scale length turns out upon ex-
pansion to be just 1/k. Determining it explicitly is also crucial to

the normalization scheme introduced in Chapter 6. In addition, the

parameter a serves to connect the asymptotic form of the solution for

X + » to an integral representation of the solution for finite x.
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For the case of no cross-stream flow, (3.14) becomes

Z(z) ~ z-ad'e-ZIZ‘{l-(ailz)+...}, (3.16)
where
2 -2 -
ay = {1+ (f " -w )/alg k-f/w} (3.17)
and z = (Zk/al){Df(0)+alx} (3.18)

are the same as Duxbury's (1963) quantities a and z. (3.16), which is
written in Duxbury's notation, recovers his expression for the asyﬁp-
totic behavior of the DPA which appears in Appendix A of his paper.
Note that z above should not be confused with the vertical coordinate,
nor a, with o in (3.14). This notation is employed only in (3.17),
(3.18) and (3.21) in order to compare these equations with Duxbury's
expressions. From (3.16) and (3.18), we see clearly that the natural
scale in the cross-stream direction is the decay scale for the DPA, 1/k.
Since only the point at infinity is an irregular singularity of
the DPA ODE, (3.13), a valid power series expansion of Z(x) exists in
any finite and bounded interval in x. The series may be developed by
employing the method of Frobenius, a technique which is straightforward
in principle and well suited to numerical computation. This procedure
is not particularly illuminating from an analytical viewpoint, however,
since it does not provide the relationship between the series expansion
for finite x and the asymptotic form of Z(x) as x =+ = in (3.14). This

limitation is overcome by Laplace transforming (3.13) and using the
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the property that its coefficients are at most linear in x, whereupon
the solution for Z(x) may be written

a
n

7
2(x) = ) B g (e-ap?™t - expletety /v)} de . (3.19)
n =1 h | 7 7
n-

- 4 In(aa)
- The an in (3.19), all assumed distinct, are the roots of the

E vnon w9, (3.20)

n=0

polynomial equation

and the integration is carried out along a line parallel to the real

axis in the complex t-space. The A, and Bn in (3.19) are constants.

3

For the case of zero cross-stream flow, (3.19) reduces to an integral

representation of the confluent hypergeometric function U (Abramowitz
and Stegun, 1970, Ch. 13). Z(x) then becomes

-z/

Z(x) = Be 2'U(ad,l;z) X (3.21)

which is precisely Duxbury's equation (66) in which the solution that
is singular at infinity has been removed. The a's in (3.19) are exactly

the same a's appearing in the asymptotic form (3.14), thereby estab=-

lishing the connection between the solution for finite x and its be=-
havior at infinity.
In principle, the problem of the planar front with cross-stream

flow has been solved, since the determination of the DPA Z2(x) has been

reduced to quadratures, and the associated perturbations to the flow
field may then be computed from (3.6). Note that once Z(x), and
consequently its first derivative, are known explicitly, (3.6) reduces
to an algebraic system for the three unknown functions X(x), X'(x)

and Y(x).
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CHAPTER 4

NON-DIMENSIONALIZATION OF THE PLANAR FRONT ODE FOR Z(x)

4.1 INTRODUCTION

In Chapter 3, a single ODE was developed for the depth perturba-
tion amplitude in the planar front case. The analysis was presented
entirely in dimensional variables, as was Duxbury's (1963) tre::-ment
of the special case of zero cross-stream flow. It led to an asymptotic
normal form solution for large x, an integral representation of the
solution for finite x, and the connection between the two via the
parameters an. In principle, then, the formal solution of the planar
front problem with allowance for cross-stream flow has been obtained,
at least in the sense that it has been reduced to quadratures. In
Duxbury's model, the cross-stream flow was taken to be zero at the
outset, and the resulting ODE for the depth perturbation amplitude was
second order. In this model, Duxbury's second order ODE and all of
his subsequent results are recovered if the cross-stream velocity com-
ponent vanishes; however, the ODE for the depth perturbation amplitude
is inherently order seven, not two, as long as any cross-stream flow
exists, however small. This observation is somewhat disquieting, and
is reminiscent of the singular perturbation problems that frequently
occur in fluid dynamics in which the order of a system changes abruptly
as some parameter of the problem becomes zero. This peculiarity
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demands closer examination, and motivates the non-dimensionalization
of the DPA equation that is presented in this chapter.

It was pointed out earlier that the frontal zone is characterized
by the baroclinic Rossby radius length scale, A, on which the dynamics
are inviscid except in a narrow dissipative region near the surface
front. A second natural length scale also exists for the problem,
however, the ratio of the basic state cross-stream velocity to the
Coriolis parameter. This is an advective scale and is much smaller
than the Rossby radius scale. It is the scale on which the cross-stream
Rossby number becomes order one; i.e., u/f. In a typical example with
G =10 co/s and £ = 10™%/s, this scale would be only 1 km. Thus, it
would generally lie well within the inner dissipative zome so that it
would not require separate treatment in this paper. In what follows,
the ODE for the planar front depth perturbation amplitude will be non-
dimensionalized by introducing coordinates scaled to the outer

(inviscid) and advective cross-stream scale lengths.

4.2 INVISCID SCALE VARIABLES
For time varying wave disturbances on the planar front, the

natural long-stream length scale is clearly the disturbance wavelength,

et .

or, equivaleantly, the reciprocal wavenumber 1/k. From the asymptotic

form of the solution to the DPA in Section 3.5, in which an explicit

e-kx dependence appears, it is clear that the decay scale for the DPA

L T e

in the cross-stream direction is also 1/k, and, consequently, that the

x- and y- scales for wavelike disturbances of the planar front are the : 4
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same. A careful scaling analysis (cf. Section 5.2 for details), more-

over, reveals that the only nontrivial perturbation of interest cor-

responds to k v 1/)A, where A is the baroclinic Rossby radius defined { ~
below. Dimensionless x and y coordinates, marked by a tilde (Vv), are
therefore introduced as follows:

x/A (4.1a)
= ky (4.1b)

e xe

The natural time scale is the inertial period 1/f, and the appropriate
dimensionless circular frequency is thus
o= w/f (4.1c)
The advective scale is characterized by the x- and y- direction
lengths u/f and v/f, respectively, where u and v are the equilibrium
.state velocities introduced in Chapter 2. The ratios of the advective

to inviscid length scales for the x and y directions form two non-

dimensional parameters of the problem, which are denoted

€ = u/f (4.14d)
and

e'= kv/f (4.1e)

In general, we anticipate € << 1 while €'~ 1, since |G/;| << 1 for
large scale fronts with large values of the rotation parameter.
Two internal Froude numbers exist which measure the ratio of the

fluid velocity to the internal wave phase speed. The latter is defined
2 '
e R Df(O) (4.1f£)

The two Froude numbers are then,

B = u/c (4.1g)

for the x-direction, and &
F, = v/e (4.1h)

for the y-direction. We anticipate Fx << 1 while Fy ~v 1 for the same

reasons as above for ¢ and €',
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The baroclinic Rossby radius is defined as
A=c/f, (4.11)
The free parameter B appearing in the basic state velocity field
developed in Chapter 3 for the planar front is absorbed into a new

dimensionless transport parameter defined by

t=1-8"1, (4.13)

which is order one.
With these definitions, the non-dimensional differential equation

for the planar front DPA in inviscid scale variables becomes

7
Z&n}ﬁn) (d"2(x) /dx™) = 0, (4.2)
n=0 3

where the dimensionless complex constants 3n and ?n are defined in
Appendix 2B.
We now assume that Z(;) in (4.2) may be developed in a small

parameter expansion as follows

z&)-ﬁmwgahﬁﬂ”h“, (4.3)

-in view of which, at order Fg, (4.2) becomes

G (1-02- ) 21 iar-12012 P &y - az(® 6}
y (4.4)

+{m/ry-¥}(dzz(°)/d§2) - 0.

The case of zero cross-stream flow corresponds to Fx = 0 in (4.2)
and (4.3), which again recovers Duxbury's (1963) second order ODE for
Z(x), as it must. The details are not reproduced here. Even for
nonzero Fx’ however, we see that at order F: the equation for Z(g) is

still second order, not seventh order as in the general, dimensional
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formulation. On the outer (inviscid) scale, therefore, which is the
only region of applicability of this model, the lowest order ODE for
the depth perturbation amplitude is still second order. An extension
to first order in Fx leads to a similar result: the equation for Z(;)
is still second order, but with the addition of lowest order forcing
terms. The first order dynamics in the small parameter Fx are thus no

longer homogeneous, but instead are driven by the zeroth order solu-

tions. On the outer scale, the third and higher derivative terms in Z
can enter the dynamics at most at order Fi in the small parameter ex-
pansion, if at all. Thus, the inviscid scale dynamics of the planar
front are fundamentally second order, even with nonzero cross-stream
flow, a conclusion which is consistent with Duxbury's second order
model. 1Yhis conclusion, however, has been reached only by having
introduced appropriate scalings for the problem, not by developing the
general dimensional form presented in Chapter 3 or in Duxbury's (1963)
work.

The effect of nonzero cross-stream flow on the outer scale is
simply to modify the constants in the coefficients of the ODE for Z(;)
by introducing terms which vanish with zero cross-stream flow; the
functional dependence of the coefficients on ; remains unchanged even
for nonzero cross-stream flow., The formalism developed in Chapter 3
for the solution of the depth perturbation amplitude ODE is therefore
directly applicable to the DPA equation at lowest order in the para-

meter Fx’ but the results thus obtained are only a minor extension of

Duxbury's original problem.
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It is interesting to note that normalizing the cross-stream

coordinate to the advective length scale, u/f, and redoing the above

analysis leads to a fifth order ODE for z<¥) at order P:. The details

are not reproduced here, but this observation is important, since it

shows that the higher order derivative terms in the DPA equation are

significant at order Fg only in the very narrow advective zone. How-
ever, Qince this region is imbedded in the dissipative zone, the kind
of inviscid dynamics which would develop on this scale are never real-

ized.

The insight provided by this analysis will be incorporated in what
follows in order to develop a more realistic frontal model that in-
cludes nonzero cross-stream flow and more accurately reflects observed

frontal zone geometry.




CHAPTER 5

THE BASIC STATE FOR THE EXPONENTIAL FRONT

5.1 INTRODUCTION

The planar front model studied in Chapters 2 through 4 has several
éhysical shortcomings. The interfacial depth cannot 1ncré;se indefi-
nitely away from the surface front in any realistic frontal model, as
it does in the planar front, unless it intercepts the bottom. In
nature, the interfacial depth gradually approaches some fairly constant
value far from the surface front in the cross-stream direction. A
model possessing this feature was first proposed by Stommel (1976, Ch.
8) for the Gulf Stream and will be referred to here as the "exponential
front". The frontal zone geometry in this case is shown in Figure 5.1,
which is a cross-sectional view in the plane y = 0. All of the restric-
tions introduced earlier are also assumed here, and all subsequent
equations are written in the moving coordinate system first introduced
in Chapter 2.

Referring to Figure 5.1, the interfacial depth, which is denoted
Df(O) at the origin, as before, gradually increases in the cross-stream
(x) direction and asymptotically approaches the value Db far from the
dissipative zone. All dissipation through mass entrainment, mixing,
and turbulent friction is again confined to the narrow dissipative

region. The interfacial depth increases from Df(o) to Db in the

inviscid (outer) region on its natural length scale, A, the baroclinic

53
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Rossby radius. With the spatial coordinates scaled by A we anticipate
that spatial derivatives are order one in the x-direction and very

small in the y-direction.

5.2 DIFFERENTIAL EQUATIONS FOR THE EXPONENTIAL BASIC STATE
The general time dependent momentum and continuity equations for
the inviscid (outer) region appear in (2.17) and (2.18) and are repro-

duced here for convenient reference:

- =-'-
ut+uux+vuy fv g8'D fv (5.1a)
+ +fu = -g'
v uvx+vvy fu g Dy+fu°° (5.1b)
Dt+(uD)x+(VD)y =0 (5.1c)

in which all variables are dimensional. (5.1) makes no assumption about
the frontal zone geometry.

Differentiating the x-momentum equation with respect to y and the
y-momentum equation with respect to x, subtracting and using (5.1lc)

leads to the result

D ., f+A
T (—-];-) = 0 (5.2)

where A = Vs uy and where D/Dt is the convective derivative. The
quantity (f + A)/D is recognized as the potential vorticity, and (5.2)
is a statement of conservation of potential vorticity following a fluid
element. This result follows from the assumption of inviscid dynamics
which permit no mechanism for altering the angular momentum of a fluid
column.

The equilibrium state equations for the exponential front are
formulated by setting %E'- 0 and uy = vy = (vD)y = 0 in (5.1), reflec-

ting the fact that, in the basic state, y-variations are assumed very
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small compared to x-variatioms. Although the long stream rate of

change of the y-direction volume flux, vD, is negligible compared to

the cross-stream rate of change of the x-direction volume flux, uD,

the derivative Dy in the y-momentum equation is retained. This is
necessary since Dy must be present for large x to provide the y-pressure
gradient which is compatible with the cross-stream flow Uy there. The

The simplified basic state continuity and momentum equations thus be-

come
(uD)x =0 (5.3a)
uux-fv = —g'Dx-fvw (5.3b)
uvx+fu = -g'Dy+fu°° . (5.3¢)

while the potential vorticity equation is now

(a/ax){(fwx)/n} = 0. (5.3d)

Each of the dependent variables, u, v, and D in (5.3) is a function
of x and y, but the y-dependence is weak. In addition, since (5.3d)
was derived by combining (5.3b) and (5.3c), only two of these three
equations are independent. The two independent equation§ are here
taken to be the x-momentum and potential vorticity equationms.
(5.3a) and (5.3d) may be integrated immediately to obtain
uD = ubDb (5.4)

and
f+vx = f§ 4 (5.5)

where w is the (constant) x-direction velocity in the frontal zone far

from the dissipative region, and § is the non-dimensional interfacial

depth defined by
§ = D/Db . (5.6)
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Differentiating the x-momentum equation (5.3b) with respect to x

3
and substituting for v, and u from (5.4) and (5.5) produces the
3 following equation for the normalized basic state interfacial depth:
2o 2,6 -2
= é - =
a Fb/ )6££+(3Fb/6 )6€+1 § o, (5.7)
where S -
c= (g Db) (5.8a)
Fb = ub/c (5.8b)
A =c/f (5.8¢)
£ = x/\ (5.8d)

In (5.8), c is the frontal zone internal wave phase speed (note

that it is defined somewhat differently here than in Chapter 4), Fb is g

the x-direction Froude number and measures the strength of the fromtal

zone cross-stream flow, A is the baroclinic Rossby radius of deforma-
tion, and £ is the normalized x-coordinate. Under the linearization

scheme that is introduced in Chapter 6, Fb constitutes the fundamental

PRTRPASIRT O ISR

parameter for the frontal zone.
In general, we seek solutions for which the disturbance frequency ]
is small compared to the inertial frequency; i.e., we are interested in

low subinertial frequency behavior. Similarly, we are interested in

fr-auts for which the inviscid region scale length is of order A. A

careful scaling analysis applied to the general equations in (5.1)
then reveals that the only conditions of interest are that kX F§ L
where Fy’ is the y-direction internal Froude number (ratio of the

basic state long stream velocity to the internal wave phase speed). The

reciprocal wavenumber, 1/k, is therefore of the order of the Rossby

radius, A, and either of these length scales may be used to normalize

—
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the inviscid scale spatial coordinates. (5.8d) is ﬁhus consistent
with the earlier observation for the planar front that the inviscid
scale length is order 1/k. For large scale upper ocean fromnts, ob-
servations tend to show |Fb| << 1, while for smaller scale fronts
IFbl may be order 1 (Garvinme, 1979b). In addition, consistent ob-
servation of the high velocity long-stream shear characteristics of
large scale fronts is reflected in the condition ]Fyl ~ 1. For
analytical convenience, however, any explicit Fy dependence will be
avoided in the sequel by choosing Fy = 1 identically. This is tanta-
mount to scaling the long-stream velocity by c.

(5.7) provides now a second order, nonlinear, inhomogeneous ODE
for the non-dimensional interfacial depth, §. Recall that § is only
weakly y-dependent, and that its y~dependence may be computed from the
y-momentum equation once the remaining three equations in the system

(5.3) have been solved. The solution to (5.7) will be developed in

" the next section.

5.3 SOLUTION OF THE BASIC STATE INTERFACIAL DEPTH EQUATION

Subject to the boundary conditions

Lim §(§) =1 (5.9a)

£

§(0) = 60 = Df(O)/Db R (5.9b)
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E ST

the exact solution for §(£) in (5.7) is given implicitly by

Em (\rleo) - (®/8) + ln{(6°+‘(’)/(6+<b)}

+Fb{s1n'1(rb/<s) - Inin-l(Fb/Go)}

3 phatbabiled i e L g

(5.10a)
3/2
o (1-F§) / 1n{ (G—L){so-F§+(1-F§);“l'}/
. W e
(6,116 F +(1-F) o}}
where
7 =3
v (Go_Fb)’i (5.10b)
3 8
o = (8 -Fb)’i (5.10¢)

Principal values are to be understood for he arcsine terms, and we
require F% s Pl 1. Note also that 60 -3 order onme.

Although the exact solution is very u¢ful for numerical compu-
tation, it is very cumbersome for analytic: purposes, since the de-
pendent variable is represented implicitly. An approximate , but
explicit representation may be developed, hcever, by introducting a

small parameter expansion for §(§) in terms ' the Froude number Fb'
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We assume that §(£) may be written

sce) = 69y + zﬁs(z)(s) + rgs(“)(g) B o i (5.11)

in which only even powers of Fb appear, since (5.7) contains only Fi.

Each of the functions G(n)(s) is order one, and the error introduced

by truncating the series at G(n)(s) is order F:. Substituting (5.11)

into (5.7) yields the following equations for 6(0) and 6(2):~

(0) 0) -
52 - s - -&(dzldiz)i 1/{6(0)}22 (5.13)

The approximate solution will not be carried beyond second order in

Fb. (5.i2) and (5.13) are both second order, linear and inhomogeneous.
The inhomogeneity in (5.12) is a result of the inhomogeneity in the
original equation for §(£), while the inhomogeneity in (5.13) is
characteristic of the small parameter expansion formulation, in which
each successive solution beyond zeroth order is dependent on the lower

order solutions.

The boundary conditioms (5.9) will be satisfied exactly to zeroth

order in Fb, that is,

§® (o) = 5, (5.14a)

Lim 5(0)(5) « (5.14b)

£
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In view of (5.9) and (5.14), all higher order terms in Fb in the

expansion for 8§(£) must satisfy zero boundary conditioms, that is,

s 0y = 0 (5.15a)

Lim 8™ (g) = 0 (5.15b)

g

The lowest order solution to (5.12) subject to the boundary

conditions (5.14) is

#%0y « 1 - (18 )e ", (5.16)

which is, of course, also the solution to the original equation for
§(&) with Fb = 0. This is the form of the solution found by Stommel

in his Gulf Stream model and it motivates the "exponential front"

nomenclature. The second order solution to (5.13) subject to the

boundary conditions (5.15) is

(0)
§ (1=6'"")
8§ (£y/16D 1} = e =2

(0)
(1-60)6

(5.17)

I W P ik VS R

4

4(6(0)32

e

The set of equations (5.11), (5.16) and (5.17) provides an expli-
cit, although approximate, representation for the time invariant basic

state interfacial depth to second order in the small parameter F The

b.

difference between the exact and approximate solutions is expected to

e e e
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be order F:. Having developed an explicit form for 3(5). the basic
state x and y velocities in the frontzl zone may now be computed from
(5.4) and (5.3b) if desired.

Figures 5.2a through 5.2e compare the exact equilibrium inter-
facial depth computed from (5.10) (curve A) with the approximate repre-
sentation computed to order F§~using (5.11) with (5.16) and (5.17)
(curve B). The value of 80 is fixed at 0.4, and F, ranges over 0.1
to 0.3 in steps of 0.05. For Fb = 0.1 and 0.15, the approximate
solution is greater than the exact solution, while at Fb = 0,25 and
0.3, this is reversed. For Fb = 0.2, the two curves are essentially
iﬁdistinguishable. The absolute error in the approximate solution
therefore passes through a minimum near Fb = 0.2. Agreement between
the two solutions at order Fé is excellent over the range of Fb that
is considered, and the error is‘generally even less than Fg. Although
several other cases were computed, the results are not included here,

since Figure 5.2 serves well to illustrate the behavior of the approxi-

mate and exact solutions.

.
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CHAPTER 6 291

LINEARIZATION OF THE TIME-VARYING EQUATIONS FOR THE

EXPONENTIAL AND PLANAR FRONTS IN DIMENSIONLESS VARIABLES

6.1 INTRODUCTION

In this chapter, the dependent variables in the time varying
momentum and continuity equations are decomposed into basic state and
perturbation components, as was done in Chapter 2, but with the intro-
duction of dimensionless variables. The resulting perturbation equa-
tions are then rewritten using a small parameter expansion. Both the
exponential front, whose basic state was formulated in the previous
chapter, and the planar front, which was discussed at length in Chapters
3 and 4, are considered. The perturbation variable decomposition is
the same as that introduced in Chapter 2, and the restriction that the
perturbation amplitude be small compared to the basic state value of a
given variable is again implicit in all of what follows. Since the
equilibrium states for the exponential and planar fronts are differemnt,
the equations for the perturbation variables in.these two cases are
also different, and therefore examined separately. However, essential-
ly the same non-dimensionalizatiom scheme is employed for each case,
since this depends only on the frontal zonme velocity, length and time
scales, which, in turn, are only weakly dependent upon the model geo-
metry. The perturbation variable decomposition requires an explici:

68
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form for the basic state variables u, v and D, which then appear as
coefficients in the perturbation equations. This is accomplished by
introducing the same small parameter expansion in terms of Fb that was
used in the previous chapter for both the exponential and planar front
cases. This provides the additional advantage of facilitating compari-

son between the two. .

6.2 PERTURBATION VARIABLES AND NON-DIMENSIONALIZATION

The time varying momentum and continuity equatioms are (2.17a),
(2.17b), and (2.18) for both the exponential and planar fromts, in
which u, v and D are each functions of (x, y, t). These equations are
general, and apply to the basic state as well as the time varying flow.
As before, each of the dependent variables is decomposed into a basic
state component and a perturbation component which is small by compari-
son, that is, the decomposition (2.19) is again assumed. For the ex-
ponential front, the resulting perturbation equations are different
from those for the planar front, since the spatial variation of the
equilibrium velocity field introduces derivatives of the basic state
flow.

The variables for the planar and exponential front models are
scaled as follows: x is scaled by A, y by 1/k, the interfacial depth
by Df(O) or D

b
by the inertial time scale 1/f. As before, k is the (dimensional)

, u by the characteristic x velocity W Vv by ¢, and t

y-direction wavenumber for harmonic frontal disturbances, and X is the

(dimensional) baroclinic Rossby radius. The product kA is, therefore,
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dimensionless. The long-stream equilibrium state veiocity scale 1

é reflects the characteristic frontal zone jet predicted by other f
3 authors (Charmey, 1955; Garvine, 1979a3 Morgan, 1956). Since per- i

b o B
A

§ turbations to the system are homogeneous, as we have seen in section -
| i
J 2.3, the normalization for the perturbation velocities is arbitrary, "
3 and therefore set equal to ¢ for convenience. The dimensionless x 3

and y coordinates are £ and g, respectively, while § is the dimension-

: less interfacial depth. Fb is the x-direction intermal Froude number i
introduced in Chapter 5, while its y-direction counterpart, Fy in the =
previous chapter, is set identically equal to 1. Other non-dimensional

' variables are marked by an asterisk. Thus, we define
& —%
- -k & % e * .
? vV =_cv, u=ca , v = cV¥
* *
U, T wu, , Vv, =cv,, Fy = wle £
. i
t=¢t /f , A = c/f (Rossby radius) t
(6.1)
goun iy
D Db 13
D= Db5 Exponential Front i
E. e’ - 8'D, i
q D= Df(O)G 14
‘ D= Df(O)G Planar Front E
v B o
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In view of (6.1), the fundamental system of perturbation equations

for both the planar and exponential fronts in non-dimensional variables

is:
0, + F ab, + kA Vi, + Fud - ¢+ SE - i) (6.2a)
9, ¥ Fbﬁvg + kAGoc + ;Eﬁ + 4+ kxéc =0 (6.2b)
5, + Fb(GS)E + kaSC + @), + KGO, = 0 ' (6.2¢)

The planar front equilibrium (overbar) velocities are then

el

= (1-B)u, (6.3a)

<1

= (1-8)v, (6.3b)

where B is the dimensionless transporf parameter introduced in (3.1).
Note that the asterisks have now been dropped for notational conveni-
ence, and it is understood that all quantities, except k and A, which
always appear as a product, are non-dimensional. The planar front

basic state interfacial depth is

(g, = 30 4 Fbs‘l) : (6.4a)
where 3

59 - 1-ev e (6.4b)

1 . (er u /KNG . (6.4c)

Note that the cross-stream flow enters the scaled basic state only at

1
order Fb.
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For the exponential fromt, the scaled basic state (overbar) vari-

‘ables, which were developed explicitly in the previous chapter, are

R Al AR O i ks

i given by

H u=1/§ (6.5a)

: el PRI 4% (6.5b)

] P ! :
T 3¢y =50 & F:E(Z) - (6.5¢)

s

where 5(0) and 3(2) appear in (5.16) and (5.17), respectively. The

basic state flow is derived from (5.3b) and (5.4) using (5.11).

6.3 SMALL-PARAMETER EXPANSIONS -

Each of the dependent variables in (6.2) is now expanded in

terms of the small parameter Fb as follows:

:f sV a Wi da® . (6.6a)
%; 0= 0@ 4o 4 26Dy (6.6b)
%; ERIE RS A (6.6c) :
i 530, B3 . (6.6d)
; 3=39 45 3® (6.6e) i

where (6.6d) and (6.6e) apply to the expomential and planar fromts, i}

respectively.

In (6.6), each of the functions 6(°), 0(2), etc., is presumably order -

e e S T St e

one, as is the product kA. The exponential front expansion in (6.6d)

is the same as (5.11) in which the overbar had not yet been used, and

i
-
=y R

? only even powers of Fb appear for the reason discussed in section 5.3. i :
4 For the planar front, the basic state expansion for the interfacial - g
i 1 $
1

| ol
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depth terminates at order Fi, even though the expression is exact; and
none is introduced for the velocity field, since it is constant.
Substituting (6.6) into (6.2) leads to the following zeroth and

first order non-dimensional perturbation equations for the planar front:

ﬁ(o) 4 kl;ﬁ(O) & 6(0) & g(o) -0 (6.7a)
t . 8 £
Géo) +“kA;0§0) L3904 kA3§°) =0 1
39 + 03O - 8y @ + (ev_60
(6.7¢)

+ 1 (1-8v, )90 = 0
(PLANAR FRONT, ORDER Fg)

.ﬁél) + kx;ﬁél) -y &él) = —Gﬁéo) (6.8a)
oél) + kAGﬁél) + a4 kkgél) - —Gﬁéo) (6.8b)
8§1) Y kk;gél) + géo)ﬁ(l) A g(O)ﬁél) ” kxg(0>§§1) (6.8¢c)

a _Ggéo) 3 3(1)a§0) —kkgél)ﬁ(O) -kkg(l)GEO)

(PLANAR FRONT, ORDER Fi)

To order Fg for the planar front, the basic state enters as nonconstant
coefficients in the resulting perturbation equations. The lowest order
system, however, is homogeneous; whereas the first order system is not,
as a result of forcing by the lowest order terms. The lowest order
solutions also appear as nonconstant coefficients in the first order

system.
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-

The corresponding systems of zeroth and first order equations for “:
the exponential front, which are derived by using (6.6) in (6.2) and re
then eliminating the basic state velocities with (6.5), are as follows: QL

-
6@ 4 0GP a® - o @ 45O 1o CERR
(0) =(0),  1.(0) . .=(0), .(0) ~(0) ]
Ot +1<A(<SE +v°)v§ + (1+GEE )i +k>‘6c =0 (6.9b) :
< (0) (0) . (0) =(0) . (0) =(0) < (0)
5, +3 & + kXS " +kA(SE +v°)6c (6.9¢)
30 - g
(EXPONENTIAL FRONT, ORDER Fg)
~(1) ECONOR) LK)y o SE)
G " R 5T 0, Y - 4 + 6, ; (6.10a)
- 15050 50,2 G20)/3(0)
~ (1) _2(0),.(1) _ 2(0).(1) (1)
v + kA(1+v_-$ WC - +kk6c (6.10b)
e _‘7(0)/5(0)
2
Sél) + S(O)ﬁél) + kAE(O)vél) + kA(1+vg-3(o))§él)
+ 15D (6.10c)
= -850, 5032 30z ©@ i
(EXPONENTIAL FRONT, ORDER F;) ==

R, L A e o i e ey OO

e TT—
Jorece=— o g e s

&
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As with the planar front, the lowest order system is homogeneous,
while the first order system is not. Note that the coefficients in
(6.10) have been simplified somewhat by using the basic state relations

OIS 6.110

50 _ 5(0)_ 1

6.11b
o £E ki

6.4 ZEROTH ORDER HARMONIC SOLUTIONS
In order to simplify the notation, the caret will now be dropped
from the perturbation variables. 1In addition, the lowest order ex-

ponential basic state interfacial depth, 3(0), will be denoted by T; i.e.

e =50 (6.12)

| ! |
5(0) is defined in (5.16). We now assume time and space harmonic p

where
solutions, as in Section 3.3, but only for the lowest order systems
(6.7) and (6.9). Harmonic solutions to the first order systems (6.8) i

and (6.10) will be considered later and boundary conditions will be

addressed in the next chapter.

- A TR A

Thus, we let

\ . " « X(&) exp{i(z+wt)} (6.13a) :{*
%i
o0 . Y(&) exp{i(z+uwt)} (6.13b) “

60 = 2(6) expliczut)) (6.13¢)

S NN E I SEE D e P e e el G T B S e e e
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where X, Y and Z are the (complex-valued) non-dimensional perturbationm
amplitudes for the x- and y-velocities, and the interfacial debth,
respectively. Note that the time dependence assumed in Chapter 3
differs in sign from the one assumed here. w is the dimensionless
circular frequency of the disturbance, which is related to the dimen-

sional frequency, Q, by

w= Q/f . (6.14)

Using (6.13) in (6.7) and (6.9) reduces the system of PDE's in
each case to the following systems of ODE's for the £-dependent

perturbation amplitudes:

iocX - Y + ZE = 0 (6.15a)
icY + X + ikAZ = 0 g (6.15b)
i0Z + 1kA(1-8v°E)Y - Bv X +»(lr8vQE)X€ =0 (6.15¢)

(PLANAR FRONT, ORDER Fg)

ig(e)X - Y + ZE =0 (6.16a)
ig(E)Y + X + ikAZ = 0 (6.16b)
1g(g)Z + ikAtY + (1-1)X +-rxz,- 0 (6.16b)

(EXPONENTIAL FRONT, ORDER .g5~

—d =

M
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in which
g=uw+ kA(l-B)v°° (6.17)

and

g(8) = w + kA{1+v_-1(E)} . (6.18)
For the planar front, o is the non-dimensional Doppler shifted fre-
quency, and g(§) is the exponential front analogue of o. The subscript

€ denotes a total derivative with respect to £.

6.5 ZEROTH ORDER ODE's FOR THE DEPTH PERTURBATION AMPLITUDE

A single equation for the depth perturbation amplitude, Z(£), is
derived from (6.15) for the planar front and from (6.16) for the ex-
ponential front by eliminating the velocity perturbation amplitudes,
X(g) and Y(£), from these systems.

The planar front result, which follows directly, is

(Bv_£-1) (a°2/dg%) + Bv_(dz/dE) + ACE)Z(E) = 0, (6.19)

where 9 5
A(E) =1 -0 + kAva/o + (kA) (l-vaE). (6.20)

(6.19) is linear, homogeneous, second order in Z(£), and independent of
u_. The cross-stream flow does not enter the pe;turbation dynamics nor,

as we will see, the boundary conditions to lowest order in Fb for the

planar front, and therefore contributes nothing to the system's sta-
bility characteristics. If (6.19) is redimensionalized, the equations 2|

developed earlier for the depth perturbation amplitude, viz., (3.12)
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and (4.2) with Fx = 0, are rncovered identically. The analysis pre- ‘i i :
;| - |
sented in Chapter 3 is therefore directly applicable to the lowest ; -
o order planar front equation for Z. ‘ !
| 5
: . Uncoupling (6.16) is more involved, but is facilitated by trans- -
E forming to t as the new independent variable. Viewing X, Y and Z now i
as functions of T, not £, we obtain e
d/de .. (1_1;) (d/.d‘l') . and so on, =1
and the system (6.16) becomes
E intX - Y + t(1-1)(dZ/dt) = 0 (6.21a) i
. inY + tX + 1kAZ = 0 (6.21b) F
{nz + 1kATY + (1-1){(d(1X)/dt} = 0 , (6.21c) e
| where e
n(t) = 0 + kA(l+v_-1) . _ (6.21d) il
Defining .
f(n) = w/kd + 1 + v_ - n/kA . (6.22)

and eliminating X and Y from (6.21) leads to the following equation

for Z2(n):

4 A(d®z/an®) + B(dz/dn) + cz(n) = o, (6.23)
where ' Iy

A(n) = n2g¢e-n?) (£-1)2 (6.24a) -

B(n) = n?(l—-ﬂ{nz(l—Zf)/kA +

INECI-F) + £2/k\) (6.24b)

e oy et e

! Cln) = (1-E){E(£-n2) = nZ(n/kA+2£))

+ f(nz-f) . (nz-f)2 {f-(n/kx)z} . (6.24c)

i
§
:
¢
t ]
'
f
:
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As for the planar front, the depth perturbation amplitude equation
for the exponential front is linear, homogeneous and second order. We
again note that the cross-stream flow does not enter the exponential
front's dynamics to lowest order. Since we are primarily interested
in the influence of the cross-stream flow on the frontal zone's sta-
bility characteristics, it is now clear that an examination of the
zeroth-order dynamics alone is inadequate. The cross-stream flow has,
at most, a first order effect on stability. In subsequent chapters,
therefore, the first order dynamics will be developed, and attention

will be focused on the attendant dispersion relationm.
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CHAPTER 7

BOUNDARY CONDITIONS

7.1 INTRODUCTION
In this chapter, boundary conditions are formulated for the
lowest order perturbation amplitudes X(&), Y(£) and Z(§), and for

the first order perturbations 6(12 6(1) an

d 3(1) for both the expo-
nential and planar fronts, Figures 7.1 and 7.2 show the simplified
exponential and planar frontal zome geometries, respectively, under
the influence of a wavelike disturbance that distorts the equilibrium
boundary separating the inner and outer regions. With no disturbance,
the surface boundary detween these two regions.is contained in the
plane x=0.

As shown in Figures 7.1 and 7.2, the surface displacement of
the equilibrium boundary is denoted h(y,t) in dimensional variables.
For small perturbatioms, |h|/k<<1. The interfacial depth in the plane

x=0 is 6°D for the exponential front, and Df(O) for the planar front.

b
The boundary condition on the lowest order depth perturbation ampli-
tude Z is derived by invoking the kinematic restriction that the inter-
facial depth beneath the displaced inner-outer region boundary remain
at its equilibrium value, a reasonable restriction as long as the per-
turbation amplitude is small. In addition to Being plausible, this
condition may be formulated rigorously by taking only the lowest order

term in the Taylor series expansion for the time-varying interfacial

depth about its basic state value. The boundary condition on the

80
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x-velocity perturbation is derived from the kinematic condition

R aea
—

that the normal velocity across the boundary between the inner and
outer regions must be continuous. We also require no velocity
shear across the boundary in the long-stream direction, which leads

to a boundary condition on the y-velocity perturbation.

AR ARG N SRR e

sl

7.2 BOUNDARY CONDITION ON THE DEPTH PERTURBATION :
The kinematic restriction that the interfacial depth at the

inner-outer boundary remains at its equilibrium value may be written
§(h) + 8{h(z,0),2,e) = 8, i34

where Geqaao for the expomential front and Geqsl for the planar front. » ?

Note that (7.1) is written in dimensionless variables, that is, with
h*=h/\ and subsequently dropping the asterisk. &(h) is the basic
state interfacial depth evaluated at &=h, that is, at the displaced
surface boundary. (7.1) is translated into boundary conditions on

the depth perturbations to lowest and first orders in Fb by substitut-
ing the small parameter expansions in (6.6) and invoking the approxi-
mations Z(h)=Z(0) and e '=(1-h) for h<<l. To lowest order in F , we

h b
obtain

h = ho exp{i(z+wt)} , (7.2a)

where

- - 7.2b
h, = 2(0)/(8 -1) : (7.2b)

1
L
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for the exponential front, and

h, = Z(0)/8v, (7.2¢)

for the planar front. At first order in Fb, we obtain

: ;(1){h(zvt)9Cot} = 0 (7-3)

for both the planar and exponential fronts. Condition (7.3) re-
quires that the first order depth perturbation amplitude vanish in

-l both cases at the inner-outer boundary.

7.3 VELOCITY BOUNDARY CONDITIONS

If the small parameter expansions in (6.6) are substituted

into the perturbation variable decomposition introduced in Section
6.2, the lowest order flow field for £2h in the exponential front

case becomes

u(g,z,e) = /589w + 0@z, (7.4a)

v(6,5,t) = 1 - 8¢ +v_+ 4@ g0,0 (7.4b) T

To first order in Fb‘ we have
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ﬁ(l) 2 9(1) i (7.5)

as a consequence of only even powers of Fb appearing in the small
parameter expansion of the exponential basic state interfacial depth.
Condition (7.5) is found to apply also for the planar front, since
there the equilibrium flow is spatially invariant. At first order

in Fb’ then, the velocity perturbation amplitudes in the x- and
y-directions must be zero for both the planar and exponential fronts.
At zeroth order, of course, the velocity perturbations are not zero,
as discussed next.

The restriction that the normal velocity at the boundary be-

tween the inner and outer regions be continuous may be written

Lin %E k) = 39 0y (7.6)
x+h

in dimensional variables, where D/Dt is the convective derivative
and ;(0)(0) is the equilibrium x-velocity evaluated at the boundary.
Expanding (7.6) to lowest order in Fb yields

i Dmy + 6w - GOmy + 4@ myon/ay)

=(0)

- (3h/3t) = u "7 (0) ’
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in which all velocities on the left-hand-side are evaluated at x=h,
i.e., at the boundary. The basic state terms involving u are elimin-
ated by the approximation ;(0)(h)=ﬁ(o)(0) for |h|/l<<1. and the sec-

ond order term 6(0)(h)8h/ay may be neglected altogether, giving

a@ ) - 79 m)(3n/sy) - (3h/ae) =0 . (7.7)

(7.7) consitutes the fundamental zeroth order boundary condition on
the x-velocity perturbation amplitude. Rewriting (7.7) in non-
dimensional variables in accordance with (6.1), substituting the
explicit form for h(Z,t) in (7.2a,b), approximating X(h) by X(0) for
|h|<<1, and neglecting terms of order h compared to 1 yields the

following result:

X(0) = ih {w + kA(v#§ -1)} . (7.8)

(7.8), written in scaled variables, provides the connection between

the depth perturbation amplitude at the origin, Z(0), and the x-
velocity perturbation amplitude at the origin, X(0), through the
displacement amplitude ho appearing in (7.2b). We note that, for

a fixed disturbance frequency and wavelength, X(0) and 2(0) are direct-

ly proportional, but in phase quadrature.

For the planar front, we follow exactly the same procedure
and arrive at the following boundary condition on the (dimensionless)

x-velocity perturbation amplitude to lowest order in Fb:

i
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X(0) = iho{m + kk(l—B)vw} . (7.9)

Again to lowest order in Fb, we require for the long-stream
velocity that no velocity shear exist across the inner-outer region
boundary, although a long-stream velocity shear can exist between
the frontal zone and the ambient ocean. This restriction is physi-
cally realistic for small amplitude wave disturbances, and may be
justified rigorously by performing a Taylor series expansion of the
time-varying y-velocity about its equilibrium value and retaining

only the leading term. Therefore, as a boundary condition on Y(£)

at order Fg, we require

“Y(0) =0 (7.10)

for both the planar and exponential fronts.
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CHAPTER 8 -

ANALYSIS OF THE EXPONENTIAL FRONT EQUATION FOR Z(M)

TO LOWEST ORDER

8.1 INTRODUCTION

In this chapter, the expunential front depth perturbation
amplitude equation (6.23) will be analyzed in some detail. Its
singular points in T-space and n-space are located, the asymp-
totic form of the solution far from the surface front is pre-
sented, and the condition for stable solutions at infinity is
developed. The equation for Z(n) is then integrated numerically,
and several of the resulting mode shapes are discussed. Recall
that the analysis of the planar front DPA equation, (6.19), was

performed in Chapters 3 and 4.

8.2 SINGULAR POINTS OF THE EQUATION FOR Z(n)

Singularities in the depth perturbation amplitude, Z(n),
occur at most at the zeros of the polynomial A(n) in (6.24a). Since
A(n) 1is presented in factored form, its zeros are readily determined
and appear in Table 8.1. Recall that the domain of definition of
the original independent variable & is 0<f<®, Transforming to the s
independent variable T maps the interval 0S£<® into the interval <o
505151, while the transformation from T to n in (6.23) maps the do-
main of definition for T into an interval in n-space with variable
endpoints whose locations depend on the values of w, KA and V.
Since, in general, the locations of the singular points also depend -
upon the values of w , kX and V_ , a determination of whether or not

o




b

TABLE 8.1 ZEROS OF A(n)

LOCATION IN n-SPACE

no-O

n,=w + kA(v_+1)

ﬂ3’2' -1/2kk

LOCATION IN Tt-SPACE

+ a‘/l/ (kA) 244 (w/kMv_+1)

n

=0+ kiv_

4

T =0
o

T, =uw/kl+ v +1

1

T, o= W/kA+ v + 1+ 1/2(k>\)2

t /20 3 [ 1/000) 24 /A _+1)

T, =1
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E a particular singular point lies in the domain of definition of

the independent variable is most easily made when the domain has os
fixed endpoints. For this reason, Table 8.1 includes the locations

of the singular points in both n-space and t-space. We will here-

after deal almost exclusively with the t variable, since its domain ] |

of definition is fixed.

ki Y DA SR A PRI W

If the parameters w, kA and V_ are such that the ti#r in

h|
Table 8.1 for i#j, that is, if the singular points are distinct,

PRI 7 SR R RS2 SPRL (WL QP OISO P

then the ratios B(n)/A(n) and €C{(n)/A(n) in (6.24) possess poles of,
at most, first and second order, respectively. Each singular point
is therefore regular if the Ti are distinct. Irregular singularit-
ies, and the attendant analytical difficulties, result from the co-

alescence of two or morg of the singular points in Table 8.1, which

can occur for certain values of w, kA and V¢° For example, if these

quantities are such that

1/(kx)z = <4(w/kx +v_+1) ,

the two otherwise distinct regular singular points T, and T, coalesce

i into a single singular point which is irregular. Since the develop~-

ment of analytical solutions near irregular singular points is, in
general, very difficult, we will require hereafter that all five of
; the T, are distinct, thereby imsuring regular singular points for
the depth perturbation amplitude ODE.

Physically significant singular behavior in the solution 2

must, of course, occur in the interval 0<f<», or, equivalently, 605151.

Singular behavior in Z for values of the independent variable out-
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side this range is physically meaningless and consequently of no
concern. The fixed singular point to-O is thus irrelevant, while

the fixed singular point 16-1 is of considerable importance, since

it corresponds to £==. It thereby determines the nature of the sol-
ution at infinity in the original x-coordinate system. The ODE for

Z thus admits the possibility of a solution that "blows up" at infin-
ity for some values of the parameters w, kA and V_,. At the remain-
ing three singular points, tl’ rz, and 13, divergent solutions for

Z are also possible, but ﬁhese points may be placed outside the phys-
ically significant interval by suitably choosing w, kX and V_. The
locations of Tl’ T, and 13 in the kA-w plane are shown in Figure
8.1. The nature of the solution near 74-1 will be examined in de-

tail in the next section.

8.3 BEHAVIOR OF THE SOLUTION NEAR INFINITY
Since physically acceptable solutions must exhibit regular
behavior at infinity, we wish to investigate the nature of the sol-

ution to (6.23) as £+», or, equivalently, u+l and n+xi(u-l), where

u= w/k\ + Nri . (8.1)

We also require pu#¥l, since when u=l the two singular points o and

T, coalsece into a single higher order singularity at infinity.

With

s=1+n/kX -y s (8.2)

the problem reduces to an examination of the solution to
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.
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2
s zss ks szs + (d/a)z(s) = 0

as s+0 from above, where

_——yT T

| a= - -0 -k

and
d = Gt a-n? steniow? - 1 - -1 .
: Under the transformation s=e®, we obtain
r 2, + (d/a)z®) =0

whose solution is written immediately as

Z=A exp((-d/a)&t} + B exp(-(-d/a)*t} R

of the original £ -coordinate yields

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

where A and B are arbitrary constants. Rewriting (8.7) in terms
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ating the domain of allowable (kA,w) values from that in which di-
vergent solutions exist. Since the disturbance wavelength on a large
scale oceanic front is generally larger than the Rossby radius, that
is, kA<l typically, (8.10) and Figure 8.2 show that the disturbance
periods will generally be longer than the inertial period, or, equiva-
lently, w<l. In other words, we anticipate sub-inertial frequencies.

In Table 8.2, the exact dispersion relation for the exponential
front at lowest order in Fb’ which is developed analytically in Sec-
tion 10.1, has been used to tabulate the disturbance frequency for
various combinations cf the parameters 60 and V_ as a function of the
normalized wavenumber KA. V., ranges from 0.1 to 0.5 in steps of 0.1,
as does 60. KA ranges from 0.1 to 1.9 in steps of 0.1l. Entries carry-
ing a superscript "a" correspond to values of w, kA and V_ which vio-
late the stability criterion at infinity given in (8.9). Entries
carrying a superscript '"b" correspond to parameter values that place
one or more of the singular points of the DPA equation in the inter-
val 5°$151, as discussed in Section 8.2. An examination of the tabu-
lated results again clearly shows that the system is sub-inertially
dominated. In no case is an allowable value of the disturbance freq-

uency greater than 1.

i
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Case 1: V

KN

0.1
0.3
0.5
0.7
0.9
1.1
1.3
Lo
1.7
1.9

Case 2: v,

0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7

103
= 0.1
0.1 0.2 0.3
0.98° 0.47° 0.29
2.942 1.41% 0.88°
4.90% 2.352 1.47°
6.86% 3.292 2.052
8.82% 5.23% 2.642
10.782 5.172 3.23°%
12.742 6.112 3,817
14.702 7.052 4.402
16.662 7.992 4.992
18.622 8.932 5.572
= 0.2
0.1 0.2 0.3
0.97° 0.46° 0.28
2.912 1.382 0.85°
4,852 2.30° 1.422
6.792 5.2 1.982
8.73% 4.142 2.552
10.672 5.062 5.22"
12.61° 5.982 3.682
14.552 6.90% 4,252
16.492 7.822 4.852
18.432 8.74% 5.382

1.9

TABLE 8.2 Computed Values

0.4

0.20
0.60°
1.00

1.40"
1.802
2.20%
2.60%
3.00%
3.402
3.80%

0.19

0.57°
0.95
1.33
.72
2.092
2.472
2.85%
L
3.612

of w for Various Values of k), 60 and 5

0.14
0.42
0.70
0.98
1.26
1.542
1.82°
2.10%
2.38
2.66

o
w

0513
0.39
0.65°
0.91
T b o
1.432
1.69%
1.95%
2 21"
2.2




0.5

0.12
0.36

0.60°
0.84

1.082
1.32"
1.56%
1.80%
2.042
2.282

Case 4: V_= 0.4

2 0.1 0.2 0.3 0.4 0.5
0.1 0.95° 0.44° 0.26 0.17 0.11
0.3 2.85% 1.322 0.79° 0.51° 0.33
0.5 T 2.20° 1.32° 0.85 0.55°
0.7 gss® 3.08° 1.842 1.19% 0.77
0.9 8.552 3.962 2.37% 1.53% 0.992
1.1 10.452 4.84% 2.902 1.872 1.212
%.3 12.35% 5.72% 3.42% " 1.432
1.5 14.252 6.60% 3.952 2.552 1.65%
1.7 16.152 7.48% 4.482 2.89% 1.872

1.9 323" 2.092
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Case 5: Y. = 0.5
XN 9.1 0.2 0.3 0.4 9.5
0.1 0.94° 0.43° 0.25 0.16 0.10
0.3 2.82° 1.29% 0.76° 0.48° 0.30
0.5 4.70% 2.15% 1 wr® 0.80 0.50°
0.7 6.58% 3.01% . 1.12* 0.70 ]
0.9 8.46° 3.87° 2.28% 1.442 0.90% }
0 10.342 4.732 279" 1.76% 1.10%
3.3 12, 22" 5.592 3.292 2.082 130"
1.5 14.10% 6.452 3.80% 2.40° v L 50"
1.7 15.982 7.3L° 4.3:12 1% 4 1.70°
1.9 17.86% g. 378 4.812 3.042 1.90%

NOTES: a - the values of KA, 50 and V_ are such that the stability
criterion at infinity, (8.9), is violated
b - parameter values are such that one or more singular

points are contained in the interval 60<ti<1

see discussion in Section 8.2.
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8.4 ‘TYPICAL MODE SHAPES FOR THE ZEROTH ORDER EXPONENTIAL
FRONT DPA EQUATION

Figure 8.3 illustrates typical mode shapes for the depth per-
turbation amplitude Z(n). The curves were generated by numerically
integrating the lowest order expomential front DPA equation, (6.23),
using a finite difference method that reduces the ODE to an alge-
braic system which is then solved by matrix methods (Conte and deBoor,
1972, Ch. 5). The algorithm's accuracy was checked against a sec-
ond order ODE with known analytic solution. The curves in Figure 8.3
were generated using 380 steps in the numerical integration, and the
accuracy is expected to be well within 1%Z. Values of the input par-
ameters VQ and k) were chosen so that the stability criterion at in-
finity in (8.9) was met and, additionally, so that none of the sin-
gular points ri(i=1,3) fell in the interval Sogtisl. These restric-
tions insure regular behavior of Z(n) throughout its interval of
definition.

The value of Z at £=0 was arbitrarily set equal to -0.05, -0.07
and -0.06 in Figures 8.3(a) through 8.3(c), respectively, which is
consistent with the assumption of small amplitude perturbations. The
points Ny and "y in these figures are the images of £=0 and &= un-
der the transformations defined in (6.12) and (6.21d). At £== the
boundary coﬁdition is Z=0 as demanded by the asymptotic behavior of
the solution for Z(n) developed im Section 8.3. Since the DPA equat-
ion (6.23) involves w as a parameter, specification of an appropriate
(kA,w) pair, that is, one satisfying the lowest order exponential front
dispersion relation, is required in order to perform the numerical

integration. This was done by using the results of Section 10.1, in
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which the required dispersion relation is derived explicitly. The
three curves in Figure 8.3 are representative of the results thus
obtained, and serve to illustrate typical behavior of Z(n) for
values of V. 60 and k) less than 1 which meet the conditions dis-
cussed above. The solutions are smooth, as one would expect from

the analysis above.
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CHAPTER 9

DISPERSION CHARACTERISTICS OF
THE PLANAR FRONT

9.1 INTRODUCTION

Duxbury's (1963) frontal zone geometry is shdwn'in‘Figure

9.1. Unlike the model in this paper, his frontal zone consists of
two inviscid regions of the same density separated by a vertical
"Qortex sheet" that supports a shear flow parallel to the boun-
dary between these regions. In Region 1, which is analogous to

the wedge shaped frontai zone modelled in this paper, a uniform,

. geostrophic equilibrium flow exists whose single velocity compoment
is parallel to the vortex sheet boundary. The circularion is zero
in the constant-depth appendage which is defined for y>0. Duxbury
develops the dispersion relation for this system, which functionally
relates the disturbance frequency and wavelength, by solving the
time-varying perturbation equations in Regions 1 and 2, and matching
the solutions across the vortex sheet boundary. The result, which

appears as his equation (75), thus requires a priori knowledge of

T r——
Mo

A St

the time-dependent perturbation equation solutions, since these then
appear explicitly in the dispersion relation.
The dispersion characteristics of Duxbury's system rest upon

boundary conditions that are quite different from those in this model,

which consequently leads to a different formalism in developing the

dispersion relation. It will be seen in what follows that the dis-
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persion characteristics of both the exponential and planar fronts
are available directly from the perturbation equations upon appli-
cation of the boundary conditions developed in Chapter 7. Since no
a priori knowledge of the perturbation solutions is required, con-
siderable simplification results.

The fundamental nature of the difference between Duxbury's
model and this one is readily appreciated by more closely examining
his dispersion relation in the limiting case Do+0. Since D° is the
(constant) depth in his Region 2, letting Do+0 removes Region 2 from
the problem and presumably recovers the planar frontal zone geometry
in this model with the inner region width set to zero. We expect that
this is a physically realistic limit which should correspond to well-
behaved dispersion characteristics. Taking the limit DO*O in Duxbury's
equations (75)-(77), however, reveals that his dispersion relation
exhibits no regular behavior in this limit and, in fact, becomes un-
defined. This peculiar behavior is a consequence of the boundary con-
ditions that are imposed, which require a coupling of the dynamics in
Regions 1 and 2. Removal of Region 2 therefore leads to a singular
result.

The model developed in this paper, however, does not suffer
this shortcoming, since the boundary conditions are different. The
frontal zone geometry, moreover, is formuléted more realistically at
the outset, and the artifice of a vortex sheet barrier separating two
regions of the same density is unnecessary. Garvine's work (1974,
1979a, 1979b) has shown clearly that the steep interface between the
frontal zone and the ambient ocean is maintained by local dissipatiom,

viz., turbulent friction, mixing and mass entrainment in the inner
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dissipetive region, which eliminates the need for an artificial vert~-

ical barrier, as in Duxbury's model. In the following two sectioms,
the zeroth and first order dispersion characteristics are derived for

the planar front.

9.2 THE ZEROTH ORDER DISPERSION RELATION

Derivation of the planar front dispersion relation at order

7o

b
dary counditions formulated in Chapter 7 to the lowest order pertur-

is remarkably simple and follows immediately by applying the boun~

bation equations in Chapter 6. Specifically, we substitute (7.10)
and (7.9) along with (7.2¢) into the y-momentum equation (6.15b) eval-
uated at £=0, which imposes the following characteristic condition on

the scaled frequency w and the normalized wavenumber «kA:

w/kX = =¥ _ | (9.1)

Thus, at order Fg. wavelike disturbances on the planar front
in the moving coordinate system are non-dispersive with equal phase
and group velocities. For real kA, the frequency is also real, and
therefore no unstable modes exist in the system. Since the planar
front is inherently stable and non-dispersive to lowest order, it
cannot support a disturbamce whose amplitude grows in time. In the

next section, we will therefore consider the first order dispersion

characteristics for the planar front and are led to a rather surpris-

ing conclusion.

“-e
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9.3 THE FIRST ORDER DISPERSION CHARACTERISTICS

Recall that the perturbation variable decomposition was intro-
duced in Chapter 6, and that the zeroth and first order perturbation

equations were derived. The lowest order systems appear in (6.7) and

corresponding first order systems are contained in (6.8) and (6.10).

l (6.9) for the planar and exponential fronts, respectively, while the
We then assumed the time~ and space-~harmonic solutions in (6.13) for
I the zeroth order perturbations, but proceeded no further with the
first order systems. 1In this section, we will introduce time-~ and

E E & space-harmonic solutions for the first order velocity and interfacial

depth perturbations as follows:

’ 6@ (g,z,0) = xP (&) expli(zue)) (9.2a)

U : o@D e,z,0) = YP (&) expliCrrut)) (9.2b)

2 §W e o0 = 20 8y expli(got)) (9.2¢) |

‘i The circular frequency @ appearing in (9.2) is the same as the zeroth
order w in Chapter 6, since the inhomogeneous first order system is |
driven by the lowest order solutionms. |

Substituting (9.2) into (6.8) leads to the following system

of ODE's for the first order perturbation amplitudes x(l), Y(l) and

Z(l), each of which is a function of £ alone:

B P e e e e
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g

1ox®) - ¢y 4 zél) = - Ex5 (9.3a)
| 10t 4 @D 4 ga2® . F (9.3b)

10z 4 zExu) + (1-8v_5)x§1)

+ 1kx(1-sv;;)7(1) (9.3¢)

- -ng = (Bu/kA)ZX, - Bu (1+0)Y

where o is defined in (6.17).

Following the notation introduced in Chapter 6, X, Y and 2

with no superscript are lowest order quantities, while the correspond-
ing first order quantities are marked by a superscript (l). As
before, the overbar denotes an equilibrium state variable. We note
that the equilibrium state and the solutions to order Fg appear both
as driving terms and as non-ccnstant coefficients in the first order
system. The first order dispersion relation may now be derived by

(l), Y(l) and Z(l) directly to

applying the boundary conditions on X
the system (9.3). Doing so, however, is somewhat involved algebraic-

ally for the following reason. If each of the functions in (9.3) is

evaluated at £=0, the point at which the boundary conditions are
applied, we see that (9.3) reduces to a system of three algebraic
equations for five unknowns, viz., X(l), Y(l), Z(l), xél) and Zél), i

each evaluated at £=0. The lowest order solutions and their deriva-

bk e i s
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tives evaluated at £=0 are presumed known. In order to successfully
develop a characteristic relation between w and kA, therefore, we
must.first manipulate the system in (9.3) to generate a number of
equations equal to the number of unknowns. This procedure is unfor- :
tunately tedious. It is nevertheless outlined here, since it will

be used again for the expomential front at order F;.
We begin by restating the known zeroth 'and first order boundary

conditions:

Z(0) = BV h_ (7.2¢)
X(0) = ih {wtkA(1-8)V_} (7.9)
Y(0) = 0 (7.10)
2 2o (with 2P my= 2P 0y ) (7.3)
P 0) = vYP 0y =0 i (7.5)

where ho is the wave disturbance amplitude. Since the lowest order
perturbations are homogeneous, vanishing with ho’ and the first order

solutions are driven by the lowest order solutionms, h° should fac-

O S e

tor out of the dispersion relation. We note that the perturbation

equations at order Fg appear in (6.15) and are not reproduced here.

Evaluating (6.15a) and (6.15c) at &€=J using (7.2¢), (7.9) and

(7.10) provides explicit representations for xg(O) and ZE(O)' (9.3b) i
evaluated at g=0 subject to (7.3) and (7.5) gives YE(O)-O. Thus,

each of thg lowest order perturbation amplitudes and its first der-
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ivative is known explicitly at the origin. Taking d/df of (6.15a)

determines ZEE(O) as

A 9.4
ZEE(O) mxE (0) s (9.4)

where XE(O) is known. Differentiating (6.15c) once with respect to
€ and (6.15b) twice provides the following expressions for XEE(O)

and YEE(O) in terms of previously computed quantities:
SO = 9.5
xEE (0) (2v°/kx)x5(0) 1025(0) (9.5)
= 9.6
YEE(O) (1/o){x65(0) + 1kxz65(0)} (9.6)

All relevant lowest order quantities are now known, and we proceed
to close the first order system im a similar manmer.

From (9.3a) and (9.3c) with £=0, we obtain, respectively,
,(1) Sl 9.7)
ZE (0) uXE(O) i
xP ) = -2 + (ui/elx O (9.8)

wherein the previously derived results have been used. Note that
u, which is constant, is defined in (6.3a). Finally, differentiat-
ing in order (9.3b), (9.3a) and (9.3c) once with respect to & and
setting &=0 closes the algebraic system by providing five equatiomns

o ‘the Zive unknowns Xél)(O), Yél)(O), Zél)(O), Xéé)(O) -— Zéé)(O).

Note that, as a consequence of the successive differentiations, these

are not the same five unknowns obtained by simply setting £=0 in the
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original system (9.3).
The final result is conveniently written in matrix form

as follows:

|
[
|
| -
I
I

Zg (049, /kA 1kA 1o 1 0 xél) (0)
io -1 0 0 1 Yél)(O) | 4
T 1 10 kA 0 0 zél) (0)
2 (9.9)
1 S o o | [xP®
| B ~
3 A
i B
e % C
.: I g
E
1 ol
where
I A = -GZEE(O) % {u‘.c/(kx)z}xsz(o) (9.108)
I + (u_/k)) (1+1c)YE€(0)
: 35 -;xEE(O) (9.10b)



D = -z, (0) + (u.8/ (kN ?1x,(0) (9.104)

E= -uxE(O)

With a bit of algebra, che inverse of the coefficient matrix

may be derived and the system in (9.9) solved to give

- &
(1)
X7 (0)

(1)
Y. 7 (0)
zél)(O)

(1)
xsE 0)

(1)
Zgg (0

bis~l/ags  bygtl/ayg, by =-1/ajqa),

R 2 .- e
bys==a;5/814874  byy"l/ay,,  byam-agy/a e,

- B 2 = 2 3
by=(ay5/a 978 ) /8y, b g=(a ./, 48] )2, 470, ,
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b b = (a +1/a )

5272142 °s3 "a),/a;3 by,

(9.12 - cont.)

b /a

35 M2 %19%%

The aij in (9.12) are the elements of the coefficient matrix in
(9.9) with obvious equivalences.
The first order dispersion relation is now derived directly

from (9.9) and (9.11). From (9.9), we have

xél)(o) + 1GYél)(0) + 1kxzél)(0) O R (9.13)

Md. ftom (9011)9

1) L
xE 0) b14D (9.14a)

(1)
(0) = b,y,C + b, D +b,E (9.14b)

(1’(0) -E : (9.14¢)

Substituting (9.14) into (9.13) results in the characteristic relation
between  and k) demanded by internal consistency within the original

system of dynamical equations, the result being

(-1 + a )c+(b

13%23 + a,3b,,)0D
* (a)q4by5 *+ “12"’1:.)E 5 > s

where the '1j are elements of the coefficient matrix in (9.9) and

e A
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the bij are elements of its inverse defined in (9.12). Expanding
the coefficients in (9.15) using (9.12) leads to the rather sur-
prising result that each of the coefficients of C, D and E in (9.15)
vanishes identically and independently. Therefore, no dispersion
relation exists to first order for the planar front, and the original
system of perturbation equations is internally self-consistent with-
out the constraint of any characteristic relation between w and «A.
In view of the lowest order dispersion relation, which is physically
uninteresting, the first order result developed here shows a grave
deficiency in the planar front model. The planar front model, even
with appropriate boundary conditions and scaling, is incapable of
reproducing the dynamical behavior of waves on oceanic fronts. 1In

the next chapter, however, the procedures outlined above are applied

to the exponential front with far more satisfying results.

e

R
J

i ——




—————

-

[

A AT T A U N 1T 9 A T 0

CHAPTER 10

DISPERSION CHARACTERISTICS OF THE
EXPONENTIAL FRONT

10.1 THE ZEROTH ORDER DISPERSION RELATION

The zeroth and first order dispersion relations for the
exponential front are derived in the same manner as were the planar
front results in Chapter 9. The exponential front equations for the
perturbation amplitudes X, Y and Z at order Fg appear in (6.16).

Evaluating the y-momentum equation (6.16b) at £=0 then gives

ig(0)Y(0) + sox(O) + 1kAZ(0) = 0 . (10.1)

Substituting the boundary conditions (7.10), (7.8) and (7.2b) into
(10.1) and eliminating a common factor of iZ(0) imposes the follow-

ing characteristic condition on w and kA at order Fg:
w/k) = (1/60) - 60- L . (10.2)

The phase and group velocities are equal and constant, as they
were for the planar front. And, since w is real for real kA, the
exponential front is dynamically stable at order Fg. A plot of

+v .
cph(gr) » 88 a function of 60 appears in Figure 10.1, where Cph(gr)

is the phase (group) velocity. For V~>(1/6°-6°), c <0; other-

ph(gr)
123
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wise, the phase and group velocities are positive in the moving
coordinate system. Realistic values of V_ are not likely to exceed
approximately 0.5. For V_=0.5, the phase (group) velocity will be
negative only if 60 is greater than about 0.8, which is unrealist-
ically large. The range of vV, and 60 likely to be encountered in

an oceanic frontal zone is therefore such that the phase and group

velocities in the moving coordinate system will be positive. Stable
% lowest order waves on the exponential front are expected to propa-

i gate in the positive y-direction in a right-handed coordinate system
with the x-axis oriented perpendicular to the long-stream direction
and into the frontal zone. This result is consistent with observed
meander patterns on the Gulf Stream, in which disturbances propagate

northward and eastward along the Stream. o

10.2 FIRST ORDER DISPERSION CHARACTERISTICS

As before, time- and space-harmonic first order solutions of
the form (9.2) are assumed and substituted into the perturbation var-
iable equations (6.10), which leads to the following system of ODE's

M) @

for the perturbation amplitudes X and 2(1):

Sl = 112 g g

= {(1-1) /%)X - /0%,
! (10.3a)
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ig(e)Y(l) + x4 g0z @

T

=

- -y, (10. 3b)

e

190z 4 rxél) + 1y D 4 qenx®

= {(1~1)/1%}z - a/nz,

where the quantities t(g) and g(g) are defined in (6.12) and (6.18),

respectively. The notation introduced in Section 9.3 is also employed

here.

The boundary conditions for the exponential front are repro-

duced here from Chapter 7:

Z(0) = (Go-l)h°

X(0) = 1h_ {uHkA (Y, +§_-1)}
Y(0) =0

z2W ) = 0




Once again, we expect the disturbance amplitude, ho’ to factor out
of the dispersion relation, since the perturbations at order Fg
are homogeneous. Following the procedure outlined in Section 9.3,
the system (10.3) is closed by manipulating it to produce a number
of equations equal to the number of unknowns.

The first step is to compute the relevant lowest order quan-
tities, which are the first, second and third derivatives of the
perturbation amplitudes X, Y and Z evaluated at £=0. This is done
itera;ively using the zeroth order system of ODE's in (6.16). Thus,
from (6.16a) using (7.10) and setting £=0,

ZE(O) = -1g(0)X(0)

Evaluating (6.16c) at £=0 with (7.10) gives

X€(0) - -(1/60){18(0)Z(O)+(1-6°)X(0)}

while (10.3b) with (7.3) and (7.5) at £=0 yields

Y0 =0 (10.5b)




128

Differentiating in order (6.16a) and (6.16c) once with respect to

£ , using rE-rEEE--tEE-I-t, and setting £=0 gives

ZEE(O) = -1{gE(O)X(0) + s(O)XE(O)} (10.6)

XEE(O) = -(i/éo)(gg(O)Z(O) + 3(0)25(0))

(10.7)
+ {(60-1)/60}{x(0) - ZXE(O)}
Taking d2/d€2 of (6.16b) with £=0 determines YEE(O) as
YEE(O) = {1/8(0)}{(60-1)(X(0) - ZXE(O))
+ soxEE(O) + 1kxz€€(o)}
(10.8)

Computing the third derivative of Z from (6.16a) and setting £=0

gives

T e -1{3€E(O)X(O) + 235(0)X€(0) +

£=0

8(0)XEE(°)} +Y .(0)

13 ; (10.9)

Taking d2/d€2 of (6.16c) with £=0 and the previous results yields
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de
—3| = - (/8 ) (g, (0)2(0) + 25,(0)2,(0)

dg E=0
+ 8(0)265(0) + kAGOYEE(O)}

(10.10)
+ {(60-1)/60}{X(0) - 3X£(0) + 3XEE(0)}

And, from (6.16b), computing the third derivative with respect to
g leads to

d3Y
—3| = (1/8(0)){31g, (0¥, (0)

dg £=0

+ (1-6 ){X(0) - 3X,(0) + 3X._(0)}
( o) (0) E( ) EE( ) (10.11)

» 0) + ikAz__,_(0)}

SoXeee gEE

All relevant lowest order quantities at g=0 thus appear in (7.2b),
(7.8), (7.10) and (10.4)-(10.11).
The system is now closed at order F; by working with (10.3).

Substituting the above results into (10.3a,c) and setting =0 yields
20y = (1/s )[((1-6 )76 1X(0) - X (0)] (10.12)
1 ) o’" o 1

(1) _ 2
xE (0) (1/60) [{(1-60)/6012(0) - ZE(O)] (10.13)

e s A 0 S R A

B R T S AT Rk M N TS
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The quantities that remain to be coumputed are the first derivative
(1) (1) (1) (1)

of Y and 2 , each eval=-

, and the second derivatives of X ™7, Y
uated at the origin. This is accomplished by sequentially differen-
tiating (10.3b), (10.3a) and (10.3¢c) once with respect to £ and then
(10.2h) twice. Putting £=0 and employing the previous results leads
to the following equations which determine, respectively, Y (1)(0),

zéé’(o). x(l)(O) ind Y(I)(D)

iB(O)Yél)(O) + soxél)(O) + 1kxz§1)(o)
(10.14)

2
- ((1-60)/6°}Y€(0) - (I/SO)YEE(O)

13(0)x(1’(o) 5 Yél)(O) + z‘l)(O)

(10.15)
dE { {(l-t)/t X - (llr)x

€=0

() b 68 )
1g(O)ZE (0) + 2(1 GO)XE (0) + SOXEE Q) + ikl&oYE 0)

= %E' {[(1-r)/t2}z - (1/r)zE} (10.16)
£=0

2135(0)1(1)(0) + 13(0)1(1)(0) + 2(1-6 )x(l)( 0)

+38 x‘l’(o) + 1kxz<1’(o)
(10.17)

2
d; { {(1=1)/* YYE - (1/r)YEE }

£=0




——— e

F

We have now generated a closed algebraic system of six equat-'

ions for the six unknowns x(l)(O) Yél)(o), él)(O), 1 0y, v 0y

and Zéé)(O). It is conveniently written in matrix form as follows:

-

2(1—60) 2135(0) 0

2(1—60) ikAGo ig(0).

1g(0) -1 0

5, 1g(0) kA
0 0 1

5, 0 0

where the six constants A through F on the right-hand-side of (10.18)

are all known in terms of the zeroth order perturbation amplitudes
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—

60 ig(0) ikA
60 0 0
0 0 1
0 0 0
0 0 0
0 0 0
——d

e

evaluated at £=0 as follows:

A= -—- - -
(((1 1)/1 }Y (1/T)Y££)

B= —— ({(1 t)/r }z - (I/T)Z

C=

&l

(i(l-r)/r X - (1/r)x )

(1)
X; (0)

(1)
zE 0)

EE

Xge (0)

7 (1)
Zge (0)

£=0

£=0

£=0

A

— ..;w:.%?vlm'?ﬁm 4

EE

-

(10.18) A

(10.19a)

(10.19b)

(10.19¢)
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3 « {1 2 5 (10.19d)

: _ D={(1 60)/6°}YE(0) (I/GO)YEE(O)

: = {(1- 2 = 10.19

: E={Q1 60)/6°}x(0) (1/6°)x5(0) ( e)

2

3 - o - 10.19f

, F={(1 60)/60}2(0) (1/60)25(0) ( )

3

E Writing the elements of the coefficient matrix in (10.18) as

4

; aij’ where standard row-column notation is employed, and the elements

§ of its inverse matrix as bij’ we have

] xél)(O) S S e T e

i o3

55 1.7 (0) 0 0 6 By, By Byl | B

| zél)(o) Bl oo 0 i

bi!

2 =

g (1)

| e €0) e 9 Ry Yy Gl B8

! w (10.20a) :
| SRR i By Beg Bgy By By Bl | ;
! |
I (1) - ;
I S5 i, - . T I {
! b el L i e . g
I

{
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where

bsy=l/ajgs  b,o=l/ay,,  bgo=-a;, /3,34

bgy==a16/8153350  DgqaTl/agg, by, =bg,

bus™"32272543150  PgyPgaPsy

/a, +a_..a,, /a

2
361222214/2247212) /375

bgs=(-2y¢

by5"bs3s  bys5=bg,

bus™ (29216731572 5)/ (a343,,)

&

2
/a 36215

2
ta),*a153y,/21¢3,,)/ (2

bss=a16(a16723672223147/224

- |

‘ 2o

besPeaPs3s  Pre™bsar  Ppe™bs;

g1

N T S e e e e e s

2
b46-(a22a14/a15-321)/a24 (10.20b)

/a

2
bgg= (2117815714221 015224721672 36 (21472157 (2167236 !

*a,y,31473547315)) /3y,

bge="(a15+ay,/215)/(a5,25¢)

The dispersion relation is developed directly from (10.18)

and (10.20a). Returning to (10.18), we have

1) & (10.21a)
4% (0) =F -

(1) & (10.21b)
a3625 (0) E
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314X§1)(0) + alstél)(O) + alszél)(O) S, i sty 1
And, from (lQ.ZOa), we have ;
'Yél)(O) = by D + byE + by F : (10.22) A

Substituting (10.22) into (10.21c) and then (10.21a,b) into the
resulting expression yields the following simple form for the dis-
persion relation at order Flz

b

D=0 » (10.23)

where D is defined in (10.19d), which, in turn, involves only zeroth
order quantities that are known functions of w , XX and V.. The
final explicit form for the dispersion relation is thus obtained by
substituting the required expressions into (10.23) from the set of

equations (7.2b) through (10.8), which leads to
3 2
(w/kA)™ + Cl(w/kl) + Cz(w/kx)

2 2
5 - {(60-1)/kx} + {(so-l)lso}c3

(10.24)
+CCs=0 ’ |
:
i
where the constants C1 through C5 are {
(.
C1 =2V_+ c3 (10.25a) 71 !
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2
C, = (1-8)(1-2v,) - (1-6 )" (1+2/6 ) (10.25b)

+V_(4Cy - V)

C,=1+V, ~8& (10.25¢)

2
C,=1-8 +C;+{(1-8)/8 ), (10.25d)
Cy = 2V~ C4 (10.25e)

Given values for 60 and V@, condition (10.24), which is im-
posed by the requirement of self-consistency within the set of pertur-
bation equations at order Fé, provides the functional relationship
between the disturbance frequency w and the normalized wavenumLer KA,
which iﬁ always a real quantity. Since (10.24) is cubic in w with
real coefficients, fixing «x\ leads to three roots for w. Thus, they
are either (i) all real or (ii) one is real and the other two a com-
plex conjugate pair. Disturbances whose wavelength is such that the
solutions to (10.24) are all real are, of course, stable, the ampli-
tude neither increasing nor decreasing with time. Those for which 'h
Im(w)<0 (>0) are unstable (evanescent), where Im(w) is the imaginary

part of the complex frequency. Since complex roots of (10.24) must

occur in conjugate pairs, each unstable mode, i.e., one whose ampli-
tude increases exponentially with time, is necessarily accompanied by
an evanescent mode, i.e., one whose amplitude decays exponentially

with time. The real parts of w for these two modes are equal. Thus,

implicit in the exponential front's perturbation dynamics at order F;
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are unstable modes whose amplitudes can grow in time. In additiom,

8

the first order perturbation dynamics are inherently dispersive, where=- - |

as the lowest order dynamics are non-dispersive. 2! 3
-s
I 3

#
-
g
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CHAPTER 11

ANALYSIS OF THE FIRST ORDER DISPERSION

CHARACTERISTICS OF THE EXPONENTIAL FRONT

11.1 THE LOW FREQUENCY LIMIT

The dispersion relatiom at order F;, (10.24), may be written

u clkxmz + cz(kx)zu + KA(1=6 )2
# (11.1)

+ (k)3 { ((60-1)/6°}c§ +€,C } =5

where the Ci are defined in (10.25). The point (0,0) in (kA,w) space
lies on the curve w(kA) defined by (11.1), and we wish to investigate
now the asymptotic behavior of (11.1) in the limit w*0 and kX*0, that

is, the low frequency limit.

L T e T e W TS o e ol AN M i,im‘“m -

Since all quantities in (11.1) are presumably order one under
the scaling introduced earlier, the asymptotic form of w(kl) as kA*0

is determined by assuming
o= aln)® (11.2)

where & is order one. Substituting (11.2) into (11.1) gives

3 2 1l-n 2(1-n)
Q” + Clﬁ (ki) + cza(kx) (11.3)

+ =220t 4 4?6 - o
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" where the constant G is

=3
G = {(6° 1)/6°}c3 * C,C, ‘ (11.4)
If all quantities are to remain finite for kA0, (11.3) implies
that 1-3n=0, or n=1/3. This condition leads to the following asymp-
form
w3~ -(1-60)2kk : (11.5)
in which che original variables have been reintroduced.

The three roots of (11.5) for kA>0 are

o, = -{(1—so)zkx}1/3 (11.6a)
w, = x,(1+1/3>((1-s°)2kx}” 3 (11.6b)
wy = &(1—1/3){(1-60)2kA}1/3 (11.6¢)

where 0<kA<<l. o, corresponds to a stable mode, whereas w, and w,
correspond to evanescent and unstables modes, respectively. We note
that the low frequency limit of the first order dispersion rélation

is independent of V_ and depends parametrically only on 60.

The phase velocities associated with these three frequencies,

which are computed from Rg(wn)/ki. are:




" “ME s M«

l I l l 5 i = = I I.I ; it
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2/3(kk):2/3

c - -(1-60) (11.7a)

ph,

2/3 -2/3
c = cph = %(1-60) (k)) (11.7b)

ph, 3

The stable wave thus travels in the -y direction with twice the phase
velocity of the evansecent and unstable waves, both of which propa-

gate in the +y directionm.

The group velocities for the three modes are computed from

dRe(wn)/d(kl) as

/ <23

¢, = -/3a-6)%3a)

11.8
8 ( a)

c = (1/6) -6 )2/ 3ny~2/3 (11.8b)
8, 0

The group velocity of a particular mode is thus 1/3 of its phase

velocity, and both the group and phase velocities are proprtional to

(kl)-u3 for all disturbances. As kA0, C8 and cph become infinite.

.
f
3
§
|
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o
11.2 REGIONS OF INSTABILITY IN kA-SPACE -T

@ The nature of the roots of (11.1) are easily determined by . g
! employing the following general result for cubic equations (CRC Hand- 'I
%; book of Mathematical Tables, 1962, p. 387). The equation :.
y3 + py2 +qy+r=0 ~

has (A) one real and two conjugate complex roots for M>0

(B) three real roots, of which at least two are equal,

for M=0

(C) three real and unequal roots for M<0 ,

BNl ot s e b

where M-b2/4+a3/27, and where a and b are defined in terms of the
coefficients p, q and r as follows: a-q-p2/3 " b-2p3/27-pq/3+r .

The obvious equivalences between the quantities p, q and r above

3 o Sy

E r and the coefficients in (11.1) are not reproduced here.
For several values of the parameters 60 and V_, the discrim-
inant M is plotted for (11.1) as a function of k) in Figures 1l.la

through 1ll.le. Ranges of kA for which the discriminant is zero or

negative correspond to three stable modes on the expomential fronmt,

while values of kA giving a positive discriminant result in one stable,

one evansecent and one unstable mode as discussed earlier. Since
M(kA) is an even function of kA, only the domain kA>0 is plotted in
Figure 11.1.

o
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11.3 FURTHER ANALYSIS OF THE DISPERSION RELATION 3

a2
-

(11.1) may be further analyzed by decomposing the complex

g frequency into real and imaginary parts, i.e., )
.m 'NR‘F :Lui (11.9) i
The stability characteristics of the frontal zone are determined

[ by w,,

first derivative. Substituting (11.9) into (11.1) leads to the

while the phase and group wvelocities are set by Op and its

following equation for we alone:

3 iR 2
~gu> - 8C kMl = 2(Chrc,) () Puy
(11.10)
A -(kA)301C2 + (kx)cl-ao)z +sa0)6 = 0 ,

where G-appears in (11.4).

Replacing kA by -kA in (11.10) and adding the resulting ex~

pression to (11.10) gives

-a{m:(kx) + m;(-kl)}

——_—

2 2 (11.11)
+ 8C kA {wp(-kA) - wp(kA)}

;. -z(ci +C2)(kk)2 lug (k1) + wg (D)} = 0
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This last expression is satisfied only if the coefficient of each

power of kA vanishes independently, i.e.,

3 3
wp(kA) + wp(=kd) = 0
ao(-kX) = wi(kr) = 0 (11.12)
R NR .
wR(kA) + mR(-kX) =0
These three conditions, in turn, require
mR(-kx) = -wR(kA) T (11.13)

from which we see that the real part of the complex frequency is

an odd function of kA.

Proceeding in a similar manner, we can quickly generate the

following result that expresses wi(kl) in terms of mR(kA):

wi(kk) - wi(-kk) - 3{m§(kx) H wi(-kk)}
(11.14)

+ ZClkA{mR(kA) + wR(-kA)} .

But, in view of (11.13), the right-hand-side of (11.14) vanishes iden-

tically, leaving

w (=kA) = w (1) . (11.15)

el o aiiat




This result at first appears unusual, since it seems to imply that
ui(kl) simultaneously exhibits both even and odd symmetry. This appar-
éi ent inconsistency is resolwed, however, by realizing that complex

roots of (11.1) must occur as a comjugate pair, which is the fact re-

flected in (11.15).

The real and imaginary parts of (11.1) are

2:’; - &Txxki + cl(?n‘i - .u\;i') -
(11.16) 1 ;.
+Cu + ((1-8 )/KA} +G =0
2R o
and e
g SRR A (11.17) 2
e 1%~ %2 , ;
respectively, where
@ =w/kA = oy + 10 : (11.18)
R i
Eliminating tk between (11.16) and (11.17) generates a single equation
for 31(kx), which is analogous to (11.10) for the real part of w. The ;

derivation, however, is considerably more involved algebraically than

the one leading to (11.10), and the details are not reproduced here.

The final form is
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~ N N
e u6 + e w6 + e mz

g T oy ¥y * e = 0

0

where

192/81

(32/27)4{28(2 + 3/60) - 3}

(1/27)136€2(8) - 24£(8)a% + 40}

o®
(]

wt(28/27 - 1) - (4/2nE3 )

+(4/27)f(A)A2 {188 - a2 - 2£()}

+ 40{8 - 42727 - (1/3)-£(8) } (A/kA)

- /0
£(8) = A{1 - A(1+2/8 )}

A=1 - 60

(11.19)

(11.20a)

(11.20b)

(11.20c)

(11.20d)

2

(11.20e)

(11.20f)
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This is a remarkable result, in that the coefficients e, through e, do

0 6
not depend on the shear velocity V.. Thus, aiis independent of v, or,
equivalently, the frontal zone's stability characteristics are indepen-
dent of V.. The real part of w, on the other hand, does, in general, -t
depend on V_, so that the phase and group velocities of first order

frontal disturbances do exhibit a parametric dependence on V.. As we

have seen in Section 11l.1, only in the low frequency limit is the real

part of w independent of V_. We also note that only e, contains amy kA

0
dependence; each of the other coefficients is a functiom of Goalone.

Thus,6° appears to be the dominant parameter in determining the frontal ‘

zone's stability.

o sl o odom. ATy

11.4 NUMERICAL RESULTS

(10.24) has been solved numerically for a range of the parameters

60 and V. For fixed kA , the three roots of (10.24) were computed it-

¢9)

eratively using the IMSL algoritm ZRPOLY, which provided exceptional

accuracy. Substitution of the calculated roots back into (10.24) gave
equality to within typically one part in 1013.

Table 11.1 compares the frequencies calculated from the exact dis-

persion relation, (10.24), with those calculated from its low frequency

asymptotic form in (11.6) for the case 6°=0.35 and V-0.20. Since the ‘i:
complex frequencies (roots) must occur as a conjugate pair, only one

complex root is tabulated in Table 11.1, along with the purely real root.
Results obtained with the low frequency limit are in parentheses. It is
apparent from the table that the low frequency limit is a good approxi-

mation only for large disturbance wavelengths, or, conversely, small :A;
Agreeement to within 20% or so is obtained out to kA=0.10. As kA increases, ..

}
I
3
!
the low frequency limit becomes a progressively poorer approximation. | L
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V_=0.20

Complex Root

KA Real Part Imag Part Real Root
0.00 0.000(0.000) * 0.000(0.000) 0.000( 0.000)
0.01 0.077(0.081) 0.140(0.140) -0.166(-0.162)
R 0.02 0.094(0.102) 0.175(0.176) -0.213(-0.204)
% 0.03 0.105(0.117) 0.199(0.202) -0.248(=0.233)
% 3 0.04 0.114(0.128) 0.218(0.222) -0.278(-0.257)
4 0.05 0.120(0.138) 0.232(0.239) -0.303(-0.276)
] 0.06 0.126(0.147) 0.245(0.254) -0.327(=0.294)
0.07 0.131(0.155) 0.255(0.268) -0.349(=0.309)
3 0.08 0.135(0.162) 0.264(0.280) -0.369(-0.323)
; 0.09 0.138(0.168) 0.271(0.291) -0.389(~0.336)
0.10 0.141(0.174) 0.278(0.302) -0.408(-0.348)
0.15 0.153(0.199) 0.295(0.345) -0.493(=0.399)
0.20 0.160(0.219) 0.291(0. 380) -0.571(=0.439)
0.25 0.165(0.236) 0.269(0.409) -0.643(=0.473)
0.30 0.168(0.251) 0.220(0.435) -0.712(~0.502)
0.35 0.170(0.264) 0.119(0.458) -0.777(~-0.529)
0.40 -0.006(0.276) 0.000(0.479) -0.841(=0.553)
0.45 -0.126(0.288) 0.000(0.498) ~0.903(=0.575)
0.50 -0.226(0.298) 0.000(0.516) -0.962(-0.596)

*Results in parentheses computed from the low frequency
limit

Table 11.1 Comparison of Low Frequency Limit
and Exact Solution to the Dispersion
Relation

: e , v , s——— — i
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The exact frequencies show a band of instability for 0<ki<0.40

as a result of the nonzero imaginary part of the complex root. For

kA20.40, all three modes are stable, since the imaginary part of the -
% complex frequency is zero. The real part of the complex frequency in-

creases from zero at kA=0 to a maximum positive value near kA=0.35,

&

and then quickly decreases to negative values for «A20.40. The behav-
ior of the real and imaginary parts of the complex frequency is thus o

clearly not monotonic im kA. The low frequency limit, however, is

monotonic in kA, which, in paxt, accqunts for its poor performance as
an approximation when kA is large.

Figures 11.2 through 11.4 show plots of the exact dispersion re-
lation (real and imaginary parts of w vs k1) at order F1 for the expo- 4 f

b
nential front computed from (1Q.24). They illustrate the qualitative

behavior of the dispersion characteristics as the parameters 60 and N
are varied. Figures 11.5 and 11.6 provide typical phase and group vel-
ocity plots, computed from Cph-ReCw)/KA and Cgr-dRe(m)/d(KA), respectively,
for various values of 60 and V.

Figures 11.2a through 11l.2e plot the imaginary part of each of
the three complex roots (frequencies) as a function of kA for 60-0.5 to
0.1 in increments of 0.1, respectively. Since w, is independent of V“,

i
the results in this set of curves apply for any value of V“. The real B

part of the complex frequency does depend on V_, however, and its value
therefore appears in the plot amnmotation. Each of the three roots of 4
the dispersion relation is marked by a different symbol on the plots in

Figures 11.2 through 11.6 (circle, diamond and triangle). ’

(1) International Mathematical and Statistical Libraries, Houston, TX 77036 ~e
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In Figure 11.2, the k) axis is always overplotted because the
cubic dispersion relation must always contain at least one purely real
root with a corresponding zero imaginary part. Since the complex-
valued dispersion relation roots must occur always as a conjugate pair,
unstable and evanescent modes, corresponding to Im(w )<0 and Im(w)>0,
respectively, must also occur as a pair. Thus, every unstable mode
is accompanied by an evanescent mode, and this fact is reflected in
the mirror image symmetry about the kA-axis in Figure 11.2. In add-
ition, Im(w) is also symmetrical about the w-axis, as discussed in
Section 11.3. It is therefore sufficient to comnsider only kA0 in
discussing stability.

Figure 11.2 reveals two symmetric bands of instability, that is,
two regions on nonzero Im(w). The one referred to as Band 1 is cen-
tered about the k) origin, while the other, Band 2, is bounded away
from KA-O; Band 1 is characterized by the maximum normalized wave-
number for modes in this band, which is labeled meax in Figure 11.2a,
and by the (k\,w) pair that gives the fastest growing unstable mode in
this band. This point on the dispersion curve is marked by the largest
value of |Im(w)| , as shown in Figure 11.2a. Examination of Figure 11.2
shows that lIm(w)l is monotonically increasing with increasing k) for

modes in Band 2, so that modes in Band 2 exhibit progressively larger

imaginary parts of the disturbance frequency with increasing wavenumber..

Therefore, no fastest growing mode exists in Band 2. The only parameter
characterizing Band 2 is the minimum wavenumber for modes contained in
it, labeled ‘Amin in Figure 11.2a.

Each unstable mode possesses a time dependent amplitude which
doubles in the interval td-ln(z/rb)/llm(w)l. The point (0,0) is always

contained in the dispersion curve. Thus, for any finite values of the

! o OuE O oy ey el Sl el el el el pae IS I D G e e
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parameters 60 and Pb’ as the wavelength becomes arbitrarily large, so
does the doubling time. The doubling time also becomes infinite for

unstable modes with nonzero frequencies as Fb+0. At order Ft for the
exponential front, therefore, unstable modes evolve continuously from

bed = = =

stable ones with increasing cross-stream flow. For zero cross-stream

velocity, all modes are stable, but the doubling time for a given un-
stable mode decreases from infinity with increasing cross—sﬁream flow. -

The existence of nonzero cross-stream velocity is therefore of paramount

importance in determining the stability characteristics of the exponen-

tial front.
The limiting normalized wavenumbers for Bands 1 and 2, meax and

mein as discussed above, are tabulated as functions of 60 in Table 11.2,

e R

The maximum wavenumber for modes in Band 1 increases with increasing 60,

as does the minimum wavenumber for Band 2 modes. meax is nearly equal

to 60, and this observation serves as a useful rule of thumb for setting

the limits of Band 1 modes in the range 0.156050.5. Recall that the

results in Table 11.2 are independent of VG.

S e A

The characteristics of the fastest growing mode in Band 1 are tab-
ulated as functions of 60 in Table 11.3 for V~-0.2. Knowing V_ is import-

ant in this case, since Re(w), cph and cgr depend upon it. k), Im(w)

and tys however, do not depend omn V_, so that the tabulated results for -y

these quantities apply generally for 60 in the range considered. Obsef-

;
; vational data tend to show that Fb‘ or, equivalently, the cross-stream i g

flow, is quite small in large scale upper ocean density fronts. It is

unlikely,.therefore, that values of Fb much larger than 0.2 would be

associated with the frontal structures considered in this paper. Doubling -

M e —————

times in Table 11.3 are therefore computed for Fb-0.0S and Fb-0.20, which

are taken as reasonable representative limits for this parameter. ‘ ;;
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Table 11.3 shows that the wavenumber of the fastest growing
mode 1is nearly equal to 60/2, which is a useful rule of thumb for
estimating its value. As 60 increases by a factor of 5, k) increases
by a factor of about 4. The real and imaginary parts of the disturb-
ance frequency, however, are far less sensitive to changes in 60. The
real part of w increases very slightly as 60 increases from 0.1 to 0.2,
and thereafter decreases by a factor of less than 1/3 as 60 continues
to 0.5. The imaginary part of y is even less sensitive to varying 60,
and remains between -0.263 and -0.297 as 60 ranges over 0.1-0.5. The
phase and group velocities both decrease with increasing 60 and show
considerable variation. The shortest doubling time, normalized by the
inertial period, occurs for 60-0.3. It is not particularly sensitive
to changes in Fb as a result of the logarithmic dependence on Fb. As
Fb increa;es by a factor of 4, the doubling time decreases by somewhat
less than 50%. Note that all entries in Table 11.3 are dimensionless.

In order to compare these results with observational data,
Tables 11.4 through 11.6 provide the most important characteristics

of the fastest growing mode as dimensional quantities for the data in

Table 11.3. The disturbance period in days is computed from Tdays=

2n/Re(u)-f'8.64x104, where f is the Coriolis parameter. For convenient

reference, the Coriolis parameter is tabulated in Table 11.4. The wave-
length is computed from 2mA/(kA). Table 11.5 shows the disturbance per-
iod in days at various latitudes as a function of Re(w), whose values
are given in Table 11.3 for the fastest growing mode. We see that the
disturbance period decreases with increasing latitude, and increases
with decreasing Re(w). For latitudes between 20° and 50°, the fastest

growing mode with VQ-O.Z exhibits periods between 3.63 days and 12.50
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o
i days for 0.1<§ <0.5. For § =0.3, corresponding to Re(u)=0.166, the y
3 periods at 20°, 30° and 40° latitude are 8.81, 6.02 and 4.69 days, re- R
s spectively. These values are in fair agreement with the dominant periods -
observed using satellite imagery of the Gulf Stream by Maul, et. al (1978). AL

Their spectral analysis of Gulf Stream Meanders revealed dominant per-
iods of 10, 5.8 and 4.8 days, respectively, at latitudes of approxi-
mately 27°N, 33°N and 38°N. The variation of meander period with lati-
tude seems to be strongly influenced by Coriolis effects. Using the fas<

test growing mode wavenumbers in Table 11.3, the corresponding dimension=
al wavelengths appear in Table 11.6 for two values of the baroclinic Rossby
radius, A. Although these wavelengths are seen to be quite long, they

are not necessarily incomnsistent with observed frontal meander patterns,

which result from the superposition of a continuum of wavelengths ranging

from short to very lomg.

Table 11.7 displays the characteristics of the fastest growing
mode in Band 1 for V_=0.6 in order to examine the sensitivity to changes
in V_. Only those parameters that are dependent upon V_ are included in
this table. While the data in Table 11.3 show that the real part of w
does not change substantially with increasing 60 for V_=0.2, the data in

Table 11.7 reveal that Re(w) is far more sensitive to changes in 60 for
vafo.e. As 60 changes by a factor of 5, from 0.1 to 0.5, Re(w) decreases

by a factor of 7, from 0.155 to 0.023. At V_=0.2, Re(w) was monotonically de=
creasing only for increasing 6° greater than 0.2. For V.-O.G, however,

Re(w) decreases with increasing 60 between 0.1 and 0.5. As V_ increases

from 0.2 to 0.6, the phase velocity at 60-0.1 decreases only slightly,

while at 60-0.5 it decreases by nearly a factor of 5. As in Table 11.3,

CPh is monotonically decreasing with increasing 60. For fixed 60 the : §

e

change in group velocity as V  ncreases from 0.2 to 0.6 is larger than :
the corresponding change in cph' C" is again monotonically decreasing ’ f
vith increasing 6 at V =0.6. The period in days at lacitudes of 20°, 30° |

40° and 50° corresponding to the tabulated values of Re(w) constitute the

last four columns in Table 11.7. Since Re(w) is considerably more sensitive
_ to variations in 6° at V~-0.6 than it is at V¢-0.2, the periods in Table
I 11.7 exhibit far more variation with 60 at a given latitude than those in
| Table 11.5. The maximum period is 63.57 days at 6 =0.5 and 50° latitude. |

For intermediate values of 60, where Re(w) at V_=0.6 is not drastically
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different from its corresponding value at V"=0.2, the periods in Table
11.7 and 11.5 are not greatly different. Except at 6°=0.4 and 60=0.S,
even at V°-0.6, the disturbance periods are thus reasonably consistent
with the observational data of Maul, et al., (1978). As a general comn-
clusion, with increasing vV, the disturbance period is progressively
less sensitive to the change in v as 60 decreases.

Using the same format as Table 11.7, data for ¥ between zero

and 2.00 are summarized in Table 11.8.

PENE U SEN oEN "TEe o N e o — e




I —————S—— eSS L A - e v TG ! Iy < g st o R

1 158 ]
TABLE 11.2 ] | _
Maximum and Minimum Normalized | Z'
Wavenumber for Bands 1 and 2 -I 'i
1 3
Band 1 Band 2

_6_0_ ulllx klmin ~; :
0.1 0.154 : = 0.77 - 1

0.2 0.248 = 0.88

0.3 0.321 = 1,77 ‘

0.4 0.406 > 2.00 3 :
0.5 0.490 > 2.00 i ?
: |

. il ;
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TABLE 11.3
Characteristics of the Fastest

Growing Mode, Band 1, Vo, = 0.2

3 X Re(w) Im(w)  ph Cer F,=0.05 - F,=0.20
0.1  0.063 0.180 -0.263  2.85 1.17 14.03 8.76
0.2 Gl 8,182 -0.30  L65 0.5 12.72 7.9
0.3 G4 .0.186  -0.B7 113 0.2 12.42 7.75
0.4  0.189  0.145 -0.293  0.77 0.08 12.59 7.86
0.5  0.237  0.117  -0.281  0.49 =-0.05 13.13 8.19

o




TABLE 11.4

Values of the Coriolis

Parameter as a Function of Latitude

f (Sec '1!

0

X

X

X

X

X

X

10-3
1073
107
107
1074
10-4

10-4

10~4

104
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TABLE 11.5

Period at Various Latitudes

Period in Days at Latitude in Degrees

Re (w) 200 300 40° 500
| l 0.180 8.12 5.56 4.32 3.63
0.182 8.03 5.49 4.27 3.59
! ' 0.166 8.81 6.02 4.69 3.93
l 0.145 10.08 6.90 5.36 4.50
0.117 12.50 8.55 6.65 5.58
I p
l f
: 8
' 1
I |
: |
:
I
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TABLE 11.6 i

™

Wavelength for Various Values of ki ‘ -
i

and Rossby Radius -

Wavelength (km) &b
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TABLE 11.7

Mode, Band. 1,V_= 0.6

5, Re(w) EED EEE

0.1 0.155 2.46 0.77
0.2 0.138 1.24 0.14
0.3 0.107 0.73 -0.14
0.4 0.069 0.37 -0.32
0.5 0.10 -0.45

0.023

Period in Days at Latitude in Degrees

20° 30° 40° 50°

9.43 6.45 5.02 4,21
10.59 7.25 5.64 4.73
13.66 9.35 7.27 6.10
21.19 14.49 11.27 9.46
63.57 43.48 33.82 28.38

T T r——
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PARAMETER VALUES FOR FIGURES 11.3 THROUGH 11.6

panciay

aNNANNN

Vm— oOoocoo

o

(=leNoNeNe)
NN\ NN\ PN NN NN PN NN\
©.0 0T @ %0 0T O .0 U0 e 9.0 000
N o N N N N S N N Nt o N’ o o
(g ] ~ vy O
. . . .

- - - -4 -4

s - - - -

T G At el el et At G el el el e B




o™
»~
-

(M) 34| .

e




173
! .

Figure 11.3(b)
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CHAPTER 12
CONCLUSION

This work has examined the stability characteristics of a shallow
upper ocean density front with mon-zero cross-stream flow. The frontal
zone is a wedge shaped body of fluid with constant density that floats
on an ambient ocean of slightly greater demsity, the dynamics of which
are unaffected by the presence of the frontal zone. The model is hydro-
dynamic in nature, since the demsity field is specified a priori. Earth
rotation effects are incorporated under the f-plane approximation. Time-
varying disturbances of the fromtal zome are assumed to have been initiated
by some driving agent, surface wind stress, for example, which is no longer
active. Thus, only free oscillations in the system are considered. The
ambient ocean, whose flow is geostrophic, and the frontal zone are assumed
to be in isostatic balance.

The frontal zone is divided into two regions, an inner region in
which dissipation occurs and an outer region in which the dynamics are
strictly inviscid. Mass entrainment in the inner region produces a non~
zero mass flux at the boundary between it and the outer region, so that
the inviscid outer region dynamics respond indirectly to dissipative pro-
cesses. This situation corresponds to large values of the rotation param~
eter introduced in Garvine's (1979a) frontal model, and is typical of
large scale oceanic fronts in which Coriolis effects are dominant. Time-
and space-harmonic disturbances are assumed to exist in the frontal zome,
and are treated as small amplitude tfime-varying perturbations to a time-
invariant equilibrium flow. Both planar and exponential frontal zone
geometries are considered, with respective equilibrium flows that are
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geostrophic and aeostrophic.

Duxbury's (1963) model of wave disturbances on a planar front,
which was formulated with zero cross-stream flow, is first extended to
include a nonzero cross-stream velocity component. The initial analysis

in this paper is performed in dimensional variables, as was Duxbury's.

The equilibrium flow for the planar front is spatially invariant, and
the basic state is consequently geostrophic. Constant long- and cross-
stream velocity components are driven by the sloping sea surface and
frontal zome discontinuity surface, both of which are planes, which mot-
ivates the planar fromt nomenclatﬁre.

By eliminating the velocity perturbations as dependent variables,
a general seventh order ordinary differential equation (ODE) is developed
for the planar front depth perturbation amplitude (DPA). An asymptotic
normal form solution is presented which is valid far from the surface

front, and an integral representation of the solution is developed which

is valid in any region. In addition, the connection between these solutions
-

is established, and it provides an important insight into the proper decay
scale for perturbations to the planar front system. With these results,
the problem of the planar front with cross-stream flow has been solved in
principle by reducing its solution to quadratures. For the case of zero
cross-stream flow, the general seventh order ODE for the DPA reduces to
a second order equation, whose integral representation solution is evalu-
ated explicitly to recover all of Duxbury's earlier results.

However, the analysis described above raises fundamental questions
concerning the planar front's dynamics. In dimensional variables, the
system with zero cross-stream flow is second order, while the system with

nonzero cross-stream flow, however small, is seventh order. This result
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raises the question of what the fundamental order of the system is and

why it changes so drastically with vanishing cross-stream flow. The an-
swers lie in the proper scaling of the problem, in which spatial variables
are scaled to the inviscid regiom characteristic length (the Rossby radius)
and an advective characteristic length which, in fact, is so small as to

be imbedded in the narrow dissipative zone. A small parameter expansion

el b el e e

is then introduced which involwes the cross-stream internal Froude nunber
(a measure of the stremgth of the cross~stream flow normalized to the in~ -

ternal wave phase speed). At zeroth and first orders in the Froude num~

ber, the system normalized by the inviscid scale length is second order,

while the corresponding zeroth crder system normalized by the advective

scale length is fifth order. Since the advective zone is imbedded in the
dissipative region located near the surface front, however, the assumption
of inviscid dynamics is no longer walid and the model with the fifth order
system is inapplicable. On the inviscid scale, which is the only regionm

of direct applicability of this model, the planar front dynamics are seen

—_— e =

to be fundamentally second order.

The inviscid scale planar front with nonzero cross-stream flow
thus reduces essentially to Duxbury's original second order system, which
exhibited no instabilities at all. This result, which is available only
with an appropriate scaling of the planar front problem, motivates con-

sideration of the exponential framt with cross-stream flow. The entire

analysis in this latter case is performed in scaled variables. For com~
pleteness, the planar front is reexamined using essentially the same
scaling scheme in a parallel development with the exponential front. The
dispersion relation for each geometry is thea developed at zeroth and first
orders in the cross-stream interndl]l Froude number, which is used to intro-

duce a small parameter expansion for each dependent variable in the problem.
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The lowest order dispersion characteristics of the planar front
are particularly simple. The disturbance frequency and wavenumber are
related by a linear equation which involves only a single parameter, Vo,
the shear #elocity between the ambient fluid and the frontal zone. Wave

disturbances to lowest order in the small parameter F,, the cross-stream

b

internal Froude number, are therefore non-dispersive with equal phase

and group velocities. In addition, real values of the wavenumber corres-
pond to purely real disturbance frequencies. The planar front is there-
fore dynamically stable under all conditiomns at lowest order.

At first order in Fb, however, the planar front dispersion results
are somewhat surprising. The system of differential equatiomns 5acisfied
by the first order perturbation amplitudes is internally self-consistent
and meets the boundary conditions without imposing any characteristic
relation between the disturbance frequency and wavenumber. .Therefore, no
first order dispersion relation eiists for the planar fromt.

For the exponential front, whose basic state is formulated in Chap-
ter 5, the equilibrium flow is not spatially invariant, and it is con-
sequently ageostrophic. Both exact and approximate solutions for the equil-
ibrium interfacial depth are developed, with the approximate solution again
involving a small parameter expgnsion in terms of Fb. At lowest order in
Fb, the basic state interfacial depth profile is expomential, which leads
to the exponential front nomenclature.

A single second order ODE for the exponential front DPA at order Fg
is developed by eliminating the velocity field perturbation amplitudes as
dependent variables. Analysis of this equation reveals that the exponen-
tial front is sub-inertially dominated. Disturbances leading to non-diver-
gent solutions for the depth perturbation amplitude far from the surface

front must, in general, have periods greater than the inertial period.
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This existence condition, moreover, depends only on a single parameter,
the shear velocity between thc frontal zone and the ambient fluid, as
did the lowest order dispersion relation for the planar front.

For the exponential front at zeroth order in Fb’ the dispersion
relation is linear in w and kA, as it was for the planar front at order
Fg. It depends on two parameters, however, the shear velocity V_ and the
interfacial depth 6° at the coordinate system origin. For real values
of wavenumber, the fr&quency is also real, and the system is dynamically
stable. Wave disturbances are non-dispersive with equal phase and group
velocities. With realistic values for the shear velocity V_, the phase
and group velocities will be positive along the +y direction in a right-
handed coordinate system oriented such that the +x axis is in the cross-
stream direction into the fromtal zone from the ambient fluid. This re-
sult is consistent with uvbserved >eander patterns on the Gulf Stream,
in which frontal zone waves propsgate nortivrard and eastward along the
Stream. |

At first order in F_, the exponential front possesses a cubic dis-
persion relation, which, for certain values of the purely real wavenumber,
can lead to complex frequencies with nonzero imaginary parts, and, there-

vfore. to instabilities. Both V_ and 60 enter as parameters in determining

the real part of the complex frequency, which, in turn, governs the phase

and group velocities. On the other hand, the stability characteristics

of the first order system, which aze determined by the imaginary part of
the complex frequency, are independeat of the shear velocity V.. They
depend instead only on the interfactal depth at the inner/outer zone boun-
dary, 60.

In the low frequency limit as w and kA go to zero, an unstable and
an evanescent mode always exist as & pair on the exponential front with

equal phase velocities. The corresponding group velocities are also equal,
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and equal one-third of the phase velocity for each mode. The phase velocity
of the stable wave in the low frequency limit is twice that of the unstable
and evanescent waves and of opposite sign. 1Its group velocity is also
one~-third of its phase velocity.

Instabilities of the exponential frontal zone vanish as Fb*o, or,
equivalently, as the equilibrium state cross-stream velocity vanishes.
The growth time for unstable waves is proportional to lﬁ(llFb), and thus
approaches infinity as F, +0, reflecting a continuous transition from an

b
inherently stable system at order FO to a potentially unstable system at

b

order Ft. Computational results for typical values of 60 between 0.1 and
0.5 with Fb between 0.05 and 0.2 show doubling times on the order of 1 to
2 weeks, which seem reasonable, although no direct observational data are
available for comparison.

Calgu;ation of the disturbance periods over a wide range of 60 and
V. values shows that they are also typically 1 fo 2 weeks, which is in gen-
eral agreeement with Gulf Stream observational data. In addition, the
wave periods exhibit a strong dependence upon the Coriolis parameter, or,
equivalently, geographic latitude, which is also evident in observations
of the Gulf Stream. In particular, for v =0.2 and 60-0.3, both reason-
able values, the disturbance periods for the fastest growing mode are 8.81,
6.02 and 4.69 days at latitudes of 20°, 30° and 40°, respectively. At lati-
tudes of approximately 27°N, 33°N and 38°N, Maul, et al., (1978) observed

dominant periods of 10, 5.8 and 4.8 days, respectively, by performing a

spectral analysis of available satellite infra-red imagery.

The work presented here shows that upper ocean density fronts can
exhibit baroclinic instabilities, while all previous theoretical efforts

have concluded otherwise. The system's stability characteristics are seen
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to depend critically upon the existence of some cross—stream flow,
vhich, in turn, is supported by disgsipative processes in a narrow zone
near the surface front. The quasi-steady dynamics of this region have
been modelled elsewhere (Garvime, 1979a, 1974). A natural extension of
this work would be to consider earth rotation effects under a beta-plane
approximation and to include c¢coupling between the frontal zone and am—~
bient ocean dynamics. Another important extension would be the develop-
ment of an energetics analysis; which should provide insight into the
physical processes at work in the frontal zone and perhaps display the

physical origin of the instability.
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APPENDIX 1
COEFFICIENTS OF THE GENERAL EQUATION
FOR 2(x) FOR THE PLANAR FRONT

The operators Ll through 1‘.5 and the operator polynomial A(p)
appearing in (3.11) are defined in (3.10). These operators may be
expanded and substituted into (3.11) to yield the final form of the
depth perturbation amplitude ODE im (3.13), with the constants vy
and v given by: '

23,32 2

Vo " 1alg'k W (f=w) (A.la)

= (fzomz) {azz'ku3 + 1{g'k2w3(Df(0)+azy)
- als'kuzf + us(fz-uz)}} (A.1b)

+ 2a,8"K%0 i (£2-2)
Vi alg'kzuzi(afz-suz) (A.1c)

= g"k%%i (3% 50%) (0 (0)+a,y)
+ Za‘g'kmﬁf(ZQz-!z)
P X

+ 1.13'u{u2(uzofz) +4k "u” (6w (A.1d)

+ azs'u f(fz-wz)
+ 1.23'ku?3(su2-312)

- wla(10uie2-3g%nYy
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- 1alg'm{kzﬁzcxouz-3fz) + w (wo-£2)} (A.1le)

v, 1g'u(nf(0)+a2y){kzaz(zouz-sfz) + wt(u2=£2)}
+ .lg'ﬁ{zkzﬁz(lauz-fz) + 0t (1162562}

W L S
+ 1&13 ku £(£7-6w") (A.1f)

+ azs'kﬁzu(louz-afz)
+ Ziazg'wﬁf(zmz-fz)

2.2

- fwal (21w -2002E2+36%)

3 = 28" (F2-40?) + 50 T (100°-£7))

& 1a1g'kfﬁz(m?-f2)

(A.1g)

- g'ﬁ(nf(0)+azy){fz(f2-4u2)+5u‘+k282(10w2-fz)}

+ 18'kEZ (D (0)+e,y) (w-£)

- Zalg'kwﬁaf
2-2

i Y W
+ 1a,8'wu" (9£7-24k u"~34u") (A.1h)

+ azg'sz(euz-fz)
+ 1a,8"ka > (£7-10u%)

- 33350 +£4-2002¢2)

e =
"4 - 2;13 kfwu (A.11)

+ 51.13'u62(f2-2u2-k252

)
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Y, " 2g'kfu53(nf(0)+a2y)

+ 51g'0a (£2-2024232) (D (0)+a,y)

+ a,8'3 (562 -46u’-6k252)
4

4 (A.13)

il SNSRI st

- 1alg'kfﬁ

- 5a23'km.1

G gl e BB

- 41gzg'mﬁaf

+ 1ou’ (35wi-10£2)

v = a8’ (2£2-1002-k232) - 1alg'kf6‘ (A.1K)
Y = 8';3(Dt(0)+127)(2!2-10u2-k2;2)
5 1g'kfﬁ‘(nf(0)+.zy) + z91.lg'm" (A.11)

- gzg'fﬁa +.1azg'k;s - \.15(2£2-21u2)

i Ve " Sialg'waa (A.1m)
} Yy, = 51 'm.xl'(D (0)+a,y) + 7a.g's’
k| 6 g £ 2Y 18 (A.1n)
1 ’: - 71:»36
vV, = a g'ﬁs (A.lo0)
7 1 4

5

v, - 65{3'(nf(0)+a2y) -

(A.1p)
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APPENDIX 2

PART I - CORRESPONDENCE WITH DUXBURY'S NOTATION

The notation employed in Duxbury's (1963) analysis, which is
8 special case of the problei addressed here, is sufficiently diff-
erent that the following table is included im order to conveniently

summarize the notational correspondence between the two models.

Duxbury Variable Designation in This Model
s a
x - &
y : -x
u v
z Z
k k
w -0
g a
3 (wz-fz)/s' + falk/m
a ey
z A z = (2k/a ) (D (0)+a, x)
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PART II ~

APPENDIX 2
CONSTANTS IN THE DPA EQUATION

The dimensionless constants %; sad ;'n appearing in (4.2) are gim

below to order !‘:.

v
0

103(1-02)
m:az(a-sc’)
10(0® (6®-1)+(ar ) (100%-3) )

2,50% + o(r:)

KAF_(1-40
x .

2 2 3
Si(kux) 0(1-20") + O(Fx)
0+ 0(!':,)

o+o(r:)

- 5
0+ O(!'x)
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3 3 = ~(AE/F) (kxﬁ-rx?) (1-0%)
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#o = (1-02){rx02(2kx-o/!'y)
3 2 A
+ (10 /ry)((r/kx)(l-o )-kxt-t‘y-t}/q}}

¥, - karxa{(o/ry)(scz-a)(ka:+rx¥)+z(za2-1)}
+(1"02/1") {o2-1+t(70%+3-1009) }
+ 1o{o? (o2-1)+m:{ (azlry) (3-502)+4kA (202-1) }}

¥, - mx{oz(ua2-9)+(urxa/ry) (3-100%) }

- (o/E ) (o? (re+,§) (o214 (0 ) 2r (10071 )

+ ikAF:{kA(l-wz)+(o/Fy)(2(1—202) +1(2002-216%-3) }}
3
+ o))

+ 1(erx)z{ ( (1—02) /F y) (mﬂ'x'}')ﬂ 70 (1-202) }

3
+ o(F)
Y = s10AF )2 (0t/F ) (202-1)
4 x y

n - 3
Y 0+ O(Fx)

a 4.
G 0+ O(Fx)

) 5
Y, = 0 + O(F))




