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The Elicited Probability approach is based on a transition matrix which
relates the current state vector to a set of state transformation operators.
The matrix elements are conditional probabilities elicited from experts (or can
be determined by collecting statistics). The state transformation operators are
rules which dynamically change the state of the simulation when selected by the
application of Bayesian algorithms. The basic mechanism can be used to select
operators in a hierarchic manner by incorporating them in higher level trans-
formation operators.

The Adaptive Decision approach uses pattern recognition to learn opponent
behavior from instructor opponent controllers (operator). This approach is
based as a pattern classifier and is used to identify biases in operator
decision policy as a response to classes or patterns in the input data. The
Multi-Attribute Utility (MAU) model is used to capture the decision behavior of
the operator. In the MAU model, the consequences of every action are considered
to be decomposable according to a single conmuon set of attributes.

The Heuristic Search approach provides a mechanism by which the opponent
responds to actions taken by friendly forces with a course of action which leads
to the achievement of some enemy goal. A state space model is used to represent
the problem domain. The states are a complete description of the tactical
situations as they exist at a particular instant of time. An action converts
one state into another. The opponent asks the question, "What sequence of
actions can transform the current state into a desired goal state?" The basic
search algorithm begins at a start node and expands successive nodes until a
goal node is encountered. Then the path from the initial node to that goal node
is the solution sought. Heuristic Search algorithmis use domain specific
knowledge to guide the search. Heuristic knowledge may apply to node expansion
or to path evaluation. In either case heuristic knowledge is used to reduce the
searching effort. Specific Heuristic Search algorithms are discussed.

The Production Rules approach uses sets of situation-action pairs, called
"productions" to transform the current state to the next state. The productions
represent the problem specific knowledge. In addition to productions, the
Production Rule system contains a triggering mechanism that applies those that
are applicable-causing the situation to change. AND/OR graphs represent human
reasoning process, and can be used to answer the questions of how or why a
Fp.rticular conclusion was reached by the system. Also, the user can hypothesize
a conclusion or desired final state and use the productions to work backward
toward an enumeration of the facts that would support the hypothesis.

A set of attributes for rating each approach are defined and described.

The attributes are in three general categories. Attributes related to the
modeling capability of the approach, those related to the development required
to use the approach in a sub simulation, and those that relate to the expected
performance of a simulation system based on a given approach. These attributes
are then used to rate each approach. Finally, several representative decisions
are discussed and the method of application for each approach described.
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PREFACE

Simulators are employed to train military personnel in a wide range
of combat-related skills, from the performance of simple procedural tasks
to the execution of complex interactive missions. A primary design goal
in the specification of simulator equipment is a sufficient degree of
functional fidelity to allow a high degree of transfer of training to
nmanifest itself in the later performance of the operational task.

For the training of simpler, procedural tasks an acceptable level of
fidelity can be achieved by creating a simulation of the operational
equipment. However, when tasks with a high cognitive component are
simulated, such as those associated with tactical performance, it becomes
necessary to simulate the external environment under which the operational
mission is carried out.

In the context of tactics training, the most important aspect of the
combat environment is the adversary. Current tactics simulators, such as
the Submarine Combat Systems Trainers (21A37 series), have an adversary
which is controlled by an instructor during training exercises. This
approach has several shortcomings, among them: 1) the instructor is a
valuable resource who should be used more effectively in other functions,
such as monitoring the performance of the trainees, 2) the tactical
abilities of instructors vary widely. 3) it is very difficult for an
instructor to maneuver multiple adversaries, and 4) since the instructor
has the advantage of knowing exactly what own ship is doing, it is
difficult for him to maneuver the target(s) in a realistic fashion.

One approach to unburdening the instructor and, at the same time.
creating adversary targets with a higher degree of fidelity lies in auto-
mating the maneuvering of the targets. The computer modeling of physical
systems is a cornerstone of training simulation. Many of the same
techniques can be applied to modeling an adversary. However, the modeling
of intelligent behavior appears to be a much more complex problem.

The objective of the current study was to survey a spectrum of
tiodeling techniques and isolate several candidates which could be applied
to the problem. These candidate techniques were then further analyzed
and evaluated against certain training criteria. Recoimniendations are
made concerning each modeling approach.

Robert Ahlers
Scientific Officer
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SECTION I

INTRODUCTION

OBJECTIVES

This final report provides a presentation and evaluation of several
alternative models potentially useful as an intelligent opponent model.
These models are intended to be used to simulate realistically the tacti-
cal behavior of enemy submarines within the Navy Submarine Combat System
Trainers (SCST).

The objectives of the program are to:

a. Analyze the requirements of Navy submarine tactical trainers
with respect to the tactical behavior of simulated enemy submarines.

b. Identify the knowledgeable opponent model algorithms and tech-
niques applicable to submarine tactics.

c. Evaluate each model to assess its tactical maneuvering capabil-
ities, trainability, software requirements, trainee performance measure-
ment, and required research and development.

This report covers all these three objectives and specifically
includes, with minor changes, the two quarterly reports that cover
objectives (a) and (b). It goes beyond these reports in providing a
detailed evaluation of each model, a compatibility analysis of each model
for some of the specific decision tasks needed in the submarine combat
mission, and a recommendation for an overall, best model.

BACKGROUND

Current Navy submarine tactical simulators provide enemy submarine
maneuver capability in the form of either (1) pre-determined maneuver
patterns or (2) controlled tactics performed by human operators. These
forms of tactical control are inadequate for modern Naval training
objectives. "Canned" maneuver patterns are not responsive to friendly
submarine tactics performed by the student trainee and present an unreal-
istic environment. Further, the student may learn the pre-determined
enemy tactical patterns with continued simulator experience, thus
invalidating performance measures. On the other hand, the human control-
ler's main function is to monitor the trainee and evaluate his performance.
This function permits little time to maneuver enemy submarines in response
to the trainees' tactics. The problem is compounded when multiple
targets are involved. Asssigning a full-time controller to each target

4is prohibitively expensive in terms of manpower requirements. Further,
the target behavior resulting from a human controller will not exhibit
the consistency necessary to train students on all types of tactical
maneuvers he may encounter.

7

________ _____________________

.----. !



NAVTRAEQUIPCEN 78-C-0107-1

A computer-driven "knowledgeable opponent" submarine model will
alleviate many of the problems inherent in pre-determined or human-
driven models in the following ways (Ahlers. 1978):

a. Provides Action Feedback for Trainee's Inputs. The trainee
will receive "opedtinalfyv-alid'-feedback rather than abstract perform-
ance measures which are not presented in real time. The feedback in the
form of target responses, will be displayed on the trainee's primary
display. Thus, no time-sharing between task and performance displays
would be necessary; full attention could be directed to the task display.

b. Provides an Optimum Model for the Trainee to Emulate. This is
particularly important for individualize- instruction as it allows the
trainee to "discover" effective tactics.

c. Provides Infinite Variety of Tactical Configurations. Since the
target will be responsive to the trainee's tactics and will be maneuvered
differently as learning takes place, broad experience in unique situations
will be provided.

d. Provides an Equally Matched Opponent at any Level of Trainee's
Expertise. By varying the responsiveness and the appropriateness of its
maneuvers, the target can be modified to remain challenging, but beatable,
for a trainee at any level of proficiency. The complexity of the target
could range from a straight-running target, for use in early training, to
a highly sophisticated opponent with optimum sensor information for use
with highly experienced approach officers.

e. Enhances Intrinsic Motivational Properties of the Training Task.
Training scenarios will become true "one-o-n-one" contests, and the
possibility of defeat will encourage the trainee to attend to the task
and maintain interest in it.

f. Enhances Evaluation of the Trainee's Mastery of the Task.
Certain aspects of the knowledgeable opponent model maybe exploited to
provide measures of the trainee's performance. For example, the length
of time the opponent maintains a tactical advantage is expected to
decrease as the trainee gains tactical knowledge and experience.

g. Allows Trainin Exercises to Reach a Leoitimate Conclusionr.
The knowledgeable opponent will win when it achieves a significant tact-
ical advantage. A "canned" target cannot win, it can only lose.

8
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SECTION II

DECISION ENVIRONMENT

Before requirements for a knowledgeable opponent model can be identi-
fied, the decision environment for the model must be established. Since
the opponent model represents the rational actions of an enemy submarine
commanding officer (CO), a general description of his thought processes
and decision options is necessary. Figure 1 shows, in flowchart form,
some of the major decisions that an opposing submarine conanding officer
must consider. This flowchart was obtained through the cooperation of
the tactical instructors at the SCST facility in San Diego, California.

The first contact a submarine has with a possible enemy submarine
is via acoustic sensors. These sensors are "passive" since they only
listen for sounds and emit no signals of their own. "Active" sensors
(sonar) emit signals and listen for their echos. When a sound source is
determined to be a possible enemy submarine, a decision must be made as
to its threat. If it is determined to be threatening due to its location,
a decision is made to evade counter-detection, or to close and investigate
with the possibility of attacking.

Once the distance between the submarines is close, it is very likely
that the enemy has counter-detected, and therefore, active sensors may
be used for more accurate information. Such sensors are not used early
since this would immediately alert the opposing submarine. Active sensors
are available in various types, and the specific one chosen depends on
factors such as ocean temperature, currents, range, etc.

If the new information confirms the presence of a submarine, tactical
maneuvers begin. These maneuvers are to: (1) track the opposing sub-
marine's movements, (2) position the pussible attack, and (3) prepare to
evade or escape enemy attack, if necessary. If there is no war in
progress, only tracking is considered. However, if a wartime situation
exists, a weapon (torpedo) is launched when the range is sufficiently
close. After the launching of a weapon, the submarine commander must
decide whether to evade a possible counter-attack or, if the attack was
unsuccessful, to attack again.

The types of situations described above are typical of the high-
level decisions a submarine conmander must make. Therefore, a knowledge-
able opponent model should be able to choose among similar types of
alternatives at the proper times. These include not only decisions
concerning strategy such as evasion, sensor resources, attack methods,
weapons choice, etc., but also tactical maneuvers involving course,
speed, depth, etc.

9
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SECTION III

REQUIREMENTS ANALYSIS

GENERAL

Requirements of the model refer to those model characteristics
associated with the training objectives, training facility, and submarine
behavior which are necessary for realistic training exercises. The
opponent model should be compatible with the following requirements.

MODEL STRATEGIES

General submarine strategies employed by the model will be deter-
mined by the instructional objectives. The following are three typical
training objectives that would warrant different strategies:

a. Battle Stations. A wartime encounter between the friendly sub-
marine and one or more hostile opponent submarines where torpedo attack
is possible.

b. Surveillance. A wartime encounter between the friendly submarine
and one or more hostile opponent submarines where information gathering,
and not attacking, is the mission.

c. KILO. A peacetime encounter between a friendly submarine and a
non-hostile opponent submarine where observation and tracking are the
primary objectives.

These strategies determine the general behavioral characteristics
of the opponent submarine which will govern and control the manuever
tactics.

PRE-CONTACT TACTICS

Pre-contact tactics are determined by the particular engagement
scenario being exercised. Since pre-contact tactics do not depend on
the movement or responses of the friendly submarine, they can be pre-
defined according to established and accepted tactical doctrines and
practices, Pre-contact behavior will include tactics implementing the
following mission activities:

a. Barrier Patrol Search. This mission is a submarine search pat-
tern along barriers such as coastlines, shipping lanes, known submarine
routes, etc.

b. Broad-Area Patrol. Patrolling a large expanse of ocean for
enemy submarines requires different tactical maneuvers, as well as speci-
fic sensor types.

c. Choke-Point Narrow Pass. Patrolling a narrow undersea pass
demands different and more specialilei tactics than monitoring a broad
area.

i ,
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d. Transient Moveent. During a transient movement mission, the
submarine is assumed to be traveling from one location to another for some
specific purpose. Pursuing a straight line course is not the best way to
avoid detection; thus, various tactical maneuvers must be simulated.

CONTACT TACTICS

Tactics for submarine maneuvers during contact with enemy submarines
must be compatible with existing tactical doctrine. The Jecisions to be
made at each point are the course (00 - 359,1), speed (knots), and depth
(feet). The objectives which determine the values of these parameters
are:

a. Manuevers to fix the location of the friendly subinarine.

b. Maneuvers to gain attack position.

c. Maneuvers to evade opponent attack.

d. Maneuvers to evade contact.

The tactics doctrine that fulfills the above objectives can be found
in Navy tactics manuals.

RELATED DLCISIONS

Many decisions not directly connected with tactical maneuvers are
vital to a complete model. The three parameters described in the previous
section are enough to specify particular maneuver tactics. However, many
other related decisions must be made. The model must be able to make the
following decisions at the proper time during the simulation. The model
must decide:

a. The probability of a contact based on passive sensors.

b. Whether a contact represents a possible thrqat.

c. Whether to approach the contact or evade.

d. Whether to stay passive or use active sonar.

e. Which weapon to fire and when.

f. Whether or not the submarine is within the weapon range.

g. Whether or not the opponent ship has fired a weapon.

h. Whether or not to use decoys.

i. Whether to run or hide in deep water while evadin, contact.

I I,*'
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FEATURES NOT INCLUDED

The knowledgeable opponent model will not be required to support the
following simulation features:

a. Surface Ship and Periscope Contact. Since almost all training
exercises deal with subxnarine-to-sut iarine encounters, the SCST instruc-
tors felt that simulation of either surface ship contact or periscope
contact should not be necessary.

b. Sonar and Acoustic Equipment Performance Variations. During
simulation exercises, the performance of the acoustic equipment aboard
the friendly submarines is sometimes degraded for training purposes. It
will not be necessary for the model to operate under such conditions.

d. Multiple Submarine Strategies. Since the radio silence will
usually be maintained between submarines during wartime, coordinated
strategies are not a necessary requirement. Each enetiy submarine can
possess its own independent knowledge opponent model with provisions only
for collision avoidance and mutual attack avoidance.

TRAINING REQUIREMENTS

The model must be compatible with current SCST training objectives.
Independent of the specific features of the model are considerations and
characteristics that are required for the training objectives of the SCST
to be met.

a. Training Management. The model must perform adequately enough
so that the training instructors will actually be relieved of their
responsibilities for scenario management.

b. Model Override. The instructors must be able to take control of
the opponent submarine at any time and maneuver it as they are currently
able to do.

c. Performance Measurement. The tactics and behavior of the enemy
submarine must be conducive to the collection of meaningful student per-
formance evaluation data.

d. Modification Ease. The model must be designed so that tactical
and behavioral changes are not only easy to make but can also be made in
real time by the instructors during a simulation exercise.

e. Real-World Fidelity. Real-world fidelity should be maintained
as much as possible. This requirement was considered to be more important
than fidelity to training objectives by the interviewed submarine trainer
instructors. The apparent reason for this preference is that the train-
ing objectives are under the control of the training facility and can be
modified easily. However, if the real-world fidelity is sacrificed for
training objectives, modification is considerably more difficult. It is
not clear that real-world fidelity and training objectives fidelity are

13
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incompatible; however, priority should be given to making the model asclose to actual Circumstances as possible.
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SECTION IV

MODELS DESCRIPTION

GENERAL

This chapter presents an overview and some details of four types of
decision models which are potentially appropriate for simulating an intel-
ligent opponent within the SCSTs. Considering variations of each model,
and the possibility of combining models, many useful combinations can be
derived to represent the intelligent opponent.

Since the opponent and friend have essentially the same decision
structure, the same model which is developed for the opponent can also
model the friend. This brings up a number of interesting and useful
possibilities:

a. Play one model against the other. By doing this, it will be
easier to debug the software. Also, it is possible to develop a set of
performance baselines which can be used for further model development and
to develop evaluation guidelines.

b. The opponent model easily contains a model of the friend. Fur-
ther levels of recursion are possible. For example, the friend can be
aided by an opponent model which contains a friend model.

c. Different models can play each other to evaluate which model is
best.

d. Different parameter values can be set for each model and the
models can play each other in order to evaluate the effectiveness of various
strageties and various assumptions regarding opponent capabilities.

It should be emphasized that when the same model is used for several
purposes, different behavior can be created by varying model parameters,
even the same model will display different behavior patterns in slightly
different circumstances. Furthermore, some of the model behavior will be
generated randomly (e.g., the specifics of an evasion maneuver), thus
defying the student from capturing a standard response.

POTENTIAL MODELS

From an analysis of the requirements of the knowledgeable opponent
model and from an analysis of existing simulation and modeling techniques,
four major approaches have been identified which show potential for model
implementation. These approaches are:

a. Elicited probability approach.

b. Adaptive decision modeling approach.

15
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c. Heuristic search approach.

d. Production rules approach.

The elicited probability approach to scenario generation is a
derivative of the Bayesian analysis. It essentially selects randomly
among the alternative actions available at each point, but the probability
of selecting each alternative is elicited from experts to resemble actual
behavior.

The adaptive decision model is based on the adaptive linear pattern
recognizer. The model "learns" the proper choices it has to make by
following those made by an expert--a trainer. It then uses the trained
parameters to make the right choices even in situations which are
dissimilar to those under which it was originally trained.

In the heuristic search approach, the problem domain is represented
as a network of "states" each representing a specific tactical situation.
The objective of the CO is to reach some desired goal (missionl, which is
also a state in the "state space."

From the state he is in, the CO will perform a "Look ahead" search
to identify which alternative action open to him will bring him closer to
the goal state. This goal directed behavior is continued even if the
state is changed by external events or actions of the adversary, thus
depicting intelligent behavior.

In the production rule approach, the expertise of the problem domain
is represented as "condition--action" chunks. A control mechanism acti-
vates the relevant productions and generates a chain of actions that would
lead from the current situation to the desired goal.

It is clear that these models are quite different from each other.
The rest of this chapter will describe them in detail and specify the
advantages and disadvantages of each for our purpose--the modelling of an
intelligent opponent.

THE ELICITED PROBABILITY APPROACH

INTRODUCTION. The elicited probability approach to scenario generation
and opponent simulation uses an incremental, descrete description of -he
tactical scenario. This description has the form of a state vector Z .
The vector is made up of components each representing the state of some
tactical aspect of the situation at a given instant t. thus:

.7t . z t ztJ (1) z
1' 2' n

In the tactical submarine simulation the components of the state vector
may be:

16
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Z "How deep is the water" (2)

Z= "How far is friend"

Z3 ="How many friend's subs ire in the area"

The value of a component of the state vector is one of the possible
answers to these questions. Thus 71 can be. at a given time t either
"deep," "medium" or "shallow." The value of ., nmy be either "undetected."
"far," "within passive listening range," "within active sonar range" or
Itwithin torpedo range." The composition of the state vector is determined
by elicitation from experts. The number of discrete values which each
component can assume need not be large, it is only determined by what
makes a tactical difference. If the tactics of the simulated opponent
would be different in "shallow" waters than that in "mediutim" or in "deep"
waters, then only these three discrete values are needed in the tactical
simulation. Other components of the state vector may have more or less
numerous discrete values, again depending on how many are relevant tacti-
cally. These discrete values are used in the intelligent part of the
simulation--the part that chooses and changes tactical maneuvers. The
part that generates the actual display is incremental and thus can generate
continuous motions.

Figure 2 depicts the basic operation and main blocks of the simulation
system. The system goes repeatedly through the following cycle; it starts
from the current state v~lor 7t and calculates the state of the world at.
the next time interval Z-'. The calculation is done in two steps. First.
a probability matrix is used to determine, from the current state of the
world, what are the tactics that should be performed. Then, the tactics
chosen are used to trisfonm the current state vector to the vector of the
next time interval P . This new vector might include an incremental
change in location: VX, \Y, a change in direction: , or a firing ot a
torpedo which is another component of the state vector. The same new
vector is now used also to generate the new outputs that will produce the
new display for the user (interfaces with the current system).

The new value of the state vecto. Z t+  is now fed back to the
starting point where it is used as the current state vector for the next
time interval. Thus, the total process progresses cyclically through this
sequence of steps.

UPDATING THE STATE VECTOR. The actual calculation of the changes of the
state vector is somewhat more complex than what. was described above. The
complexity is necessary to provide some randomness in the simulated
behavior to prevent the trainee from learning a prerecorded scenario.
The randomness is generated from probability information elicited from
experts, and thus the behavior produced would he tvp ical and imilar to
an opponent commander behavior but would still be unpredictable in its
details.

17
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Figure 2. The State Transformation System
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Figure 3 shows in more detail the specific steps that are taken
in calculating the state vector at time t41 from 7 at time t. The current
state vector Z is used to select, by combining conditional probabilities,
the tactics to be applied. Let us define the terns more precisely before
using them. Let us call the vector of all the tactics that are perfoned
at time t by:

Yt = (TI, T2, ..... Tm (3)

T might be "turn right 10"," T, might be decrease depth to periscope
lvel." More than one activity-can take place at the same time, so that
the vector format is needed to combine the effect of all in each time
interval. To determine which tactics should be seIected in the next
interval a conditional probability is needed: P(T Z ). This conditional
probability answers the following question: givn the current situation
Zwhat tactics should be applied-TL. Z and T are vectors with many
elements and that makes the conditional probability a matrix of the form:

p(Tt+lI1Zt) = {pt+lIzt)* (4)1P(Ti I i,j

In every row i, which corresponds to a tactics Ti, the entries indicate
the conditional probability of selecting these tactics given that the ,t
component of the state vector is present. For instance, one entry migh
be the answer to: R.hat is the probability, given that friend is "in
torpedo range" that the tactics "shoot a torpedo" be applied. There are
two problems with this approach. One is the independence of the state
vector Vlements, i.e., whether the conditional probayility of a tactics Tt
given Z- is independent of the other components of Z . The other problem
is meaningfulness to the expert. For example, a question like: Ithat is
the probability of choosing a "zigzag maneuver to the right" given "enemy
sub is nuclear?" Posing the question the other way around should prove
much more meaningful: Given a tactics T. what set of events would cause
you to choose it? The natural question o an expert is the conditional
probability matrix:

PRI-PZlt+l) (5)

This matrix of probabilities is obtained from experts in submarine tactics.
The expert estimates can be based upon experience, upon real world
measurements, upon theoretical models, etc. It is also possible to
determine the conditional probabilities by collecting statistics during
an actual training session in which the instructors are controlling
opponent actions.

To calculate the conditional probability in (4) from the estimated
conditional probability given in (5) the following formula has to be
used:

P(TjIZt) =P(Tip(tLTY (6)

19



NAVTRAEQUIPCEN 78-C-0107-1

I X I kRNAI
5 14 T I I t4I GI NI RAY I

00111UT

It it 1t4I
nl'pt 4"

INK I I ONJS91'pl 4"
(1PI RA

CONVITITTriAt
PROBABILITY P SIUCT

144TRIX ON RAI OR

v

Figure 3. Detailed SYstem Block Diagram

20



NAVTRAEQUIPCEN 78-C-0107-1

This formula, basic in Bayes probability theory, combines the conditional
probabilities P(Z'ITj) to give P(TjIZt).

Two additional vectors of a priori probabilities, also estimated by
experts, are required. The components of the first vector P are the
a priori probabilities that each state transformation operatoT will be
se ected. They are represented thusly:

PoT = Do (T1) . Po(T2)' ..., Po(Tm
)]  (7)

The components of the second vector, rz, are the a priori probabilities
of the occurrence of each state component of the T-vector. They are
represented as follows:

oz= [po(Z) Po(z 2), Po(zn)] (8)

The a priori probabilities don't have to be estimated with great
precision use, as the scenario unfolds, they have less and less
effect over the behavior of the scenario.

If we assume independence of the impact of the different components
of the state vector then:

nP(-1tIT )  11 P(Z p iIT ) (9)

i=1

Thus, equation (6) becomes

p(T ii p(z tIT3 I IT jp(T ji~ t . . . .. t..... .. (10)
Tp(z1)

When equation (10) is implemented, the p(T.Jl t) are normalized; thus, the
denominator in (10) is not needed.

Table 1 is a partial example of the probabilities as they are
elicited from the experts and aftg 1 th~y are used in formula 10 to obtain
the conditional probabilities P(T. JZ). The left most column shows the
components of the state vector and the values that they can assume.
The list of useful tactics are indicated on the top. The first column of
numbers and the first row indicate the a rior probability of each state
vector component value and each tactics.- Thebody of the table contains
the conditional probabilities. Looking at the second row of numbers, the

4 probability of friend being undetected is 0.9 if the tactics is "proceed"
but it is 0.0 if the tactics is "run." This makes sense; because if
friend is undetected, there is no reason to choose "run." Naturally, each
row sums up to 1 because if that particular state variable is present, it
must have some succeeding action, even if it is only "proceed."

The assumption that the variables which comprise the state vector

are independent is a crucial one. The most practical way to meet this
condition is to take care to define the state vector such that it is

_ _ _ _ __ _ _ __ _ L
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TABLE 1. MANEUVER SELECTION MATRIX

State Hide Run Proceed Zigzag Attack

A Priori 0.05 0.1 0.7 0.05 0.2
Probb i I tty

How Far Is Friend: Undetected 0.60 0.05 0.0 0.9 0.05 ).0

Very hear 0.15 0.1 0.1 0.1 0.3 0.4
Near 0.15 0.? 0.15 0.05 0.3 0.3
Medium 0.05 0.3 0.2'0 0.15 0.15 0.."
Far 0.05 0.75 0.20 0.25 0.25 0.1

Has Friend Detected: Yes 0.15 0.i' 0.1 0.1 0.3 0.3
Possible 0.15 0.20 0.20 0.2 0. 5 0.15
No 0.70 0.10 0.15 0.45 0.15 0.15

WaT State: War 0.01 0.1 O.1 05 0.2 0, 1
Peace 0.99 0..1 0.1 0.7 0.1 0.0

Wter Depth: ShaIIow 0.1 0.3 0.1 0.3 0.1 0.,
Normal 0.5 0. 1 0.? 0.3 0., 0.?'
Deep 0.4 0.1 0.25 0.3 o." 0. 11,
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independent. If there are dependencies in the state vector, they may
not noticeably affect the behavior of the scenario (e.g., environment.
opponent's actions). This can be t-ted by using the model to generate
behavior which is viewed by the person from whom the probabilities were
elicited. If the behavior is not as desired, the elicited probability
values can be fine-tuned until the proper behavior is obtained.

One technique of handling dependencies in) the state vector is to
also elicit the covariance matrix representing the correlation ai ig
state variables. This matrix can then be used in one of two methods:

a. The problem is transformed into a domain where independence
holds (by proper selection of independent tactically significant state
vector components).

b. The covariance matrices are used to derive weights to compensate
for dependence.

Both methods have several disadvantages:

a. The covariance matrices are dependent on the order of processing
state variables; a different covariance matrix must be used for each
order.

b. The covariance matrices involve either asking people to estimate
means and standard deviations, or polling a group of experts and collecting
these statistics.

c. When the probabilities are subjectively determined (by elicita-
tion), the precision of the problem is such that the covariance matrices
may be meaningless.

In general, the complexity of using the covariance matrices seems to
exceed that justified by meaning and relevance.

Another method of handling dependencies in the state vector is to
construct a new set of variables based on permutations of some of the
dependent variables. This approach is simple, but leads to a rapid
increase in the size of the state vector.

Going back to Figure 3, formula 10 is used to obtain, from the current
state vector, the tactic's probability vector (TPV):

P(Ttt) [P(Tt) P(Tt+l)] (11)

This vector indicates the probability of selecting tactics T4 in the
current tactical situation. The next step is to select the iactics to be
actually applied. This can be done in several ways:

a. Select the tactics with the highest probability.

23
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b. Select all the tactics with probability higher than some thresh-
old level.

c. Select the tactics randomly but in such a way thfIlthe probability
to select a particular tactics is proportional to its P(Tj ). (This is
the "Monte Carlo" method.)

After the tactic (or combination of tactics) is selected, the next
step is to actually perfuT the tactics. In terms of the model, we will
apply a transformation T to the current state vector to obtain the
new one:

[7 ~ IT I H ai matrix) (1")

There are virtually no restrictions on the kinds of state transforma-
tion operators which can be defined. A transformation operator may
affect a single state variable and generate a constant output. It may
also affect a large number of state variables and make use of a complex
decision strategy to determine their values. The transformation operator
may even determine the value of a variable for several subsequent time
cycles.

A transformation operator may make use of subsets of 7t which were
not used in selecting the operator. An operator may also make internal
use of Bayesian aggregatigns based upon additional conditional probability
matrices and subsets of 7'. Thus, hierarchies of transformation operators
can be established.

Each transformation operator affects a set, of one or more state
variables. The operators, in turn, are grouped according to which set
of variables they affect. These sets of variables must be disjoint
because, after a single operator is selected from each set, the selected
operators are assumed to be invoked simultaneously. If the sets of vari-
ables are not disjoint. the order in which the selected operators are
actually invoked will affect the value of the transformed state vector.
However, non-disjoint sets of variables can be handled by establishing a
hierarchy of operators within a "higher level" operator.

The selection of one state transformation operator from each operator

set is made by means of a Monte Carlo selection procedure. The probabili-
ties of occurrence of each operator in the set are normalized to obtain
a discrete cumulative distribution function. A uniformly distributed
pseudorandom number in the range [0,11 is then generated and its position
in the distribution function is used to select the operator. Alternatively,
the operator with the highest probability could be selected.

In some experimental applications, it may be useful or necessary to
kno the probability that a state variable will have a particular value,
p(zk JZ ). By restricting the kinds of allowable state transformation
operators to those that generate a constant (and unique) result, it is
possible to obtain these probabilities directly front the scenario genera-
tu,! If state transformation operator, Tj, outputs the same value for
zk whenever it is invoked, and only T. outputs that value, then
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P(zk t  ) -p(t.17t) (13)

If more comp Ivx t ransfotnllat ion operators arI' tjwd, p(:t 41 7t bec(imes
more difficult to compute. A value can alway-, be obtained, however, by
making statistical measurements of the behavior of the scenario generator.

The current state vector, . i tt aNIfo I-jd into Zt+1 by the
(assumed) simultaneous invocation of' all of- the se -lcted state transforina-
tion operators. If the state vector i% proporly designed. it is possible
to use the Bayesian/Monte Carlo select ion mechani sm to choose all of
these operators. However, in many instan(e it may be more convenient
to use "external" mechanisms to select tranI oiina tion operators for cer-
tain subsets of the state vector. These externally contvolled state
vector subsets will be collectively referred to as the r subvvctor (see
Figure 3). Examples of externally controlled state variables would in-
clude clock-driven variables such as day and niqht, high and low tides,
and events which occur on a fixed schedule.

PROBABILITY EI ICITATION. Previous research has shown that human experts
are good at estimating conditional probabilities. hut poor at aggreqa fig
them (e.g., Edwards, l6',). Accordintjly, the present scenario generator
uses conditional probabilities elicited from experts and agqregates them
automatically. First, expert. inputs are used to:

a. Describe the environment to he modeled in tenns of relevant
state variables.

b. Determine which variables are externally controlled and which
are controlled by the Bayesian model.

c. Define all of the transfonnations which change the state varia-
bles.

Then, the expert is queried in detail to:

d. Estimate the a priori probabilitie i, and the individual condi-
t ional p robabil ity whici con]t ute the en t ir, matrix.

The method of elicitation is simply to interview the expert and ask him
the probabilities. Bond and Rig ney (1966) wvre able to elicit almost
650 conditional probabilities associated with electronic troubleshooting
in one hour using a simple questionnaire.

The process of probability elicitation is an iterative one which
allows the expert to refine his estimates. That is, once the initial
estimates are made, test scenarios are generated which allow the expert
to see the consequences of his estimates. He is then asked to modify his
estimates to make them more consistent with the desired behavior of the
scenario generator.

A& IN
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[LICITlD PROBABIITY APPROACH - SUMMARY.

Advantages

a. Simplicity; ea'yv to develop. maintain. 1"111 timplent

b. Generates a probabilistic opponent and en v i ronment

c. Weights representing behavior are ,asy to , kiit and to alter.

d. State oriented; easy to switch between manual and automatic
operation.

Disadvantages

a. It is difficult to alter structural aspects due to the need to
avoid dependencies in the state vector.

b. Difficult to Insert logical statement% to control the scenario.

c. The application of state transfovination operators may be order
dependent.

d. It is difficult to isolate the part-icular entry in the trans-
formation matrix that. caused some behavior and to qiwe it a tactical
interpretation.

THE ADAPTIVE DECISION MODEI ING APPROACH

INTRODUCTION. The adaptive decision approach to tieneratinq knowledtieable
opponent behavior--which uses pattern recogn ition is based on learnn i
opponent decision imidelino and utility theory. In the present application.
all of the relevant information for e lect Inq tht, opponent' s ncxt act ion
is innediately available at. the time it's needed. lhe model, which i%
first adapted to choices made by an expert, is then used to calculate
the value of each alternative. and the alternative with the highest value
is chosen for actual execution by the system.

ADAPTIVE DECISION MODEL ING. Work on adaptive deciion-makinq I,- derived
from the areas of behavioral decisi on research and Al e\perience with
learning networks. The unique aspect of this approach is lhe icapabil1ity
to adjust model parameters on-line and chantle decision ,t rateqty accordlingly.
In essence, the learntni system attempts to identify the decision process
of the human operation on-line by (ai) successive observation of his
actions, and (b) establishment of an interim rellationship between the
input data set and the output decision (the model), learninq in this
context refers to a training process for adjust ing model parameters
according to a criteria function. The object is to improve model per-
formance as a function of experience. or to match the model characteris-
tics to that of the operator.
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Learning techniques have been used to model the decision strategy
and to identify the sources of cognitive constraints on the human
operator performing a dynamic prediction task (Rouse, 1972). Another
example of an adaptive model of the human operator through real time
paranmeter tracinq has been reported b v Gilstad and lu (1970). Linear
and piecewise-linear discriminant functions were used to classify
system qains, errors and error rate. The decision boundaries for
classification were det enined through a process on on-line learning,
observing operator perfcfrmance and parameter adjustment. The specific
model used was applicable only to very limited tasks, and merely
illustrated the feasibility of the technique.

A unique advantage of usinq a learning system lies in its capability
to act as a pattern classification mec-hanism. As such, it can be used
to identify biases in operator decision policy as a response to classes
or patterns in the input data (Tversky, et l, 1972). In conventional
Bayesian technique, the pattern of events is decomposed into elementary
data points. With the assumption of independence, the elementary data
points are aggregated to revise the hypothesis. Iffects of the data
pattern do not bear on the decision.

In dynamic decision making, however, the temporal and spatial nature
of the data are highly significant. Since decision data appear as a
pattern of individual events, it is reasonable t.o assume that the subject
responds to the pattern as well as to the individual value. In fact, the
pattern may contain the greater amount. of information. Classification of
input patterns by the learning mechanism can be accomplished by programmed
cognizance of such data features as: data with non-indopendent events,
data with correlated events, data with events which continuously vary
with time, the number of elements of decision data and the rate of change
in the data points.

THF MAU MODEL. Multi-attribute decision analysis is the most widely used
approach for making evaluations involving multiple criteria. MALI methods
decompose the complex overall evaluation problem into more manageable sub-
problems of scaling, weighting, and combining criteria. In doing so,
the MAU methods provide a rich framework for analysis, discussion, and
feedback. This "divide and conquer" approach to evaluation involves
defining the problem, identifying relevant dimensions of value, scaling
and weighting the dimensions, and finally aggregating the dimensions into
a single figure of merit for the system.

The power of the multi-attribute approach lies in its level of
analysis and flexibility. Sensitivity analyses of the level and weight
of each dimension can provide Indications of what aspects to concentrate
tests on, or what system eleients to modify. flexibility is present,
since criteria can be added or deleted as necessary. Also, the weights
and levels can be quickly adjusted according to new functional require-
ments and capabilities.

In the MAU model, the consequences of every action are considered to
be decomposable according to a single cotmion set of attributers. The
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model computes an aggregate multi-attribute utility (MAU) as a weighted
sum of each consequence attribute level (Ai ) multiplied by the importance
or utility of the attribute (W ). The calculated MAU of edch action is
used as the selection criterioA:

MAU. W VA (14)

j ik

where

MAU = the aggregate utility of option j

Wi  X the importance weight of attribute i, and

Aik = the level of attribute i for action k.

Figure 4 shows the major components of the MAU model in block dia-
gram form. Possible actions are parameterized in terms of attribute
levels. The MAU calculator uses as inputs (1) the attribute levels of
the given action, and (2) a vector of "attribute weights" which have
been dynamically estimated for a given operator by an adaptive model.

Calculation of the multi-attribute utility for each action is
central to the operation of the model. The MAU calculation is shown in
Figure 5. The dot-product of the attribute level vector and the attri-
bute weight vector provides the aggregate MALI value. The attributes are
scaled so that each attribute level ranges from 0 to 1. Further, the
orientation is arranged such that each attribute contributes positively
to the overall aggregate MAU. That is, holding all other attribute
levels constant, an increase in any attribute level increases the MAU.

ATTRIBUTE CHOICE. The determination of attributes to include in the
decision model is probably of greater importance than the accurate assess-
ment of the importance weights (Dawes, 1975). The following list of
desirable characteristics for the attributes expands on Raiffa's (1969)
recommendations of attribute independence, set completeness, and minimum
dimensionality:

a. Accessible. The levels of each factor should be easily and
accurately measurab e.

b. Conditionally Monotonic. The factor level should be monotonic
with the c6rterion (preference) regardless of the constant values of
other factors.

c. Value Independent. The level of one attribute should not depend
on the levels ofie attributes. This is to some extent a conse-

quence of recommendation b.

d. ComIete. The set of attributes should present the operator's
behavior as com-pTetely as possible.

28
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Figure 4. Overview of Action Selection Model
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e. Meaningful. The attributes should be reliable and should demon-
strate construct validity. Feedback based on the model attributes should
be understandable to the operator.

For the most part, these recommendations result in an attribute set
that is measurable, predictive, and in accord with the axioms of utility
theory. The recommendations also imply a limitation on the number of
possible attributes. The requirements of independence and meaningfulness
render any large set of attributes unrealizable, because of the cognitive
limitations of the human operator.

ADVANTAGES OF THE MULTI-ATTRIBUTE UTILITY MODEL. The multi-attribute
information utility model presented here is characterized by several
attractive features. These features, itemized below, offer substantial
advantage over the EU decision model. The advantages arise out of the
theoretical structure of the model, especially its decomposition property,
and have all been empirically demonstrated to some degree in ongoing
Perceptronics programs (Samet, Weltman, and Davis, 1976; Steeb, Chen and
Freedy, 1977).

a. Generality. The adaptive, multi-attribute model for information
selection holds a considerable amount of generality. It can be appl4ed
in situations where diagnostic actions can be decomposed into a small set
of manageable, quantifiable attributes which have two critical characteris-
tics. First, they must be logically related to the situation-specific
demands. That is, their relevance to specific situations must be known.
Second, they must directly impact upon a decision maker's choices among
competing options. A number of military decision-making environments have
already been demonstrated to fit this paradigm (e.g., Coats and McCourt,
1976; Hayes, 1964; McKendry, Enderwick and Harrison, 1971; Samet, 1975).

b. Parsimony. The model is parsimonious; it need only assess an
operator's weights for a limited number of information dimensions or
attributes. Besides significantly minimizing the model's computational
needs and software complexity, this feature reflects findings of psycholo-
gical experiments (e.g., Hayes, 1964; Slovic, 1975; Wright, 1974) and is
in agreement with contemporary decision theory (e.g., Tversky and
Kahneman, 1974), all of which suggest that a decision maker can only per-
form weighting and aggregation on a relatively small number of the
important dimensions in the decision task. Also, when decisions are based
on a manageable number of information dimensions, they are easier to
communicate and rationalize--especially in group decision-making situations
(Gardiner and Edwards, 1975). In complex situations, therefore, the re-
duction in the number of model parameters in the proposed MAU model as
compared to the expected utility model are of major Importance.

c. Robustness. Like other linear composition models, the multi-
attribute decision model is robust; that is, its performance is not
significantly degraded by small perturbations in the model's parameters
(Dawes and Corrigan, 1974). Such robustness probably contributes to the
finding that multi-attribute utility assessment techniques have proven,
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in certain instances, to be more reliable and valid than direct assess-
ment procedures (Newman, 1975; Samet, 1976).

d. Speed of Adaptation. The adaptive model adjusts all parameters
with each incorrectly predicted trainer decision (i.e., action selection).
Thus, weights for a specific attribute can be obtained rapidly during
sessions in which the trainer performs the simulated CO decisions.

e. Flexibility. The multi-attribute utility model is inherently
flexible. If accurate prediction of action selection is not sufficient
(i.e., if attribute weights cannot be trained to stable values), addi-
tional features or attributes can be added and inappropriate ones deleted.
The response to dynamic changes in conditions is similarly flexible. In
instances where conditions change rapidly and radically, new sets of
weights trained for the new conditions can be substituted. Such weight
vectors could be prepared ahead of time by training them either in actual
operational situations or in step-through simulations.
UTILITY ESTIMATOR. The dynamic utility estimation technique is based on

a trainable pattern classifier. Figure 5 illustrates the mechanism. As
the operator performs the task, the on-line utility estimator observes his
choice among the available actions at each point in the sequence and views
his decision-making as a process of classifying patterns consisting of
varying attribute levels. The utility estimator attempts to classify
the attribute patterns by means of a linear evaluation (discriminant)
function. These classifications are compared with the operator's choices.
Whenever they are incorrect, an adaptive, error-correction training
algorithm is used to adjust the utilities. A comprehensive discussion of
this technique can be found in Freedy, Davis, Steeb, Samet, and Gariliner
(1976).

TRAINING ALGORITHM. On each trial, the model uses the previous utility
weights (W ) for each attribute (i) to compute the multi-attribute
utilities (MAUk) for each action (k). Thus,

MAUk = Z Wi Aik (15)
i=1

where

Wi is the weight of the attribute, and

A is the level of the ith attribute associated with action k.Aik

The model predicts that the operator will always prefer the action
with the maximum MAU value. If the prediction is correct (i.e., the
operator chooses the action with the highest MAU), no adjustments are made
to the utility weights. However, if the operator chooses an action having
a lower MAU value, the algorithm goes into action and applies the error
correction training formula. In this manner, the utility estimator
"tracks" the operator's decision-making strategy and learns his utilities
or weights for the attributes. The training rule used to adjust the
weights associated with each of the attributes is illustrated in Figure 5.
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Actual in-task training appears feasible using pattern recognition
techniques. Instead of batch processing, the pattern recognition methods
refine the model decision-by-decision. Briefly, the technique considers
the decision maker to respond to the characteristics of the various
alternatives as patterns, classifying them according to preference. A
linear discriminant function is used to predict this ordinal response
behavior, and when amiss, is adjusted using error correcting procedures.
This use of pattern recognition as a method for estimation of decision
model parameters was apparently first suggested by Slagle (1971). He
made the key observation that the process of expected utility maximiza-
tion involved a linear evaluation function that could be learned from a
person's choices.

The suggested technique was soon applied by Freedy, Weisbrod, and
Weltman (1973) to the modeling of decision behavior in a simulated intel-
ligence gathering context. Freedy and his associates assumed the deci-
sion maker to maximize expected utility on each decision. They assigned
a distinct utility, U(xik), to each possible combination of action and
outcome, as shown in the decision tree in Figure 6. The probabilities
of occurrence of each outcome j given each action k were determined using
Bayesian techniques. These patterns of probability were used as inputs
to the estimation program (Figure 7). The expected utility of each
action Ak was then calculated by forming the dot product of the input pro-
bability vector and the respective utility vector. This operation is
equivalent to the expected utility calculation:

EU(Ak) = XP(xjk). U(xjk) (16)
J

The classification weight vector Wik in the pattern recognition pro-
gram acts as the utility U(xjk). The a'ternative Ak having the maximum
expected utility is selected by the model and compared with the decision
maker's choice. If a discrepancy is observed an adjustment is made, as
shown in Figure 5. The adjustment moves the utility vectors of the
chosen, and predicted, actions (Wc and W , respectively) in the direction
minimizing the prediction error. The adjustment consists of the following:

Wc Wc - d Pp (17)

W Wp + d Pc (18)

where

W' is the new vector of weights [W(X c), W(X2c)] for action c

W is the previous weight vector for action c

d is the correction increment

Pi is the probability vector describing the distribution of outcomes

(Plk' P2k' . Pnk ] resulting from action k
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Figure 6. Decision Tree Of Utility EstminDeveloped by Freedy et al. tmto
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Figure 7. Structure Of Utility Estimation Program of Freedy 
et al. (1973)
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The model is an adaptation of the R-category linear machine (Nilsson,
1965). The pattern classifier receives patterns of descriptive data (out-
come probabilities) and responds with a decision to classify each of the
patterns in one of R categories (actions). The classification is made on
the basis of R linear discriminant functions, each of which corresponds
to one of the R categories. The discriminant functions are of the form:

gi(x) = Wi. x for i=l, 2, ..., R (19)1I
where x is the pattern vector and W. is the weight vector. The pattern
classifier computes the value of each discriminant function and selects the
category i such that

gi(x) > gj(x) (20)

for all j=l, 2, ..., R; i~j

A geometric interpretation of the R-category linear machine is shown
in Figure 8 (Nilsson, 1965). Decisions involving two possible consequences,
x, and x , are evaluated according to three discriminant functions G (x),
G (x), 3nd G (x). The lines of intersection between the discrimin~nt-
h;perplanes ae the points of indifference between actions. Mappings of
these lines of intersection to the attribute plane are shown in the figure.
The resulting regions R , R2, and R3 correspond to the actions maximizing
the (expected utility) lvaluation function.

The R-category technique becomes somewhat cumbersome if a large number
of actions are possible or if the decision circumstances change rapidly.
This problem is a result of the assignment of a distinct, holistic utility
to each tip of the decision tree. The number of model parameters thus
increases rapidly with an increase in the number of actions possible. Also,
the only weight vectors adjusted in a given decision are those corresponding
to the model-predicted and the actually chosen actions. This partial
adjustment makes the system somewhat unresponsive to change.

A natural extension of Freedy's approach is to adapt the single dis-
criminant, multi-attribute approach to the modeling of objective choice
behavior. Each possible outcome of a decision can be associated with a
set of attributes or objectives of the decision maker. An importance
weight vector defined over the various attributes can then be adjusted to
predict behavior. The mechanism is simply that of a threshold. The
adjustment rule following an incorrect prediction is given in equation 21
with the parameter d controlling the sensitivity of the correction. A
large d will cause a fast adjustment but may result in overshoot and
oscilitions and a small d will cause slow adaption.

W= W + d(x - (21)
c p
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RL

CONSEQUENCE

Figure 8. Geometric Interpretation of R-Category Linear Machine
(Adapted from Nilsson, 1965)
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where

W" Is the updated welghtinq vector

W is the previous weighting vector

x ) ik the attribute pattvrn of the Imlodel- predicted choice

x is the attribute pattern of the decision maker's choice

d is the adjustment factor.

A possible advantaqe of the pat tern reco(jInition technique over many of
til other foni'; of estimation is its fexibility of ad.Juitment.. Sevra I
types of error correction are possible for the adjustment rule, each with a
different combindtion of speed, stability, and complexity. The three prin-
ciple forms are the fixed increment rule, the absolute correction rule, and
the fractional correction rule. These differ solely in their formulation
of the adjustment factor d in q(luation 11.

INhe fixed increllnt rle ,, mpillp.y a , Si , P a on-.'el'O coillstanlt. to (. Thi|u;
the movement of the weight vector is a constant proportion of the difference
in the predicted and chosen patterns. The correction may not be sufficient
to avoid subsequent errors with the same pattern, but the process is
eventually convergent (Duda and Hart, 1973). The fixed increment rule has
the advantaqes of simplicity and relative insensitivity to inconsistent
behavior.

A more rapid but also more potentially unstable rule is the absolute
correction rule. This method sets d to be the smallest inteqjer at which
the error of the pattern is corrected. In the decision modeling situation,
this becomes:

d - smallest integer . Ik (x C - x ) (22)

c p c p1

in which

x c is the attribute level vector of the operator selected choice

Xp is the attribute vector of the predicted choice

The fractional correction rule i,, s imilar to the allsolute rule but
is typically less extreme. The fractional rule moves the weiqht point some
fraction of the above distance:

\lk (xc - xp)l (?3)

(xc -x){x - xp)

where A is a constant 0 - 2.

3P
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All1 three of the adjustment rul1e,, have been proven c aiveroent with
1linearly separable patterns (Nil sson.* 19g65) . 1l h speed of" converqence 1'.
normtally fastest with the absolute rule. Thi-s is illustrated for '1n
example series of adjustments in r igure 9. The set of four numbered 1 iiie
in the figure are a sequence (if pat terns, These pat ferns aIre shown as
hyperpi anes in a "'-dimens ional1 weioght space. I akh hvperp lanle represent S

the difference between two iilti-att riblite vector%.. The( operator Choice
Is shown by the direct ion of the arrow at each pat tern, the absolute
rule, ( the triangles in the f igqure) ac hi eve' k-orieok pred Ici-ionl
after four observations, while the fi xed rule (the ci ,cles) requ ir fivI y

Unfortunately, the absolute rule is expected to he les'. forgivinqi of
inconsistent behavior than the f ixed or tract itona 1 rul1 es. 1 his i. brcause,
of the la rge responses the absol1ute rule( make'. to operrator i ncon'. i s enc I.
The fixed and fractional rules miay exhibtiit a great or tendency to smlooth ort
average the behavior.

AN EXAMPL[E. For an examplev of how the adapt iVO dec ' In an ly AI I. approach1'040
is applied, consider the select maneuver deci1sioni. Ass.ume it ha% al reads'
been decided that the qoal of the maneutver should be to evadev.

Assume that the following alternative evasive mane11uvers are avail ble:

a. Sink to the bottom and hide.

b. Run (full speed in straight linie).

c. Sink to hot tom and deploy decoy.

d. Rujn in a 7iqzaq pattern.

V . Rujn and depl ov decoy.

The following attributes could he uised:

In formnation Gain. This represents the exp1ected in foiia t ion k'i I nd tN
FiT6-d -ab'Oiift the opponent As a result of the action h0e% Inicons1idered. 11his
is dependent on the probabili ty (assessed by opponet that fri end hla%
already detected him. Thus. if friend already h Ia% a1 lot of intormat ioni
there's not much information left. to bet ojained.

Deception. This is; the exiec-ted amount of false infornuation -gained as a1
resullf of decoyinrg. Th is may be stit iton dependent . In the example.
releasing a decoy would have greater decept ion value, if the su& is rest ink)
on the bottom, than if it is going full speedi aheaid. Al so.* if You haven't
yet been detected, deploying a decoy wvil1 give away the fact that you Are
in the area.

Vulnerability . This attributte represents y our vinerabi litv to bel nt hit
I T you aet eect.e d. The attribute levels for vial nerabi lit should tie
subjectively estimated and defined in advance for each alternaltive.
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3

INITIAL WEIGHT POINTS

ABSOLUTE CORRECTION RULE

® FIXED CORRECTION RULE

Figure 9. Comparison of Behavior of Convergence Rules
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Cost. This is the direct cost of the alternative. Cost may also be used
as a gross resource depletion attribute.

Effect on Mission Objective. This attribute should be redefined with
subjective weights.

Table 2 gives an example of the MAU approach to optimal action
selection. Each column represents one alternative action that the CO can
choose in the tactical situation. Each row represents one of the key
attributes by which each action is evaluated. The values in the table
are predetermined or calculated from the features of the tactical situation.
In the example given, the tactical situation is the following:

a. The opponent is 80 percent sure friend has not detected him (thus
the "run" alternatives may cause high information gain).

b. The deception effect of a decoy is higher if chosen with a "sink"
rather than "run" alternative.

c. Cost includes fuel, weapons and decoy expenses, and are .1, .4,
.6, .5 and .8, respectively.

The first column gives the utility value associated with each attri-
bute by a trainer. These values are the result of the adaptive training
algorithm. They are positive for good attributes (for the opponent
objectives) and negative for bad ones. The MAU processor will select the
alternative action that would have the highest combined value. This is
done by a weighted sum of utilities times the attribute level. These
values are calculated and rank ordered at the bottom of the table. Alter-
native #1 turns out to have the highest value and it is the one the syste,,
will select. In a different tactical situation the attribute levels of the
various options may be different (e.g., friend has detected the opponent)
causing another action option to come up on top and that action would be
the one the opponent model would select to activate the simulated opponent
on the screen.

THE HEURISTIC SEARCH APPROACH

STATE SPACE MODEL. The overall objective of knowledgeable opponent
scenario generation is to provide a realistic simulation of an active enemy.
The enemy would react to events and actions taken by the friendly forces
and choose a course of action that would lead to the achievement of some
enemy goal, which usually means a bad outcome for the friendly forces. The
heuristic search approach provides such a mechanism.

In the underlying model, which is called the "state space" model, the
problem domain (such as underwater warfare) is expressed in terms of
"states," which are complete descriptions of the tactical situations as
they exist at some particular instant of time (Nilsson, 1971). An "action"
is a transformation which, when applicable, converts one state into
another. Thus, a sequence of actions ("plan" or "allocation") converts
some initial state into a final, or goal, state. The enemy submarine
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TABLE 2. ATTRIBUTE LEVELS, VALUES, AND EXPECTED VALUES
FOR EXAMPLE SCENARIO

Attribute Utility Sink to Run Sink and Run in Run and
bottom & deploy zig zag deploy
hide decoy pattern decoy

Informati on

Gain -1.0 0.0 0.7 0.5 0.8 1.0

Deception +0.5 0.3 0.0 0.8 0.0 0.5

Vulnerability -0.8 1.0 0.5 1.0 0.2 0.2

Cost -0.2 0.0 0.5 0.9 0.6 1.0

Effect on
Mission
Objective +0.2 -0.9 1.0 -1.0 0.7 0.6

MAU Value
of Choice 0.0 -0.47 -1.16 -0.98 -1.18 -0.77

Rank Order 1 4 3 5 2
Best worst
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commander asks the questions, "What sequence of actions can transform the
current state into a goal state which satisfies my overall objectives?"
In other words, "How do I get from where I am to where I want to go?"
Before a system can perform properly, it must know what actions are
available, under what circumstances they can be applied, what their effects
are, and what possible states can arise from their use.

BASIC SEARCH TECHNIQUES. The most basic search techniques are systematic
expansions of the state space. Starting from the start node (labeled 1 in
Figure 10--the current state), the search algorithm expands all its
possible successive nodes. When a goal node is encountered, the path from
the initial node to that goal node is the solution sought. In the ASW
case, it is the strategy, or sequence of actions, the commander has to
take to reach his objective.

Figure 10 shows the most elementary algorithms--the "breadth-first"
and the "depth-first" algorithms, respectively. In the "breadth-first"
algorithm, each node is expanded completely--all its "sons" identified--
before the next is started. This method is guaranteed to find the shortest
path from the start to the goal nodes. The numbers in Figure 10 indicate
the order of node expansion.

In the "depth-first" algorithm, each alternative line of inquiry is
sought to the fullest depth before other alternatives are evaluated. When
such a search fails, the algorithm tries the next deepest possibility.
Figure 10 also shows the order of node expansion in this algorithm. The
depth first algorithm does not guarantee the shortest path to a goal if more
than one goal node exists.

These search methods are "blind" methods because they develop systema-
tically every node in the state space without using any information which
may be known in advance about the particular problem domain or the parti-
cular knowledge found in the nodes that has already been expanded to guide
the search process. The heuristic search approach is the class of algorithms
that uses such domain specific knowledge to guide the search.

HEURISTIC SEARCH METHODS. Heuristic search methods try to utilize any
information known about the problem domain to guide the search for a solu-
tion in the state space. The added information helps avoid the combinatorial
explosion of computer resources (time and memory) needed for the basic
search techniques. Figure 11 illustrates the basic idea of the heuristic
search approach by comparing it to depth first and breadth first searches.
The contours of node expansion are directed toward the goals GI and G2, in
contrast to the blind search algorithm. Applying a heuristic search usually
leads to the discovery of optimal or suboptimal solutions in cases that
would be too big to handle by standard techniques. Many achievements of
heuristic search are known. For example,

a. Computer Aided Design (Powers, 1973; Hagendorf et al, 1975).

b. Test Sequence Generation for Detection of Failures in Clockmode
Sequential Circuits (Hill and Huey), 1977.
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Breadth
First 

1

Depth 
7 cFirst

Figure 10. Breadth and Depth-First Expansion Order
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SRfADH FIRST SEARCH

DEPTH FIRST SEARCH HEURISTIC SEARC"

SEARCH TREE LIMI!

Gi. G2 GOAL NODES

Figure 11. Expansion Contours of Depth-First Breadth-First
and Heuristic Search Methods
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c. Edge and Contour Detection (Martelli, 1976).

d. Chromosome Matching (Montanari, 1970).

e. Organic Chemical Synthesis (Sridharan, 1973).

f. Ballistic Missile Defense (Leal, 1977).

g. Discovery of Mathematical Concepts (Lenat, 1978).

The heuristic information can be contained in different parts of the
search algorithm. If r is the function that generates node successors and
f (n) is an estimate of the promise of node il to be on the path to a goal
node, then the heuristic information may be contained in either of them.
Using knowledge in r, the search algorithm would generate first the more
probable successors of a node. On the other hand, using knowledge in f (n)
the most promising nodes would be selected for subsequent development
in the face of less promising ones.

THE MINIMAX AND ,r ALGORITHMS. Two algorithms which have particular appli-
cability to the case of military confrontation are the minimax and the "

algorithms. The minimax is applicable in zero-sum adversary confrontations
where what is good for one side is bad for the other. When developing the
state space of such a problem, the prudent decision maker has to assume
that, when given the choice, the enemy would select the alternative which
is the most damaging to the decision maker"s own objectives. When expanding
the search space for this problem, as shown in Figure 12, the commander
first determines all the alternatives available to him. This is the maxi-
mizing level because at this level the commander has the choice, and he
will obviously choose the alternative that maximizes his measure of success.
The next level is the set of responses available to the enemy for each of
the commander's choices. Here the enemy will make the choice, and he will
choose the worst alternative (from the commander's point of viec). Thus,
this layer is called the minimizing level. The maximizing and minimizing
of layers continues downward in the tree until the allocated computing
resources are used up. At that point, the static value of each tip node
is evaluated. The value of a tip node is a measure of how "good" is the
state represented by the node from the commander point of view. If the
layer of nodes just above the tip nodes is a "maximizing" layer, each node
in it assumes the maximal value of its "children" nodes (and vice versa
for a minimizing layer). These "backed-up" values propagate upward in the
state space tree until they reach the top layer. The minimaxed values
that reached the layer just under the current state (the root of the tree)
are the basis of the commander's choice among the alternative actions
available to him. This "minimaxing" algorithm is repeated for every
decision the simulated commander has to make; thus, it takes into account
the dynamics of the situation, and it finds the best tactical move fore-
seeing the best choice of the enemy. In this algorithm, the heuristic
information is contained in the tip node evaluation function f (n) in
the previous section.
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R IG INVI Ai.S TATO 

AII NG L'MOVES AVAILABLE TO SIMULATED COMMANDER

L ' LEW SITUATIO NiS 
MAXIM ZING LEVEL

RESPONSES AVAILABLE TO ENEMY

NVEW SITOAI 1ONS NZNZiN&N LEVE4,

I Figure 12. The Minimax Algorithm Tree Development
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The alpha-beta algorithm is an improved version of the basic minimax
algorithm. The alpha-beta algorithm is a systematic method to reduce the
number of nodes that have to be evaluated and even makes it unnecessary to
expand complete branches of the state space tree. It can be shown that
although the algorithm allows a large part of the search tree to be com-
pletely ignored, it will not lose any solution that the basic minimax
algorithm would find.

The alpha-beta algorithm starts with a depth-first expansion of the
tree down to some level n (see Figure 13). When the depth limit is reached,
the tip nodes are evaluated and temporary values are backed-up in the tree.
The alpha-beta technique takes advantage of these preliminary values.
Consider, in Figure 13, the maximizing node A in the tree after nodes 4-9
have been developed below it. A has been assigned a temporary value of
0.2 (propagated from node 5). B, which is a minimizing node, has been
assigned a temporary value of 0.1 (propagated from node 9).

At this time, there is no point developing any other successor to the
node B (such as C) because, since it is a minimizing node, the best value
B can get is 0.1 or lower, and node A, being a maximizing node, will always
select 0.2 over 0.1. This argument is the "alpha" half of the alpha-beta
pruning. The empty nodes in Figure 13 show all the subtrees that will be
pruned off and the order of node generation. In fact, the empty nodes need
not be generated at all.

The "beta" half operates in precisely the reverse for nodes in the
minimum layers. By using the alpha-beta algorithm, the tree can be explored
approximately twice as deep as a simple minimax algorithm, while expanding
the same number of nodes. The algorithm is somewhat slower, inasmuch as
it has to do the bookkeeping for the temporary alpha and beta values. The
alpha-beta algorithm is a very promising potential opponent model.

ADVANTAGES

a. Heuristic search techniques have a wide range applicability, as
can be seen from the examples mentioned above.

b. The underlying structure (state-space, AND/OR graphs) is very
general and fits naturally all problems of a combinational nature and all
hierarchical problems which can be decomposed into goals and subgoals
(this includes decision trees).

c. General theoretical results are available.

d. It is universally accepted that heuristics are crucial to cope
with intractable problems.

SCOPE AND LIMITATIONS

a. Heuristic search techniques are designed for problems of a parti-
cular nature only, with well-defined states, subgoals or subproblems.
Problems with a continuous nature, for instance planning in a continuum,
cannot be solved via heuristic search.
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Figure 13. Example of Alpha-Beta Pruning
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b. The use of heuristic search itself poses a problem. The more
specific a heuristic function, the more efficient it is in guiding the
search. How well designed and problem-specific heuristics are will there-
fore determine their efficiency.

c. Heuristic search might be subject to catastrophes (if no sulution
is found after the computational resources are exhausted or an insuffi-
ciently good solution is found).

PRODUCTION RULES APPROACH

OVERVIEW. Production rule systems represent another successful approach
for knowledge representation and deductive mechanisms. This approach is
similar to the heuristic search approach in that it uses a modification of
the state space model as the underlying conceptualization (see definition
in the section on heuristic search). The technique of representing the
knowledge is different, however, and so is the mechanism which finds the
path from the current state to the goal state. The problem specific know-
ledge (heuristics) is packaged in production-rule systems as small modular
"chunks" called productions.

A production is a rule which consists of a situation-recognition
part and an action part. Thus a production is a 'situation--action" pair
in which the left side is a list of things to watch for in the description
of the current state of the world, and the right side is the list of things
to do in that case.

In the case of submarine warfare, a production that guides the

commander's actions may be something like:

If

AND

Enemy dominates area

Enemy has not yet detected you

You are out of his torpedo range

You are in very shallow water

Then

Escape by sinking to bottom in silence

The effect of such a production is to respond to the situation when
all the aspects combined by the AND are present and change the current
action from whatever it was before to ESCAPE.

In addition to the large set of such productions, the production
rule system contains a triggering mechanism that uniformly checks all the
productions that apply in a given situation (by testing for truth of the
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left hand side of each production) and applies those that are applicable--
causing the situation to change.

The main advantages ot the production rule approach are the ease and
modularity of the knowledge representation. Consequently, it is easy to
elicit infornation from experts without requ iring that they be progranvners.
In fact, many train inq manuals are written already in "production rule style."
Furthermore, the infonnation is incremental; thus it is easily modified,
updated and expanded into new areas of expertise. It is also usually
argued by production rule proponents that this form of knowledge representa-
tion is highly compatible with human cognition, making it a very useful and
powerful training tool. For example, suppose an opponent conuiander model is
built as a production rule system. It becomes very easy to conmuunicate
with the system and ask "Why have you done that?" meaning what aspects of
the situation or what actions of the trainee caused some unexpected response
of the simulated enemy connander.

The trainee can discover specifically where he went wrong, and he can
start in mid action and try other alternatives. At the sanwn time, this is
also a powerful debugging tool allowing experts to tune the system by
following its reasoning process and identifying the specific cause for a
mistaken conclusion which led to an unreasonable response.

THE PRODUCTIONS. As AND/OR graphs (a graph with nodes combined by logical
AND or OR functions), production systems are composed of two parts: t he
set of productions and a mechanism to find a solution in a given situation.
We will discuss first a graphic representation of the productions them-
selves. A simple production specifies a single conclusion which follows
from the simultaneous satisfaction of the situation recognition conditions.
Any particular conclusion may spring from any production. The conclusion
specified in a production follows from the AND or "conjunction" of the facts
specified in the premise recognition part. A conclusion reached by more
than one production is said to be the OR or "disjunction" of those pro-
ductions. Depicting these relationships graphically produces an AND/OR
graph. Figure 14 shows an AND,/OR graph which reaches frolii base tactical
facts (Fi) on the left, through the different productions (P), to a con-
clusion or an act to be taken, on the right side of the figure. Any
collection of productions implies such a graph. In FiQure 14 we used the
set of submarine warfare productions given in Figure 15. These productions
should be taken as an example of the capabilities of this approach.

The arrangement of nodes in this graph focuses on how the conclusion
can be reached by various combinations of basic facts. As with ordinary
AND/OR trees, a conclusion is verified if it is possible to connect it with
basic facts through a set of satisfied AND,OR nodes. Different sets of
facts can be used to reach a given conclusion by selecting different
branches at OR nodes.

Sometimes it is useful to look at the implied graph to get a better
feel for the problem space, noting whether the reasoning is likely to be
broad and shallow, narrow and deep, or broad and deep. Again, however,
caution is in order. When used prominently in discussions of goals and
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subgoals, and/or graph representations tend to make control look like a
search problem with the various search ideas becoming applicable. This
position has its good and bad features. One bad feature is that it can
create a tendency to waste time with an existing problem space rather than
to make a better space, where less search, if any. would he needed.

THE CONTROL MECHANISM. The control mechanism which utilizes the set (if
productions takes a collection of known facts about the situation and makes
new conclusions according to productions that are satisfied by the initial
facts. In operation, the user would first gather up all facts available
and present them to the system. The control mechanism will then scan the
production list for a production which has a matching situation part, i.e.,
all the premises in the left hand side are satisfied. This production will
be activated and its action side will change the facts known about the
situation. In the example given, if PI was activated, it adds the con-
clusion that the "enemy dominates the area" to the situation descr4-tion.

Reasoning from base facts to a conclusion rarely entails using only
a single step, however. More often, intermediate facts are generated and
used, making the reasoning process more complicated and powerful. One
consequence is that the individual productions involved can be small.
easily understood, easily used, and easily created. Also notice that the
intermediate facts added by the lower level productions are tactical facts
meaningful to the military users of the system, resulting in many benefits.
Using this approach, a simulated submarine conmmander can produce a chain
of conclusions leading to intelligent tactical actions, even as a trainee
comander makes his actions dynamically.

In the event many productions have premises or situation specifica-
tions that are satisfied simultaneously, there must be some way of deciding
among them. Here are some of the popular methods:

a. All productions are arranged in one long list. The first matching
production is the one used. The others are ignored.

b. The matching production with the toughest requirements is the
one used, where "toughest" means the longest list of constraining premises
or situation elements.

c. The matching production most recently used is used again.

d. Soe aspects of the total situation are considered more important.
Productions matching high priority situation elements are privileged.

So far, the deduction oriented production system is assumed to work
from known facts to new, deduced facts. Running this way, a system is
said to exhibit "forward chaining." But "backward chaining" is also
possible, for the production system user can hypothesize a conclusion or
a desired final state and use the productions to work backward toward an
enumeration of the facts that would support the hypothesis. For example,
(see Figure 14) in the case of a submarine comnander, the system can start
from the mission, e.g., attack enemy sub. Then chaining backward from

!,4

, .... .....



NAVTRAEQUIPCEN 78-C-0107-1

(P1O), it will conclude that it has to achieve self-dominance. This can
be achieved by confronting an enemy surface ship (P9) or an enemy sub of
the same type in deep water (P8). Thus, by a small change of orientation,
the same set of productions was used backwards. Knowing that a deduction-
oriented production system can run forward or backward, which is better?
The question is decided by the purpose of the reasoning and by the shape
of the problem space. Certainly, if the goal is to discover all that can
be deduced from a given set of facts, then the production system must run
forward. The production system can run forward from all premise elements
as long as suitable productions exist. Using sensory systems to supply more
facts is necessary only when no productions apply, and no conclusion has
been reached. On the other hand, if the purpose is to verify or deny a
particular conclusion, or reach a desired situation through a sequence of
actions, then the production system is probably best run backward from that
conclusion. Avoiding needless fact accumulation is one result obtained;
indeed, no irrelevant facts need be checked at all.

Deciding whether forward chaining or backward chaining is better
depends, in part, on the shape of the space. Figure 16 illustrates this
by way of two symmetric situations. All possible states are represented
along with the operations that can change on e state into a neighbor. In
the first situation shown, forward chaining is better because there is a
general fan-in from the typical initial states toward the typical goal
states. It is hard to get into a dead end. In the second situation, the
shape favors backward chaining since there is fan out.

ADVANTAGES. Proponents of production rule systems usually cite one or
more of the following advantages:

a. Production systems provide a powerful model of the basic human
problem solving rnchanisms. This results in easy expert elicitation, user
communication at the comfortable level of military tactical concepts and
terms, easy trouble-shooting, and good training capability.

b. System states are meaningful to users, debuggers, etc.; thus an
evaluation can be made on the tactical level rather than in the computer
implementation level.

c. Production systems enforce a homogeneous representation of know-
ledge, effectively separating the static data representation from the uni-
formly applied evaluation mechanism.

d. The control mechanism is simple and explicit on what to do next,
is clear from the current state what productions are available.

e. Production systems allow incremental growth through the addition
of individual productions and without changes necessary to any others.

f. Production systems allow unplanne, but useful, interactions
which are not possible with control structures in which all procedural
interactions are determined beforehand. A piece of knowledge, or a com-
bination of such, can be applied whenever appropriate, not just whenever a
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Figure 16. And/Or Graph Shapes for Forward or Backward Chaining
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progranmmer predicts it can be appropriate. This can lead to highly intel-
ligent performance by systems with a surprisingly small (several hundreds)
set of productions.

g. Providing explanation capability to the system is natural to
implement. When some decision is made, the system Can present the sequence
of productions that led to that conclusion, thus affording its "reasoning"
about the situation.

h. The production rule approach is as general as any other method
based on the state space model.

i. Productions can be quantified with probability information leading
to applicability in decision making and risk evaluation.

DISADVANTAGES. Some of the advantages of the production rule approach can
become disadvantages if care is not exercized in the design process:

a. Maintaining focus of attention: It would seem that PR systems
allow knowledge to be tossed into the system homogeneously and incrementally
without worry about relating new knowledge quanta to old. Thus, by relin-
quishing control, such system allow unimportant productions to usurp
center stage from more important productions, leading the process astray.

b. Size problems: One particular problem is that production systems
may break down in the amount of knowledge is too large, or when the number
of productions grows beyond reasonable bounds. The advantage of not needing
to worry about the interactions among the productions can become the dis-
advantage of not being able to influence the interactions among the larger
number of productions.

The possible solution, of course, is to partition the facts and
the productions into subsystems such that at any time only a manageable
number are under consideration. Within each subsystem, some productions
may be devoted to arranging transfer of inforimtion or attention to another
subsystem. Curiously, some users of Hewitt's ACTORS language produce pro-
grams that have a strong resemblance to systems of communicating produc-
tion subsystems.

This solution, however, goes against one of the main advantages
of production rule systems, namely, modularity and independent control.
If control guiding productions are added, we again have the problem of
explicitly directing where control should go.

c. Global effects: It is awkward to represent global effects using
PR approach. Here, again, the modularity of the productions requires
that if some global effects (such as weather in ASW) take part in many
productions, it is necessary to duplicate the whole set of productions
which behave differently for each different weather state.
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SECTION V

MODEL EVALUATION

EVALUATION ATTRIBUTES

The attributes for evaluating different opponent models are described
below. These attributes are divided into three categories:

a. Modeling Attributes.

b. Development Attributes.

c. Performance Attributes.

MODELING ATTRIBUTES

a. Flexibility for Modeling Different Opponents. How easy it is to
change the opponent's appearance of tactical behavior such as smart/dumb,
aggressive/defensive, cautious/risky, type of simulated sub, and mission
type.

b. Ability to Model Subjective Operator Decision Criteria. How well
the model deals with subjectivity. Can the model make use of the oper-
ator's internal preference--value structure?

c. Modeling Continuous Behavior. Continuous behavior means that
the parameters representing the behavior (sub x, y location) can vary in
infinitesimal increments rather than between a few discrete alternatives.

d. Modeling the Flow of Control. (Representing in a flexible man-
ner the sequence of processing.) Processing may be a decision--selecting
among alternatives or assessing a situation, or it may be an action. The
flow of control may further be parallel or sequential, instantaneous or
protracted, synchronous or a synchronous, and event driven versus schedule
driven.

e. Modeling AND and OR Conditions. Can the model represent compli-
cated, logically structured criteria (i.e., a set of conditions linked
by AND's and OR's) for making a decision.

f. Modeling Probabilities. The capability of the model to respond
to probabilistic inputs and to give probabilistic outputs (or make a
Monte Carlo selection of outputs).

g. Conciseness of Representation. The quantity of parameters, data,
or code needed to represent a particular behavior.

h. Adaptiveness. Can the model modify automatically its own para-
meters in response to external events. The training is done on-line, in
task and in real time.
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i. Dependencies Among Input Variables. The difficulty of applying
the model when dependent relationships among the input variables exist.

j. Auxilliary Payoffs. This represents extra features available
with the particuar modeling approach. Examples are: ability to explain
decision selections, ability to output relative desirability of the
alternatives, performance measures, etc.

DEVELOPMENT ATTRIBUTES

a. Scenario Set-Up Time. This is the time and effort required to
specify a new scenario or enemy behavior. This function is done by the
instructor ahead of the training session.

b. Required Development and Implementation Time and Cost. This
includes the time spent by analysts, the amount of research required, therequired size and complexity of the software, ease of debugging, computer

resources required, etc.

c. Required Integration Time and Cost. The difficulty of integrat-
ing the new software into the current SCST software systems.

d. Vulnerability to Increase in the Size of the State Space. This
represents the degree to which development, implenentation, and modeling
difficulty increases with the size of the state space. More vulnerability
means that the complexity increases more rapidly than the increase in
state space size. Vulnerability carries the risk of the problem "blowing
up" or becoming intractable.

PERFORMANCE ATTRIBUTES

a. Instructor Time Needed for Operation. The amount of effort and
interaction required of the instructor during operation. Hopefully, the
instructor's burden would be decreased rather than increased.

b. Instructor Control. This represents problems of synchronizing
the model to allow smooth transitions from instructor control to model
control and vice versa.

c. Required Computer Resources. Run time and memory requirements
during model operation.

d. Trainee Evaluation and Performance Measurement. This represents
the degree to which trainee performance measures are naturally and readily
available from the model.

e. Real World Fidelity. The degree to which the model reflects
real world behavior patterns.

59



NAVTRAEQUIPCEN 78-C-0107-1

EVALUATION BY MODELING ATTRIBUTES

a. Flexibility of Modeling Different Opponents. In evaluating
flexibility we are not considering the number of parameters that have
to be adjusted to bring about a particular behavior--because any pre-
defined set can be brought in from back-up memory in essentially the
same speed. Rather, we are concerned with how easy it is to obtain the
parameters and identify the parameters that have to be replaced. This
related to the consideration of how transparent the representation is
with respect to knowing what behavior a particular parameter creates
and vice versa. The Adaptive Decision approach is the easiest in that
a particular behavior can be generated automatically by training the
system on samples of the desired behavior. However, this approach is
not transparent unless all the attributes used are explicitly meaningful
to the decision maker. The production rules approach offers the great-
est transparency and clarity becuase particular behaviors are generated
in a few localized productions and they are stated there in (almost)
plain language rather than a collection of numbers. The Elicited Prob-
ability approach is non-automatic (the conditional probabilities, etc.,
have to be elicited explicitly from experts) and it is also less trans-
parent than the Adaptive Decision Analysis approach because more para-
meters are needed to represent a given behavior. With the Heuristic
Search approach, the heuristic, pruning and generating functions can be
changed, but the changes necessary to obtain a particular behavior are
not immediately drivable from it. The rank order (starting with the most
flexible and transparent approach) is:

(1) Production Rules.

(2) Adaptive Decision Analysis.

(3) Elicited Probability.

(4) Heuristic Search.

b. Ability to Model Subjective Decision Criteria. The Adaptive
Decision Analysis Model was developed specifically to handle subjective
criteria and even can capture them automatically through training. With
the Elicited Probability approach, subjective weights could be applied
to the output but more research would have to be done to find a way to
obtain them by automatic training. The Production Rules approach can
capture subjective decision criteria of experts by embedding them in the
productions themselves, but as with the Elicited Probability approach
it takes a deliberate effort. The Heuristic Search approach cannot
represent subjective criteria directly. The rank order, starting with
the approach with the greatest ability for modeling subjective criteria
is:

(1) Adaptive Decision Analysis.

(2) Elicited Probability.
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(3) Production Rules.

(4) Heuristic Search.

c. Modeling Continuous Behavior. All of the approaches select
discrete alternatives as their output; however, this decision making
function can be separated from the actual calculation of the continuous
variables. Thus, the decision model will select among several functions
that will perform the actual trajectory calculation. Adaptive Decision
modeling is the only approach which accepts continuous criteria as an
input. The Elicited Probability and Adaptive Decision approaches give a
value associated with the output which is continuously variable. Heur-
istic Search involves a traverse through a tree of discrete nodes. The
criteria for selecting a node may be continuous but based on the state
at the parent node which is a unique node. Production Rules combine
discretely defined logical statements to select discrete outcomes. The
ranking of the four approaches (best first) for this attribute are as
follows:

(1) Adaptive Decision Analysis.

(2) Elicited Probability.

(3) Heuristic Search.

(4) Production Rule.

d. Modeling the Flow of Control. Traditionally, the flow of control
in a simulation program was imbedded in the control structure of the
implementation language. This method is always available as a last resort.
By including a network of states in the production rule system the control
flow can be made explicit. This avoids dependency on hard coded logic and
makes the flow of control flexible, visible, and easy to modify. In the
Heuristic Search approach the flow of control is rigidly built into the
state space and the evaluation function, making changes more awkward. The
Elicited Probability approach represents flow of control indirectly in
that the behavior created has an orderly sequence. The Adaptive Decision
Analysis addresses mainly the actual decision points and the flow of
control has to be provided by external mechanisms. In rank order, start-
ing from the most explicit and flexible flow of control is:

(1) Production Rules.

(2) Heuristic Search.

(3) Elicited Probability.

(4) Adaptive Decision Analysis.

e. Modeling AND and OR Conditions. Only the Production Rules
approach explicitly models AND and OR input conditions. In order to
model AND and OR conditions with the Elicited Probability approach, it
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is necessary to define an input state which is determined from logical
conditions. Thus the AND's and OR's tend to be hard coded into the
program which generates the input state. This may complicate the dep-
endency problem. The Adaptive Decision Analysis approach has similar
but more severe problems in dealing with AND and OR conditions. With
heuristic search there would be a separate node for every possible comb-
ination of AND and OR conditions. One way to include AND and OR condi-
tions would be to use a Production Rule approach to select from the
other three approaches as sub-models (e.g., combine approaches). The
rank order of the approaches is:

(1) Production Rules.

(2) Elicited Probabilities (distand second).

(3) Adaptive Decision Analysis.

(4) Heuristic Search.

f. Modeling Probabilities. The Elicited Probability approach
generates probabilistic outputs and considers the probabilities of the
input states, but explicit probabilities as input state variables are
not modeled. With the Adaptive Decision Analysis approach, explicit
probabilities as inputs can be handled, but the outputs are not prob-
abilistic. With Production Rules, a probability may be associated with
the output, input probabilities can be handled as with the Elicited
Probability approach described above. Heuristic Search cannot handle
probabilities directly. With the approaches which do not explicitly
use probabilistic inputs, it is still possible to implicitly represent
probabilistic inputs by expanding states into sub-states which have a
probability as part of the state definition or breaking the probabilistic
variables into several discrete ranges. This is clumsy, however, because
it increases the size of the state space. The rank order of how well the
four approaches model probabilities is:

(1) Adaptive Decision Analysis.

(2) Elicited Probability.

(3) Production Rules.

(4) Heuristic Search.

g. Conciseness of Representation. In a sense this is relative to
the application. Each model could bethe most concise for modeling a
problem ideally suited for that approach. As a general measure of
conciseness we can consider the number of parameters needed to represent
behavior. Here, conciseness should not be confused with precision. We
assume the more concise model has fewer parameters. The Adaptive Decision
Analysis model represents behavior with only four to seven attribute
weights, and it is necessary to calculate the same number of attribute
levels for each action alternative. The Elicited Probability approach
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has a column of elicited probabilities for each alternative. The number
of states considered in making a decsion. The Production Rule approach
uses one or more logical structures for each action alternative. The
truth or falsity of each operand must be evaluated. Heuristic Search
has nodes corresponding to the number of possible combinations of input
states. A Heuristic function and a pruning function must also be evalu-
ated. The rank order of the approaches (most concise first) are as
follows:

(1) Adaptive Decision Analysis.

(2) Elicited Probability.

(3) Production Rules.

(4) Heuristic Search.

h. Adaptiveness. Only the Adaptive Decision Analysis approach is
adaptive in real time.

i. Dependencies of Input States, The Elicited Probability and
Adaptive Decision Analysis approaches both assume independent input
states. In both cases it is common practice to assume independence as
a working assumption even when it is not strictly true. The methods of
overcoming this problem are basically the same in both cases. The
Production Rule and Heuristic Search techniques don't make an independent
assumption and are therefore not affected by this problem. The rank
order (most favorable first) of this attribute is:

(1) Production Rules and Heuristic Search.

(2) Elicited Probability and Adaptive Decision Analysis.

j. Auxiliary Payoffs. The auxiliary payoffs for each approach
are as follows:

(1) Production Rules. Ability to explain reasoning leading to
the selected action alternatives. Similarity of the representation to
the human thought process.

(2) Adaptive Decision Analysis. Relative desirability of
alternatives is available. A good collection of performance measures
have been developed to go with this approach.

(3) Elicited Probabilities. A simulated intelligence expert
can readily be made.

(4) Heuristic Search. This approach most directly simulates
the process of "thinking ahead" or contemplating a sequence of possible
moves and counter moves.
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The rank order depends upon what auxiliary payoffs are appropriate
for the particular application of the number of auxiliary payoffs avail-
able (largest number first):

(1) Adaptive Decision Modeling.

(2) Elicited Probability.

(3) Production Rules.

(4) Heuristic Search.

EVALUATION BY DEVELOPMENT ATTRIBUTES

a. Scenario Set-Up Time. With the Adaptive Decision Analysis
approach, the instructor would act out the desired scenario in an opera-
tional setting and the behavior would be learned by the model. It may
take a while for the model to converge, and consistent behavior is
required for the model to train. Compared to other methods the time
would be spent doing the normal task rather than struggeling with concepts
which may be unnatural. The Elicited Probability approach requires that
the instructor estimate a number of probabilities, view the resultant
behavior, and make fine tuning changes. The Production Rules approach
requires the specification of new or modified production relevant to the
new behavior. The Heuristic Search approach requires changes to the
heuristic function and possibly the node definition. This may be very
difficult. The rank order (starting with the shortest time) is:

(1) Adaptive Decision Analysis.

(2) Production Rules.

(3) Elicited Probability.

(4) Heuristic Search.

b. Required Development and Implementation Time and Cost. This is
a very difficult attribute to estimate. Each approach has aspects which
are easy and those which are hard. The following rank order (quickest
and cheapest first) is biased by previous experience Perceptronics has
had with these models:

(1) Elicited Probability.

(2) Production Rules.

(3) Adaptive Decision Analysis.

(4) Heuristic Search.

c. Required Integration Time and Cost. Since integration difficulty
is dependent on the amount of interfacing with the existing system, and
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the amount of interfacing is dependent on inputs, outputs, and data areas
needed (which are roughly the same for all approaches), there is no basis
at present for rating one approach above any other.

d. Vulnerability to Increase in Size of the State Space. The
Adaptive Decision modeling approach is the least vulnerab e to increase
in the size of the state space. This is because a small number of
attributes are used and their number does not increase. The only effect
an increase in the size of the state space has is to make it more involved
to calculate the attribute levels.

The Elicited Probability approach could also stay the same size as
the state space size increases; however, it would probably be a practical
necessity to increase the number of parameters or to put more model levels
in the hierarchy.

The Production Rules and Heuristic Search approaches are potentially
extremely vulnerable to increase in the size of the state space. In
the case of the Production Rules approach, the number of additional
Production Rules needed is likely to increase faster than the size of the
state space. Heuristic Search is the most vulnerable, since its complexity
increases as a combinatorial function of the size of the state space.

Here is the rank order (best first):

(1) Adaptive Decision Modeling.

(2) Elicited Probability.

(3) Production Rules.

(4) Heuristic Search.

EVALUATION BY PERFORMANCE ATTRIBUTES

a. Instructor Time Needed for Operation. Most of the factors
affecting this are probably independent of the model itself except for
those things discussed earlier under "Instructor time needed to set up
problem scenario." There should probably be some interface programs
which help transfer information and control from the instructor to the
models, and information back to the instructor from the models.

b. Instructor Control. When the instructor assumes control from
the model and vice versa, steps must be taken to insure smooth transitions.
This means that all of the state variables needed by the models must be
maintained. Also, the state changes created by the models must be up-
dated in the existing software. Furthermore, when control is returned
from the instructor to the automatic opponent, the specifics of the
opponent state must be provided. This attribute is nearly independent
of the model approach; however, in general there is greater difficulty
with a more complicated model.
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c. Required ComputerResources. Computer resources are a function
of how detailed each decision is od eled. In general, the rank order
(best first) is as follows:

(1) Adaptive Decision Analysis.

(2) Elicited Probability.

(3) Production Rules.

(4) Heuristic Search.

d. Capability for IncludinjPerfoniiance Measures and Evaluation. A
lot of development has gone into performance measures with the Adaptive
Decision Analysis approach. Performance measures haven't been developed
with the other approaches.

In the applications where perfovinance measures have been developed
the adaptive model was used to model the trainee, whereas, in the present
application it is the instructor who is adaptively modeled. The power
of the performance measures is derived from the adaptive model of the
trainee. The reason for this is that the model of the trainee represents
the current state of knowledge and skill of the trainee and performance
measures are based on an analysis of model parameters. The performance
measures made possible by modeling the trainee include the following:

(1) Decision consistency.

(2) Comparision of trainee values with expert values.

(3) Use of the trainee values to drive a simulation to compare

the behavior created by the trainee's values to behavior created by other
sets of values.

(4) Use the trainee values as they are to characterize the
trainee.

In addition to performance measures based on adaptively modeling the
trainee, the following measures have been developed:

(1) Evaluate trainee's skill at purchasing information.

(2) Compare the trainee's decision with the decision the expert
would make (as indicated by an expert model with corresponding values).

(3) Measure decision time.

(4) Define a way to score the task elements such that a score
results from each session (this measure is more powerful when used with
an adaptive trainee model).

(5) Compile statistics on the trainee's frequency of making
various decisions and compare these with expert statistics.
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As envisioned previously, the adaptivity is used to model the instruct-
or acting as the opponent--the trainee was not modeled. However, if good
performance measures are important, it would be good to model the trainee
as well. The algorithms to do this would be available in the software
since they would have been developed to model the instructor. Much of
the interfacing to model the traineee must also be done anyway. The main
complication in adding the vapability to also model the trainee is the
fact that to be valid the attribute levels should be displayed to the
trainee. This changes the task as it appears to the trainee.

e. Real World Fidelity. Each model has the highest real world
fidelity when applied in an area most suited for it.

Table 3 summarizes all the conclusions of this chapter in table
form.
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TABLE 3. MODEL EVALUATION BY DIFFERENT CRITERIA

Modeling
Attributes

\Appm-ach C
0 0 V ~q

Elicited
Probability 3 2 2 .1 2 2 74 2 7 24

* Production

Rules 1 3 4 1 13 3 4 1 3 24

* Adaptive
Decision 2 1 4 3 1 1 2 1 17
Mode I

lieuristic
seafth 4 4 3 2 4 4 4 4 1 4 34
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TABLE 3 (CONTINUED). MODEL EVALUATION BY DIFFERENT CRITERIA

CL,

Elicited
Probab IIty 3 2 7 4 I

Production
Rules 1 e 3 4 t4

Adaptive
Decision 1 3 1 1 7 -

Heuri stic 44h4 4 4 4 4 NI
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SECTION VI

MODEL EVALUATION FOR SPECIFIC DECISIONS

GENERAL

In the preceeding section each of the models were evaluated by a list
of general attributes. In this section, we will present several specific
decisions that a submarine CO has to perform and discuss the applicability
of each model. It has to be kept in mind, however, that each decision
does not stand alone and the control process that determines what has to
be considered next, and what are the action options available there, is
as important as the making of the decision itself.

For each of the decisions described below a simple description of
the decision is given and then the various approaches are rank ordered
according to their suitability.

CONTACT DECISION

This is a protracted decision which dramatically influences the CO
behavior. It has to be continued even after a positive contact is made
to maintain the contact and to retract the "contact made" decision if new
evidence indicate that the intitial decision was erroneous. Time enters
the decision in that the probability of positive contact increases if a
noise is repeated or is detected over a longer period. Additional
considerations are the level of background sea noises at the given weather,
the closeness to enemy sea operations, previous intelligence information,
etc.

Some of these decision variables are intended to the model and some
are inputs generated by the friend or the sea. The external signals have
to be preprocessed and transformed into a variable acceptable by the
decision model. A probabilistic output is desirable. A recommended rank
order of the approaches is the following:

a. Elicited Probability. This model takes the available apriori
probabilities and can update them incrementally as new evidence comes
in. The output is compared to a threshold to decide whether to declare
"contact" or not. The conditional probabilities in the transformation
matrix represent an opponent's ability to diagnose noises and aggregate
clues. These probabilities can be changed to simulate different opponent
skill levels and even level of conservatism. Furthermore, a threshold
change can be a simple mechanism to adjust the opponent's conservatism.

b. Adaptive Decision Analysis. The input consists of attributes of
the noise state scaled such that a high attribute level means "contact."
An expert's weights for each attribute are learned. An expected value
is computed which represents the likelihood of contact. Contact is
declared when this value exceeds a pre-set threshold.
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c. Production Rules. The various considerations suggesting a contact
can be incorporated into ascending states. Productions triggered by noise
type and level can "vote" to move the state to one of increased probability
of contact.

d. Heuristic Search. The only way heuristic would be appropriate
is if the order of different noises was the predominate identifying
characteristic.

THREAT DECISION

The threat decision is more an interpretation of external events than
a classification of fixed patterns. It considers the mission, state of
war, location relative to enemy, noises detected and number location and
motions of potential threat. A simple breakdown of the different consider-
ations follows:

Type Nationality Location Maneuver Etc.

Nothing Friendly Near home Indifferent

Whale Neutral Open sea Moving away

Decoy Unfriendly/peace Near enemy Moving toward

Surface ship Unfriendly/war Positioning for attack

Nuclear sub etc.

a. Elicited Probabilities. This approach has the flexibility to
include all of the above factors. The apriori probabilities of the various
output conditions (e.g., nature of the threat) can be biased according to
the intelligence information which exists. The monitor's probability
information is discretized and made part of the input state.

b. Production Rules. Because of the large number of contributing
factors involved in this decision the Production Rules can be used to
make an orderly decision. Each production handles a set of factors which
lead to a meaningful conclusion, the conclusion can make other factors
more relevant and new productions are triggered, etc. In general, the
Production Rule approach is advantageous for formulating tactical assess-
ment when interpretive consideration is dominate.

c. Adaptive Decision Analysis. With this approach a discriminant
function is used for each possible interpretation. The model can handle
naturally more than one plausible interpretation concurrently. The
continuous time effect is awkward to represent as are apriori probabilitiesf such as those derived from intelligence information.

d. Heuristic Search. In a situation where it is necessary to evalu-
ate a sequence of moves and counter moves in order to determine whether a
threat exists the Heuristic Search approach can be used. In this case a
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threat is a state that can lead to a set of terminal nodes which include
some that are detrimental to the opponent. In other cases where "look
ahead" is not relevant to the threat evaluation, the method would not be
appropriate.

MANEUVER SELECTION DECISION

The select maneuver decision is made under several different circum-
stances such as evade, attack, track, approach, etc. Each of these
circumstances has a set of relevant maneuvers, one of which has to be
selected. The selecting mechansim can be similar but with a different
set of parameters. The details of the trajectory implementing the
maneuver is performed by a lower level subroutine that is separate from
the select decision. Such a subroutine can use a Monte Carlo method to
specify the parameters of the trajectory guided by the intended objective
of the maneuver.

a. Adaptive Decision Analyss. With this approach the relative
desirability of each possfbiemaneuver is computed. There is one
discriminant function for each maneuver and a set of attributes across
all maneuvers. This decision was used in Section IV to illustrate the
Adaptive Decision approach.

b. Production Rules. Production Rules are excellent for imposing
logical criteria on the maneuver selection decision. Probabilities can
be attached to the Production Rules, but this increases their number.

c. Elicited Probabilities. By interpreting probabilities as
relative des irabiTit_1tis odel can be used to select maneuvers. Each
contributing factor considered increases or decreases the desirability
of the candidate maneuvers. The algorithm aggregates the individual
desirabilities and the highest one is selected. The particulars of the
trajectory are then calculated. This approach is able to handle situations
where there may be a large number of possible maneuvers and many decision
criteria.

d. Heuristic Search. This approach is not of use unless maneuver
selection appears in the-context of a series of maneuvers alternately
selected by both sides.
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