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SECTION 1

INTRODUCTION

1.1 General Statement of the Problem

One of the basic problems in achieving efficient designs

of high work compressor stages is the lack of an adequate

technique for predicting the flow field and losses through a

turbomachine stage. Current design systems are based on the

assumption that the flow can be adequately modeled by a combi-

nation of axisymmetric through flow and two-dimensional

cascade flow)’14 ’25 Whereas this procedure has proved quite

satisfactory for lightly loaded compressor stages, it is found

to give a considerably different flow field from that observed

in highly loaded stages.2 The deviation is attributed to

three—dimensional effects which become significant in a highly

loaded system. Some of the important phenomena responsible

for three-dimensional effects are blade passage shocks,

the inviscid pressure field of the blades resulting in the

distortion of stream surface , span—wise flows in the blade

boundary layer and wakes, secondary flows due to the end wall

boundary layer, and shock boundary layer interaction. The first

two are inviscid effects and their proper treatment would require

a full three—dimensional transonic inviscid computation.

The last three effects are intrinsically viscous in origin, as

they involve boundary layer growth on the blade surfaces and

the end walls. The evolution of wakes and their subsequent

interaction with the adjacent blade row makes the problem of
F

1
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predicting the flow field more complex . Further complexities

are introduced by the three-dimensional nature of the rotor blade

boundary layer coupled with shock boundary layer interaction, and

secondary flow arising from the end wall boundary layer and tip

leakage. An accurate estimate of viscous effects would require

a detailed computation of the three-dimensional blade surface

boundary layer and end wall flow.

Current analytical and computational methods for prediction

of the flow field are not advanced enough to account for all

the coupled three—dimensional effects present in a highly loaded

system. At best one can account for each individual effect by

isolating it from the other three-dimensional effects. Although
. . . . 2  . 3recent advances in 3—D inviscid and multi  2-D computational

schemes are encouraging , their use is restricted to lightly

loaded systems since no capability exists to account for the

above mentioned viscous effects. It will be shown later in this

report that 3-D inviscid effects alone do not produce significant

changes in the mean flow field of the compressor , rather 3—D

viscous effects are mainly responsible for deviation of the mean

flow field from that predicted by the usual axisymmetric theories.

One important step in prediction of the flow field of a

compressor is inclusion of the ef fec t  of blade to blade (or pitch-

wise) flow variations on mean (tangentially averaged) f low fie ld

of the compressor . This is the goal of this investigation.

2
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1.2 Objectives of the Present Investigation

More specifically, the present investigation has the

following objectives:

a) To determine the effect  of pitchwise flow variat ions

on the mean flow f ield of an axial compressor. In

particular, to~.determine how pitchwise flow varia-

tions effect the circumferential mean momentum and

energy transport processes.

b) To derive the equations of mean flow for the stream-

line curvature computational scheme implemented in

the computer program of Reference (1), including

the effects of blade to blade flow variations.

C) To carry out a critical analysis of the time resol-

ved experimental data of the MIT Slowdown Compressor,

the purpose being to assess the magnitudes of van —

ous three—dimensional effects (discussed in Section

1.1 of this chapter) in a highly loaded transonic

compressor.

d) To modify the computer program of Reference (1) in

order to account for the effects of pitchwise flow

variations on the mean flow field and then to corn—

pute the mean flow field using the velocity correla-

tions as estimated from the experimental data.

3
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1.3 Phenomena Treated

In order to introduce the nonaxisymmetric effects into

the axisymmetric computation, the following phenomena are

treated:

a) Apparent stresses introduced in the mean flow field

due to pitchwise averaging of the equations of

motion.

b) Streamwise variation of mean Rothalpy due to energy

transfer across the stream surf aces by apparent

stresses, and by conversion of mean flow kinetic

energy to energy of fluctuations.

c) Apparent entropy production due to dissipation

associated with apparent stresses, and due to the

production of fluctuation energy.

1.4 Method of Investiaation

It is well known that the blade surface boundary layer

and wakes are primarily responsible for the pitchwise flow

variations within and downstream of a rotor blade row. one

way of accounting for the pitchwise or blade to blade flow

variations is to treat them as flow fluctuations around the

circumferentially averaged flow. With respect to an abso—

lute frame of reference these will be temporal fluctuations

around the mean which is a time mean. These fluctuations

can therefore be treated as analogous to turbulent flow

fluctuations and a quasi—steady approximation can be applied

4 
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to the flow field downstream of a blade row. However, if

the frame of reference is fixed to the blades, as is the

normal practice for flow analysis within the blade row,

these blade to blade flow variations represent spatial fluc-

tuations around the mean which is a spatial mean or mean in

rO. By analogy to turbulent stresses (Reynolds stresses)

these large scale f luctuations will also introduce apparent

stresses, and the momentum and energy transfer associated

with these stresses will modify the mean flow fie ld of the

compressor.

Following the above mentioned concept, mean flow equa-

tions of motion for a frame of reference fixed to the blades

are first derived (Section 3.2). This is achieved by carry-

ing out a pitchwise average from the pressure surface of one

blade to the suction surface of the adjacent blade. An

integral representation for averaging any quantity is given

j~~J _ - J
’
~~cLe

• where G8 and 0p represent the angular positions of the suc—

tion and pressure surfaces of the two adjacent blades. The

averaging procedure which uses Liebnitz rule for finding the

pitchwisa average of derivatives has been discussed by Scnith4

and Fujii5. Pitchwise averaging of the equations of motion

introduces two types of additional terms into the mean flow

S
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equations of motion . One type of term represents the in—

viscid blade forces while the other type contains velocity

correlations which can be considered as apparent stresses

in the mean flow. it may be mentioned here that existing

axisymmetric through flow theories do include inviscid blade

force terms but assume that velocity correlation terms are

small. A detailed derivation of the pitchwise averaged

equations is given in Appendix A.

For the purpose of flow f ield computat ion , the pitch—

wise averaged equations of motion are derived for the Stream-

line Curvature Computational method. Normal practice for the

Streamline Curvature scheme is to derive the radial equilib-

rium equation ( 40) in which the axial derivat ive terms are

replaced by the meridional and radial derivatives, and the

pressure gradient is replaced by the enthalpy and entropy

gradients as in Crocco’s equation. However, for a more

general case where a computing station need not be along a

radial direction, the method suggested by Wennerstrom7 is

more suitable. Streamline Curvature equations based on the

Wennerstrom procedure have the advantage over the usual type

that a computing station can be placed along the blade lead—

ing or trailing edge. The equation of motion in apparent

stress format and along an arbitrary direction in the men d—

iona l plane , is suitably modified for application to the

computer program of Reference (1).

6
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The general problem of prediction of the loss distribu-

tion is important because in the Crocco form of momentum

equation, the distributions of entropy and rothalpy

represent the pressur e gradient , and therefore these have an

important effect on the flow field. The losses can be viewed

as consisting of a viscous part and an inviscid part. Here

viscous losses refer tothe blade surface friction losses and

can be approximated from the two—dimensional cascade data.

Because of the gradual variation of viscous los ses in the

spanwise direction, these losses primarily effect the corn—

pressor efficiency but have little influence on the spanwise k
flow distribution. The concept of inviscid losses is not as

straightforward as the vi scous losses, arid in fact is intro—

duced to the t~rbomachinery context here for the first time.

It refer s to the conver sion of mean f low kinetic energy to

the energy of fluctuations. In the case of turbulent flow,

such a conver sion is normal ly known as “loss to fluctuations”

and it implies that the energy of fluctuations is an unavail-.

able form of energy as far as the mean flow is concerned.

These losses can be termed “apparent losses” and their effect

is felt through the reduction of mean relative total pressure

along the streamline. For the particular case of the Crocco

form of mean flow momentum equation, these los ses will alter

the mean rotha].py and mean entropy gradient terms. It may be

mentioned here that the energy of fluctuations is eventually

converted to thermal energy by viscous dissipation at the

7
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molecular level , re sulting in the increase of real entropy .

Here it is assumed that the presence of fluctuations creates

an apparent increase in entropy equivalent to that resulting

from the viscous dissipation of the energy of fluctuat ions to

heat.

Modeling of inviscid losses (Section Iii) is achieved by

defining a mean rothalpy I and an apparent entropy produc-

tion along the streamline.

As will be discussed in Section III, the pitchwise

averaged rothalpy is defined as

T X + 
a 

(1)

and not

1=  (2)

which would result from the averaging procedure discussed

earlier.

The production of apparent entropy along a streamline

is defined as

_ _  _  3)

8
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where represents dissipation associated with apparent

stresses, and ....21
’kl”%) represents the production of fluc-

tuation energy along the streamline. The concepts used in

arriving at the above definition are discussed in Section III.

An equation for the rate of change of mean rothalpy

along the streamline is derived by carrying out pitchwise

averaging of the energy equation using equation (1),

The estimation of spanwise distribution of mean rothalpy

(or apparent entropy) at any axial station is_achieved by

numerically integrating the equations for and

along the meridional streamline, the constant of integration

being evaluated from the known value of mean rothalpy (or

apparent entropy) at the upstream station. This completes

the theoretical formulation for “apparent stress correction”

to the mean flow model based on the combination of axisym—

metric through flow and two—dimensional cascade flow. A

detailed derivation of the equations for the mean rothalpy

and apparent entropy gradients along the meridional stream-

line is given in Section III.

Experimental data from the MIT Slowdown Compressor is

used to estimate distribution5 of mean flow properties such

as velocities, apparent stresses (velocity correlations),

• and mean entropy. All the flow parameters were reduced to

correspond to standard conditions at the inlet with air as

the fluid. Velocity correlations are calculated for use in

9
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the theoretical formulation for the prediction of flow field

us ing Streamline Curvature computational technique .

Finally, the Streamline Curvature program of Reference

(1) is modified to account for the effect of blade to blade

flow variations. A splinefit approximation is adopted for

interpolating the experimentally estimated mean quantit ies.

Inputs to the modified streamline curvature program are the

hub and casing geometry, relative flow angle distribution at

the blade exit , viscous loss distr ibution from the two-

dimensional cascade data , mass flow , and apparent stress

distribution.

• 10
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SECTION II

LITERATURE SURVEY

Past work being reviewed in this section has been divided

into two parts , one dealing with the methods of predicting the

flow field of an axial compressor, and the other dealing with

blade boundary layers and wakes. The latter are responsible for

the large pitchwise flow variations, spanwise flo’w and large

spanwise gradients of losses.

The problem of predicting the flow field through a turbo-

machine stage can be approached either as a design (indirect)

problem or as an analysis (direct) problem. In the design problem,

the distribution of angular momentum change~~(tl~ 1(or total enthalpy

change) across the blade row is assumed to be known. The blade

profiles have to be chosen to give the desired angular momentum

change, with the aid of experimental cascade data. The analysis

problem deals with prediction of the flow field from the known

blade exit flow angles and the losses through the blade row.

This problem is considerably more complex than the design problem,

but is more versatile since it can be applied to all operating

conditions of the turbomachine. The success of analytical methods

has been mainly restricted to solving design problems . For solving

an analysis problem one has normally to resort to a computational

method.

The blade surface boundary layer and wakes seem to have received

very little attention from turbornachine analysts. A few semi-

• irnpirical efforts to predict the nature of blade boundary layers

and wakes have not proven good enough for any realistic applicaticn.

11 
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2.1 Method s of Predicting the Flow Field

2. 1.1 Anal yticaL Methods

During the past four decades considerable effort has gone Into the

methods of flow analysis. Early efforts were concentrated

on the flow analysis for simplified flows. Starting with

pitchline analysis8, the flow analysis techniques were soon

extended to ample radial equilibrium9. In the radial equil—

ibrium theory one looks only at the flow upstream and down-

stream of the blade row where the radial velocity is assumed

to be zero. The theory also assumes a completely axially

symmetric flow. The drawback of this theory is that it gives

no account of how the changes in velocity distribution take

place across a blade row. A major breakthrough in the flow

analysis resulted from the concept of ‘Actuator disc ’ with

the aid of which not only the velocity distribution across

a blade row could be ?redicted but mutual interaction be-

tween the blade rows could also be accounted for. In the

actuator disc theory, it is imagined that the blade row,

moving or stationary, is replaced by a disc of infinitely

small axial thickness, across which a sudden change in

~.angential velocity and vorticity takes place. Radial

equilibrium exists far upstream and far downstream of the

actuator disc, but not necessarily in between these stations.

The parallel assumption of axial symmetry is also made, as in

the radial equilibrium theory. Analytical studies of the

actuator disc model have been made by several turbomachine

designers10’~~
’12 but perhaps the most complete account 

~~~~~~~~~~~~~~~ ~~~~~~~~~~
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employing the concept of actuator disc was presented by

Marble’3. Although this theory has been classified as three—

dimensional since it allows for velocities in the radial,

azimuthal and axial directions, it really permits flow

variations in two directions only, axial and radial.

In this sense, it is really a two—dimensional theory.

In this pseudo three—dimensional theory which has come to be

known as “axisymmetric through flow theory”, the effect of

blades is represented by distributed forces having the same

integrated effect as the blades in the radial, azimuthal and

axial directions. Marble’s success in getting analytical

solutions for several types of circulation distributions

(indirect problem) resulted from the fact that he was able

to linearize the problem by considering the three-dimensional

aspect of the flow as a perturbation on the upstream flow.

1~owever, the assumption of small perturbation on the upstream

flow restricted the application of this theory to lightly

loaded systems only. For highly loaded systems it was not

possible to linearize the problem and therefore computational

techniques were required for analyzing the flow field.

The above mentioned analytical methods for the predic-

tion of turbomachine flow have no provision for estimating

losses and flow deviation angles. This necessitated a

parallel effort for obtaining the loss distribution and

deviation angles with the aid of experimental studies since

the theoretical methods failed to give realistic results.

13
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These experimental studies14 could be gene ralized only for

two—dimensional cascade flows in which the characteristics

of through flow are represented by the entering and leaving

flow angles , by a mean stream surface slope along wh ich the

cascade lies, and by the change of axial mass flow density

between the inlet and outlet . Thus a combinat ion of axis-

ynunetric throu~~ flow and two—dimensional cascade flow be-

came an attractive technique for predicting the mean flow

field of an axial comprqssor. This concept was generalized

by Marble13 for lightly loaded systems and was considered a

major breakthrough in solving a design problem. h owever,

with the introduction of highly loaded compressor stages for

modern high thrust/weight ratio aircraft engines , this line-

arized theory was not considered very attractive for designing

an axial compressor.

An inviscid 3—D flow model was achieved by McCune and

Hawthorne in 1976. In the case of axisymznetric through flow

one visualizes the trailing vorticity arising frQn the nonuni-

formity of blade loading to be smeared uniformly in the pitch—

wise direction. On the other hand, if it is assumed that the

trailing vorticity is concentrated in discrete sheets, it is

possible to evaluate the pitchwise flow variation from the

induced velocity field of the trailing vortex sheets. McCune

and Hawthorne’5 succeeded in using this concept in their

three—dimensional inviscid, incompressible theory for a

14 
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rectilinear cascade . They replaced the blade row with a set

of lifting lines of bound vort icity, and assume d that sheets

of vorticity from the trailing edge of each blade are con—

vacted approximately by the mean flow (Beltrami Flow) . In

order to apply this theory to a highly loaded blade row,

mean flow equations of motion were not linearized and the

solution for mean flow was obtained by using an iterative

scheme. Several subsequent improvements were introduced in

this theory to make it more versatile in its application.

Morton16 applied this theory to compressible flow through a

highly loaded, rectilinear cascade. cheng17 applied this

theory to incompressible flow through a highly loaded annular

cascade. All the above cases were restricted to nearly free

vortex flow for which the spanwise variation in loading is

not large. This restriction was removed by Adebayo18 and

the theory was made applicable to a highly loaded blade row

with arbitrary spanwise load distribution. The theory was

made possible by the concept of treating the three—dimensional

aspect of the mean flow field as perturbation about the axis-

ymmetric mean flow instead of about the upstream flow, as is

the case with other linearized theories. Therefore, this

theory though still “linearized” is linearized about the

fully nonlinear mean flow. Tan19 extended McCune ’s three—

dimensional theory to vorticity arising from viscous wakes.

These three—dimensional theories for predicting pitchwise

15
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flow variations downstream of a rotor are a major  step for-

ward in the analytical methods. However, since the knowledge

of mean distribution is required a priori, these theo-

ries are restricted to ‘design problem’ .

2.1.2 Computational Methods

With the advent of high speed digital computers, the

possibility of predicting the mean flow field of a highly

loaded compressor stage appeared bright. Wu2° was probably

first to formulate equations for computing the complete

three—dimensional flow. In his general theory the equations

of fluid flow are satisfied on intersecting families of

streamsurfaces, the complete three—dimensional flow being

obtained by an iterative process between the solutions for

the flow on the two sets of surfaces. The two sets of

streamsurfaces are S1 blade to blade surfaces and S2 surfaces

which pass through the blade row. However, Wu’s general

theory did not find much application and axisymmetric coun-

terpart of this theory (Wu’s through flow theory) was consid-

ered more suitable for computing the flow field. Wu’s through

flow theory is similar to the general theory, but the equa-

tions of flow are solved for the mean S2 streamsurfaces on

which the flow and fluid state are regarded as average values

for the flow within the blade passage. For a multistage

machine, the time dependence of the flow is removed by

treating the through flow solution as an axially symmetric

flow for the duct region between each pair of blade rows.

16

—~~~~~ —~~~~~ — •  —~~~~~~~~~~~~~~~~ — — 
—— • -— - 

~~ 
- - — .: _ ~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ - ~~~~ 5— --



----5

During the past decade two numerical methods based on

the combination of axisymmetric through flow and two-dimen-

sional cascade flow became the guidelines for most of the

computer programs. These methods have come to be known as

the Streamline Curvature technique4’21’22 and the Matrix

through flow method23. In the streamline curvature computa-

tional procedure, a radial equilibrium equation is solved

simultaneously with mass conservation in the meridional

plane. The equations a~e written in terms of the meridional

streamline slope and curvature, which are fixed initially by

assuming uniform flow through the duct, and are iteratively

revised after solving the flow equations. The Matrix through

flow method solves the flow equations on the S2 surface of

Wu’s through flow theory. here the governing equation is

transformed into a Poisson equation for the stream function.

The resulting matrix equation is solved by using a suitable

iterative scheme.

More recen’ly at the MIT Gas Turbine Laboratory,

Oliver and span s24, and Thompkins2 have successfully devel—

oped and ar~lied a fully three—dimensional inviscid scheme

to a tr’~isonic compressor rotor. Although this scheme is a

big step in evaluation of three—dimensional flow of a highly

loaded system, its utility is limited because it does not

- • include viscous effects. novak and Hearsay25 have developed

a multi two—dimensional technique for computing the three—

‘7

4

—



dimensional flow field. The method is based on the iterative

coupling of streamline curvature solutions on Wu ’s Si and S2

surfaces where S1 is a concentric blade to blade surface and

the 
~2 

surface represents a mean stream sheet defined by stream

function~~= 0.5. The main limitation of this method is that

it cannot be applied to a system where large blade to blade

flow variations exist as is the case in the blade surface

boundary layer.

Most of the well known computational schemes use finite

difference methods for computing the flow field. Efforts

are being made by a few workers to apply finite element

computational methods to the turbornachine flow field but it

is dif~icult to assess their effectiveness at this early

stage. A computational scheme based on the finite element

method which examines the contributions of pitchwise flow

variations on the axisymmetric through flow, was proposed by

Hirsch in 197526. The basic approach adopted by Hirsch for

pitchwise averaging of the equation of motion was similar to

the one undertaken for this investigation, but his apparent

stress model is unrealistic because he used the 2—D isolated

wake model of Silverstein et al.~
7 for a wake structure

which is highly three-dimensional. In addition, his model

did not include the concept of mean rothaipy and apparent

entropy, which will be seen to be of major impact.

18
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It may be mentioned here that all the computational

schemes discussed here depend on external sources (such as

cascade data) for loss distribution through the blade row.

2.2 Blade Boundary Layer and Wakes

As mentioned earlier, the viscous effects are mainly

responsible for the large blade to blade or pitchuise flow

variation in a highly loaded blade row. Due to the combined

action of increased centrifugal force in the blade boundary

layer and coriolis forces arising from the blade surface

curvature, large spanwise flows are set up in the blade

boundary layer. This makes more complex the problem of

estimating the pitchwise flow variation. Further, since the

spanwise loss distribution is significantly altered due to

the spanwise flows in the blade boundary layer, a detailed

computation of three—dimensional boundary layer is needed. But

the existing knowledge of the computational methods suitable

for the present day computer hardware, are not advanced

enough to handle such a problem. Therefore, a virtual vacuum

seams to prevail as far as the theoretical modeling of blade

boundary layer is concerned.

The first systematic effort for computing the three—

dimensional boundary layer to a turbomachine blade row seems

to have been by Mager28 in 1954, who adopted Gruschwitz29

type of coordinate system for the three—dimensional integral

momentum boundary layer prediction. He, however, assumed the

19
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blade surface to be plane and introduced several other

simplifications to achieve the integral momentum solution.

Subsequent effort by several workers resulted in many

improvements and more recently Hules3° was able to formulate

integral momentum equations for a three—dimensional compres-

sible boundary layer in a rotating variable—pitch helical

coordinate system, ideal for describing arbitrary shaped

turbomac.hine blades. ~e computed the boundary layer charac-

teristic parameters for a turbine rotor without any stream—

wise pressure gradient. Application of this technique to

an axial compressor rotor with large adverse pressure gradient

is still to be tried.

With respect to the blade wakes, the major effort in the

past has been restricted to study of the wake structure of

isolated airfoils. Silverstein, Katzoff, and Bullevant27

were the first to investigate the near and far wakes of an

isolated airfoil in 1939. They used a theoretical treatment

put forth by Prandtl to generalize their experimental results

to predict the important wake parameters in terms of the dig—

tance behind the trailing edge and the profile drag coeffi—

cient. Preston and Sweating3’ in 1945 carried out a system—

atic investigation of the characteristics of the wake behind

an isolated airfoil and observed that a similarity in mean

velocity profile exists close behind the airfoil and that

the wake centerline velocity recovered to about 80% of the

free stream velocity in a quarter chord length from the

20
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trailing edge. These observations led Spence32 in 1953 to

give a general expression for the wake centerline velocity

as a function of distance behind the trailing edge of the

airfoil and the wake edge velocity. No attempt, however,

seems to have been made to arrive at a generalized theore-

tical formulation of wake structure as a function of the

physical characteristics of an airfoil or its loading.

very recently analytical and experimental investigations of

the characteristics of 3-D turbulent wakes downstream of a

turbomachine rotor have been carried out by Raj and

Lakshminarayana32. B~ introducing the Reynolds stress terms

in the equations of motion expressed in streamwise orthogonal

coordinate system, they tried to develop an approximate quasi-

three—dirnenjonal turbulent wake model for a turbomachine rotor.

Their conclusion that the wake velocity defect almost com-

pletely vanishes very near the blade trailing edge, does

not agree with the experimental data from MIT Blowdown

Compressor2 which indicates that the velocity defect can

even grow with distance downstream of the blade trailing

edge. Since the rotor used by Raj and Lakshminarayana was

a non-lifting type, the validity of their model for a highly

loaded compressor rotor has still to be confirmed. During . 
-

the past few years, the MIT Gas Turbine Laboratory has been

conducting systematic experimental and theoretical studies

of the behavior of wakes behind a highly loaded compressor

rotor. By application of a general small disturbance theory,

21 
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Kerrebrock34 has shown that the wakes are not purely con—

vected in a strongly swirling flow , but can exhibit wave

like propagating behavior. Kerrebrock and Mikolajczak
35

carried out a kinematic analysis of the interaction of rotor

wakes with stator and predicted the pitchwise distribution

of stagnation temperature and pressure at stator exit by

using the two—dimensional wake model of Silverstein et a1.~~
7

• • • 36
in the generalized form as given by Kemp and Seers . By

using a fast response strain gauge probe, rhompkins and

Kerrebrock37 successfully obtained wake velocity distributions

at two axial locations downstream of a highly loaded trarisonic

compressor. As mentioned earlier, one of the important

findings was the persistence of wake velocity defect down—

stream of the rotor. Measurements made at a distance of 1.0

chord behind the trailing edge indicated an incr eased ve lo-

city defect at certain radial locations.

Hence, it is seen that most of the previous investiga-

tions on the flow modeling for axial compressor s have

neglected the effect of pitchwise flow variations while

estimating the mean flow field. The only attempt by Hirsch26

in trying to assess the effec t of pitchwise flow variations

was inconclusive since an unrealistic two—dimens 1.onal wake

model was adopted for modeling the velocity correlations.

The author has not come across any publication which examines

the possibility of the existence of inviscid or apparent

22
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losses. These losses may have areater effect on the mean

flow than the viscous losses.

It is further seen that a virtual vacuum appears to

exist as fa r  as the study of three—dimensional blade boundary

layer and wakes is concerned. The only detailed investiga-

tion of three—dimensional blade boundary layer3° has been

restricted to integral momentum methods for turbomachine

blades without any pressure gradient. Similarly, the only
33known flow model for three—dimensional wakes does not

appear to be useful in its present form for a highly loaded

compressor blade row.

It may be concluded from the study of literature pre—

sented in this chapter that the existing knowledge of analy-

tical and computational techniques is not advanced enough

to solve the problem of predicting the flow field of a

highly loaded transonic axial flow compressor. However, the

past work is very useful in understanding several important

concepts and the limitations of various analytical and corn—

putational techniques. The availability o~ the time resolved

experimental data downstream of the MIT Blowdown Compressor

rotor is an opportunity to assess the order of magnitude of

various three—dimensional effects (discussed in Section 1).

This data is of vital importance in studying the effect of

pitchwise flow variations on the mean flow of an axial corn—

pressor, which is the objective of this investigation.
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SECTION III

MEAN FLOW EQUATIONS OF MOTION , ROTHALPY VARIATION AND ENT ROPY

PRODUCT ION

3.1 apparent Stresses

it is well known that temporal fluctuat ions in the

velocity field of a flow with spatial gradients influence

the mean motion in such a way that the mean flow exhibits

an apparent increase in resistance to deformation. In other

words these fluctuations introduce “apparent stresses”, thus

augumenting the viscous stresses. For turbulent flow these

apparent stresses are commonly known as Reynolds Stresses.

The direct application of this idea to the flow field behind

a turbomachine blade row would consist in time averaging the

three—dimensional equations of motion written in a coordinate

system fixed to the blade row (stationary for a stator and

rotating for a rotor), whereupon Reynolds stresses arise as a

result of turbulent fluctuations (or temporal fluctuations) in

that coordinate system. This approach has been followed by

Raj and Lakshminarayana33 in their attempt to study the

characteristic behavior of three—dimensional wakes downstream

of a rotor.

Here the concept of apparent stresses is used in a

different way. In order to account for the effect of blade

to blade or pitchwise flow variations, it is proposed to

consider them as flow fluctuations around the mean defined as
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axisymmetric mean . With re spect to the absolute frame of

reference, these pitchwise fluctuations would become temporal

fluctuations around the mean which is a time mean, and analo-

gous to the turbulent flow, these fluctuations would introduce

apparent stresses in the mean flow field. However, if the

frame of reference is fixed to the blade row, these pitchwise

flow variations represent spatial fluctuations around the

mean which is a spatial mean or mean in rO. Here the apparent

stresses would appear in the equat ions of motion as a result

of pitchwise averaging and can play a significant role in the

transfer of mean momentum and energy.

3.2 Mean Flow Equations of Motion

3.2.1 Non—Bladed Region

Normally, the procedure for arriving at the governing

equations in Reynolds stress format is for a rotor exit flow

field , identical to the classical procedure described in

Reference (38) for unsteady turbulent flows.

It consists in:

a) Combining the continuity equation with the momentum

equation.

b) Expressing each variable as the sum of a mean plus

a fluctuating part, for example the velocity.

1, ~3- + ,ly’— -~~ Twhere
L J V c it

2G
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and T is large enough so that 7) is independent

of T.

c) Averaging the momentum equations in time over the

intervai T, thus eliminating all terms linear in

the disturbance quantities, while retaining those

which are quadratic.

It should be noted at this point that if the rotor

exit flow is fully periodic ilL blade passing, then T need

be only one blade passing period. But the procedure admits

the possibility of dealing with flows which are unsteady

in rotor coordinates by simply increasing T to average out
such fluctuations.

If density fluctuations are neglected, the mass con-

servation equation for the mean flow remains unchanged but

the equations of motion and energy will have additional

terms containing correlations of fluctuating quantities.

However, if density fluctuations are not small, mean mass

conservation equation will also have additional terms

containing correlations of fluctuating quantities.

The present analysis will be restricted to the case of

small density fluctuations. It is further assumed that the

rotor exit flow is periodic in blade passing, which means

H in the absence of turbulent fluctuations the temporal

average of unsteady flow with respect to the absolute frame

of reference is the same as the pitchwise average with
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respect to the moving frame of reference. we can thus

represent the effect of pitchwise flow variations in the

non-bladed region by time averaging the equations of motion

written in the absolute frame of reference. Mean mass and

momentum conservation equations in the absolute cylindrical

frame of reference are:

Mass Conservation

L a(’~~~
) ÷ —

- (4)

Momentum Conservation

r-direction —

~~~ 
_ _  ~ ~ ~S~i~4 2~~~~c)— 

~~~ ~ L ~ t b~

~~~~ ..ij~~ J ÷ ~~~~~ (5)
s-direction

4i~a ~~~~~÷~~Ct~~~ ~t!Ri~~
-1— (6)

z—direction

(7)

Here the correlations of fluctuating velocities repre-

sent the effect of pitchwise flow variations on the axisym.—

metric mean flow and should not be confused with turbulent

fluctuations. Analogous to Reynold Stresses, these correla-

tions can be considered as apparent normal and shear stresses.
-7;

For example,_r D~ can be considered an apparent radial
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normal stress since it represents the transport of radial

momentum in the radial direction due to the above mentioned

fluctuations. similarly, a term such as —

can be considered an apparent shear stress and represents the

transport of pitchwise momentum through a surface normal to the

radial direction. Et4~, Ig~j  and are the average via—

cous forces per unit mass in the r,~~, and z directions.

3.2.2 Bladed Region

The method of Reference (38) for deriving mean flow

equations of motion is not applicable within the blade row

because of the presence of blades across which a jump in

flow properties takes place. The correct procedure for the

bladed region is to write down the equations of motion in

the relative frame of reference and carry out spatial averaging

in the circumferential direction from the pressure surface

of one blade to the suction surface of the adjacent blade.

Ruden39 appears to have been first to discuss the use of

pitchwise averaged equations in turbomachine aerodynamics.,

The subject was treated in greater detail by Smith
4, Horlock40

and Fujii5. This averaging procedure introduces two types

of additional terms in the mean flow equations of motion.

First, there are those which contain the effect of pressure

jump across the blade, while the second are the correlations

of the fluctuating quantities. The former can be interpre—

ted to represent inviscid blade forces which can be expressed

29
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in terms of the gradients of angular momentum by using the

procedure of Reference (7). It may be mentioned here that

axisyinmetric through flow theory does include inviscid blade

force terms but assumes that velocity correlation terms are

small.

The pitchwise or circumferential average of any quantity

4~ (/t, e, ~
) is given by the integral

— / I
= J ~&‘~~, VcL G 

(8)

where O~ and 9~, represent the angular positions of the

suction and pressure surfaces of the adjacent blades.

It is also known from Liebnitz Rule that integral of a

derivative is given by

(9)

Using equations (8) and (9)  , pitchwise averages of

the derivatives of pressure and the products of velocities

can be evaluated. For example, pitchwise averages of

and are approximately given by the following

relations

= + (P.~-~,) 
~ n&,.

-
~~~~ (2.7r~’VN) (10)
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and

2C~Wt 1,i
~) _ 2 ÷~~~~ ÷.Xn~w1’) w~w~~1~- (11)

where is the blade lean angle and 21T~ _  (~s~~~fr)

The term C~~E~j  tctr.& represents the radial(.z 7r1 / N) —k:-
component of inviscid blade force . A detailed derivation of

equations ( 10) and (11) is given in Appendix B.

It is now possible to obtain mean flow equat ions of

motion with the aid of equations (10) and (11) . These are

r—direction momentum equation

W#L ‘~�Y~t ÷ WL ~~~t - :~~ -2.  W~ -

~at -~~~~~ 
_ _ _

- I ~t~~~~~ ÷2O~w~wi) 

~~J ÷ ~~~~ (12)

9—direction

~~~ + W ~.~~~D ÷‘ ÷2J2. Wt

= —
~~~~~~~ 1~~

( 
(13)

z—direct ion

F— ÷ a1~

-.L _ _ _  (14)
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Here f t ~ , ~~~ 
and are the r,9, and z components of

inviscid blade force.

It may be mentioned here that it is possible to repre-

sent the effect of turbulence explicitly in the above equa-

tions by first taking the time average of the flow at various

pitchwise locations and then carrying out a pitchwise average

of the time averaged equations of motion. Appendix A gives

the details of this procedure.

Equations (12) , (13) , and (14) can be transformed

to the absolute frame of reference by putting ~~ ~~~~~~ , 
W~~t9~,

W~~~Tj~~~~J~
The change in the frame of reference does not effect the

magnitudes of the apparent stresses. )Z~= (I~., W. W~~19tVe e&.

3.3 Mean Flow Equation for Rothalpy Variation Along the
Streamline

An important assumption in the existing numerical

methods is that rothalpy remains constant along the stream—

line. The Ruler Turbine equation 0 , which

represents the conservation of rothalpy along the streamline

is applicable only when the flow is steady and viscous ef-

fects are not significant. It was indicated in Section 1.3

of this thesis that the conversion of mean flow kinetic

energy to energy of fluctuations will result in the decrease

of mean relative total pressure. In order to better under—

stand this concept and the correct meaning of the mean

relative total pressure, it is assumed that the flow is

32
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incompressible so that the relative total pressure can be

defined as

pt,t_ =~~‘+L ~~

Pitchwise averaging of this equation as per the procedure

outlined in Appendix B gives 
- 

-

— a

(16)

Here it has been assumed that the pitchwise variation of

density is small and the region is outside the blade row.

Equation (16) indicates that conversion of the mean

flow kinetic energy ~~~~ ) to the energy of fluctuations

( çW ) does not change the value of the mean re lative total
2

pressure. This, however, assume s that the energy of fluc-

tuations is recoverable when the fluid is stagnated. In

keeping with the physical postulate that the energy of fluc—

tuations is not recoverable by the mean flow, we define the

mean relative stagnation pressure ~~ by

(17)
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In this example it is assumed that the energy fed into

fluctuations comes from the mean flow kinetic energy and not

from the heat energy or the energy related to the pressure

work.

Consistent with the concept of mean total pressure, the

mean total rothalpy is defined as

r~ 2 (18)

In orde r to derive an expression for the rate of change

of mean rothalpy along the mean streamline , pitchwise avera-

ging of the ene rgy equation is carried out with mean rothalpy

defined by the above expression. The procedure involves

equating the mean rate of gain of internal and kinetic energy

to the mean rate of work from the pressure forces, centri—

fugal force, and the apparent stresses. A detailed deriva—

tion of 2..~ in terms of the fluctuating quantities
.2~t

is given in Appendix C. Equation (c.-22) from the appendix is

reproduced hera 
—

~j  _ _

~ ( a w J ~ ÷ (C-22)
)
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In deriving this equation, the work associated with

viscous stresses has been assumed to be small as compared

to that due to the apparent stresses. Such an assumpt ion

is justified in the non-bladed region, but within the blade

row where the viscous effects due to the blade surface

friction are significant, it will be more realistic to in-

clude the work associated with viscous stresses. Equation

(0-22) for viscous flow will become

~~~~~~~~~~~~~~~~~~~~~~ ~~~I II

÷ _
~ 

‘
~t ~~~III IV V

÷ [~~
E;-

~ -I- 
I 

+ w1r,J..r’e ~~~ (19)
VI VII VIII

where

3 + _ _ _ _  tkeWe

+ ~~~~~~~~ ÷~~e weJ
] (20)
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and = Wt 
~~~t ~~ ~~ .~~~~~~~~~ + w~ w~

÷~~
‘
~‘~‘ (~~~~÷ t)~~ 

~~~~~~~~~~ 1 (21)

For an axisymmetric case = ~14~ -~~~~~ and the

equation (19) will become

÷ 2iV7~ J÷ i ~~2E ÷~~Wt~ f +?‘~ J W ,,,yL~~ t 5~~~ ~~~~~~~~~~~~~~~~

~~~~~ / 2~ ~ 
_ _j q L  ~~ (22)

We will now examine different terms of equation (19)

to get a better understanding of the ene rgy transport pro-

cesses responsible for the variation of mean rothalpy along

the streamline.

Term I [- (~ 
(~ ~ ~ ~e ~ e ~ ~ 

2~J 
~~
)

represents the work associated with normal and shear apparent

stresses as given in equations (C—15) and (C-16) of Appendix C.

These terms can be interpreted to represent the work done by

the forces due to apparent stresses working at the mean velocities.
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Term II = — 2 represents the rate of change
.1*

of the kinetic energy of fluctuations along the mean meridi—

onal streamline. It is seen that an increase in kinetic

energy of fluctuations along the mean streamline will, result

in a decrease of mean rothalpy, and this is consistent with

the physical concept discussed in the preceding paragraphs. 
-

Term III = — ~~~
‘‘
~~~ .2fr ’ +

can be interpreted as work done by the velocity fluctuations

in correlation with pressure fluctuations. It can in fact

be compared to acoustic energy transport.

Terms IV and V are interpreted as the production of the

energy of fluctuating pressure due to the density gradient.

Term vi can be written as
, 

-;i ~
- 

I.
D W 2 W w ’/~ _ _+

and the individual terms in the right hand side of this

equation can be expressed as

~~ ~~w7~ w ~w4

Here the first term on the right hand side is interpreted as 
- 

-

the spatial transport of the “kinetic energy of fluctuations”

due to velocity fluctuations. The second term represents

the production of fluctuation energy due to spatial variation

of fluctuating velocity.
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Term VIII which represents the effect of molecular

viscosity is responsible for the spatial transport o~ kinetic

energy due to viscous shear stresses. This spatial transport

process is always accompanied by viscous dissipation resul-

ting in loss of mean relative total pressure. It may be

noted that in the case of viscous dissipation, the loss of

relative total pressure occurs due to the conversion of

kinetic and pressure energy to the heat energy. On the

other hand the loss associated with fluctuations is due to

the conversion of mean flow kinetic energy to the energy of

fluctuations.

Equation (19) in its entirety is not tractable pre-

sently because Terms III through VIII cannot be estimated

from the available experimental data. in order to estimate

these terms it is necessary to carry out a local analysis of

blade to blade flow variations so that all the three—

dimensional effects are properly accounted for. It may be

then possible to arrive at a suitable flow model for pre-

dicting blade to blade flow distribution required for

evaluating Terms III through VIII. For the purpose of the

present analysis, these terms will be neglected. That such

a neglect is acceptable can be argued since these terms are

not as large as Terms I and II. For example, Term VIII.

which represents work associated with viscous shear stresses,

will be small, at least outside the blade row. If the
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spatial derivatives of densi ty are smaller than the spatial

derivatives of apparent s t r e s s e s , Terms IV and V can be

neglected. It may be argued that the spat i al derivatives

of f luctuating quanti t ies are smaller  than the spatial

derivatives of apparent stresses, terms iii and VII can

therefore be neglected. similarly since the fluctuation in

velocities is expected to be smaller than the mean ve locity,

will be small as compared to
-
~~~~~~~~

in view of the above argument, equation (22)

becomes

= - 

/

‘
Z~~/ ( ÷ ~~~ w2

_  
_ _

-t _

* 
~~

‘
*~~~~_

¶i~) J

2
(23)
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In a more compact form equation (23)  can be wr i t t en  as

= ~~~~~~~~~~~~~~~~~ -
~~

. L1 ~~~~~~~~~ (24)

~~~ a~4~h
3.4 Mean Flow Equations for Entropy Production

An established practice for the inviscid analysis of

turbomachine flow field is to write the equation of motion

in Crocco form by using the Gibbs relat ion

T1 7~ = V/i. - y (25)

The final form of Crocco ’s equation suitable for flow

through the rotor becomes

~~~x
(V,

~~).VT
_ -rv3 (26)

where I is rothalpy defined as
1._ I  

~? 
42( j~

It is assumed to remain constant along a streamline.

There is an apparent inconsistency in the crocco

equation since it contains an entropy variation term with—

out including the source of this entropy variation. One

way of interpreting such a situation is to consider that

viscous effects are negligible at the point where this

equation is being applied, but upstream of this point

viscous effects do exist as a result of which an entropy

40
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gradient is present at the point of application. Since

the viscous effects are ignored in this eau ation , the

entropy gradient is in a direction perpendicular to the

streamline. There fore , the use of this form of Crocco ’ s

equation can probably be justified for application to a

region outside the blade row if the dissipative process

occurs mainly within the blade row. Such a situation is

quite unrealistic for a highly loaded machine in which one

of the major sources of loss is the dissipation due to

turbulent mixing downstream of a blade row.

In order to overcome this inconsistency, Horlock41

suggested that a dissipative body force term could be in—

troduced into the equation of motion so that the Crocco

equat ion becomes
— 

W x ~~ 7 x r)  V I- 7 V ~c--~~. (27 )

By taking the dot product with 
~~ 

, we get

7’ 
~~~~~~~~~~ — W (28)—“-

This is a streamwise ecuation for entropy production and

if a simplified loss mode l is adopted based on the assumpt ion

of dissipative forces opposing the relative velocity vector,

we can express the dissipative force in terms of a stream—

wise entropy gradient.

41
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(29)

Bossman and Marsh42 suggested an improvement over

Horlock ’ s formulation by writ ing the equat ion of mot ion in a

direction normal to the streamlines and thus managed to

eliminate the dissipat ive force term from the equat ion .

wennerstrom7 used equation (27) as a starting point for

deriving the equation of motion for a streamline curvature

computat ional scheme . In this scheme also the equation of

motion is written in a direction almost normal to the stream-

lines and therefore the dissipative force term can be ne-

glected. It may, howeve r , be mentioned here that elimination

of dissipative force term by writing the momentum equation

in a direction perpendicular to the streamlines, does not

provide any special advantage because the knowledge of entro-

py production along the streamline is necessary to evaluate

the entropy gradient term in equation (26). This entropy

gradient term plays an important role in changing the radial

distribution of velocity.

Although computer programs (1,42) based on the above

model have been successfully applied to turbomachine flow

problems, there is a major discrepancy in this model which

renders it unsuitable for application to a highly loaded

system. This formulation assumes that the experimental

cascade data is an adequate means for estimation of entropy

42



increase through the rotor, hence no provision exists to

account for entropy rise associated with the flow fluctuations.

In the next section the concept of “apparent entropy

production” resulting from the flow fluctuations is intro-

duced.

3.4.1 Entropy Production Associated with Flow
Fluctuations

In Section 3.3 an expression for the rate of change of

mean rothalpy along a streamline was finalized. It was

emphasized that the spatial transfer of fluctuation energy

and the streamwise rate of change of fluctuation kinetic

energy play an important role in changing mean rothalpy

(or mean relative total pressure) along the mean merid ional

streamline. The concept of “apparent entropy production”

due to the flow fluctuations will now be introduced.

The increased rate of viscous dissipation due to flow

fluctuations is a well known phenomenon. The viscous

dissipation from kinetic energy to thermal energy, results
— 

in the decrease of relative total pressure and an increase

of entropy. Based on this concept it should be expected

that a decrease in the mean relative total pressure would

result in an increase in the mean entropy, or the conversion

of mean flow kinetic energy to the energy of fluctuations

will cause the mean entropy to rise. It is proposed hare

that the production of fluctuations at any point in the flow

43
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field is equivalent to the production of apparent entropy

there, the amount of apparent entropy being equal to the

kinetic energy of fluctuations divided by the temperature.

It is also proposed that the gradient of this apparent en-

tropy plays the same role as the real entropy gradient in

reshaping the flow field. The te rm “apparent entropy

production” refers to the conversion of the mean flow energy

to the energy of fluctuations, the corresponding loss in the

mean relative total pressure can be termed “apparent losses ” .

It was argued in Section 3.3 that the mean relative

total pressure for incompressible flow should be defined by

equation (17) , reproduced here

(30)

using the assumption that all the energy of fluctuations

( ~ ) comes from the mean flow kinetic energy ( ~ fl~
it is seen from the above equation that the rate of drop of

mean relative total pressure goes as _~~2~~’4)
-

~~~~~~~

And since the increase of entropy 7’ .~J goes as — ! ~2~’— Vt — f ~~~twe postulate that 7’ ~~ A51J~k goes as ~~ (~iy.a). Apparent

~~

_
t

ent ropy production along a streamline also results from the

apparent dissipation which is analogous to the viscous

dissipation and refers to the irreversible work done by the—5 
—I I

apparent stresses. Terms of the type ‘W~ Ji’~ ,.~~. ‘

represent apparent dissipation.

44

- - —S- 
-—5.—-- - - -5—-—--  -- -5- —— -5— -. - 

._~s -— ~~~~~~~~~~~~~~~~ 



-— --5- fl
Based on the above argument, it is now possible to write

an expression for the apparent entropy production along a

streamline, which is as follows

7 ~~ (S) ~~~ ~~ ~~~~~~~~v%)— Iafr/~ i’t (31)

For the axisymmetric case

2,~~~
- “

~~~~~~
Equation (31) therefore becomes

- ~~ (32)

substituting for , we get

T ~~~~# 
= - .L [;? 113~t ~ ~

÷ ‘~~~~~~~ 
) wo

J~~ ’~
(wy2) 

(33)

3.4.2 Entropy Production in the Rotor

Current practice for estimation of entropy increase

through the rotor is to use the experimental data from two—

dimensional cascade tests. But it is well known that the

entropy increase across a highly loaded rotor is larger than

that estimated from the results of a corresponding cascade

45
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unit. This behavior is more pronounced in regions near the

hub and the casing, and at off design ope rat ing conditions .

Recent experimental stud ies carried out at MIT have confirmed

that the cascade data doe s not provide an answer to the above 1:

problem for a highly loaded axial transonic compressor rotor.

With in the blade row, both viscous dissipation and the

apparent entropy production associated with blade to blade

flow variations are important. A proper a priori estimate

of the change of entropy through the rotor would require a

detailed study of blade surface and end wall boundary 1ayers~

blade passage shocks, secondary flows due to end wall boundary

layers, and other three—dimensional effects discussed in

• Section I of this report. No such detailed calculation is

attempted here. Rather, it is proposed to estimate the

entropy increase through the rotor by assuming that the mean

flow viscous losses can be found from the experimental cas-

cade data, and the apparent entropy increase associated with

blade to blade flow variations with the aid of equation (33)

and measured blade to blade flow variations. The entropy

increase due to the blade passage shock can be found by the

method given in Section 3.4.3.

Thus the total entropy increase through the rotor =

(4S 
~app 

+ 
~
4
~~~cascade 

+ ~~~~~ ~shock.
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3.4.3 Entropy Production Due to Blade Passage Shock

In order to arrive at a realistic estimate of entropy

production due to blade passage shock, it is necessary to

know the exact location and strength of the shock. The prob-

lem is made more complex due to shock-boundary layer inter—

action resulting in the separation of turbulent boundary

layer. For the purpose of estimat ing the entropy production

across the shock, it is normally assumed that the shock

stands near the entrance of the blade passage (Figure 2),

striking the suction surface at the point B , extending in

front of the blade at point A. and then bending back similar

to a bow wave. It is then assumed that the loss across the

‘hock can be approximated by the normal shock loss taken for

the average of Mach numbers at points A and B. The Mach

number at point A is assumed to be equal to the inlet relative

Mach number. The Mach number at B is estimated by using

Prandtl—Meyer expansion on the blade suction surface. This

procedure has been suggested by Miller et al.43

in the light of the experimental studies carried out at

the MIT Gas Turbine Laboratory, the above procedure does not

appear to be realistic. Density measurements made across the

blade passage shock us ing a flow visualization technique44

indicated that the flow Mach number at the point 3 is not

higher than that at the point A. Thus the simple p~andt1—

Meyer expansion is not applicable for the three—dimensional
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flow existing in the actual machine. It is in fact more

realistic to assume that the mean relative Mach numbe r at

the blade inlet represents the uniform Mach number ahead of

the blade passage shock. Entropy rise across the shock can

then be estimated by the norma l shock relat ion given in

Reference (45).

2 3
2r

J (V#i)2 3 
(34)
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SECTION IV

MEAN FLOW EQUATIONS FOR STREAMLINE

CURVATURE COMPUTATIONAL MODEL

In order to study the effect of blade to blade flow

variat ions on the mean flow field of a highly loaded tran—

sonic compressor, a computational scheme commonly known as

the Streamline Curvature technique was adopted. It is a

computational scheme based on the assumption of axially sym-

metric flow field and requires loss distribution as input

from external sources such as cascade data. In its most

general form the method consists of writing a single equa—

tion of motion in the meridional plane along the direction of

computation. For a non—bladed region the direction of corn—

putation is normally taken as the radial direction, but for

f low field computation at the inlet and outlet to a blade

row, the direction of computation is made to coincide with

the meridional projection of leading and trailing edges

respectively. Since most of the cascade data such as flow

angles, losses are known at the blade trailing edge and

depend on the conditions at the blade leading edge, the

above mentioned procedure of writing the equation along the

blade leading and trailing edges increases the accuracy of

the computational scheme. This single equation of motion is

suitably transformed by expressing radial and axial deriva—

tives in terms of the derivatives in the meridional stream—

49
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line direction and the direction of computation. Streamline

curvature enters into the equation through the terms con-

taining radius of curvature and the slope of meridional

streamlines. The continuity equation is used along with the

momentum equation to fix the constant of integration.

References (1,3) have given a detailed description of Stream-

line Curvature Technique. The aim of this chapter is to re—

derive the equations of motion for the Computer program of

Reference (1) so that the effect of blade to blade flow van —

at ions can be accounted for.

4.1 Basic Equation of Motion in 1—Direct ion

In order to derive the mean flow equation of motion in

the Streamline Curvature format, the method adopted is to

first transform the mean flow equations of motion in r, ~~~,

and z directions (equations D-l, D-2, and D-3 of Appendix D)

to equations of motion in terms of the components of vorticity.

These equations are then combined to give a single vector

equation which is further modified using Gibbs relation to

get a mean flow equation of Crocco’s type.

Equation (D-16), a detailed derivation of which is in—

cluded in Appendix D, has the form

(D-16)
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1
In this equation, the effect of blade to blade flow varia-

tions enters directly through the terms (~ ~~~~ + ~The term 
~~~~, 

which is the blade force vector

originating from the inviscid pressure field of the bl ade ,

also enters the equation through the pitchwise averaging

process as a jump of pressure across the blade from suction

to the pressure surface . Although the usual axisymmetric

through flow formulation does include this term as the dis-

tributed forces representing the effect of blades, it assume s

that blade to blade flow variations are small. The term F.~
represents the mean viscous force in the fluid and is mainly

due to the blade surface friction. Outside the blade row

does not exist and is small.

The equation of motion in the 1—direct ion is derived by

taking the scalar product of the vector equation (D-l6) with

a unit vector in 1—direct ion and using transformation rela—

tions for radial and axial derivatives. The final form of

Streamline Curvature equation as derived in Appendix D

becomes 

~~~ c~4c~r)

r ÷ ZVS4~f l r  ~~~~~~~~~~~~~
— (c~ (35)
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Before commenting on this equation , the ass umptions

made in deriving this equation can be summarized as:

a) Steady state flow with respect to a coordinate

system fixed to the blades.

b) Pitchwise variation of density and temperature

are small.

It may be noted that over bars have not been used for quanti-

ties which are assumed to be pitchwise invarien t, such as

~ ,T, ~~~~~~, 
Y etc. The mean slope of the streamline is

tang =
.iji

Equation (35) is the 1—direction pitchwise averaged__
&

momentum equation for . The Streamline Curvature pro-

cedure which begins by laying a mesh in the meridional plane

formed by the initially assumed streamlines and fixed axial

stations, provides informat ion on and A
C.~. . Information on

other unknown quantities is obtained as follows:

a) If the mean rothalpy distribution is specified at

an upstream station, it can be estimated at the

desired station by numerically integrating equation

(23) along the meridional streamline , when the
heat transfer and viscous effect s are small .

b) Entropy distribution at the desired station is

estimated by us ing the procedure given in Section

3.4.2.
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c) For design problem, We d istribution is specified at

the blade trailing edge. In the interbiade region

it can be assumed to remain constant along the

streamline . For ana lysis problem h~ can be re-

placed by the relative flow angle ~8 and meridional

velocity L’~
d) If the value of is assumed , temperature

can ~~ est imated from rothalpy.

e) Apparent stres~es are estimated from experimental data.

It is thus seen that equation (35) can be integrated

numerically along 1—direction using an iterative technique ,

provided and the blade force terms can be expressed

in terms of the known quantities. A3 mentioned earlier, the

constant of integration is provided by the use of Continuity

equation. Further, since this 1—direction equation of motion

could be derived without using the 0—direct ion equation of

motion, one may be misled to the conclusion that r and z

direction apparent stresses are sufficient to get the final

form of the equation of motion. This, however, is not true

because 0—direction apparent stresses are indirectly intro—

-: duced through the 0•-direction blade force term which

is given by pitchwise averaged 0—direction momentum equation

-

~ 

- 

= 2 (:t
-5
~9) ÷ 

/ /2(~’~~ V ~~~~~~~~ 2‘

~~
‘)1, 

~~ J (36)
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4.2 EQuation of Motion for Computer Program

As seen in the pre v ious sect ion , for  the application of

equation (35) , it is necessary to express the term

and blade force terms in terms of the known quantities.

This equation may also require further modifications in

order to make it applicable to the analysis problem . Hearsey ,

whose streaml ine curvature program1, will be modified for

this investigation , arrived at the desired equation by

evaluating ..~~~~~~~~~~~
“ with the aid of continuity equat ion , and

for the blade forces, he adopted the formulat ion given by

wennerstrom7. Equations being derived in this section are

kept identical to those given in Reference (1), so that the

basic logic of Hearsey ’s program is not changed. Detailed

derivation of only those equations which are changed as a

result of pitchwise averaging is included.

4.2.1 ~1ade ‘~‘orces

in equat ion (35) mean (or distributed) force terms in

the meridional direct ion and in a , direction perpendicular

the meridional direction (in the meridional plane ) have been

separated into the inviscid blade forces ( F.n.~ ~ ~~ ) and

viscous body forces ( / t ~~. /~~~~JL ) .  If the viscous body

forces are considered to result from the blade drag force

only, the problem of estimating these forces becomes rela—

tively less cumbersome.

_______ 

-  
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The basic method for evaluat ing the )lade force terms

was given by Marble 13, wh ich was late r gene ra l ized by

Wenne rstrom7 for any arbitrary direction in the meridional

plane .

If the blade surface geometry is known , it is possible

to fix the direction.s of F~ and~~~ . /~ which arises as

a result of inviscid pressure field of the blade , can be

taken as perpendicular to the mean blade surface, and if the

mean flow velocity is assumed to be approximately tangential

to the mean blade surface , the inviscid blade force will be

perpendicular to the relative velocity vector. For evalua—

ting the viscous force , it is assumed that this repre—

sents blade surface friction and it is assumed to be acting

in a direction opposite to the mean relative velocity vector.

This in fact is not a realistic assumption for a highly

loaded rotor in which the boundary layer f lu id may have a

significant radial component due to the combined action of

centrifugal and coriolis forces. However, in the absence

of exact knowledge of boundary layer flow and since the vis-

cous force term is not very important in the momentum equa—

tion, the above assumption was retained for this analysis.

Blade FOrCe in the Meridional Direction

with the above assumption and for small variation of

temperature and entropy in the pitchwise direction, it can

be shown that (for example , see Reference 13)
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—p-. —+• 
(37)

Equation (37) requires further investigation but in view of

the above discussion , this relation has been retained with-
out any alterations.

From Figure 4 , we have & Cosj~ /~ j9 ~ 
-w cldJ 3

There fore , equation (37) becomes (36)

- T2.~ C—o4 J3 (38 )

We also find from Figure 4

i~~m~ — i~j ~ (39)

But from equation (36)

~~~~~~~~~
Combining the above equations , we get

= ~~~~~~~~~~~ = .  
~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ tj 3 (4 0 )

Equation (40) is valid in the bladed region only.

For non-bladed region, ~~~~~=O and /~~ iç, ~~ which
can be assumed to represent internal fluid friction.

This is given by

41

56

_ _  ~~~~~~~~~~ -5~~-5 •~~~~~~~~~~~~~~ 5.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-v-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—--5—- —-5-- - - —  —-5---- - -— - .——

~~

However , if the friction is limited to the blade surface

only then in the non-b].aded region both and

will vanish .

Blade Force in a Direction Perpendicular to the Meridional
Direction

Since is assumed to be parallel to the meridional

streamline , rnt,.=O

1~ ~~~~~~~= / ~~
A detailed derivation of is given in Reference (7 ) .

Combining equations (25) and (27) of Reference ( 7  ) 
• we get

—~~~~~ + ~h?L~~ I~n,3 Z~z~ ~~#?) G~i E

~~ ~t C o4f lh1.~E .Iee&#r)J (42)

Here ( ?— r )  has been change d to (~t ,-r ) since ~ represents

blade trail ing edge location in Figure (1) of Re fe rence (7) .

Equation (42)  can be trans formed to the apparent stress

format by using equat ion ( 36 )  , thus

~~ ÷I~),’J~s/3 ,Ie4E T2TJ
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4.2 .2 Equat ion for Meridional Velocity Gradient

The gradient is eliminated from equation (35)

through the use of continuity equation.

Using the transformation relation

_ _  (D-21)

and the geometric relat ionship — —
the following relat ion can be derived with some algebraic

man ipulat ion

= _ _ _ _  _ _  ÷ (2- ~~~ t~~~~~~ rj ~~~
Z

~~~~

,~- L ta,,v,6 - ~~~ ~~11~~~’t~~~) (44)
C~,sr

The term — is now eliminated with the aid of cont inuity

equat ion . Although , the axisymmetric system represents a

blade free space , it is expedient to recognize at this point

the possibility of blockage due to blades. It is considered

as a distributed blockage to avoid a conflict with the con—

dition of axial symmetry.

Denoting blockage by ~ , we can write open area as

I~.= (i-~ )
For the axisymmetric model with distributed blockage,

the mean flow continuity equation is written as

(45)
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This equation is converted into the  following suitable form

for _~~3 , with the aid of transformat ion relation ( D — 2 0 )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
4i~~~ r .  -

~~~~

~~~ 4~ir(J- ~an//a,~ ~

- - __ 
+ 

~~~~~~~~

(~~~~z.z,Øta~ r) ‘~?~t ~~~ ~~(24an/ t4~ir) ~~

(46)

It is seen from equation (46) that we have still tc

eliminate the meridional derivative of density from the

first term in the right hand side of equation (46). It may

be noted here that although meridional varia tion of densi ty
gradient is permitted , the pitchwise variation of density

has been assumed to be small,

The term .~L .2t is obtained from .L2~ by using

Second Law of Thermodynamics and the equation of state.

.2. .~~~ is obtained by deriving mean flow equation of
motion in the meridional direction, a detailed derivation

of which is given in Appendix D.

Equat ion (D-3l) of Appendix D is

= _ _

~~~~ t 9 ~~~J
~ ~~ {~2~ tcznp - (2~~~~~~~ +~~;~))__
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substituting.L 21 from equation ( 4 7 )  into equat ion
—

(46), and then substituting — from (46) into (44),

we get after some algebraic manipulation an expression

for _ _ _  , given as— —
_ _  

—
~~~~~~ ~~ (~ainfi,~~ n)~ t~~C0~~ ~~.1- ~~~ v c i... ~~~~~~~ 

-

— 19,,~ 1 f  
~~~

t

~~~~~ ~~~~~
aC

~
-
~~~

) l

J

- 1
~i~~ -(~~nfii~2~~i�)J (48)

This is the equation for the meridional velocity gradient.

4.2.3 ~ nalysis—Tyoe Momentum Ecuation for Computerprogram

To get the final form of mean flow equation of motion

in 1—direction suitable for computer program, 2_~ and the

blade force terms are eliminated from equation (35) by

using equations (48), (40) , and (43).

This gives after some algebraic manipulation
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This equation will be used for computing the flow field

of the MIT ~1owdown Compressor rotor. A few important clar—

ifications about this equation are as follows:

a) Equation (50) is applicable for the analysis

problem within the blade row only. For the Un-

bladed region where the relative flow angles

are not specified and where all blade related

information such as blade ~~~~~~~~~ ~f are

nonexistent, this equation is suitably modified

and it takes the format suitable for design problem.

b) Although ~~~ is not specified for this equation,

it is found from the knowledge of J3 , blade velo-

city and the assumed value of t~~

— 
c) whereas the mean axial and radial velocities have

been expressed in terms of the mean meridional

velocity, the velocity correlations (apparent

stresses~ have been retained as the products of

the axial and the radial velocity fluctuations.

This is because the experimental data available

for testing this formulation could provide velocity

fluctuations in the radial, axial and the azimuthal

directions only. The radial derivative of the

apparent stresses has also been retained for the

same reason. The axial derivative of the apparent

stresses can, however, be transformed to the radial
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and the meridional derivatives ‘y using the relation

(51)

d) The mean rothalpy gradient ~Z is estimated with

the aid of equation (23).

e) The entropy gradients ~~~ and in this equation

are estimated from the cascade data and from the

entropy production model as formulated in Section III.

f) It is also observed that the effect of radial

direction apparent stress is greatest because the

effect of pitchwise and axial apparent stresses are

scaled down due to the small multiplication factor.

This is reasonable since the 1—direction momentum

equation approximately represents an r—direction

momentum equation.
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SECTION V

CRITICAL ANALYSIS OF THE EXPERIMENTAL DATA

The experimental data adopted for the verification of

the flow model formulated in the preceding chapters, was

taken from the MIT Slowdown compressor test facility. Time

resolved data on fluctuating pressures had been recorded by

Thompkins2 behind a highly loaded transonic rotor with the

aid of a four diaphragm probe. The data which was digitized

every 5,tlsecs provided the instantaneous values of the three

components of flow Mach number ~~~~~~~~~~ and pressure at

different radial locations and at two axial stations. These

axial stations were situated at 0.1 and 1.0 chords downstream

of the rotor blade trailing edge. This data was recorded

with respect to an absolute frame of reference.

For the estimation of instantaneous flow velocities from

Mach numbers, it is necessary to know static temperature

which was not measured. The static temperature was estimatef

by assuming the Euler Turbine Equation is valid and can be

expressed in the following form for the estimation of total

temperature ratio across the rotor.
-5 / /

• 
r../x~~)M~~( f ~Y(’~~2) (52)

Here subscripts 1,2 and T refer to rotor inlet and out—

let conditions, and blade tip condition.
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In order to make the results representative of usual

compressor tests, the inlet conditions we re standardized to

32o.0 R , 

~ -:t = 14~~ ~~~ 

2 
, and dE’ = 5j •a

~t l4j /~L,1, ~ . The choice of these values at the inlet

result only in multiplication of all the terms in the momen-

tum equation by a constant factor, the relative magnitude of

these terms remaining unchanged.

The procedure adopted for estimating the distribution of
,& ,~ 

,
velocity_correlations (apparent stresses) ‘Z~~, t~ , t~~ ~~~~

, I *‘ ,

14 i2~ involved two steps. These are:

a) Computation of the time averaged values of

each component of velocity.

b) Computation of the products of fluctuating

quantities at each instant and then time

averaging the products to obtain the apparent

stresses.

Two points may be noted. Firstly, the correlations of

the absolute velocity fluctuations are identical to those of

the relative velocity fluctuations. Secondly, the time

averaged flow with respect to the absolute frame of reference

is equivalent to the pitchwise averaged flow with respect to

a frame of reference fixed to the blades.

Computations were made of the following quantities, at

several different radial locations and at two axial stations
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a) Mean velocity components ~~~~~~~~~
b) Apparent stresses ‘74~j ~ , ‘lJ~ U~ /

and 
—

c) Static pressure ratio Pi2/p ~
d) Mean entropy change across the rotor.

In computing the mean values, a number of different

averaging intervals were used. Averages over one blade

passing period were first constructed, with the averaging

interval beginning at several different points of the blade

passing period. If the flow were truly periodic with blade

passing, that is steady in rotor coordinates, the mean values

should be independent of the averaging interval so long as it

covered one complete blade passing period. In fact the aver—

ages varied strongly w ith the location of the interval, in-

dicating that the flow is quite unsteady in the rotor coor-

dinates. Averages were then taken over two and three blade

passing periods starting from the first data point.

Finally, averages were taken over five full blade pass-

ing periods, the maximum available in digital form, and these

values will be interpreted as true means. The scatter from

these means will be taken as a measure of the unsteadiness in

the rotor coordinates.

5.1 Mean Velocities

The mean velocities t~~~, ~~~ and at the port 5

location, which is just 0.1 chord downstream of the rotor
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trailing edge are shown in Figures 5 and 6. The mean

over five blade passing periods is indicated by circular

points through which the curve has been drawn. The scatter

from this mean, of the values averaged over one, two and

three blade passing periods, is also shown. in all the

figures from Figure 5 through 21 , plus (+), square ( ~ ) ,

triangle (A ) and circle (a) represent means over one, two,

three and five blade passing periods respectively. In some

of these figures symbols Q, Q and * have also been used.

These symbols refer to means over one blade passing period

but starting at different points of the recorded data.

It is seen that the scatter is small in the inner part of

the annulus, very large at = 0.87, decreases for some

distance towards the casing and then becomes quite large near

the casing. The large scatter near = 0.87 which was

first noted by Thompkins2, could be due to a vortex shed from

the rotor blade near the termination point of the shock on

the suction surface. This view is supported by the fact

that the variations in 14 are much smaller than those in

t~~ and t ~

Figures 7 and 8 give the average values of

and 15~ at the port 6 location, which is one chord

downstream of the rotor trailing edge. The scatter is corn—

parative].y reduced, and the very large V0 near the tip has

decayed. There is also a general upward shift in 1.4 in the

inner part of the annulus , and a uniform upward shift in t’~
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between port 5 and port 6. The data at the two locations

were derived from two separate tests, and this shift is

tentatively attributed to a zero shift problem in the pressure

transducers. Thus, only the shape of the curves at the two

stations should be compared. This radial variation of both

lftQ and does not change very much with distance down—

stream.

The mean radial ve locity i5~ shows an erratic behavior

at port 5 and this is attributed to a possible flow separa—

tion near the hub, and shock—boundary layer interaction in

the vicinity of radius ratio 0.87. No reasonable explanation

can be given for the observed steep rise of ~~ near the

casing. This is attributed to the flow disturbance generated

by the cavity which houses the probe. At port 6, however,

the erratic behavior of V~. has considerably diminished.

5.2 Apparent Stresses

5.2.1 Apparent Stress, z/
~ = 

0.1

The apparent shear stresses, ~~~~ , t~ , and

“J,L are shown in Figures 9, 10, and 11 for the port 5

location, immediately behind the rotor. Here again the five

blade passing period means are shown by the circular points,

and the scatter from this mean is shown by other point

‘r ’r; c~~~~S (listed in Section 5.1). Several points should

~-~ tc.d. First, the scatter is quite small at r/rt ~ 0.78,

- .r~ larg. at r/~~ 0.87, and moderate near the hub and the
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casing. secondly, the apparent shear stresses

would be of the order of 15 lb1 ft
2 if the compressor had —

operated in ambient air, and hence are fairly small compared

to the pressure. On the other hand there appear to be rather

steep gradients in the stresses, so their effect may be sig-

nificant nevertheless.
— -

~ -I
~L

The apparent normal stresses t~ , U~? and CT~ which —

are plotted in Figures 12, 13, and 14, are much larger

than the apparent shear stresses, and also show larger

scatter, particularly near 0.87. Taking mean values

over five blade passing periods as representative it is

observed that there are very large gradients of and V9
‘
a.

near this radius. For example, the change of ‘t2~ from

nearly zero to 30,000 ft2/sec2 between = 0.8 and 0.87

yields an effective pressure gradient of the order of 1000

Th;/ft
2 per unit radial distance, or in other terms half the

static pressure per compressor radius. An alternate way of
~~

,,. ,L~&

assessing the order of magnitude of the term

is to compare it with the centrifugal force ~4 which approx-

imately balances the radial pressure gradient. A plot of

IrS is shown in Figure 12a.

Prom this figure we find that the magnitude of which

is an important apparent stress term in the 1—direction

momentum equation, can become four times that of the centri-

fugal force term . Therefore, unless the effect of
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the radial normal apparent stress is nullified by the other

apparent stresses, it will play a role comparable to the

centrifugal force at several radial locations.

5.2.2 Apparent Stresses Z/C = 1.0

As can be seen from Figures 15, 16, and 17, the

apparent shear stresses do not decrease very much between

= 0.1. and z/~ 10 , but there is a large change in the

radial distribution of stresses. This is consistent with the

tentative conclusion of Reference (37Y , that the flow is

evolving to a rotor wake structure controlled by the swirl

eigen modes of the duct. The apparent normal stresses which

are plotted in Figures 18, 19, and 20 are again seen to be

much larger than the apparent shear stresses.

5.3 Static Pressure

The distribution of mean static pressure divided by the

inlet stagnation pressure is shown in Figure 21

for Z/C = 0.1 and z/~ = 1.0. The general trend is a decrease

in the downstream direction, which is consistent with the

increase in ‘L9~ . A low pressure at ‘
~

-/~ 
= 0.87 directly

behind the rotor is probably associated with the strong

vortex which is conjectured at that radius, and which is
‘I

also considered as an explanation for the large ‘t$!~, and 1/~
at that radial location.
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5.4 Entropy Distribution

The distribution of mean entropy rise (.~~S ) was esti-

mated by first finding the instantaneous entropy rise L1S

with the aid of the following equation , and then carrying out

the time averaging.

= ~~ if /~ 1 /
C, ‘ fJ  (

~~ JJ (53)

The value of is known from the experimental data, and
-7- 4,

is calculated from equation (52).

A plot of ‘zr.r ~/t~ for port 5 is shown in

Figure 22. The negative values of between the radius

ratios of 0.7 and 0.85 are confusing since the entropy change

being estimated, has been treated as a thermodynamic property

which must increase unless heat transfer takes place from the

midspan region towards the hub and the casing.

In the absence of any logical explanation, this unrealis-

tic entropy distribution was attributed to the zero shift in

the pressure tranducer. The corresponding plot for port 6

which is seen in Figure 23 , does not show this anomaly, so

that the zero shift problem is mainly associated with measure-

ments at port 5. It is also seen that towards the casing the

value of for port 5 suddenly becomes very large, even

larger than that at the corresponding location of port 6.

This again conflicts with the concept of entropy change along

a streamline and indicates that either the use of Euler Turbine

equation is not justified or the experimental data near the

casing is not reliable.
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SECTION VI

COMPUTER PROGRAM

As mentioned in Section I, one of th€. objectives of this

investigation is to modify a computer program based on the

Streamline Curvature Computational technique , so that the effect

of blade-to-blade flow variations can be accounted for while

computing the mean flow field of an axial flow compressor.

The basic computer program chosen for the purpose has been

developed by Hearsey,1 and is one of the most versatile and

complete programs for application to a design or an analysis

problem. Before describing the modifications introduced in this

program, it is considered desirable to outline some of its

important features and the computational logic adopted for it.

This section gives a general description of the computing rou tine

for an analysis problem, the overall logic of Hearsey’s program,

and the modifications introduced in the basic program to account

for blade—to—blade flow variations. A brief description of the

logic used for estimating the experimental flow from the data

of Ref. 2 has also been included towards the end of this section.

6.1 General Description of Ccinputing I~utine for the ?~nalysis Probl~n
(Not Incl~ñing the Effect of Pitchwise Fl~~ Variations)

6.1.1 Input Data

In order to solve an analysis problem by the Streamline

Curvature Computational technique the following input data is

required for a multistage axial flow compressor.

a) Axial location and orientation of each computing

station: Generally , a number of computing stations
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are located at strategic points in the flow and

preferably, but not necessarily, close to orthogonal

to the local meridional streamline direction.

Typically , several stations are situated upstream

of the first blade row. Additionally, stations may

be placed within the blade row.

b) Geometric details in respect of hub, casing and the blading.

C) Mass flow rate and rpm.

d) Inlet conditions such as pressure and temperature.

e) Distribution of lccses through the blade row: If the

losses are to be specified on the basis of cascade

data, their distribution need not be included in the

input data. An additional routine can be introduced

in the main program which first calculates ‘D’ factor

and then losses from the inbuilt curves. These iribuilt

curves give losses as a function of ‘D’ factor and

radial location of the meridional streamline .

f) The number of streamlines to be used in the ccmputation:

Generally , the location of streamlines which is com-

puted by the program , is based on the fixed percentage

of the total mass flow through each streamline.

However , if it is required to concentrate more stream-

lines in any particular region, it can be achieved by

prespecifying dif ferent percentages of the total mass

flow through the individual streamtubes.

Hearsey ’s program has a provision for 30 axial computing

stations and 21 streamlines.
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6.1.2 The Overall Solution Procedure

The overall solution procedure corresponding to the

input data of Section 6.1.1, can be described by the following

sequence of steps:

a) The first step in the computing process is to form

a computational mesh by the intersection of the

fixed axial stations with the meridional streamlines ,

henceforth referred to as streamlines. The initial

placement of the streamlines is achieved by dividing

the annulus area in accordance with the number of

streamtubes.

b) Having chosen the initial locus of each streamline,

the program establishes the radius of curvature (4~)

and the slope ( 0 ) of each streamline at the com—

puting mesh points by using the standard finite

difference format

— - ~Z#J - Iii ~ ~i~~~2~-IJ

(°‘~~ 
- 

(55)
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c) Now the first iterative pass begins. During each

iterat ive pass the computation of the flow field

is carried out at all the stations, start ing at

the first computing station and proceeding to the

last. The position of streamlines during a pass

is not changed. At the end of each pass the stream-

lines are relocated by iterative process, and the

new position of the streamlines is used for the

next pass. The details of calculations involved

during any computing pass are described in the next

few steps. As an example, the comput ing station

will be taken at the exit of the rotor.

d) Before computing the flow field at the rotor exit

during any pass, the flow field at the upstream

station is computed. This means that the values of

velocities, pressure, entropy, etc. are already

known along all the streamlines at the rotor inlet

which can be designated as (I—1)th station.

To start with, distribution of is assumed at the

Ith station. These values are normally taken as

those obtained from the previous pass (&i-.4)th.pass).
- 

- 

With the assumed values of and the given values

of j S at each mesh point, the values of t.~. can

be estimated using the relation

1J~J .~ttvv~.p # ‘CJ2 (56)
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N~W, from the assumption of constant rothalpy

along the streamline, the total enthalpy at the

rotor exit can be calculated.

_ _ _ __ _ _ _ _  

= 
_____  

(57)
_ _ _ _  -

known at the_rotor inlet from equation (56)

e) With total enthalpy and total velocity known,

static enthalpy and thus the flow Mach number can

be immediately found. The entropy distribution is

found directly from the specified losses, or these

losses are calculated by estimating the ‘D ’ factor

and then using one of the “loss vs. ‘D~ factor”

curves built into the computer program. Thus all

the quantities required for integrating the momentum

equation (50) are known.

f)  Us ing the midstreamline ve locity value as a starting

point (i.e. as an integration constant), the momen—

• turn equation (50) is solved in a stepwise fashion,

giving new values of velocities for the inner and

the outer halves of the annulus. Once the new values

of velocities are known at all the mesh points of

the Ith station, it is possible to estimate the new

values of static enthalpy and therefore temperature.

Finally, the density distribution is estimated by

estimating the pressure with the aid of specified

losses.
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g) With known density distribution, total mass flow

through the annulus is computed and compared with

the given value of mass flow. (It may be noted

that the mass flow through the individual stream—

tubes is not compared at this point.) In general

the computed mass flow will not equal the actual

mass flow. The midstreamline velocity is increased

or decreased as required, and the process is repea-

ted until continuity is satisfied. It is thus seen

that the simultaneous solution of momentum and

continuity equations is an iterative process.

h) Continuity is now applied for each streamtube.

In general the streamtubes will not contain their

proper percentages of mass flow. The computer

determines, and stores an error function for stream-

line location.

i) The information regarding velocities, angles, Mach

number, etc.,at the rotor exit is now available.

The flow field at the next downstream stat ion can

therefore be computed. In the interbiade region.

angular momentum (or total ent1~alpy) and entropy

are assumed to remain constant along the streamlines.

j) The above process is continued to the last computing

station. The previously determined streamline

location error functions are now simultaneously

applied to redefine the entire streamline pattern
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I
at all the stations, and the next iterative pass

begins. Convergence is achieved when the change

in the flow field is w ithin a specified limit for

two consecutive passes.

The logic of Hearsey’s Computer Program is given in

Figure 24. Here it has been assumed that the losses have

been given as input. A detailed description of the program

is given in References (1,3,6)

6.2 Modified Streamline Curvature Program

In order to modify the original Streamline Curvature

program to account for blade to blade flow variations, five

additional subroutines are introduced. The basic logic of

the original program was retained without any alteration .

The process of modification is centered around estimating

Rothalpy variation and Entropy production along the meridional

streamline due to pitchwise flow fluctuations, and intro—

ducing apparent stress terms in the 1—direction equation of

• motion. Necessary input variables are introduced to study

the effect of the above phenomena individually or in any

desired combination. These subroutines can cnly be called

from “overlay TJD0308” corresponding to l,TEQN=0 (Reference 1).

No provision is made for calling these subroutines from
• “overlay uD0326”. Terms representing blade thickness (2~~!.axi ~~~,

.

• e tc.) appearing in equation (50 ) were also not introduced

in these subroutines. Necessary comment cards giving the

• basic function of the subroutines, list of variables, and
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other relevant details have been introduced. Some of the

details in respect of these subroutines are as follows:

a) subroutine COR~rA

Thi s subroutine reads the velocity correlation data

at all the stations and finds the cubic splinefi t

coefficients with the aid of subroutine SPLINE.

These coefficients are stored for estimation of

velocity correlations and the ir derivat ives at the

mesh points, velocity correlation data which these

subroutines read is generated in a separate program

EXPTL FORTRAN from the time resolved experimental

data. This subroutine is called by specifying input

variable NCOR 1.

b) Subroutine SPLINE

This subroutine calculates the coefficients for

cubic splirtefit from the input data on velocity

correlations.

c) Subroutine ROEN 1

This subrout ine estimates the distributions of

Rothalpy and Entropy associated with blade to

blade flow fluctuations. This is done by inte-

grating ( 
~~~ ~app 

and (7~ ~~~ ~app 
along the

meridional streamline, the constant of integration

being evaluated from the known value of rothalpy

(or apparent Entropy~ at the upstream station.

80

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-5-”-- -5 ----5—- - — — -5 -  1_J_ ~~- ~~~~~~~ - - .~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -

Values of , T2~ , and are also esti-
mated for use in the momentum equation (50).

This subroutine is called by specifying input

variable NROEN 1.

d) Subroutine ROEN -

This subroutine calculates 
~ ~~~ ~~~~~~ and (r

~~~~
)app

with the aid of equations (23) and (33) respectively.

Apparent stress terms and their radial derivatives

are computed by using the cubic splinef it coefficients

generated in subroutine CORDTA.

Axial derivatives of apparent stresses are calculated by first

estimating the meridional derivatives and then using the re—

lat ion 

_ _  

~~c~~~~

- 

— ~~ (58)

Meridional derivative of any quantity can be calculated

by using the standard finite difference approximation

~~~ _ _ _ _4~Z. 
- 

- 

1/ 
(59)

If input variable NROTH~~ 1, (
~~~~ 2~”

) app is calculated,
otherwise ( 2Z 

~ is taken equal to zero. Similarly, if
~~~ app

input variable NENTR is not equal to 1. ( ~~~~ ~app 
is taken

to be zero.
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e~ $ubroutine WATRAN

This subroutine calculates apparent stress terms

appearing in the pitchwise averaged 1—direction

momentum equation (50). Cubic splinef it coefficients

generated in subroutine CORDTA are used to estimate

apparent stresses and their derivatives at various

mesh points. The procedure for calculating these

derivatives is the same as that described for

subroutine ROEN 2. This subroutine is called by

specifying input variable NWAT = 1.0

The logic of the above subroutines and their interaction

with the main program is given in Figure 25.

6.3 Computation of Mean Flow Quantities and the APPare!I~
Str~~~~ s from thE ~xp~riment~ 1 flata

The program named EXPTL FORT follows the following

sequence of steps for estimating mean flow quantities and

the apparent stresses.

(i) Read experimental data on the instantaneous

values of Mach numbers Mr2, MO2, Mz2, at static

pressure at different radial locations. Read

other input data such as inlet total temperature

and pressure .

(ii) First of all the total temperature ratio is

determined by using the Euler Turbine equation

in the following form:
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(60)

where MT is the rotor tip Mach number and

M2 =j;~e~ ~~~~~~~~~~~~ ~

(iii) With Tt1 known , Tt2 and Ts2 can be estimated.

Instantaneous values of the velocity of sound

and the flow velocities are now estimated at

different radial locations.

(iv) Mean velocities and pressure are determined by

using the relation

(61)

(v) Once the mean velocities have been estimated,

the fluctuating components of velocities can be

estimated 1~ — U

(vi) Finally, the apparent stresses or mean velocity

correlations are estimated by using the relation

~~~~~~~~~~~~~~~~~

(62)
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SECTION VII

RESULTS OF NUMERICAL CAL(~UL7~TION S AND DISCUSSION

The mean flow field of the MIT Blowdown Rotor was

computed by using the modified Streamline Curvature Computer

program, described in the preceding chapter. The purpose of

this exercise was to verify the validity of flow models for

Apparent Stresses, Mean Rotha].py Variation along the stream—

line, and Apparent Entropy Production. Flow models for these

phenomena which are associated with pitchwise flow fluótua—

tions, were formulated in Section III.

First of all, the mean flow field of the MIT Blowdown

rotor was computed by only using the cascade losses. This

was to confirm that the original Streamline Curvature program

is able to accurately predict the design flow field (free

vortex). Computations were next carried out to study the

effect of the above three phenomena on the mean flow field.

Here the effect of individual phenomenon and the combined

effect of these phenomena are studied. Computations were

also carried out by superimposing the effect of shock losses

on the above calculation. Finally, the flow field was cal-

culated by using experimentally estimated losses.

The apparent stress distribution given in Figures 9

through 20 were used as input for estimating 2L ,i2! ~~~~~ PP
and the Apparent Stress terms appearing in the equation of

motion (50).
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The negative entropy rise through the rotor as seen

around the midspan region (Figure 22), made the problem of

specifying the experimental entropy distribution a rather

difficult task. In the absence of any reasonable explanation

this negative entropy rise was attributed to a zero shift in

the pressure transducer. Therefore, for the purpose of

specifying the experimental losses, the curve of Figure 22

was shifted up so as to bring the most negative value to zero.

This is shown in Figure 26.

7.1 Computational Mesh and Basic Input Data

The computational mesh for application to the MIT Blow—

down Compressor was formed by seven nearly radial fixed

stations intersecting eleven meridional streamlines. Two

stations were located ahead of the rotor, one each at the

rotor leading and trailing edges, two within the blade row,

and one at a distance of 1.0 chord downstream of the trailing

edge. The hub and the casing form two fixed streamlines.

The positions of tha remaining nine streamlines are fixed

during any computational pass but are readjusted at the end

of each pass. Figure 27 gives the details of the computation-

al mesh. It may be recalled that the time resolved experi-

mental data was obtained at 0.1 chord (Port 5) and 1.0 chord

(Port 6) downstream of the rotor. For this computational

study the port 5 location was taken to represent the blade

trailing edge projection on the meridional plane.
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The basic input data for the anlysis problem under

investigation consisted of blade exit relative flow angles,

geometrical features, mass flow rate, rpm, and the compressor

inlet conditions. For all the computational studies, the

experimentally determined relative exit flow angles (fi )

were used. Alternately, the flow angles can be specified by

using the deviation angles based on the cascade data. Al-

though this does not alter the basic character of the flow

field, the experimental flow angles were used to get

better accuracy. Relative flow angles for stations within

the blade row were calculated by assuming a sinusoidal die-

tribution of along the axial chord. It may be

mentioned here that any alternate load distribution within

the blade row will have negligible effect on the exit flow

field , provided the load distribution at the rotor exit

remains unchanged. This is because a change within the blade

row can be communicated to the blade exit location only

through the change of the slope and the curvature of stream—

lines which in turn are primarily controlled by the load

distribution at the rotor exit. Other basic input data such

as the mass flow rate and rpm were reduced to the standard

atmospheric conditions at the compressor inlet with air as

the fluid. Details of the basic input data and apparent

stress data are given in Figures 28a and 28b.
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I
7.2 Mean Flow Field

7.2.1 Computed Flow with Cascade Losses

Mean pitchwise, axial and radial velocity distributions

at the rotor exit (Station 6) and at Station 7, as computed

by using cascade losses, are shown in Figures 29 through 32.

It is seen that the computed flow field is significantly

different from that obtained experimentally. The pitchwise

velocity has an almost constant negative slope from

the root to the tip and has completely failed to predict the

double bucket shaped distribution found experimentally. In

fact, the steep downward trend of 1~ near the casing would

cause flow instability and is therefore not expected to exist

in the actual turbomachine.

The computed distribution of mean axial velocity does not

show a steep fall near the casing, which is an important

feature of the experimental distribution.

The radial velocity distribution which is mainly con-

trolled by the large slope of the hub, is found to decrease

steeply from a large value at the hub to zero at the casing

in con formity with the casin g boundary condition. A reversal

of slope at two locat ions as observed experimentally, has not

been predicted by this computat ion .

It may, however , be noted that the results of this corn—

putation show a close resemblance to the flow field predicted
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by the three—dimensional inviscid computational scheme of

Reference (2) . The predicted flow field also gives a good

agreement with the design flow field of free vortex type

thus showing that the basic program of Reference (1) is

reliable for the prediction of mean flow field. Comparison

with the 3—D inviecid computation also shows that 3—D invis—

aid effects per se do not alter the mean flow field of this

rotor in a major way. The principal 3—D effects are due to

viscous interactions, ~~ich are of course strongly controlled

by the inviscid 3—D flow.

7.2.2 Computed Flow with Cascade Losses and
Apparent Stresses

Figures 33 through 36 give the mean flow field corn—

puted with cascade losses and Apparent Stresses. Variations

of mean Rothalpy and the p~~duction of Apparent Entropy along

the meridional streamline are not included in this computa-

tion. It is seen from Figure 33 that the mean pitchwise

velocity distribution at the rotor exit is similar to that

obtained without Apparent Stresses. A slight depression at

= 0.87 and a slight increase in the negat ive slope near

the casing indicate a trend reverse of that observed experi-

mentally. Although the direct effect of Apparent Stresses

is negl igible on the mean flow field, it is noted from

Figure 37 (app. etress/ vs r/rt) that the order of

magnitude of Apparent stresses is comparable to that of the
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centrifugal force . A corc:parison of Figure 37 with

Figure 12a (
~~i~ /rj~, irs ) shows that almost -

all the contribution to the Apparent Stress terms of equa-

tion ( 50 )  comes from the distribution of the normal radial

Apparent Stress 19
7.2.3 Computed Flow with Cascade Losses and

Apparent Entropy~P roduct ion

Before computing the mean velocity with cascade losses

and Apparent Ent ropy, the distributions of 7~~~~ ~app at

stations 4 and 5 which are located within the blade row ,

were est imated. Apparent Entropy rise across the rotor is

then computed. The se distribut ions are g iven in Figures 38

through 40. it is seen from these figures that the appa-

rent entropy production is mainly controlled by the term

Since the absolute value of apparent stress and

the mean velocity gradients are small, the apparent dissipa—

tion term in equat ion (32 )  is small.

The computed mean flow fie ld with cascade losses and

Apparent Entropy is given in Figures 41 through 44.

It is seen from Figure 41 that in the midspan region , ‘L~
at the rotor exit shows a trend similar to the experimental

results. It is, however, noted that the extent of change

introduced by Apparent Entropy in the computed flow is

considerably less than observed in the experimental distribution.
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7.2 4 Computed Flow with Cascade Losses and
~óthalpy Variation Along the Streamline

Distributions of _.i at stations 4 and 5, and mean

Rothalpy variation across the rotor are first computed and

these are given in Figures 38, 39 , and 45. It is seen

from these figures that mean Rothalpy decreases steeply to—

wards the hub and the casing, and it increases slightly in the

midspan region. This distribution is due to the spatial

transfer of mean flow kinetic energy from the hub and the

casing towards the midspan region. Besides towards the

casing, conversion of mean flow kinetic ene rgy to the energy

of fluctuations becomes quite significant.

The computed mean flow field w ith cascade losses and 
—

Rotha].py variation is given in Figures 46 through 50.

The shape of the ‘1J~ curve at the rotor exit (stat ion 6)

shows good agreement with the experimental distribution up to

r/rt= 0.9. It is further seen that a good agreement exists

between the predicted and the experimental distributions of

and ‘t%~ at station 7. Thus the effect of mean

Rothalpy variation along the streamline seems to play an

important role in changing the mean velocity field.

7.2.5 Computed 1?low with Cascade Losses, Rothalpy
Variation, and Apparent Entropy Production
Along the Streamline

rn order to visualize the combined effect of Apparent

Entropy production and mean Rothalpy variation, equivalent

entropy change across the rotor defined as
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is computed. This is plotted in Figure 51. It is interesting

to note that a close resemblance exists between the equivalent

entropy rise and the experimental entropy rise.

Figures 52 to 56 give the computed mean velocity

field at station 6 and 7. The combined effects of Rothalpy

Variation and Apparent Entropy product ion is found to change

the free vortex velocity distribution to a distribution which

closely resembles the experimental distribution. The obser-

ved difference in the absolute values of IJe at station 6,

is attributed to the lower experimental values resulting from

a zero shift in the pressure transducer. Therefore, the shape

of the curves should only be compared to verify the validity

of the flow model.

7.2.6 Com~uted Flow with cascade Losses, RothalpvVariation, Apparent Entropy Production, anà

~pparent Stresses

Finally, the flow field was computed with all of the

above mentioned phenomena, and the results of numerical

calculations are given in Figures 57 through 61. It is

observed that the effect of adding Apparent Stress to Roth—

alpy variation and Apparent Entropy production is small, and

is localized near the casing. In fact the positive slope of

which was obtained by using Rothalpy variation and

Entropy production, no longer exists here. Several factors -

__



could be responsible for the disagreement between the experi-

mental and the predicted results near the casing. Error in

the experimental data near the casing, assumpt ion of linear

distribution of apparent stresses along the meridional stream-

line, and non—inclusion of shock losses are some of the im-

portant factors. The effect of superimposing shock losses

on the above computation is given in Figure 62. This is

seen to make the slope of ‘V~ positive near the casing.

7.2.7 computed Flow with Experimental Losses

Mean flow field computed by using the entropy distribu—

tion of Figure 26 is g iven in Figures 63 through 68.

It is observed that 1J~ predicted at the rotor exit has an

excellent agreement with the experimental results.
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SECTION VIII

CONCWSIOMS

The primary aim of this research has been to improve

the existing turbomachine flow model based on the combina-

tion of axisymmetric through flow and 2—D cascade flow, so

that it can be applied to highly loaded systems for which

the flow field computed by the existing flow model, has

shown poor agreement with the experimental results. In order

to achieve this goal , the existing flow model has been modi-

fied to account for blade to blade flow variat ions. The

major support in verifying the improved flow model came from

the time resolved experimental data of the MIT Blowdown

Compressor facility. A critical analysis of this data con-

siderably helped in understanding the 3—D viscous effects

inherent in a highly loaded axial flow compressor. The com-

puted flow field obtained by modifying the Streamline Curva-

ture program of Reference (1) proved useful in consolidating

many of the theoretical concepts and led to several important

conclusions. A general disucesion on the highlights of this

• work and the conclusions arising out of it are summarized here.

8.1 in Sections I and III of this report it is shown that

the effect of blade to blade flow variations on the mean

(circumferentially averaged) flow can be represented by the

following phenomena:
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(i) Apparent stresses resulting from the pitchwise

averaging of the momentum equation.

(ii) Mean Rothalpy variation along the streamline due

to energy transfer across the stream surfaces by

by the apparent stresses, and by conversion of

mean flow kinetic energy to the energy of fluc-

tuations.

(iii) Apparent Entropy Production due to dissipation

associated with apparent stresses, and due to the

production of fluctuation energy.

These phenomena significantly influence the spatial

distribution of mean momentum and energy in an axial flow

compressor.

8.2 in Section V a critical study of the time resolved ex-

perimental data of the MIT Blowdown Compressor is carried out.

Some of the important findings of this study are:

(i) A strong disagreement exists between the mean
• experimental flow fie ld and the design flow field.

(ii) Apparent stresses resulting from the pitchwise

flow variations are of significant magnitude.

In particular, the radial derivative of

at the rotor exit is found to be of comparable

magnitude to the mean specific centrifugal force
_2

since the normal radial apparent stress

represents the spanwise flows in the blade bo~-r~—

dary layer , the above observation indicated that
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for a highly loaded system , the radial transport

of boundary layer and wakes is an important effect.

(i ii)  The radial gradient of the mean entropy rise near

the hub and the casing is estimated to be severa l

t imes larger than that predicted by two—dimension—

al cascade data.

8.3 A detailed study of the effect of phenomena listed in

Section 8.1 has been carried out by using the flow models

developed in Section III. A discussion on the flow field

computed with the aid of modified streaml ine curvature compu—

ter program (Section VI) is presented in Section VII, and

the conc lusions arising from this ~discussion are summarized

as follows:

(i) A~ axisymmetric computat ion with entropy distri-

but ion based on the cascade data shows an excel-

lent agreement between the predicted flow and the

design flow and also agrees well with the results

of a 3—D inviscid computat ion . It is the refore con-

cluded that 3—D inviscid effects such as the blade

passage shock and the distortion of stream surfaces

due to the inviscid pressure field of the blade s,

do not produce significant changes in the mean flow

for this rotor. Hence , the deviation from the de-

sign flow of the experimental results is attributed

to 3—D viscous effects which, however, are indirectly

controlled by the inviscid blade-to-blade flow.

(ii) The introduction of apparent stresses into the

mean flow 1—direction (nearly radial) momentum
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equation does not have a large effect on the

mean flow field. It is, however , found that the

major contribution to the apparent stress terms

in the above momentum equation comes from the
—I

radial derivative of • In fact a knowledge

of this derivative which represents the distribu-

tion of spanwise flow in the blade boundary layers

and wakes, will probably be adequate to replace

all the apparent stress terms.

(iii) Mean Rothalpy variat ion and the production of

Apparent Entropy along the streamline play the

major roles in reshaping the velocity field of a

highly loaded axial flow compressor. The flow

field computed by accounting for these effects

shows a distinct resemblance to the experimental

flow. The largest contribution in reshaping the

velocity field comes from the variation of mean

Rothalpy along the streamline. The effect of

Apparent Entropy production, however, is consider-

ably larger than that due to Apparent Stresses and

hence, it cannot be ignored. It is thus concluded,

if the mean Rothalpy variation and the Apparent

Entropy production along the streamline are taken

into account, the axisymrn etric computational

technique will be able to predict the flow field

of a highly loaded axial flow compressor with

reasonable accuracy.
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APPENDIX A

DERIVATION OF RADIAL , TANGENTIAL AND AXIAL

EQUATIONS OF MOTION

If we choose a frame of reference fixed to the rotor

blades, unsteadiness in the flow exists due to turbulent

fluctuations only. Equations of mass and momentum conser—

vations for unsteady flow are:

Mass Conservation

?f 
+

‘
~~~

t)
÷ f~~~ (We)~~~~~&W2) 

~t ‘?t ‘~-
‘
~G = (A-l)

Momentum Conservation

r—d ire ct ion

÷ W’~ -~- .!~~~~Wt ÷ W~ ~~~ -2 WGJZ -~~~~~~~~ - W~/ t

(A-2)

9—direct ion

.,‘. W~, ~~~ 
.
~
.. ..�~2 .,~. .,~. W0V~ ., ~~i2 ~~

= -L~~ .~~
.. (A-3)

z—di.ract ion

(A-4)

In order to make these equations time independent, a time

average of these equat ions will be carried out , which is de—
fined by the following integral: T

~~
‘ A � = ~~ (A- 5)
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-

r

and /

(A-5a)

Time averaged mas s conservation equat ion become s

~~

t ~~~~ 
— o  (A-6)

Here ~~~W .> is the time averaged mass flow defined

as 

= ~~~~
T~

p.co T ,
(A— 7)

and /c W ~~ w .>’ (~w)
(A- 7 a)

For derivation of the time averaged momentum equat ions ,

the mass conservation equation is first combined with the

momentum conservation equation followed by time averaging of

the resulting equation. The time averaged radial momentum

equat ion become s

~~~~~~~~~~~~ d<We?~~~.~W4t> <‘
~~~~~ ? _ <w~~~Q.

- - w•3 
= - 

~~~~
. 

~~ F ~,t

- 
(i 

‘)<(~wt)’ W~
’ 

~~~ 
- •

+ _ _ _ _ _ _ _  

— <‘&w.)’ii’.’.> (A-8)
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In order to account for the blade to balde flow varia-

tions, pitchwise averaging of this equation is carried out

as per the procedure outlined in Appendix B. Denoting pitch-

wise average of the time averaged quantities by 
~ 

, and

deviation from pitchwise average by < , the mean mass

conservation and the radial momentum equations are derived -

as follows :

Mass Conservat ion Equatio n (Pitchwise Averaged)

Following Appendix B, pitchwise average of equat ion (A-li) I
is represented as:

ç21,. :
~4,~)  

~~~~~~~ :/~ ° +~~ j’2(<~!J6 Q (A-13)

Individual terms can now be evaluated.

From equation (BlO) of Appendix B, Term I becomes:

Term ~ ~ �Wt ~!. a<w~ f [(<w~>).,~ - z ~ f,,jf÷ _ _ _ _ _  
_ _

— (A- 14)

Assuming no slip condition on the blade surfaces, equation

(A14) becomes

Term ]~ 
— ~~~~~~ Wt~~~?~~~~ ç

~~
7, 

~ 
(A 15)
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Hera W (or ( ~
yy )

l ) represents temporal fluctuations

about the time averaged value represented by ~~w)’(or~~~~w,~.).

The third term in the right hand side of equation (A-8) gives

the contribution of turbulent stresses.

An alternate method of deriving time averaged equations

of motion is to separate density fluctuations from the mass

flow fluctuations used in the above derivation. The time

averaged mass conservation and radial momentum equations

obtaining by us ing this procedure are:

Mass Conservation

[2 ~~~~~~~~~ , ~(~ç~i(we~) ç~~ w~)

÷(,‘
~~ 

<r’w~’>)~ ~~ w0~) = 0 (A-9)

Radial Equation of Motion

<~wk?rt~
P
÷ ~~~~~~~~~~~~~~~~~~~~~~~~~t~~~ Q

- (
~ 

2(~~’<w~,> + W ’~~’7 +<r’w,~>)

+ .,~~~ 
‘WL

1
7 ( ~~w~

2
?~ ____d~~~~~~ t JJ

~~~t 
r~~ we’wt’, ÷ ‘We’W1~’,~ #~~Wt #<w.7<~4~9J

*2<c’w.’zQ _~~~~~~ 2 t<~Wt~’~..L 2�cW~7~ (A 10)
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The last term in the right hand side of equation (A-lO)

is the apparent stress contribut ion from the time avera ged

mass conservation equation.

Both the equations (A-8) and (A’-lO) require information

on the instantaneous value of density. But since the exist-

ing experimental methods cannot provide reliable data on

density, it .was considered desirable to derive the mean flow

equations for the case of small density fluctuations. The

time averaged equations of mass conservation and radial mo-

mentum now become:

Mass Conservation Equation

I
k ?t t ‘?ø (A-l l)

Radial Momentum Equation

?XWt ’ .<~W, ?. 2~’~ - ’ ~~~~~~~~~~~~~

— 2 ~~ W9?~fi ~~~~~~ ~w•)~
t

/ / ~~~~.~~<r
- 

(~~w 7 ~~ ~~~~~~~~~~~ ~r)

# 
_ _ _ _ _ _ _ _ _ _ _  

(A-12)
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Similarly treatmen t gives

Term II =

Term III = 0 (A- 16)

Term IV

Thu s the pitchwise averaged mass conserva tion equation

become s:

2�~ ’+ ~~~~~
> 
+ _ _ _

> 22’~ ÷ 2_~~~ ~ ÷ ~~~~~ = C (A- 17)
~~~~ 

-
~~~~

Mult iplying equat ion (A— l7) by , gives

F 

I 1O~2~~ kc ) ~~~~~~~~~~~~ 
= 

(A-l8)

Equation (A—l8) represents the axisymmetric form of the

mass conservation equation in which the blockage due to the

blade thickness has been uniformly distributed.

In deriving the above equation and also for the subse—

quent derivations, it is assumed that the pitchwise variation

of density is small.

Radial Momentum Equation (Pitchwise Averaged)

Multiplying equation (A-li) by ~~~~~~ and adding it to

equation (A-12), gives
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r1~ —w _

~ kW~~c) 
~~~~~~~~~~~~~~~~~~~~~~~~~ q j ~~~~~~~~~~ L

—2 ~~~ P çfl~ 
~ ~~~~+r< A~�_[1~~

2
~r

# W  
~w~?c~Cw.’

>5] 
A-l9)

Pitchwise averaging of individual terms can now be carried

out using equations (B-il), (B-l6), and (B—17)
i _t Z -

~~~ Wt~ft ~~~~~~~~~w~” T ~ ÷ _ _ _

- 
- 

~~~~~~~ 

—

~~~~

- — (A- 19a)

/
t ~~ = 0

_ _ _ _ __
~ z 

_ _ _ _ _  _ _ _ _ _

_ _  (A-2 1)
~~~ 

?4~~

= ~~_ _ _ _  
_ _ _  (A-22)

~~~~~~~~~~~~~~~ 

.-
~
J’

~~~~~~~~~~~~? (A-22a)

‘at -~~~~ (A-23)
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where Fri is the invisci d blade force component in the rad ial

direct ion and is equal to

~ k ~ - (
~ ~~~ 

‘)~ 3 , 
____

2 7( l~/ N

We can thus write the pitch_averaged form of equation (A-19)

_ _  

~~~~ 

_ _  ~~~~~~~ ~~~~~~~~~~

+ 
_ _

~~~ 

_ _  - 2  ~~~~~~~~~~~~~~~~~~~~~~ f- ~~~~ ~w~ f

— _ _ _ _  — (A-24)
= — ~~~~ ~~ç<~~~~~

Here Frt IS the contribution of pitchwise averaged turbulent

stresses , given by

- .~~{

‘
~~ W~ >c W~~~~~w~

1> < ~w~ (A- 25)

Multiplying equation (A-24 ) by 1~ and after simple algebraic

manipulations, we get

¶,X

~~~~~~ ~~~~~r) (A-26)
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)
~<w~~

= 

~~~~~~

{- ~~~‘
> ÷~P~ +ç<F~~ +r~~~ 

J

using mass conservation equation (A-l8) and ~~vid ing both

sided by , we get final form of pitch averaged radial

momentum equation

- _ _  -2  S2 <we~
— J2~t = - L ~~~

<i’> ., [
~ 

)
~<w~~) ~~~~~ <w2~

c) ,

~~

_ _

÷ FtL ÷ ~~F~~> ÷ R tt (A -27 ) p

This is the final form of radial momentum equation

which has f i rst been time ave raged to make it time indepen-

dent , and then pitchwise averaged to make it 9-independent .

Equation (A-27) contains two types of velocity correla-

tions , one accounting for turbulent fluctuations (temporal),

and the other accounting for the spatial fluctuations of the

time averated quantities. For a highly loaded system where

blade to blade flow variations are large , the contribution

from turbulent fluctuations is small as compared to that due

to the pitchwise fluctuations.
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The above procedure can also be applied to the flow

fluctuations outside the blade row in the absolute frame

of reference to account for pitchwise flow variations.

This is done by first taking an ensemble average of the un-

steady equation of motion and then taking time average of

ensemble averaged quantities.

To simplify equat ion (A-27) , we can either neglect tur-

bulent stresses as compared to the large scale blade to blade

fluctuations, or a slightly different averaging procedure

can be followed. It is possible to directly carry out pitch—

wise averaging of unsteady equations of motion by assuming

to be small. This procedure will give the following

radial—direction equation of mot ion in the apparent stress

format.
W~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ f

t 
____

= LI w~42( ~~~_~~ r ? (A-28)
~~~~ ~~Lt?t t )

Corresponding equations in 0 and z directions are

9—di rect ion

~~~~~~~~~~~~~~ ÷ 2J2~~~

= _ _ _  

(A-29 )

z—direct ion

— L
~~ ~wt’~r)4 (A 30)
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APPENDIX B

PITCHWISE AVERAGING

pitchwise average of any flow property A within the

blade row is defined as

~ ~~L_ (A ~~e

Here the integration has been carried out from the pressure

side of one blade to the suction side of the adjacent blade.

This is consistent with the direction of rotation for an

axial compressor rotor. ~‘or a turbine rotor the integration

would be carried out from the suction side of one blade to

the pressure side of the adjacent blade.

Following Smith4, the mean blade surface and the blade

lean angle is defined in Figure (3.1). If the blade

blockage factor is now defined as J — , equation

(Bi) becomes

A 

~~~~~~~~~~~~~ /N  
( B-2)

Here ( / _ ,X ) represents the blockage to the flow due to the

blade thjckness.

In order to carry out pitchwise average of derivative

the flow property we adopt Liebnitz Rule for expressing the

derivative of an integral.

Thus
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= J ~~~~ 

-,- A~ 
‘

~~~~~~ - 

(B- 3)

Pitchwise Averaging of

Equation (B-3) will now be used to carry out pitchwise

aver aging of

4 
J

P QS

2

(~ 7cI>/t .j )  ~~
= 

(2~r~~ ) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -~~)] (B -4)

[
Y— ~

I II

Term I = ~~~~~~~__ ~~~~~~~~~~~~~~~~~~~~~~~~~

= 2 ~ 
( 1-~ J~~ t~1 ‘~~~,x

~P

Term I —— ..t- —a-. ~~~~~~~~~ (B -5)

~or evaluat ing Term ii, Q~ and are expressed as

f ollows

- 

~~ 
(i_ h) ÷ (B-6)
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here Om is the angular location of the mean blade surface .

From Figure (3.1) the blade lean angle is given by

(B-8)

Using equations (B-6), (3-7) and (3-8), Term II becomes

Term il - (~~~~~~~~~~-i’~~~~~ )

- C 1~
, + P~)  ‘

~~~~~~ 

— !‘?~) ~~
CG~c~~fr)

Therefore equation (B-4) becomes

~~~~~~~~~~~~~~~~~~~~ ÷( (P/’
~~?)L~~ 

(B-b )_
~t ~t .27th/N ‘t 2

The term ‘J .P)~~~~~ “!~~~~~ define s the radialt
component of the inviscid blade force.

The term [~g ~~~P~~~÷P.~J] ~~~~~~~ ~~~ will be small unless

is very large. For the practical blade geometries

is small ; — is also small. Hence , the last

term of equation (B-b) can be neglected, giving

L~ 
= 

~~~~
÷ (B-il)
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where Fri çt~5 I~2 tO~~’fl%
(2 7C)/ N) t

Similarly

r
~~~ — (~ -l2)

and

k. ‘de (B- 13)

pitchwise Averaging of

The above pitchwise averaging procedure will now be

applied to
‘at

Wr can be expressed as the sum of the pitchwise quantity

and the deviation from the pitchwise value.

Wt =W ~ ÷W ~ (3-14)

_ _  = = (B-15)

Here terms linear in the fluctuating quantities have

not been retained since these will vanish on pitchwise

averaging.

Following the pitchwise averaging procedure for

and noting that velocities at the blade surface will vanish
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(no slip Condit ion), we get

-

~~~~~~~~~

- =~~~~~÷~~~2 2~4~~ ~~~~~ (B-16)

Similarly

+i~~~ aA ÷~~~ )÷ w~ ~~1’ ~~ at )... ‘~Z (B- l7)
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APPENDIX C

MEAN FLOW ENERGY EQUATION

(Fram e of Reference Fixed to the Blades)

Assumptions:

(i)  Adiabatic flow
I

(ii) Blade to blade variations in density and

internal energy are small

(iii) Work done by yiscous stresses <<work done by

apparent stresses

(iv) Mean flow is invarient in time

1. Rate_of Gain of Internal Energy per Unit Volume

~~~EW ~)  ~~~~~~ 
,

~
. 

/ 2&Ew~ ~~~ ~ c’fEw ~,
)

(C-I)

Where B is the internal energy per unit mass. Taking

pitchwise average of equation (C-i) gives:

Rate of gain of mean Internal Energy/vol

• ~~~~~~~ (C-2)
..D&

where -
~~~~

= VV/ ~ ~~~
- 

+ 
}1~ ~~~~~

- (C- 3)

2. Rate of Gain of Kinetic Energy per Unit Volume

W �)~~~~~~~~/ (C-4)
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2. 1 2. 2.
Where W = Wt + W ~ +Wa (C- 5)

us ing cont inuity equat ion V.(cw) ~ gives :

Rate of Gain of K.E/vol

~ w~ q We 2(w~’j) + ~ 2~~~
)

t (C-6)

Taking pitchwise average gives:

Rate of Gain of mean K.E/vol

wh:e 

~ 2~~&/2)~~ ~&Cw W ’) (C-7)

- W~ .1 ÷ (C- 8)

3. Rate of Work Input from Pressure Forces per thitVo1t~ne

- ~~~~~~~~~~~~~~~~~~~~~ (C-9 )

(CWt~~~+ W~~~ +~~~~ )+fr(~ (c-b )

The second term in the right hand side of equation (C-b )

can be written as V. W and using continuity equation,

we have
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I
~ , v._~. (C-il)

where 
- w0 ‘~~~~~

(C-12)

There fore ,

Rat e of work input by pressure force/vo l

— _
~~
- 

~~~~~~ 
(C-l3)

D1

Taki ng a pitchwise average of equation (C-13) :

Rate of mean work input by pressure forces/vol

(C-14)

4. We can f ind the work done per unit volume by the norma l

and shear stresses. Here we will assume that the apparent

stresses introduced due to the pitchwise averaging of equa-

tions of motion dominate and the viscous stresses are small.

Work done by apparent normal stresses per unit volume

= 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
(C-15)

• Here the terms containing the derivative of density are neglected .

121

• • • • -.. ~~~~~~~~~~~ -S .4

____________  -



___ - ~~~~~~
- • •

Similarly, work done by apparent shear stresses per unit

volume

= c {w~ + _ _

-t- ÷i~~c~~
w

~J ~~~~~~~ 
(C-16)

I
If — Z~~—2~ and —2k represent the apparent stress terms

appearing in the radial , pitchwise and axial momentum equa-

tions respectively, and ~i ~~ app denotes the production or

apparent dissipation term, the rate of work done by apparent

st resses per unit volume can be written as:

Rate (work done by apparent stresses)

= —
~~ ~~~~~~~~~~~~~~~~ (C-17)

where 
.
~~~~~ app - _ _ _

÷~~~~~~~÷~~~) +~~ wd ~weJ

5. Rate of Work Done by centrifugal. Force

As we are using the relative frame of re ference , it is

necessary to account for the work done by the centrifugal

• force. It may be mentioned here that no work is done by the

Coriolis forces since both the radial and the tangential
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components of coriolis forces are associated with velocities

normal to them.

Centrifugal force only has a radial component and there—

fore work done by it per unit volume -

_ g W~J2k
Pitchwise averaging give s the mean rate of work done by

the centrifugal force

= 
.
~~(k

2
~JfIz) (C-19)

The energy equation can now be written by equating the
rate of gain of mean internal and kinetic energies to the

mean work input rate from the pressure and centrifugal forces,

and the apparent stresses. This gives, after rearranging

+ ~~ (c~~) 
÷ - -

~t .D~ .rD~ f $ ~ .~*

=~~~~~~~~~(z÷~~~~)÷~~~~zQ +W ~2~aJ_  ~~~~~

÷ _ _

+ .r~(c~ w9 
? — .I CW/2) 

(c— 2 0)

÷ J

Now~ consistent with the d iscussion presented in Section

3.3 , mean rotha].py is defined as
-

~~~ — 
1~.2_Q.l (C- 21)

c 2.
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Equation (c—20) then becomes

= - 

~~~~~~~~~~ 

(Z~~+~~~~~~~~
) 

+WGZe

________ 

(C—22)

J
Equation (C-22) gives the rate of mean Rethalpy variation

along the mean meridional streamline

For the axisymmetric case , — W~ 21

and according to the definitions

P ~ = (C- 23).

~~~~~~,‘
Substituting these relations in equation (C—22) , we get

= -11’— ~~; 
C~~~~~~

]  
÷4÷2 W~~

’

2]

• ÷ - ~‘ +~~ ÷~ J~J
÷L f i w/ 2  ~~~Cww’) ~ ( C - 2 4 )

)
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APPENDIX D

DERIVATION OF MEAN FLOW EQUATIONS OF MOTION FOR

STREAMLINE CURVA TtJ RE TECHNI QUE

Equation of Mot ion in 1—direction

in deriving the mean flow (pitchwise ave raged) equation

of mot ion, it is assumed that pitchwise variat ion of density

is small. Hence the mean flow equations of motion derived in

Appendix A are considered valid here. Variation of density

in the streamwise direction is taken into account through

the continuity equation.

~or Streamline Curvature technique , a s ingle equation

of motion is derived in the meridional plan (or r-z plane).

The mean flow equation of motion will be derived in a direc—

• tion inclined at an angle r to the radial direction. Figure

- 

- 
C4.l )  gives the details of various direct ions and angles to

• be used in the derivation.

The procedure adopted for getting the desired equation

is to start with mean flow equations of motion in r, Q, and z

directions and derive a single vector mean flow equation in

Crocco ’s forts. Equation in any particular direction can

then be derived from the Crocco equat ion by taking its

scalar product with the unit vector in the desired direction.

Pitchwise averaged equations of motion in the r, 9, and

z directions , in a coordinate system fixed to the blades ,

were derived in Appendix A.
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These are ,

~ -d i rect ion

W ÷ W 2 ~~~~~ Q~~
2We -

~~~
= ! 

r~~~~ 
— ~~~~+ F~ +f~~ (D-l)

c -?t
a-direct ion

W~ ~~~~~~~~~ ÷ + 2 J2. ~~~ ÷ VVØWt

= (D-2 )

z—direct ion

(D -3 )

where 2~~~~~~~ 
and are the apparent stress terms

~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~ ~ci ~Z~ r) 
- ~~~~c)

— ..L . _ _ _ _ _  (D-3a)

and (~~(~~~~~ ‘r~÷ ~ (ht~f~I _ _ _

-
~~

• 
• F~ F~ and are the r , ~~ , and z components of the

mean inviscid blade force , given by

_ _

.

~~~~~~~~~~~~~~~~ 

RQ = ~~~~’
~

where is the mean blade lean angle and is the mean

blade angle with respect to z axis in the azimuthal plane.
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~~~~~ 
F0~~ and are the components of mean vi~~ ous

drag force in r , 9 , and z directions.

By adding and subtract ing -#- fli~ t o eq u a t i on
(D 1) to equation (D -3) ,  the equations
(D 1), (D-2) , and (D-3 ) can be rearranged as

a) 
- ~~~ (~~(t~~~) ÷

~~~ (~~~~~~~~~~ 
~~~ -2 WQ ~~ ÷

(~~ ÷3~~÷iv~) 
= — - ÷ (D-4)

b) 
- ~~ ( ~

(
~~~) ~~~~~ + 2 

~~~~~~~~~~~~~~~~~~~~~ / i.~~~ t / 
—

= — 2.~~~ ÷ 4- F~ (D-5)
c) 

~~~~~~~~~~~~~~~~~~~~~~~ / ~~~~~~~
= 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (D-6)

Now replacing 
% by ~~~ — ‘t_Q in -t~V and terms ,

and since = and 
W = these equations

become

a) 
- 

~~ 
(~~~

) * 3~~~~ 
- 

~~
- ~~~~~ +~~~~~~~)

(D-7)

(D-8)

-i;v~ - ÷ 
, 

~~~~~~ 

~~~~* ~~~t

)

~i2 
~~~~~~~) — .#- 

(D- 9)
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The bracketed terms of equat ions (D-7)  , (D 8) and (0-9)

are the component s of vorticity. Thus for  pitchwise average

flow

( — ‘  ~( ~ (‘ri~,
)
~a)

b) (Vx L~ ) = 
(i.2 ~ — _ _  (0- 10)

c) (vx7 ) - I / ~Ck~,)

We can now get a single equat ion in vector form replacing

equations (D—7) , (D—8) and (D—9 )

-Wx (vxV )÷v ( )-v(~ o~~)

= — 

~~~~~~~~~~~~~
_ (  4)÷ f ~.-~-~~ (D-ll)

where 1j  is the mean inviscid blade force vector and

is the mean viscous force vector .

We know from Gibbs relation that

-L - T VS (0-12)

Taking pitchwise average , this become s

— T VS (D-l3)
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Here the temperature fluctuations have been assumed to

be small

Equation (D-1l) than becomes,

W x ( V x V) . . .  ~~~~~~~~~~~~~~~~~~~~~~~~~
(D— 14)

Prom the definition of Rothalpy (relative total enthalpy) I.

we know

i.  ‘~~~~~-~~ 
~~~ (D-15)

using the definition (1.1) for I , we have

r= ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
substituting for ( 

~~~~~~
-

~
- ~ /2_.tJ2 ’L9Q ) in (D-14) ,  we get

— _ _  ~~~Vx!~) = vY— T VS 
—

(D- 16)

Equation (D-16) is the pitchwise averaged counterpart of the

steady state Crocco equat ion modified to include viscous

terms. -

This is the basic equation for deriving mean flow equa-

tion of motion in any desired direction.

• In orde r to arrive at the mean f low equation of motion

in 1—direct ion (Figure 4.13 , we will take dot product of

• equation (D 16) with unit vector 1.
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Let A ~~~~~~ X (V  XV ), and let A
~~~~, 

A9 an~~A~
be the components of vector A in r , 0 and z directions.

Let 1 .  , /~~~~ and be the component s of invis—

cid force ~~~~o~ i~and 9 directiot s, and and

be the component s of viscous force in m , n and 9

directions . Writ ing the equation for dot product

f ,  f~AI~ 
.
~~AG~~AZ~

_ ~Y_ r
L

(D- 17)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Since I lies in the meridional plane which is pe r—

pertdicular to 0 direction £ ‘ 9 0
‘ 1 . 1

From Figure (4.1) we find .~€ ‘t Cc,,s T’,
e. = 

, 2~ 
= & ~~~~~~~~ t~ = Cod (~

‘#r)

Here r is fixed and 
5
0 is defined as the angle of mean

stream surface.

Substituting these relations in equat ion ( D —1 7 ) ,  we get

~~~~
Cvx

~ )j~
CoIr +

- -r 
l� ;)~ 

C~ r ~ 
(D- 18)

— -

~~ 
~~~~~),&~2( #r)- 

(~~~~~~~~ 
÷~~,)t~~~#r)
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Simultaneous solution of these two equations gives

4~ r~
(
~ - COdf c~f) (D-20)

4~ri.Ød~~r -

_ ,~~r~~
}

- - (D- 21)

we can now transform Terms I and ji in the left hand

side of equation (D—19) in terms of derivatives in in and 1

direct ions.

Using equations (D-20) and (D—21) ,, Term I becomes,

Term i ~~ 1- 
~~~~~~~~ r ~ + 

ci~ ~~~~ ~~
(‘
~W) 1

-

• 

~~~~r-,6 ~/ ~~7 ~~~~~~~~~~ ~~~øCo~rJ

Simplifying

Term i = ~~~ 
_ _ _

t L ~ t

changing t~
g to ‘WQ ÷t~f2. 

, we get

Term i = 
1V9
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Substituting ~fl (D-18) for ~.~*(vxX)]~ 
and

from the following relations

~~~ = (
~ 

(4- ~ ) + 

~~~
(Note:

and rearranging, gives

We 
f

~~~~ od r + 4~~

+ 
f (~~4~r~ ~~G~r) (~~~_ 7.~ )} ~~~ y

T~~~
— ( D — l 9 )

11

+ (6~r)2~,~. -i{4Mr)2~ - (~~
.
~~~~)~~~(ø*r) - (c1~+~flD)G4÷~

In order to get radial and axial derivative in terms of

derivatives in in and 1 direct ions , following t ransformation

• relations are used

• - 20
‘
~

V) 1

a() 
— ‘~v~ ~~~~ 

.
~~

OR

= CodØ~~~-t. ~~~~~~~‘
~
Z (D-19a)

IC) 
= 4~ r~j~

) 
~ ~~i
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~~~~~ or 

-

Term i = ,~
. 2 W0 jj  G~i r (D- 22)

For evaluat ing Term II, we use the relat ions

~~~ =~~~~4~vL~ c~~v d 1~~~= t%nG~d ø

This gives

Term ii ~~ ~~ ,i 
(~~~~j

I~~n ~ - ~~ C04 
~

) (
~ 

- ?1~)

Using equations (D-2 0) and (D-2 1) , we get

7~~~ n fi = 4~r- 
~~~~~ ~~y-) ,x’

c 4 ~~r~~Cad#COd2~)  J

= ~~ (4~~~I~nr G~~c~) ,~

1
(
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2 _ 2. ~
Simpl i fy ing and using the relations ~1~41~~~t%, am4

we get

I

Term ii = _ _  -
~~~~~~~~~~~ ~~C~”) (D-23 )

Subst itut ing Term I and Term ii in equation (D- 19) ,

rearranging the equat ion and using the relation ..i.
G~

j 
r.2.. .

~~~~ 4~r2_ , equation (0-19) becomes

= ‘15’m ~~~ ~ ~~~~~
-2 -2~~~~~1~r 7 2 ~

÷ T ~1(k~~)~ 2 (AW~P) ,A;~l
+ A f ~~ w~r~ ~~~

. ‘~c’~~
)÷ ~~~~~~

- (~~ +~~,,)4~ c #r)
— 

~~~~ ~~u)Co4C#r) 
(0-24)
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This is the mean flow equation for Streamline Curvature ~2o~~ :~-t ~~-

tional method. This equation has to be suitably modified for

the computer program depending on the type of input data.

Invj scj d and viscou s torce terms have also to be expressed in

terms of the known input data.

Mean Flow Eauation of Mot ion in the Meridional Direction

Pitchwise ave raged equations of motion (0-1) and (0-3) in

the radial and axial direction can be written as

a) W
~~ 

.
~
. - 

2 

= - — -f (ID- 25)

b) ~~~ ÷ __ 
— - + (D- 26)

Here ( ~~~~~ £ WØ ..G. ÷ J2.~~~-t)  has been replaced by

and ÷/ ~~ ; / T
~ = /~~~~~~~ ÷/ ~ ,

Using the relations
2 2 2

4W

k~~~~~-= ~~~~~ ; t~~ C

and after some algebraic manipulat ion , we get
— 2

— I ~~~~~ ~~~~~~~0). (z h~4,~( )  (D-27)

But
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This reduces equation (D-27) to the following form

f ~~~ 
= - : ÷ -(z~~~~~ ÷ d ~~ ÷~~ ‘0-28)

/~~~~~ 
is eliminated from equation (0-28 ) by us ing

equation (40)

~~~~~ = ~~~~~~~~~~ 2~~~~wJ3 ~~~~~~ (40)

Equation (D-28) becomes for the bladed region

(D -29 )

Equat ion (D-29) is the mean flow momentum equation in the

meridional direction.

Now using the equation T~~ _— cdT — (D-30)
I

From the equation of state ~~~~~~~~ 
_L’ , we have

using this along with the re lation - , in equa-

tion (D-30 ) ,  and taking derivative with respect to in , we get

= E + ~~~~ 

—
Taking ‘~~~~~~~

and substituting this for .L ‘~~Z~’ , in equation (D-29) ,  we get

the modified form of meridional direction equation of motion:
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-

- + I4~/ ÷~~~

— i 
~~~~~~~~ (0-3 1)
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FIGURE 1. RoToR SECTION CUT AT Z = CONSTANT PLANE.
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FIGURE 2. PASSAGE SHOCK-WAVE CONFIGURATION .
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FIGURE 18. APPARENT NORMAL STRESS ~~~~~~~ 1,0 CHORD DOWNSTREAM
OF THE ROTOR.
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FIGURE 19, APPARENT NORMAL STRESS V~
2
, 1.0 CHORD DOWNSTREAM

OF THE ROTOR.
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FIGURE 20. APPARENT NORMAL STRESS V~~, 1.0 CHORD DOWNSTREAM
OF THE ROTOR .
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~~
/cv
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O.01

0.0 • — 

—0.01 -

—0 .02 -

—0.03 
0.6 0.7 

R/R T 
0.8 0.9 1.0

FIGURE 22, 1~1EAN EXPERIMENTAL ENTROPY, 0.1 CHORD
DOWNSTREAM OF THE ROTOR.
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FIGURE 23. MEAN EXPERIMENTAL ENTROPY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR.
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START
READ INPUT DATA
ES’~IMATE STREAMLINE PATTERN

IIPASSJJ
—I1 1 = 1 1
IdERPOLATE INLET CONDITIONS

IF(IP4SS•GT.1) I

ESTIMATE ‘INLET VELOCITY
I-

~~~ VMOLD(J)=VM(J,I)

IF(IPASS .CT.1) ‘ I
SET VM.(~~I)=VM(J,

I_1)T

[
41F(STATION LIES OUTSIDE THE BLADED REGION

I4ERPOLATE STATION DATA
DE ERMINE ENTROPY , ROTHALPY OR

ENTHALPY AND WHIRL ANGLE

;ET EN~~~~~Y ,ENTHALPY ETC.

SE VMLOLD(J)=VM (J,I)
[ITER=1I

SOLVE MOMENTUM EQUATION
ES~ IMATE MASS FLOW RATE W

f COMPARE 11 WITH SPECIFIED MASS FLOW

IF((!.K.) -

RESET V (MIDSTREAM)
t m

TER=ITER+1I

COMPARE V WITH V (IPAss—1)
• m m

RE-ESTIMATE STREAMLINE LOCATIONS AND STORE THE
IF(I=LAST) , CHANGES REQUIRED

IF(VM.EQ.VM(IPASS=1)) FOi~ ALL
STA~~ONS

SET IIPASS=IPkS5~I~
RELOCATE THE STREAMLINES BASED
ON THE STO

1
RED CHANGES1

STOP
IPASS PASS NUMBER

STATION NUMBER
V (J,I) MERIDIONAL VELOCITY FOR THE CURRENT PASSm 

AT THE Ith STATION AND Jth STREAMLINE
ITER ITERATION NUMBER FOR ITERATIVE SOLUTION OF

MOMENT UM AND CONTINUITY EQUATIONS

FIGURE 2’i, OVERALL LOGIC OF THE ORIGINAL STRENILINE-CURVATURE PROGRAM.
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FIGURE 26, ADJUSTED EXPERIMENTAL ENTROPY, 0.1 CHORD
DOWNSTREAM OF THE ROTOR ,
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_---~~~~

1) Mass Flow Rate = 81.88 ibm/sec
— 

2) R.P.M. = 13193

3) Total Pressure at inlet = 14.7 psia

4) Total Temperature (Ti) at inlet = 520.00 R

Relative Flow Angles

Station 4 Station 5 Station 6

Radial Relative Radial Relative Radial Relative
Location Flow Location Flow Location Flow
(inches) Angles (inches) Angles (inches) Angles

(degrees) (degrees) (degrees)

7.4560 —51.700 7.4560 —35.576 7.456 —23.000

7.9818 —54 .720 7.9820 —43.44 1 8.2977 —36.250

9.4365 —59.800 9.4365 —53.500 9.3800 —49.250

10.577 —62.240 10.577 —58.720 10.140 —52.700

11.650 —65.140 11.650 —65.200 11.650 —65.000

FIGURE 28a , BASIC INPUT DATA FOR COMPUTATION.

167 

— —--- • •••- — -• -•-~- 
—

~~~~
-- -—

~
-
~~

-• - •  • -
~
-• -

~~~~~~~~ 
•- -- - —-• •; •~~— -• ~~~~~ -• - • • - - . ~~ —-----~ - - - - •



Station 6
R/R T .640 .715 .8137 .8446 .870 .9497 .9785

7000 6000 1200 13000 33500 10500 29000
R/R 1 .640 .715 .790 .8446 .9147 .9497 .9785

1000 6000 3000 9000 26000 11880 20000
R/R T .640 .715 .790 .870 .9147 .9497 .9785

21000 11000 3000 12900 8590 6900 14600
R/R T .640 .715 .790 .8446 .9147 .9497 .9785
‘t~~t~ 4000 3880 500 1500 -3000 0 -2500
R/R T .640 .715 .7375 .790 .870 .9147 .9785
t~~L~ 7000 -1470 1850 500 10700 9000 0
R/RT .640 .70 .790 .87 .9147 .9497 .9785

—9000 —4500 —400 —6760 1160 3630 5000

Station 7
R/R~ .640 .690 .71 .73 .78 .896 1.0

45000 22200 2000 26000 1930 22000 28000
R/R T .640 .690 .720 .78 .85 .935 1.0

45000 20600 6000 3870 7000 18500 32000
R/R T .640 .690 .720 .78 .85 .935 1.0

40000 17700 3000 1170 7600 17800 27000
R/R T .640 .690 .720 .78 .85 .935 1.0

• v~j~ 
17000 7040 4500 540 10300 11000 12000

R/R T .640 .690 .71 .73 .835 .85 1.0
30000 7370 1200 6490 -360 8490 0

R/R T .640 .690 .71 .73 .835 .935 1.0
30000 18500 3060 5070 —40 12280 15000

Units for Velocity Correlations Pt2—Sec 2

FIGURE 28b , APPARENT STRESS DATA .
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e .-- - -. V Ft Sec 1

300 - h 4  Experimental

200 — O O - ~— Calculated wi th Cascade
Losses (Station 6)

100 — — 3—D Inviscid Computation
(Ref. 2)

0 
_ _ _ _ _ _  I

0.5 0.6 0.7 0.8 0.9 1.0
R/R T

FIGURE 29, MEAN PITCHWISE VELOCITY, 0.1 CHORD
DOWNSTREAM OF THE ROTOR.
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700 iFt Sec

600 - ‘
N

—I——-— I — Experimental

300 — —O-——-O----- Calculated wi th
Cascade Losses
(Stati on 6) 

3—D Invjscjd
Computation (Ref. 2)

200 - 

• -lao _ _ _ _ _ _ _ _ _ _ _ _  I I
0.5 0.6 0.7 R’R 0.8 0.9 1.0

FIGURE 30, MEAN AXIAL AND RADIAL VELOCITIES,
0.1 CHORD DOWNST REAM OF THE ROTOR .
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V8
700

Ft Sec 1

:::z
400 -

I I Experimental
300 -

Calculated with
Cascade Losses
(Station 7)

200

100 -

0 I
0.5 0.6 °‘7 R’R 0.8 0.9 1 .0

FIGURE 31. MEAN PITCHWTSE VELOCITY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR .
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V Ft Secz
700 -

600 —

500 -

400 —

Experimental

300 — —O--—O---— Calculated wi th
Cascade Losses

(Station 7)

200 —

Vr Ft—Sec~~
100 —

-; 0 , 
_ _ _ _

0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 32, MEAN AXIAL AND RADIAL VELOCITIES ,

1.0 CHORD DOWNSTREAM OF THE ROTOR.
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400-

300 -
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200 0 —G Calculated with
Cascade Losses and
Apparent Stresses

(Station 6)

100 -

0 I I I
0.5 0.6 0.7 0.8 0.9 1.0

FI GURE 33. MEAN PITCHWISE VELOCITY, 0.1 CHORD
DOWNSTREAM OF THE ROTOR .
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500 — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

400 -

____ _____ — Experimental

300 — — &~~~~~~~ 
G—

~~~~~ Calculated wi th
Cascade Losses and
Apparent Stresses

(Station 6) 

..~100 ____________  I I I
0.5 0.6 0.7 R/R 0.8 0.9 1.0

~~ MEAN A X IA L  AND RAD !A L j F _ Odhh t ,
3.1 CHORD DOWNSTREAM OF THE ROTOR,

/
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I I —

~~ 
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$

cL~J -

500 -

400

300 —t—- I Experimental

—O----.
~~~ --—— Calculated with

Cascade Lossec and
200 - Apparent Stresses

(Station 7)

100 -

I I I I
0 

0.5 0.6 0.7 
R 

0.8 0.9 1.0/RT
FIGURE 35, MEAN PITCHWISE VELOCITY, 1,0 CHORD

DOWNSTREAM OF THE RC-TOk ,

3

—--5 5 5—- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 5 5 5 ~~~~~~~~~~~ -~~ - 5- - S -  
-5 -5~~-— ~-S--:~ _5~~~~~ •• ~~~~~~~~~~~~~ - - —  -



_________ 

_____

- ~~~~~~~~ - -

800

V Ft Sec~~z

700 - ~—~1

600 -

500 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

400-

—I—I— Experimental

0 Calculated with
300 - Cascade Losses and

Apparent Stresses
( Station 7)

200

Ft Sec~~

100 —

0 I _ _ _ _ _ _ _ _ _ _ _ _

0.5 0.6 0.7 , 0.8 0.9 1.0
R1 RT

FIGURE 36. MEAN AXIAL AND RADIAL V ELOCITIES,
1,0 CHORD DOWNSTREAM OF THE ROTOR.
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~~~~~~
• 

- -

5.0
(Apparent Stress Terms~~~~ /r

4.0

3.0 -

2.0 —

1.0 -

0.0 —  -,

-1.0 —

0 _ _ _ _ _ _  
I

0.5 0.6 0.7 0.8 0, 9 1.0
R/R T

FIGURE 37, APPARENT STRESSES (~~/r), 0.1 CHORD
DOWNSTREAM OF THE ROTOR.
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—0 . 8  - 
.
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I,,  In— I

~~~~~~~~~~~~~~~~~~~~~ 
BTU/lb

~~
_ in

—1.6 - 
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I

-1.8 0.5 
- 

0.6 0.7 R/R~ 
0.8 0.9 1.0

FIG URE 38. COMPUTED 
~~~ AND T(

~
.
~

) app

STATION ~~.
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1.2 -

I
0.8 -

I
I

I I

0.4 - / /

/
1

0.0 

—0.4 -

—0.8

—..~ -——-.cj ~--— ~I/~In BTU/1bIn 
- in

—1. 2 - ---~~~~---- ~~~~-—- T 3S/
~
rn BTU/1bm 

- in
(Stat ion 5)

~
1.6O 5  0.6 0.7 0

1
.8 0.9

R/RT
FIGURE 39, CALCULATED DISTRIBUTION OF ~I/~m AND I ~S/3m,

STATION 5.
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0.005

~~Sapp BTU/lbm
_ °R

0e004 -

0.003 -

0.002 -

0.001 - . .

0.000 I I I
0.5 0.6 0.7 R/R 0.8 0.9 1.0

T

FIGURE ~40, APPARENT ENTROPY RISE ACROSS THE ROTOR ,

180



~~~~~5 - 5 -

600

~~~ 

_

400 - ‘N j‘— .5--I—--

300 — I I Experimental

0 0 Calculated with
Cascade Losses and

200 - Apparent Entropy
(Station 6)

100 —

0 I I I
0.5 0.6 0.7 R/R 0.8 0.9 1.0

T

FIGURE 41. MEAN PITCHWISE VELOCITY, 0.1 CHORD
DOWNSTREAM OF THE ROTOR.
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700 -

‘c~ V~ Ft Sec~~
~~~~~~~~~

600 \,
N,

—l-—----I Experimental

—e——o-—_-- Calculated wi th
Cascade Losses and

300 Apparent En tropy
(Station 6)

200 —

:°° 
-

~lr.l/

—100 1 I I I

0.5 0.6 0.7 R R 0.8 0.9 1.0

FIGURE 42, MEAN AXIAL AND RADIAL VELOCITIES ,

0,1 CHORD DOWNSTREAM OF THE ROTOR .
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V9
700

V9 Pt Sec 1

5:0 :

400 -

Experimental

300 -

—Ø--.-Ø-—— Calculated wi th
Cascade Losses and
Apparent Entropy
(Station 7)

200 -

100 -

0 I
0~ 5 0.6 0.7 0 8  0.9 1.0

R/R T

FIGURE 43, MEAN PITCHWISE VELOCiTY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR .
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750

— V~ Ft Sec ,
\

600 - \

500 —

400 -

—t—-i— Experimental

300 - —G—--O—-- Calculated with
Cascade Losses and
Apparent Entropy

(Station 7)

200 -.

Ft Sec~~
100 —

0 I
0.5 0.6 0.7 0.8 0.9 1.0

R/RT

FIGURE 4/4, MEAN AXIAL AND RADIAL VELOCITIES, 1,0 CHORD
DOWNSTREAM OF THE ROTOR .
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—3.0 I I I I
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R/RT

FIGURE 45. CALCULATED MEAN ROTHALPY CHANGE
ACR OSS THE ROTOR.

185

* --- — , -  ~~ *- .S,_. ~ _.-_

L 
- 

.

Iii _________ — -—- — —-- - -a— - - - . __S - —i ‘-



_ _ _ _  ~ ~~-- ~~~~~~

:::‘ ~~~~~~~~~~~~~O Ft Sec~~~~~~~~O Ft Sec ’

400 — N ~/ ~~~

300 — —I——I Experimental

200 — 
~~~~~~~Calculated wi th

Cascade Losses and
Rothalpy Variation
(Station 6)

100 —

0 I I I I
0.5 0.6 0.7 0.8 0.9 1.0R/R1

FI GURE 46. MEAN PITCHWISE VELOC ITY, 0,1 CHORD
DOWNSTREAM OF THE ROTOR,

186

L - iiiI— - - -

~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ --- ~ -~~~~~~~~ -~~~~--~~~—,,- -. --- — 4



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

~~~~~~~~~~~~~~

-

~~~~~

-

~~~~

700
— —1V Pt Secz

600 ‘~
~‘1*,

:::: ~~~~~~~~~~~~~Experjmenta1~~~~~~~

Calculated with
Cascade Losses and

300 - Rothalpy variation
(Station 6)

200 -

—100 I I I

0.5 0.6 0.7 
‘R 0.8 0.9 1.0R, T

FI GURE 47. MEAN AX IAL AND RADIAL VELOCITIES,
0.1 CHORD DOWNSTREAM OF THE ROTOR ,

187

- 
—

~~~
—.-- -—--

~
— .

~~~~~~
— ~~~~ ~~~~_ . ~~~~~~~~~~~~~ —



— ~~~~~T i

V9

700

V9 Ft Sec~~

:::~
400 -

—I--——I— Experimental
300 -

& Ca].culated with
Cascade Losses and
Rothalpy variation

200 . (Station 7)

100 -

_ _ _ _ _ _ _ _ _  I I I0 0.5 0.6 0.7 0.8 0.9 1.0
R/R T

FI GURE 48. MEAN PITCHWISE VELOCITY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR,

188

r — -- ---

-- . .-
~~~~~~~~~~~~~~~~~~~

m— -.-
--- --- .... - ~~ --~~~~~~- - -  ~_ _ *_ __ _~~~~~-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~~~~~~~~ —~~~~~— - -- — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~
‘
N

\ 
/

.O4~
\
~ 

Ft

700 - [~
••
~
Q %%r:4LI \

\_

I
600 - J

I
500 —

400 —

300 -

—%—
~ Experimental

200 - 

~~~~~~~Calculated with
Cascade Losses and
Rothalpy variation

(Station 7)

100

0 I I I
0.5 0.6 0.7 R/RT 

0.8 0.9 1.0

FIGURE 49. MEAN AXIAL VELOCITY, 1,0 CHORD
DOWNSTREAM OF THE ROTOR .

189

_ _ _ _ _  ___________________  

)
.-- .____._c_ -_.-__.____

~
__.___ *_, . — — ,. .. -‘ . �-.. ~-..--- -*-----—-.-- — —-. —-. - - ——-—————-—---——-—-—-- ________________________________

~~~~~~~~~~~~
, 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~



-
- ~~~~~~~~~ ~~~~~~

Vr

300

V r Ft—Sec~~

200 —

100

0 - -  

~ 
—

-100 -

—t——— t— Experimental

—0--aG——-- Calculated with
Cascade Losses and

—200 — Rothalpy variation
(Station 7)

—300 -— I I I I
0.5 0.6 0.7 

‘R 
0.8 0.9 1.0

FIGURE 50, MEAN RAD IAL VELOC ITY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR .

190

L _ _ _ _  
_ _ _  _ _  

—~~~~~~~~~~
. 

- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
-

~~
-— 

~~~~~~~~~~~~~~~~~~~ 
.- .



F~~T ;

0.12

l
~
(Sapp

_ l/T)! c~,

0.10 -

0.08 —

-‘—-Ø—--Ø-——— Calculated 

— Experimental
0.06 — / 

~~~~
,

0 • 04 
— /

O ~02 
-

O.OOQ 5  0.6 0.7 0.8 0.9 1.0
R /RT

FIGURE 51. EQUIVALENT ENTROPY RISE ACROSS THE ROTOR .

191z



—

~~~r ~

~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~

400 -

300 - I I Experimental

&— 

~ Calculated with
Cascade Losses,

200 - Rothalpy variation,
and Apparent entrap;

(station 6)

100 -

_______________________________ I I I
0 0.5 0.6 0.7 , 0.8 0.9 1.0

R/RT

FIGURE 52. MEAN PITCHWISE VELOCITY, 0,1 CHORD
DOWNSTREAM OF THE ROTOR .

192

r - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 



700
\~\ 

V
Z 

Ft Sec 1

A.
600 -

N,

I - I  Experimental

300 - 0 0 Cal culated wi th
Cascade Losses ,Rothalp~variation, and
Apparent Entropy

(Stati on 6)
200 - 

~~~~

- 
I I I I

0.5 0.6 0.7 R’R 0.8 0.9 1.0

FI GURE 53. MEAN t V T ~~L AND RADIAL VELO C I T I E S,
0.1 CMORD DOWNSTREAM OF THE ROTOR .

193

j 
-- — - - .

-- -,~~~ -~~* — ~- - ~~
‘ 

~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - - -‘ 

V9

700

Ft Sec 1

::: :
\,~

__
~ —

‘

400 -

300 - i i Experimental

Calculated with
Cascade Losses,Rothalpy

200 variation , and Apparent
Entropy (Station 7)

100 —

0 I I I I
0.5 0.6 0.7 0.8 0.9 1.0

R/R T

FI GURE 54. MEAN PITCHWISE VELOC ITY, 1.0 CHORD
DOWN STREAM OF THE ROTOR .

194



____ 
-~-~~~~~-- —~- -~ —---- -~~~

800

V Ft Sec~~
I

/

700 -

600 - 
_ _

Vz

500 -

400 -

300

—-a-i ~
— Experimental

200 - __..Q..__
~

___ Calculated with
Cascade Losses , Rothalpy
Variation and Apparent
Entropy ~Station 7)

100 -

I I I I0 0.5 0.6 0.7 R/R T 
0.8 0.9 1.0

FI~ ’I RE 55. MEAN AXIAL VELOCITY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR .

195

_ _  - ~~~~~~~~~~~~~.



-- — - -

Tr
300

Vr Ft Sec ’t

200 -

100

0 -

~

-100 - I i— Experimental

—O———G—-— Calculated with
Cascade Losses, Rothalpy

—200 - ariation, and Apparent
Entropy (Station 7)

—300 I I
0.5 0.6 0.7 0.8 0.9 1.0

R/R
T

FIGURE 56. MEAN RADIAL VELOCITY, 1,0 CHORD
DOWNSTREAM OF THE ROTOR .

196

iIIIp__ -_._. -_ _- _ -_ _ _  ,—~~ -~~ -— - .---- . —— ‘— -~ — - ----- -- — 
. -  

~~~~~~~~~~~~ 
.— -- . — ..



- _ _____ _ _ _
~
_ _
;~~

___
~
__ _ 

~~~~~~~~~~~~

--

~~~~~~~~~

--- , —-- 

400 - N, ,  I__I

300 - —i i _ Experimental

Calculated with
Cascade Losses,Rothalpy200 - variation, Apparent
Entropy, Apparent
Stresses(Statj on 6)

100 -

0 —  I I I I
0.5 0.6 0.7 0.8 0.9 1.0

R/RT

FIGURE 57, MEAN PITCHWISE VELOCITY, 0.1 CHORD
DOWNSTREAM OF THE ROTOR .

197

-

~~~~~~~~ — —— —.—~~ - - 
-— 

. .  -~~~~~ —
.~~~~~~~—— —- - - ., _ _ _ . _ 1_ — - . - -.-— - -



____  — _______- -

700

Ft Sec~~
‘q,.—J_ .~,,

600 - \,

—I——— , Experimental

300 - 

~~0—G-—-- Calculated wi th
Cascade Losses, Rothalpy
variation, Apparent En trop
and Apparent Stresses

(Stati on 6)

200 - 

— io o — I I I I
0.5 0.6 0.7 0.8 0.9 1.0

T
FIGURE 58. MEAN AXIA L AND RADIAL VELOCITIES ,

0.1 CHORD DOWNSTREAM OF THE ROTOR.

198

L ‘ -
I - -



~T ~~~_JWu is.u ur .-~~~‘ ~V~ - -—-‘- -

I

700

ITO V0 Ft Sec
’

400 -

300 - I -I Experimental

Calculated with
Cascade Losses,Rothalpy
variation, Apparent
Entropy, and Apparent
Stresses (Station 7)

100

0 I I I
0.5 0,6 07 0.8 0.9 1.0

R/R T

FIGURE 59, MEAN PITCHWISE VELOC ITY, 1,0 CHORD
DOWNSTREAM OF THE ROTOR .

199

i

L 
-

--1

—A——- —~ ~~~~~~~~~~~~~~~~~~~~~~~~ A A  . S ~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t _ .~. . . _  — - - - — .



— - 
~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ “ 

800
Ft Sec 1

4’
700 -

600 -

V
*

500 -

400 -

300 -

—I—f Experimental

200 ..

0-G- Calculated with
• Cascade Losses, Rothalpy

variation , Apparent Entrop
and Apparent Stresses

100 — (Stati on 7)

0 I I I I
0.5 0.6 0.7 0.8 0.9 1.0

R/RT
FIGURE 60. MEAN AXIAL VELOCITY, 1,0 CHORD

DOWNSTREAM OF THE ROTOR .

200

L ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



r~~r~ ~~~~~~ ~~Th~~jTjj~~
’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_

I
II

V

300

V Ft Sec~~

200 -

100

O -1

-100 -

—f—I— Experimen tal

.G 0 .  Calculated with
Cascade Losses ,200 — Rothalpy Variation ,
Apparent Entropy , and
Apparent Stresses

(Station 7)

—300 I I I I
0,5 0.6 0.7 0.8 0.9 1.0

R/RT

FIGURE 61. MEAN RADIAL VELOC ITY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR .

20].

F - — 
_ 

- -

—-—----- -..-.- - ---- -- ----  

~
---T---— -  

~~1~~
- - --

~~ 
- - —,

~
- — -

L. _______________
—

~

÷- —
~~ 

—
~~~ 

—-- 

~~

- —---

~~~~~~~~~~~~~ 
— —4



- 

- 
- -

400 

\
\,

300 - —i—i— Experimental

.—O—-O--—Calculated with Cascade
Losses, Shock Losses,
App . Entropy, Apparent

200 - Stresses and Rothalp
Variation (Station 6

~~~~~Calculated with CascadeLosses, Shock Losses,
Apparent Entropy and100 - Rothalpy Variation

(Station 6)

o I 
- 

I I
0.5 0.6 0.7 0.8 0.9 1.0

R/R T

FIGURE 62. MEAN PITCHWISE VELOCITY, 0,1 CHORD
DOWNSTREAM OF THE ROTOR .

202

L . Ji:I
_ 

_ _ _ _ _ _

-- ~~~~~~~ - ~~~~~~~~~~~~~~ -~~~-~--.~- .—~— --——-—•-.. ,- ~
,
— - - -•-- —A--—•-•----—--•-.—•----—



VQ

700

600 - 

Ft Sec~
1

300 
-

~
‘

- 1~ I 
_____ Experimental

200

Calculated with
100 - Experimental Entropy Distribution

(Station 6)

0 I I I I
C.5 0.6 0.7 0.8 0.9 1.0

R/RT

FIGURE 63. MEAN PITCHWISE VELOC ITY , 0.1 CHORD
DOWNSTREAM OF THE ROTOR.

203



- —~~-~——— - -  - - - - ---- -—

Vz

700 —

V Ft Secz

300 — __
~~

___
~~
_ Experimental

200 — Calculated with
Experimental Entropy Distribution

(Station 6)

• 100 -

0 I I I
0.5 0.6 0.7 0.8 0.9 1.0

R/R T

FIGURE 64. MEAN AXIAL VELOC ITY) 0.1 CHORD
DOWNSTREAM OF THE ROTOR.

204

I 
~~~~~~~~~~~~~~~~~~~ 

——--—- —-- - - -- -— — - ~~~~~~~~~~~~~~~~~~~~~~~~ - —  __________



_ _ _ _ _  - — —----—- —
~~

- _~ -Th

__ __ _ 

~~~~~~~~~~

Vr
200 _ 

- -lV Ft Sec

:°°

~ 

—100 —

— ) — )— Experimental

—200 —

Calculated with
Experimental Entropy
Distribution

300 — (Station 6)

_ _ _ _ _ _ _ _ _ _ _ _ _  I I I
0.5 0.6 0.7 0.8 0.9 1.0

R/R T

FIGURE 65. MEAN RADIAL VELOCITY, 0.1 CHORD
DOWNSTREAM OF THE ROTOR .

205 

• •• - - ~~~~~~~~~~~~

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ __ __ __ _



600 -

300 ——

~~~~~~ [— Experimental

200 -

______________  Calculated with
Experimental

100 — Entropy Distribution
(Station 7)

0 I 
- 

I I I
0.5 0.6 0.7 0.8 0.9 1.0

R R T

FIG URE 66. MEAN PITCHWISE VELOCITY, 1.0 Cl-fORD
DOWNSTREAM OF THE ROTOR.

206

II. -~ ---- - -
_ - ~~~~~~~~~~

--_ ---- - ~~~~~~~~~~ 
_ — -•-——--—- - .•-- - - - — -~~ -- -~~-—-- ,—-~~~~—--—-— —--- —-.-~ --~~~ ~~~~ __— - —-~~~ -- ~—~--—-----—------~~—---—- ~~~~~~~~~~~~~~~~~~~~~~~~~~



: 

~~~~~~~~~~~~~~~~~~~~~~i::~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

z / V~ Ft Sec
-

400 —

300

—I—I—--—- Experimental

200 — 
— Calculated with

Experimental Entropy
Distribution
(Station 7)

100

0 I I I
0.5 0.6 0.7 , 0.8 0.9 1.0

RIR T

FIGURE 67. MEAN AXIAL VELOCITY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR .

207 

—--—— •----- - --— -- ~~~~~~~~ •- ---~~~~ --- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - * -- - --— ~ ---~-— -~~~~~~- •—_



_ :_ :~~~~~~~ 
- ____ — —

150

— 
—1V Ft Secr

100 -

/

0  —

—50 —

—i—I— Experimental

—100 — Calculated with
Experimental Entropy
Distribution

(Station 7)

—150 I I I I
0.5 0.6 0.7 0.8 0.9 1 .0

R/R T

FI GURE 68. MEAN RADIAL VELOrITY, 1.0 CHORD
DOWNSTREAM OF THE ROTOR .

208
*U.S.Qoye,nm.nt PT~ntIng OffIc.: 1979 — 657-002/ 138


