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A NUMERICAL COMPARISON BETWLEEN TWO UNCONSTRAINED
VARIATIONAL FORMULATIONS

ABSTRACT. In an effort to relieve the often cumbersome burden of
meeting the requirements on the end conditions and to unify the solution
formulation for boundary- and initial-value problems, unconstrained
variational statements have been introduced in conjunction with some
approximate methods. In the case of a boundary value problem, it is
shown in this paper that two different variational statements can be
established: one is arrived at by the use of the Lagrange multipliers,
the other by energy considerations. The numerical convergence of the
solutions associated with finite element schemes using one of these two
different variational statements is compared with that of the other. 1In
the case of an initial value problem, both formulations can again be
established when the adjoint field variable and the adjoint variational
statement are introduced. The numerical data presented here indicate
that while both methods generate excellent convergent results for the
boundary value problem, the method of stiff springs yields results which
show much better convergence for the initial value problem than those
achieved by Lagrange multipliers.

I. INTRODUCTION. In conjunction with variational methods of mathe-
matical physics, it is often burdensome to select trial functions which
are required to satisfy some or all of the end conditions (see, for
example, reference {1]). Efforts thus have been made to relieve such
requirements on these trial functions. Courant and Hilbert have pointed
out that in conjunction with boundary value problems, this can always be
done by adding extra boundary terms in the variational statement [2].
Such a concept has been applied successfully by Wu in obtaining solutions
to nonconservative stability problems [3]. Wu has further extended the
application to the solutions of initial value problems {4]. Simkins
also developed unconstrained variational statements for initial and
boundary value problems [5]. The approaches used by Wu and Simkins are
different in that while Wu, after Courant and Hilbert, employed the
concept of a very large constant (very stiff spring constant), Simkins
used the method of Lagrange multipliers. For any given problem, the
variational statements arrived at by the two approaches are different
in boundary terms. The purpose of this paper is to compare the numer-
ical convergence of them in terms of some simple, but specific, examples.
Both boundary and initial value problems are considered.




II. UNCONSTRAINED VARIATIONAL STATEMENTS FOR A BOUNDARY VALUL *
PROBLEM. Let us first consider the transverse vibrations of an luler- -
Bernoulli beam under axial load. The differential equation in nondimen-
sionalized form can be written as [1]:

e Qe s Aty s D (2-1)

where y = y(x) is the transverse displacement of the beam, as a function

of the variable x along the column's length (0<x<l). The axial force is
denoted by Q; X is the eigenvalue and a prime (') denotes a differentiation
with respect to x. The problem is not defined completely, of course,
without appropriate boundary conditions. Consider the following given
conditions:

y(0) = y'(0) = 0 (2-2a,2b)
y'(1) = y"' (1) + Qy*(1) = 0 2-2¢,2d)

Eqs. (2-1) and (2-2) define the familiar buckling problem of an Fuler
column. It can be solved by methods of approximation in conjunction with
a variational statement.

81, = 0 (2-3a)

where

1
o) =3 [ [0M7 - QH? + Aly?ax (2-3b)

Through integrations-by-parts, Eqs. (2-3) leads directly the following
1. =0
1

" f (" + Qy" + Az)’)Gde
0

+ y"(1)8y' (1) - y"(0)dy'(0)
- [y (1) +« Q' (1)]16y(1) + [y (0) + Qy'(0)]8y(0) (2-4)

Eq. (2-4) indicates that 61, = 0 is equivalent to the differential cqua-
tion (2-1) and the last two of the b.c. Eq. (2-2c,2d) provided that the
variations 8y(1) and 8y(1) are chosen arbitrarily (thus causing their 4
coefficients to vanish) and that 8y(0) and Sy'(0) vanish identically.
Thus, 8I, = 0 can be used as a basis of approximate solution if trial ;
functxons are chosen which identically satisfy (2-2a) and (2-2b). Since -

2-2a,2b) must be "imposed'" they are called "imposed boundary conditions".




The choice of trial functions is otherwise arbitrary and convergence,
when achieved, will tend 'naturally' toward a solution satisfying (2-2¢)
and (2-2d) which are called the 'natural boundary conditions' of the
problem. The imposed conditions on the trial functions are often burden-
some in the process of obtaining approximate solutions [1}. In this
paper, two different methods are compared which remove these constraints
on the trial functions.

The first approach is an extension of the method of the Lagrange
multipliers in classical mechanics., Suppose one desires to unconstrain
the boundary condition (2-2a) y(0) = 0. The modified variational state-
ment shall take the form of

6]1 =0 (Z—Sil

where

1
and I, tn (2-5b) 1s given by (2-3b). Eqs. (2-5) then become

§1. =0 = dlo + ady(0) = y(0)da (2-6a)

1

1
- f (ynn < Q)’” * Az)’)é)'dx
0

+ y"(1)6y' (1) - y"(0)8y'(0) + y(0)6a

S D) ¢ QIS ¢ [ (0) + Q' (0) * aléy(0)  (2-6b)

It is clear from Eq. (2-6b) that if one defines

o= = fytg0) « Qyt(a)] 2-7a)
thus
Sa = ~ [8y™ (0) + Q8y'(0)) 2-7b)
equation (2-6b) becomes
Shy e {: O+ QM+ ATy Sydx

+ y'(1)8y(1) - [y"(0) + Qy(0)]8y'(0) - y(0)&y"* (0)

I, = Io + ay(0) (2-5b)

) + )]sy () (2-8)




Thus, with a given in (2-7a) and I, in (2-5b) the variational statement
§1 = 0 is equivalent to the given Aifferential equation and the boundary
conditions (2-2a), (2-2c) and (2-2d). Only (2-2b) is imposed on the set
of trial functions. This last constraint condition can also be rcmoved
by the same process used above. The completely unconstrained variational
statement through the means of the Lagrange multipliers is the following:

§I = 0 (2-9a)
with

1
1= JLom? - an? « a2y?as

- y(0)y'" (0) + y'(0)y"(0) (2-9b)
Since then
1
81 = 0= [ (y" + Q" + A2y)6éydx
0

+ Y'()sy' (1) - [y Q) + ' (1)]éy(1)
= y(0)6y™ (0) + y'(0)[8y"(0) + Q3y(0)] 2-9¢)

It is clear from Eq. (2-9c) that all the boundary conditions of Eq. (2-2)
are natural if the variational statement of (2-9a) and (2-9b) is used.

The second approach to remove the imposed conditions may be referred
to as ''the method of infinitely stiff springs'. The functional I, in
Eqs. (2-3) can be identified with the nondimensionalized energy stored in
the beam. If the beam is considered to be supported by two springs at
x = 0, one reacting to deflection and the other to rotation, the energy
stored in these springs can be included in the total energy of the system.
Thus consider

§I = 0 (2-10a)
where
I= 1o+ 3 k12 + iyl (0))2

1
-1 IO [(y¥)2 - Q(y')2 + AZy2]dx

N

O PO (2-10b)




where k) and k, are the nondimensionalized spring constants for deflection
and rotation respectively at x = 0, Now since !

§1 = 0
1
= [ "+ Q" + A2y)6ydx
0

£yt () ey' (1) - [y"(0) - k,y'(0)]8y'(0)

- Q)+ T )]Ey() ¢ Y™ (0) + Q' (0) + K y(0)]6y(0) (2-11)

the natural boundary conditions are

y" (0) + Q'(0) + kyy(0) =0, y"*(0) - kyy'(0) =0
(2-12a,12b)

y*e1) =4 , ) s y'(1) = @ (2-12¢,12d)

It is clear that Eqs. (2-12) reduce to (2-2) if ky and k, become infinitely
large. Hence, the variational statement (2-10) can serve as a basis of

an approximate solution formulation for the problem defined by Eqs. (2-1)
and (2-2) if kj and kp are taken to be very large compared with unity in
actual computations.

ITI. UNCONSTRAINED VARIATIONAL STATEMENTS FOR AN INITIAL VALUE
PROBLEM. In the case of initial value problems, similar procedures can
be used to free the initial conditions imposed on the trial functions.
Examples have been given in two previous papers [4,5]. Since initial
value problems are nonself adjoint by nature, adjoint field variables
must be introduced to form variational statements which provide the basis
for approximate solutions. In this section Lagrange multiplier formu-
lations will be compared with those using the method of infinitely stiff
springs - each method being used to relax the requirement that trial
functions satisfy identically the imposed conditions arising from an
initial value problem, Forced motions of a spring-mass system is used
for illustration. The differential equation for such a system can be
written as

y + wly = f(1) (3-1)
where y = y(t) is a function of the time t and a dot (°) denotes differ-
entiation with respect to t. The constant w? = k/m where k is the spring
constant and m, the mass. The initial conditions are:

y(0) =a , y(0) =D (3-2a,2b)




No generality is lost if, in establishing the corresponding variational
statements, one considers only a homogeneous system, flence we consider
the differential equation:
. ) '
y + wy = 0 (3-1")
and initial condition

y(0) =0 , y(0) =0 (3-2'a,2'd)

The fact that the system of Eqs. (3-1') and (3-2') leads to a trivial
solution only is not of concern here. .

Let z = z(t) be the adjoint field variable., First, the variational
statement obtained by the use of Lagrange multipliers is verificd to be:

61, =0 (3-3a)

where
1 1
IO ® - I yzdt + wzj yzdt (3-3b)
0 0
+ y()z (1) ~ y(0)2(0)
Eqs. (3-3) lead to
§1, = 0

| RS
= [ (y + w¥y)ézdt + §(0)S8z(0) - y(0)8:(0)
0
S 9y
+ [ (@« o?2)éydt - 2(1)8y(1) ¢ z(1)EY (1) (3-4)
0
Eq. (3-4) states that 61, = 0 is equivalent to the problem of Pgqs. (3-1")
and (3-2') and the adjoint problem defined by
z+wiz =0 (3-5)
and
2(1) =0 , z(1) =0 (3-6a,6b)
In as much as the variations of the field variable 8y, 6z, etc. arc quite
arbitrary and 8y is quite independent of 6z, one can take 6y = O, Syv(1) =

0 and 8y(1) = 0. Hence the association of the problem of (3-1') and
(3-2') with the variational statement Eqs. (3-3) is established.




Now for the inhomogeneous system of Eqs. (3-1) and (3-2), onc may
similarly verify the corresponding variations statement:

6, = 0 (3-7a)

where
1 1

L,(r,2) = - [ yidt + [ [y - £()]zdt
0 0
+ y(1)z(1) - [y(0) - a)z(0) - bz(0) (3-7b)
On the other hand, when the "infinitely stiff spring'" approach is uscd

to treat the homogeneous case, the variational statement takes the
following form [4]:

8l = 0 (3-8a)
where
1 1
I =- [ yidt + w2 yzdt + ky(0)z(1) (3-8b)
0 0
Eqs. (3-8) result in
61 = 0
| SR
= [ (r + w?y)6zdt + y(0)62(0) « [ky(0) - y(1)]6z(1)
0
S
+ [ (z + w?z)8ydt - 2(1)8y(1) + [kz(1) + 2(0)]6y(0) (3-9)
0

The differential equations for the problem and for the adjoint problem
are unchanged. The end condition for the original and the adjoint prob-
lem are

"
o

y(0) =0 , ky(0) - y(1) (3-10a,10b)

z2(1) =0 , kz(l) + 2(0) =0 (3-11a,11b)

"

respectively, Eqs. (3-10) and (3-11) reduce to (3-2') and (3-6) rcspec-
tively as k becomes infinitely large.




From Eqs. (3-8), extension to a variational statement is casily made
for the inhomogeneous case of Eqs. (3-1) and (3-2):

611 =0 (3-12a)
where

1 1
I ~- | ydt + [ [w?y - £(1)]zde
0 0

+ ky(0)z(1) - kaz(1) - bz(0) (3-12b)

IV. NUMERICAL COMPARISONS. In this section, the two methods for
the unconstraining of the coordinate (trial) functions described in the
previous section will be compared numerically. The approximate solu-
tions are formulated through the finite element discretizations.

IV.A. Boundary Value Problem. The example given in Section II
shall be used. The set of Eqs. (2-1) and (2-2) constitute an cigen-
value problem, Using the method of Lagrange multipliers, the associated

variational statement is given in Eqs. (2-9) which can also be written
as

1
61 =0 =] (y"sy" - Q'8y' + A2y8y)dx
0

- y(0)8y" (0) - y"' (0)éy(0)

+ y'(0)6y"(0) + y"(0)éy'(0) (4-1)

In applying the standard finite element di scretization the beam is
divided into K equal elements. Denoting the local coordinate by ¢,
one has, for the m-th element:
£ = C(m) =Kx -m+ 1 (4-2a)
dg = Kdx (4-2b)
Thus, in terms of local variables, Eq. (4-1) becomes
§ e, M) (m)" M), ), A2 (m) g, (m)
s1=0= ) [ [k3y™ ey™" o qry(M ey m® 2 Mgy Mygg
= K
m=1 0
- 3y W aysy ™M™ 0y - x3y(M™ (0)sy(0)

+ K3y )5y (1) "0y + k3y(M)"(0ysy (' (0) (4-3)




Now, let
(m)

.\‘tm(l.) . uT(L) Y (4 1)
{ where
‘_NU o (S - - 8% % -'f."\.
ay (0 L - 2% e g? \
a () 3k . 283 )
\ 44 l8) -7 e g} (1.5
y ‘.l(m)
: y,(m
YS(“\)
\‘4(“" (4-6)

and a superscript T denotes the transpose of a matvix,  bq. (4 35 now
can be written as

K \7 1 o 1 !
st=0« §F oov™ ) av@a@ag - okf aroar T
m=1 i g Qe )
: T (m)
+ ‘\. I a(fla (LHAL)Y
K 0 = - -

k*‘&\’(” lat (U)u‘ (0) « a(0)a™ r(l\\ - a"(mn'l(m n'u\)a"lu‘)]\“‘

(14-7a)
Or
\ T )
81 = 0= § aov(™ (k3% - qua « A Apy™
m=l - B B By,
- kD qp e m e @y e s, Y (4-71)
where
- = 1 r
A = f aa)d‘... B o= f n'u'l\li,. C= [ ama"'dg (8
- 0 - ~ BE . o = -




By = a"' (0)a(0) = 1277 (1000) = [12000°
6 6000
«12 -12 000
[ o | L_ 6000 |
B, = a"(0)a'(0) = -6 ] 0100 = [0-600T]
-4 0-400
(“‘SL"
6 0 6 00
| -2 ] 0-200 |
Now, Eq. (4-7 ) can be assembled into a global matrix equation
§1 - SYT[K + AZM]Y = 0O (4-9)
where
T () , ) , (1) , &1) . (2) ., (2) (X) , (X)
= Y Y Y SreSiele -10
b {Yl 2 3 4 Yy Yy Ys L ) SRS

The details of obtaining the global matrices K and M have been given
clsewhere [1] and will not be repeated here.

Since 8Y in (4-9) is unconstrained, the equation reduces to
(K + A3M)Y = © (4-11)
which will be solved for the eigenvalues A2,

When the method of infinitely stiff springs is used, the variational
statement is given by Eqs. (2-10), which can also be written as

1
61 = 0 = [ (y"8y" - Qr'Sy' + A%ySy)dx

0

*+ k,y(0)8y(0) + k,y'(0)éy’(0) (4-12a)

g (m)", (m)" m)' ., (m' a2 (m). (m)
= F O J Syt syt - QryN Byt e m—yt eyt )dE
m=1 0 K
e kP @y o)« xxy M @ey™M (0 TRES

10




Or, K T 2
s1=0= § ov(M 3 - qua « A= Ay (™
m=1 - 7 5 K -
T
SR (9 MR W MCY
= A b (4-13)
wheire T
By = a(0)a (0) = [‘1 000
0000
(4-14a)
0000
[ 000 0 |
' T [ Al
By = a'(0)a' (0) =[0000
0100
(4-14b)
0000
[ 0000 | §
As before, Eq. (4-13) can be assembled into a global equation ?
61 = 0 = SYT(K + A2M)Y (4-15)
so that the eigenvalue A2 can be solved from
(K + A2M)Y = 0 (4-16)

Numerical data for the vibration frequencies of a cantilevered
column are given in Tables I and II for both the method of Lagrange
multipliers and the method of infinitely stiff springs. As shown in
these Tables, both methods display excellent convergence.

In the case of the stiff spring method, Tables I and II also
indicate that the greater values of kj and k> may not give more accurate
results, although all the results are good when k, and k, are sufficiently
large. This point is further demonstrated by the comput&tions shown
in Table III. Since greater values of k; and k, mean that the prescribed
end conditions are more accurately satistied, Table III suggests that
forcing the solution to greater accuracy at one point may cause a decline
in overall acceptability of the results as evidenced by the declining
accuracy of the eigenvalue. This same conclusion was first presented
in [1].
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IV.B. An Initial Value Problem. For our numerical comparisons in
the case of an initial value problem, we shall consider the one defined
by:

DLE.? m; + ky = fOCOSwft, 0<t<T (4-17)
1.C.: y(0) =a, y(0) =b (4-18a,18b)

The specific values of the constants m, k, fo, we, @, b and T will be
given later. The upper limit of the time interval T can take any
positive value other than infinity. Before one applies the variational
formulation given in Section III, it will be convenient to normalize the
time variable t with respect to T. Thus let

t=t/T, t=Tr, dt = Tdx (4-19)
= dy _ 1 dy g d2y

y)y =y, L.la &y, 1dy (4-20)
dt  Tdr dr? 1% el

Also define

2
. = foT
w=wl, = -——
m
& = " (4-21)
we = me », a=a, b=0>bT
With these new parameters, Eqs. (4-17) and (4-18) become
d2 - - -
D.E. a;; + wzy = f cos(wa) » O<r<] (4-22)
1.C. y(0) =a, y() =b (4-23a,23b)

Now we are ready to apply the formulations given in Section I11. We
shall first consider the solution formulation by the method of Lagrange
multipliers. Comparing Eqs. (4-22) and (4-23) with (3-1) and (3-2),
one observes that the variational statement follows that of Fqs. (3-7).
Or,

§1 = 0 (4-24a)
where | ¥ e _ i
1=-f yzdre+ [ [u?y-f cos (wgr) ]z dt
0 0

+ y(1)z(1) - ¥(0)2(0) + a 2(0) - b z (0) (4-24b)

e R s

e




hucia

Since 8y and 6z are quite indcpendent of cach other, one can set &y «
0 in Eqs. (4-24) and obtain

¥ i R ) i i
(61) = - [ yézdv + [ w?ybzdr - | cos (wer) dzdr
Sy=0 0 0 0
+ y(1)8Z(1) - y(0)6z(0) + adz(0) - bz (0) = 0 (4-25)

The same process of finite element discretization used for the boundary
value problem in the previous subsection can be employed here. The same
shape functions and generalized coordinates are also used. In terms of
the element variables, g, defined before, except now that

E=kr-m+1 (4-26)
etc., Eq. (4-25) becomes:
K % -5 1
(8I) =0 = Z Gz(m) [-Kf a'a'TdE + 97 f aaTdL]Y(m)
Sy=0 m=1 = R K o =~ A

e 520 amya Ty ® - s My 00T o)y (D

- 'Z( sz £ jl cos| wg (€+m-1)]ade
m=l - Ko K :
. 55(1)Tix_a'(0) . 53“)TS=_;(0) (4-27)
Or,
f cf(m)T[-xg . -“;(—2 Ay ® sz(K)Tkgsv(K) P COLININIeY

m=1

K T § s K
-« J ™ %F(“‘) + 6217 [Gka' (0) - Ba(0)) = 0 (2-28)
- . - y -

where A, B have been defined in Eqs. (4-8a) and

B = a(a' (1) = [0 (0001]=[0000] (4-29a)
0 0000
1 0001
[ 0 0000 |
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Bg = a'(0)a’(0) = [0 [1000)=[0000]
1 1000
0 0000

| o | (0000

l -
F(m) = f cos of (6 +m - 1)a d¢
-~ 0 K -

In terms of global generalized coordinates Y and Z defined by

o3
"

T, Wy Wy My Wy @y @y 0y ®)

and

T eg W0, M, W, @@

Eq. (4-28) can be assembled as before into the matrix equation

® , ®),
4

6ZT[KY - F] = 0
Or, since 6Z is not constrained in any way,
KY = F

which can be solved for Y.

(4-29b)

(4-29c)

(4-30a)

(4-30b)

(4-31)

(4-32)

When the method of infinitely stiff springs is used, the variational
statement must be modified according to Eqs. (3-12). Thus, the finite

element discretization begins with

SI =0
( )6y=0
1.. B e Gt
=~ [ yszdv + [ [w?y - F cos(ugr)]z dr
0 0

+ ky(0)z(1) - kaz(l) - bz(0)
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Hence,
K T 1 2 1
) Gl(m) [-k[ a'a’Tdc » 2 J aaTdE]Y(m)
m=l = g O R
. de(K)Tu(l)aT(O)Y(l]
K T = 1
-7 2™ £ [ cos| ot & (§ *m = 1)]a dE
5 T K0 K -
4 kég(K)Tﬁg(l) = ag(l)Tﬁf(O) (4-34)
Or, K - ;
§ sz g, 32 Ay (m 5z(k)TkB7Y(l)
m=1 - = K ~ -~ 7 s
X T § - T
- 7 gz(m % F™ 52 NGy - s2(MT5a00) (4-35)
m=1 - - * - - ~

where A, B, F(M have ali been defined before and

B, =a(1)a’(0) = [0] 10001 =[0000" (4-36)
0 0000
1 1000
L 0 | | 0000 |

Now, as with Eq. (4-28), here Eq. (4-35) can be assembled in a global
equation in the form of Eqs. (4-31) and (4-32) and be solved.

The specific problem considered is as follows:
my + ky = fo cos(wet) , 0<t<T

with

y(0)

The numerical values of the parameters are:

Yo and $(0) = yg

m=1.0 k=10, f =1.0, w-=0.5

Yo = 1.0, y; = 1.0
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The plot for the forcing function fg cos (wgt) and the exact solution
y(t) is shown in Figure 1. The numerical solutions of the problem
using both the method of Lagrange multipliers and the method of stiff
springs are given in Tables IV through IX,

Tables IV through VI show the stiff spring method generates
excellent convergent results for various lengths of intervals of
solution.

The results using the method of Lagrange multipliers are shown
in Tables VII through IX. Table VII shows that for moderately long
intervals, the convergence at the initial point is non-existent
although it improves remarkably away from the initial point. This
data may lead one to doubt whether the method of Lagrange multipliers
works at all in treating i.v. problems. However, when the length of
the interval of solution is reduced, as shown in Tables VIII and IX, it
i1s clear that the results do converge. Hence, both methods generate
convergent results, The length of interval used in the Lagrange
multipliers approach is so small compared with the stiff spring method
for comparable convergence that the practical value of the former is
doubtful in treating initial value problems when finite element
discretization is employed. Simkins [4] has shown, however, that when
global approximating functions are employed, (consisting of higher
ordered polynomials), very good results can be achieved over an
acceptable interval of solution.

V. CONCLUSIONS. From the numerical data presented in this paper,
the followling conclusions are suggested:

1. Both the method of Lagrange multipliers and the method of
stiff springs generate convergent results.

2. In the case of boundary value problems, both methods give excellent
results and equally fast convergence. The method of stiff springs
appears to be easier to use and more general in a practical sense.

3. For initial problems discretized by finite elements (piecewise
continuous third order polynomials), convergence of the Lagrange multi-
plier method, as compared to the method of stiff springs, is so infer-
ior as to be of dubious practical value. (This statement does not apply,
however, where a global discretization is employed using higher ordered
(e.g. 8th order [4]) polynomials continuous over the entire domain of
integration.)

—




2().

FIGURE 1. Plots for the forcing function f cos(ugt) and the cxact
solution y(t) for a simple initial value problem.
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