

Finch Hollow Watershed Project, Site 1. Inventory Number NY-697 Susquehanna River Basin. Broome County, New York. Phase 1 Inspection Report,

(10) George /Koch

12 97/

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

ECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT A	CCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
Phase I Inspection Report Finch Hollow Watershed Project - Site 1 Susquehanna River Basin, Broome County, 1 Inventory No. NY 697	5. TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report National Dam Safety Program New York 6. PERFORMING ORG. REPORT NUMBER
George Koch, P.E.	DACW-51-79-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS New York State Department of Environmental Conservation/ 50 Wolf Road Albany, New York 12233	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
New York State Department of Environmen	tal Con- 24 September 1979
servation/ 50 Wolf Road Albany, New York 12233	13. NOMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Cont.	rolling Office) 15. SECURITY CLASS. (of this report)
Department of the Army	UNCLASSIFIED
26 Federal Plaza/ New York District, Co New York, New York 10007	150. DECLASSIFICATION/DOWNGRADING
6. DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20	PORTURE O
18. SUPPLEMENTARY NOTES	ZOPO PO
19. KEY WORDS (Continue on reverse side if necessary and identify it	by block number)
Dam Safety	Q) i
,	Finch Hollow Watershed Project Site
visual Inspection	Broome County
Hydrology, Structural Stability	9 11 05
ABSTRACT (Continue on reverse slide if necessary and identity b	
This report provides information and an the dam as of the report date. Information inspection of the dam by the performing Finch Hollow Watershed Project-Site 1 dehazard to humanlife or property. Total	tion and analysis are based on visual organization. id not reveal conditions which pose a
adequate for the PMF. An immediate inv	estigation is required to ascertain the ween the dam and the highway embankment
DD FORM 1/73 FORDOW OF 1 NOV 55 IS OPEN FTE	(over)

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Several remedial actions during construction season are required.

Participant Core of April 2 Programme of Sola Solation of Solation

the two control of some lease of by the principles and basis

The stands of the standard of

to often also meety that there is him as a first in with himself

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

11 1

Fine Laller V.Serahed Prefect - Cita i Sucremental City of Caste Cross Court

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

SUSQUEHANNA RIVER BASIN FINCH HOLLOW WATERSHED PROJECT - SITE I NY 697 PHASE I INSPECTION POPORT

TABLE OF CONTENTS

		PAGE NO.
-	ASSESSMENT	<u>.</u>
-	OVERVIEW PHOTOGRAPH	<u> </u>
1	PROJECT INFORMATION	1
1.1 a. b.	GENERAL Authority Purpose of Inspection	1 1 1
1.2 a. b. c. d. e. f. g.	DESCRIPTION OF PROJECT Description of Dam and Appurtenances Location Size Classification Hazard Classification Ownership Purpose of the Dam Design and Construction History Normal Operating Procedures	1 1 2 2 2 2 2 2 2 2
1.3 a. b. c. d. e. f. g. h.	PERTINENT DATA Drainage Area Discharge at Dam Elevation Reservoir Storage Capacity Dam Principal Spillway Auxiliary Spillway (Emergency) Reservoir Drain	2 2 2 2 3 3 3 3 3
2	ENGINEERING DATA	4
2.1	GEOLOGY	4
2.2	SUBSURFACE INVESTIGATION	4
2.3	EMBANKMENT AND APPURTENANT STRUCTURES	4
2.4	CONSTRUCTION RECORDS	5
2.5	OPERATION RECORD	5
2.6	FVALUATION OF DATA	-

		PAGE NO.
3	VISUAL INSPECTION	6
3.1 a. b. c. d. e. f.	FINDINGS General Embankment Principal Spillway Auxiliary Spillway Reservoir Drain Downstream Channel Reservoir	6 6 6 6 7 7
3.2	EVALUATION	7
4	OPERATION AND MAINTENANCE PROCEDURES	8
4.1	PROCEDURES	8
4.2	MAINTENANCE OF THE DAM	8
4.3	WARNING SYSTEM IN EFFECT	8
4.4	EVALUATION	8
5	HYDROLOGIC/HYDRAULIC	9
5.1	DRAINAGE AREA CHARACTERISTICS	9
5.2	ANALYSIS CRITERIA	9
5.3	SPILLWAY CAPACITY	9
5.4	RESERVOIR CAPACITY	9
5.5	FLOODS OF RECORD	9
5.6	OVERTOPPING POTENTIAL	10
5.7	EVALUATION	10
6	STRUCTURAL STABILITY	11
6.1 a. b. c. d.	EVALUATION OF STRUCTURAL STABILITY Visual Observations Design and Construction Data Post Construction Changes Seismic Stability	11 11 11 11 11
7	ASSESSMENT/RECOMMENDATIONS	12
7.1 a. b. c.	ASSESSMENT Safety Adequacy of Information Need for Additional Investigations	12 12 12 12
7 2	RECOMMENDED MEASURES	12

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam:

Finch Hollow Watershed Project - Site 1

I.D. No. NY 697

State Located:

New York

County Located:

Broome

Watershed:

Susquehanna River Basin

Stream:

Unnamed tributary of Little Choconut Creek

Date of Inspection: July 23, 1979

ASSESSMENT

The examination of documents and visual inspection of the Finch Hollow Site 1 dam and appurtenant structures did not reveal conditions which constitute a hazard to human life or property.

The total discharge capacity of the spillways is adequate for the Probable Maximum Flood (PMF).

Although the dam and appurtenances do not present conditions considered to be hazardous in nature, the location of a highway embankment immediately downstream; coupled with a box culvert of low capacity (as compared to the auxiliary spillway capacity) may promote flooding of the homes located between the dam and the highway embankment during periods of unusually heavy runoff. Therefore, an immediate investigation is required to ascertain the flooding potential in this area. Remedial measures resulting from this investigation must be completed with 1 year from notification.

The following remedial actions are required during this construction season:

- Remove the tree growth at the entrance and exit of the auxiliary spillway channel to permit the unimpeded flow of discharge water;
- 2. Repair the bolting units of the principal spillway riser grating;
- 3. Remove the debris surrounding the principal spillway riser intake. Provide a program of periodic inspection and maintenance of the dam and appurtenances, including operation and lubrication of the slide gate mechanism. Document this information for future reference;

Overview of Finch Hollow Site 1 Dam Photo #1

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

FINCH HOLLOW WATERSHED PROJECT - SITE I
I.D. No. NY 697
DEC #96A-3852
SUSQUEHANNA RIVER BASIN
BROOME COUNTY, NEW YORK

SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority
The Phase I inspection reported herein was authorized by the Department of the Army, New York District, Corps of Engineers, to fulfill the requirements of the National Dam Inspection Act, Public Law 92-367.

b. Purpose of Inspection
Evaluation of the existing conditions of the subject dam to identify deficiencies and hazardous conditions, determine if they constitute hazards to life and property and recommend remedial measures where necessary.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances
The Site 1 dam consists of a 750-foot long zoned earth embankment,
62 feet high, with a principal and auxiliary spillway. The
embankment has 2 zones, the primary being composed of gravelly
silt and the second zone located on the downstream side of the
dam being composed of gravelly silt containing oversized material
up to 16 inches in diameter. The upstream slope is 1 vertical
on 3 horizontal with a 20-foot wide bench at elevation 974.5
and the downstream slope is 1 on 2.5 with a 10-foot wide bench
at elevation 964.7. The crest width is 19 feet.

An internal drainage system is located under the downstream portion of the dam to control the phreatic surface and provide a safe outlet for seepage. A cut-off trench is located at the dam centerline to reduce seepage.

The principal spillway is a drop inlet structure consisting of a single stage reinforced concrete riser, 36-inch diameter reinforced concrete pipe conduit, an impact basin, and an excavated outlet channel.

The 350-foot wide auxiliary spillway, located beyond the left (east) abutment, is designed as an earth cut with vegetation. Side slopes are 1 on 3.0.

A 16-inch diameter cast iron pipe with reinforced concrete inlet serves as a reservoir drain. The drain is controlled by a 16-inch diameter flat frame slide gate, the stem of which extends to the top of the riser having stem guides located on the inside of the riser.

b. Location

The dam is located in Finch Hollow north of Johnson City, New York, along an unnamed tributary of Little Choconut Creek which is a tributary of the Susquehanna River.

c. Size Classification

The dam is 62 feet high and is classified as "intermediate" in size (40 to 100 feet in height).

d. Hazard Classification

The dam is classified as high hazard, because of its location immediately above approximately 20 homes and above Johnson City.

e. Ownership

The dam is owned and operated by the County of Broome, New York.

f. Purpose of the Dam

The dam is a flood water retarding structure.

g. Design and Construction History
The dam was designed by the U.S. Department of Agriculture, Soil Conservation Service (SCS). Construction of the dam was completed in July 1973 by Jones and Meade Construction, Appalachin, New York. The SCS office located at the Broome County Airport has all design and construction information.

h. Normal Operating Procedures

Principal spillway crest

Reservoir drain, invert elevation

Normal flows are discharged through the principal spillway. This structure has sufficient capacity to store and discharge a 100 year flood without use of the auxiliary spillway. For storms in excess of this flood, the auxiliary spillway will outlet the discharge.

1.3 PERTINENT DATA

a.	Drainage Area (sq. mi.)	2.7
b.	Discharge at Dem (cfs) Principal spillway at maximum high water	220
	Principal spillway at auxiliary spillway crest elevation	207
	Reservoir drain at principal spillway crest elevation	20
	Maximum known flood: 9/25/75	161
	Auxiliary spillway at maximum high water	26,050
c.	Elevation (USGS Datum)	
	Top of dam	1,009.6
	Auxiliary spillway crest	1,001.2

974.5 952.0

d.			32 22 5
e.	Storage Capacity Top of dam Auxiliary spillw Principal spillw	ay crest	460 224 41
f.	<u>Dam</u> Embankment Type:	<pre>2 zoned earth with keyed earth cut-off trench and drain parallel to axis of dam</pre>	
	Embankment length	h (ft.)	750
		tream l vertical on 3 horizontal nstream l vertical on 2.5 horizonta	1
		tream 1 - 20 feet wide at elevatinstream 1 - 10 feet wide at elevati	
	Credt width (ft.		19
g.	(3.0 x 9.0 the 36-indepipe inves	ay reinforced concrete drop inlet 0 ft.), rising 25.5 feet above ch diameter reinforced concrete rt; length of pipe 288 feet; d concrete impact basin	
	Weir length (ft.)		16.33
h.		ay (Emergency) ass-lined earth channel having al cross-section.	
	Bottom width (ft	.)	350
	Side slopes (ver	t.:horiz.)	1:3.0
	Length of level	section (in profile) (ft.)	50
	Exit slope (ft./	ft.)	0.027
i.	Reservoir Drain Type: 16-inch di concrete	iameter cast iron pipe with reinforced inlet	

Control: Manually operated vertical slide gate mounted along the inside of the principal spillway riser

SECTION 2: ENGINEERING DATA

2.1 GEOLOGY

The Finch Hollow Watershed Project Site 1 Dam is located in the glaciated portion of the Appalachian uplands (norther extreme of the Appalachian Plateau) physiographic province of New York State. These uplands were formed by dissection of the uplifted but flat lying sandstones and shales of the Middle and Upper Devonian Catskill Delta. The plateau surface is represented by flat-topped divides with drainage generally southwest toward the Susquehanna River system.

Glacial cover is generally thin, although some north-south valleys are so thick that they are completely buried. The present surficial deposits have resulted primarily from glaciations during the Cenozoic Era, the last of which was the Wisconsin glaciation, approximately 11,000 years ago.

2.2 SUBSURFACE INVESTIGATION

A sufsurface investigation was conducted by SCS in 1966. This program consisted of 19 drill holes and 23 test pits at locations along the dam, auxiliary spillway, structural elements, and borrow area. Applicable subsurface information is included in Appendix G, Drawings #21 and 22.

In general, the soils in the vicinity of the dam are of glacial till origin, gravelly silts and silts overlying a shaly silt - stone bedrock from 10 to 30 feet below the original ground surface. The depth to bedrock in the vicinity of the abutments is in excess of 40 feet. With the exception of those soils having high gravel contents, the soils are of low or very low permeability.

2.3 EMBANKMENT AND APPURTENANT STRUCTURES

The dam was designed and constructed under the supervision of SCS. "As-Built" drawings of this dam are on file at the SCS office in Broome County. Selected drawings of the dam and appurtenances are included in Appendix G. The dam is composed of 2 zones of compacted earth fill (max. height 62 feet), a cut-off trench having side slopes of 1 on 2, and an internal drain parallel to the axis of the dam approximately 60 feet from the downstream toe and outletting in the walls of the impact basin. A reinforced concrete riser with a 36-inch diameter reinforced concrete pipe conduit and impact basin serves as the principal spillway.

The auxiliary spillway is a 350-foot wide vegetated earth channel located at the left (east) abutment. A 16-inch diameter cast iron pipe with a manually operated slide gate serves as a reservoir drain.

2.4 CONSTRUCTION RECORDS

Complete construction records are available from the SCS office in Broome County. No major changes were incorporated during construction.

2.5 OPERATION RECORD

Since the dam is an ungated floodwater retarding structure, no operating records are maintained regarding water levels. During periods of extreme rainfall, SCS personnel do monitor the reservoir.

2.6 EVALUATION OF DATA

The data presented in this report has been compiled from information obtained from Mr. Gary Page, Project Engineer for SCS in Broome County and Mr. Donald Lake, Head of the SCS Design Section in Syracuse, New York. This information appears adequate and reliable for Phase I inspection purposes.

SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General

Visual inspection of the Site 1 Dam was conducted on July 23, 1979. The weather was partly cloudy and the temperature ranged in the eighties. The water surface was at the inlet elevation of the principal spillway (974.5).

b. Embankment

No signs of distress were observed in the earth embankment and no evidence of seepage, misalignment, sloughing, subsidence, depressions, surface cracking, or undesirable growth were noted in connection with the embankment. Riprap was in place on the upstream slope in the vicinity of the normal pool level for wave protection. (See photos #1, 2, & 12)

An internal drainage system composed of 2-10 inch diameter pipes surrounded by "drain fill" material and extending parallel to the axis of the dam provide drainage at the embankment-subgrade contact. These pipes exit through the concrete walls of the impact basin (See photo #6). No discharge was apparent.

c. Principal Spillway

The principal spillway consists of a vertical drop inlet structure, a reinforced concrete pipe through the embankment, an impact basin at the toe of the embankment, and an outlet channel. (See photos #3, 4, 6, 7, & 11). These components appear to be in satisfactory condition with the following exceptions:

- The riser top grating is loose and the bolting units require repair. (See photo #5);
- 2. Considerable debris is surrounding the intake of the principal spillway. This debris should be removed with periodic removals conducted in the future. (See photos #3 & 4).

d. Auxiliary Spillway

The vegetated auxiliary spillway (earth cut section) is located beyond the left (east) abutment of the embankment (See photos #8, 9, & 10). The channel is in good condition, however, the following problem areas were noted:

- Extensive tree growth is completely blocking the entrance and exit to the auxiliary spillway. If use of this spillway is required during significant storms, clogging of the channel may cause excessive water levels and overtopping of the dam. (See photos #2 & 8 for trees at entrance and photos #10, 12, & 13 for exit);
- The exit of the auxiliary spillway is directed such that all flow will be concentrated immediately below the dam. This is standard design procedure.

However, in this case, a highway embankment has been placed downstream from the channel. The only outlet for the flow is through a box culvert approximately 4 x 5 feet located at the base of the highway embankment. (See photo #14) The dam is designed for more than 26,000 cfs discharge without overtopping. This design flow is far in excess of the capacity of the box culvert. Consequently, significant flows resulting from heavy rainfalls will impound water upstream of the highway embankment. Since approximately 20 homes are within this vicinity and of elevations lower than the highway crest, flooding may occur. This problem should be investigated thoroughly. Increased culvert capacity may be required, including trash racks and an emergency action plan.

e. Reservoir Drain

The 16-inch diameter reservoir drain and manually operated slide gate may be used to lower the reservoir. The slide gate control mechanism is located at the top of the riser. This system is reported to be operational.

f. Downstream Channel

The downstream channel below the impact basin is riprapped (See photo #11). The channel appears to be stable. An earth embankment is located approximately 2000 feet downstream from the dam. (See photos #13 & 14) A box culvert approximately 4 x 5 feet controls the flow through the embankment. Since approximately 20 homes could be flooded during periods of high runoff, the capacity of the box culvert should be investigated.

g. Reservoir

There are no visible signs of instability or sedimentation problems within the reservoir area.

3.2 EVALUATION

The problem areas observed during the inspection are listed below in order of importance:

- a. Investigate the flooding potential and capacity of the box culvert at the highway embankment;
- b. Remove the tree growth at the entrance and exit of the auxiliary spillway channel in order that the spillway will function as designed;
- c. Repair the bolting units of the grating at the top of the principal spillway riser;
- d. Remove the debris which surrounds the intake of the principal spillway riser. Provide a program of periodic inspection and maintenance of the dam and appurtenances, including lubrication of the slide gate mechanism.

SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

The normal water surface elevation is at the crest elevation of the principal spillway riser. Downstream flows are limited by the 36-inch diameter principal spillway pipe, except during extremely heavy runoff when the auxiliary spillway is in service. The dam provides 340 acre feet of flood storage between normal water level and the crest of the auxiliary spillway.

4.2 MAINTENANCE OF THE DAM

The dam is maintained by the County of Broome, New York. Maintenance is not considered satisfactory as evidenced by the deterioration of the riser grating and debris surrounding the riser. In addition, trees at the entrance and exit of the auxiliary spillway must be removed.

4.3 WARNING SYSTEM IN EFFECT

There is no warning system in effect or in preparation.

4.4 <u>EVALUATION</u>

The dam and appurtenant structures have not been maintained in a satisfactory condition as noted in "Section 3: Visual Inspection".

SECTION 5: HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

Delineation of the watershed of the Site 1 dam was made using the USGS 7.5 minute quadrangle for Castle Creek, New York. The watershed consists of woodlands and fields situated in a semi urban section. Relief ranges from moderate to steep. The drainage area is 1745 acres or 2.7 square miles.

5.2 ANALYSIS CRITERIA

The analysis of the spillway capacity of the dam and storage of the reservoir was performed using the Corps of Engineers HEC-l computer program, incorporating the "Snyder Synthetic Unit Hydrograph" method, and the "Modified Puls" flood routing procedure. The spillway design flood selected for analysis was the PMF in accordance with the recommended "guidelines" of the U.S. Army Corps of Engineers.

5.3 SPILLWAY CAPACITY

The principal and auxiliary spillway are uncontrolled structures. The principal spillway operates under weir or orifice flow conditions depending upon the floodwater inflow to the reservoir pool. The auxiliary spillway was analyzed as a broad-crested weir having a discharge coefficient (c) of 3.087.

The spillways have sufficient capacity for discharging the peak outflow from the PMF. For this storm, the peak inflow is 4408 cfs and the peak outflow is 4320 cfs. When the spillways are discharging the peak outflow, the water surface will be 5.4 feet below the top of the dam. Further information concerning this analysis is included in Appendix D.

5.4 RESERVOIR CAPACITY

Normal flood control storage capacity of the reservoir between the principal and auxiliary spillways is 183 acre-feet which is equivalent to a runoff depth of 1.3 inches over the drainage area. Surcharge storage capacity to the maximum high water elevation is an additional 236 acre-feet, equivalent to a runoff depth over the drainage area of 1.6 inches. Total storage capacity of the dam is 419 acre-feet, equivalent to 2.9 inches of direct runoff.

5.5 FLOODS OF RECORD

The maximum known flood occurred on September 25, 1975. The pool level at this time was reported to be about 5.8 feet above the principal spillway crest. The calculated discharge for this flood is as follows:

Elevation (USGS) Discharge (cfs)

161

980.3

SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations
No signs of distress were observed in connection with the earth embankment.

b. Design and Construction Data A stability analysis was conducted by SCS during the design of the dam. The analyses were performed using the Infinite Slope Method. The soil parameters assumed were $\emptyset = 31^{\circ}$, $\Theta = 18.4^{\circ}$ % $_{\rm S} = 141$.

To achieve a factor of safety equal to 1.3 for the upstream slope of 1 on 3, a 20-foot wide berm was incorporated in the design. The berm was placed to elevation 974.5, which approximates the normal pool elevation.

No computations could be located relating to analysis of the downstream slope.

The calculated factor of safety for the upstream slope of the dam is in excess of the minimum factors recommended by the Corps of Engineers. The upstream slope of the dam is, therefore, considered to have an adequate factor of safety for stability. A summary of the analysis is included in Appendix F.

<u>c. Post Construction Changes</u>
No major post construction changes were noted during construction of the dam.

d. Seismic Stability
The dam is located in Seismic Zone l. Therefore, a seismic analysis is not warrented.

SECTION 7: ASSESSMENT/RECOMMENDATIONS

7.1 ASSESSMENT

a. Safety
The Phase I inspection of the Finch Hollow Dam Site I did not reveal conditions which constitute a hazard to human life or property. The earth embankment is not considered to be unstable. The dam is capable of retarding flood waters resulting from the PMF. However, the location of the highway embankment below the outlet of the auxiliary spillway and the limited hydraulic capacity of the box culvert beneath the embankment may cause an impoundment of flood waters which could flood the homes

b. Adequacy of Information Information reviewed for Phase 1 inspection purposes is considered adequate.

which are located between the dam and the highway embankment.

c. Need for Additional Investigations
No additional investigations are required at this time concerning
the dam and appurtenances. However, the capacity of the highway
embankment box culvert and the potential flooding of the downstream
homes must be investigated.

7.2 RECOMMENDED MEASURES

- a. Results of the highway embankment box culvert investigation will determine the type and extent of remedial measures required.
- b. Remove the tree growth at the entrance and exit of the auxiliary spillway channel to provide for unobstructed passage of flow.
- c. Repair the bolting units of the grating at the top of the principal spillway riser.
- d. Remove the debris which surrounds the intake of the principal spillway riser. Provide a program of periodic inspection and maintenance of the dam and appurtenances, including operation and lubrication of the slide gate mechanism. Document this information for future reference.
- e. Develop an emergency action plan for notification of downstream residents and the proper authorities in the event of heavy auxiliary spillway discharge.

APPENDIX A

· PHOTOGRAPHS

Upstream Face of Dam Photo #2

Right Side of Principal Spillway Riser Photo #3

Left Side of Principal Spillway Riser Photo #4

Grating Atop Riser Not Missing Bolting Unit Near Boot Photo #5

Impact Basin Photo #6

Outlet of 36" Concrete Pipe in Impact Basin Photo #7

Entrance of Auxiliary Spillway Note Trees Blocking Entrance Photo #8

Level Section of Auxiliary Spillway Photo #9

Exit of Auxiliary Spillway Note Trees Blocking Exit Photo #10

Downstream Channel Below Impact Basin Photo #11

Area Between Dam and Highway Embankment Photo #12

Highway Embankment Below Dam Photo #13

Box Culvert Beneath Highway Embankment Photo #14

APPENDIX B

ENGINEERING DATA CHECKLIST

Remarks	
Item	

Item		Remarks	
	Plans	Details	Typical Sections
Dam	× + 7	» ;-)- -
Spillway(s)	» ,-	2	
Outlet(s)	۰ ۲ ۲	2	
Design Reports	Yes October 1969	1969	
Design Computations	In a lib of ses		
Discharge Rating Curves			
Dam Stability	۲۶۶		
Seepage Studies			
Subsurface and Materials Investigations	Yes Ere plans		

Remarks Item

Construction History

Into on like of ses offices

Surveys, Modifications, Post-Construction Engineering Studies and Reports

dzeZ

Accidents or Failure of Dam Description, Reports

4 20 7

Operation and Maintenance Records

Nove

APPENDIX C

VISUAL INSPECTION CHECKLIST

VISUAL INSPECTION CHECKLEST

",	Das	ic vata
	a.	General
	•	Name of Dam THICH HOLLOW SITE 1
		1.0. # NY 697 , DEC 964-3852
		Location: Town & Oakdale County Broome
		Stream Name Funch Hollow - Little Choconut -> Susquehanna
		Tributary of Susquahanna
		Longitude (W), Latitude (N) 75° 55'5' / 42° 08'2'
		Hazard Category
		Date(s) of Inspection July 23.1979
		Weather Conditions Partly Cloudy Each
	b .	Inspection Personnel
		Ken Harmer Bob McCarty Lee Sepelak
	c.	Persons Contacted Roy Thomas (315) 423-5501 & Gary Page
		S.C.S. Broome County Airport
	d.	History:
		Date Constructed
		Owner Brooms County
		Désigner S.C.S
		Constructed by Jones & Meade Const.
2)	Tec	hnical Data Appalachin NY
	Тур	e of Dam _ Earth - Z Zone embents
	Dra	inage Area 1745 Az = 2.73 sq miles
	Hei	ght 62.0' Length 750'
	Ups	tream Slope 1:3.0 . Downstream Slope 1:2.5

2) Technical Data (Cont'd.)

External	Drains: on Downstream Face None @ Downstream Toe	No:i2
Internal	Components:	
	Impervious Core None	•

Grout Curtain None

embanked has Z zones the primary zone (Zone #1)
is of compacted gravelly s: H

the so just wide Zone # z on the downstream side
of the dam is of compacted gravelly s. Hs
with oversize material up to 16" meorporated in
the j. 11 from scalpings of Zone #1

a.	Cre	st							
	(1)	Vertical Alignment 9002							
	(2)	Horizontal Alignment 3002							
	(3)	Surface Cracks none evident							
	(4)	Miscellaneous							
ь.	Slo	pes							
	(1)	Undesirable Growth or Debris, Animal Burrows							
		None							
	(2)	Sloughing, Subsidence or Depressions							
		Nov #							
	(3)	Slope Protection riprap on upstream slope							
		at some pool aler.							
	-								
	(4)	Surface Cracks or Movement at Toe							
	(5)	Seepage							
									
	(6)	Condition Around Outlet Structure 9000 condition							

(1)	Erosion at Embankment and Abutment Contact						
	nens						
(2)	Seepage along Contact of Embankment and Abutment						
	none evident						
(3)	Seepage at toe or along downstream face						
	none evident						
Downstream Area - below embankment							
(1)	Subsidence, Depressions, etc.						
(2)	Seepage, unusual growth						
(3)	Evidence of surface movement beyond embankment toe						
	none						
(4)	Miscellaneous						
Drai	inage System						
	2 - 10" diameter internal drains exit						

	-	600	cond: 1:0.	- 6	bo-	ndedien	drains
Di-ul-							
Discharge f	rom Di	rainage	s System		0	gisch-	-8-

Inst	Instrumentation						
(1)	Monumentation/Surveys						
(2)	Observation Wells						
(3)	Weirs						
(4)	Piezometers none						
(5)	Other						
Rese	rvoir						
a	Slopes appear stable						
	Sedimentation contracted						

_	
•	General Principal riser in upstream slope
	grated top arkilian, spillway on lett side
	grassed channel
	Principle Spillway streetorally good
	grate on right side on top of riser is 1
	bolting unids require repair
	upstream slope @ riser elev. is exproped
	considerable debris around intele
	Emergency or Auxiliary Spillway 9000 condition
	many trans at entrance and exit of euxil
	spillway which block any blow to the spillwar
	trees should be removed
	no instability or problems with aux. spill. nones expect to up side of channel and ortlet. Condition of Tail race channel
	bugangin - raitionas 600p
	Stability of Channel side/slopes no problems

	. Concrete Surfaces						
	good condition						
•	Structural Cracking name eviden						
•	Movement - Horizontal & Vertical Alignment (Settlement)						
	Labire man						
	Junctions with Abutments or Embankments						
	Drains - Foundation, Joint, Face						
	appear satisfactory no plan abanque						
	Water passages, conduits, sluices						
	9009 6009 1160						
	Seepage or Leakage						
	1/						
•	flow apportal						

	~ / A
oundatio	on appears stable
butments	∞/★
ontrol (sates reported operational
pproach	& Outlet Channels approach and to rise
	Lote of debrie
nergy Di	issipators (plunge pool, etc.)
	impact basin - good condition
ntaka Si	tructures good condition of concre
iicake sc	suchaces - bolding units
	geating on right zide re
	repair
tability	- abbeacc doug
	9 90 9
	neous

APPENDIX D

HYDROLOGIC/HYDRAULIC

ENGINEERING DATA AND COMPUTATIONS

CHECK LIST FOR DAMS HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

AREA-	CAPACIT	Y DATA:

		Elevation (ft.)	Surface Area (acres)	Storage Capacity (acre-ft.)
1)	Top of Dam	1009.6	32.3	460
2)	Design High Water (Max. Design Pool)	1004.3	26'5	298
3)	Auxiliary Spillway Crest	1001-2	22 · 2	224
4)	Pool Level with Flashboards	NIA		
5)	Service Spillway Crest	9745	· /· 2	41.3

DI	COT	TAD		
111	SCF	IAK	1 - 1	

·		Volume (cfs)
1)	Average Daily	unknown
2)	Spillway @ Maximum High Water	20050
3)	Spillway @ Design High Water	4485
4)	Spillway @ Auxiliary Spillway Crest Elevation	207
5)	Low Level Outlet	
6)	Total (of all facilities) @ Maximum High Water	26.050
7)	Maximum Known Flood 9 25 75	161

CREST:	ELEVATION: 1009.6 Top & Dan
Type: Earth Embant mit	
Width: 19 bed Length	1:
Spillover Principal Spillon 3'x9' RIC Rice	- wein length 16.33'
Location earlar of upstream Slep - Por	
SPILLWAY:	vailiary
PRINCIPAL	EMERGENCY
974.5 Elevation	5.1001
Rinfordi Concrete Type	vegetaled Earth
3x9 Redenguler Width	350 H
Type of Control	V
Uncontrolled Uncontrolled	vaccatalled
Controlled:	
Type (Flashboards; gate)	
Number	<u> </u>
weigh 16.33 H Size/Length 6	ength of level section 50 H
	Earth - Clasic Till
Anticipated Length of operating service	100 year etoim
28833 436 R/C P.24 Chute Length	900 jt.
Height Between Spillway Cr & Approach Channel Inver (Weir Flow)	rest

OUTLET STRUCTURES/EMERGENCY DRAWDOWN FACILITIES:
Type: Gate Sluice Conduit Penstock
Shape: Gato: Flat Frame St. do Gate, condit Road Cost From
Size: 16" 116" Dinanter
Elevations: Entrance Invert952.0
Exit Invert 940.0
Tailrace Channel: Elevation 937.0
HYDROMETEROLOGICAL GAGES:
Type:
Location:
Records:
Date
Max. Reading
FLOOD WATER CONTROL SYSTEM:
Warning System: None
Method of Controlled Releases (mechanisms):
NONE
except for manually operated secure - drain system

DRAINAGE	AREA: 1745	Acres	2.73 Sq.mi.	
DRAINAGE	BASIN RUNOFF CHARAC	TERISTICS:	,	
		alds & Forast S	an' (2-h.	
			TEMI-OFOEN	
		Glacial +111		
Kunor	(surface	ng or planned extens e or subsurface cond	ive alterations to exitions)	cisting
		None		
		•		
Poten	tial Sedimentation p	problem areas (natura	al or man-made; prese	ent or future)
		None		
			·	
Potent	tial Backwater probl including surcharge	em areas for levels storage:	at maximum storage c	apacity
		NONE		
Dikes	- Floodwalls (overf Reservoir perimeter	low & non-overflow)	- Low reaches along	the
	Location:	None		
	Elevation:			
Reserv		,		
	Length @ Maximum Poo	01	N/a	(Miles)
	Length of Shoreline	(@ Spillway Crest)	NA	(Miles)

.

4.13

0 0 7;	Outflow c.f.s.	1	207.	77.35	26,050
MO.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1		7.720	26,270 26,050
Mollul	Volume Inches*	1		6.61	20.32
0)	Inches	0.28	7.57	2.05	3.16
Storage	AcFt.	41.3	224. 1/	298. 1/	/1 097
Surface	Acres	ev.	N	26.5	32.3
:	· And	977.5	1001.2	1007.3	1009.6
Determining	Joseph	100 yr. submerged sediment accumulation.	100 yr. frequency storm AMC II	35-1720 Sh. 4 of 5 1004.3 moisture cond. II	35-1020 Sh. 5 of 588 1009.6
Tement of		Crest of Riser	Crest of an ergency stillway	Water Mater	Too of Dam

-Volume expressed in inches of runoff from controlled watershed area of 1,745, arres. 1/ Does not include 115.8 ac. ft. of sediment storage. (100 yr total sediment)

Chent

D.A. = Deamage area in square miles
L = River mileage from the given station to the upstream
limits of the drainage area
La = River mileage from the station to the center of
gravity of the drainage area
PMP = Probable Maximum Precipitation in inches
to = hag time from mid-point of unit rainfall
divation, to peak of unit hydrograph, in hours.
to = Unit rainfall duration, equal to to in hours.
Ct = Coefficient depending upon units and drainage
basin chanacteristics
te = unit rainfall duration other than standard unit;
to, adopted in specific study, in home.
t pr = lug lime from mid-point of unit recinfall duration
ta to peak of unit hydrograph, in hours
D. A = 2.73 square miles, L = 4.0 miles, L ca = 1.96 miles
$\frac{Pmp=21 \text{ in this } Ct=2}{Pmp}$
Cp = 0.625 from average 640 Cp = 400
tp=Ct(L. Lca)0.3 = 2(4x1.96)3 = 3.71 hours
tr= to = 3:71 = 167 hours (use 1 hr. hydrograph)
5.5
tpR = tp +0.25 (te-tr) = 3.71+.25(167)=3.79 hrs.
From HMR 33 - Figure 2 , Deplk - trea - Duration
6 hour % = 111, 12 hour % = 123
)
2 A hour % = 133, 48 hour % = 142

#####################
DIEMS WE SITE 1 AUCLIC ALALYSES OF THE DAM COULT OF O O O O O O O I HIFLUA HYDRACPAPH TO RESERVOIR 2.73 2.73 111 123 133 142 0 O O I 0.10 1 1 124 1 23 134 1 24 1 24 2.74 1 1 127 1 24 1 1 127 1 24 1 24 2 27 2 74 1 1 127 2 74 1 1 127 2 74 1 1 127 2 74 1 1 127 2 74 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1
1. SITE 1. AUGUSTES OF THE DAM AUGUSTED THROUGH THE RESERVOIR 1. 0 0 0 0 1 1. 0 0 0 0 1 1. 123 133 142 0 0 0 0 1 0.1 1. 123 133 142 1. 1 1 23 133 142 2.73 1. 1 1 2. 133 142 0 0 0 1 0.1 1 1 2. 2.73 1. 1 1 2. 2.73 1. 2.73 1. 1 1 01
SITE 1 **AULIC ALALYSES OF THE DAM **CONTED THROUGH THE RESERVOIR **D 0 0 0 0 0 **INFLUA HYDRAGPAPH TO RESERVOIR **2.73
SITE 1 AULIC ALALYSES OF THE DAM CONTED THROUGH THE RESERVOIR 2.73 2.73 2.73 2.73 111 123 133 142 0 0 0 1 0.1 0.1 1 1 1 1 124 135 142 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
THE DAM RESERVOIR 0 0 0 0 THE SERVOIR 133 142 0 0 1 0.1 1 1 41.3 -1
THE DAM RESERVOIR O O 1 The RESERVOIR 133 142 O O 1 0.1 HR I 41.3 -1
0 1 1 1 4 6.14
°
o .
5

•

9

4 4 4

7 3 8 9

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS
AUTHORITHMY NEW AT
ROUTE MYTROSPAPH TO
END JE MYTROSPA

RUN DATE 09/06/79

FIRCH HILLAN DAN SITE I HYDRALGGIC/HYDPAULIC ANALYSES DE THE DAN RATIUS DE PUE RAUTED THEOUGH THE KESEKVIIR

Z 3

NSTA

MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN= 1 (RTIO= 1

RTIUS= 1.00

安全在安安安安安安安

SUF-ARFA RUNDEF COMPUTATION

1AUTO 0 INAME ISTAGE JPRT CALCULATION OF IPPLOW HYDROGRAPH TO RESERVOIR ISTAG ICON ITAPE , 0 0 0 0

IHYDG IUHG TAKEA SUAP IRSDA TRSPC RATIO ISMJW ISAME LOCAL
1 1 2.73 0. 2.73 0. 0. 0

R72 SPFE PMS P6 R12 R24 R48 0. 21.00 111.00 123.00 133.00 142.00 TRSPC CUIPUTEU BY THE PRUGRAM IS 0.400

RTIMP ALSMX 0. 0.10 STRTL 1.00 RTIUK 1.00 LIISS DATA ERAIN STRKS • RT I DL 1,00 STRKK DLTKR • LRUPT

UNIT HYDROGGRAPH DATA
TP= 3.71 CP=0.63 NTAF 0

RECESSION DATA
STRTQ= 5.46 QRCSN= 5.46 RTIOR= 1.00
APPROXIMATE CLARK CUEFFICIED!S FRUS GIVEN SHYDER CP AND TP ARE TC= 4.27 AND R= 3.40 INTERVALS

	Cump 6	708	532.	397.	296.	166.	124.	91	65.	45.	22.	13.	œ i	• •	: .	•	. •	5.	2.	· 2	,	•	'n	2		'n	.			5.		· ·	•	•		2.	'n	•	•.					w. w.	;	35884.	
	1.156		.0	0	•	• d			•	•	•0	•	•	•	•	•	:	•	•	•	•	•			•	ċ	• •	• 6		•	0.	•	•	•		•	•	•	•			•	•	••	;	3.69	
44 44	EXC	? .	ċ		•	• d		c	ď	o	• 0	•	•	• •	•			0	.0	0.	•	• •	. 0	• a	• 0	o':	• •	• •	c	ċ	å	•	• •	• •	c	•	•	•	• •	• •	0	.0	•	• •	;	20.16	
	21.0		0						ċ	•	ċ	•	•					0	ċ	•	•	•			•	•	•	•		•		•	• •	•		ċ		•				•			;	23.86	UNE 199.
	001810		55	23	4.	2 4	2.5	33	65	09	61	62	50.	£ 2	4	2.9	90	69	10	77	22	2 4		9/	1.2	2.5	2.3	2 =	82	43	46	£ :	87	200	64	0.5	15	76	7.5	95	96	16	90	100		Sun	NTAL VULL 3589 101
151.	31	3.00	4.00	00.4	00.0	00.00	00.6	10.00	11.00	15.00	13.00	14.00	00.00	2 5	• =	3 5	20.00	-	N	~		2.00	3.00	4.00	2.00	00.9	00.0	00.6	10.00	11.00	12.00	13.00	15.00	16.00	17.00	æ	S (o -	- ~	23.00	0	1.00	•	4.00	•		-HUUR TE
205.	FLOW		1.03	1.33	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	50.1		60	1.03	1.03	1.03	1.03	1.63	1.04	1.64	1.04	1.04	1.04	1.04	6.1	1.04	1.04	1.04	1.04	40.1	10.	1.04	1.04	1.04	1.04	*0.	1.04	1.04	1.05	1.05	1.05	1.05	•		72
26°. 14.	END-UF-PERIOD			5.	÷.				•	s.	5.	٠.					41.	58.	.49	58.	.7.	25.	23.	20.	20.	21.	33	32.	62.	115.	180.	241.	37.6	013.	058	1833.	8 36	97	4230	562	2701.	118	1608.	934.		•	Haur 24-HOUR 1551. 1444. 101. 41.
19.	331:1	0.01	0.5	10.0	0.01	5.0	0.0	0.02	0.02	0.02	0.05	0.02	61.0			200	0.10	0.01	0.01	0.0	0.01	5.0	0.10	0.10	0.10	0.10	01.0	0.10	0.10	0.10	0.10	01.0	01.0	0.10	0.10	0.10	0.10	01.0	200	0.10	01.0	0.10	01.0		;		AK. 6.7
25°.	×		0		•	• =		· -		0	ċ	•	•	•			3		0	0	•	• •	0.01	0.01	10.0	7.0		0.24	0.24	0.24	0.24	92.0	200	2.14	2.70	06.9	2.51	67.0	0.07	0.07	20.0	10.0	70°0		•		4406 123
	1 1 7 7	0.0	0.01	10.0	0.0	0.0	20.0	0.02	20.0	0.05	0.05	70.0	6.1.3	0 0			0.14	0.01	0.01	10.0	10.0		0.11	0.11	0,11			0.34	0.34	0.34	0.34	0.34		2.24	2.80	4.09	2.61	4.05	71.0	0.17	0.17	0,17	0.17	•••			CFS
35.4	PERTON		~	7	7 2	n -c	~	. 7	~	01	=	77	13	5 2	2 -	2.7	2	61	50	21	22	25	52	56	17	200	02	3 6	32	33	34	35	37	35	30	40	41	45	7 4	45	46	1.4	84	4 S	2		
47.	III. all	1.00	2.00	3.00	00.4	00.0	7.00	2.33	00.0	10.00	11.00	12.00	13.00	15.00	16.30	17.90	14.00	19,00	50.00	21.00	22.00	00.63	1.90	2.00	3.00	4.00	00.0	2.00	3.00	9.00	10.00	11.00	13.00	14.00	15.00	16.00	17.00	18.00	20.00	21.00	22.00	23.00		2.00			
	2 6	10.1	1.01	1.01	1.01	10.	10.1	10.1	10.1	1.01	1.01	10.1	10.1	5.		55	1.01	10.1	1.01	10.1	1.01	100	1.02	1.02	1.02	1.02	70.1	1.02	1.02	1.02	1.02	7.07	1.02	1.02	1.02	1.02	7.05	70.1	1.02	1.02	1.02	70.1	1.03	1.03			

5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	CFS 4408, 354, 144, 72-HOUR TOTAL VOLUNE CMS 125, 101, 41, 19.69 14, 1017, 101	医非非常性神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经	HYDROGRAFH ROUTING	ROUTED FLUMS TAPFAGE FERVOIR 1STAC ICUMP IFCON ITAPE JPLT JPRT INAME ISTAGE LAUTO 2 1 0 0 C 1 0 2 2 1 RUUTING DATA QLUSS CLUSS AVG IRFS ISAME 10PT IPAPP CON 0	11STPS HSTDL LAG AMSKK X TSK STURA ISPRAT 1 0 0 0. 0. 411	0 1001.20 1604.30 1009.60	207.40 4485.40 26,050.00	41. 224. 294. 460.	975. 1001, 1004, 1010,	CHEL SPWID CUAN EXPN ELEVL COOL CAREA EXPL 974.5 0. 0. 0. 0. 0. 0.	TOPEL COUD EXPO DAMMID 1010.0 3.1 1.5 730.	TOP OF DAM, BOTTOM OF BREACH, OR LOW-LEVEL DUTLET IS NOT WITHIN RANGE OF GIVEN ELEVATIONS IN STORAGE-ELEVATION DATA BUTTOM OF PLSERVIER ASSUMED TO BE AT 974.50 STORAGE-ELEVATION DATA WILL BE EXTRAPOLATED ABOVE ELEVATION 1009.60	STATION 2. PLAN 1. RATIO 1	MALDA AKAMA PERIND HYDROGRAPH ORDINATES MALDA AKAMA PERIND HAUKS INFLOW STORAGE STAGE 1.01 1.00 1 1.00 5. 0. 42. 974.6
6 6 5 4 5 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CFS CNS ENCIRES IN AC-FT THOUS CU II	· · · · · · · · · · · · · · · · · · ·		ROUTED FLUMS I						CRFL 974.5		DAM, BUTTUM OF 6 OF PESENVYIR ASS (FELEVATION DATA		, M
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		***				STAGE 974.50	FLUM 0.	CAPACITY=	ELEVATION=			WARTING *** TOP OF BUTTOT STURAGE		

36.64

3645.

1534.

2178.

P D3 colors

982.3		20000000000000000000000000000000000000	
100. 99.	88 8 7 7 7 8 8 8 7 7 7 8 8 9 8 7 7 7 8 8 9 8 7 9 9 9 9		VULUME 35804. 1014. 20.33 516.46 2959. 3650.
7.5. 66. 50.	1744 4 4 4 4 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	900000000000000000000000000000000000000	TOTAL
44.4	សំណើង ដែល សំហើយ សំហើយ សំហើយ សំណើង ដែល សំហើយ	รีก วัดตัดเก็ต ตัดตัด ดัดตัด ดัด -	72-HBUR 495. 14. 20.24 514.04 2945. 3633.
70.00 71.00 72.00 73.00	7.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	94 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24-HUUR 1391. 39. 18.96 481.64 2759.
5151 5151			6-HnuR 35/3. 101. 12.18 309.26 2186.
23.00 23.00 0.	24.48.45.49.51.12.89.99.99.99.99.99.99.99.99.99.99.99.99.	112.00 117.00 11	43.60 HUURS PEAK 4320. 122.
5555		4 4 4 4 4 4 4 4 4 4 8 8 8 8 8	4320. AT TIME 43.0 CFS CMS HHGHES MAI AC-FT FHILLS CU M
			PEAK DUTFLU3 IS

6-HIUR 24-HUUR 72-HUUR TDTAL 35/3. 1391. 495. 171. 39. 14. 12.18 18.96 20.24 309.26 481.64 514.04 1772. 2759. 2945. 2186. 3404. 3633.	24-HOUR 72-HOUR 1 39. 14. 14. 18.96 20.24 461.64 514.04 2759. 2945. 3404. 3633.
24-HDUR 1391. 39. 10.96 481.64 2759. 3404.	6-HOUR 24-HOUR 35/3. 1391. 171. 13.96 309.26 461.64 1772. 2759. 2186. 3404.
	35 /3. 101. 12.18 309.26 1772. 2186.
6-Hnu8 35/3. 101. 12.18 309.26 1772.	
	PEAK 4320. 122.

PEAK FLOY AND SIORAGE (EUD OF PERTOD) SUMMARY FORMULTITLE PLAN-RATIO ECUNOMIC COMPUTATIONS FLOY AND SIORAS IN CADIC FEET PER SECOND (COULC NETERS PER SECOND)
AREA IN SOUARE HILES (SAUARE KILOMETERS)

RATIOS APPLIED TO FLOXS		
PLAI: EATIU 1	1 4406.	1 4320.
AKEA PL	£1.73	2:73
STATIUN	~ ~	~~
OPERATION	HYDRUGRAPH AT	ROUTED TO
-	-	-

SUMMARY OF DAM SAFETY ANALYSIS

	TIME OF FAILURE HOURS 0.
1010.00 1010.00 472. 27578.	TIME NE MAX GUTELDW HQURS 43.00
-	pusatian avea tap eques
SPILLMAY CREST 974.50 41.	ALKINUM DUTFLUM CFS 4320.
VALUE 50 11. 0.	STURAGE AC-FT 295.
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MAXIMUM DEPTH NVER DAM
ELEVATION STORAGE QUTELO:	13X1 'UP RESEAUJT 9.5.6LEV 1004.17
	84610 06 PHF 1.00
PLAM 1	

LIST OF REFERENCES

APPENDIX E

APPENDIX E

REFERENCES

- 1) U.S. Department of Commerce, Technical Paper No. 40, Rainfall Frequency Atlas of the United States, May 1961.
- 2) Soil Conservation Service, National Engineering Handbook, Section 4, Hydrology, August 1972 (U.S. Department of Agriculture).
- 3) H.W. King and E.F. Brater, <u>Handbook of Hydraulics</u>, 5th edition, McGraw-Hill, 1963.
- 4) T.W. Lambe and R.V. Whitman, <u>Soil Mechanics</u>, John Wiley and Sons, 1965.
- 5) W.D. Thornbury, <u>Principles of Geomorphology</u>, John Wiley and Sons, 1969.
- 6) University of the State of New York, Geology of New York, Education Leaflet 20, Reprinted 1973.
- 7) Cornell University Agriculture Experiment Station (compiled by M.G. Cline and R.L. Marshall), General Soil Map of New York State and Soils of New York Landscapes, Information Bulletin 119, 1977.

APPENDIX F STABILITY ANALYSES

STATE	NY		PROJECT				GPO 1950	0-4
BY	+	DATE	CHECKED BY	DATE	HOLON	JOB NO.	-17E	_
SUBJECT								
		<u></u>	2177			SHEET_	OF_Pg-	3 -
			· · · · · · · · · · · · · · · · · · ·			1		
								1
' '	MEINITE	LOPE	METHOD			P - 1 - 1 -	1	,
	(40	<u> </u>						
	(-73	<u> </u>						
		٠. ـ	- 1	WH	ERE	is = 141	1	
		E = 1, 7				v = 12.6		
		Je ten	0			1 = 18.6 1 = 18.6 1 = 0	2.6	
					7.	11 4 = 3	2.6	:
		75.61	(25) = 1.0					
	9	141 0.3	1.0					
	* ** .			11.1.1	h h t	一种生产	te post in	1
						•		
	CASE	<u>B</u> :						
		i.	· 2 ~) -					
		F = Ts	10 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	un Ø			i	
		1,	sind cond					
		-	212)					
	,	= = [-14]	,3487 - 52.4	0.6	~			
		1416,	3155) .948		0.	92		

USED OF PERM. POOL EL.

IT IS RECOMMENDED THAT A 20 WIDE BERM BE

The state of the s

UPSTREAM SLOPE

IPST YEAT

$$H = -2/60.0 \quad \Omega = 260.0$$

FOS =
$$1.270$$
 1 = 320.0 e^{-}
FOS = 1.230 2 = 318.0

$$H = -240.0 \quad G = 135.0$$

$$FOS = 1.227$$
 $R = 245.0$

$$H = -240.0 C = 110.0$$

$$M = -165.0$$
 $G = 260.0$

Fig. =
$$1.378$$
 $0 = 310.0$
Fig. = 1.361 $0 = 316.0$
Fig. = 1.322 $0 = 316.0$

For =
$$1.361$$
 $\gamma = 316.0$

$$F0s = 1.278 = 0 = 310.0$$

$$FOS = 1.255$$
 $? = 308.0$
 $FOS = 1.200$ $? = 306.0$

$$E0S = 1.200$$
 $R = 306.0$
 $E1S = 1.165$ $R = 306.0$

$$F(S) = 1.165$$
 $C = 504.0$
 $F(S) = 1.145$ $C = 502.0$

$$M = -165.0 \quad \Omega = -105.0$$

$$FDS = 1.256$$
 $S = 265.0$

$$F0S = 1.242 0 = 243.0$$

$$E03 = 1.230 ? = 241.0$$

For =
$$1.215$$
 $= 230.0$

$$F^{(1)} = 1.217$$
 $^{(2)} = 237.0$

$$FOS = 1.210$$
 $? = ?35.0$

For =
$$1.187$$
 : = 251.0

FOS =
$$1.227$$
 $2 = 227.0$

$$F18 = 0.413$$
 " = 225.0

$$H = -165.6$$
 $G = -110.0$

FOS =
$$3.205$$
 $0 = 170.0$

FOS =
$$1.308$$
 ? = 156.0

FOS =
$$1.316$$
 $9 = 154.0$

$$F09 = 1.328 \quad ? = 182.0$$

$$FOS = 1.347$$
 $Q = 150.0$

$$FOS = 1.354 P = 158.0$$

$$FOS = 1.367$$
 $C = 156.0$

$$FOS = 1.391$$
 $9 = 154.0$

$$FIS = 1.329 \quad 2 = 152.0$$

RUN W/ Zea. 10' BERMS

Pg 3-2

0.14

-; -

Ł

```
F00 =
         1 200
                       7, 19, 1
  FOG =
         1. * 17
                 =
                       115,0
   F/1 : ==
                 , =
          1.19:
                       11 1, 11
   FOS =
         1.000
                 ·, =
                                               Pg 3-4
                       714.0
  11 = - ''\' '' =
                      1 , 5 . 0
FOS = 1.038
                1 = 245.0
  FOS = 1.023 \gamma = 263.0
 H = -/67,0 0 = 110,0
 H = -198.0 - 0 = 290.2
  FOS =
        1,516
               120,0
  FOS =
         1.412
               " =
                      310.0
 'FOS =
         1.35.4
                      315.3
  FOS =
         1.56 1
                , =
                      714.0
  FOS =
         1.350
                ) =
                      312.0
  FOS =
         1,300
                 , =
                      510.0
  F05 =
                ., =
                      300,0
  FOS =
         1. 177
                1 = 110.0
        1,0:7
  FOS -
                , =
                      3110.0
        1.01.0
  EU3 =
                . =
                      302.0
  FOS =
        1.110
               ·, =
                      300.0
 50° =
        9,719
               ' =
                      278.0
H = -165.0 0 = 125.0
 FOC =
              , =
        1.233
                      2115.0
 FOS =
        1, 171
                : =
                      147.0
 FOS =
        1 . . 71
                ' =
                     25.T.O
 FOS =
        1, 170
                · · · =
                     251,0
 EU2 =
        1.773
                · =
                     237.0
 EU2 =
                    235,0
                    9;7.0
 F(15 =
        1 . 5 14
                , =
 FOS =
                . =
        1.336
                     231.0
 FOS =
               . =
                     200.0
        1.77
                     117.0
 FOS =
        1. 5 1.
               1 3
 E08 =
                    2.15.1
        1.001
               ' =
 FOS =
        4.300
               , =
                     227.9
H = -1'5,0 0 = 710,0
FOS =
        1.775
              ) =
                    170.0
 FUS =
        1.34.
              ٠ =
                     188.
       1,777
FOS =
FOS =
               =
                    76.
F 15 =
       1.017
                    177.1
FOS =
                . ...
       1.1641
                    1 ...
= 255
       1.501
               . =
-
       1,133
               , =
                    15.0
b . . . =
       1,775
F05 =
               := 11; ...
       1.75
FOS =
       1.688
               7 = 150.0
```

APPENDIX G

DRAWINGS

Location Plan Finch Hollow Site 1 Dam Broome County

Topographic Map

List of Drawings

FINCH HOLLOW SITE I DAM

	Drawing # of 22
Plan	2
Plan of Structural Works	3
Cutoff Trench Excavation	4
Emergency Spillway	5
Emergency Spillway	6
Fill Placement and Principal Spillway Excavation	8
Drainage System	9
Drainage System	10
Plan Profile of Principal Spillway	11
Riser Structural Details	12
Conduit Details	17
Logs of Test Holes	21
Logs of Test Holes	22

	Max. Rock	Max.	Min. Required	Compection 5/			
Material 1/	81 me 2/	Thick 3/	Water Content	Class	Definition		
Materials represented by: TP 203 from 0.5 to 7.0' TP 102 from 0.5 to 10.0' TP 104 from 4.0 to 10.5'	6-	9-	2 percentage points below optimum		1002 of maximum density by ASTM D-698 Method C		

- a. The placement table indicates estimated use of material.
 b. Excevated material (Represented by TF-102 from 0.5' to 10.0' in borrow area) shall be used as earth fill adjacent to the drain fill material. Minimum covering of this material-2.0'.

- 3/
- 3/
- as earth fill adjacent to the drain fill material. Minimum covering of this material-2.0'. Maximum rock size placed in backfill compacted by means of hand tamping or manually directed power tampers or plate vibrators shall be 3'.

 Maximum rock size of 18" dumped in the earth fill that is not used in the construction of the principal spillway outlet channel or the rocklined outlet channel shall be raked to the portion of the dam labeled "oversize rock section" as shown on the drawings.

 Maximum lift thickness prior to compaction. The maximum lift thickness of the rock section shall be no greater than 18" prior to compaction.

 Mater content at time of compaction.

 For typical compaction curves see sheet 22.

 Use Class C compaction in areas of the dam containing oversize material. Class C compaction shall consist of: Three passes per lift of fill by a tamping roller exerting a minimum contact pressure of 450 p.s.i., or equivalent as approved by the engineer.
- Material placed in the oversize rock section shall contain oversize material raked from the earth fill. This Section shall be essentially free of materials less than 3". The indicated boundaries of this section are approximate. Adjustments will be made by the engineer to utilize the oversize control. utilize the oversize mererial.
- Topsoil that is suitable for use and not used on the specified area of the emergency spillway shall be incorporated within the slopes of the earth fill as directed by the engineer.

DRAINAGE SYSTEM DETAILS

- I PERI DHAIN PIPE SHALL CONFORM TO SPECIFICATEN 545 AND SHALL BE IC DIA PRESSURE PIPE CLEAS 200
- 2 THE PROFILES AT THE BOTTOM OF ALL EXCAVATIONS AS SHOWN ARE ONLY APPROXIMATE THE REQUIRED FINISHED GRADES WILL BE ESTABLISHED IN THE FIELD AT THE TIME OF CONSTRUCTION BY THE ENGINEER

QUANTITY SUMMARY

97 NL CU. YDS. DRAIN FILL
44 THE LIN. FT. STRAIGHT SECTION OF PERFORATED ASBESTOS CEMEN" PIPE
2' END CAPS
1' M5' ELBOW N' DIA. INTERNAL ANGLE (CAST IRON)
2' 90' ELBOWS (10' DIA). (CAST IRON)
4' 45' ELBOWS (10' DIA). (CAST IRON)

•	STEEL SCHEDULE								_						
	E A		OUMBITTY	LD1674	3411	В	С	TOTAL	ELAR K	OUANTITY.	ENGTH	7	В	С	TOTAL LEWS TH
	61	•	:2	17-6	1	-	-	1850	49	5 14	10	1			560
	D2	7	34	8-6	1	-	-	284-0	KIO	. 36	10 2	21	3.10	6-10	384 D
		8	46	47	21	4.3	5-4	440 10	P/2	5 30	3-8	1	-	-	110 0
		6	18	17-6	1	-	-	333.0	_	1 14	6.7	1	-	-	171.2
	$\overline{}$	8	14	17-6	1	-	-	2450		. 8	. 7	,	-	-	57.8
		6	12	6-3	21	0-11	5.3	33.0		5 30	4.6	1	=	·	135.0
Bo. 8-N Stanto	810	5	4	6.1	21	0-11	5.2	24-4	RIT !	-	4-6	1	-	-	15 4.8
7 7'2"	_	5	30	60	21	0-11	5-1	180-0	RIT		3.8	1		-	51-6
	-	5	12	10.0	1	-	-	120.0	R20	+	10.2	21	3.7	6.7	366.0
w/spherot sale	-	6	14	11-2	21	4-1	7-1	156-4	P21	5 30	3.8	1	3.4	-	110-0
	-	6	2	9.2	21	3-10	6.10	12.8	W73 5	10	9-8	1	-	-	2, 0
	-+	6	4	8.10	21	1-9	7-1	35.4	R74 5	-	6-1	1	-	-	36-6
	_	6	4	8.6	21	15	7-1	34.0	R26 5	-	6-4	,	-	-	1394
	B19	6	4	8-4	21	1-3	7-1	33-4	K27 5	_	9.8.	1			193.4
	B21	5	12	3.8	1	-	-	44.0	R18 6	-	3.8	,	-	-	44-0
	_	5	2	2-7	1	-	-	5-2	R30 6		9.8	21	3-4	6-4	502-8
	-	5	2	3-0	,		-	6-0	11 5	6	4-10	1		-	29-0
	_	5	2	2-4	1	-	-	4-8	T2	+	4-10	-			48-4
	-	5	30	1-8	',	-		50-0	13 5		4-2	1			16-8
	RI	5	26	11-7	1	-	=	301-2	T4 5	-	3-2	1			50-8 84-8
- 1	_	7	B 30	9-6	1	-		92-8	16 5	12	3.2	1			38-0
	_	-	14	9.6	1			133-0	17 5	+	10-7	1			63-6
	_	7	16	10.0	1	=	-	160-0	19 5	+	4-5	21	1-0	3-5	17-8
	-	-	40	11-0	21	4.0	7-0	440.0	TIO 5	-	3.2	1			38-0
	RB .	6	16	10-0	1	-	-	160.0	111 5		2-8		-	-	36-8
1. SPECIFIE OUT 2. HADOUS OF FOR GIZE 3. THE 2" A CONTRET WHERE NOTES OF THE SPECIFIE OF THE S	SIDE F HEI S EQI NO 3 F SUI IOT O ACE!	ND UA REA SHE	SEU L TO DISTAI LES LES LES LES LES LES LES LES LES LES	HALL UALS 3 OR LE NOE FRO ARL IN RETE	BENI BAP S TI V SAR SAR	S SAME	TERS 7 2404 2405 2505	2 3 3 4 5 5	NTAIL ASS CLUE OF ASS CLUE OF ASS CLUE OF ASS CLUE OF ASS ASS ASS ASS ASS ASS ASS ASS ASS AS	NED UI O-30 SATE STALL ES INALE RENOT TO SERVE OF WILL ER S ACCO ORILLE EN	N T I SHALL (TYPE THIN BE SIZE FOR THE F SOCKET OP STE THE F THE F SE LOCAME ORDANC D IN B GATE M SS 125 AETER BER OF	CONFO MHS MBLE D. ACI NDAT SHA M. GUIR SEP ITED TTED TTED TTED TTED ACI FLAN FLAN FLAN	DRM T 6 DE COPLIN DNS S BLE T- LL BE DE AN (13") ACCOR IONS TH SPI FLANG ACTURA ACTURA ACTURA ACTURA ACTURA CE SPI CLT C	O SPEC FP NO TO TEM S HANDLA COCAT C	AAL SIVA
									AS	B	UILT		WS-1	0-71 6, 197	"3
EEL	UAN	ıΤ	ITI	ES					FINCH	BRO	OW, LI	TER	E CHO	PRO.	JT & JECT
. 5 /	SARS	_	37	03.7		2820		15		DWAT	ER RET	RDIN	G DAM		
*6			351	74 0		5368	', LE		RISE		TRUC			ETAIL	S
	BAATS			15.4		2403	LE		J. S. DE	PAR	TMEN	TO	FAG	RICU	LTURE
"8 !	BARS	5 -	0	+6·0°		239	ELE		SOIL	CO	NSER'	AT	ION S	SERV	ICE
			6	(9.1	ا ج	12,907	755	S Adea	D.C.CH	APMAN	8/	69			
TE												1-			
ETE								1	T. BROV		8/6	_ =	12		014-P

TEM

CONCA

M. #12. C/L. Der. 15.4 MATERIAL PROCUPTION 27 105 Serres Area, Eury, 1034, (appres) 0 0.5 Material 4 0.5 10.5 Topuell, silty - mandy +e" material - moon rganic matter - brown to black - dry to moint - rapidly permable - loose. D Mi. Seer sener Spiller, Sier, 1912.2 Materil. H . 0.5 0.5 Material A -Tr 202, Septemor Sid Juny, \$1e., 1008 Gravel, silt b sand matrix, approx. 40 percent fines - many 30 percent secure angular to subangular 6" to 24" [lags - brown - soist - m derately to rapidly permeable - loose to dense - glacid. drift? 0 0.5 Meerial A Meterial I Pr 201, Seargener Spillenr, Eler, 1808.1 19.0 0.5 7.0 " B (SAMPLE 203.1 -7.0') Silty graval - subengular to subrounded - gray to blue-green - moist to naturated w/depth - alight permeability -dense to very dense - glacial till. (On) M 150. CA. 214. 151.7 D 204. Beergener Sulliver, Eler, 1894.0 Material A Silt, w/little gravel - some minor clay some - gray to gray-green mottled - solet to asturated - 'lightly permeable - dense to very dense - (reverted \$.s.cial till or glacialacustrine material). (M. to ON) Di " Natorial B B 205, Seermooy Spillsoy (Seem Area), Eley, 1001.2 0 1.0 Material A 1.0 6.0 7 6.0 7.0 B Silt, little or no sands or graval - some clay lenses -some organic material - slate gray - moist to saturated -slivint to very aloney personable - very dense - recent (ML) D' 2.B. Beergener Spillier (Sman Area), Eler, 1001.0 Material C P 101. Principal Spiller, Eley, 247.4 -19.5 -Silt, sardy w/clay lenses — brown — very moist to saturated — very slowly persuable — soft — recent alluvium (swamp area). (MC_CL) 0 3.0 Materid A 3.0 6.5 " B 6.5 10.5 " D Material D C B 302, Principal Spillser, Eler. 954.4 Silt w/clay lenses - mlate gray - very moist to saturated - very slowly permeable - soft - recent alluvium (swamp area). (MG-CL) 0 1.0 Material N L.O 5.0 " B 5.0 11.0 " C (" C (SAMPLE 302.1) Tr 303, Principal Spillery, Eley, 944.7 Gravel, small percent fines - many +6" cobbles - gray -moist to wet - w/depth - moderately to rapidly permeable loose. (GP) 0 1.0 Material A 1.0 5.0 " B 5.0 8.5 " C 1 TP 304, Principal Spillier, Der. 954.2 Shaly siltstone or silty shale - upper 2 ft. fractured - cocasional mad seam in this area - dense and very tight w/depth. Sh 0 1.0 Material A 1.0 5.5 " B 5.5 12.0 " C DH #54. G/L ELOT. 951. Material A BACKHOE PIT LOGS IF 305, Principal Spil wir. Flor. 939.9 T :. C/L. Eley. 974.6 0 1.0 Material 4 1.0 6.5 " H 6.5 11.5 " C Material B 19 501. Prain Line, Eley. 947.9 D 2. C/L. Elev. 951.0 0 0.5 Material A 0.5 7.0 " B 7.0 10.0 " D (5 S (SAMPLE 501.1) 0 MALIFIAL C TP 3. C/L. Dev. 950.4 17 502. Prain Line, Eler. 947.2 0 1.0 Material A 1.0 5.0 " B 5.0 10.0 " C 10.0 11.5 " D 0 0.5 Material N 0.5 8.0 " B 0.0 - " I (7) Material D # 4. C/L. Eler. 951.1 DRILL HOLE LOOS 0 1.5 Meterial A 1.5 5.5 " B 5.5 11.0 " C DH #51, C/L. ELOT. 970.5 - 3r.5 -# 1. C/L. Der. 990.8 - 0.0 -0 1.5 Material A 1.5 10.0 B Material A 34.0 IF 101. SOTTON Area. Eler. 1012.0 PH 935. C/L EDIT. 937.0 0 1.5 Meterial A 1.5 9.0 " B 9.0 12.0 " E (SAMPLE 101.1) Material A 99 64 74 55 OH -11.0 ---W 102. Borrey Area, Eler. 1019.6 Material A B (SAMPLE 102.1 , 4.5'-10.0') 52 67 88 80 114 88 107 88 73 W 103, Berrow Stree, Eler. 1002.2 Hazarial B 0 3.0 3.0 7.5 7.5 10.0 C (SAMPLE 103.1) 27 104. Berrey Area, Eley, 1000.7 Paterial A ... 8 ... C (SAMPLE 104.1) 0 1.0 1.0 4.0 4.0 10.5 - 27.4 -Material C

	m #151, herror Area, Eler. 1012.)
1	Topsail seelped by deper
	47 0.0 -
M. Material D	119 Rb
to On	100 Material B
20.1	33
86 Material 1	75
м.,	. 77
MAY GA DIT. HILL	93
O Naterial M	124 22.1
1.5	43
	52 RB OH Material C
OH Material B	72
	149
	RB 124
	NB 122
15.0	13 Possible Material I (?)
OH Material C	48.0
16.5	DH 2152, BOTTON Area, FART, 1022.
Sh 17.3 Material 1	Soal Bed by Peser
NOTE: All classifications are based on action of drill b cuttings on augur flights.	78 0.0
DH #57, C/L ELET. 950.5	AB 69
0.0	RH CH Material R 92
Naterial A	139
	- 21.0
1.5	ND RD
OH Material D	84 GM Material C
Sh Material 1	es RB
	36,5
0.0 Material A 1.5 Material B	RB 112 RB 36 13.0 RB 61 RB 92
	25.0
u.s ————	Possible Material I
GM Material C	
meterial c	
7.0	AC DIE! T WS-10-71
HE. to Material B	AS BUILT WS-10-71 July 6, 1973
49.0	FINCH HOLLOW, LITTLE CHOCONUT & TROUT BROOK WATERSHED PROJECT
th Heterial I	FLOODWATER RETARDING DAM NO I
Mo Motorial I	FLOODWATER RETARDING DAM NO. I LITTLE CHOCONUT CREEK
Motorial I	FLOODWATER RETARDING DAM NO. I LITTLE CHOCONUT CREEK LOGS OF TEST HOLES
47.0	FLOODWATER RETARDING DAM NO. I LITTLE CHOCONUT CREEK LOGS OF TEST HOLES U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE
47.0	FLOODWATER RETARDING DAM NO. I LITTLE CHOCONUT CREEK LOGS OF TEST HOLES U. S. DEPARTMENT OF AGRICULTURE
47.0	FLOCOWATER RETARDING DAM NO. I LITTLE CHOCONUT CREEK LOGS OF TEST HOLES U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE
47.0	LITTLE CHOCONUT CREEK LOGS OF TEST HOLES U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

5C3-313C #-

34

.)

Cuave " Motorial · mary Curve = 4 mos Yd 91. ma

19'CUFT ž 6 15 MOISTURE CONTE COMPACTION I LABORATORY CLA

NEW YORK STATE DEPT OF ENVIRONMENTAL CONSERVATION ALBANY F/G 13/2
NATIONAL DAM SAFETY PROGRAM. FINCH HOLLOW WATERSHED PROJECT, SI--ETC(U)
AUG 79 G KOCH
DACW51-79-C-0001 AD-A076 166 AUG 79 G KOCH

UNCLASSIFIED

20F2 AD76/66

END DATE FILMED made at SML 43 for Em Spin /28. MS & and of smi = 3 A d= films 127.5 d was

ENT PERCENT OF DRY WEIGHT CURVE NO 104.1 ASSIFICATION GC-GM

PERCENT OF DRY WEIGHT CURVE NO 203

SIFICATION - OC

Washington and the second

THE ALL WHEN PER PRINT

Comments of coulet payeness 201 - 399

Consequences of coulet payeness 201 - 399

Entry terms 1 - 201 - 309

Entry terms 1 - 201 - 309

Entry terms 1 - 201 - 309

Entry terms 2 - 201 - 309

Entry terms 2 - 201 - 309

Entry terms 2 - 201 - 201

Entry terms 2 - 201 - 201

Entry terms 2 - 201

Entry terms

The section

ADDRESS STORES

M Sehiet B State M Slate

- TANTELES

EST TO BETTLE HOLE (IN) LOCS

Harter of bloom required for 1-ft. winning penetration, using 2.0° 0.0. split berel nampler, 180 lb.-hammer, and 30° drop. ASBN D 1806. C. Duiffed Soil Generification Symbol - 12.0 -Pry barrel sampler ... - 23 Mollor Mr to advesse bein by week baring - 17.0 Depth in hele -Rock core, 2-1/3" disseter Persont rest ours recovery in said drill 301 Le Bodrock systel w M. (data) Mater Level

All cell and rock descriptions and classifications uses determined by visual examination.

W5-10-71 July 6 1973

FINCH HOLLOW, LITTLE CHOCONUT & TROUT BROOK WATERSHED PROJECT FLOODWATER RETARDING DAM NO I LITTLE CHOCONUT CREEK LOGS OF TEST HOLES

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

- J. a. ainte . ejes -22 NY-2014

actinic until