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ELECTROMAGNETIC INSTABILITIES IN A FOCUSED
ION BEAM PROPAGATING THROUGH A
Z-DISCHARGE PLASMA

I. INTRODUCTION

In an earlier paper,' it was shown that focused ion beams for use in a pellet fusion device
can propagate axially down a z-discharge plasma channel without generating disruptive micro-
turbulence due to electrostatic streaming instabilities. The azimuthal magnetic field in the z-
discharge channel confines the beam radially as it propagates. Here the analysis will be
extended to study electromagnetic velocity-space instabilities. In particular, the Weibe! instabil-
ity (k- B=0, k-V_=0) and the Whistler instability (k x B =0, k - V, = 0) are investi-
gated, where k is the wavevector, B is the azimuthal magnetic field and V. = V., é. is the axial

streaming velocity of the beam.

The beam-plasma system consists of a focused ion beam (typically a S MeV proton beam
of 50 ns duration, 0.5 cm radius, and a current of 5 x 1054) propagating down the axis of a z-
discharge plasma channel.Z The ion beam is focused at the entrance to the plasma channel (see
Figure 1) with velocity components transverse to z given by V/V,= tan § << 1. A high
plasma density in the channel (n, = 10'® cm~) insures good beam charge neutralization.’
Good beam current neutralization in the interior of the beam also occurs, so that the total mag-
netic field is comparable to that associated with the preformed channel established before beam
injection. The beam current greatly exceeds that establishing the channel so the electron drift

velocity is approximated by V, =n,V./n,.

Manuscript submitted August 6, 1979.
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Hydrodynamic modeling of the background plasma* shows that a uniform channel net-
current model is appropriate for the early times associated with passage of the beam front. This
is because the low-temperature channel is established microseconds before beam injection so
that complete magnetic diffusion occurs. Later in the ion pulse, expansion of the beam-heated
high-temperature plasma (7 = 25-50 eV) reduces the magnetic field strength in the interior of
the channel. The built-up field in the expanding cylindrical shock wave is also enhanced by
significant current non-neutralization in the cool plasma surrounding the beam-heated channel.
The maximum field strength just outside the ion-beam radius can exceed that established by the
initial z-discharge current by a large factor. Thus, at late times during beam passage, the mag-

netic field distribution is closely approximated by a surface-current model.

In Sec. II, equilibrium models for such a beam plasma system will be described. In Secs.
III and IV, the Wiebel and Whistler instabilities will be investigated. The conclusions which

can be drawn from this work are summarized in Sec. V.

II. BEAM-PLASMA EQUILIBRIUM

For mathematical convenience, a slab model will be used for the beam-plasma system.
This is appropriate for the case at hand since ions are injected into the channel with small angu-
lar momentum so that the resulting orbital motion occurs in a plane. At early times in the
puise, the net current (nearly equal to the channel current) is uniformly distributed across the
channel and flows in the z direction. Thus, B = B é, where

Byx/a, [x| < a
B, = B, x| > a m

Here, B, is the peak value of the field and "a" is the channel radius. If the beam distribution

function f, is written as

V.P,

frlve, v,, v,) = _n1_:_ 8(v,) 8(vI+vl- + K) (2)

!

2
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where P, = myv, + ed./c is the axial canonical momentum, A4, is the vector potential and n,,

V, and K are constants, then

n, x| < ’bl Q)

'lb(X) = (0’ ‘X‘ >,

where r, = Vg/w,, K = V}— V} wl=V,a,/aand @, = eB,/m,c. A smoothly falling density
profile may be obtained by replacing the second delta function in Eq (2) by a Maxwellian distri-
bution function. The distribution function in Eq. (2) also states that all beam ions cross the axis
at the same angle and traverse the entire beam radius during each betatron oscillation. A more
complicated distribution function could be used to model the small spread in angles at which
the ions cross the axis, however little additional information is obtained for the effort. For
mathematical convenience, the form of the distribution function given in Eq (2) will be used
here. It is easy to show that the fluid velocity is given by V = V,é, and that in order for the
beam to be confined within the plasma channel, one must have r, < a. Furthermore, f, can

be written in the more convenient form

fs¥y. Vo 8) = 22 8(v,) B3 = Vi + wlxd, @)
where v, = vgsing, v, = V, + vgcos¢ and vi=v2+ (v.—- V)2 Here, V, is associated
with the average streaming velocity of the beam ions and v, is assaciated with the oscillatory
betatron motion of the beam jons (vs < V= w,r,). The beam-ion orbit equations for this

field geometry were solved in Ref. 1 and the results are summarized in Appendix A.

The distribution function given in Egs. (2) or (4) provides an appropriate discription of
the ion beam at early times in the pulse. At late times B, = 0 inside the channel and the field

is built-up sharply at the radial edge of the beam. Thus at late times in the pulse

n
—"ib(vy) 8(vi=V3.|x| < r
fb(Vy, Vg ¢) = 0, |x| >ry+ 8| (5)
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where B,(r, + 8) is sufficiently large to confine the beam and the sheath is restricted to a thin
layer such that 8 << r,. Beam ions move in straight line orbits inside the field-free channel.
Within the layer y, < |x| < y, + 8, the ions reflect off the magnetic wall, reverse their
transverse velocity and resume their straight line trajectories after reentering the channel. The
distribution function in Eq. (5) also results in the uniform density profile of Eq. (3) and in a

fluid velocity given by V = V_é. inside the channel.

The background plasma provides complete charge and nearly complete current neutraliza-
tion of the beam. In addition, the plasma also carries the z-discharge current. The high density
desired for good beam neutralization provides for a high frequency of electron-plasma ion colli-
sions, v,, shown® to be larger than w,, inside the channel at all times during the pulse. Thus, a
collisional fluid model is used for the background plasma with the electrons drifting with velo-

city V, = (n,V./n,) é..

III. THE WEIBEL INSTABILITY

Two Weibel instabilities will be investigated, the ion instability and the electron instabil-
ity, which are respectively driven by the streaming of the beam ions and the electron drift
motion. Lee and Lampe’® report for electron beams that the Weibel instability grows at a
greatly reduced rate when V,/V, > w,/w, where w,, is the beam plasma frequency and w,, is
the electron plasma frequency. Molvig® has shown that is possible for electron-ion colisions to
restore rapid growth of the mode. Although the concern here is with ion beams driving the
instability, again both beam-thermal effects and collisional effects are important. Ion betatron

motion will also be important in analyzing the ion instability.

e —
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A. lon Instability

Consider first the situation late in the beam pulse, with f, given by Eq. (5). For assumed

large r,, the perturbed distribution function with E(x) = E exp(ikx),

3 0
f,,,-—e d1'l-2+-v—x—-ll -—a-f—exp/(kv -w) T, (6)
m, V- ov
can be integrated over 7 to give
—~ie/m, 0/, afb
Jo1 = [w — kv, [[ l v, s ll 5 av £

Here k = ké, and straight-line unperturbed orbits are used since B, =0 for |x| < r,. The
assumption that n,/n, << 1 allows one to write the usual approximate dispersion equation,®
D,, = 0, for the Weibel instability where |w| < v, and

D.=0=c%+y2+ w,?,'y/v, + ... (8)
Here w = iy for purely growing perturbations,® v, = mv /m,, V. >> V, (electron drift motion

is ignored at present) and I, is the beam contribution to D..;

_ g ki )as, . e
fll iy — kv, av +V:6vzld3v' ®)

Integrating by parts and then using the calculus of residues to perform the remaining nontrivial

integration results in !

I why k(Vg+2V) i 2k, Vg
OkWE 1O+ yYRVP Y
kVYvV
a zz zﬁz 32 10
(I +yYkVy)
which reduces to
2V, Viy
—"’/”’7— il y << kVg
B
I, = ky2 , (11)
—wbl—-——z-.y>>kVp !
y v
5
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for ¥V, > V,and the limits shown. Solving Eq. (8) for the growth rate, v, one obtains

(k*V w,f,,/mz) 143 0<k <k,
2w,,,,v v, pr,,V v,

bt m,,kV’
2w,bc(2 VIV (k, — k), Kk =k

k, < k < k,}, (12)

where

k, = (w}v, Ve Baliid): k. = (wpp/c) QV,/VyI2,
The peak growth rate is given by

2 2 )4/5
mpbv, 2Vz
- B 12 ] G k=i (13)
™ l Vi ’

For ny/n, ~ 107 and V/¥, > 107!, y; ~ 10° sec™' at late times in the beam pulse (note that

¥, is actually overestimated here since k,ry << 1). Thus, no significant growth can occur since

¥»7s 2> 0.05; here 7, is the beam pulse length.

At early times in the beam pulse, v, is larger due to low channel temperatures so that one

might expect the growth rate to be larger. It will be found, however, that by including the

betatron motion of beam ions in the analysis, the perturbation is stabilized. In this case, f) is

given by Eq. (4), the ion orbits are found in Appendix A, and f,, is given by

So1 = —;:e :‘{g dr[v 'E(x) + (v, - V) E.(x) l
Vv, BE, |
s autln, (':x gx exp(iwT) (14)

It is now assumed that E.(x) = E cos kx where k is restricted to a discrete set of values

by boundary conditions at rp With kr, > 1. This choice of E.(x) is reasonble since n, and n,

are both uniform and n, << n,,

Thus, the mode is expected to closely resemble the back-

ground plasma eigenmode which is sinusoidal. Here again, the background plasma is treated as
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a collisional fluid since v, >w,. An approximate algebraic dispersion equation is obtained by

taking a weighted spatial average of D, E.(x) where bzz is a differential operator in x defined by

A 2 w}
D., = —CZ& +y2+ —T"Z — 4mie f V.fpd3v

1

and f,, is given in Eq. (14) (£, = 0). The dispersion equation is then

1
beZ

0=D,= f_,b dx D,,E,(x) cos kx (15)
s

Using the orbit equations for x' and v' found in Appendix A and the Bessel function iden-

tities
exp(x iz sing) = J (z) + 2 °‘2.12,(2) cos2/8
(=]
+2i 3 Jyi(2) sin Q1 +1) 6, (16)
1=0
and
expliz cos 0) = J,(z) + 2 i i' J(z) cos 18, (17)

I=1

the 7 integration in Eq. (14) can be performed. Thus, Eq. (15) takes the form

2
0 = 22 + o2 + —2Y 4 L. (18)

l

where in terms of «,(x, v,, v,) and a,(x, v,, v,)

af, [kv.
_2 "—'a‘+02
avg by

The expressions for a; and a, are given in Appendix B. Terms involving resonances at higher

-2 2 r
I, = ——n‘%’f’—f_:dxcoskxfd’v v, ! (19)

harmonics of w, [ i.e. (w — mw,)~! for m = 0] are not considered. The term involving a, in
Eq. (19) is the source of instability. Here, however, because of the betatron motion, this term
vanishes and the mode is stable at early times in the pulse (see Appendix B). This same result
is obtained for odd eigenfunctions, E.(x) = E,sin kx. Mathematically the term vanishes

because the integrand involving «, is an odd function of x (see Appendix B). Physically no
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radial current bunching can occur since each ion travels radially back and forth across the beam
profile as it follows its betatron orbit. However, azimuthal current bunching can occur as will

be discussed in Sec. [V.

B. Electron Instability

The only other source of energy available to drive the Weibel instability at early times in
the pulse is the drifting electron background. The drift velocity, however, is actually subther-
mal since even before beam heating occurs V, = n,V./n, < u, = (T/m,)"2. Using a warm
collisional model (v, > w, at all times), the dispersion equation for the electron-Weibel insta-
bility is derived in Appendix C. Setting y = 0 in Eq. (C7), it is found that y > 0 for
0 < k < k, = w,V,/V2u,c, where u, = (T/m)"%. Thus for k < k, and w}> yv, Eq. (C8)

reduces to

2p2 2
05 0 & wly » w2k Viyi+ vy + k'u)) 20)
v, (Y +vy+ 3k ulyt + 2w ktuly + 2k%u®

where the ion beam contribution to Eq. (20) is ignorable.

At early times in the pulse, w,u,/cv, < 1 and

(k*Vw)'3, 0< k <k,
y = |w,V./c ky < k < k|, (1)
\/fv,cVF

(k, — k), k = k,

w,H,
where k| = (@,/¢) (w,V,/cv)YL. Here T = 4 eV, n, =2 x 10'* cm~? and n,/n, = 5x107¢,

so that the peak growth rate is on the order of y, = w,V./c = 4.27 ;L

At later times in the puise, the beam has heated the plasma; then w,u /cv, > 1 and

(kv )3, 0 < k <k,
y = |V 2u? k) < k < kyl, (22)
KV, 2k 22"
EE W] , k< k €k,
8
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where ky = v V}/u?, ky=v,V,/u? and V, <u. Now vy = w, V(2 cu) = 1.0r;" for
T=38eV, n,~1x10"cm™ and ny/n, ~ 1 x 107, Thus, y/r, decreases by a factor of
four as the beam passes through and heats the plasma. In fact, w,u,/cv, =1 at t = 10.0 ns

into the pulse so that a total of about 1.6 e-folds occur during the transit of the beam.

Note that 7, is the appropriate time scale for instability growth since V, = 0 except dur-
ing the passage of the beam. Furthermore, for small k, (i.e. k? < 2w2/3c?), it can be shown

from Eq. (C9) that

SRR <V, <<V (23)
S E S e
and
kz2 V('Z
372 i = 2y, (24)

where y, = w, V,,.. Thus, the unstable mode convects axially, but with a group velocity, v,
which is much slower than V, or V.. At any given point in the plasma the mode grows only for
a time of order 7,. For larger k. and fixed k, the mode transforms into the electrostatic

streaming instability which was found to be stable in Ref. 1.
C. Summary for the Weibel Instabilities

In summary, it is found that the betatron motion of the beam ions stabilizes the ion-
Weibel instability at the beam front while growth is too slow at the tail of the beam to allow for
even one e-fold ('y,;'r,,_?_ 0.05). The electron-Weiber instability, on the otherhand, grows
fastest (y/r, =~ 4.2) at the front of the beam where the plasma is relatively cold. At the tail of
the beam yfr, = 1.0. Although the electron-Weibel instability grows faster than the ion-

Weibel instability, it also is not expected to grow to a level which could seriously affect beam

propagation.
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IV. THE WHISTLER INSTABILITY

The Whistler mode (k x B =0, k - V, = 0) like the Weibel instability can be driven
unstable by particle streaming. However, the wavevector k = k,é, (i.e. é, in cylindrical
geometry) is perpendicular to the direction of the betatron motion of the beam ions. Hence,
unlike the Weibel instability, the Whistler instability cannot be stabilized by the beam ion beta-
tron motion. However, a small spread in v, (angular momemtum) can reduce the growth rate

significantly. The electron drift velocity is ignored when considering the ion-Whistler instability

since V, >> V,.

Consider first the situation late in the beam pulse with f, given by Eq. (5). If it is
assumed for the moment that r, is very large, then the perturbed distribution function is given
by

—ie vx Bl af,
Using this expression for f,;, the perturbed current is easily calculated and used to derive the

dispersion equation,

2
@y

+ 2[1—
v, Lk y

Again n,/n, << 1 was used in deriving Eq. (26) where w = iy for purely growing perturba-

D, = c%k + y2 + (26)

KAV + V3/D) ] e
—— "

tions and V, << V, (electron drift motion is ignored at present).

Solving Eq. (26) yields

KV, 0<k < i,
y = {kVikv /o) 'P, ki < k, < kyf, 27
w,,bV:/C. k_v > k2

where

V.> Vg k= w}bv,/w,,/sz; ky=(w,/c) (wyV./v,e)'2

10
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The peak growth rate (for k, > k, = 25.0 cm™') is given by Yo =wpV./c =2 x1027;!, for

a beam with no spread in v,.

This result is only slightly modified when finite geometry effects and the betatron motion
of the beam ions and included. Proceeding as in Appendix B with k = k&, + ke, and f,

given in Eq. (4), one obtains

kXVZ+ V3/2)
Fk.ry) — ——~——2~—"L— G| (28)
Y

where F(k,r,) is defined in Eq. (B6). The quantity G (k,rp) is defined by

2
4

D= c¥k2+ kD + 92+ +w}

l

Glkyry) = -2 i cos X[J (X) JX2)
XL k_,,N o 0 0

2 SN0 J}(Z)]
n=1 Z=2(X)

with X = k.x, Z(X) = (k,r,/2) (1 — X¥/k2r)"? and N = rp + (sin 2k,r,)/2k,. Note that

, dX (29)

G(k,=0) =1. Fand G are only geometrical factors and do not modify the structure of the
dispersion  equation. For large k, the peak growth rate now becomes

Yo = (@, V./c) [G(k.ry)]1'% which, aside from the geometrical correction, is identical to Y»

found in Eq. (27).

If the beam has a small spread in v,, the beam can be modeled by the distribution func-

tion

n >
Jy= —;,;—V— 8(vi— V3) exp(=vY VD), (30)
™ v

where V), is the thermal velocity of the beam ions. Since the »y motion is unaffected by B,, the
distribution in v, will be the same at all points inside the channel. For convenience finite
geometry effects and the effects of the betatron motion of the beam ions are ignored here since
they have little affect on the Whistler mode. Substituting the distribution function of Eq. (30)

into Eq. (25) yields an expression for the perturbed distribution function, Ss- The perturbed

current j,; can then be calculated and the dispersion equation derived.

11




OTTINGER, MOSHER, AND GOLDSTEIN

D.=c+y*+wlylv, +1,=0. (&)))
In Eq. 31), @ = iy and
P Suige ol 2O B s €)
™= v, — xp(=v .
z \/;V' e &Yy Vﬁ(i‘y kv, EXpA=Vy/ ¥y

Here, the vz and ¢ integrations are trivial and have already been carried out. The quantity /,,
is easily written in terms of the usual plasma dispersion function, Z({)8. However, here L is

pure imaginary so that

212 = 2
— i = Sy e S5y . 5D AL
L. = wjil V2 ‘l KV, exp K2V 1 —er Pk (33)

where V, > Vgand erf(x) is the usual error function.® For y > kV,, Eq. (31) reduces to Egq.

(26), but for y < k¥, the dispersion equation becomes

2 2
) 2V,
p7 + wgb 1 > E

2
Viy | 2y o
v, Vf

ol g 4
0=c’%’+y*+ 1 kv, sz_VZ s (34)

From this it is found that the peak growth rate, y, = w,V,/c, for the case with V, = 0 is

reduced if V2 > 2v,w,cV./w,> Since this is the case here

kV., 0 <k <k
y = [V 0k}, ky < k < kyf, (35)
2 2 2,212
pbiti b TR ek &,
wlV}? 2wk V2

where k| = whv,/wlV., ky =k, V2/V?and k, = V2 w,, V./cV,.
The peak growth rate is now
vr=(wuV./c) QuwpyclV/Viel) < w,V./e,
where y, varies in time as 7-¥(¢) through v, The number of e-folds, 8 during the beam

transit at any point in the plasma is given by

dt

L T i) "b__________
8= " vy at =50 [ TEy T

(36)

12
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where it is demonstrated later than no significant wave convection occurs. Here AT
= [T(r,) — T(0))/T(0) for Tin eV and y,(0) is the peak growth rate at the front of the beam.
A linear rise in temperature, T7(t)/T(0) =1+ ATt/7,, agrees well with results of previous

work.? Thus

37

AT T a+ann
For T(r,) 40 eV, T(0) = 4 eV, 7, = SO ns, V,/V, > 0.08 and n,/n, = 107>, & < 1.0 e-folds.

ik 2y,0) 7, ll 1

A spread in V, then reduces the growth of the ion-Whistler instability to a tolerable level.

Finally it can also be shown that the ion-Whistler instability does not convect with the
beam when k, > 0. This needs to be verified in order to justify using 7, as the appropriate
time scale. Taking Eq. (5) for f, and setting k = k &, + k.é. this dispersion equation becomes

2
0=c%?— (w, +iy)? + 3"1 (w, + iy) + I, (38)

where w = w, + iy and

; 23_,, de w4 kXV2+2V.Vgeosd + V}cos’e)

39
T g TE (w = k. V. = k.Vgcos d)? i

Here the spread in v, is neglected since it will have iitile effect on the axial group velocity of
the perturbation. For mathematical convenience finite geometry effects and the betatron
motion of the beam ions are also ignored. The results of the present calculation is actually an
upper limit on the group velocity since the betatron motion of the beam ions will tend to wash
out any disturbance moving axially on the beam. For |w, — k.V.| > k.V4 the denominator of
the integrand in Eq. (39) can be expanded and the integration is trivial. However, if

lw, = kaV.| < k. Vg the integration is most easily done using the calculus of residues. For

small k,and Vg < V,, |w, = k. VZI > k.Vgis appropriate for the ion-Whistler instability. Then

integrating Eq. (39), Eq. (38) can be solved for w, and y yielding

13
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y - ﬁ"{’—"(vf + VDV kY, (40)
o % k2V,clw . (41)

Clearly, v, = 8w,/8k, < V, for k, < w,,/3c. Thus the ion-Whistler instability does convect in
the axial direction for k, < w,,/3c, but with a group velocity slower than the beam streaming
velocity. For k. > w,,/3c the calculus of residues can be used to evaluate Eq. (39), however,
the mode is then basically an electrostatic two stream mode. This mode has already been

shown to be stable in Ref. 1.

In summary it is found that, as expected, the betatron motion of the beam ions does not
affect the ion-Whistler instability. The peak growth rate, however, can be reduced to a toler-
able level by the presence of a spread in v, (angular momentum in cylindrical geometry). The
spread in v, known to be present at injection in typical experiments? is sufficient to reduce the
number of e-folds to less than 1.0. Furthermore, the mode convects axially at a group velocity
less than V.. The electron-Whistler instability was not considered, since it will have properties
similar to the properties of the electron-Weibel instability (discussed in Section II.B) for such a

highly collisional plasma (v, > w.,).

V. CONCLUSIONS

The purpose of this paper was to study electromagnetic velocity-space instabilities gen-
erated by a focused ion beam propagating through a z-discharge plasma. In particular, the
Weibel instability (k- B = 0, k - V, = 0) and the Whistler instability (k x B =0, k - V, =
0) were investigated. This work is an extension of the work in Ref. 1, where electrostatic insta-

bilities were investigated.

The ion-Weibel instability (driven by the streaming energy of the beam ions) is found to

be stabilized by the betatron motion of the beam ions at the front of the beam. At the tail of

14
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the beam, where beam ions follow straight line orbits, the growth of the ion-Weibel instability
is two slow to allow for even one e-fold (y?r, = 0.05) during the transit of the beam. The
electron-Weibel instability (driven by the drifting plasma electrons), on the other hand, grows
fastest (y;7, = 4.2) at the front of the beam where the plasma is relatively cold (7 = 4 eV).
At the tail of the beam, where T rises to about 25-50 eV, vY,7» = 1.0. Although the electron-
Weibel instability grows faster than the ion-Weibel instability, it also is not expected to grow to
a level which could drastically affect beam propagation. Only 1.6 e-folds will occur during the
transit of the beam. It has also been shown for 0 < k. < 2w, ?/3c?, where k = k&, + k,é,,
that the electron-Weibel instability does convect axially but at a group velocity much less than
the beam velocity (v, = 3k2c?V,/2w? < V, << V,). Thus the appropriate growth period for
calculating the number of e-folds is just the beam transit time, 7,, and growth occurs mostly at

the tail of the beam.

Because the plasma is highly collisional (v, > w, at all times), the electron-Whistler ins-
tability will have properties similar to those of the electron-Weibel instability. Thus it is also

not expected to grow to a level which could drastically affect beam propagation.

The ion-Whistler instability, as expected, is not stabilized by the betatron motion of the
beam ions. The peak growth rate, however, can be reduced to a tolerable level by the presence
of a spread in v, (angular momentum in cylindrical geometry). Furthermore, for k. < w /3¢
the mode also convects axially at a group velocity less than V_ (v, = 3k.cV./w,). Thus 7, is
again the correct time scale and only 1.0 e-fold are expected to occur during the transit of the

beam in typical experiments.

From these results and from the results for electrostatic instabilities in Ref. 1, it can be

concluded that it is possible to propagate a focused ion beam, appropriate for a pellet fusion

15
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device, through a z-discharge plasma channel without generating significant growth of microin-

stabilities.

ACKNOWLEDGMENTS

This work was supported by U. S. Department of Energy.




APPENDIX A

For the magnetic field configuration given in Eq. (1) for |x| < a the beam ion orbit equa-

tions were solved in paper I. The resulting ion orbits are given below:

v
x' = X €OS w,7 + — Sin 0,7,

wﬂ
y=y+v,r
(L2
w v
=iy, & —1— —xtll»
4V, | w?
wo fL2_ Vil s V2 (cos 2w,r — 1)
+ —|x*— —| sin 2w,7 — — (cos 2w,7 — 1),
8V, az oF T v, o
and
vV, =V, Cosw, T — Xw, Sin w,T,
'
v, =v,
2 2
w2 |v
v, =v,— — | = — x?| (cos 20,7 — 1)
4V, |w?
WXy
sin 2w,7,
2V, -

where w, and V, are the same as defined in Section II.
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APPENDIX B

The expression for «; and a, found in Eq. (19) are

1

a = N

—xw,J(Y)|=

.l (X) + JZ(X)”

n=1

J(X)J(Y)+2 T D" 1,0 J;,,(Y)I

X

——2—x] l.l (X) J,(Y) = 24,(X) J(Y)
@

2
e

8V,

=

+20,(0) LX) +4 3 (=) [.I;,,(X) B (P 2”;‘ I (V) .I';,,“(X)”

n=l

n=]

- ““’ [J X) I(N + T =1 [J,”.m FantlX) & Jpu_(X) J;,,+.(Y)]”. (B2)

where X = kx, Y = kv, /w, and N = r, + sin 2kr,/2k.

In order to show that

=2 2 T
[ = —f’i f_fb dx cos k, f div|——=

first write v, = vgsin¢ and v, =V, + vgcos ¢ and then perform the v, and ¢ integration

(B3)

kV.,v, af,
y avz a) 0

yielding

—wp,,kV )38V — V2 +wlx)
dx cos kx | dvg

X leJ (X)[ J-|/2(Z) 7 13/2(2)] J|/2(Z)

= xw,d ,,(2)[ 1,(X) + J, (X)”l (B4)
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where Z = kvg/2w,. Integrating by parts in v, to remove the derivative of the delta function

and then performing the v, integration results in

2 2
w kY. kry Ji(X) |1
I, - T:-AT(‘)LO f_“’b dX cos X{—z—' 31_”2(2) =+ .,3/1(2) Il/z(Z)

+ J,(X)

% Foysl@) Bipl@) + % Jaas2) Xl Z)

+ I'x(2) Ty(2) + T3(2) J',,;(Z)]

- &y Jl,,(z)ll 1,(X) + 12()()“ , (BS)
4 2 Z-2(x)

where Z(x) = (kr,/2) (1 = x*/k*r)"/2. Since the integrand is an odd function of x, 7, = 0.

The integral

"'20)3[, Ty Gfb s j
12 - T j_’b dx cos kx f dJV V,azm = wg,, F(k’b) (B6)
is more complicated and the associated term in the dispersion relation does not contribute to

instability; hence it will suffice to write /, in terms of the function F(kr,) as defined in (B6).
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APPENDIX C

For a warm collisional fluid, the continuity equation and momentum transport equations

(T, = T,and v, = m,v,/m,) are

an,
e V(v =0, (cn
g-vi...va.vva-_q‘_'.E.‘,M]
ot m, c
el oy~ ) (€2)
mgn, a a\Va B/

for « = ie. Linearizing Egs. (C1) and (C2) for perturbations with exp i(kx — wt) dependence

and solving for the perturbed current results in

2

29 g
Je +1 e I-E, (C3)
where
af
Lo=|1+ —n—zz—l/n,, (C4)
lg=1I,= _ikyeﬂl/7022' (CS)
1 k2 V,zﬂg
lzz V, 72022 ’ (C6)

where w=iy, O, =9y +k%W?y, QF=qyv,+k¥u?+2v,k%u?y+ k*u*/y’, and

Q; =9y + v, + k*u?/y. In deriving expressions (C4)-(C6) it was assumed that y < v,.
Here the electron streaming is driving the instability and n, = n, (unlike n,/n, << 1),
thus the complete dispersion equation,

DD, - D.D, =0, (1))

must be used. This results in the following dispersion equation
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yoi XV,
v, y0}

2 2
Y@, Q] 22
0= 72+_l+__ .y2+ck+
0, n?

wpk?Vi0

oY, (C8)

In order to study the axial convection of the electron Weibel instability, the dispersion

equation must be rederived with |k} > 0. For mathematical convenience thermal effects are

ignored (7 = 0 in Eq. (C2)). In this case, for large k,, the dispersion equation is

ik}V,zw,f,(w +iv,) l

RN

1w, w
0= cZkz2 S = c2kx2 e .
v, wo'y,

ok, V iwik, V. ik, Vv,
Nkt ¢ el ‘k,k,c2+ 0ok Ve ll L Led (C9)
v, v, ww

where ' = w ~ k,V,and now w = w, + iy.
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Figure | — Typical ion trajectory in the confining azimuthal magnetic field of the z-discharge channel after entering the
channel from the focussing region on the left. Here ¥ is the speed of the beam ion, a in the injection angle, ry is the
spot size at injection and a is the channel radius.




