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ABSTRACT

The simulation in wind tunnels of flows with a. sonic free stream
velocity is studied from the theoretical standpoint, and a preliminary
experimental phase is also described.

The solutions which are valid asvmptotically are extended to in-
clude hirher order temns so that flow patterns at distances of technical
interest from bodies with and wvithout lift can be discussed. This is
done with a view toward deterinining the essential characteristics which
streamlines near a wind tunnel wall would have to possess if the simule-
tion of I'lach One flow were to be obtained, and also to-,;ard det.ormiring
which body shape parameters are needed in order to apply the eorrect scale
factors. The results indicate that the ratio of model to tunnel size
where a single parameter is sufficient to c:ive the conditions at the wall
is quite large.

A set of preliminary wind tuluiel tests was made wiith inclined plane
walls in the test section. This approximation of the correct streamline
contour yielded data w! ich appoars to be in rood agreement with the theo-
retical results at i•ach One.
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"INTRODUCTION

In recent years the interest in obtaining data for models operating
in the immediate vicinity of the sonic velocity has been quite presistent.
Such quantities as local Mach number distribution and drag have been shown
to have a smooth behavior as Mach One is passed, but it is not clear how
the values of the lift curve slopes, inter-action coefficients, duct
efficiencies, stability derivatives, and other characteristics which are
sensitive to the relative sizes of the subsonic and supersonic regions
behave in mixed flows,

Present methods utilizing free flight models, transonic bumps, and
very small models in large wind tunnels have provided some excellent
qualitative data, but there does not seem to be an experimental technique
which can provide the degree of accuracy normally obtainable from wind
tunnels operating outside the transonic range. However, there are several
techniques currently under consideration for filling this gap.

The purpose of the present investigation is to study the extent to
which wind tunnels can be used to determine the aerodynamic characteristics
of models in the immediate vicinity of Mach One.

The approach used is to first consider the distortion of the tunnel
walls which would be necessary in order to simulate a streamline in a
free flow field. In the type of theoretical analysis used it is possible
to express the velocity potential as a "basic" potential plus a series
of higher order particular potentials which are added to satisfy the
boundary conditions at the body. The basic potential is the one which
is significant at large distances from the body, and therefore largely
determines the wall configuration.

To obtain a general feeling for the actual effect of higher order
terms due to the shape and lift of bodies on the flow fields at various
distances from a particular model, these data have been computed for
several simple bodies and the results are compared with the solutioms
given by the basic potential elone•

The distances from the bodies where the influence of the higher
order terms becoome of the sae genrar_ proportions as the exporiment-a
svattir giver a feirly good idication of the rtio of model to tunnel
s•.zc• n-M•.-: th influense of the tunnerl wvell3 on a-rl m-,del o0 a ce-thaiu
group wvo,::d nYct be signif'ieant in thc resui.tro,

This rer-rt- which repr scnte•! the first pPart of f. larger progrem:
gives an account of the analytical study, and in additioz, the rerult'
of a preliminary experimental prograi, Ii the experimental phaes, the
ideal wall shape was approximated by a nozzle block with a throat
followed by a long straight section set at an angle. A comparison of
these results with the analytical data seems to be quite encouraging
despite the approximation used.

WADC TR 52-99 vii



SECTION I

ANALYTICAL STUDY

It is somewhat more convenient to treat the case of planar flow
first, since the hodograph differential equations are linear. The
general approach is that used by Dr. K. G. Guderley (Reference 1).

Formulation of the Problem

The differential equation for the velocity potential, 4 , can be
simplified in the cave of small perturbations of a flow with sonic
free stream velocity to:

Y+1) ÷ x1• xx - #yy ao (1)

With the introduction of the inclination of the velocity vector 9

and the dimensionless perturbation velocity given by 7-()r+l) (*-1)

as variables, the application of the Legendre transformation yields in

the hodograph plane, the Tricomi equationt O _see7 0 (2)

A set of solutions to this is given by:

*-Clw (Y+ I ýfA..77'f I(t)t 1 f t 3

-here n = m/2 andS: 982/4173 . The functions fn ( • ) satisfy the

equationt f ',-, M(-))§ f--O

It is the hypergeometric function, fj, used in Reference 1. The values

of the coefficients An are to be determined.

Working with these functions reveals that the even values of m give
various symmetrical body shapes. The addition of odd values gives asym-
metrical bodies.

The corresponding points in the physical plane are given by:

8'7 O 1 - m~I(4)
X8 a# fw +1 A ' - 1

A.,, n• Or,÷2.,.fl+• f sigrnt,)

-ADC TR 52-• 1[ 
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By using the consistent approximation that y = 0 at the body, it is
possible with these expressions to prescribe the values of x and at
M points on a given body from a resultant system of (11 + 1) equations
in (M + 1) unknowns and hence, to find the values ofAn and 17 . The

position of the nose of the body is given by the branch point of the
streamlines in the hodograph plane. This occurs at a finite value of

ii1; i.e., there is no stagnation point. Therefore, all such bodies
have cusped leading edges.

It should be mentioned that the (10•+ 1) expressions are non-linear
and futhermore the question is not settled as to whether the procedure
converges as 1V is increased. Consequently it is possible that the points
at the boundary where matching does not occur will oscillate in an unde-
sirable manner.

Streamline Shapes

The vertical deviation of a streamline from its original position

'X
far upstream is given by Y=t 0 4ydX . The zero subscript denotes

the space point considered. Because of the differential equation (1),
the following expression can be written:

r OX(Y+1)- I) Y - dX dY - 0
Using Green's theorem one obtains

If a closed contour is chosen which is given by the lines

YuO, Y8Y4 ,X$s 00,(See Sketch)

and the line AR which arises Y
from the mapping of a line I X 1 0

= from the hodograph ;fK @
..to the physical plane. YNO

All terms drop out except:

YOdy W [YjdX

7A.DC TR 52-98 2



The integral on the left gives the streamline displacement at YsYo e tCo

If we transpose to the hodograph and integrate

.- I- C lA4 [+j ])[. (n+ )+ 2.(n-,)(-nf+3f.)] (5)

where %10(ta) is the value of '1 for Y2O and where YO is the displacement
of the streamline * = 0. In symmetrical flows, YO gives the actual body
shape. It can readily be obtained by the summation of AX from the nose
to-the value of o considered.

Cusped ledy

The simplest body which has been investigated by this method is
given by the potentials for n = -1 and n = 2. This is a cusped profile
with a constant pressure gradient over its length. For such a body,
the transformed velocity potential is given by

0/y---(y+ I W [A.,,)f.,+ A,7 f,] (6)

and the stream function by: (see pageZ7, Reference 1)

qP W(w y- 3- I S i, (77e)[AIlf•A)I1 (7).

Along the body, = 0 and equat'fen (7) gives

%" A2" .()

"Substitution into (4) yields X z Ax%.. Using equation (4), (5), and
(8) the pressure fields, deviabional ordinates, and body profiles were
corputed for A2/A.. = 10, 100 and 1,000. These patterns were compared

with the patterns given by "basic" potential (n = -1), and the results

A2/A., = 100 are shown in Figure 1. It can be seen from the comparison

curves of this figure that if ±.01 is chosen arbitrarily as the experi-
mental scatter in Cp , if (V = 1.4), and if )> 900A._ the differences

betweep the two curves vwill be of the order of the scatter.

"If XF is the length of a body from the nose to the sonic point on
the body, and Yr, the body ordinate at that point, and if the value of
A_1 is fixed, the bodies which arise from various values of A2 all have

A
the same value of Y5 . Accordingly, there exists a "bluntness
factor"; i.e., blunt bodies which have a smaller actual thickness can in-
fluence the asymptotic solution to the same extent as a thicker body with

a higher slenderness ratio. It will be shown later that, Y;/Xz

""'ADC TR 52-8 3



is a eharaeteriatio parameter which will be the same for all affine bodies
which have the same asymptotic flow fields.

r
Wedgo Profile

Ouderley and Yoshihara have computed the pressures on a wedge
at boh One for both the symmetrical (Reference 2) and asymmetrical
(Reference 5) cases. It is a fairly straightforward procedure to find
the flow field in the vicinity of such a body as follows: There are
three oonvenient forms of solutions in addition to the set of solutions
mentioned in the previous section* They are:

•,. A. I• Y f.,•) --9O- O 3...(9)
a- -aW

_(10)

033 J('Ad) C05, M7r 9  (

where 1, is the same hypergeometric function discussed previously and
in this case represents singularities spaced along the line'?7 - 0 at

intervals of 2 19. #'#0 1z4*4 . satisfies the boundary condition

A' 0 at L9- ±0,0 the semi-angle of the wedge. In 912 and 94, the

f unc t Ion isa g iv en b y Wf )(sLOzi -P )
where Zlis; a linear combination of Bessel functions of order 1/3.

These two solutions* .and0 3' are used to satisfy the boundary con-

ditions along the ohar cteristic in the supersonic region which emanates

from the point i- O, W- 8,.

f Again, the predominant term near the origin of the plane is

.(a - o) and 6ne can find the influence of the other terms for various

values of .o and 9.
This too was carried out for small values of'7 and 9 . The resultant

flow fields are shown in Figure 2a.

r"D TR 52-99 4



Comparison of the Two Bodies

It is of interest to compare these two bodies whose solutions now
have been derived*

It e0 is the ratio YB/IX, the following table gives the numerical
values which have been obtained for the cusped body and the wedges

431Cusped WedgeX6( 00) A-1 * 2 A2.62 2.•0

YZ/I- A3-1 17.95 22.00
These values would be identical if the ratio of the values of the

coefficients is given by A.le/A..1 - 1.070. If this were true, for

the cusped body Xb 0 2*93 o0 and for the wedge, X4 - 2.go 60"00

These values are quite close and in light of the fact that the
accuracy of the numberical methods used was about ±1%, it can be said
that within this accuracy, a wedge and cusped body which have the same
lengths and heights to the sonic lines have the same effect on the
asymptotic flow field. If this could be shown to be the general case,
the problem of simulating Mach One flows would be greatly simplified.

Asymptotic Solutions in the Physical Plane

A method which was first used in Reference 3 is quite convenient
for considering the asymptotic flow fields for both the planar symmetric
and axisymmetric cases. The general technique has been used in Reference
4 to obtain the asymptotic shock wave patterns at Mach One.

With a free stream of sonic velocity, the velocity perturbation
potential differential equation in the physical plane can be written as:

('/+ 1)z 0 x - 0, -yA ýylV - (13)

In the planar case A - 0 and in the axisymmetric case A = 1o If a sclu-
tion is assumed of the form -oy3n2 f( where I - W + ZY the

resultant equation is f (n2f 2 - fl) - n f' (5n-5+A)-f(3n-2) (3n-3+A) - 0

It has been determined that for the planar case •l, ,A &M• tot the aXO
symmetric case?? - 4/7 (f is found by numerical integration). Asymptotic.
cally the shock coincides with a line of constant S - In the planar case

S- 2.018, and in the axisymmetric case, f - 2.240. The streamline
deviational ordinates are in the axisy etric case given by:

-. ya5,/fL1! (f2 ' i2) y -5/7 7(14)
and in the planar case

STR 5 Y155(15)

rADC TR 52-99 5



Since it is simpler to obtain the flow field at a given value of
x and y by this method, it was used extensively in this study. The plots
of these functions are shown in Figure 1.

Similarity Considerations

If two separate systems are related by the followingr transformation:-'/2
M(XY)a z/, Z, (Xf) X- ZX (,z1  Y (16)

Equation (13) omes

The points in the two systems given by these relations are called "corres-
ponding" points.

The preservation of the form of the differential equation indicates

that if ý is a solution for a flow problem in the X, f plane, then 4 is

a solution in the x, y plane. If Z# , only the scales of the two

systems are different, and if Z 2 = f 2IZ i The relations given above
are known as the transonic similarity relations.

Consider the case where two different affine bodies in these two
flow fields are producing the same conditions asymptotically; i.e., if
the axes of the two systems were made to coincide, the velocities at a
given point at a large distance would also coincide. Then the two flows
are described asymptotically by the identical forms 96 y'm-1 M() and

- .flI2
-.'/ Y f(j) . This may happen although Z1, and 72 are not equal

to one, but for the prescribed similarity to exist the values of and

4T must coincide at the identical point in space. In general the
"identical" points will not be the "corresponding" points.

Using Equation 16 and the asymptotic expression for C, the follow-

ing is obtained: : z,(z z Y 3

Yr ZZm the expression reduces to • Y &• •ndependent of

•f the vraua of Tj or Z2,. Boence, with this relation between Z1 and Z2,

01. o and a, d o c a tt ldaniceJ oocnts,

hN"R 28 6



Now consider the possibility of relating the dimensions of two bodies
which give asymtotically the same flows at identical points. If oorres-

ponding points are denoted by like subscripts; x i - Z 2 RV Yi - Z 2 Z1  Yi

and if y is not too large then 'j - fJydx and '= d- -Using

the mbove relation be-.ee r i ! n, ZZ End 722 7- yiZl 2 (1-p

With those e , on ' r ~ *~~ ( o 3) +S., .i I 2(1 n)

This equatiorn i. in,,x.-eo nt of ZI if n/(4 n - 3)e Thirs valus Oc

4gives the pov-er law relating tho stireamline shapes in the two flovme
The relation in the pln•.r c••e (wbere n - 4./5) is given by • -4 and
and in the axisy ztric case (:Thero n - L/7)" by / - 4/5.

It is possible to go further and to say that if the values of x and

Sat one set of corresponding points are denoted by the subscript 1 and

the values of - and ' are taken at another set denoted by the subscript

2, then xi 72= 1i y The case where point 1 is at the nose of the

profile and point 2 is at the sonic point on the contour corresponds to
that discussed previously for the cusped body.

The assumption regarding ý96y/) y is not always valid. For sufficient-

ly slender bodies, in the planar case, it is valid everywhere, and it it
describes the way in which bodies of an affine family will be related to
give the same asymptotic flow fields. However, in the axisymmetric case
it is not to be expected that this assumption will hold very close to
singly connected body shapes, but rather, the given power law would apply
to rings or stream tubes near a set of bodies.

The flow field in the vicinity and in the interior of closed axi-
symmetric bodies has been considered previously. Karman (Reference 7)

gives the relation Z - ,' as thV dXdo f

expression at the boundapny. The results ia.f 6 ., for this cc-PC

Ceorelation of in

. ..... a , I

rl .D- T 524%



Using vquation (4) for x and y:

-Vs -~1/3 -2 j/

For V - oJ1, A- 1 1 1Ol9. Usin this value for A-, gives the same asymptotic
Vmie. at any point x, y in either system.

Let Equati6n (16) be applied to the previously discussed cusped body

in an 1, 7 plane such that the length and height to the sonic line are

given by X5 - 1.0 and YX - .1736. This body corresponds to the 200
wedge which was used in the experimental phase.

The flow for such a body can be obtained by choosing A2 /A- 1 to give

the proper thickness ratio and then applying a scale change 'Z*Z2X, 7*Z

2/3 1/6
since X-A., (A. (2.08) and Y A = / A (2.27)

_ _ Y . A2 2 .47 or Al .4T. 0

XV + 1.0 A-i Z.08 A-i

and = .0364

If a streamline of interest is at Y = 3.00, the following relations can
be used to get the asymptotic results from the solutions in the physical

1/3 4/5
planes X Zz (Y+I) (Y/Zz) I.656

1/5
y 11 Z, (Y/ Z.) A 4 A41 Y

-113 2/S• 0

Y 2y4IA (Yz,) F a . .a 6f

These results will be used in a later discussion.

The solution given for the basic singularity of axisymnetric flow
should at sufficient distances give the correct flow fields for all bodies
of finite span. Again the problem is to determine the relation between the
"strength" of the basic singularity and the body dimensions. It is of
interest to determine whether the "sufficient" distance is a practical one
in terms of model and tunnel dimensions.

"TýADC TR-52-9



"Lifting Cases

A convenient way to treat bodies at small angles of attack is to
linearize the shift of the mapping in the hodograph plane. If we consider
,he case where the mapping of the body is close to the original one, and

we lt " • (S}oH(8) be the map of the body in the hodograph,

lot ) 01 8i4' 4 '9 be the new potential, and further let f(0)a fgO0 +F(8)
be the map of the body in the physical plane, Guderley has shown in

Reference 6 that the new linearized boundary condition is

ilý+ff . R jof+ d ./d8aO F (8) - F (9)r 0

if the body location or contour in the physical plane does not change,

Cusped Lifting Bodies

The simplest body with lift that can be treated is that given by n = -1,

1/2, and 2. If fo A -•+A, .. (16 ), A A -z7 fZ ... (17)

and if the original body is moved through an angled , while the singularity

remains at the origin of the 8, 8 plane, the boundary condition is given

by a d dU/ fle -4 C a 0 substituting of (16) and (17) into this

expression gives:

Q~rAt* Aj tI fZf

It is possible to satisfy this equation at only one point; by a choice of
Al/2.

( Reference 1, page34, gives recurrence relations betw.een and
I 3/2 Which yield: W

? I
S-''

Usirn these relations, if = 0 is chosen as the matching point,

1ADC 8 e 1r3 7, ( r Ok (9TR A., d
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The resultant camber shape can be found by an integration of the
average values of the slopes of the upper and lower sides of the body,
and the numerical results as shown in Figure 4a indicate it to be
parabolic. The resultant camber line shape and lift data are shown
in Figure 4. This particular case may not be too enlightening, but
it can be expected that the chord line could be caused to pass through
any desired nmber of additional points on a straight line by taking
higher order terms and properly choosing the coefficients. The resultant
body would still ha--e a camber line which is not straight, but the de-
viations might not be significant in the results. The inadequacy in the
nose region also exists in the other approaches to the lifting problem
in transonic flow presently in use.

In regard to the effect on the walls of a tunnel on lift of such
bodies, since the predominant lifting term will be given by Akand A

will be proportional to o( , forO(4<Oo it is apparent that the lifting
effect will be of lower order than the basic singularity. This is in
contrast to the subsonic cases where the influence of lift predominates
oirer the influence of thickness at far distances.

",'edge Profile with Lift

In Reference 5, the method of linearizing the boundary condition is
used to f-Ind the change in flow due to angle of attack on the previously

determined flow of a double wedge airfoil. In this case the F(e) = 0,
i.e., the uind direction is changed but not the body attitude. The
singular point then moves from the origin of the7,• plane to a point

0= O,•= The boundary conditions are then satisfied along the

lines . + 90 and also along the characteristics emanating from = 0,

9 = ± •. It is shown that for sufficiently small angles of attack,

the "separatior bubble" which must occur at the nose has negligible
influence on the lift.

The resultant change in pressure distribution based on the assumptions
mentioned is shown in Fifiure 2c.

W;ith these results, one is led to reason that a "transonic dip" may
exilt in the dCL/dcYcurve for wedes Aith thickness ratios greater than

about .10. Results have previously been obtained analytically for the
incompressible lift of a double wedge. When a Prandtl-Glauert correction
is applied, this giires for all subsonic Tach numbers higher values of
dCL/dT than those obtained at Tach One. (The accui-acy of these results

is open to question because of the infinite velocities which arise at the
shoulder and at the nose). The values obtained for purely supersonic

WLDC TR 52-88 10



flows are also higher. The Mach One results further indicate a hori-
zontal tangent to this curve. Hence, it would appear as though the
curve has a rather unusual behavior without considerations of viscosity.
This is one of the problems which would seem to justify considerable
effort in obtaining experimental data at Nach numbers very close to one.

In most practical problems with three dimensional bodies it would
be difficult to find the relation between the basic singularity and the
body dimensions analytically. In light of this, an experimental program
has been initiated to help fix the body shape parameters which would
effect the flow field configurations at large distances.

SECTION II

PRELIUT NARY 1,;XPERIN'-YNAL STUDY

One of the more obvious ways of simulating a free streemline in a
wind tunnel is to have flexible walls zhich can readily be adjusted to
a desired set of ordinates. The 6" supersonic tunnel at WADC is awaiting
delivery on such a piece of equipment, and in preparation for a program
utilizi4l this device, some preliminary work has been done with a set of
fixed geometry blocks which have a throat followed by a long, straight
section. See "Fiure 5b.

The initil! ruvnose for conducting this preliminary study was to
obtain some idea of the influence of the tunnel boundary layer under
the prescure rise which exists ahead of a mocel in Fach One flow. Be-
cause of this, a comparatively large model was used. It was also
desirable to determine whether or not it was possible to simulate planar
flo7 by shaping the portions of the model near the walls so that the
boundary layer on the ýYll would not change the effective thickness of
the model in that region.

It wil! be rot&e in Ficpure 3a that the free streamline have inflec-
tion points quite close to X = 0. Consequently, one might obtain a
fairly yood a-pro::ivoation of the desired flow field if the correct slope
is simulated by the straight wall at the model abscissa. It is necessary,
however, to evaluate the effect of smsll chan;-es in wall contour on the
flow in the vicinity of a nmodel.

It is also of interest to determine how much relatively large changes
in w•ll confipuration nill effect the flow in the vicinity of a given
bojy. it can be seen that if the divergent walls which were used in this
study were made effectively parallel, tho result would be a "choked" flow.
This corresponds approximntely to n free flow at some rach ntinber which
is higher than the upstream Mach number in the choked tunnel but less
than one. It is further evidCnt from continuity considerations thnt
with parallel walls and - s-.miretricl nattern, on isobar corresponding to
the upstream pressure would divide thcse other isobars v;unich went from
the wall to the n::otel and those which crossed the tunnel centerline.
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One can expect, in this case, that if the pressure drops continuously
on a model toward the rear, a montonically increasing T•ach number at
least to the sonic line along the wall of such a tunnel will exist.

A further question of importauce involves the effect of lifting
bodies on the flow patterns. In this preliminary phase, the wall and
model pressure distribution were obtained for a 200 wedge at angles
of attack up to 60.

Experimental Equipment

1. Wind Tunnel

This tunnel was a 6" square test section and is powered by an Allis
Chalmers 1000 hp axial flow compressor. The vertical walls of the test
section are glass panelled. The nozzle blocks are equipped with static
pressure orifices. The block ordinates are shown in Figure 5b. Both
mercury and TBE manometer panels are provided for obtaining pressure data.

2. Optical Equipment

The system for flow visualization includes interferometer, schlieren,
and shadowgraph with arrangements for photographing with Polaroid Land
film or conventional film. A comparison of interferograms with pressure
data indicates that at the density level used, the inherent inaccuracy
of this interferometer is about ±.02 in I•aoh number and consequently it
was used only to study the flow pattern qualitatively in this program.
Some of the resultant interferograms and schlieren photographs are shown
in Figures 9, 9 and 12.

3. Wedge Model (See Figure 10)

A 100 half angle single wedge of 1" chord and 5 1/41" span wias used
in the preliminary runs. In an attempt to simulate planar conditions
as well as possible, the 3/8" gap to the glass windows was filled with
a plastic material that could readily be shaped. Pressure taps were
located at mid-chord at positions 1/ 2 " from each tip and also at mid-span
in 1/8" intervals chordwise. The assembly was mounted to a rod, which
could be traversed in the streamwise direction. The shape of the plastic
fillers which gave the most nearly planar flow is that shovm in Figure 10.
It is clear that perfect simulation of planar flow cannot be obtained
in this manner. However, the difference in C between the tip orifices

p
and the mid-span orifices never exceeded 0.02 during runs where data is
taken.

No after body was placed behind the wedge section since it was de-
sirable to minimize any influence of viscosity. Angles of attack were
obtained by placing shims above and below the holding screws behind the
wedge shoulder.
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4. Biconvex Model (See Figure 12)

A biconvex section with the same chord and thickness as the wedge
was also fabricated. This had two orifices placed at the mid-chord, mid-
span position, one on top and the other on the bottom. The same plastic
spacer was used for tests with this model.

"WTind Tunnel Runs

All runs were made with P 0 = 10 PSF and To = 1000F. Pressure

data were taken from a TBE manometer. The following is a listing of
the configurations of the runs which were made in this phase:

Model in Degrees Nose Station Run No.

Wedge 0 42" to 59" 0 to 32
!"edge 2, 4, 6 42" to 59" 33 to 92
Wedge 1/2, 1, 1 1/2 45" 83 to 89
Biconvex 0 42" to 59" 90 to 95
Biconvex 1/2, 1, 2 166" 96 to 100
Biconvex 2 h2" to 59" 101 to 112

Discussion of Experimental Results

The two initial problems of the preliminary phase do not seem to
have any troublesome consequences. It is not likely that separation or
appreciable boundary layer thickening will occur at the walls of a
flexible nozzle in the regions of interest even with comparatively large
models. For the configurations which will be used for the next phase,
the simulation of planar flow by shaping the plastic fillers at the
tips is quite satisfactory.

The aerodynamic data obtained appear to be quite interesting.
Figure 6a shows the wall pressures which were obtained by traversing
the wedge model from Station 42 to Station 56 ata( = 0 while Figure
9a shows the corresponding schlieren pictures. With the model in the
most downstream position, the flow is choked by the model support system.
This can be seen from the fact that forward movement of the model does
not influence the shock position. There is a supersonic region down-
stream of the throat which is terminated by a normal shock. The flow
pattern ahead of the model as shown in the schlieren is at some subsonic
velocity (V - 75) where the local supersonic region first begins to grow
at the shoulder of the wedge. The first "choking" by the model is evi-
denced by the forward movement of the tunnel shock, and also by the
appearance of sonic pressurer -t the wall. As the model is moved forward
the supersonic region rrows until it fills the entire rearward field of
view.
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It will be noted that the pressure distribution at the wall approaches
the theoretical form for Tach One as the wedge is moved forward. At
Station 46 fore = 0 the wedge pressures (Figure 5a) as well as the wall
pressures (Figure 5c) are very close to the values given by similarity
theory.

For the additional tests that were run, this position was considered
to be the optimum configuration which opuld be obtained with these nozzle
blocks. It can be seen that if a Mach One flow can be sufficiently well
simulated at a model by these straight blocks, it corresponds to a free
flow over that model with some other body or "source distribution" far
out in the flow field. If another model of the same basic singularity
strength is substituted for the original one, the resultant pressure
distribution at the wall due to this basic singularity should not change.
Hence, it might be possible to find the body shape parameters without an
ideal wall shape. The results obtained thus far have been quite encourag-
ing.

In Figure 5c the dotted line shows the pressure distribution given
by the basic singularity, and the dashed line is the distribution given
by a cusped body of the same length and thickness to the sonic line as
the wedge which was used. Based on the foregoing discussion of the
analytical results, the theoretical pressure for the wedge itself should
be very close to this.

The pressures on the surface of the wedge at Station 46 are in very
good agreement with the theoretical values of Reference 3 for at least
90% of the surface. The nose region is not accurately described by
Reference since the 71 goes to infinity under the approximations used
while the actual flow should have a stagnation point at the nose.
Dr. Guderley has recently corrected these results to include the nose
region.* The corrected pressure distribution is also shown in Figure 2b.
The agreement with the uncorrected theory is apparently a compensation
of the approximation errors of the theory and the thickening effect of
the boundary layer.

7Vedge at Angle of Attack

Figure 7b shows the lift data obtained by recording the pressures
on the surface of the wedge for e( from 0 to 60. Since only one side
of the wedge had enough holes to obtain the pressure distribution, runs
were aetually made with corresponding positive and negative angles of
attack. To check whether the angles were the same, the orifices at the
mid-chord point of the opposite side were also recorded, and it was
necessary that the pressure at this point match the curve for the corres-
ponding run.

It will be noted that there are two distinct regions of this lift
curve. The dashed line is the theoretical value obtained in Reference
5 forq4(<c 0. It can be expected that as the supersonic region at the
nose grows, the actual curve will deviate from the one obtained analytically

*Report to be published.
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by neglecting this region. When the entire upper side becomes super-
sonic the body can be expected to act essentlally like a flat plate.
The flat plate follows the relation CL" 2/O, and hence, the steeper

slope. For thinner wedges the range of angles of attach where
is less and consequently the transitior will occur sooner*

Biconvex Section

Figure 11 shows the wall pressure data obtained with the model nos.
at Station 46. This appears to have the closest to correct pressure
pattern. Comparison of this pattern with that given by the wedge reveals
some interesting information. The maximum Cp for the biconvex section
is .300 while for the wedge it is -334*. From the similarity oonsiderations
previously discussed, for the wedge the scale factor Zz is .0364. If it
is assumed that the ratio of the values of Cp would be the same asymptotic-
ally since Cp - 2 (r + 1)1/3- f '(.. )-2/5, for the biconvex section, the

zz
value of Z2 would be .0264. The interferogram for this run (Figure 12)
indicates that the sonic line is at X6 5 .400. The 'corresponding'
cusped body or wedge of this length to the sonic line has a height to
that ya - .113. The geometry of the biconvex section gives YS - .113.

4
Hence, there is agreement in the role of Y06 for all three sections
thus far considered.

Conclusions

A. The analytical results indicates

l. Within the accuracy of the numerical methods used, wedges and
cusped bodies of the same length from the nose to the sonic line and
thickness at the sonic line give the same asymptotic flow fields.

2. Planar bodies of a given family which give the same asymptotic

4
flow fields ltve the same values of Y 1X5 . This value is propor-
tional to

3*. For planar flows, over bodies of normal thickness ratios~the
distance/where the streamline shape will be given sufficiently weo by
the "basic" solutionjis within the bounds of experimental feasibillty.
In the example considered it is about 20 chord lengths.

4. For moderate angles of attack the influence of lift on ull
configurations is small compared to the influence of thicknesse

5. For the axisymnetric case, asymptotic solutions are also given,
but it is not clear how to correlate these results with particular closed
body shapes except by experiment.
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B. The Preliminary Bxperimental Study Indicates:

I. Even for the ratios of tunnel height to model thickness less
than twenty, which were used in this study, good agreement with theo-

retical results at Mach One can be obtained.

2. The straight walled tunnel appears worthy of further study as
a means of simulating sonic planar flow over bodies.

3. With due consideration for the crudeness of the experimental
setup, pressure distributions on a wedge withW (9. are in good agree-
ment with the predictions of Reference 3 and 5.

4
4* There is evidence that the value of is the parameter

which will determine the basic source strength and hence, the wall
configuration.
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FIGURIE 10: ~VEDGE MODEL
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FIGUR 12:i INTE1RFEROGRAM OF' BICOIVX. MODEL
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