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COMPLEXITY AND COMPLEXITY CHANGE

( OF A LARGE APPLICATIONS PROGR .AN

FINAL REPORT

Extended Abstract

There are 2 objects in studying the nature of complexity of
understanding in large software systems . The first is to
gain insight into the underlying causes of complexity , so
as to be able to minimise this ab iaitio by an appropriate
design methodology . The second is define a measure or
measures of complexity , by means of which degradation of
system structure during the maintenance phase can be
monitored and hence controlled.

This report describes an investigation into the complexity
of a single large program, and into the changes in complexity
which have occurred as a result of the maintenance process.
The program, which is written in Algol, was developed by the
Midland Bank to run as middleware on the Burroughs computers
at their main computing centres. Its principal function is
to schedule the nightly processing of their customer account
records, although it has many other important capabilities.
It has been in use for the last 5 years , during which time it
has grown from a size of 36K source lines to 61~K source lines
by a series of 13 releases , planned to occur at regular
intervals .

In conj unction with an attempt to give a care ful discussion
of the nature of understanding in large programs , a detailed
study of the subject program suggested that one significant
complexity factor was the breadth and depth of the fully
decomposed functional structure . This concept does not appear
to have been discussed previous ly in connection with program
complexity , which has in the past been almost always considered

-~ in relation to relatively trivial programs.

The program itself is constructed from a large number of
procedures (650 growing to 1000) , none of which is very large ,
so that the functional structure was closely approximated by
the procedure calling hierarchy . This was extracted by a
suitable modification to the Algol compiler . It was found
that while the breadth of the calling tree at any level grew
with program size, the shape of the tree was practically
invariant. In particular, the maximum depth remained constant
at ~l levels despite an 80% growth in program size.

It was observed that the size of the tree was largely determined
by the multiple use of ‘service’ type procedures which in
themselves had extensive sub-trees . Since it was not
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reasonable to suppose that these sub-trees would need to be
completely re-understood at every point where the parent
procedure was called, the notion of ‘distinct’ calls was
introduced. By this, a procedure only appears in the tree
when it is called from a hitherto - unencountered procedure ,
ie. it represents a completely new and distinct use of the
procedure . This suppresses all sub-trees after the first
call of the parent procedure .

The tree of distinct calls did show some weak evolution in
depth , from 16 levels to 18 levels, with a 5~ % increase in
the total number of calls . A simple complexity measure was
proposed in an attempt to capture the difficulty of under-
standing this tree, based on the qualitative discussion
referred to above. After factoring out the evolution in
size, a residual increase in complexity of between 15% and
30% was indicated. This appeared to be consistent with the
subjective judgement of the programming team.

On applying the complexity measure to 2 of the principal
sub-systems of the subject program, variations were observed
on a release-by-release basis . In all cases where large
variations occurred, it proved possible to relate these to
significant changes which had been made to the program. This
provides some confidence that the complexity measure defined
is applicable to this type of program. However, it is clear
that an equally important factor contributing to complexity
in this program is the way in which procedures at all levels
interact through shared global variables in a time-dependent
manner . Further progress in this area will require the
introduction of a multi-dimensional model of software
structure.
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FINAL REPORT

1. Introduction

Even without a precise definition of ‘complexity ’ in

software , it seems to be generally agreed that it is an

undesirable , but apparently inescapable , property which

adds greatly to the cost , time and diff iculty of contstructing

large software systems . Further , large programs are

observed to undergo substantial change and expansion

during the in-service phase of their life-cycle; a recent

estimate (2 )  put the cost of the maintenance phase at more

that 60% of the total life-cycle cost , compared with less

than &eO% for the development phase . The established fact of

continual growth in large programs, together with a knowledge
- - of the piecemeal way in which such growth tends to impact the

original design concept , suggest that complexity may increase

significantly during the maintenance process unless specific

steps are taken to prevent this from happening . By corollary,

an uncontrolled increase in complexity could be a major

factor in limiting the useful life of such systems . (Useful

life being defined as that period over which it remains cost-

effective to adapt the system to the evolving requirements of

the user.)

Thus there are 2 objectives in studying complexity in

software. The first is to gain some insight into the

fun damental causes of complexity , which could then be applied

V t ,  
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to improving the original programming process. The second

is to see whether any quantitative measures of complexity can

be proposed, which could be used to monitor and control

degradation of system structure during the maintenance phase.

Implicit in this approach is the assumption that a cost-

benefit analysis would show investment in reducing complexity

to be a profitable life-cycle option. The financial (and

organisational) interface between the development and

maintenance phases may however prevent such an analysis

from being carried out in an un-biassed way .

The project here reported on was of short (12 months)

duration, and was intended principally as a pilot study to

assess whether any progress could be made in developing a

quantitative complexity measure. A single large program

was studied, the EXECUTIVE scheduler developed and owned by

the Midland Bank Ltd. This was selected for a number of

reasons. First, it was felt to be sufficiently large and

V ‘complex ’, and it had undergone significant evolution during

the last 5 years . Second , the system was written in Algol,

which encourages a regular structure , thus making complexity

more likely to be simply definable and measureable. Thirdly ,

the source text for all released versions was still available

in machine readable form.
V 

There was little in the way of formal documentation to

describe the program , and it was necessary to study the

actual source text in order to acquire a good basic under-

standing of functional capability and structure. As a

result of this, the complexity measures originally proposed

were seen to be inappropriate to the program, and a different

approach was suggested

________ 
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The compiler was modified to generate the additional

basic data required for the new measures, and a data reduction

and analysis program was developed ~~. Using these tools

the 13 extant version of EXECUTIVE were studied.

Although in the original proposal the emphasis was on

measuring complexity , the investigators consider an equally 
V

important outcome of the project to have been the generation

of some ideas about the nature of complexity , via the insight

gained during the process of understanding a large program.

Although it should be emphasised that these ideas are not

yet complete or rigorous, they may serve as stepping stones

towards a better understanding of the problem. For this

reason , some discussion- of the nature of complexity is

given in the next section of this report . The reader who is

less concerned with the underlying philosophy should proceed

to Section 3 ( page 13) , which deals with the actual

L measurements and their interpretation.
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2. Some Remarks on Complexity

2.1 Types of Complexity

The relative complexity of programs can be considered

from basically 2 distinct points of view . On the one hand ,

we have the machine which executes the program, and on the

other, the human who designs , uses and maintains it.

Machine oriented measures of complexity (computational

complexity) are typically concerned with the number of

primitive operations required to execute the program on a

given type of computing machine, and this area has been

extensively researched (6)• Such measures are concerned only

with the transformation of one set of numerical data into

another. It does not matter to the machine whether the data

have any meaning, or whether the transformations are ‘correct’.

All information in the machine is represented by pure

numbers , which are in themselves completely abstract entities

devoid of significance. (For example, there is no capability

to associate dimensional units with data.)

To the h uman being, however, the usefulness of the

program resides entirely in the ability to associate real

phenomena with abstract variables: “Let U denote the velocity

of the missile , in metres per second” . Such specification

statements are a fundamental constituent of the program, even

although they are completely irrelevant to the machine

execution of it. Thus , to design a program in the first

place , it is necessary :
— 

a) to represent observable phenomena by abstract variables;

b) to assert some functional relationship between the

variables that holds independent of their actual values;



c) to define a sequence of mathematical operations which

will produce the correct output response for each

specific set of input data.

In order subsequently to understand the program that has

been created , the reverse process must be carried out:

a) analyse the mathematical operations ;

b) deduce the functional relationships;

c) interpret the relationships in terms of a conceptual

mode l of the real world.

The total diff icul ty of constructing such a conceptual model

represents the complexity of the program from the human point

of view , and will be referred to as ‘Complexity of Understanding ’ .

We see that complexity can arise at each of the 3 steps

in the understanding process . At the first step we may

encounter complexity in the detailed coding of the program ,

at the second step complexity of implementation of functions,

and at the third step complexity of functional capability .

It may not be easy to separate out these 3 effects in complexity

measures based on the structure of the actual program source

text.

Finally, we may need to distinguish carefully between

the complexity in understanding a given program as it stands,

and the complexity in understanding how to implement a

desired conceptual change to it without affecting any other

aspects of its behaviour. For as a result of the original

design process , the implementation of a given function

frequently contains embedded assumptions about the rest of

the program. However, since these assumptions are fixed ,

once they have been determined the understanding process can

~~~~~ 
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continue withoutfurther reference to them. In this sense ,

immediately a program has been understood , it becomes less

complex. In making a subsequent change, however, we must

seek to understand flLt only the obvious , localeffect of the

change , but also the consequential effect on the other parts

of the program.

This requires an inverse approach to understanding the

program, since we are concerned with arbitrary influences

rather than logical dependencies .

2.2 Understanding

Before we can attempt to derive any quantitative measure

of complexity , we must define as carefully as possible what

we mean by ‘understanding ’ in relation to software. A system

can be understood (in the conventional English usage) at

many different levels of detail, which range from having a

F, rather general idea of the overall purpose of the system, to

being able to explain the precise significance of each

executable instruction. If we adopt the definition of a
-

V large system as one requiring many programmers organised on

more than one level of technical management , it would be

unrealistic to insist that one person should be able to

und~.rstand the whole system at the individual instruction

leve. However, at some stage it must be possible to acquire

such a detailed understanding , even if for a single individual

this only relates to a restricted part of the system; other-

wise it is not possible even in principle to determine what

the system does .

Large systems are invariably constructed from a number

1-
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of program components (eg. segments , modules , procedures ,

sub-routines , etc.) which give the appearance of being self-

contained , but which may interact through parameter lists

and shared data areas. Usually, the system works by having

a ‘master ’ component which is entered at the beginning of

execution , and which in turn calls a number of subordinate

components . These in turn call further subordinate components ,

and so on, creating a hierarchical calling structure . In

complex programs , this structure can be very deep; in

EXECUTIVE , for example , it extends to over ‘~O levels .

Regardless of the level at which it appears in the hierarchy,

each component consists of ‘visible ’ executable statements

interspersed with statements invoking subordinate components.

In irder and content, the visible statemerLts constitute the

framework of the component , and must be understood as a

co-operating sequence. The process of understanding the

sequence involves a statement-by-statement analysis , with

the gradual emergence of an abstract functional picture of

what is being done. At any point where a subordinate

component is invoked , analysis of the original component must

be suspended while the new component is investigated . When

this has been completed , an abstract description will exist

in the mind which must then be assimilated into the analysis

of the original component , where it will either expand or

modify the partial picture previously generated. Thus to

understand any component entails the integration of 2 different

levels of detail.

Consequently, it is not strictly correct to speak of

understanding a program down to a certain level of detail,
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because it is always necessary to achieve some understanding

at the level of the individual statement, and the functional

power of that statement is limited to a simple operation

on primitive data objects .

However, once the functions of a component have been

understood in detail, it should be possible to generate a

conceptual description of what it does. Part of that

description will embody corresponding descriptions of any

subordinate components invoked by it, and so on down the

calling hierarchy . It is tempting to suppose that if we

stop at a particular level in the hierarchy, then we shall

be able to generate a description of the system that is

complete down to that level, ie. that we can equate levels

in the calling hierarchy with levels of description . The

correc-~ ess- , or otherwise, of this supposition is absolutely

crucial to the way in which we approach the problem of

understanding large software systems . When it is correct,

the implication is that there is very little functional

coupling between levels , and that details in the descriptions

of lower level components rapidly become irrelevant as they

are assimilated at higher levels . In this case , the amount

of mental effort required of any one person at any one time

is restricted to that needed to understand one component only .

When the supposition is not correct, the implication is that

the mental grasp required of an individual extends to

integrating detailed descriptions of sub-components across

many levels. We believe that thelatter case is the one

which usually applies with large systems , and that this is

the basic cause of complexity in such systems . (A specific

--V- V .



example might be where a control variable is set by a component

at a low level in the calling hierarchy , and subsequently

tested - to determine the course of action - at a high level.)
We note that several complexity measures which have been

proposed in the literature (7) ,(8) ,(9) ,(lO) ,(l1) ,(12) do not

address systems where interaction between components at

different levels is the major source of difficulty of

understanding .

The foregoing discussion leads to the following,

tentative, definition of ‘understanding ’ in the context of

large software systems:

I. A system is understood when each component of the system

V is understood;

II. Each component is understood when it is possible for

an individual

a) to explain the significance of each statement in

the component,

and ,

b) to generate a conceptual description of what the

component does .

Note that 11(b) automatically implies that we are

considering the role of the component in relation to the

system as a whole , by virtue of requiring a conceptual

description . Note also that since this definition does not

specify that each component must be Understood by a

separate individual , it applies to both the weakly-coupled

and the strongly -coupled types of system described above.

We shall use a capital U to denote use in
the sense which has just been defined.

L ~~~~:. - .
—
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The difference between the 2 types of system is that in the

latter one individual may have to Understand several

components together in order to Understand one .

We can now proceed to define the ‘complexity ’ of each

compOnent as the amount of mental effort required to

Understand it. By assessing complexity at the component ,

rather than the system level, we are attempting to capture

the irreducible mental load imposed on a single person at

one t ime . The system comp lexity needs now to be assessed

in a more qualitative way, posslbly by the distribution of

component complexities as a function of level in the calling

hierarchy ; at this stage , the organisation of the programming

team may also enter as an important factor.

2 .3  The Sub-Division of Systems

— The system as a whole has 2 interfaces with the external

world, an input and an output interface. If the system is

divided up into components, then additional interfaces will

be created between these components. Across these internal

interfaces will flow data which will predominantly not have

a direct external significance, but an internal significance

depending on the functional path by which it has been generated.

In order to Understand any component , it will be necessary

to know the significance of each variable used , since other-

wise the functions performed by the component cannot be

abstracted into a conceptual description . (Th~ ~ is not

applicable to ‘pure ’ procedure-type components written in

terms of formal parameters , since these are , by design,

Understandable without reference to the actual parameters:

V  _- ~~~~~~~~~~~~~~~~~~~~~~ 
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we treat these as a special case.) It follows that part of

the difficulty of Understanding a component lies in the

difficulty of attaching a meaning to each of the input

variables in the context within which the component has

been entered. It may not be possible to do this without

some knowledge of that context, and it is this factor which

prevents the classical hierarchical decomposition from being

carried to the absurd limit of allocating each statement to

be Understood by a separate person . We suggest that this

is one important reason why software systems are orders of

magnitude harder to understand than hardware systems , which

can almost always be decomposed to a fairly primitive level.

However , it is instructive to reflect that limits are reached,

even for hardware systems . A good example would be the

humble bi-stable circuit (flip-flop), whose overall function

is easy to understand as an entity, but which would be very

hard to understand if split into 2 separate parts; the

functional significance of the interface cannot be precisely

described without considering both parts together. It is

of interest that the vast majority of electronic systems

are constructed from simple basic circuits consisting of no

I- more than half—a—dozen active components. The basic ‘circuits ’

of a software component are not the individual statements ,

but sequences of statements which co-operate together, and

these can be as long and as varied as human ingenuity can

devise.

Input data to a component can arise from many different
V 

sources , spanning the hierarchy between variables global

to the whole program (including on-and off-line files) and 

- -~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _  
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variables local to the immediately invoking component.

There are 2 factors which affect the difficulty of under-

standing each variable. One is the number of places at

which the variable is given a value , since it is possible - -

that at each place the significance is different. The other

is the functional complexity of the variable, ie. the

dependency chains of statements and variables through which

its value was determined. The first factor will tend to

affect global variables , the second will tend to affect the

most local input variables. Further, if a variable is given

a value at many places , it may be necessary to determine

the actual place or places immediately preceding the current

point of use. That is, the global control structure of the

program may be significant. What this means is that the

person trying to Understand a component might have to

investigate many other components in order to appreciate

the significance of the input data. In a well- designed

program, the data-dependency structure would correspond to

the calling hierarchy , but in real programs it will not,

and this gives rise to incompatibility between the formal

sub-division of the program and the true functional sub-

division of the problem it solves.

Obviously, one is thinking here in
terms of block-structured languages. 

~~~~~~~~~~~~~~~ 
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3. Measurements on EXECUTIVE

3.1 General Approach

The original proposal for this research project was to

test whether there was a detectable upward drift of variables

in the block structure of the subject program. Following

a detailed examination of the program ~~~~~~
, it was decided

not to pursue this approach since all the functionally

important variables were necessarily declared either as

global variables or within the outer block of a major

component: it was not anticipated that the null result

previously found for the first ~ releases of EXECUTIVE 
(13)

would be reversed in subsequent releases.

However, it was observed that EXECUTIVE had been written

as a set of inter-acting procedures, and that the functional

structure was, to a first approximation, based on the procedure

calling hierarchy . Following the line of argument developed

in Section 2, it appeared plausible that several features

of this calling structure - the depth, the degree of

branching, the total size, the distribution of procedure

calls by level, etc. - could be relevant to the complexity

of the program. It was decided , therefore, to analyse the

calling structure to see whether any detectable evolutionary

pattern could be observed.

A standard compiler option (XR E F )  can be used to

generate a file giving the card sequence number of every

reference to every variable and procedure. In order to

V 
obtain the calling structure from this file, it is necessary

to be able to associate every card sequence number with the

~~~~~~ — —--— —
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procedure within which it occurs . This was achieved by

modifying the Burroughs Algol compiler to produce an

additional file containing the sequence numbers at which

each procedure declaration began and ended. A reduction

program was then written to merge the information in the 2

files and to create a table of the procedures called by

each procedure. At the same time, the compiler was also

modified to produce an analysis of procedure declarations

by lexicographical level.

The table of procedure calls represents the hierarchica],

or tree, calling structure of the program. Each procedure

call is a node in the structure, and the nodes which it

calls are in turn connected to it by branches. A procedure

which is called from many places will therefore appear at —

several distinct nodes in the tree, together with its

dependent branches, and these distinct nodes can be at

varying levels in the tree. A procedure which calls no

further procedures is a terminal node (i.e. at the lowest

level of the tree, all nodes are terminal). At other levels,
- 

- some fraction of nodes will be terminal . The tree structure

can be analysed recursively: starting from an arbitrary node ,

one branches in turn to each of the nodes which it calls,

until a terminal node is reached. (Recursive chains must be

detected and terminated at the point of recursion.) By

keeping a record of the total number of nodes, and the

number of terminal nodes, at each level, a profile of the

tree, or of any sub-tree , can be built up.

In the original version of the tree analyser, each

node in the tree was actually visited. While this worked

- --I 
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satisfactorily for smaller test programs, it proved to be

impossibly slow for EXECUTIVE , where there were found to

be of the order of 1 million nodes at the maximum width level.

(The C.P.U. time for a complete analysis was estimated at

13 hours.) Since this was mainly due to the repeated use

of a limited number of service-type procedures, it was over-

come by recording the sub-tree dependent from each procedure

the first time it appeared at a node. At subsequent

appearances , the sub-structure was appended in toto to that

of the procedure immediately antecedent to it in the tree.

The execution time was reduced to 30 seconds, at the expense

of taking up 300K of core. The actual results obtained

from analysing the 13 extant versions of EXECUTIVE are

discussed in .~~ 3.3 , following a discussion in ~ 3.2 of the

overall evolution of EXECUTIVE between 1973 and the present.

3.2 The Evolution of EXECUTIVE

EXECUTIVE is a scheduling program developed by the

Midland Bank Ltd., and used to control the nightly batch-

processing of customer accounts at 2 computer centres,

running on Burroughs B7700 computers . A general functional

description of EXECUTIVE has already been given in an

Appendix to reference (3). It is written in f~lgol, and was

first released to the user in November 1973 (release 216).

Enhancement of the program has been by a series of

planned releases at approximately 5 month intervals. The

work to be done in each release is planned in advance, and

consists of changes negotiated with the operational

departments to meet the evolving needs of the Bank or

L ~~_ V V . V. V.. .

~
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changes in the law, plus other improvements requested by

the computer operations department or generated by the

programming team. Although the latter category of enhance-

ments is under control, in the sense that changes which

are obviously going to be difficult to implement tend to

be avoided , the former category is not, and represents an

evolutionary pressure that is potentially independent of the 
V

current structure of the program. Often, indeed, these

new requirements could not have been foreseen at the time

of the original development . Generally speaking, only one

release is under development at a time, although there was

some parallel development of releases 221 and 222; also

release 228 contained items left out of 227 because it had

to meet an operational deadline.

The initial release (216) had a size of 36K Source lines,

while the current release (228) has a size of 64K lines, which

represents a growth of some 78% in 5 years. The actual size

of the program - in lines of source text - at each release
V I is given in Table I , and plotted in Figure 1. Figure 2

shows the growth against the alternative (pseudo ) timebase

of release number. The best linear and quadratic fits to

the data are given in Table II. From the correlation

coefficients obtained , there does not appear to be a

significant difference between using calendar time and

release number as the timebase. In view of the way in which

releases are planned , this is not unexpected. The quadratic

fit is slightly better than the linear fit, and both timebases

show an increasing growth rate with age. Since the size of

V the programming team has remained approximately constant,

this result suggests (if anything) that the program has

U. 
— - V.
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become easier , rather than harder, to work on with the passage

of time.

A very rough estimate of the level of programmer

productivity applicable to EXECUTIVE can be derived from

the size increase over the last 5 years. The team strength

has remained roughly constant at 1 Chief Programmer + 2

Senior programmers + 2 programmers. Allowing for training

requirements and other non-productive activities , we estimate

the total effort from November 1973 to November 1978 at

about 200 man-months. This gives a productivity figure of

140 lines per man-month , a figure in the same region as that

obtaine d by Walston and Felix in a study of some 60

• 
- programs during development. The figure obtained is an

underestimate , since it makes no allowance for the lines of

source text replaced during the process, and this is

certainly a significant factor. Unfortunately, no data are

- - available on this . If we make the assumption that every

line of the original program has been replaced at least once
V in the life of the program - and from discussion with the

programming team, this appears to be a reasonable assumption

- then the productivity figure goes up to 320 lines per

man-month , which is, if anything , on the high side relative

to the results of Walston and Felix.

However, lines-of-source-per-man-month is a notoriously

unreliable index of programmer productivity . Also, it is

known that the changes which have been made to EXECUTIVE

have varied widely in their impact on the program. Hence,

it would be most unwise to draw any firm conclusions from

the growth data about the complexity , or changing complexity 

~~~~~~~~~~~~~~~~~~~ 
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of EXECUTIVE. The best that can be said is that

EXECUTIVE does not appear to be either very easy or very

hard to enhance, and that there is really no evidence that

it has become harder to work on as a result of its substantial

growth .

An alternative way of measuring the size of EXECUTIVE

is by the total number of procedures from which it is

composed. This data is given in Table III, and the relation-

ship between number and program size is shown in Figure 3.

Overall, there has been a 47% increase in the number of

procedures for a 78% increase in source lines. Note,

however, that the increase in procedure numbers is a function

of the lexicographic level at which they were declared ,

and that lexicographic level 2 procedures (those declared

immediately within the outer block, and so global to the

whole program) show the smallest increase. Remembering that

a procedure at lexicographic level (n+1) must be declared

within, and is only accessible within, a procedure at lex.

level n, one way of looking at the data is by the ratio of

procedures at (n+l) to procedures at n. These figures are

given in Table IV.

These data may be interpreted roughly as follows. The

level 2 procedures correspond to the principal sub-system

of EXECUTIVE , plus any ‘service’ functions which need to be

available to the whole system (eg. the File Access Methods

component). The 25% growth in these sugge::s there has been

an overall growth in the basic functional capability of

EXECUTIVE of about this amount. Since the overall increase

in source lines is over 3 times this figure, we infer that

much of the growth of EXECUTIVE has been due to changes in

- 
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detail to existing (sub- ) functions. This is reflected by

the substantial increase in the relative number of procedures

declared at lex. level 5, together with a comparatively small

change in the relative numbers declared at levels 3 and 4.

The final inference is that there has been an increase of

65% in the average length of a procedure, although we cannot

say how this increase is distributed amongst the levels.

Taken together, these results suggest a considerable increase

in the local, or internal, complexity of each procedure.

3.3 Functional Program Complexity Analysis

As discussed in §3.1, our current approach to program

complexity is via the functional hierarchy of the cafling

sequence. The objective of the actual analysis of EXECUTIVE

was to see whether there was any significant evolution in

any parameters relating to that hierarchical structure .

The overall evolution of the tree calling structure

— between release sequence numbers 216 and 228 is summarised

-
‘ 

in Table V. The most striking - and unexpected - feature
is that the depth of the structure has not increased at all.

V 

Secondly , the shape of the distribution of nodes versus

level has changed only in detail, even though the number

of nodes at any given level has gone up twice as fast as

the number of source lines: the mode of the distribution

oscillates between levels 19 and 20, and the me~~an between

levels 18 and 20, when all releases are taken into account.

Thirdly (Table VI), neither has the percentage of terminal

nodes at any level changed significantly . The initial

assessment is that this implies tremendous stability in the
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functional structure of the program, and supports the view

that large programs have a kind of infrastructure which

is extremely hard to change. This infrastructure is

certainly a function of the nature of the application and

of the design approach, rather -than just program size.

(For example , the Algol compiler, which was subjected to a

similar analysis, had a size of some 35K lines with a total

of 693 proced’-.res. Yet the calling hierarchy descended to

level 53 , with mode and median both located at level 30,

somewhat more than half-way down the tree.) We produce some

evidence later to suggest that this apparent stability is

partly a statistical phenomenon due to the smoothing effect

exerted by a large program. But it is nevertheless highly

significant when viewed over so many releases , and occasioned

surprise in the programming team.

The rationale for the above approach is that each node

in the tree represents a new intellectual task. Since the

total number of nodes exceeds the total number of distinct

procedures by a factor of 40,000, this seems a questionable

assumption . It is clear that the depth and span of the

tree is due in great measure to the repeated use of procedures ,

especially those ‘service ’ type procedures which have extensive

sub-trees dependent from them. Unfortunately , these service

procedures generally interact with the calling procedure

through shared global variables as well as through formal

parameter lists . Thus it is nd safe to assume that their

effect is independent of the point at which they are called.

However, it may be possible to make a compromise assumption

by which the sub-tree of a procedure is regarded as Understood

IL I 1V.V.~~~
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after it has been analysed jus t  once: it remains only to

check the visible statements of the procedure at each point

V of call to determine how it interacts functionally with the

calling procedure .

Under this assumption, which is almost the n ,t simplifying

one which can be made , we can ignore those nodes in the

tree which are there solely by virtue of being part of a

previously analysed sub-tree . (Obviously, each sub-tree

must be completely analysed at least once; when this has

been done, a marker can be set to indicate that it need not

be re-analysed at a subsequent occurrence.) We shall refer

to the remaining nodes as ‘distinct’, in the sense that they

represent completely distinct uses of a given procedure .

The analysis of the number of distinct nodes as a

function of level is given in Table VII. Apart from a

drastic reduction in the number of nodes at any level (except

level 1), the most obvious difference to Table V is that

the depth of the tree is reduced from 41 to 16, with some

slight evolution to greater depth (18) by release 228. This

• means that the longest distinct sub-tree in EXECUTIVE is

only 16 to 18 levels deep , and that all the nodes occurring

in the complete tree below there are due to the use of

chains of ‘service ’ procedures. The total number of distinct

nodes has grown by 54%, slightly faster than the growth in

the total number of procedures (47%), and slower than the

growth in source size (78%). This implies that the average

number of distinct calls per procedure - the number that

would be deduced from a static analysis of the source text -

has gone up by 5%, while the density of calls per source
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line has declined by 14%. Thus neither of these measures

shows any strong trend.

Based on the ideas presented in~2.2, we can define a

complexity measure which attempts to quantify the mental

effort needed to integrate the functional decomposition

into a complete description . If we suppose that the

difficulty of integrating a low-level procedure is some

function of the depth at which it occurs, we can define

m
C n (1) r
r i:).1

in
I ni
i~l

where is the number of nodes at level i, m is the maximum

depth of the tree , and r is a power-law index. The denominator

is a normalising factor : Cr is essentially just  the r ’ t]-i

moment of the distribution of levels. The behaviour of

C1, C 2 ,  C 3, and C 4 is given in Table VII I .  We note , first ,

that there has been a modest increase in all 4 coefficients.

The increase is itself a montonic function of r , and is over

and above any effect due j ust to the increased size of the

program . Secondly , we note that the evolut ion in Cr is

almost exactly zero up until release 223;  for all Cr~
the changes take place entirely between releases 2 2 3  and

228 .  It has not so far proved possible to find a convincing

explanation for this behaviour , although the sharp increases

at release 225 and 227  do coincide with substantial changes

in EXECUTIVE imposed by new operational requirements .

Since the increase in sheer size of the source text has

been the outstandingly dominant factor in the evolution of

- -—
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EXECUTIVE , it is difficult  to assess the extent to which

the complexity of the program as such has changed. The

impression gained from the programming team is that there

has been an increase in the overall difficulty of under- V

standing EXECUTIVE , but that it has not been large. On

this basis , we believe that a value for r of between 2 and

3 would give a complexity coefficient Cr whose behaviour

was consistent with this very qualitative judgement. This

indicates a complexity increase of between 15% and 30%.

3.4 The Analysis of Some Sub-Trees

Since the analysis of EXECUTIVE as a whole had not

shown up any marked trends in possible complexity measures ,

it was decided to look at some of the sub—systems . The

principle sub-system is associated with the WS procedure,

which schedules and initiates the applications programs.

In addition to the overall trend , it was noticed that there

was a sharp increase in the depth of the complete sub-tree ,

from 28 to 35 levels, between releases 26 and 27. On enquiry,

it was suggested that this might have been due to the changes

made to the File Access Methods component at release 2 2 7 .

The analysis of FAM and its sub-tree provided conclusive

evidence that this was the case: the relevant figures

are given in Table IX. (This result is slightly meretricious

since FAM is not used directly by WS , but appears in its

sub-tree because it is passed as a parameter to the external

applications program.)

Another important sub-system is the operator communications

component, OPSCOM . The behaviour of the OPSCOM sub-tree

is given in Table X. Note the marked changes at releases
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218 , 220 and 225.  Unfortunately , it has not been possible

to find out what happened at releases 218 and 220. However ,

it is known that at release 225 , OPSCOM was substantially

altered in order to accommodate a new table structure

imposed by another change, and it is claimed that the

opportunity was taken to simplify the component. This

claim appears to be borne Out by our analysis . The functional

capability of OPSCOM wa.s increased , yet the total number

of distinct nodes was more than halved and C2 reduced by

25% . This is the only direct evidence we have that there

is a correlation between the structural parameters of the

calling tree and the perceived complexity of the program.

The investigation of these 2 sub-trees has shown larger

variations in the tree parameters than were evident from

the analysis of EXECUTIVE as a whole. We interpret this

as stochastic smoothing, due to the effect of combining a

number of independent changes in a large program volume .

— ‘ 1 It follows that any obvious variation in the parameters

-
- 

- 

- 

for the whole program should reflect a major change to its

complexity . If we examine Table VIII in more detail , we

see that ‘obvious ’ variations in C2 and C3 occurred at

releases 225 and 227. Both of these releases were associated

with significant extensions to the functional capability

of EXECUTIVE , the former impacting about 75% of the program

source text.

_ _ _ _ _ _ _ _ _ _  - - - - -
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4. Summary and Conclusions

The investigation of a large program has led to a

better understanding of some of the factors which contribute

to complexity . This suggested an approach to measuring

complexity by considering the structure of the procedure

calling tree, and some special software was developed to

extract this structure from the program source text. A

complexity measure has been defined, and the analysis of the

last 13 releases of the subject program reveals a modest

evolution in this measure in addition to the overall increase

in the size of the tree. The analysis of some sub-trees

supports a conclusion that the complexity measure and the

tree size are indeed correlated with the complexity of the

program, as assessed by subjective judgement.

The absence of any dramatic increases in the complexity

of the whole program is attributable to the smoothing effect

of size.

The most dominant factor in the evolution of the subject

V 
program has been the sheer increase in size, although this

does not appear, in itself, to have been a cause of

V 

increasing complexity . This conclusion is possibly moderated

by the experience of the programming team with the subject.

The overall conclusion is that considerable progress

has been made in understanding complexity in a large program,

and that a useful quantitative measure of complexity has

been demonstrated. Complexity however, is not a single simple

concept and many further facets of this property remain to be

investigated. 
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Although not mentioned elsewhere in the report, it

was clear that to the progr~Jnming team, who already Understood

the program, a major source of difficulty during the main-

tenance process arose - from the way in which procedures at 
-

a].]. levels interacted directly through shared global variables.

It was observed that a great deal of effort was spent in

trying to determine which variable was set by what procedure

and at what point in time. This is a distinct, but equally

important complexity property of the program, and a proper

continuation of this research will require the development of

a suitable mode]. of software structure to represent these 
V

interactions adequately .
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TABLE I

The Evolution of Some EXECUTIVE Size Measures

Release Release Age at Size by number Size by number-
Version Date Release of source lines of Procedures

No. (days) t

216 6/11/73 141. 35 845 657

217 5/ 2/74 232 37 362 684

218 27/ 8/74 435 39 867 718

219 8/ 4/75 659 42 946 749

220 6/11/75 870 44 345 752

221. 28/ 4/76 1045 45 322 772

222 20/ 5/76 1067 47 560 779

223 10/ 9/76 1180 47 645 783

224 8/ 8/77 1513 - 51 758 811

225 24/10/77 1597 57 662 884

226 10/ 7/78 1.856 
- 

60 404 894 
V

227 2/10/78 1940 62 838 958

228 20/11/78 1989 63 843 967

Overall growth , 216 to 228 : 78.1% 47.1%

* Prom the release of version 214 on 18/6/73
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TABLE II

Analysis of E1~~Ct3TIVE Size Growth by Sourc e Lines

1. Real (Ca lendar ) time

Best linear fit:

s—32563 + 14.379 A

r 0.982

Best quadratic fit:

a — 35810 + 6.0539 A + 0.0039818 A2

r 0.992

S (a size in lines of program, A — age in days

r a corre lation coefficient)

2. Pseudo (release number) time

Best linear fit:

s—3 2l 53 + 2411.].1~RN

r — 0.984

Best quadratic fit:

s— 3 4 9 0 5 + 131o.~~RpN + 78.~~~ppJ(2 
V 

V

r — 0 . 9 9 0

(REN relative releas e number releas e number — 215)

t I
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— -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

~ 

- ___s.



TABLE III

Evolution of Procedure Declarations by Lox. Level

Release Number of Procedures Declared at Level
Version
No. 2 3 4 5 6 7 8

216 141 179 238 61 32 6 
- 

-

217 1.43 184 246 68 35 7 3.

218 145 1.91 271 83 21 6 - 1.

219 155 199 275 91. 22 6 1

220 155 203 274 91. 22 6 1.

221 157 213 269 90 36 6 1.

222 167 213 266 89 37 6 1

223 165 207 276 91. 36 7 1.

224 164 21.1. 280 125 29 2

225 174 256 284 141. 35

226 171 242 29]. 151 39 
-

227 3.75 258 328 3.54 43

228 176 260 333 156 42

Overall (Level 6 and below)
Growth (%): 24.8 4 5 2  39.9 155.7 25.0 

- -
- —-— 
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TABLE IV

Evolution of Relative Procedure Frequencies
I

Release Number of Procedures at Lox. Level I
Version Relative to the Number at Level 1—1

No. 2* 3 4 5 >6

216 141. 1.270 1.330 0.256 0.623

21.7 143 1.287 1.337 0.276 0.632

218 145 1.317 1.419 0.306 0.337

21.9 155 1.284 1.382 0.331 0.319

220 155 1.310 1.350 0.332 0.319

‘ 221 157 1.357 1.263 0.335 0.478

222 167 1.275 1.249 0.335 0.494

:~~~
-
~

- --
~~ 223 165 1.255 1.333 0.330 0.484

224 1.64 1.287 1.327 0.446 0.248

225 174 1.437 1.136 0.496 0.248

226 17]. 1.41.5 1.202 0.519 0.258

— 227 1.75 1.474 1.27]. 0.470 0.279

228 176 1.477 1.281 0.468 0.269

Overall
Change (% ) +24.8 +16.3 —3.6 +82.8 —56.8

* Al]. procedures at Level 2 are declared within a single
global outer block.

- -  
~~~~~~~~V



TABLE Va

Overall Fvolution of the Procedure Calling Structure

Calling Number of Procedures Called
Level Prom This Level

Release 216 Release 228 V

1 12 13
2 55 79
3 211 289
4 699 1122
5 1596 3448
6 4025 8928
7 8283 22567
8 16956 52898
9 32868 11.3614

10 61187 216923
11 105623 368206
12 170146 574178
13 256743 838794
14 359281 1148985
15 471836 1458242
16 584529 1732477
17 683156 1955032
18 761001 2116502
19 808839 2183205
20 821540 2146774
21 800674 2038043
22 748287 1885601
23 671218 1706420
24 576174 1503538
25 472905 1291251
26 370764 1085380
27 276984 892888
28 197591 714108
29 134740 550749
30 88301. 406415
31 55637 287039
32 34453 196318
33 20754 130141
34 12417 80514
35 7181. 44250
36 3966 20137
37 1980 7499
38 888 2210
39 332 486
40 96 80
41 16 

- 

8 

- —
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TABLE Vb

Distribution of Procedur e Calls by Level and Release

Release Percentage of the Cumulative Distribution
Version of Procedure Calls to Level

No. 10 15 20 25 30

216 1.30 15.47 53.49 87.46 98.56

217 1.27 15.45 53.90 87.61 98.54

218 1.21 15.17 53.70 87.63 98.63

V 

219 0.94 13.83 53.33 88.79 99.16

— 
220 1.45 18.47 59.62 90.40 99.00

22]. 1.19 15.70 55.43 88.99 99 .05
rV V 

V

222 1.47 18.01 58.43 90.08 99 .12

223 1.83 19.96 60.78 90.85 99.18

- 

224 1.32 17.60 59.50 90.96 98.87

225 1.36 17.30 57.93 89.54 98.66

226 1.32 16.22 55.05 87.53 98 .24

227 1.52 17.24 53.53 83.93 97.18

L1J 
- 

I II1U.J 

17.30 53.77 84.09 

I rI~~~~~ JfW~1flT I ~~~~~~
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TABLE VI

Percen tage of Terminal Nodes by Level and Release

Release Percentage of Nodes which are Terminal at Level Deepest
Ver sion Level

No. 5 10 15 20 25 30 35

216 33.8 49.3 59.5 62.6 63.4 65.6 66.5 41

217 33.1 49.2 59.7 63.6 64.9 66.8 68.3 4].

218 32.6 48.1 58.6 63.0 64.9 66.8 68.7 41

219 32.1 46.4 57.5 62.9 65.0 67.7 69.4 40

220 32.1. 47.6 59.4 63.6 65.1 66.9 70.7 39

221 31.9 47.3 58.8 63.3 65.0 67.3 70.7 39

222 31.4 48.6 58.2 61.9 64.4 66.8 70.9 39

223 31.1 47.8 58.0 63.0 65.6 67.7 71.0 39

224 31.5 45.9 54.2 58.8 62.7 64.5 69.0 
- 

41

225 33.7 46.5 54.4 58.7 62.2 64.5 69.5 40

226 32.2 46.9 54.3 58.5 61.8 64.2 68.4 41

227 31.4 47.4 54.9 58.6 60.7 63.3 69.4 41

228 31.6 47.4 55.2 59.0 61.1 63.7 69.6 41

-. _______ ——---—- ~~~~~~~~~~ 
~~~~~~~~~~ -~~~ - 4
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TABLE VII

Distinct Procedure Ca1l~~~y Level and Release

Calling Distinct Calls at Level for Release Version No.
Level 216 217 218 219 220 221 222 

V

1 12 12 12 12 11 12 3.2 —

2 19 19 19 24 23 26 2 3

3 53 54 59 67 74 68 69

4 107 111 12]. 134 151 147 155

5 187 186 202 227 254 301 309

6 216 230 266 274 266 232 249

7 394 406 418 453 287 - 302 340

8 305 315 308 328 358 397 41.1

9 199 220 251 274 294 286 280
V 

10 79 87 122 111 190 166 161

1]. 23 25 27 30 56 56 61

12 24 24 26 20 17 18 20

13 10 10 10 13 11 11 11

14 11 1]. 11 6 9 9 9

15 9 10 10 6 6 5

16 4 4 4 1

17

18

~ 

-- - - 
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TABLE VII (Continued)

Calling Distinct Calls at Level for Release Version No.
Level 223 224 225 226 227 228

1 12 12 13 13 1.3 13

2 23 22 33 36 37 37

3 70 70 82 85 87 87

4 157 163 157 160 165 167

5 318 335 298 315 332 336

6 238 254 220 225 239 244

- 
7 336 337 330 334 344 345

8 407 420 481 495 507 511

9 279 273 304 319 330 334
I

10 162 163 196 198 202 205

11 57 74 83 90 90 93

12 19 22 59 60 65 65

13 11 14 20 20 31 31

14 9 22 22 22 29 29

15 6 6 11 11 28 28

16 1 1 1 12 12

17 2 2 6 6

18 5 5 

_ _  
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TABLE VIII

Evolution Of Some Complexity Parameters

Release Total Complexity Coefficients
Version Distinct
No. Calls C

1 
C
2 

C
3 

C
4

21.6 1652 7.06 54.9 463 4225

217 1734 7.08 55.2 466 4251

218 1866 7.12 55.8 472 4314

219 1973 6.97 53.1 432 3716

220 2007 7.14 56.4 478 4319

22]. - 2037 7.10 55.6 469 4210

222 2116 7.08 55.2 464 4156

223 2104 7.06 55.0 46]. 4120

224 2190 7.13 56.5 486 450].

225 2312 7.36 60.3 537 5138

226 
- 

2386 7.35 60.2 536 5116 
V

227 2522 7.50 63.7 598 6165

228 2548 7.51 63.7 598 6153

Overa ll
I: Change (%) 54.2 6.28 15.82 29.46 48.10 
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TABLE IXa

Evolution of Sub-System WS PROCESS

Release Total Complexity Coefficients
Version Distinct
No . Calls C

2 C
3

216 605 50.99 431.4

217 613 51.79 442.3

218 637 52.55 449.0

219 689 51.99 441.3

220 705 50.33 418.3

221 711 50.03 415..2

222 788 49.55 402.4

223 751 48.99 397.6

224 756 50.17 419.2

225 762 51.12 433.5

226 764 49.07 404.0

(percent chang.) ————— 12.6% ——— 23.8%

227 858 55.27 500.5

228 861 55. 55 504.3

~~~~~~~~ ~~~~~~~~~ 

~~~~~~~~~~ 
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TABLE IXb

Evolution of Sub-Syst em FAZIPRDIT

Release Total Compl~~ ity CoefficientsVersion Distinct
No. Calls C

2 C
3

226 130 52.93 446.1

227 - 180 - 87.56 1023.2

111J 1 . . ‘~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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TABLE X

Evolution of Sub-System OPSCOM

Release Total Comp lexity CoefficientsVersio n Distinct
No. Calls C2 C3

216 667 39.83 - 

385.4

217 70]. 39.19 375.9

218 1710 52 .31 461.6

219 1801 49.98 417.0

220 1842 62.60 562.5

221 1818 63.05 570.8

222 1913 64.80 594.4

223 1889 64.10 565.3

224 1968 63.51 575.7
a sea — Sass S 0

225 928 47.79 423.6

226 1015 46.05 390.1

227 1042 45.08 378.0

228 1048 45.14 378.2

F 
____________________________
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