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a Toeplitz system to O(n log?‘ n) and automatically resolves all degenerate

We present a new algorithm that reduces the computation for solving

cases of the past. Our fundamental results show that all rational Hermite
interpolants, including Pa.dE‘/approximants which is intimately related to
this solution process, can be computed fast by an Euclidean algorithm.

In this report we bring out all these relationships with mathematical
justifications and mention important applications including decoding

BCH codes.
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4 FAST ALGORITHMS FOR SOLVING TOEPLITZ SYSTEMS

OF EQUATIONS AND FINDING RATIONAL HERMITE INTERPOLANTS
& ; David Y. Y. Yun

Computer Science Department

Stanford University
Stanford, California 94305

3 Let xo, x), x,. ... be a bounded sequence of points some of which may be repeated.
The problem of Rational Hermite Interpolation of type (m,n) where m + n = N is to determine
a rational function R, (x) = U(x)/V(x) with deg(U) <m and deg(¥)<n, which interpolates
an analytic function f(x) at the first N + 1 points of the sequence. If a point x; is repeated
m; + 1 times then R, (x) should interpolate f(x) and its first m; derivatives at x;. Hermite
solved this problem for (m,n) = (N,0) by constructing the Hermite Interpolating Polynomial

] Pn(x) such that

N
{ f0)=Py(x) = g x-xp)
. i=0

where g(x) is analytic. The general problem of Rational Hermite Interpolation is to find all R e ‘

satisfying m + n = N which also interpolate f(x) i.e.,

N
f) =R pp(x) = g [T x-xp m
i=0

The two extreme cases for this problem have special names : When the sequence of points are

distinct it is called Cauchy Interpolation and when all the points are the same it is called Padé

Table.
| A rational function R, (x) = U(x)/V(x) is said to solve the Modified Hermite
Interpolation Problem if
N
Ulx) = f(x)V(x) mod H (x=x;) )
i=0

This research was supported in part by National Science Foundation grant
MCS-77-23738 and by Office of Naval Research contract NOOO1k-76-C-0330.
Reproduction in whole or in part is permitted for any purpose of the
United States government.
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If R,,,(x) solves equation (1) then equation (2) is automatically satisfied. However, for some
choices of m and » equation (1) may have no solutions, and in that case there is 2 paramet-
erized family of solutions to equation (2). However, each solution (U(x),¥(x)) to equation
(2) then yields the same rational function. This unique function is called the (m.n)"' Rational
Interpolant for f(x). Thus the set of rational interpolants for f(x), which is called the Rational
Interpolation Table for f(x), contains all solutions to the problem of rational Hermite interpola-
tion.

D. Warner studied this problem in his thesis [12]. In [13], he showed all solutions to
the Modified Hermite Interpolation Problem could be computed by Kronecker’s Algorithm [8];
We have independently discovered this and the result that Padé approximants can be computed
by Euclid’s Algorithm prior to the paper of McEliece and Shearer [9]. Additionally, we have
shown that Kronecker’s Algorithm and the Extended Euclidean Algorithm are virtually the
same. Our results go beyond those of [8,9] to include new computional techniques as well as

4 theoretical unifications.

N N
Let U, :-i[lo(x—x,) and U, =l§oa,xi be the Hermite interpolation polynomial of f(x) .
The extended Euclidean algorithm applied to U, and U, computes a sequence of quotients and

remainders according to the formula for division:

Uiyy = U;_y—Q,U; together with iterations for computing the "comultipliers":

Wiaqn=W,_1-Q;W; and V, =V, —-Q/V,; forixl, where initially
Wo=1,W;=0,Vy=0,V, =1

Now, an important relation holds for each i : 1
WU+ VU =U,, |

and the following results can be established for the Rational Interpolation Table.

Lemma 1: Each step of the extended Euclidean computation gives rise to a unique entry (in

lowest terms) of the Rational Interpolation Table.
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Lemma 2: The rational function U;/V; obtainable via the extended Euclidean computation
yields deg(Q,) equal entries of the Rational Interpolation Table along the
(m + n)'h anti-diagonal.

Theorem 1 (Euclid-Hermite): All entries along the (m + n)m anti-diagonal of the Rational
Interpolation Table for the analytic function f(x) are computed uniquely by the
extended Euclidean algorithm.

Lemma 1 and 2 and Theorem 1 have their Cauchy and Padé counterparts. The Padé

Table .is well known and has been extensively studied; see [3] for an excellent survey article.

As an example we state the above results in the Padé case. Let Xg=x; =..=0,

Up(x) = N* and U(x) =§0a,t" be the first N + 1 terms of the Maclaurin expansion of

f(x). Assuming the usual definition for the Padé Tabie, we have the following results:

Lemma 1P: Each step of the extended Euclidean computation gives rise to a unique entry (in
lowest terms) of the Padé Table.

Lemma 2P: The rational function U,/V; obtainable via the extended Euclidean computation
yields deg(Q;) equal entries of the Padé Table along the (m + n)‘h anti-diagonal.

Theorem 1P (Euclid-Padé): All entries along the (m + n)'h anti-diagonal of the Padé Table
for the Maclaurin series of f(x) are computed uniquely by the extended Euclidean

algorithm.
Fast Computation of an arbitrary iterate of the Extended Euclidean Algorithm

The computational aspects of the problems of the previous section can be realized by
an asymptotically fast extended Euclidean algorithm. We have improved and extended the
HGCD algorithm of Aho, Hopcroft, and Ulliman [1] in two significant ways. First, we have

developed an improved HGCD algorithm called EMGCD (for Extended Middle GCD).

FRLBETTEE Y
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EMGCD produces the 2 by 3 matrix of polynomial entries

u, W, v, 7 w, Vv, U,
Mj = , where = 2
UinWinVin Ujsi WinVin/ \U,

J J

The cost of EMGCD is less than the cost of HGCD; however, both algorithms have an
O(N logzN) asymptotic cost. Thus Uj and Uj +1 are computed free relative to HGCD. Note .
also that algorithm EMGCD computes all of U, ¥, and W which are the essential quaatities
of the extended Euclidean algorithm. The second improvement comes from generalizing
EMGCD. We have developed algorithm PRSDC (Polynomial Remainder Sequence by Divide
and Conquer) which produces any desired iterate M / in the PRS sequence and not just the
middle term. The cost of PRSDC is also O(N log?N)

Algorithm PRSDC has many useful applications. One example is the computation of
the greatest common divisor of two polynomials A4 and B. By setting Uy(x) = A(x) and
U,(x) = B(x) and specifying U, ,(x) = 0 or deg(U x)20 we can compute, using algorithm

PRSDC
Ui(x) = GCD(A(x),B(x)) = W (x)A(x) + V;(x)B(x) .

Another example of its utility concerns fast computational algorithms for the above Theorems.
Using algorithm PRSDC we can compute an arbitrary entry R, where m + n = N of the
Rational Interpolation Table starting with Uy =iflo(x-x,-) and U; = the Hermite interpolation
polynomial of f(x) through these N+1 points. Gustavson [4] has shown, using the ideas of
Yun [14], that starting with x; , j‘j)(x,.) yJ=0,.,m;,i=1,.k that the Hermite Interpola-
tion polynomial Pp(x) through these k distinct points can be found in O(N IogzN). Combining
these facts we can state the following
Theorem 2 (Euclid-Hermite-Cauchy-Padé): An arbitrary entry of the Rational Interpolation
Table for the analytic function f(x) can be computed in O(N logzN) where Nis
the degree of the relevant Hermite interpolating polynomial.

- B
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Fast Toeplitz Computation

For the case m = n , equating coefficients of x", x"*!_... x*" in the relation for the
q 8

(n, n) Padé approximant, we get a Toeplitz system:
a 9 Yo Up
( : )( : ) = ( o )
Qn  9n Vn Y
where the matrix, denoted by T, is Toeplitz. The vectors u = (uo....,u,,)r and

v s.(vo.....vn)r are the coefficients of the (n,n) Padé approximant (Uj(x).Vj(x)) . This fact

and the above results suggests that Euclid’s algorithm can be adapted to solve Toeplitz systems
of equations. We now state a new theorem which is a compaction of two theorems due to
Gohberg and Semencul [2). This theorem reveals that the computation of v and u,, is, in fact,
crucial.

Theorem 3 : Let the Toeplitz matrix

be a bordering of the Toeplitz matrix T with one additional row and column consisting of all
the same elemenis except two. Suppose x = (x,...,x, H)T and )X = O, +|.....yo)r are
solutions of Tx = eo and ;'yk = e,,, and suppose xg = yg # 0. Then T is invertible and

it’s inverse S is formed according to the formula :

nE

Furthermore, suppose x and y' solve Tx = eg and Tyk =e,and xg = y, # 0. Then

x00~ 0

Xp * X) X0 0 « 0y i yn yn-o-l OX,H_

T~! = 5 is given by formula (3) with x,,,, and y,, set equal to zero.
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The formula (3), for the system with 7, was discovered by Trench [11], used by

i
E
i
’
i

; ' Zohar [15] and given a convolutional setting by Kailath, Viera, and Morf [7]. In [7] the

formula (3) for the system with ?l" is shown to be the the discrete analog of the Christoffel
Darboux formula. Suppose now that Det(T)#0 . Ordinarily we would solve Tx = ¢, to see if
xo#0 . If xo = O then formula (3) is no longer valid. However, a_, and a3, .1 can be chosen
so that Det(T)#0 . Then xo = T7; = Det(T)/Det(T)#0 . Thus we have the following

stronger result :

ey

Corollary 1 : For solving Tz = b it is always possible to find x and p of formula (3) such that

Xo =)'O # 0.

Formula (3) is important because it expresses the inverse S as a product of Toeplitz

matrices. To solve 7z = b we can form four matrix-vector multiplications to affect z = Sb.

E_, Now we observe that the multiplication of Toeplitz matrices and the vector b given by
r’?,'
Xxg 0+ 0 Vns1 0 ¢ O 1
3 x‘ o o . y" e o . ;
3 . (] L] 0 bo L4 ° Ld 0 bo
FZV Xp * X1 Xo > and Y1 * Yndns .
Xp41 Xn * X > Yo 1 ¢ Oy \°

3 0 e o . bll 0 . e, . b”
] f i . e o X" ’ . e o yl

i 0 ¢ 0x,y, 0 « 0 y

are precisely the concatenations of the four matrices in formula (3) and clearly correspond to
2| polynomial multiplications. Performing multiplication modulo "*! via FFT with appropriate
ordering of the coefficients x;, y;, and b;, we can easily derive the following result :

; : Corollary 2 : Given x and y with x5 = y; # 0, the cost of solving 7z = b by cffecting

i z = S$b without explicitly computing § = T'is O(n log n).

2n .
i Let Uy(x) = x*"*! and U,(x) =i20a,-x' . The polynomial U, represents the Toeplitz
|

|
matrix T . Now apply the extended Euclidean algorithm to U, and U, . The following two J

!' y theorems demonstrate the importance of this computation and establishes a direct connection

between the Euclidean algorithm and the solution of Toeplitz systems of equations.
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Theorem 4 : Let (U, V/" Wj) be the iterate of the extended Euclidean algorithm that com-
putes the (n, n) Padé approximant to U, . Then Det(T)#0 if and only if
deg(U)) = n .

Theorem 5 : Let (U, ¥V, W)) and (U, V;, . W;, ) be two successive extended Euclidean
iterates with deg(U j) = n. These two extended Euclidean iterates contain all the
necessary information to compute x and y where Tx = e and R = e
Furthermore, if x, = O then the same two extended Euclidean iterates contain all
information needed to compute Tx = ey and ;'yR =e,4q Withxy = yg=1.

The solutions x and y can be expressed as linear combinations of the Vi and V;
polynomials. The term "all the necessary information” means that the constants of the linear
combinations turn out to be natural by-products of the extended Euclidean algorithm. A partial
explanation of why Theorem 5 is true is the fact that the Padé Table has many relationships
(Frobenius Identities) connecting the Table entries. The condition of Theorem S5 implies that
the (n, n) and (n — 1, n + 1) Padé approximants are computed by successive Euclidean
iterates. Theorems 4 and 5 and formula (3) provide the basis of another important application
of algorithm PRSDC. We state this application as follows:

Theorem 6 (Euclid-Toeplitz) : The complexity of solving the Toeplitz system Tz = b is at most
O(n logzn) and the extended Euclidean algorithm can be used to effect the
solution with this complexity.

We have also established new complexity results for banded Toeplitz systems. Let T,

be a banded Toeplitz matrix whose semi-bandwidths are band ¢ ie,qy=..=a 1 =0

n-b—
and a,, ., = .. = ay, = 0. Then by applying PRSDC to Uy(x) = x"***' and

Uy(x) = a,, 5" + ... + a,_, we cansolve Tz = d in O(n log n) + O((b + c)log’(b + ¢)).
The best previous result of O(n log n) + O((b + c)2) is due to Jain {6] and Morf and Kailath
[10, p. 269]). Theorems 4 and S above are valid for the banded case. The only change in their

statements is the replacement of (n,n) with (b,n) and (n = 1,n + 1) with (b — 1,n 4+ 1) .

Recently, Brent discovered a fast O(n Iogzn) algorithm to compute x and y via a fast
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continued fraction expansion. A joint paper by him and the authors is planned to detail some
of the results described here. The best previous algorithm to solve Toeplitz systems is the

O(nz) algorithm of Trench [11] corresponding to the Levinson algorithm in the continuum.
The Berlekamp Algorithm, Shift register synthesis, and BCH decoding

Let S(x) = s;x + ... + sz,,xz" be a given syndrome polynomial. The key equation to
finding the error location polynomial of BCH decoding is

(1 4+ S(x))o(x) = w(x) mod (x>"*")
where
=Tk 3 ed mid ol)=1% ¥ wx!
i i=1

i=1

and e = deg(o) = deg(w) is small. Berlekamp’s algorithm is an O(nz) method [5] for comput-

2n+1 and

ing o(x) and w(x) . Algorithm PRSDC also solves this problem. Let Up(x) = x
Uix) =1+ S(x) . Then the iterate (Uj, Vj, Wj) of the extended Euclidean algorithm which
computes the (n,n) Padé approximant to U, is the solution to the key equation. Also the

complexity of this problem is lowered to O(n logzn).
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