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we present a new algorithm that reduces the computation for solving

a Toeplitz system to 0(n log~ n) and. automatically 
resolves aB. degenerate

cases of the past. Our fundamental results show that all rational Herinite

interpolants, including Pad~~~pproximants ‘which is intimately related to

this solution process, can be computed fast by an Euc].idean algorithm.

In this report we bring out all these relationships with mathematical

justifications and mention important applications including decoding

BCH codes.
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FAST ALGORITH)~ FOR SOLV]~ G TOEPLITZ SYSTEMS
OF EQUATIONS AND FINDING RATIC~iAL HEBMITE INTERPOLANTS

David Y. Y. Yun

Computer Science Department
Stanford University

Stanford, California 9lt305

Let x0, x 1, x2. ... be a bounded sequence of points some of which may be repeated.

The problem of Rational Hermite Interpolation of type (mM) where m + n N is to determine

a rational function Rmn(X) = U(x)/ V(x) with deg ( U) ~~m and deg( V)�n , which interpolates

an analytic funcuon f (x) at the first N + I points of the sequence. If a point x1 is repeated

rn + I times then Rmn(X) should interpolate f (x) and its first rn derivatives at x. Hermite

solved this problem for (m ,n) (N,0) by constructing the Hermite Interpolating Polynomial

PN (x) such that

f (x)— PN(x) = g(x)fl (x—x 1)

where g(x) is analytic. The general problem of Rational Hermite Interpolation is to find all Rmn

satisfyi ng m + is = N which also interpolate f ( x )  i.e.,

f(X) Rmn(x) g(x) fl (x—x ,) (1)

The two extreme cases for this problem have special names When the sequence of points are

disti nct it is called Casichy Interpolation and when all the points are the same ii is called Padt

Table.

A rational function Rma(x)  — 1J (x)/  V(x) is said to solve the Modified Hermite

Interpolation Problem if

U(x)  ~ f (x ) V ( x )  mod fl (x—x ,) (2)

This research was supported in part by National Science Foundation ~~ant
MCS-77-23738 and by Office of Naval Research contract N000lle-76-C-033O.
Reproduction in whole or in part is permitted for any purpose of the
United. States government.
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If R~ ,~(X)  solves equation (I) then equation (2) is automatically satisfied. However, for some

choices of m and is equation (I )  may have flO solutions, and in that case there is a paramet-

erized family of solutions to equation (2). However, each solution ( U(x) , V(x) )  to equation

(2) then yields the same rational function. This unique function is called the (rn ,n)’t’ Rational

Interpolant for 1(x). Thus the set of rational interpolants for f ( x ),  which is called the Rational

Interpolation Table for f (x) ,  contains all solutions to the problem of rational Hermite interpola-

tion.

D. Warner studied this problem in his thesis [I 2]. In [131, he showed all solutions to

‘he Modified Hermite Interpolation Problem could be computed by Kronecker ’s Algorithm [8).

- 
-j We have independently discovered this and the result that Padé approximants can be computed

by Euclid’s Algorithm prior to the paper of McEliece and Shearer [9). Additionally, we have

shown that Kronecker ’s Algorithm and the Extended Euclidean Algorithm are virtually the

same. Our results go beyond those of [8,9] to include new computional techniques as well as

theoretical unifications.

Let U0 H (x—x,) and U 1 = E a1x
1 be the Hermite interpolation polynomial of f ( x ) .

I~ 0 1—0

The extended Euclidean algorithm applied to (J
~ 

and U 1 computes a sequence of quotients and

remainders according to the formula for division:

— U,_, —Q,U, together with iteritions for computing the “comultipliers” :

W,4.1 — W ,_~_ Q,W, and V1~ 1 — V,_ 1—Q,V, for i� I. where ini tially

wo _ 1 ,wl~~o,vO =o,vl =1.

4 Now, an important relation holds for each i :

w,Uo + v,UI _ U l ,  1 —
and the following results can be established for the Rational Interpolation Table.

Lemma I: Each step of the extended Euclidean computation gives rise to a unique entry (in

lowest terms) of the Rational Interpolation Table.
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Lemma 2: The rational function (J ~l V1 obtainable via the extended Euclidean computation

yields deg(Q,) equal entries of the Rational Interpolation Table along the

(rn + )*h anti-diagonal.

Theorem I (Euclid-Hermite): All entries along the (m + n) ’t’ anti-diagonal of the Rational

Interpolation Table for the analytic function 1(x) are computed uniquely by the

extended Euclidean algorithm. -

Lemma I and 2 and Theorem I have their Cauchy and Padé counterparts. The Padé

Table is well known and has been extensively studied; see 131 for an excellent survey article.

As an example we state the above results in the Padé case. Let x0 = x 1 = ... 0,

110(x)  — xN~~ and U1 (x) = !a ,x’ be the firs t N + I terms of the Maclaurin expansion of

f ( x ) .  Assuming the usual definition for the Padé Table , we have the following results :

Lemma IP: Each step of the extended Euclidean computation gives rise to a unique entry (in

lowest terms) of the Padé Table.

Lemma 2P: The rational function U1/ V1 obtainable via the extended Euclidean computation

yields deg(Q,) equal entries of the Padé Table along the (rn + f l ) uhl anti-diagonal.

Theorem IP (Euclid-Padé): All entries along the (m + n) ’~’ anti-diagonal of the Padé Table

for the Maclaurin series of f ( x )  are computed uniquely by the extended Euclidean

algorithm.

Fast Computation of an arbitrary iterate of the Extended Euclidean Algorithm

The computational aspects of the problems of the previous section can be realized by

an asymptotically fast extended Euclidean algorithm. We have improved and extended the

HGCD algorithm of Aho, Hopcroft , and Ullman [11 in two significant ways. First , we have

developed an improved HGCD algorithm called EMGCD (for Extended Middle GCD) .
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:1 EMGCD produces the 2 by 3 matrix of polynomial entries

M~ = ( ~~1 ~~1 ~~ ‘~ 
. where ( ~ 1 ~~ ( WI V1 \~(U 0\~

\tui+I / \WJ4.~VJ4. 1/ \u 1 /

The cost of EMGCD is less than the cost of HOCD; however , both - algorithms have an

O(N tog 2 N)  asymptotic cost. Thus U1 and U1.,. 1 are computed free relative to HGCD. Note

also that algorithm EMGCD computes all of U, V, and W which are the essential quantities

of the extended Euclidean algorithm. The second improvement comes from generalizing

EMGCD. We have developed algorithm PRSDC (Polynomial Remainder Sequence by Divide

and Conquer) which produces any desired iterate M1 in the PRS sequence and not just the

middle term. The cost of PRSDC is also O(N Iog2N)

Algorithm PRSDC has many useful applications. One example is the computation of

the greatest common divisor of two polynomials A and B. By setting U0(x) = A(x)  and

U~(x)  = B(x) and specifying Uk+~(x) = 0 or deg( Uk) �0 we can compute, using algorithm

PRSDC

(4(x) = GCD(A (x),B(x)) = Wk(x ) A (x)  + Vk(X)B(X) .

Another example of its utility concerns fast computational algorithms for the above Theorems.

Using algorithm PRSDC we can compute an arbitrary entry Rm, where m + n = N of the
N

Rational Interpolation Table starting with U0 = I l (x—x ,) and U 1 = the Hermite interpolation

— polynom ial of f ( x )  through these N+ I points. Gustavson [41 has shown , using the ideas of

Yun (14), that starting with x, , f ~~(x ,) , j  = 0,...,m 1 , i = l ,...,k that the Hermite Interpola..

tion polynomial P (x)  through these k distinct points can be found in O(N log2N). Combining

these facts we can state the following

Theorem 2 (Euclid-Hermite-Cauchy-Padé): An arbitrary entry of the Rational Interpolation

Table for the analytic function 1(x) can be computed in O(N log2N) where N is

the degree of the relevant Hermite interpolating polynomial.
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Fast Toeplitz Computation

For the case in = is , equating coefficients of x”, x” i ,..., x2” in the relation for the

(is, is) Padé approximant , we get a Toeplitz system:

(

an G

o)(

V
o)  = (‘;!)

a2, a,, v,, 0

where the matrix, denoted by T , is Toeplitz. The vectors u = (u 0,...,u,,) T and

p = (v~ ~,,) T are the coefficients of the (n ,n) Padé approximant (U~(x), V1(x)) . This fact

and the above results suggests that Euclid’s algorithm can be adapted to solve Toeplitz systems

of equations. We now state a new theorem which is a compaction of two theorems due to

• Gohberg and Semencul (2). This theorem reveals that the computation of v and a,, is, in fact,

crucial.

Theorem 3 : Let the Toeplitz matrix

a,, • •
— I . .  •

H T=  ( 
. . .

\ a 2,,
• . a,

be a bordering of the ToeplItz matrix T with one additional row and column consisting of all

the same eIemen~s except two. Suppose x = (xo,...,x,,+I ) T and ? — (y,,~~1,.,~,y0) T are

solutions of Tx = e0 and TI’ = e,,~ 1 and suppose x0 = y0 ~ 0 .  Then T is invertible and

it’s inverse S is formed according to the formula

X0 0 • U Yo Yu • Yn Yn+ i 0 • 0 x,,~.1 x,, • x~
s _

~~~ {( ~~~: : : : : ; )( ~ : : 
(3)

• X~ X0 • Y~ Yl • Yn Yn÷i • xl,.,.,

Furthermore, suppose x and I’ solve Tx — e0 and rI’ = e,, and x0 — # 0 .  Then

— S is given by formula (3) with x,,.,.1 and 
~~~ 

set equal to zero.

___________________________ ~~~~~~~~~~~~ 
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The formula (3), for the system with T , was discovered by Trench ( I I ] ,  used by

Zohar (15) and given a convolutional setting by Kailath , Viera , and Mon [7]. In [7) the

formula (3) for the system with T is shown to be the the discrete analog of the Christoflel

Darboux formula. Suppose now that Det(T) �‘O . Ordinarily we would solve Tx = to see ii

x0�0. If x0 = 0 then formula (3) is no longer valid. However , a 1 an d a2~+ , can be chosen

so that Det(T)*O . Then x0 = Tj , ’ = Det(T)/Det(T) �O . Thus we have the following

stronge r result

Corollary 1:  For solving Tz = b it is always possible to find x and .‘ of formula (3) such that

.r0 = ~~ 0.

Formula (3) is important because it expresses the inverse S as a product of Toeplitz

matrices. To solve Tz = b we can form four matrix-vector multiplications to affect z = Sb.

Now we observe that the multiplication of Toeplitz matrices and the vector b given by

/x 0 0 • 0 /.~ +‘ 0 • o
5 Yfl

~~~
x

~:iL ~~
’ 

~‘ 
and 

( YI  
f l + l

H 1 0 5 0 X ~~~1 f~ s o y 0

are precisely the concatenations of the four matrices in formula (3) and clearly correspond to

polynomial multiplications. Performing multiplication modulo t”~~ via FFT with appropriate

ordering of the coefficients x,, y1, and b., we can easily derive the following result

Corollary 2 :  Given x and y with x0 = y0 # 0, the cost of solving Tz — b by effecting

z — Sb without explicitly computing S = T~~ is O(n log is).
2i~Let (10(x)  = x2”~

1 and U 1 (x)  = ~ ax 1 . The polynomial U , represents the Toeplitz
I—0

• matrix T.  Now apply the extended Euclidean algorithm to (J
~ and U1 . The following two

theorems demonstrate the importance of this computation and establishes a direct connection

between the Euclidean algorithm and the solution of Toeplitz systems of equations.

- 

—~~~~~- - - ~ 
—•--•-- -- 

~
- --.I - ~~~~~~~~~~~~~~~~~~~ LI~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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Theorem 4 : Let (1J ~. V1. W1) be the iterate of the extended Euclidean algorithm that com-

putes the (n , is) Padé approximant to U~ . Then Det(T) �0 if and only if

deg(U1) = n

Theorem 5 : Let (U 1, V1, W1) and ( U14. 1, ~
‘1+i ~ 

W~,.,.1 ) be two successive extended Euclidean 
• -

iterates with deg(U1) = n. These two extended Euclidean iterates contain all the

necessary information to compute x and y where Tx = e0 and rI’ = e, , .

Furthermore , if x0 = 0 then the same two extended Euclidean iterates contain all

information needed to compute Tx = and TI ’ = wi th x0 = ~~ = I

The solutions x and y can be expressed as linear combinations of the V1 and V1.,.1

polynomials. The term “alt the necessary information ” means that the constants of the tineai

combinations turn out to be natura l by-products of the extended Euclidean algorithm. A partial

explanation of why Theorem 5 is true is the fact that the Padé Table has many relationships

(Frobenius Identities) connecting the Table entries. The condition of Theorem 5 implies that

the (n , is) and (is — I , is + 1) Padé approximants are computed by successive Euclidean

iterates. Theorems 4 and 5 and formula (3) provide the basis of another important app lication

of algorithm PRSDC. We state this application as follows:

Theorem 6 (Euclid-Toeplitz) : The complexity of solving the Toeplitz system Tz = b is at most

O(n log2n) and the extended Euclidean algorithm can be used to effect the

solution with this complexity.

We have also established new complexity results for banded Toeplitz systems. Let T~.

be a banded Toeplitz matrix whose semi-bandwidths are b and c i.e., a0 = ... = ~~~~~ = 0

and 0n+c+ l = = a’,, = 0 .  Then by applying PRSDC to &10(x)  = x”~~~
1 and

U 1 (x)  = a,,+~x~~~ + + a,,...,~ we can solve Tz = d in O(n log is) + O((b  + c)log 2(b + c)) .

The best previous result of O(n log is) + O ((b  + c)2) is due to .Jain ~6] and Morf and Kailath

[10, p. 2691. Theorems 4 and 5 above are valid for the banded case. The only change in their

statements is the replacement of (n ,n) with (b ,n) and (is — l ,n + 1) with (b — l ,n + I)

Recently, Brent discovered a fast O(n log2n) algorithm to compute x and y via a fast

_ _ _ _ _ _ _ _  ____  _ _ _ _ _ _ _ _ _  
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continued fraction expansion. A joint paper by him and the authors is planned to detail some

of the resu lts described here. The best previous algorithm to solve Toeplitz systems is the

0(n 2 ) algorithm of Trench [1 lJ corresponding to the Levinson al gor ithm in the continuum.

The Berlekamp Algorithm, Shift register synthesis , and BCH decoding

Let S(x) = s1 x + ... + s2,,x2” be a give n syndrome polynomial. The key equation to

finding the error location polynomial of BCH decoding is

(I + S(x ))o (x) o(x) mod (x2”~~ )

where

a(x) = 1 + 
~~ 

o x ’ and o(x) I + ~ w1x’

and e = deg( o)  = deg(w) is small. Berlekamp ’s algorithm is an 0(n 2 ) method [5] for comput-

ing 0(x) and 0(x) . Algorithm PRSDC also solves this problem. Let U0(x)  = x2”~~ and

U 1 (x)  = I + S(x) . Then the iterate (U 1, V1. W1) of the extended Euclidean algorithm which

computes the (n ,n)  Padé approximant to U 1 is the solution to the key equation. Also the

complexity of this problem is lowered to 0(n log2n).
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