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SUMMARY

A partial least squares treatment of multivariate data‘
related through a complex model allows one to evaluate the
interactions between large numbers of features at once.
Results where the model is of water sources flowing together,

each block composed of water quality data, allow the influence

of the various sources to be evaluated with respect to their

importance on the resulting flow downstream.




When the goal of a study is to understand the inter-
relationship among several parts of a complex system,
statistical procedures are often employed to analyse features
from sets of samples collectively used to represent each part.
All too often, the number of features and/or parts is larger
than the number of samples and many multivariate statistical
procedures fail to be useful. A simple example is the case
where one set of independent features is to be related to only
one dependent feature by multiple regression analysis,
represented as Model I in Figure 1. The calculation can give a
perfect but possibly meaningless fit if the number of features
is greater than the number of samples. For the establishment
of a predictive model this problem is normally overcome by the
use of stepwise regression analysis. However, in this analysis
the regression coefficients are uninformative with respect to
our understanding of the model and the results provide no
information about the utility of the omitted features, which
may be only a little less informative than those chosen to
provide the best fit.

Consider the case where multiple blocks of data, each
block consisting of several features obtained over several
samples, are to be interrelated by a complex scheme or path

model. When only one block of features is to be related to a

second block of features, shown as Model II in Figure 1, a




canonical correlation analysis [l] or target-transformation
analysis [2) can be carried out. For more than two blocks of
data various multidimensional scaling techniques have been
developed [3] which relate blocks of features along axes
preserving the maximum amount of all interblock information at
once. However, when not all interconnections between blocks
are desired or relevant, more flexible methodology is required.
This new methodology, herein called the PLS (Partial Least
Squares) approach to Path Modelling using Latent Variables, has
recently been developed by He. Wold [4-8]. This important new
tool allows blocks of features to be represented by
unobserveables or "latent" variables indirectly observed. The
latent variables are then related to one another by a path or
interconnection scheme predetermined by the user. The latent
variables are found by an iterative procedure involving simple
and multiple regression analysis so that they simultaneously
and optimally (in the PLS sense) represent the measured
features and provide the best fit to the path model. The
method is so general that principal component analysis,
multiple regression analysis, and canonical correlation
analysis are included as special cases. The first application
of this method to the physical sciences, an analysis of water

chenistry measurements to assess the environmental impact of

mine spoils drainage, is reported here.
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In order to understand the impact of coal mining on local
water quality, R. Skogerboe et al [9) monitored several water
quality parameters at numerous sites on Trout Creek in
Colorado. Data taken at monthly intervals from October 1973 to
July 1976 were provided by Skogerboe [10) for this study. Five
sites best characterized the environmental impact and were
selected for our present analysis. Site 1 is upstream from
runoff influenced by spoils of the Midway Edna Coal Mine, which
is adjacent to the stream. Sites 2, 3, and 4 monitor the
runoff from strip mine spoils representing mining activity from
the 1930s to the 1940s, the 1940s to the 1950s, and the 1960s
to the present, respectively. Runoff from these sites enters
the stream in the order given above. Site 5 is downstream from
the mine. Only 25 months of data were included in this study
since occasionally several features at a site were not

determined in certain months. At each site the data set was

composed of eleven features, pH, Cl , soi', C32+, Fe2+, K+,
MgZ+, Mn2+, Na+, Zn2+, and HCOE, all but pH reported in mg/l.

The final data set had approximately eight percent of its

values missing, which we filled in so as to minimize any

deviation from a particular site’s known data structure [11).
Our goal was to establish a path model using all five

sites. Each site, represented by a data matrix of 11 features

sampled over 25 months, was used in the model as a separate




entity. 1In our present case the path model is clearly that
shown as Model III in Figure l. The only relationship possible
is that site 1, the upstream site, and sites 2, 3, and 4 mix to
form site 5, the downstream site.

In order to consider the effect of all features at once

the method forms latent variables,
N,
1S

Kk 1§1 A, i%k,1

at each site, where N, is the number of features being

k

considered at site k, x is the value of feature i, and the

k,i

ak i's are coefficients determined in the course of the
k]

analysis. The a, 1's for each of the upstream sites are

;]
estimated from a multiple regression of all the features at a
particular site to the downstream latent variable, LS’ as

diagramed in Model III of Figure l. All coefficients a are

k,i
then scaled so that the latent variables Lk have unit variance.
Next, L5 is regressed upon the upstream latent variables to
estimate the Pk 5'5 in the expression

’
4
Ly = 3 Py sly

Using the P, ¢°s and L, s to estimate Lg we perform a multiple

regression of the features of site 5 on it in order to estimate

it |
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the a s . From the newly found a. s we form a new

Syd

LS which is scaled to unit variance and the entire procedure is

5,1

repeated until all a and Pk 5 converge. All calculations
’

k,i
were initiated with all a and P set to one. A similar

k,1 k,5
series of path models can be developed to analyse any number of
blocks of variables connected by any set of paths.

Using all 11 features in each block, the calculation of
Yiodel III converged with an overall fit of 0.99. The square of
the fit correlation coefficient, R2, g;ves the relative amount
of information at L5 accounted for by the other four latent
variables and is calculated from

¥ f%
R” = P
=1 k,SRk,S

where Rk 5 is the correlation between Lk and L The site
?

5.
contributions to R2 are given in Table l. We note that the
good fit is primarily due to a strong relation between sites 4

and 5. The contributions of each individual feature to the fit

were calculated and showed that the high correlation was due

largely to a fit between HCOE at site 4 and Ca2+

site 5. Although only a small amount of the total variance in

acd Mg2+ at

all of the data is accounted for by this relationship, it is a

rather striking one as HCO; introduced by site 4 strongly

buffers the Ca2+ and Mg2+ concentration.




A principal component analysis of the features at site 5
yielded two readily interpretable components. The first
component represented the major salt load Caz+, Mg2+, Na+, K+,
soi', and C1~ on the creek and the second component
represented primarily the trace metals zinc and manganese.
Thus, a more directed analysis targeting on the principal
components was suggested. Results of Model III calculations
where LS is represented by an individual principal component
are also shown in Table 1. The first component is modeled by
the upstream values of site 1 and the first source of mine
drainage represented by site 2. These results indicate that
site 2 has by far the most dramatic effect on water quality.
Similar results were obtained for the second principal
component with an additional smaller contribution from site 4.

We have also performed Model III calculations when
L5 represents only one of the features from site 5, a non-
iterative calculation. An example using Cl™ is also shown in
Table 1. Though the concentrations of Cl~ and the other major
species at sites 2, 3, and 4 are comparable in magnitude [9],
drainage from site 2 is obviously the dominant influence on the
downstream Cl~ concentration. Drainage represented by site 4
also perturbs the downstream Cl~ concentration, most likely
because it represents flow from the newest spoils, which have a

greater concentration of the more soluble salts. The lack of

e s il i bty NSl 8



influence from site 3 shows that drainage by this site is not
different enough or large enough to alter the gl composition
set at site 2.

From the above it is clear that quantitative estimates of
the effect of stream components contributing to the load at the
downstream site can be made. In addition, detailed information
can be obtained on each component. For example, for many
species which have a high concentration at an upstream site but
fail to be used in modelling the downstream site, we believe
sone form of buffering or precipitation action may be taking
place. 1In these cases the PLS analysis show where more
extensive investigation should be directed if the stream
chemistry is to be fully understood. Conclusions we have
arrived at using the PLS path modelling scheme are compatible
with those obtained in our laboratory using a battery of
standard multivariate techniques on a more extensive data set
of which the present data is a subset.

The above results show how PLS path modelling using latent
variables can provide insight into the interrelationships
between groups of features. It is especially important to note
that the treatment of groups of features as a unit allows one
to include many more features in the analysis than would
normally be allowed by more conventional techniques when one is

confronted with limited quantities of data. In all the above




calculations we have considered 44 features in sites 1 through
4 and obtained consistently interpretable results with only 25
sets of data. This form of analysis can be a powerful aid to

anyone confronted with blocks of features which are related to

one another along a set of logical paths.

This work was partially supported by the Office of Naval

Research.

10




ot g B e M fecbii o S

11

REFERENCES

R. Gnanadesikan, Methods for Statistical Data Analysis
of Multivariate Observations, Wiley, New York, 1977,
p. 69.

P. H. Weiner, E. R. Malinowski, and A. R. Levinstone,
J. Phys. Chem., 74 (1970) 4537.

Multidimensional Scaling, Vol. 1, R. N. Shepard, A. K.
Romney, and S. B. Nerlove (Eds.), Seminar Press, New
York, 1972.

H. Wold, in Research Papers in Statistics, Festschrift
for J. Neyman, F. N. David, (Ed.), Wiley, New York,
1966, pp. 411-444.

He Wold, in Multivariate Analysis, P. R. Krishnaiah,
(Ed.), Academic Press, New York, 1966, pp. 391~420.

H. Wold, in Quantitative Sociology, H. M. Blal~ck,
(Ed.), Acadenic Press, New York, 1975, pp. 307-357.

H. Wold, in Perspectives in Probability and
Statistics, J. Gani, (Ed.), Academic Press, New York,
1975, pp. 117-142.

H. Wold, in Mathematical Econonics and Game Theory.
Essays in Honor of Oskar Morgenstern, R. Henn and
0. Moeschlin, (Ed.), Springer, Berlin, 1977, pp.
536-549.

D. B. McWhorter, R. K. Skogerboe, and G. V. Skogerboe,
Environ. Prot. Technol. Ser., Publication 670, U. S.
Environ. Prot. Agency, Washington, D. C., 1975.

10. R. K. Skogerboe, personal communication.

11. S. Wold, Pattern Recognition, 8 (1976) 127.




Fig. 1. DModel I represents a multiple regression analysis of
one natrix onto a single feature, Model II depicts two matrices
of features related to one another, and Model III shows the
particular multi-matrix path model dealt with through a partial
least squares analysis. In Model III the 4 matrices on the
left represent sources of flow in a watershed which combine to

form the flow represented by the fifth matrix.







Table 1. (Pk,S)X(Rk,S) values for sites 1
through 4 and the corresponding R2 for
models where L5 is described in column 1.

PCs are principal components.
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Site 1 2 3 4 R

11 Features 0.02 -0.04 0.06 0.93 0.97

PC 1 0035 0-69 "0-16 0-03 0091
PC 2 0.21 0.59 0.00 0.11 0.91
c1” 0.09 0.58 -0.08 0.29 0.88 :
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