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SUMMARY
A C° (penalty) finite element is developed for the equations governing
the heterogeneous laminated plate theory of Yang, Norris and Stavsky.

The YNS theory is a generalization of Mindlin's theory for homogeneous,

isotropic plates to arbitrarily laminated anisotropic plates and includes
shear deformation and rotary inertia effects. The present element can
also be used in the analysis of thin plates by appropriately specifying
the penalty parameter. A variety of problems are solved, including those
for which solutions are not available in the literature, to show the
material effects and the parametric effects of plate aspect ratio, length-
to-thickness ratio, lamination scheme, number of layers and lamination
angle on the deflections, stresses, and vibration frequencies. Despite

its simplicity, the present element gives very accurate results.

|

INTRODUCTION |

Over the past few years composites, especially fiber-reinforced laminates, i
have found increasing application in many engineering structures. The i

fiber-reinforced composites possess two desirable features: one is their
high stiffness-to-weight ratio, and the other is their anisotropic material
property that can be tailored through variation of the fiber orientation
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and stacking sequence--a feature which gives the designer an added degree
of flexibility.

Recent developments in the analysis of plates laminated of fiber-
reinforced materials indicate that the thickness effect on the behavior of
the plate is more pronounced than in isotropic plates. The classical thin
plate theory assumes that normals to the midsurface before deformation re-
main straight and normal to the midsurface after deformation, implying that
transverse shear deformation effects are negligible. As a result, the free
vibration frequencies, for example, calculated using the thin plate theory
are higher than those obtained by the Mindlin plate theory!, which includes
transverse shear and rotary inertia effects; the deviation increases with
increasing mode number. Higher order linear theories that include trans-
verse shear effeéts have also appeared (see Reissner? and Lo, Christensen,
and Wu3). Elasticity solutions by Pagano and his associates’”’ indicate the
inadequacy of the classical laminated plate theory (e.g., Reissner and
Stavsky®, Dong et al.?, and Bert and Mayberry!?, in which the classical
Kirchhoff-Love kinematic assumptions are adopted and effects of transverse
shear deformations are neglected. fhe transverse shear deformation effects
are even more pronounced, due to the low transverse shear modulus relative
to the in-plane Young's moduli, in the case of filamentary composite plates.
A reliable prediction of the response characteristics of high modulus com-
posite plates requires the use of shear deformable theories.

A number of shear deformable theories for laminates have been proposed
to date. The first such theory for laminated isotropic plates is due to

Stavsky!l. The theory has been generalized to laminated anisotropic plates




by Yang, Norris, and Stavsky!2. A review of various other theories, for
example, the effective stiffness theory of Sun and Whitney!2, the higher-
order theory of Whitney and Sun!“, and the three-dimensional elasticity
theory of Srinivas and Rao!S, can be found in the paper by Bertl6é. Other
approximate theories that have been proposed in the literature include the
refined laminated plate theory of Maul7, the continuum theory of Sun,
Achenbach, and Herrmann!8, and diffusing continuum theory of Bedford and
Stern!? which were primarily developed for use in wave-propagation problems.
It has been shown, see for example, the papers by Sun and Whitney!3 and
Srinivas and Rao!5, that the Yang-Norris-Stavsky (YNS) theory is adequate
for predicting the overall behavior such as transverse deflections and
natural frequencies (first few modes) of laminated anisotropic plates.

The first application of the YNS theory is apparently due to Whitney
and Pagano2%, who considered cylindrical bending of antisymmetric cross-
ply and angle-ply plate strips under sinusoidal load distribution and free
vibration of antisymmetric angle-ply plate strips. Fortier and Rosettos?!
analyzed free vibration of thick rectangular plates of unsymmetric cross-
ply construction while Sinha and Rath22 considered both vibration and buck-
ling for the same type of plates. Recently, Bert and Chen23 presented,
using the YNS theory, a closed-form solution for the free vibration of
simply supported rectangular plates of antisymmetric angle-ply laminates.

While considerable effort has been expended in the finite-element
analysis of isotropic plates, only limited investigations of laminated
anisotropic plates can be found in the literature. Pryor and Barker2“, and

Barker, Lin and Dara25 used the conventional displacement finite-element
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method to analyze thick laminated plates. The element has seven degrees
of freedom (three displacements, two rotations, and two shear rotations)
per node. Exploiting the symmetries exhibited by anisotropic plates, Noor

and Mathers?®~28

studied the effects of shear deformation and anisotropy
on the accuracy and convergence of several shear-flexible displacement
finite element models based on a form of Reissner's plate theory. The
analysis was limited to symmetrically laminated cross-ply plates and the
element used involved 80 degrees of freedom per element. The conventional
finite element, when applied to relatively thick laminated plates, either
has failed to predict accurately the loeal deformations and stresses of a
plate under bending or is too expensive to use due to the large number of
degrees of freedom involved for even relatively simple problems. Mau and
Witmer 2%and Mau, Tong, Pian3? have eméloyed the so-called hybrid-stress
finite-element method to analyze composite plates including shear deforma-
tion. The hybrid elements have proven (see Gallagher3!) to have some con-
vergence problems, and in some cases they give erroneous results. Most
recently, Panda and Natarajan3? used, following Mawenya and Davies33, the
quadratic shell element of Ahmad, Irons and Zienkiewicz3“‘with the same nor-
mal rotation through the thickness to claim improved accuracy over Mawenya
and Davies33. The 'thickness concept' mentioned there is essentially the
same as that used in the YNS theoryl!2, The authors were primarily concerned
with the accuracy of the element, and no attempt was made to solve new prob-
lems for which there do not exist any closed-form or exact solutions.

The present paper is concerned with the development of a simple C°

element for YNS theory of laminated composite plates. The penalty function
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concept of Courantas(also see Zienkiewiczae) is used to develop the finite
element model. The element contains five degrees of freedom, three dis-
placements and two slopes (i.e. shear rotations), per node. The accuracy
of the element is demonstrated via problems for which the exact solutions
and numerical results are available, and results are also presented for a

variety of problems for which solutions are not available in the literature.

LAMINATED PLATE THEORY OF YANG-NORRIS-STAVSKY (YNS)
Consider a plate of constant thickness h composed of a finite number, L, of
thin anisotropic layers oriented at angles 8,, 63, ..., 8 - The origin of
the coordinate system is located within the middle plane (x-y) with the
z-axis being normal to the mid-plane. The material of each layer is assumed
to possess a plane of elastic symmetry parallel to the xy-plane. We shall
denote the middle plane with Q.

The YNS theory is based on the following assumed displacement field:

u = u (x,y,t) + zv (x,y,t)
v = vo(x,y,t) + zwy(x,y.t) (1)
w = wix,y,t)

where u, v, and w are the displacement components in the x, y, and z
directions, respectively, t is the time, Uy and v, are the in-plane
(stretching) displacements of the middle plane, and Yy and wy are the
shear rotations. Recalling the strain-displacement equations of linear

elasticity, we have
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Owing to the existence of a plane of elastic symmetry, the constitutive

relations for any layer in the (x,y) system are given by

9y (Q;; Q2 O 0 Q16 | €y
o | Q12 Q2 O 0 Q26 €y
T 0 0 Quy Qs O Yyz (3)
Tz 0F 0 - Qus Qss 0 Yoz
Ty 1 Qe Q¢ 0 0 Qg6 : Yyy
where Qij are the (material) stiffness components,
Introducing the stress and moment resultants per unit length,
h/2 h/2
(NMots) = [ (s 0, 1) 24 (0u0) = [ (5,0 @2
-h/2 -h/2
(4)

h/2
(My,Mz,Mg) = [ (ax'ay'rxy) zdz
=h/2

we can write (2) and (3) in terms of the resultants and displacements:
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i The material componets A, By, and D ; are given by

h/2 (m) 2
oA e e, (e 12,8

-h/2 (6)

X h/2 (m) . :
Aij z kaksAiJ . Aij = I Qij dz , (i,j = 4,5) , a=6-i, B=6-j
-h/2

The stiffness coefficients Q{™ depend on the material properties and
iJ

orientation of the m-th layer. The parameters ki are the shear correction
coefficients.

The equation; of motion associated with YNS theory are
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where
h/2
(p.R,1) = [ (1,2,22) »@ae (8)

-h/2

o(“) being the material density of layer m, and P = P(x,y) is the trans-
versely distributed load.

The strain energy and the kinetic energy, for a fixed time t, are

given by
U=U; + U (9)
5 1 auy2 L avy? , awy? W2 0y2
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Q
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Note that the quantities in the square brackets of U, are the shear forces
Qx and Qy. respectively.
PENALTY FUNCTION FORMULATION OF THE EQUATIONS
The assumption of the classical thin-plate theory that the normals to
the midsurface before deformation remain straight and normal to the mid-
surface after deformation implies that
PR .. . o X
Yy  ° and vy 3y (13)
If we substitute for Yy and wy from (13) into (11), we obtain the strain

energy U = U, associated with the classical thin-plate theory. In that
case U, involves the second-order derivatives of the transverse deflection,

and the associated (conventional) finite-element formulation results in
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complicated elements (with many degrees of freedom). Approaches that have
been taken to relax the continuity requirements placed on the shape functions
in the displacement formulation of the thin-plate theory include, in addi-
tion to the nonconforming, hybrid and mixed formulations, the "discrete
Kirchhoff hypothesis" of Wempner, Oden and Krossa7, Friedae, and the
"residual energy balancing" and "reduced integration" techniques of Fried39,
Zienkiewicz, Taylor and Too“o, and Hughes, Taylor and Kanoknuku]chaiql. The
present penalty function method is a formalization and extension of these
ideas to the shear deformable theory of laminated composite plates.

The problem of finding the static solution (u,v,w) to the thin plate
equations can be viewed as one of finding the critical points of the total
potential energy m, = U; + V, where U, is the strain energy given by (11)
in terms of u, v and w, and 'V is the potential energy due to applied loads.

y)
subject to the constraint conditions in (13). To incorporate the constraints,

Alternately, the problem can also be viewed as one of finding (u,v,¢x,w

one can use the Lagrange multiplier method, or the penalty function method.
If the Lagrange multiplier method is used, we have

y Gy +u,)1 dxdy (14)

. W
U = U+ fQ Cx, Gt o)t
where Ay and Ay are the Lagrange multipliers. Comparing the Euler
equations of Ty UL + V with those of m = U + V, we see that the Lagrange

multipliers are given by,

>
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Thus, UL is equivalent to the strain energy U of the shear deformable

theory.
If the penalty function method is used, the modified functional is

e T PRSI
, R R

given by "p = |, + Up + V, wherein the penalty functional Up is chosen to

be

a1 fre2 (™ 242 (M . kLl am
U = 7 JLet G w)" ¢ 3 Gy u) + 2eie, (B )R+ )] oy (16

where ef and eg are the penalty parameters. Clearly, in the limits ¢, e,+ =,

the constraints are satisfied exactly. As opposed to the Lagrange multiplier

method the constraints are satisfied only approximately, and no additional
variables are introduced in the penalty method. Comparing the Euler equations

of the functional "p with the equations of the YNS theory, we see the

correspondence,
€ : 2(M 2w
Q, = Q) = ef(55 * ¥, * ey (ay 8 “’y)
€ : ™ 23w
Q= Q = ey (T * ¥) * 350+ 0 (17)

2w ki A A T
tl kl Akk ’ €l€2 ~ klszqs ’ €2 ~ k2 A55

This correspondence implies that for very large values of €y the equations
govern the thin-plate theory, and for values of € given in (17), the
equations coincide with the YNS theory.

FINITE-ELEMENT MODELS

Here we present a (semidiscrete) finite-element model based on np(u.v.wx,wy,w).

We assume, over each element Qg+ the same kind of interpolation for all of

the variables,

Ue'

e ,e
o u; N

: 05 J%

n
>
i

v: = ? v? N: , etc. (n = nodes per element) (18)
i
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where Ni are the element interpolation (or shape) functions, and u?. and

v? are the nodal values of u: and v:, respectively. Substituting (18)
into the first variation of u: (u.v,w.wx,wy), and collecting the coefficients

of the variations, Suy, vy, etc., we obtain

[M®](a%) + [K®](a®) = (F®) (19)
where
! p[s°] R[S®]
~ N
(v&} p[s°] R[S°]
N
{Ae = ; ’ M] = So
} {w} M) pL ]\\ (20)
{¢:) symmetric  I[S°] '
N
w8 3 1[s°]]

The elements K?? (a,821,2,...,5; 1,§=1,2,...,n) of the stiffness matrix,

S$j of the mass matrix are given by

Kij = Al S?j + A (Si + Sxy) + Age Sy
KI2 = Az s?g + Ag s?j + g s{j + Ags sg{
K%S = By, 5?j + B (Sij * Sxy) + Bge 5{
K13 = By s* + By S?J + By s{j + Bgg sj1
K32 = Age (S] Y B sxy) + Ay s{j + Ags s?i
ng = Byg sﬁj + Bgg s?d + By, sji + By s{j
K3S = Bzg (s?{ + sﬁg) + Bgg s§j + By s{j

i
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'
! 33 & 2 X 2 oY xy Xy
KU el siJ * ¢ Sij tere, (S1 S; )
34 Yo 88 gX0 2 ¢Yo
K‘J S'J * € t 513 ) Kij J + t S J

b X xy Xy Yy 2 g0

5S = XY 4 XY X Y 2 g9
Kij 026(511 ;< sJi) + Dsssij + Dzzsij + 52 SiJ

13 = K23 & Eﬂ =

K1J Kij 05 Sij j Ni.ENJ,n dxdy , (&,n=0,x,y)

L 3 = 1 = 2 = = 5 =

E F1 Ige P Ni dxdy , Fi Fi F; Fi 0 (21)

For free vibration, equation (19) becomes
([K®] - w2[M®]) (2%} = (0} (22)

where w is the frequency of the natural vibration. For static analysis,
{4} is set to zero. The element stiffness matrices are assembled in the
usual manner, and boundary conditions of the problem are imposed before
solving for {a} or Wy
In the present study linear (n=4) and quadratic (n=8) elements of

the serendepity family are uszd. The element stiffness matrices for these

elements are of order 20x20, and 40x40, respectively.
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NUMERICAL EXAMPLES AND DISCUSSION

The (penalty) finite element developed herein was employed in the
bending and free vibration analyses of a variety of layered composite
rectangular plates. All of the numerical results presented here were
obtained using a uniform mesh of 2x2 quadratic (i.e. 8-node quadrilateral)
elements in the quarter plate. Computations were conducted on an IBM 370/
158 computer in single precision.

In the following analyses two types of boundary conditions, simply
supported and clamped, and two types of orthotropic materials were used.
The coordinate system and boundary conditions are shown in Figure 1. The

material properties used are (G,, = G ;5 vy, = v;3),

Material I: El/Ez = 25, GIZ/EZ =05y Gz;/Ez = 0.2, Viz ® 0.25.
Material 11: E,/E, = 40, Gy,/E, = 0.6, Gy3/E; = 0.5, vy, = 0.25

A value of 5/6 was used for the shear correction coefficients (see Whitney“2).

vaw-wxso

u-mxso u=v=w=0

simpli subpoﬁied (SS)
=) = =y =0
v yy 0 v wy

Figure 1 Coordinate system, finite-element mesh, and boundary
conditions
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Bending Analysis
First the effect of the reduced integration on the bending deflection
and stresses is examined using a four-layer, cross-ply (0°/90°/90°/0°),

simply supported square plate (Material II) subjected to sinusoidal loading
(ssL),

= X oy
P P° cos % cos b

The percentage error (between the solution obtained by using 2x2 Gauss
points and 3x3 Gauss points) in the center deflection and maximum normal
stress (E& = 6&) as a function of the side-to-thickness ratio (a/h) are
shown in Figure 2. The stresses were computed at the Gaussian points
using equation (3). Figure 3 shows the bending deflection versus the side-
to-thickness ratio for the same problem using 2x2 Gauss rule. This result
is in excellent agreement with the closed-form solution of whitneyua.
Thus, the standard 3x3 Gauss rule (for the numerical integration of ele-
ments in equation (21)) gives less accurate results, especially for ratios
a/h > 10. Guided by this observation (also, see Zienkiewicz et al.k0)

the remaining results were obtained using 2x2 Gauss rule.

Figure 3 also shows the stresses, E;, oy y

cross-ply (0°/90°/90°/0°), simply supported square plate under sinusoidal

, and ?& for the four-layer,
loading. To see the effect of loading and material on the deflection, the
same problem was solved using Material II and uniform loading, and Material
I and sinusoidal loading. Note that decreasing the ratio E;/E; from 40 to
25 has the same effect as using the uniform loading in place of sinusoidal
loading. Bending deflections and stresses are presented in Table 1 for a
(4-ply (0°/90°/90°/0°), Material I) clamped plate under sinusoidal loading,

and simply supported plate under point load at the center.
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Figure 2 Effect of reduced integration on the bending
deflections and stresses
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Figure 3 Bending deflections, and stresses vs. side to
thickness ratio for four-layer, cross-ply,
simply supported square nlates
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To further illustrate the accuracy of the present element, two problems
for which exactS’” and finite element solutions32’33 are available, were

solved and results are summarized in Tables 2 and 3 (for Material I). Table

% 2 contains the normalized bending deflections and stresses for three-layer,
cross-ply (0°/90°/0°), simply supported square plate subjected to sinusoidal
loading. The outer layers are each h/4, and the middle layer is h/2 thick

R o e g v

(i.e. sandwich construction). Table 3 contains similar information for three-
layer (equal thickness), cross-ply (0°/90°/0°), simply supported rectangu-
lar (b/a = 3) plate under sinusoidal loading. Present solutions are com-
pared with exact solutions of Pagano® and Pagano and Hatf1e1d7, and the finite-
element solutions of Panda and Natarajanazand Maweny and Davies33. It is clear
that the present solution is the closest to the exact solution for the
deflection for all ratios of a/h. Since the stresses in the present study
are computed at the Gaussian points, it is not meaningful to compare for
relative accuracy.

Figure 4 shows the normalized bending deflections versus the ratio
a/h for the 3-layer, cross-ply, simply supported square plate under sinus-
oidal loading. For Material [ the same problem was resolved with layer
orientation of 0°/91°/0° (the middle layer is now oriented at 91°) to see
‘ the effect of slight variation (introduced, say, in manufacturing) in the ; f
i orientation of the layers on the deflection. Note that the error in the
angle causes slight variation in the deflection only at higher values of
a’/h (i.e. for thin plates).

Figure 5 shows plots of bending deflection versus the side-to-thickness

ratio for twy-layer, cross-ply (0°/90°) square plate (Material II) under

sinusoidal and uniform loadings, and for four-layer, symmetric angle-ply

e S 2 MW IO R T oo
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Table 2 Three-layer (0°/90°/0°) simply supported square plate subjected to

sinusoidal loading (Material I, t; = t; = h/4, t, = h/2)

Normalized Normal stresses, & (top and bottom)*
center S
a/h Source defl;;tion 39,(0,0,h/2] ;cy(o.o,h/a) *Tyy 7:7:3)
5.0 {Present FEM 2.9642 0.4196 0.5000 0.02804
6.25|Present FEM 2.2998 0.4442 0.4431 0.02629
! Pagano & Hatfield’ 1.709 0.559 0.403 0.0276
10 |Present FEM 1.5340 0.4842 0.3509 0.02342
Panda & Natarajan3? | 1.448 0.532 0.307 0.0250
Mawenya & Davies3® | 2.034 | 0.542 -- 0.0292
12.5|Present FEM 1.3465 0.4965 0.3223 0.02241
Pagano & Hatfield’” | 1.189 0.543 0.309 0.0230
20 |Present FEM 1.1364 0.5118 0.2870 0.02144
| Panda & Natarajan3? | 1.114 0.557 0.307 0.0231
| Mawenya & Davies33 1.273 0.546 -- 0.0239
E 25 |[Present FEM 1.0866 0.5154 0.2779 0.02115
{ Pagano & Hatfield” | 1.031 0.539 0.276 0.0216
2 50 |Present FEM 1.0197 0.5208 0.2656 0.02077
Panda & Natarajan32 | 1.016 . 0.565 0.287 0.0225
Mawenya & Davies33 | 1.048 | 0.550 -- 0.0221
Pagano & Hatfield’ 1.008 0.539 0.2 0.0214
100 |Present FEM 1.0055 } 0.5235 0.2630 0.02073
Panda & Natarajan3? | 1.003 ! 0.566 0.284 0.0223
Mawenya & Davies? | 1.015 | 0.551 o 0.0213
Classical plate theory l 1.000 0.539 0.269 0.0213

W= wq(h3/P°a“) T = ah2/P°a2 s a ={4G;, + [E, + (1+v12)E2]/(V=vyavay) )} 74/12

* Computed at the Gaussian points in the present study .
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% Table 3 Three-layer (0°/90°/0°) simply supported rectangular plate .
(b/a = 3) subjected to sinusoidal loading (Material I) B
i Normalized Normalized stress, 3 (top and bottom)* 1
; center g !
| a/’h Source def];;tion. ;ox(o,o,h/z) ;oy(o,o.h/s) trxy(?”?’?) 4
5 Present FEM 1.695 0.5984 0.0691 0.01789
6.25 | Present FEM 1.267 0.6006 < 0.0540 0.01338
Exact: Pagano?® 0.919 0.725 0.0435 { 0.0123
10 Present FEM 0.802 0.6031 0.0364 1 0.01017
Panda & Natarajan32 | 0.752 0.653 0.0367 | 0.0105
Mawenya & Davies33 1.141 0.685 -- | 0.014
12.5 | Present FEM 0.694 0.6038 0.0322 Iﬁi 0.00941 j
Exact: Pagano’ 0.610 0.650 . 0.0299 0.0093 i
i 20 Present FEM 0.578 0.6045 0.0276 0.00858 |
| Panda & Natarajan3?2 0.565 0.654 | 0.0287 0.0091
Mawenya & Davies33 0.664 0.651 o 0.0099
25 Present FEM 0.551 0.6046 AE 0.0264 0.00838
Exact: Pagano’ 0.520 0.628 1 0.0259 0.0084
50 | Present FEM 0.515 0.6044 | 0.0251 | 0.00812
' Panda & Natarajan32 | 0.513 0.654 | 0.0264 | 0.0087
Mawenya & Davies?® | 0.529 o6 | - | 0.0087
Exact: Pagano® 0.508 0.624 I 0.0283 . 0.0083 |
100 | Present FEM 0.506 0.6034 0.0253 0.00802 |
Panda & Natarajan3? 0.505 0.654 0.0261 ; 0.0086
Mawenya & Davies33 0.510 0.638 -- .\ 0.0085
Classical plate theory | 0.503 0.623 0.0252 | 0.0083

W = w100 Eoh3/P at, 7= oh?/Pa?
* Computed at the Gaussian points in the present study -
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Figure 4 Bending deflection vs. side- to- thickness
ratio for 3-layer, cross-ply, simply suoported
square plate under sinusoidal loading
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(45°/-45°/-45°/45°) square plate (Material I and II) under sinusoidal
loading. It is clear that the effect of shear deformation is quite sig-
nificant in (cross-ply, as well as angle-ply) composites with side-to-
thickness ratio, a/h < 20.

Bending deflections and stresses versus side-to-thickness ratio are
shown in Figure 6 for two- and four-layer angle-ply (45°/-45°/45°//45°)
square plates. For the same plate thickness, a two-laye:, angle-ply plate
undergoes larger deflection than the four-layer, angle-ply plate. The
stresses E} = 5} and ?ky are shown only for the four-layer, angle-ply
plate under uniform loading. The stresses corresponding to the sinusoidal
loading (for the same problem) are scaled with respect to the stresses
associated with the uniform loading. In the case of sinusoidal loading
both normal stress and shear stress increase with decreasing side to thick-
ness ratio.

Free vibration analysis

Figure 7 shows plots of the nondimensionalized fundamental frequencies
versus side-to-thickness ratio for 4-layer, angle-ply (symmetric and anti-
symmetric) square plates. The result obtained for simply supported (Material
II) plate is in good agreement with the closed-form solution of Bert and
Chen23, The present study predicts higher frequencies, with the deviation
increasing with a/h. Figure 7 also shows the plot of fundamental frequencies
for the symmetric angle-ply (45°/-45°/-45°/45°, Material I). Incidentally,
this plot is in excellent agreement with that in Figure 5 of Whitney and
Pagano2?, However, the figure caption there (i.e. in reference 20) says
that the result was obtained for four-layer, antisymmetric angle-ply
(45°/-45°/45°/-45°), simply-supported square plate (Material II). As pointed
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out by Bert and Chen?3, and confirmed by the present study, the plot shown %
in Figure 5 of Reference 20 does not correspond to the antisymmetric angle- ‘
ply plate. To identify the result with the right problem the author experi-
mented with Material [ and with clamped boundary conditions, for which results i
are also shown in Figure 7. Obviously, none of these come close to that

presented by Whitney and Pagano?®. Thus, Figure 5 of Whitney and Pagano??

corresponds to four-layer, symmetric angle-ply (45°/-45°/-45°/45°), simply

supported square plate with layers made of Material I.

Similar results are presented in Figure 8 for three- and four-layer

T ———

cross-ply simply supported plates (Material II). Interestingly, the three-

f} layer and four-layer cross-ply square plate have almost the same funda-
P- mental frequencies for a/h < 15. Figure 9 shows plots of nondimensional-
ized fundamental frequencies versus the angle of orientation for three-
and four-layered square plates (Material II, and a/h = 10). Finally,

Figure 10 shows the effect of the number of layers on the fundamental fre-

quency of layered angle-ply (45°/-45°/+/-/...) square and rectangular plates

(Material II). For number of layers greater than six, the fundamental

frequency is virtually the same.

CONCLUSIONS

Using the penalty function concept of Courant3S to the equations |

governing the thin-plate theory, a shear deformable theory for layered |

composite plates that resembles the YNS theory!? is presented. A finite
element model based on the penalty/YNS theory is developed herein and

applied to the bending and free vibration analyses of rectangular composite i

plates with various edge conditions and loadings. The numerical results

are compared with those obtained by other finite-element methods and with
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Figure 7 Fundamental frequencies vs. side-to-
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exact solutions. The present element, despite its simplicity in formulation
and programming, gives the most accurate results.

Application of the element to nonlinear (in von Karman sense) and bimodu-

A S R S S S e,

x lus (i.e. different elastic properties in tension and compression) plate prob-
lems was investigated recently by the author““'ks. However, its application
to a nonlinear, shear deformable theory of composite plates is still awaiting.
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APPENDIX

Ai"ai"oi' = extensional, flexural-extensional, and flexural stiffnesses
FoO el 8.8
a,b = plate planform dimensions in x, y directions

€,,E, = layer elastic moduli in directions along fibers and normal
to them, respectively

Fi = force components in the finite element formulation (i=1,2,...,5)

- Gy54+G,3,G,5 = layer in-plane and thickness shear moduli
h = total thickness of plate
[ = rotary inertia coefficient per unit midplane area of lamina

k1 = shear correction coefficients associated with the yz and xz

planes, respectively (i=1,2)

e T T Y

K?? = glement stiffness coefficients (i,j=1,2,...,80; a,8=1,2,...,5)
L = total number of layers in the plate
Mi'Ni = stress couple, and stress resultant, respectively (i=1,2,6)
M:j = element mass coefficients (i,j=1,2,...,8)

N? = glement shape functions (i=1,2,...,8)
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n = nodes per element
p = laminate normal inertia coefficient per unit midplane area
P = transversely distributed load

P° = intensity of transversely distributed load

Qx.Qy = ghear stress resultants

Qij = plane stress reduced stiffness coefficients (i,j=1,2,6)

R = laminate rotary-normal counling inertia coefficient per
unit midplane area

s?; = element matrices in FEM formulation (i,j=1,2,...,8; £,n=0.x,y)
t = time

u,v,w = displacement components in x, y. 2z directions, respectively
UgrYo = in-plane displacements in x, y directions

Upsvy = nodal values of displacements u, v (i=1,2,...,8)
U,Ul,Uz,UL = strain energies

V = potential energy

X,¥,2 = position coordinates in cartesian system
Yy, Yxz,Yyz = shear strains
{a} = column of vector of generalized nodal displacements

€ penalty parameters (i=1,2)

EART R T

= normal strains 4
Gx'ty‘tz

8 ,* orientation of m-th Jaminate (m=1,2,...,L)

xx xy = Lagrange multipliers
’
L = total potential energy functionals il

g = normal stresses

c
x,%y,%2

Txy,txz’t'yz = shear stresses

wx’wy = glope functions

«

fundamental frequency of free vibration
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