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1. INTRODUCTION

This report descr ibes an alternative to the use of
Signal Flow Graphs (SFG) and Mason ’s Gain Rule (Formula) for
analysis of complicated sampled-data control systems.
Usually in such systems, block diagram algebraic
manipulation may become unwieldly , particularly when
such systems include multiple loops and samplers. The
Systematic Analysis Method (SAM) may be applied to
such systems , as well as to simple single-loop feedback
systems. This is shown in Section 2. Also shown is
how to apply SAM to make use of modified z-transforms
(Section 5).

The advantages of using SAM are that the cumbersome
application of Mason’s Gain Formula can be avoided.
Further , the entire method of drawing Signal Flow
Graphs may be circumvented. Since only the equations
describing the system are needed for SAM, even the
customary block diagram is not needed.

If the analyst prefers to use one of the Signal
Flow Graph methods, a modified SFG technique is also
described (Section 3). It is simpler and less
cumbersome to apply than the conventional SFG method ,
which for purposes of comparison is described in
Section 4.

All three techniques are applied to two examples.
This is done to better describe the application of SAM
and the modified SFG and to help provide a basis for
comparison (Section 6) of the three methods.

To obviate searching for such a description, Mason’s
Gain Rule is described in the appendix.

2. SYSTEMATIC ANALYTICAL METHOD (SAM)

SAM is implemented by performing the following four
steps. If the equations resulting from the first three
steps are placed in a table of three columns (one for

* each step), they are easily manipulated to perform the
fourth and final step.

STEP NO. 1. OBTAIN “SYSTEM EQUATIONS”

The equations describing the system are writtsn in
the Laplace domain. If the system is described by block
diagram, the “system equations ” are written upon
inspection.

5
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STEP NO. 2. OBTAIN “MODIFIED SYSTEM EQUATIONS”

If any of the “sys tem equations” contain terms that
in themselves contain the product(s) of an unsampled
system variable and an unsampled transfer function,
then the unsaznpled variable must ~e replaced by an
expression containing no unsampled variable(s). In
complex systems, this may require a chain of several
substitutions.

An “unsampled var iable ” is recognized as one upon
which the pulse transform operation has not taken place.
For example, when the pulse transform of a Laplace
transform function and/or var iable is taken, that operation
is denoted symbolically by placing an asterisk immediately
following the expression , yielding a so-called “starred
quantity.” For example, the pulse transform of the Laplace
function F(s) is denoted as F*(s). One manner of expressing
F* (s) in terms of F(s) is

F*(s) F (s + i 2fln/T) (1)T
n_— ~~

where T represents the sampling period.

STEP NO. 3. OBTAIN “PULSED SYSTEM EQUATIONS”

Pulse transforms are now taken off each side of the
“modified system equations,” yielding “pulsed system
equations.” Now all system variables, either unsampled
or sampled (pulsed), may be solved for, either in the
“system equations” cr thc “pulsed system equations.”

STEP NO. 4. OBTAIN DESIRED INPUT/OUTPUT RELATIONSHIPS

Al]. system variables, both starred and unstarred,
may be found in either the “system equations” (Step No. 1)
or the “pulsed system equations” (Step No. 3). The
desired output(s) may be solved for by selecting the
appropriate “system” or “pulsed system” equations ,
substituting as necessary . This will be brought forth in
the examples.

6



EXAt1PLE NO. 1

Given: The aigital system of Example No. 1 is
described by the block diagram of Figure 1.

To Find : The continuous-data and pulsed (sampled)
outputs, C(s) and C*(s), respectively , in terms of the
sys tem input R(s) and the system transfer functions
G(s) and if(s).

STEP 1. SYSTEM EQUATIONS1

Obtain these equations directly upon inspection of
Figure 1.

E~~~R - H C  (2)

C =  GE* (3)

R(s) E(s ))\ E*(s) 
] 

G(s) 
J 

C*(s) I
I H(s)]

Figure 1. Block Diagram for Example No. ~..

L~~~~~~~~~~~~~~~~~

l. Note: In the sequel , the following shorthand notation
will be used:

F F(s) =~~( f ( t ) J  , i.e. the Laplace

transform of F(t),

F* F*(S),

~j~* ~~ [G(s)H(s)J’ .

7
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STEP 2. MODIFIED SYSTEM EQUATIONS

One sees that Equation (2) contains a product of
an unsamp led__~i.’~..u .~~Carred ) sy~ te~_variable, C, and
an unsampled transfer function, U. Since this violates a
condition stated in the description of Step No. 2, a
substitute must be found for C. This is obvious in
Equation (3), which is substituted into Equation (2) to
yield the acceptable form ,

E R - HG E* , (4)

i.e., it contains no products of unsampled variables and
unsampled transfer functions. The product of unsampled L
transfer junctions , HG [i.e., H(s) G(s)J, is acceptable .

STEP NO. 3. PULSED SYSTEM EQUATIONS

Take the pulse transform of each side of each of the
“modified system equations ,” making use of the following
rules:

(RGJ* = ~~~~~* , (5)

(R G*)* = R* G* , (6)

= R* . (7)

E* = R* — }1~3* E* (8)

C~ = G* E* (9)

The resulting equations from Step Nos. 1 , 2 and 3
can be placed in a table (Table 1), while they are
being developed , for systematic orderliness.

TABLE 1. SYSTEM EQUATIONS FOR EXAMPLE NO. 1

Sys. Eqs. Mod . Sys. Eqs. Pulsed Sys. Eqs.

E = R - HC (2) E = R -  HG E* (4) E* = R* HG* E* (8)

C = G E *  P3) C = G E ~ (3) C* = G * E* (9)

STEP 4. OBTAIN, C*, C

First solve Equation (8) for E*

E* = 
1 R* . (10)

L ( l + i i~*)J
B

~

- . - . .
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Substituting this expression fcr E* into Equation (9),
one obtains

C~ = 
C 

~~__1 R* . (11)
[(1 + HG*)J

“to obtain C, one substitutes Equation (10) into Equation
(3) , yielding ”

c = G 1R* . (12)[ ~l + H G ~~]
EXAMPLE NO. 2. :
Given : The digital system described by the block

diagram of Figure 2.

To Find: The continuous-data and pulsed (sampled)
outputs, C(s) and C*(s), respectively, in terms of the
system input R(s) and the system transfer functions.

D (s )

r-~
-’~ 

E ( S )  LI1—~~1~ì H

L~ 

I ______R ( s ) ~ ~~±_c~ _1’(5){G2 ( S )  C ( s )

Figure 2. Block Diagram for Example No. 2.

In the interest of being systematic , the analyst
may wish to assign “states” (Xj ) to the various system
variables. The “system equations” (Step No. 1) are
written from inspection of Figure 2. In order to im-
p].ement Step No. 2, the “system equations” of Step No. 1
must be checked for possible products of unsampled sys-
tem variables and unsampled transfer functions. Two such
products exist: G1X2 in Equation (15) and G2X3 in Equa-
tion (16). The first product is readily manipulated into

9
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the ~tppxuve i t o~~r by ~jki n~ ust ot the relation between
X 1 -tn t X~~ 

e~ l~~~u~~ ~~~~ ( 1 4 )  , wh~~ ’h is substituted into
i n  1.5) vie 1 E qu it i ’.u. (17) . ‘I he product , G 2 X 3 ,

is et s i l y  h u .  ~le~i by subst tuting k :uation (17) into

~ iu .ttion (1’), then substitut inq Equa ti on (13 ) for X i, and
s)lving the ~esult~~~~ ex pression for X4, yielding Equation
(18) . This c’~mp1etes Ste p ~e. 2 (the second column of the
array of Table 2). The third column (Step No. 3~ is
obtained merely by “ starring ” each side of each of the
equa t ions in the second column .

TABLE 2. SYSTEM EQUATIONS FOR EXAMPLE NO. 2

- . 
Sys. Eqs. Mod . Sys. Eqs. 

-- 
Pulsed Sys .  Uqs. 

—

i \ R —  ~~~ ( i n .. —~~’ — :,. , ( i ) )  ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ~~

4
*

— ‘~~
. ( 4  X — -

j
-: 

(~~4 r~ — :~~. •

~ 3~~~ 
‘2 • x ( X

3 ~~ 
X ( 1 7 .  -

~~‘ • = 
~~~~~~~~~~~~~~~ 

. 
~~~~ ~2 ) ’

— 

- 

~~ 2 • 
~ 

~~ 

3~~L~~ ?~~~

where
G G

ci . 1 2 (23)
3 

— 
1 + G 2

arid

G R
R ~~ 2 ( 2 4 )
1 l + G 2

To find C* , one merely substitutes Equation (19)
into Equation (22):

C~ = X4~ = G
3
*D*X

1
* +

— X 4 *) +

G * D * R * + R *
— 

3 1 (_ ‘ 5)
1~~4~~G 3*D*

In a similar manner , one finds C by substituting
Equation (15) intO Equation (16), substituting Equations

10
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(14) and (13) for X2 and X 1, respectively , and finally
substituting Equation (19) for the resulting X1~~, i.e.

C = X 4 G 2 X 3

= C
2

( D G
1X2 + X 1)

= G2 (D*G 1X 1* + R — X 4 )

— 
G1G2 D*X 1* + G2R

— 
1 + G 2

= G3D*X 1
* + R1

= G3
D*(R* — X

4
*) + R1. ( 2 6 )  ::

Since X4* C~ was just determined in Equation (25), that
value is substituted into Equation (26) to yield :

[ /G.,*D*R* + R *\l
C = G~ D~ [R* 

- 

1 + ~~~~~ )
~j 

+ R~

+ C *D*R* - G
3*D*R* - R 1*\

-, 1 + G
3*D* / 1

(G3
D*

+ G
3
*D* / 

(R* _R
1*) + R 1 . (27)

An alternate form for (R* - R
1
*) may be found if desired :

IC R  \*

1 \ 1 . 4 - G2

1/1 + G2\ ]* f G2 R \*
+ G21) j  \ l  + C2 )

- f_ _ _  

\*  ( G 2 R \* ( G2 R ‘\ 
*

— 

~~~~~ ~2 1 + 
\~ 

1 + C2) 
— 

~ 1 + G2 /

I , _ /  R \ *  d.  *
— R 2 . (2 8 )

11



This expression fu: (~~ * - I~ i *)  may be s u b s t i t u t e d  in to
Equ~it ion (.~7) 

( I )  y i e l d

C 
~~~~ 

+ , (29)

which may be si  iq ht ly s i mp l e r  iii form than Equation (27)

3. MODIFIED SIGNAL FLOW GRAPH TECHNIQUE

If the anal yst prefers to use a Signal Flow Graph
(SFG) technique , the following modified SFG is proposed .
It incorporates many of the features developed in SAM.
As such , it appears to be simpler to implement ,
requiring the application of Mason ’s Gain Rule at only
one stage of the analysis.

The first three steps are identical to those of SAM. :
STEP NO. 4. CONSTRUCT EQUIVALENT SFG

The equivalent SFG is drawn directly from the
information contained in the “system equations ” (Step No.
1) or from the block diagram .

STEP NO. 5. CONSTRUCT SAMPLED SFG

The sampled SFG is drawn from the “pulsed sys tem
equations” (Step No. 3).

STEP NO. 6. CONSTRUCT COMPOSITE SFG

This is achieved by connecting the output nodes of
the samplers in the equivalent SFG to the nodes
representing those same quantities on the sampled SFG.

STEP NO. 7. OBTAIN DESIRED INPUT/OUPUT RELATIONSHIPS

Mason’s Gain Rule (Appendix A) is applied to the
composite SFG to obtain desired outputs in terms of
system transfer functions and inputs to the system .

Examples of the use of the modified SFG method
follow . For comparative purposes , the same two examp les
to which SAM was applied will be used .

12
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EXAMPLE NO. 1.

STEP NOS. 1 - 3. SYSTEM, MODIFIED SYSTEM, AND PULSED
SYSTEM EQUATIONS

Repeat these steps as shown in Example No. 1 of
Section 2 (SAM). They are summarized in Table 1 and
are Equations (2), (3); (4), (3); and (8), (9),
respectively.

STEP NO. 4. CONSTRUCT EQUIVALENT SFG

The equivalent SFG is cons tructed directly from the
“system equations” of Step No. 1, Equations (2) and
(3). The resulting SFG is shown as Figure 3.

Figure 3. Equivalent SFG for Example No. 1.

STEP NO. 5. CONSTRUCT SAMPLED SFG

The sampled SFG is constructed directly from the
“pulsed system equations ” of Step No. 3, Equations (8)
and (9). The resulting SFG is shown as Figure 4.

R* 1 E* G* 1 C~
p 

~~~~ 43

_HG*

Note: Encircled number refers to identification of loop.

Figure 4. Sampled SFG for Example No. 1.

STEP NO. 6. CONSTRUCT COMPOSITE SFC

The composite SFG is constructed by joining the two
SFG’s of Figures 4 and 5 in the prescribed manner. In

13 
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t h i s  example ~e S i  nqle ’ Ii n&’ &‘o n n i •ct  1 r i q t he ’  E~ ‘ s of thetwo SEC ’s i s  r e qu i i e ’~l (F1.Ju : e 5) .

Note: Encircled number refers to identification of loop.
Figure 5. Composite SFG for Example No. 1.

STEP NO. 7. OBTAIN C*, C

Looking at Figure 5, one sees that there are two
inputs to the system , R and R*. Applying Mason ’s Gain
Rule (appendix), one finds only one possible forward
path from R* to C* and none from R; hence , k = 1. The
gain along that forward path , 

~~~ 
is seen to be

M1ç = M1 = G~ . (30)

There is a single ioop whose gain is

K1 = — ~~~ (31)

The value of ti is found to be

A = 1 — K 1 = 1 + HG* . (32)

Since the single forward path touches the single loop of
this system,

A k ~~ 
= 1. (33)

The gain , M, between C* and the input R~ is then

M = 
C~ = 

M 1A 1 = 
G*

A l + H G

14
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Solving Equation (34) for C* we obtain the same result as
Equation (11).

In solving for C, we find that only input R* has a
forward path to C. In this case the gain along that
path is seen to be G (Figure 5), i.e.

M1 = c. (35)

The value of A remains the same as that shown in Equation
(32), as does the value of K-1 remain as shown in
Equation (31). The single fôrward path touches the single
loop of the sys tem, so Equation (33) still applies.
The gain , M , between C and the input R* is then

M = = ____ = 
~ 

(36)

Solving Equation (36) for C one obtains the same result
as Equation (12).

EXAMPLE NO. 2

STEP NOS. 1 - 3

Repeat these steps as shown in Example No. 2 of t!
Section 2 (SAM). They are summarized in Table 2.

STEP NO. 4. EQUIVALENT SFG

Construct the equation SFG directly from
“system equations ” (13) through (16) (Figure 6).

—l
.. 

1 
_ _ _  _ _ _ _ _  _ _ _ _ _  _____ 

1

Figure 6. Equivalent SFG for Example No. 2.

15
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ST EP NO. 5.  SAMPLE D SEC

Construct the sampled SEG directly from “pulsed
system equations ” (19) — ( 2 2 ) (F 4 gu r e 7 ) .

Figui e 7 . Sampled SFG for Exarple No. 2 (modified
SFG method) .

-S
STEP NO. 6. COMPOSITE SFG

The composite SFG is obtained by joining the two
SFG ’s of Figures 6 and 7 with a line connecting the E*~ s(X2’s) of the two SFG s (Figure 8)

—1

i ,~9 D”G~N.Y G2 \ 1 C
R 

~~~ 
Ø’

~ 
~ 1 

0 • p
E E*

1

1 E* 1 +G * D *  y*
R *~~~ ~ 1 .-

1
® G 3 *D*

—1

Note : Encircled numbers refer to identification of loops.

Figure 8. Composite SFG for Example No. 2
(modified SFG method).

_______ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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STEP NO. 7. OBTAIN C~ , C

From Figure 8 one sees that there are three inputs
to the system : R , R* , and R ~~. Applying Mason ’s Gain
Rule , one finds two forward baths to C*,one from R* and
one from R1~~; hence, k = 2.

There are two loop gains , denoted herein as K1 and K2.
The loops are designa ted by encircled numbers on
Figure 8, and their gains are

K1 = —C 2 ,  ( 37)

K2 
= _ G

3* D* . (3 8 )

It is observed that the loops are nontouching (necessary
information for formulating A). A is thus found to be

A = 1 — ( K 1 + K2) + K1K2

= 1 — ( — C 2 
_ G

3* D*) + C2 G 3* D*

= (1 + C2
) C 1 + G3* D*). (39)

The forward path from R* to C~ may be designated as
k = 1. Since it is touched by Loop 2 but not by Loop 1,
the value of A 1 is

= 1 + C2 .  (4 0)

The forward path from R * to C* may be designated as
k = 2. Since it is tou~hed by Loop 2 but not by Loop 1,

A 2 = (41)

The gain along the first forward path (k = 1) is,
from Figure 8,

= 
G3* D* . (42)

The gain along the second forward path (k = 2) is

M2 = 1. (43)

17
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The gain t.11 between P* and C* is

1* M 1 ~l d . C _ 1 1
M R* A

(G 3
*D*) (1 + G2)

= (1 + G2) (1 + G3*D*)

G *D*
= 

3 (44)
1 + G3*D* 

-

The gain M2 between R1* and C* is

2* M A

2 d. C — 2’~2 
S

M = 
~~~~~~~~~~~~~ A

(l)(l + G2)
= (1 + C2

) (1 + G3*D*

1
= 1 + G3*D* 

- (45)

Solving Equations (44) and (45) each for C1* and C2*,
respectively ,

where

C~ = C~~ + c2 * , (46)

one f inally obtains

C~ = M1 R* + M2 R1*

IG *D* 1 1
= Li3+ G3*D*] R* + 

(1 + G~*b*)
Rl*

G *D*R* + R *
— 3 1 

~ (47)— l + G 3*D*

which is seen to be identical with the earlier SAM result
of Equation (25).

18
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To obtain C , one must first observe from Fiyure 8
that all three inputs to the system can find their way
to the node representing c. The two loop gains , K 1 and
K,, are the same for finding C~ , as is A. The for*ard
path from input R* to C, designated as k = 1, has a
gain M1 of

= D~ G 1 c2. (48)

The gain along the path between R1* and C, designated as
k 2, has a gain M2 of

-D~ C1 C2 - (49)

Final ly , the gain along the path between R and C,
designated as k = 3, has a gain 11, of 

- -J

M3 = C2 .  (50)

The k - 1 and k = 2 paths touch both loops, so the values
of A 1 and ti2 are both uni ty .  The k = 3 path only touches
Loop 1, so the values of A3 is 

r
A 3 = 1 — = 1 + G~ * D* . (5 1)

The gain M1 between R* and C is

1 ~~ . 
— 

M1A 1M - R* A

D*G1G2
(1 + C2) 11 + G3*D*) (52)

The gain M2 between R 1* and C is

2 d  M2A 2M = 
~~~~~~~~ A1

_D*G
1 ‘ 2

— ( 1 + G2)(1 + G3*D*) 
(~~3~

19 
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The gain M3 between F and C is

- - 

M
3

L
3

R A

G2 (1 + G3
*D* )

= (1 + G2) (I + G3*D*)

~1

= 

C2 ( 5 4 )

Solving Equations (52) through (54) for C’, C2, and C3,
respectively , -

- 
-

-“

where

c = c1 + + C3 , (55)

one obtains

C = M1 R* + M2 R1* + M3 R

D*G1G2 R* D*G,G2 R1* G2 R— ( I +G 2)(].+G 3*D*) (1 +G 2)(l+G 3*D*)
+
i c

D*G
= (1 + G~~D~) 

(R* — R1*) + R1 . (56)

Equation (28) may be used in an attempt to simplify the
above result, yielding

D~G
C = (l+ G3* D ~) R 2 * + R1 . (57)

This is equivalent to Equation (29) obtained using SAM.

20
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4. THE SAMPLED SIGNAL FLOW GRAPH METHOD

The standard Signal Flow Graph method in use is the
“Sampled Signal Flow Graph Method .”2 So that the SAM
and modified SFG methods exposed in Section 2 and 3, L
respectively, of this report may be compared to this
standard method , it is described briefly in this
section . The same two examples that have been used
previously in this report are used in this section to
better permit comparison of the various methods. The
other popularly used SFG method , “The Direct Signal
Flow Graph Method,” will not be described herein.3

STEP NO. 1. CONSTRUCT EQUIVALENT SFG

This is equivalent to Step No. 4 of the modified SFG
procedure of Section 3.

STEP NO. 2. CONSTRUCT SAMPLED SFG

Write system equations for all noninput nodes of SFG ,
applying Mason’s Gain Rule. A “noninput node” is defined
as a node that is not an input node , where an “input” is
defined as a system input or the output of a sampler. ;

Take the pulse trans form of each side of each of
the system equations.

Using equations noted in the paragraph above, draw the
sampled SFG for the system.

STEP NO. 3. OBTAIN RELATION BETWEEN SAMPLED INPUTS/OUTPUTS

- This is achieved by applying Mason ’s Gain Rule to
the SFG.

STEP NO. 4. OBTAIN RELATION BETWEEN INPUTS/
CONTINUOUS- DATA OUTPUTS

Connect the SFG ’s of Steps No. 1 and No. 2 to
yield a composite SFG.

Apply Mason ’s Gain Rule to SFG.

2. B. C. Kuo, Digital Control Systems, SRL Publishing
Company , Champaign , Illinois , 1977, pp. 100-105.

3. Ibid, pp. 106—115.
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EXAMPL I-; NO. 1.

See Section 2 and Figure  1 fo r  a descr ipt ion of the
example.

STEP NO. 1. EQUIVALENT SFG

From the block diagram descr ib ing the system
(Figure 1), construct an equivalent SFG. This is the
same as Figure 3.

STEP NO. 2. SAMPLED SFG

Write system equations, applying Mason ’s Gain
Rule to equivalent SFG (Figure 3).

E F - G H E* ( 5 8 )  • -
~

C = C E* ( 5 9 )

Take the pulse transform of each side of the system
equations.

E* R* _ GH* E* ( 6 0 )

= G~ E* (61)

Draw sampled SFG from pulsed system equations
(Figure 4).

STEP NO. 3.

Obtain C*, E* from sampled SFG (Figure 4), applying
Mason ’s Gain Rule. There is one path from R* to E*; k = 1.

M1 = 1 ( 6 2 )

1 loop: K1 = -~ii~ (63)

A = 1. — K1 = 1 + (64)

The forward path touches the loop :

A 1 = 1, ( 6 5)

22
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M’ ~ 
~~~~~

= 

M1~~1 
~~L . (66)

S o l vin g  E qu at i o n  ( 6 6 )  f o r  E* leads to

E* = ____— . (67)
1 + GH*

There is one path from R* to C~ , k = 2.

= G* (68)

A 2 = A 1 ( 6 9 )

M2 - — 

M2A 2 — G* 
70A 1 + G i i*  

(

Solving Equation (70) for C* leads to

C~ = R* . (73)
l + G H *

STEP NO. 4. OBTAIN , C, E

Connect SFG ’s of Figures 3 and 4 to form composite
SFG (Figure 5).

Apply Mason ’s Gain Rule to Figure 5. There is one
path from R* to C, none from R: k = 1.

M1 = G (72)

= (73)

= 1 (74)

1~~~.C 
M1~ 1 

- CM - ~~~~~~~~~
- 

~~~ - (75)
1 ÷ GH*

Solving Equation (75) for C leads to

c = 
G R* . (76)

1 + GH*



Ther ~~ is -:ix ~~~’ ~ -~~ h ~~ 1~~ ~o 1- . (k = ~ ) ,  m c ]  neE~~t t ~~: f r l n i l  F (k 3)

( 7 7 )

= 1 
( 7 8 )

= 1 
( 7 9 )

= 1 — 1 + 
( 8 0 )

2 d .  E2 M2~ 2 
- -GHM - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (8k)1 + GH~

~ d E ~ 
M~~ 3 ~.1+~~ i* - 1  (82

- - - _ _ _  
- 

2 3Solving Equations (81) and (82) for E and E , respectively,and using the relationship,

= E 2 
+ E3, 

(83)
one obtains

E = B - —
~~~~~

- --_— R~ . (84)

\

~~~~~~~~~ In this elementary example, it is seen that the SFG ’s andalgebraic relationships are identical to those obtainedwith the modified SFG method of Section 3. Such will, notbe the case with Example 2.

EXAMPLE NO. 2

See Section 2 and ~4gure 2 for the description of thedigital control system . It is desired to find C and C~in terms of system input B and the system transferfunctions .

STEP NO. 1. EQUIVALENT SFG

This may be drawn directly from the system equationssummar ized in column 1 of Table 2. It is shown as

24 
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STEP NO. 2. SAMPLED SFG

Wri te system equations , applying Mason ’s Gain Rule
to SFG of Figure 6. There is one path from R to E (k = 1) , -

one path from F to Y (k = 2 ) ,  and one path from R to C
(k 3). There is one path from E* to Y (k = 4) , one
path to C (k = 5), and one path to E.

Using the techniques that are by now well established
.Ln this report,

M1 1, (8 5)

M2 = 1, (86)
-

(87)

M4 = D*G1 (88)

M5 = D*G J C
2 (89)

M6 = —u ~ r,1 G2 (90)

K1 = —G2 (91)

A = 1 — K 1 1 + C2 ( 9 2 )

Ak = 1, (93)

l~~~. El _ M
lA l 

— 1
— M — — 

A 
— 

1 + (94)

M2 d = 
M2A 2 

— (95— fl A 1 + G 2

3 ~ C1 
— 

M~ A~ 
— 

C2M — — 

A 
— 

1 + C2 
(96)

4 ~2 
— 

M4A 4 
— 

D*G
1M — E* A 1 + G 2

25
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~ 
M, A

M = - - —  = i ,
~~~~~~

.
‘ , (98)

- M •~ — D*C C
6 1. i 2 2M - = 

- I $ C (99)

One solves Equations (94) and (99) for E1 and E2,
respectively, and using the expression ,

F = E
1 + E 2

, (100)

and one obtains F:

1 6
E M R + M E *

D*G GF 
- ‘2 E*l + G 2 l + G 2

= F2 
— D*G3E* . (101)

One solves Equations (95) and (97) for Y~’ and Y2, and
using the expression ,

y = + Y2, (102)

one obtains Y:

Y = M R + M E*

D*G
= R2 + 

~ + G 2 
E* . (103)

26
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~ 
Simjjarly, one solves I:quati oiis (96) and (99) for

C and CZ, and using the expression ,

C = + C
2
, U,04)

one obtains C :

C = M 3R + M5E*

G B D*G G
2

- +  
1 E*l + G 2 1 + C 2

= F 1 + D~ G 3 1. * . ( 105)

Take the pulse transforms of each side of the
Equations (101), (103), and ( 1 0 5 ) .

= R 2 * — D*G3E* ( 1 0 €)  p

/ C1 \ *
= R 2~ + 

~~l + G2)  
D*E* ( 107)

= ( G
2 R ) *  ( d

iG
2 ) *  D *E *

= R 1* + G 3*D*E* ( 108)

Draw the sampled SFC from the pulsed Equations (106)
through (108) (Fi9ure 9). Note this is not the same as
the sampled SFG that resulted from using Th’e modified SFG
method of Section 3. However, the final answerã— the
desired responses — will be the same, as will be seen in
the sequel.

27
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Note : Encircled numbers refer to identification of loops.
Figure 9. Sampled SFG for Example No. 2

(standard SFG method).

STEP NO. 3.

Obtain C* from the sampled SFG (Figure 9), using
Mason ’s Gain Rule. There are two inputs: R1 * and R2*.They have two forward paths to C*; k = 1 and k = 2,
respectively. Again using techniques that have been
well established in this report:

= 1, (109)

M2 = D*G 3* (110)

K1 =_ D*G
3*, ( i l l)

A = 1 — K
1 = 1 + D*G3*, (112)

A 1 = A , (113)

A 1 = 1, (114)

1 ~~. — 
M1A 1M — ~~~~~~~~~ ,~ — 1 , (115)

1

M
2 
~~ 

= ~~2 = (116)
2 l + D * G 3*

28
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One solves EI~Iuations ( 1 l~~) ~nd (11(m) tor C’* and C2’,
respectively. Using the expression ,

C’ = C~~’ + C~~’, (117)

one obtains C’:

C’ + M2R2’. ( 118)

Equation (118) may be manipulated into the s ame form as
Equations (25) and (45) , if desired , by substituting
the expression Iresulting from Equation (28)1.

B’ — = H2 (119)

into Equation (118):

C~ — R + F *— 1 1 + D* G 3~ 2

— 

R 1 U + D’G3
’) + D*G 3 *( R *  — F1

’)
- 

1 + D*G 3*

+ D*G 3 *R*

I + D*G~~ 
. (120 )

STEP NO. 4. OBTAIN C

Connect the SFG’s of Figures 6 and 9 to obtain a
composite SFG (Figure 10).

29
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Note: Encircled numbers refer to identification of loops.

Figure 10. Composite SFG for Example No. 2
(.~,tandard SFG method).

Apply Mason ’s Gain Rule to Figure 10 to obtain C.
There are three inputs to the composite system: R, R.~*, and
fl,~~. There is one forward path from R to C (k = 1), fio for-
w~rd paths from R1*, and one from R2* (k = 2).

= G2 (121)

M2 = D*G1G2 (122)

There are now two loops (see Figure 10): (123)

=

K2 =

A =  1 - 
~~~ 

+ 
~~~ 

+ K1K2
= 1 — (_D*G

3* 
— G2) + (_ D*C

3*) ( —C 2 )

= 1 + D*G3* + G 2 +

= ( 1 + D*G3*) (1 + C2 ) , ( 125)
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A
1 = 1 — K 1 = 1 + D*G 3

* , (126)

A 2 = 1, ( 1 2 7)

M~’ ~~ c~ — 

M
1
A
1 

- 

G2 ( l  + D’C3’) 
— 

G2
— R — 

:‘~ 

- (1 + D* G 3*) Cl + C2 ) — 

1 + C2 
(128)

M 2 
~~~~~ 

ç,~ - ____

R 2 ’ A

D*G1G2 *= ( 129)
(1 + D*G3*) (1 + C2)

Using the expression ,

c = c1 
+ C2

1, (130)

and solving Equations (128) and (129) for C1 and C2,
respectively,one may obtain

G2R D*G1G2R2*C = 
~ + G2 

+ (1 + D*G3
*) (1 + G2)

- 

G3D*R2*
— R1 + 

~ + D*G * (131)

It is noted that the values of C* and C just obtained are
the same as those obtained using the SAM and modified
SFG techniques.

5. APPLICATION TO Z- AND MODIFIED Z-TRANSFORMS

In the SAM and SFG techniques for obtaining sampled-
data outputs of a system, that form has been indicated
as C~ or C*(s). The z-transform of C*(s) is merely
written as C(z). Hence, anywhere an expression C’(s)
is found, it may be replaced by C(z) if it is desired
to work in the z-domajn rather than the s-domain.

31.
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If it is desired to find an output expression in
modified z-transform , t h a t  is denoted by the symbol C(z ,in) .
This form may readily be obta i ned t rom the expression for
a sampled output , such as C’ or C’(s), by noting that such
outputs appear to be equal to the product of an unstarred
quantity and a starred quantity. Let A(s) represent the
unstarred quantity, and let B’(s) represent the starred
quantity. Then variable C’(s) may be written as

C~ = C’(s) = A(s) B*(s). (132)

If one recognizes that A(s) or B*(s) may be equal to
unity , Equation (132) will always hold.

The modified z-transtorm may always be obtained . -

from Equation (132) by performing the following
transformation:

C(z,m)  = A(z ,m) B(z), (133)

where A(z ,m) represents the modified z-transform of the
quantity A(s), and B(z) represents the ordinary z-transform
of the quantity B(s). This technique appears to be an
attractive alternative to obtaining modified z-transforms
through SFG techniques (which may of course be done).

6. COMPARISON OF METHODS

The Systematic Analysis Method (SAM) can be used to
determine the states of a digital system in terms of
that system’s transfer functions and the inputs to the
system. This can also be done by the application of other
methods, such as SFG techniques. The usual advertised
advantages of the latter, when they are compared to block
diagram or algebraic manipulation , is that they are
particularly amenable to the analysis of complicated
systems.

It has been demonstrated in this report that SAM
can handle digital system analysis as capably as can
SFG methods. It has the advantage of not requiring
the cumbersome Mason ’s Gain Rule. Hence, it avoids the
oft-committed errors associated with SFG analysis , such
as overlooked closed loops, nonobvious forward paths,
etc. As with SFG ’s, a block diagram is not needed; the
system equations are sufficient. Finally, it has been
shown that SAM is easy to implement. It appears to take
less lengthy analytical manipulation.

32

— ~~~~~~~~~ —



I f  the a n a l ys t  prefers using SFG ’s to either block
diagrams or algebraic manipula tion, a modified SFG
technique based on SAM techniques is proposed. As such ,
it is systematic. While the SFG’s produced by this
technique are usually different from those produced by
standard SFG techniques , they yield the same results .
Mason ’s Gain Rule is only applied at one stage of the
analysis in the modified SFG technique , as opposed to
the standard SFC technique which requires several
applications ‘if Mason ’s Gain Rule.

7. CONCLUSIONS

An alternative to the Signal Flow Graph technique
has been presented and compared to a standard and a
modified SFG . The alternative , termed Systematic ‘fAnalytical Method or SAM, is claimed herein to be simpler
and more straightforward to implement than the SFG methods.
Not only does it appear to be quicker to use in system
analysis , but it obviates the cumbersome use of Mason ’s
Gain Rule.

For the analyst who desires to use SFG techniques ,
a modified SFG technique is presented . It is systematic
and reduces the number of required applications of
Mason ’s Gain Rule.
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APPENDIX A - REVIEW OF MASON’S GAIN RULE 1

M: The gain (transfer function) between two nodes
on a Signal Flow Graph (SFG).

k: The number of forward paths leading from all
system inputs to a particular selected output. -

-

The gain along the kth forward path. - _
A 1 

- E (all individual loop gains)
+~~~~ (gain products of all poss ible combinations

of two nontouchirig loops)

-E (gain products of all possible combinations
of three nontouching loops)

H +

A = Value of A for that part of the graph not •1-.
’
.

touchiI~g the kth forward path.

M =E  
M
k~ k

-j

—
~~~~~

-- -
-
.
- ~1
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