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Abstract

Several proposed routing algorithms for store and forward communication
networks, ‘including one currently under implementation in the ARPANET, route
messages along shortest paths computed by using some set of link lengths.
When these lengths depend on current traffic conditions as they must in an

adaptive algorithm, dynamic behavior questions such as stability, convergence,

and speed of convergence are of interest. This paper is the first attempt

to analyze systematically these issues. It is shown that minimum queuing

delay path algorithms tend to exhibit violent oscillatory behavior in the

absence of a damping mechanism. Several easily implementable damping schemes

are proposed and analyzed by using nonlinear stability theory techniques.
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T, Introduction

A central operational problem of a communication network involves the
choice of routes used by messages to travel from origin to destination. It
is possible, of course, to choose a fixed route for each origin-destination -
pair, but this precludes the possibility of adjusting routes to alleviate

congestion due to statistical variations in traffic conditions. For this

reason attention has focused on adaptive routihg strategie's
whereby congestion in the network is continuously monitored and routes between
origin-destination pairs are modified in real time so as to keep average
delay per message at a reasonable level. A routing echeme of this type was
implemented in the ARPANET in 1969 and attracted considerable attention.
The main idea in this scheme is to compute in real time an estimate of the
minimum average delay per message for each origin-destination pair and to
route messages along the current minimum estimated delay path., When this
scheme was first implemented, it was noticed that it is
prone to severe oscillations. This behaviour is due to the fact that
delay estimates used to choose routes are themselves affected by the route
choice with a feedback effect resulting. To remedy this situation it was
decided on heuristic grounds to introduce an additive factor, called bias,
to the estimated delay of each link, thereby building into the algorithm
a preference towards paths with small number of hops to the destination
{51 - [7]. This had a stabilizing effect albeit at the expense of considerable
loss of sensitivity to traffic congestion.

The implementation of the minimum delay path idea in the original
ARPANET algorithm had a number of flaws allowing, for example, the formation

of loops. For this reason alternative schemes based on the same idea were
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studied, a new algorithm called SPF has been developed and is now ready for
implementation (1], (4], (11]. The present paper is an outgrowth of the
author's participation in the design study of this algorithm during the summer
of 1978 at BBN, Inc. However, our analysis does not focus on the ARPANET

and the SPF algorithm in particular, but rather is geared towards understanding
the effect of feedback and the nature of the dynamic behaviour of shortest
path algorithms where link lengths depend on current traffic conditions.

We note that the algorithms of this paper are far from optimal since they

are single path algorithms in the sense that at any given time there is only
one path per origin-destination pair along which messages can travel. Better
performance can be achieved by allowing multiple paths as for exampie in the
optimization algorithm of Gallager [9] or its second derivative versions [2].
On the other hand the hardware limitations of some of the presently existing
networks including the ARPANET preclude the use of such more sophisticated
algorithms. Furthermore, we feel that the mere fact that the algorithm has
been successfully implemented in a network as interesting and influential

as the ARPANET makes it worthy of analysis and investigation. This is.
reinforced by the fact that the behavior exhibited by the algorithm is

quite interesting and can pose nontrivial design problems.

The paper is organized as follows:

In Section 2 we provide a deterministic finite state Markov chain
framework for studying a simple version of the algorithm. We show that for
ring networks the algorithm may tend to oscillate between poor routing paths
and become itself a major contributor to congestion. We also demonstrate
how the use of a bias factor can provide a mechanism for damping oscillations

as confirmed by experience with the original ARPANET algorithm.
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The finite state model does not lend itself to analysis of more sophisticated
routiﬁg schemes and more general network topologies. We consequently introduce
in Section 3 a model of a ring network with a continuum of nodes and a single
destination. This allows us to employ tgchniqucs of stability analysis of
discrete-time systems with continuous state space, and enables us to further
quantify the relationship between choice of link lengths and algorithmic
behavior.

The analysis of Section 3 focuses primarily on the effect of using a
bias factor as a damping mechanism. In Section 4 we show that oscillations
can also be damped effectively by making the link lengths dependent on
several preceding routing paths via some averaging mechanism such as a fading
memory scheme or asynchronous link length updating. To our knowledge the
fact that averaging can provide a damping mechanism in a shortest path algorithm
has not been noticed earlier and in fact when we originally approached this
problem at BBN, Inc. there was considerable concern regarding its effect on
algorithmic behavior. It is now believed that the significant degree of
averaging inherently present in the SPF algorithm is in large measure responsible
for the stable dynamic behavior observed in experiments conducted thus far
[11].

The analysis of Sections 2-4 focuses on ring networks. The ring
topology is central for the extension of our earlier results to more complex
network topologies. This extension is carried out in Section S under the
assumption that an equilibrium routing exists. However, by contrast with
ring networks, an equilibrium routing need not always exist for more complex
topologies. We demonstrate via example the mechanism by which such a
phenomenon can occur.

The results and analysis of the present paper can be generalized to

the case where there are more than one destinations. This analysis is




straightforward but considerably more complex technically and may be found in [3].
The continuous node model of Sections 3-5 may be criticized on the grounds
that it is unrealistic. On the other hand it is very difficult to provide an
extensive analysis of a more realistic finite node network model. In particular,
it appears impossible to demonstrate the effect of averaging in such a context.
Purthermore we believe that the realism of any algorithmic model must be judged
on the basis of the validity of the conclusions it provides regarding the
behavior of the related practical algorithm. These conclusions in our case

have been verified by extensive numerical experiments with finite node net-
works [4], ([3]. 1In particular the validity of our qualitative results
regarding the role of a bias factor and averaging as damping mechanisms

have been amply demonstrated.

2. A Finite State Markov Chain Model

Consider a communication network with nodes denoted by 1,2,...,N and
directed links denoted by (i,%) where i is the head node and % is the tail
node. We consider the following algorithm for periodically updating paths
for routing messages.

(A) At the beginning of every time period a nonegative length Dil of
every link (i,%) becomes availabe to each node. Based on these lengths each
node computes a shortest path to each destination and routes messages over
that path during the period.

The standing assumption for algorithm (A) is that the lengths Dil used
in computation of a new shortest path depend exclusively on one or more
preceding shortest paths. This dependence is detesministic via a rule that

for the moment we leave unspecified. As an example Diz may represent some
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measure of average delay per message on link (i,2) during one or more preceding
periods perhaps with an added bias factor -a scheme currently implemented in

the ARPANET (1], ([11]). By assuming that the dependence of Do on previous
shortest paths is deterministic we also implicitly assume that the input traffic
originating at each node is a stationary stochastic process whose ensemble para-
meters can be adequately measured by time averages. This assumption is not

valid, of course, in practice but is a reasonable approximation to the situation

where the time constant of traffic statistic variations is large relative to

the shortest path updating period.
Consider first algorithm (A) applied to a given network for the case where

the lengths Dil depend exclusively on the preceding shortest path. Assume
also that the shortest path algorithm has a fixed rule for breaking ties
between equidistant paths. Then each shortest path uniquely determine the

next shortest path. There is a finite number of possible shortest paths

(also referred to as routings) which we denote by R, Rz"""RM where M

, there corresponds a
()

unique sequence of subsequent routings Ri ¢ Ry seee
1 2

), and once this happens the routing

is some integer. To any initial routing say Ry
Thus eventually some

routing will be repeated (say Rik = Rik
+n

sequence will become periodic. Thus starting at Ri the algorithm will

o

eventually end up cycling through Rik....k . Of course it is possible
+n-1

that Ri itself is part of the cycle (k=0), and that the cycle consists of

o
a single routing (n=l) in which case the algorithm stabilizes at that

routing.
The model just described is one of a deterministric finite state Markov

chain with states Rl""RM' From Markov chain theory or by elementary

reasoning it follows that the set of all routings {Rl....,RM} can be parti-




tioned into a collection of cycles (or ergodic classes), and a collection of
transient routings. If the initial routing is transient it is never repeated ]
by the algorithm, and if it is part of a cycle the algorithm returns to it
periodically. More than one cycles may exist. Furthermore, each transient
routing leads to a unique cycle. :

When the lengths Dil depend on a fixed number (say m) of preceding routings,
a finite state model for the algorithm can be similarly constructed whereby
the state space of the model is the set of all m-tuples of routings. Similarly
the state space can be partitioned into cycles and transient states. Analysis
of such a model is naturally more difficult in view of the increased size
of the state space, and this is more so if Diz depends on all preceding
routings in which case a countable state Markov chain model is necessary. 1

In what follows in this section we will restrict attention to the case g

of a ring network with N nodes shown in Figure 1. Node N is the only

destination and all links are bidirectional. By reversing the directions
of flow and the role of originas and destination the subsequent model can
be converted to one with a single origin and many destinations. The

traffic input originating

Fis}  Fi  fis

Figure 1.
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at node i and destined for N is denoted by r;- The routing Ri A R |

is the one for which all nodes j < i route their traffic in the clockwise
direction and all nodes j > i route their traffic in the counterclockwise

direction

ROUTING R,

Figure 2

as shown in Figure 2. Given a routing R,, the flows on each undirected

link (j-1,j) in the clockwise and counterxclockwise direction are denoted

by fg(i) and t; (i) respectively and are given by

) ' i£f 18]
£, =

Tip Tyt oty 1f 3<1i
i ri+ri+1+...+rj-1 if 1<}
£ = ,

0 £ 1%4i1.
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We will consider the case where the length °1z of a link (i,2) is given

by an equation of the form

(1) D, = d(fig)

where ’11 is the flow on link(i,%) during the preceding period and

d is a real valued, continuously differentiable and monotonically
increasing function of flow with d4(0) > 0. For simplicity we assume that

the function 4 is the same for all links but this does not affect materially
the analysis that follows. Since the flow fi2 depends only on the preceding
routing the same is true for the length Diz . It appears that this simplest
of all possible situations is the only one that can be analyzed effectively
in a finite node network context. The practical situation where Dil is

taken to be the average time delay for a message to traverse link (i,2) can

be reasonably modelled by a function d of the form

(2) d(fi,‘) =P+ 'ru + 919.‘519.’

where

Pil = Average processing plus propagation delay per message

'ri2 = Average transmission delay per message
Qiz(fiz) = Average queuing delay per message when the average

flow on link (i,L) is fil .

The quantities Ptl and Tiz are independent of the flow fi2 while the
dependence of Qil on fiz is determined by the statistics of the traffic ]
arriving at i and routed through %. If these statistics can be adequately

modelled by an M/M/1 queue then Q;, takes the form 61, (71

£
i2
(3) Qil(fil) = iy - fiz

ud




where Ci is the transmission capacity of link (i,%). We mention, however,

that on the basis of experiments conducted thus far it is unclear whether
the average delay per message in the ARPANET can indeed by modelled as in
(2). This may be due to peculiarities of the ARPANET hardware which are
little understood at present. We now define the shortest path algorithm
Given a routing R, we define the distances D (i,3), D+(i,jl of node j to

i
the destination in the counterclockwise and clockwise directions respectively

B Sl i e M Lo

by %
5 3 = !
D (i,3) = T dlf,(i)] i
L=1
N
pt(1,§) = I d(:;(in.
L=g+l

IfD (i,i) = D+(i,i) then the algorithm sets the next routing to Ri' it
D (i,i) # D'(i,i) the algorithm sets the next routing to R where the node n

is such that

D (i,3) 2D'(1,3) for j>n
D (i,3) <D'(i,3) forj<n.

It can be easily shown that if D (i,i) ¢ D+(i,i) the next routing R, is
uniquely deterﬁined by the relations above. Given an initial routing R°
we consider the sequence of successive routings Rl, R?....R*, Rk+l,...,
generated by the algorithm.

The quantity 4(0) may be viewed as a bias factor. It represents link

length at zero flow. The following proposition shows that if 4(0) = O and

the first two routings are different, i.e. Ro # Rl then the algorithm ends
up oscillating between the two extreme routings R1 and Ry which is the worst
possible behavior that can occur. In the context of (2) the case 4(0) = 0

corresponds to the situation where the processing and transmission delays

P;q and T;g are negligible relative to the queuing delay Qi 2-
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Proposition 1: Let d(0) =0 and assume that RO#RI. Then there exists an

| index k such that for all k 2k either Rk-kl and Rk+1-R.N or Rk-RN and
Rk-l-l._nl.

Proof: Let Ri be a routing and assume that the routing subsequent to R‘_ is
Rn withn $#i. For concreteness assume that n < i. We will show that either
i = N or else the routing subsequent to Rn is kj with j> 1.

If 1 #N then since Rn is the routing subsequent to Ri. we have

(4) D (1,n-1) < D' (i,n-1) = D' (L,1).

We also have :
(s) o*(t,1) < 0' @, 1),
(6) D (n,i) * D (i,n-1). g

From (4) - (6) we have

p (n,1) = D¥(L,1) > D ({,n-1) =D (n,1)

e st i Sk el i L

so finally

p'(n,i) > D (a,1i).

It follows that in the routing Rj vhich {s subsequent to R, node i will

switch his traffic to the clockwise direction so that j > i.

We can show using a very similar argument that if o« > i then
either i =1 or else the routing subsequent to Rn is Rj with j < i.{

Thus we have that the number of nodes that lie between two
successive routings is increasing at each iteration if nome of these
routings is R, or RN On the other hand if the current routing is Rl or

RN then the next routing will clearly be &N or Rl respectively. This proves
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the proposition. Q.E.D.

0 1

Notice that, if d(0) =0, the situation R aR" can only occur if

p™(1,1) =D'(1,1) where i is the node for which R0=R,. Thus if we add any
0 1

£> 0 to any one of the node inputs we will have R #R" and the algorithm

will again end up oscillating between nl and RN. We provide an example
illustrating the result of Proposition 1. Several additional examples

involving more general topologies and multiple destinations may be found

in (4].

Example: Consider a l6-node ring network where node 16 is the destination.
letr=1fori=1...,7,9,...,15 and rg = €>0.Ife=0and the initial
routing is RB then by symmetry all subsequent routings equal RS' If €

is very small but positive then for the case where
a(f) = £

the sequence of generated routings is R_, Ro’ R3, Rygr Rys» Rygr Ryseeo
This fact can be verified via a straightforward calculation in Figure 3

which shows the flow patterns corresponding to successive routings.

We now turn our attention to various notions of equilibria and

stability. Wa say that Ri is an equilibrium routing if

D™ (1,i-1) < p*(i,i-1), and D' (i,1) < D (i,1).
It follows from this definition that Ri is an equilibrium routing if and
only if it repeats itself via the shortest path algorithm.

We say that a node i is an equilibrium node if

D (i,i) < D'(i,i), and D (i+l,4) < D (i+l,i) .

In words a node i is an equilibrium node if he switches his traffic in

both cases where the routing is R1 and Ri+1°
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We say that an equilibrium routing Ri is locally stable if routing

Ri. +1 generates either Ri or Ri-l through the algorithm, and routing Ri-

generates either Ri or Ri +1°

stable if routing R:I. generates Rj. +l via the algorithm, and routing Ri

1
We say that an equilibrium node i is locally

-1
generates Ri' The definition of local stability is based on the idea that
when the algorithm starts "close enough to equilibrium” it should not lead to
a "growing” oscillation. The following proposition complements Proposition 1
and suggests that the bias level d(0) should exceed a certain positive value in

order for an equilibrium routing or node to be locally stable,

Proposition 2: a) An equilibrium routing Ri is locally stable if

_ £y N1 oA r, N-1 -~
4(0) > max {5 I m , 3= I ml
Sm=1 =1
72 LFi-1

where

~

my, = max{a'(£)[g (i-1) < £< & (1)} , for L =1,...,i-1

N

+ + :
m, = max{d'(£)[£) (1) < £< £ (i-1)} for & = i+l,...,N-1

m, = max{d'(f)lf;(i) <f< :;(im} for L = 1,...,i=2
’ + Y
my = max{d'(£)|£)  (4+1) S £< £, (1)}  for 2= i,...,N-1

where 4' (£f) denotes the first derivative of 4 at £.

b) An equilibrium node i locally stable if

r, N-l _
a(0) 2 3= L my
=1
where
;z = max{a' (£) [£_ (1) < £ < £_(i+])} for L =1,....,i

= max{d' (£) [£](1+41) < £ < £ (1)} for L = i+l,...,N-1.

b
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The proof of Proposition 2 involves a straightforward but lengthy
argument and will be ommitted. It can be found in [4].

Proposition 2 implies that in order to ensure local stability the bias
d4(0) should exceed a level that depends strongly on the traffic conditions.
This level is proportional to the input at or near the equilibrium and to a
global measure of‘the derivative d' alony the ring. Thus it may be necessary
to choose a value of d(0) which is large relative to r and 4' in order to
ensure stability for a broad range of input traffic conditions. This can be
accomplished by adding a large constant to 4. On the other hand this would
introduce a tendency in the algorithm to generate routings close to the min-
hop routing (i.e. one that selects routes according to minimum number of links
to the destination). As a result the algorithm would tend to be insensitive
to congestion. This tradeoff will be reencountered in the next section.

The point of view that has been adopted in this section is one whereby
the algorithm is viewed as a dynamic system with a finite number of states
(the finite collection of possible routings). Unfortunately the study of
dynamic behavior and stability properties of such systems is notoriously
difficult. To begin with there is no accepted definition of equilibrium, and
in fact we saw that in the ring network context there are two types of
"equilibria" that are of interest ~ equilibrium routings and equilibrium nodes.
Furthermore there are no established methodological tools that can be helpful
in a finite state system framework. As a result our progress has been limited
to the results just discussed. We are thus motivated to consider approximation
of the discrete system with a continuous system having a continuum of states.
For such systems there is an effective and well developed stability theory
that can be utilized for analysis. We take this approach in the following

two sections where we introduce a network with a continuum of nodes. Despite




the radical nature of thisstep the analysis provides informative results

E 1 and clarifies the role of averaging the effects of several past routings as

a means of damping oscillatory behavior. The validity of our approach is supported
by the fact that qualitative conclusions drawn from the continucus node model

have been verified computationally in finite node models.

3. A Continuous Model of a Ring Network

We consider a continuum of nodes arranged in a ring and sending traffic

to a single destination as shown in Figure 4.

Figure 4

Pointson the ring are identified with their distance t from the destination
in the counterclockwise direction, where t is normalized to take values in
the interval (0,1]. Traffic can move on the ring in both directions.

Por every t in [0,1] we denote by r(t) the input density at t. The
meaning of the function r is that for any subinterval [tl.tzl of [0,1] the

total input traffic originating at nodes in [tl,tzl is




t
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5
We assume that r is continuous on [0,1]) and r(t) > O for at least on te (0,1)
Note that a network with a finite number of nodes can be modelled by a function
r containing impulses and such a function can be approximated by a continuous
function consisting of narrow triangular pulses of finite height. We are interested
in routings specified by points y in {[0,1], where the flow splits, i.e.points
larger than y send their flow counterclockwise (or in the positive direction) and
points smaller than y send their flow clockwise (or in the negative direction ).

To a given function r and routing y, there corresponds at every point t a flow

in the positive direction :+(z,t}, and a_flow in the negative f-gz,t) given by
oy
jy r(T)dr if - y<t
»  £ao -
| 0 if tly
( :
0 if y<t
(® £ (y.t) =
}‘z r(T)drT if t<y.

In order to introduce an algorithm such as (A) in the framework of

the continuous model we consider a function d mapping flows into the non-
negative real numbers. The meaning of 4 is that given a routing y and any

point t, the distances D and D+ from t to the destination in the negative
and positive direction are given by

- c -
9y D (y,t) = [ dif (y,T)]dT
0

1
an  o',0) = [ are 5, mlar.
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We will assume that 4 is a monotonically increasing function of £ with every-
where continuous derivative. We further assume that 4(0) > 0. As Proposition 1

shows, the case where d4(0) = O is not interesting from a practical point of

view.
We consider the following algorithm for generating routing sequences
{Yk}: :
(Al) Given a routing Yy’ the next rbuting Yies1 is the solution of
the equation
A1 DTNy T Goy) |

It will be shown as part of Proposition 3 that equation (11) has a

unique solution for every yk6[0,1]. Note that since we have

- - + +

- - + +
it follows that a routing Yies1 determined from (ll) is such that every point t

routes its flow in the positive or negative direction according as

D.(yk.t).z ﬂ'(yk,t) or D.(yk.t) §_D+(yk.t). i.e. according to minimum distance

to the destination.
We say that y* €[0,1] is an equilibrium if
a2) D (y*,y*) = D¥y*.y") .
We first show some preliminary results relating to existence and

optimality properties of equilibria:

Proposition 3: There exists a unique equilibrium y*€ (0,1). Furthermore

equation (11) has a unique solution Yl for every ¥




m‘

Proof: Using (9) and (10) we have for all y and t

+

a3) a—D'%g - d[f-(yat)lo _QE_%%.&I - -d[£+(y,l:)].

Ho have d(0) >0 and d is monotonically increasing,so %ﬁ> 0 and

M < 0. Thus for fixed y, the function D (y,*) is continuous,
monotonically increasing and satisfies D (y,0) =0, while the function
D+(y,-) is continuous monotonically decreasing and satisfies D+(y,1) =0,
Hence the equation D (y,t) =D'(y,t) has a unique solution in t lying within
(0,1). Denote by g(y) the solution corresponding to y. The function
8:[0,11[0,1] can be easily shown to be continuous and, by Brower's fixed
point theorem ([8], p. 161), g has a fixed point y*. This y* is an
equilibrium. If there exist two equilibria yI and y; with y: < y*z, then

since d(£)> 0 for all £> 0, we must have
- % % - % % - % * + * *
D (¥7591) SD (31,95) XD (3,,¥,) =D (3¥,,7,)
. R * + * * + * % -, * %
D (¥55¥5) <D (¥,,¥;) <D (y4,¥;) =D (¥,,¥,)

which is impossible. Hence the equilibrium is unique. Q.E.D.

Proposition 4: The equilibrium minimizes over all y € [0,1] the expression
$ B
J(y) -fp[f (y.t)]1at +fp[f (y.t)]dt
o] 0
where p is any function satisfying for all £

(14) p' (£) = d(f)

and p' denotes the first derivative of p.

Proof: The first derivative J'(y) of J is given by

1 + 1 -
' - v ret f (y,t) S f (y.t)
(15) J(y) £ p' (£ (y,t)] Tdt +j;p (£ (y.t)] > -




It can be seen from (7) and (8) that

f-0- t -x(y) if y<t
us) %—l-
0 if t<y
" 0 if y<t
r(y) if t<y.

Combining equations (14) - (17) we obtain

3 () =xL - [y ate" gL olde+ [Tal @, 01ee ],

or equivalently

3' (@) =2 () [D"(¥,¥) =D (3,71

) § 4 y* is an equilibrium it can be seenthat we have

D (y,y) $D(y,¥) 1f ysSy
- + >
D (y,y) 2D (¥,¥y) if y2vy.

Thus J'(y) <0 ify <y*, J'(y) 20 if y* <y, and J'(y*) = 0.
It follows that y* minimizes J. Q.E.D.

Proposition 4 shows that one can minimize the integral of
average delay over the ring by choosing the function 4@ to be marginal
delay and by guaranteeing that the algorithm converges to an equilibrium.
The needto use marginal delays as link lengths in order to minimize total
average delay has been pointed out earlier in a different algorithmic
context [9i . The following discussion, however, casts doubt as to whether

the algorithm will converge to an equilibrium when the link lenqgths are
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chosen to be thé marginal delays. In any case Proposition 4 suggests that
convergence of the algorithm to an equilibrium is desirable since a function
p satisfying (14) is monotonically increasing and convex and hence an
equilibrium will at least be a reasonably good routing even if it is sub-
optimal in terms of a particular design objective.

We now consider the convergence properties of the algorithm. For
any ye(0,1] we denote by g(y) the unigue solution in t of the equation
D (y,t) = D+(y,t) (c.f.Proposition 1). Thus Algorithm {Al) can be written

(18) Yisp ™ q(yk) -

We have for all ye(0,))
aly)

- - 1
(19) D [y.g9(yl] 'f alf (y,t)]dat -J; ; d[f+(y,1:)]dt: = D+[Yv9(}')]
0 >4

We evaluate the first derivative g'(y) = égézL for ye(0,1). Differentiation

in (19) yields

g (y)
f d' (£ (y,t)]dt + A(f (y,q(yMNg’'(y)
0

1 + +
-f d'(f (y,t)ldt = A{f (y.g(y))]g' ()
g(y)
or 1 - gly) _
f ar(£ (y,trlat -f a'[f (y,t)lat
(y) 0
ate” (y,gyN1 + attT y.gyIN1

(20) g'ly) =

We have for t # y

+ +
n  BUELE] L gty L

(22)

21 -
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combining (20) = (22) with (16), (17) we obtain
min{y,g(y)} :
- 2l
r(y)( - da(f (y,t)ldt + fw{y,g(y)}d {f (y,t)]dt]

(23) 9' (Y) .- - +
dlf (y,g(y))] + d(f (y.,g(y))]

At the equilibrium y* we have y* = g(y*) and £ (y*,y*) = £+(Y',y') = 0, so

(23) yields

e 1 L
r(y*) [ 0 a'(f (y*,t)ldt +.£*d'[f (y*,t)ldat

24(0)

(24) g' (Y*) = -

By using a theorem of Ostrowski ({8]., pp. 300-301) we can state the following

local convergence and rate of convergence result for algorithm (Al).

Proposition 5: Let y* be the equilibrium. Then if |g'y*)| < lor

equivalently

» -
r(y*) lf’{; a' (£ (y*,t)ldat +£,a- t£* (y*, ) 1d¢]
' 2

(25) a(0) >

there exists an open interval I containing y* such that if Y°€I the segquence
{yk} generated by algorithm (Al) remains in I and converges to y*. Further-
more if Yy # y* for all k there holds

: 1

(26} li)x:':up W = li]::up lyk - y* = lg- (y*)] . ‘

When the equilibrium y* has the property specified in the first conclusion

of Proposition 5 we say that it is locally stable. If |g'(y*)| > 1 then the

linearized system corresponding to Yeap = g(yk) is unstable, so the
algorithm tends to diverge from y* when started close to it. Notice the
similarity of equation (25) with the corresponding local stability conditions

for finite node networks (cf. Proposition 2).
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A sufficient condition for global convergence of algorithm (Al)
can be obtained by requiring that g be a contraction mapping, i.e. for some

p€(0,1) there holds

%* *
@27 g -y Isely-y |, , Yy€L0,1].
From Taylor's theorem and the fact g'(y) < O we have

lg@ -y 1= lfg' (2)dz|
y'

B-mx 1 a' (f)
0s£s] r(t)de
0

From (23) we obtain for all 2z

. lg* (2| ‘u-)-l—l——mr' 1-iz-g(a)ll

2d(0)

Thus (27) is satisfied if

= -_— -

J
j #F (2L~ lz -g(2) \]dz'A

gl X
sup 24(0) : * <1
y€[o,1] v-y

y£y

or equivalently if
j‘y*r(z)ll - |z -g(2) 14z

(28) d(0) >§ sup - *
y€[°91] Y=y l

*
yiy

.. '
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-proposition 6: If condition (28) or the stronger condition (29) holds,

This will be true in particular if
(29) a) > &

where R=max r(t). The conclusions of the preceding discussion are
osts1 |
summarized in the following proposition. b ]

every sequence {yk} generated by algorithm (Al) converges to the equilibrium y*.

When the equilibrium y* has the property specified in Proposition 6 we

say that it is globally stable.

In order to put the results obtained thus far in better perspective

let us write d(f) as
a(f) = a + 4a(f)

where @ = d(0) represents the bias factor. For fixed input density r we

have that to each positive value of bias a there corresponds an equilibrium

Yo * The equilibrium is locally stable for a satisfying [cf. (25)1]

®
r(y;) [f:“ a' {f'(y;,t)]dt +E* a’ [f*(y;,t)]dt) !
a

(30) a >

SLady

2
and globally stable fora satisfying [cf.(29)]
(31) a > T .

As @ increases the corresponding equilibria tend to become stable. Further-
more from (24) and (26) it can be seen that the speed of convergence of the

algorithm is accelerated as & increases. On the other hand it is easy to see

*
that b -+ & as o»®, which in the context of the routing problem means that

2
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the algorithm becomes increasingly insensitive to congestion as Qa*®
{ Since in a practical situation we are interested in the stability Properties
of the algorithm for a broad range of inputs let us consider input densities

of the form

(32) rx(t) = Ar(t)

where A is a positive parameter. Then it is clear that as A increases a larger
value of bias is necessary in order to stabilize the algorithm.

For example if 4 is of the form

(33) a(g) = o + BE"

where B8>0, n>0 then from (3) and (31) we see that if r is changed to Ar

as in (32), then the stability threshold level of the bias is multiplied by xr.

Thus for fixed @& and r there is a choice of A for which the corresponding
equilibrium is unstable. Incidentally the expression (33) for 4@ has an

| interesting property, namely,that the set of all possible equlibria {y;|u>0}
i as well as the set of all locally or globally stable equilibria is independent 4
of the level of input A and depends only on r. This is straightforward to
verify using (33) and the fact that if r is changed to Ar and a is changed

to Ana then the routing sequences generated by the algorithm are unaffected.

Choosing the Bias as a Function of the Current Routing :

Since stability of the algorithm depends strongly on the level of bias ;
and the level of irput we are motivated to consider schemes where the bias ﬁ
is not held fixed but is rather adjusted adaptively on the basis of currently ‘

available information. An interzsting scheme is to use a length function

of the form

e ————— e B e e e SRt
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d(f,y) = a(y) + a(£)

~

where d is a continuously differentiable, monotonically increasing function

with 4(0) = 0, and a(y) is taken to be some monotonically nondecreasing

function of D'r (y) given by

~ 1 ~
D,r(y) -f d[f*(y.t)]dt +f ae (y,t)lae.
o o

For example a quadratic function of the form
, 2
(34) afy) =Y, + Y, Dy (y) + Yz[n.r(y)l

wvhere Yo' Yl' Y, are some experimentally determined nonnegative constants
seems suitable. In the context of a finite node net\;ork with not necessarily
a ring structure a scheme like this can be very easily implemented. In this
case D,r(y) can be calculated as the sum of all reported link "delays"

3(: i!.) . The bias a(y) can be computed by each node via a formula such as
(34) and the link length can be computed as Di.!- = a(y) + ;(fil)'

A scheme of the type just described can be analyzed along similar lines
as earlier in this section. It has been tested in quite extensive numerical
experiments involving finite node networks and it was shown to have very
satisfactory performance (4], [3]. This can be attributed to the fact that
the level of bias increases or decreases with the level of input thus

providing automatic scaling with respect to input level. In fact it can be

easily seen that if @ has the form d(f) = Bf" where B>0, n>0 and we choose
a(y) = YDT(y) where Y>0, then for every input density function of the form

Ar(t), A>0, the sequences generated by the algorithm do not depend on A.
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4. Averaging the Effect of Several Routings

In this section we show that the stability properties of the shortest
path algorithm of the preceding section can be improved if link lengths suitably
depend on flows corresponding to several past routings. There are several

possibilities along these lines. Some examples are as follows:

a) Averaging over the present and the past n routings.

Given a sequence of past routings Yir¥yoyrooer We define for any

t in [0,1] "aveiaged“ distances to 0 and 1 by

(2

| §
@5 5Oy, e iew £ - Iogh I alE Gy e
5+ P
36) (y 9 9000e = L +
( e Tk-1 Y Bt 5 are" ly, - T)lAT

Thus distances are calculated by integrating —= n-l;‘l. 1= od[f (yk 1.1’)] which is
an averaged length over the routings ¥y »-.«s¥y_g» in place of d[f(yk,?)]

which is the length corresponding to 1:!:0T last routing.
The new routing ¥, is obtained from the equation

G7) D (Fys¥pa1** *Tien?Tietl) -5*(yk,yk_1. RRES S Y

It is easily seen that this defines uniquely Y+l in terms of Vs Yka1*** *Tien"

As earlier we write the corresponding equation as

@8) yHI'S(yk’yk-l""’yk-n)'

%
A routing y is said to be an equilibrium if

B




* * *%* *
y = 8(Y ;Y seces¥ )

It is clear that z* is an equilibrium in this sense for a given bias level
if and only if it is an equilibrium in the sense given in the preceding

section.

We can define local stability of y* in the obvious way. We have
that y* is locally stable if it is also a stable equilibrium of equation z
(38) linearized around y (see [8] p. 353). It is a known fact that this is

true if all roots of the characteristic polynomial

- c(p) =p°* éﬂx_}. a _s.(x_). el _s.(r_}. . 2200
g1 Wytl  Mieen

lie inside the unit circle, (i.e. have modulus less than unity). We cal-

culate the derivatives - N =
i

We have for >0 similarly as earlier for every i
*

y 1
38EM 26D L, .. ok
.4  24(0) n+1 Io ETIE Otucilde "'Jy* a'[£ (y*,t)]ae} .

" Define

7 1
(39) ;ﬁ;}ﬂo a'[£7(y»,t)]at + Jy* a1et e, e2lae}

*
Note that, from Proposition 5, y is locally stable for algorithm (Al) if

p<1l., The characteristic polynomial can be written as

(40) c(p)-pn"'l"&-;t—lp +;$ip +...+;ETp+;+L1.

We now use the following fact:
Lemma: Let § be a positive scalar and n be a positive integer. The roots of
the polynomial

TSR " * s A el e AR
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pn+1+§pn+§p°'1+ . +8p+§

lie inside the unit circle if and only if §<1.
Proof: This result can be shown by straightforward application of Jury's
stability test ([10], p. 97-98). Q.E.D.

We now apply the result of the lemma to our problem. We have

that the equilibrium y will be locally stable if
p<a+l.

It follows using (39) that in the averaged algorithm the bias level must

satisfy » y* 1
sl [ @t nlde ¢ [ attetye, 0l de)
a(0) > 0 1

2(a+l)

in order for the corresponding equilibrium y* to be stable. If we compare
this with the earlier algorithm [cf. (25)] we see that in the averaged
algorithm the bias threshold level for stability is reduced by the factor
'nTl-l_l over the one of algorithm (Al). For a given traffic input, and any
given bias level the corresponding equilibrium can be made stable by

averaging delays over a sufficiently large number of periods.
Regarding rate of convergence, Ostrowski's Theorem again applies.
We have from the proof of Th. 10.1.3 of [8] that given any €>0 there

1

exists a norm H“ on R such that if ykﬁy* for all k

‘ * *
|l (yk-’_l-YQ soo ka_”l-y )“

1lim sup £ p(p,n) + ¢,

k== | (yk-y*. avs .yk_n-y*)ll

where p (#,n) is the maximum root modulus of the characteristic polynomial

C(p) of (40). It can be seen that for fixed n we have P(ik,n) <0 as »=0.
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1f pl""’pn-l-l.l‘“ the roots of C(p) we have lpl"’pnﬂ.l -;%1- , 8o that
P(i,n) @ (;:—1)&1 . It follows that for fixed p we have p(p,n) ~1l as n—®,
so that the rate of convergence deteriorates as n—®, Thus too much damp-

ing can slow down the speed of convergence of the algorithm,

b) Fading Memory Scheme
This scheme is similar to the preceding one except that the lengths

corr'uponding to all past routings are averaged via a fading memory scheme. Given

the sequence of all past routings {Yk’yk-l"”}’ the next routing Yi+l is

determined as the solution of the equation
el _ P

(4 J s = [T 6 wae
0 Yie1 X

where 6; and 6: are obtained by the following recursive fading memory 5 |

scheme with decay factor £€[0,1)
8,(8) = B8, () + (1-PB)[f (3,,¢)]

8,(6) = B, (6)+ (1-B)IE (v, 0)].

Alternatively we can write

k

@) &) = -8 I, 85N 0]
k
4y & = -9 I, 8 NG, 0l.

Let us write the solution of (46) as

(44) yk‘l'l - 8(7k’yk-1"“’)'

Let us also consider the linear system obtained by formal linearization of

*
(44) around the equilibrium y . We have similarly as earlier that this

linearized system is

45) oy = BBy, By g+ By, el
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where p is given by (39. Let us denote

2
Bpl "Nt M PR F e
Then we have for all k

(40 Vipp = P -B)y - B(L-B)Bz,

(47 21 = T + P2

and it follows that the linearized system (45) is in effect the two-
dimensional system described by (46) and (47). This latter system is stable

if both eigenvalues of the system matrix
-p(1-B) -k(1-B)B
1 B

lie within the unit circle. These two eigenvalues can be calculated to be

0 and B-#(L-B). It follows that the linearized system is stable if
1+
b < i-8 °

Although we do not provide a proof, it is possil .e to establish rigorously
that stability of the linearized system (45) implies local stability of
the algorithm (44) and thus we have the result that the threshold value of

bias for stability in the fading memory scheme is reduced by the factor

_Ei;ﬁ over the one of algorithm (Al). The optimal speed of convergence is

obtained when the eigenvalue P - p(l -f) equals zero in which case a super-

linear rate of convergence is obtained. This is so when 3 --]_-Eu- . For other

values of 3 in the interval ("":—;-% , 1) the rate of convergence is linear, and

i id ” PERN.
M“ . - T VT DUSERE S VO I ST, SOV, -y £3 ST DU S St
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for B<3—:% the equilibrium is unstable. As f is increased from the optimal
value T"B-E towards unity the rate of convergence deteriorates.

c) Asynchronous Length Reporting

This type of scheme is patterned after a shortest path routing algorithm
where nodes report asynchronously the lengths of their outgoing links and the
shortest paths are updated after each report. The set of nodes [0,1] is
partitioned into n subsets which we call sl'sz""'sn' At some time, say O,
the nodes in S:L report their lengths averaged over the flows corresponding to
the preceding n routings and a routing update takes place. Then at time

g, > 0 the nodes in S2 do the same thing. Similarly, for i =1,...,n-1, at

1

tim(al+o +...+ai)th¢nodui.ns do the same thing. At time

2 i+l
(a1 +a, +...+on) the nodes in s1 again report their lengths, an updating
takes place and the process is repeated. This type of asynchronous operation
is currently in use in the ARPANET [4]) where, in a finite node network

context, S, consists of a single node for all i. There are also other

i
variations of asynchronous operation involving for example averaging over
all preceding routings via a fading memory scheme. This type of algozithm
is described and tested computationally in (4] and [3]. The analysis of
all these schemes is very similar as that of the averaging schemes described
earlier in this section. The details are quite messy and may be found in
(4], where it is shown, via analysis and computational experiment, that
asynchronous operation has a substantial beneficial effect on the stability

properties of the shortest path algorithm.

5. The Case of a Network with an Arbitrary Topology

The extension of the continuous model to the case of a network with




arbitrary topology is quite straightforward. However, the notation required
for a precise mathematical description is very cumbersome and tends to cloud
the main ideas. For this reason our presentation will be somewhat informal.
Consider the case of an undirected network with a single destination.
Let r be the input density function mapping points on the undirectred links
of the network to the nonnegative real numbers. The meaning of r again is
that, given any interval I on a link, the total traffic input originating
at this interval is the integral of r over I. We view the set of points on
the network as a subset of a Euclidean space of appropriate dimension, and
assume that r is a continuous function. In order to consider notions of
length we associate with each undirected link (i,2) two directions i+{ and
2+i. (There may be more than one links connecting a pair of nodes within
our framework. When we refer to a link (i,%) we mean a particular link
connecting i and £ and specify further when there is danger of confusion).

A length function § is a function which assigns to each point on an undirected

1ink (i,2) two nonnegative numbers one associated with the direction i-+%
and the other associated with the direction #+i. We assume that § is piece-
wise continuous along every link in each direction. The meaning of § is
that given any two points on a link (i,%) their distance in the direction i+R
is obtained by integrating § as defined in that direction between the two
points. The distance in the opposite direction 2+i is defined analogously.
Similarly we can consider paths between points on possibly different links
and define their length in one or the other direction.

We now associate to a given length function § a shortest path of every

point, and an associated routing. We assume that § is everywhere positive.

Given any point we consider the collection of paths to the destination and

S ————
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their associated distances specified by the function §. A path of minimum
distance is referred to as a shortest path from the point to the destination,
and the corresponding distance is referred to as the shortest distance of
the point to the destination. The routing corresponding to § is the set
of points for which there are more than one equidistant paths to the
destination. A routing is said to be regular if it does not contain any
nodes of the network, otherwise it is said to be singular.

Given the function § , a shortest path of each point and the corres-
ponding routing can be constructed in a simple manner along similar lines
as for usual networks. We first construct a shortest path tree for the
network in the usual manner by using as(directed) link iensths those speci-
fied by the length function 8. (The length of the directed link (1,4) is
the integral of 8 along (i,L) in the direction i=~4). This gives us a
shortest path and the associated shortest distance for every point on the
shortest path tree including all the nodes of the network. A shortest path
for points oun links that are not part of the shortest path tree can be
obtained as follows:

Let (1,4) be a link that is not on the tree. let Di and Dy be
the shortest distances of nodes i and 4. The shortest distance of a point
t on (1,4) is

o A

D(t) =min {D +] By (Mee D] 8, (Tael

where 8, is 8 in the direction £=4{ and § 1 s 8 in the direction i~ j.

41
It can be seen that the routing corresponding to § is reguiar if and oaly
if each (ordinary) node of the network has only one shortest path associated

with it. If a routing is regular then every one of its points lies in the
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"interior" of some link. Notice that the preceding construction shows that
a routing (regular or not) consists of (L - N + 1) points where L and N are
the number of undirected links and nodes respectively.

Given a shortest path tree and the corresponding routing constructed
as just described, we can define the flow corresponding to it. At each
point, say t, of a link (i,2) there are two flows to consider (one of which
is zero); the flow in the direction i+% and the flow in the direction &+i.
Each is defined in the natural way by integrating the input density function
r over the portion of the network that lies "upstream" from the point t,
i.e. over the set of points the shortest paths of which meet t on their way
to the destination. At the points of a regular routing the flow is zero in
either direction. Notice that if § i§ such that the corresponding routing éf
is regular the flow is uniquely determined by § . Otherwise the flow will H
depend not only on § but also on the shortest path tree selected.

Suppose we are given a monotonically increasing, continuously é.
differentiable function 4 mapping flow into the positive numbers. Given a
shortest path tree T corresponding to a length function § with routing Y we
can define a new length function T which assigns to points t in any one of
the two possible directions the length'g(t) = d(£(t)] where £(t) is the

flow at t corresponding to § and T in the appropriate direction. The

corresponding routing is denoted Y. Note that if Y is singular then § and
¥ depend not only on & but also on T. If Y is regular then Y is uniquely
determined by § .

We are now in a position to define an algorithm similar to the one of
Section 3. Given a length function 60 and a corresponding shortest path
tree T, and routing Y,, the next length function is §, = 36 with corresponding

routing Yl = Yb. A shortest path tree Tl corresponding to 61 is selected

T
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and is used to define similarly 62, Y2 and Tz. Similarly the algorithm

generates Gk' Y and Ty for all k.

We say that a routing Y* corresponding to a length function §* and

-
shortest path tree T* is an equilibrium routing if 3‘ = 0% and Y = Y*.

Contrary to the case of a ring network where we were able to prove
existence of an equilibrium, in general there need not exist an equilibrium.
This fact is demonstrated in the following example and provides an indication

of the complexity of the dynamic phenomena that we are investigating.

g;gggigﬁ‘ COnQider the network shown in Figure 5.

Figure 5

There are two nodes 1 and 2 and three links connecting them cenoted by

A,B,C. Node 2 is the destination. Points on A,B, and C are parameterized

by their Euclidean distance to the destination. The Euclidean lengths of

A,B and C are all taken equal to unity. Let the input density function be

as follows
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For link A: r(t) & 1, Ye€[0,1]
For link B: =r(t) ¢ , Yec€[0,1]

For link C: r(t) ®r, Ye€[o,1].

We assume that l‘tn‘t . 1<rc. Let

d(f) =¥ + £
where >0 is the bias factor.

B o’ 1<rc, it is clear that an equilibrium

routing cannot contain a point in the interior of link A, while it must

In view of the fact 1 < r_ < r
contain a point in the interior of link C. We consider two cases:

Case 1: I, = 1. Then an equilibrium routing cannot contain a point in the
interior of link B so the only candidate for equilibrium are the two types

of singular routings shown in Figure 6. In routings Yl and Yz the incoming
traffic at node 1 is routed through link A and link B respectively. None

of the two routings can be an equilibrium. In routing Yl there will be points
in the interior of link A which will have a shorter distance to the destination
(corresponding to Y;) through link B rather than through A, and the reverse

situation occures in routing Yz. Notice that this argument makes use only

of the magnitude of ra and o and is independent of the form of the function 4. |

Case 2: 1<t8. Then it can be seen that the only candidates for equilibria

are routings of the form shown in Figure 7.

Ml b S s b i




specified by the points vy yc€[0,1] where the flow separates on links B and
C. We have that the distances D*(y,), D (y‘) of Vg corresponding to routing

(,',yc) along the counterclockwise and clockwise paths respectively are given

by

& )
D Gy =y ey op-eree

W1
D (rp) = @ vtz (t-yp)de
Y,
B

1
+ o[rB(l -yg) +ro(l-yo) +(1-t)]de
1f (yn,yc) is an equilibrium we must have
- +
D (yg) = D (vp)

which after some calculation can be written as

tB-l
(48) 2(°+tB)(1-yB)+tc(1-yc) - 2

By symmetry the equation D'(yc) -D"'(yc) can be written as

r.-1
o -
(49) rg(l-yg) +2(@+) (L -yp) =—5— .

Equations (48) and (49) are in fact necessary and sufficient conditiomns for
(y‘,yc) to be an equilibrium routing. Thus there exists an equilibrium
routing if and only if the solution (y;,y;) to these' equations satisfies
y;G[O,l.], y:€[0,1]. After some calculation, this condition can be shown to

be equivalent to

r.(2r, -z, -1)
C B C
i g

B e B e e e

< e o e B . i s Ritaie & Ll
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If 2:B 2 r, + 1 then for every level of bias there exists an equilibrium rout-

(o

ing (yB, yc). If however ZrB < I, + 1 then there exists an equilibrium only

for a above the threshold level indicated in (50).

The preceding example shows that existence of an equilibrium can depend

on both thcﬁ level of bias and the input density function. Furthermore, it

may happen that, for a given input density function, no value of bias can be
found for which an equilibrium exists. This last phenomenon is of a.singular
nature and is due to the fact that the Euclidean lengths of links A,B, and C

are all equal to unity. To see this consider the routing Y s corresponding

to the length function §'(t) = 1, § (t) = 1. The routing Y_ is analogous

to the min-hop routing in discrete node networks, and can be associated with
infinite level of bias. It is an equilibrium routing for the case d(f) = 1.
If Y, is a regular routing, i.e. each node has a unique minimum Euclidean
distance path to the destination, then it is clear that, for any given input
function r, there exists a threshold level of bias & such that for all

@ >@a regular equilibrium routing exists.

Characterizing the dynamic behavior of the algorithm in the absence

of an equilibrium is certainly an interesting problem but we have been un-
able to make much progress in this direction. Computational results for
finite node networks given in (3] suggest that the stability properties of
the algorithm are improved by high level of bias and averaging similarly
as in the presence of an equilibrium. In what follows in this s’ection we
restrict attention to the case where a regular equilibrium routing exists.
Given a regular equilibrium routing Y* = {yf'yg,. bk ,y;} consider

for § =1,2,...,n the link (i ) containing y; and the two shortest paths

L
- g
from yj' to the destination. A simple but fundamental observation is that

these two paths join at some point thereby forming a ring of the type con-
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sidered in Section 3. The zero point on this ring is the point where the two
paths join, Let 'j be the Euclidean length of the ring containing y;. For
j=1,2,...,n we parameterize points on the ring containing y; by the number in
[0,0,] going from smaller to larger numbers as we traverse the ring in a chosen
direction similarly as in the previous two sections. Thus points Yj on

the link (ij,lj) can and will be identified by the number in [O,ejl specifying

their position on the ring corresponding to y;{ It is easy to see now that

* ]
given Y , any collection Y = {yl,yz,...,yn} such that ¥y lies in the interior

of (13.2.1) specifies a flow ty through each point in the network that follows

the (ordinary) shortest path tree corresponding to §" ana Y and separates on

‘ each link (ij.lj) in the two opposite directions at the point ¥y This flow

% defines a length function 8! via the relation GY(t) = d[f (t)] in the direction
| of the flow, and 5! yields in the manner described earlier a shortest path
tree and a routing denoted by g(Y). It is easy to show (using the regqularity
of Yf) that if Y is sufficiently close to Y* then the (ordinary) shortest path
tree corresponding to 6! is the same as the one corresponding to Y and that

the elements of the routing g(Y) lie on the links (ij.lj).

The algorithm described earlier can now be redefined as

(51) Y = g(¥,).

The definition is local within a sufficiently small neighborhood of Y' and
is associated with the (ordinary) shortest path tree corresponding to Y.
and the associated parameterization of the ring subnetworks containing the
links (i,,%,).

( j' j)

Similarly as in the preceding section we say that an equilibrium
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Y* is locally stable if there is a neighborhood of Y* (defined in terms of
the parameterization of the rings associated with Y* as discussed earlier),
such that the sequence (g(!k;} generated by (50) is well defined and con-
verges to Y* for every choice of Ty within this neighborhood.

In orxder for Y* to be locally stable it i{s sufficient that the

nxn mtrix 9‘%1 be dcfined and have all its eigenvalues within the unit

circlc. The conpuut:lon of _S.(Y_). is straightfomrd along the lines
of Section 3. We first introduce some notation. For j=1,2,...,n

let By denotc the set of points tE[yj,e j] on the jth ring, and ‘;j’ ‘j

dcnota the set of points t€[(0,y _‘I] on the same ri.ng. Note that for every -
=]1,...,n the directi £ £l nd

j,m=1,...,n the direction o ow on Ry . e (ox R’n’.n) must

coinside if these sets have intersection with positive Lebesgue mesasure.

This implies that at least one of the sets R nk+ and k+ nl;
73"1 ’n .. j'. .p‘.
is either empty or has Lebesgue measure zero. Similarly at least one of

n n
the sets R’j’ . Rym’ . and Ryj’ ‘j R’n’ e, is either empty or has lLsbesgue

measure zero. 'l'he equations defining g(Y) can be written as

f ale (T t)lde = atstee,e)lde, 3=1,...,0.
R, b
BJ(Y)"J 81(’)"1

By differentiation with respect to I Ve obtain similarly as earlier at the

equilibrium Y*

3, (¥) @A)
(51) - =<30) ejm,

where




43

6 [ a4t
(52) jm -R+* N e 3 |
yj’ej yln’.m %
|
'.f.* o e d'[f;w',t)]dt
Ry""j %ll’eﬂ
' a' £ (Y t)lat
4o ’
3 L T 3
Yj’ j m’ m
[ + &
+f 5 d [fj(y (L)]dt
R # N R %
yj,ej ym,ﬁm

and t';'(Y*,t), fz(Y*,t) are the flows on the jth ring in the positive and

negative directions. In view of the preceding discussion, at least two of

the integrals in (52) are zero for every j and m.
Let R be the diagonal matrix having :(y:) as jth diagonal element,

and let © be the nxn matrix having as elements the scalars § Then we have

jm’

%*

3g(¥) o _1
X " 230y Ok

- —— - C el CORREIR e -

We can show that the matrix © is negative semidefinite. Indeed the matrix -§

is the Gram matrix associated with the functions

x + ' + i ' = *
RY;,ej (t) 4 [fj (Y ,x)] = Xgoe (B4 [fj (Y ,8)] , j=1,...,n,
yj'.j

where x is the characteristic function of a set S (X (t) = 1 if tes, x(t) = 0
othcrwin) By uunq the fact that R is diagonal it can be shown that the eigenvalue ;

Al poweyhy OF (: )arc real and nonpositive. Consider the spectral radius
n

;
|
B e —
o = ” e . "
il - L Pl ot - - - S -




U = max {llll,...,llnl} :

Then the equilibrium Y. is locally stable for

(53) u<l,

and hence there exists a threshold level for d(0) above which the corresponding
equilibrium is stable. sSimilarly as in the preceding section, we can show
that if a fading memory scheme with decay factor B is used to average the

effects of past routings the equilibrium Y* is locally stable if

1+8
1-3 .

(54) u <
and there is a value of B which optimizes the rate of convergence. It is 4 |
also possible to show that the other forms of averaging the effects of

several past routings improve the stability properties of the algorithm.

For the purpose of aiding the reader in understanding the method of

(Y*)

calculation of the matrix Y

we provide an example.

Example:  Consider the network shown in Pigure 8 where node 4 is the
destination, and assume that the regular routing (y;. y;. y;} shown in

an equilibrium. The figure shows also the chosen positive direction on

»
the ring corresponding to each Y; -
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Figure 8

We calculate the symmetric matriy @ with elements 6 m given by (52).
The interval between any two nodes i and £ is denoted [i,4]. The interval

between some y: and a node g is denoted [yz.ll. We have

Ol I artef’ 0l ae -{ . aret
[yl' 1]V [1,3] U [3,4] 71,4]

. *
0y = - ,{ ar(gy(x 6 de -{

* * d'u;(v',cn de
92,2]U[2,3] yzsllullo3]

‘ aeh e’ 3 ey
933--j* £( .t)ldt-.‘*‘ a'fgg (Y ,e)] qe
[y,,21 V(2,31 U [3,4] [y3.4]

0 = - i o l:‘l'(!*.t)l et
(1,3]

6y3 = =) ar ey (e e lge
(2,31
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Fa—
2 - - f a'(f (Y £)]dae
13 (3,4] :
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