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I Abstract

Several proposed routin g algorithms for store and forward co unicatien

networks, including one currently under implementation in the ARPANET , route

• messages along shortest paths computed by using some set of link lengths .

• When these lengt hs depend on current traffic conditions as they must in an

adaptive algorithm , dynamic behavior questions such as stability , convergence ,

and sps.d of convergence are of interest. This paper is the first attempt

to analyze systematical ly these issues. It is shown that minimum queuing

delay path algorithms tend to exhibit violent oscillatory behavior in the

absence of a damping mechanism. Several easily implementable damping schemes

are proposed and analyzed by using nonlinear stability theory t~chniques.

~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • - - ________________________________________
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1. Introduction

A central operati onal. probl em of a cosmunication network involves the

choic. of route s used by messages to trave l from origin to dest ination. It

is possibl e, of course , to choose a fixed route for each or igin-destination

pair , but this precludes the possibility of adjusting routes to alleviate

- 
I congestion due to statistical variations in traffic conditions. For this

reason attention has focused on adaptive routing strategies

whereby congestion in the network is continuously monitored and routes between

origin-destination pairs are modified in real time so as to keep average

d•lay per message at a reasonable level. A routing scheme of this type was

implemented in the ARPANET in 1969 and attracted considerable attention .

The main idea in this scheme is to compute in real time an estimate of the

minimum average delay per message for each origin-destination pair and to

route messages along the current minimum estimated delay pat h. When this

scheme was f i rs t  implemented , it was noticed tha t it is

prone to severe oscillations . This behaviour is due to the fact that

delay estimates used to choose routes are themselves affected by the route

choice with a feedback effect resulting . To remedy this situation it was

decided on heuristic grounds to introduce an additive factor , called bias ,

to the estimated delay of each link , thereby building into the algorithm

a preferenc. towards paths with small number of hops to the destination

(5] — (7] . This had a stabilizing effect albeit at the expense of considerable

loss of sensitivity to traffic congestion .

The implementation of the minimum delay path idea in the original

ARPANET algorithm had a ntmtber of flaws allowing, for example , the formation

of loops . For this reaso n alternative schemes based on the same idea were
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studied , a new algorithm called SPF has been develop ed and is now read y for

implementation Ill , (41 , (111 . The present paper is an outgrowth of the

author’s participation in the design study of this algorithm during the susmer

of 1978 at 83W, Inc. However, our analysis does not focus on the ARPANET

and the SPF algorithm in particular , but rather is geared towards understanding

the effect of feedback and the nature of the dynamic behaviour of shortest

path algorithms where link lengths depend on current traffic conditions .

We note that the algorithms of this paper are far from optima]. since they

are single path algorithms in the sense that at any given time there is only

one path per origin —destination pair along which messages can travel. Better

per formance can be achieved by allowing multiple paths as for example in the

optimization algorithm of Gallager (9] or its second derivative versions 12) .

On the other hand the hardware limitations of some of the present ly existing

networks including the APP~NET pr *clude the use of such more sophisticated

algorithms. Furthermore , vs feel that the mere fact that the algorithm has

been successfully implemented in a network as interesting and influential

as the ARPAN ET makes it worthy of analysis and investigation . This is

reinforced by the fact that the behavior exhibited by the algorithm is

quite interesting and can pose nontrivial design problems .

The paper is organized as follows: I -
Zn Section 2 we provide a dete rministic finite state Z4arkov chain • -

framework for studying a simple version of the algorithm. We shøw that for

ring networks the algori thm may tend to oscillate between poor routing paths

and become itself a major contributor to congestion . We also demonstrate

how the use of a bias factor can provide a mechanism for damping oscillations

as confizm.d by experienc e with the original ARPANET algorithm .

• -~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The finite state model does not lend itself to analysis of more sophisticated

routing schemes and more general network topologies. We consequently introduce

in Section 3 a model of a ring network with a continuum of nodes and a single

destination . This allows us to employ techniquss of stability analysis of

discrete—time systems with continuous stats space, and enables us to further

quantify the relationship between choice of link lengths and algorithmi c

behavior.

The analysis of Section 3 focuses primarily on the effect of using a

bias factor as a damping mechanism. In Sect ion 4 we show that oscillations

can also be damped effectively by making the link lengths dependent on

several preceding routing paths via some averaging mechanism such as a fading

memory scheme or asynchronous link length updating. To our knowledge the

fact that averaging can provide a damping mechanism in a shortest path algorithm

has not been noticed earlier and in fact when we originally approached this

problem at BBN, Inc. there was considerable concern regarding its effect on

algorithmic behavior. It is now believed that the significant degree of

4 averaging inherently present in the SPY algorithm is in large measure responsible

for the stable dynamic behavior observed in exper iments conducted thus far

(11] .

The analysis of Sections 2—4 focuses on ring networks. The ring

topology is central for the extension of our earlier results to more complex

network topologies. This extension is carried out in Section 5 under the

assumption that an equilibrium routing exists. However, by contrast with

ring networks, an equilibrium routing need not always exist for more complex

topologies. We demonstrate via example the mechanism by which such a

phenomenon can occur .

The results and analysis of the present paper can be generalized to

the case wher e there are more than one destinations . Thi s analysis is

— 
•-j- •-
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straightforward but considerabl y more complex technically and may be found in (3].

The continuous node model of Sections 3-5 may be criticized on the grounds

that it is unrealistic. On the other hand it is very difficult to provide an

extensive analysis of a more realistic finite node network model. In particular ,

it appears impossible to demonstrate the effect of averaging in such a context.

• Furthermore we believe that the realism of any algorithmic model must be judged

on the basis of the validity of the conclusions it provides regarding the

behavior of the related practical algorithm. These conclusions in our case

have been verified by extensive numerical experiments with finite node net-

works (4] , (3] . In particular the validity of our qualitative results

regarding the role of a bias facto r and averaging as damping mechanisms

have been amply demonstrited.

2. A Finite State Markov Chain Model

Consider a coismunication network with nodes denoted by 1,2,...,N and

directed links denoted by (i, 2.) where i is the head node and £ is the tail

node. We consider the following algorithm for periodically updating paths

for routing messages.

(A) At the beginning of every time period a nonegative length D~2. of

every link (i , 2.) becomes availabe to each node . Based on these lengths each

node computes a shortest path to each destination and routes messages over

that path during the period .

The standing assumption for algorithm (A) is that the lengths DU used

in computation of a new shortest path depend exclusively on one or more

preceding shortest paths. This dependence is det~.cministic via a rule that

for the moment we leave unspecified. As an example D~2. may represent some

I
- - 
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measure of average delay per message on link (i, 2.) during one or more preceding

periods perhaps with an adde d bias factor -a scheme curre ntly implemented in

the ARPANET (1] , (11] . By assuming that the dependence of D~2. on previous

shortest paths is deterministic we also implicitly assume that the input traffic

originat ing at each node is a stationary stochastic process whose ensemble par e—

meters can be adequately measured by time a~erages. This assumption is not

valid , of course , in practice but is a reasonable approximation to the situation

wh re th. time constant of traffic stat istic variations is large relative to

the shortest path updating period .

Consider first algorithm (A) applied to a given network for the case where

the lengths Dii depend exclusively on the preceding shortest path . Assume

also that the shortest path algorithm has a fixed rule for breaking ties

between .quidistant paths. Then each shortest path uniquely determine the

next shortest path. There is a finite number of possible shortest paths

(also referred to as routings) which we denote by R1, R2 , where 14

is seas int.g.r. To any initial routing say , there corresponds a

unique sequence of subseq uent routings R~ , , . ..  Thus eventually some
2. 2

routing will be repeated (say R4 a 
~~ 1 ) ,  and once this happens the rout ing

~k ~k+n
sequence will become periodic. Thus starting at the algorithm will.

eventually end up cycling through R ,. . . . Of course it is possible
lt+n—l

that itself is part of the cycle (kaO) , and that the cycle consists of

a single rout ing (n—i) in which case the algorithm stabilizes at that

routing.

The model just described is one of a deterministric finite state Markov

chain with states R2 , .  . . R~. From Markov chain theor y or by elementary

reasoning it follows that the set of all routin gs CR 1,... ,~~} can be parti-

I _ _

~ii~~~~~~1
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tioned into a collection of cycles (or ergodic classes~ , and a collection of

transient rout ings. If the initial routing is transient it is never repeated

by the algorithm, and if it is part of a cycle the algorithm returns to it

periodically . More than one cycles may exist. Furthermore, each transient

routing leads to a unique cycle.

When the lengths Dii depend on a f ixed number (say m) of preceding routi ngs ,

a finite state model for the algorithm can be similarl y constructed where by

the state space of the model is the set of all m—tupies of rout ings . Similarly

the state space can be partitioned into cycles and transient states . Analysis

of such a model is naturally more difficult in view of the increased size

of the state space , and this is more so if D~2. depends on all preceding

routings in which case a countable state Markov chain model is necessary .

In what follows in this s~~tion we will restrict attention to the case

of a ring network with N nodes shown in Figure 1. Node N is the only

destination and all links are bidirectional. By reversing the dir ections

of flow and the role of originas and destination the subsequent model can

be converted to one with a single or igin and many destinations . The

traffic input originating

~1 ~N—1

• \ !~~4~~~ N-I /
2 N2

H 1

‘f l  r1

Figure 1.
- - - • _ _
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at node i and destined for N is denoted by r~. The routing R,~ , i —

is the one for which all nodes j  < i route their traffic in the clockwise

direction and all nodes j  > i route their traffic in the counterclock wise

direction

• C

ROUTING R1

Figure 2

as shown in Figure 2. Given a routing ~~~ the flows on each undirected

link (j -i ,j ) in the clockwise and counterclockwise direction are denoted

by f (i) and 4(i) respectively and are given by

o 
• 

if L~~~j

f (i) a

if J < L

+ 
rj +rj +t + . . . + r j . t  if i, < j

f
•2
(i) —

0 if j ’ t .
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We will consider the case where the length Dii of a link (i,L) is given

by an equation of the form

(1) D~2. —

where is the flow on link(i , L) during the preceding period and

d is a real valued , continuously differentiable and monotonicaily

increasing function of flow with d (0) > 0. For simplicity we assume that

the function d is the same for all links but this does not affect materially

the analysis that follows . Since the flow 
~~~ 

depends only on the preceding

routing the same is true for the length Dii . It appe ars that this simplest

of all possible situations is the only one that can be analyzed effectively

in a finite node network context . The practical situation where D~2. is

taken to be the average time delay for a message to traverse link (i ,L) can

be reasonably modelled by a function d of the form

(2) d(fji) a 

~u + Tji +

where

— Average p rocessing plus propagation delay per message

— Average transmission delay per message

— Average queuing delay per message when the average

flow on link (i, i) is f
~~

The quantities P~~ and TjL are independent of the flow while the

dependence of on is determined by the statistics of the traffic

arriving at i and routed through t. If these statistics can be adequately

modelled by an H/N/i queue then takes the form (61 , (71

(3) Q (f ) a

I



r’ -

~
—--- 

• 

• . 

- — - - - -  •~~~~ T..1I -~- -- - - - --— •

where C~ is the transmission capacity of link (i,L). We mention, however,

that on the basis of experiments conducted thus far it is unclear wheth r

the average delay per message in the ARPANET can indeed by modelled as in

(2) . This may be due to peculiarities of the ARPANET hardware which are

little understood at present . We now define the shortest path algorithm

Given a routing A1 we define the distances D Ci , j), D~ Ci, j 1 of node j to

the destination in the counterclockwise and clockwise directions respectively

by
j  

—0 ( i ,j )  — E d(f i (i) ]
2.—i

N
D~(i,j) — E d (f~(i)].

If D (i,i) — D~ (i ,i) then the algorithm sets the next routing to R~. If

D (i,i) ~ D
’
~(i,i) the algorithm sets ttm next routing to Rn where the node n

is such that

• 0 (i,j ) > D’~(i,j) for j > n

D (i,j) ‘C D’~(i,j) for j ‘C n

It can be easily shown that if D(i ,i) p~ D~(i,i) the next routing R~ is

uniquely determined by the relations above. Given an initial routing R 0

we consider the sequence of successive routings R1, R2,...Rk, Rk~~,...,

generated by the algorithm.

The quantity d(0) may be viewed as a bias factor. It represents link

length at zero flow. Th~ following proposition shows that if d (0) — 0 and

the first two routing. are different, i.e. R° ~i A1 then the algorithm ends

up oscillating between the two extreme routings R,~ and which is the worst

possible behavior that can occur . In the context of (2) the case d (O ) — 0

corresponds to the situation where the processing and transmission delays

and 1j 2. are negligible relative to the queuing delay Q~2

I 
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proposition 1: Let 4 ( O ) — 0  and assume that R.0 # R 1. Then there exists an

index k such that for all k~~k either R~’— R 1 and a~~
’ 1 R N or Rk I.RN and

Proof: Let R~ be a routing and assume that the routing subsequent to is

wtth n #i.  For concreteness assume that n< 2.. We will show that eithe r

2. . N or else the routing subsequent to R~ is with j’~ i.

If i # N then since is the routing subsequent to we have

(4) D(i n—l) < D+(i,n~1) — D+(L,i).

We also have

(5) D
+(i ,i) ~~~ D

+(n ,i),

(6) D ( n ,i) ~ D ( i ,n—l) .

From (4) — (6) we have

D
+(n,i) ~ D~(i,i) ~ D(i,n—l) ~ D(n,i)

so finally

D4(n ,i)>  D ( n ,i).

It follows that in the routin g R~ which is subseque nt to R~, node 2. vii]

switch his traffic to the clockwise direct ion so that j >  t .

We can show using a very similar argument that if n ~~ i then

either ii. ]. or else the routi ng subsequen t to R~ is R~ with j < i .

Thus we have cha t the number of nodes that lie between two

successive routings is increasing at each iteration if none of these

routings is A1 or On the othe r hand if the current routi ng is A1 or

then the nxt routing will, clearly be or R~, respectively. This proves

_______ ______ — _____
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the proposition. Q.E.D.

Notice that, if d(O) — 0, the situation a0 — A 1 can only occur if

D(i ,i)_D+(t,L) where L is the node for which ft~ — R~1,. Thus if we add any

e> 0 to any one of the node inputs we Wil l have a0 # ft 1 and the algorithm

will again end up oscillatin g between 
~1 and R~ . We prov ide an ~ar~~pl.

illustrating the resul t of Proposition 1. Several additional examples

involving more general topologies and multi ple destinat~.ons may be found

in (4) .

~~~~~~~~ Consider a 16-node ring network where node 16 is the destination .

Let r — 1 for i — l ,. . . , 7 ,9 , . . . , l5 and r9 — c > 0. If e — 0 and the initial

routing is A8 then by symeetry all subsequent routing s equal R8 . If C

is very small but positive then for the case where

d (f)  — f

the sequence of generated routi ngs is A8, R.~~, A3, R16, ~~~~ fl.16 , R~ ,...

This fact can be verified via a strai ghtforward calculati on in Figure 3

which shows the flow patterns corresp onding to successive routings.

We now turn our attentio n to various notions of equilibria and

stability. Wa say that R~ is an equilibrium routing if

D (i,i—l) ‘C D~
’(i,i—l), and D” (i, i) < D (i,i).

It f ollows from this definit ion that R~ is an equilibrium routing if and

only if it repeats itself via the shortest path algorithm.

We say that a node i is an equilibrium node if

D (i,i) ‘C D’ (i , i) ,  and D~ (i+~ ,i) < D ( i + 1 , i)

In words a node i is an equilibri um node if he switches his traffic in

both cases where the routing is and Ri,,i.

- 
_ _ _-~~ ~~~-~ -~~5--
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We say that an equilibrium routing R~ is locally stable if routing

generates either R~, or Ri_i through the algorithm, and routing R2._ 1

generates either A2. or Rj+j . We say that an equilibrium node i is locally

stable if routing R~ generates Ri+i via the algorithm, and routing R~,_1

generates R~. The definition of local stability is based on the idea that

when the algorithm starts “close enough to equilibrium” it should not lead to

a “growing” oscillation . The following proposition complements Proposition 1

and suggests that the bias level d (0) should exceed a certain positive value in

order for an equilibrium routing or node to be locally stable

Proposition 2: a) An equilibrium routing Ri is locally stable if

• r N—l A r N—i-
4(0) > max ( ~~~ E m

2. 
, 

~i— 

~~~~~ 
2

2~i 2. �i—1

where

a2. — max {d’Wfç (i—l) f ç ~i~ } , for £ —

a2. — max{d’ (f) 14 1(i) < f < f~~1 (i—1J } for 2. — i+1, ...,N—l

a2. — aax {d’wIçu ~5, f ,~~ f2.(i+1)} for 2. — 1,...,i—2

a2. — max{d’ (f) 441(i+1) < f < Ci)) f~r £ — i,. .. ,N— 1

where d’ (f) denotes the first derivative of d at f .

b) An equilibrium node i locally stable if

rj  N—i
d ( 0 ) ’—  E i~~2

where

rn
2. 

— max{d’ ( f ) I f ;(i) ‘C f ‘C f;(i+in. for 2. 1,... ,i

rn2. — max{d’ (f) I f :c i+ l )  < f < f (i)} for £ i+l,...,N—l. 

~- 
- 
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The proof of Proposition 2 involves a straightforward but lengthy

argument and will be cemitted. It can be found in (4] .

Proposition 2 implies that in orde r to ensure local stability the bias

= 4(0) should exceed a level that depends strongly on the traffic conditions.

This level is proportional to the input at or near the equilibrium and to a

global measure of the derivative d’ along the ring. Thus it may be necessary

to choose a value of d(0) which is large relative to r and d’ in order to

ensure stability for a broad range of input traffic conditions. This can be

accomplished by adding a large constant to 4. On the other hand this would

introduce a tendency in the algorithm to generate routings close to the m m —

hop routing (i.e. one that selects routes according to minimum ntmtber of links

to the destination ) . As a result the algorithm would tend to be insensitive

to congestion . This tradeoff will be reencountered in the next section.

The point of view that has been adopted in this section is one whereby

the algorithm is viewed as a dynamic system with a finite number of states

(the finite collection of possible routings) . Unfortunately the study of

dynamic behavior and stability properties of such systems is notoriously

difficult. To begin with there is no accepted definition of equilibrium, and

in fact we saw that in the ring network context there are two types of

“equilibria ” that are of interest - equilibrium routings and equilibri um nodes.

Furthermore there are no established methodological tools that can be helpful

in a finite state system framework. As a result our progress has been limited

to the results just discussed. We are thus motivated to consider app roximation

of the discrete system with a continuous system having a continuum of states .

For such systems there is an effective and well developed stability theory

that can be utilized for analysis. We take this approa ch in the following

two sections where we introduce a network with a continuum of nodes. Despite

— 
— 
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—
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the radical nature of this ~ ep the analysis provides informative results

and clarifies the role of averaging the effects of several past routings as

a means of damping oscillatory behavior. The validity of our approach is supported

by the fact that qualitative conc1~sions drawn from the continuous node model

have been verified computationally in finite node models.

3. A Continuous Model of a Ring Network

We consider a continuum of nodes arranged in a ring and sending traffic

to a single destination as shown in Figure 4.

Figure 4

Points on the ring are identified with their distance t from the destination

in the counterclockwis, direction , where t is normalized to take values in

the tntsr’al (0,1]. Traffic can move on the ring in both directions

For every t in (0,1] we denote by r (t)  the input density at t. The

meaning of the function r is that for any subintervai. (t11t2] of (0,1] the

total input traffic originating at nodes in (t
1 

, t
2

] is
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(t) dt
tl

We assume that r is continuous on [0 ,1] and r(t) > 0 for at least on tE (0 ,1)

Note that a network with a fini te number of nodes can be modelled by a function

r containin g impulses and such a function can be approximated by a continuous

function consisting of narrow triangular pulses of finite height . We are interested

in routings specified by points y in (0,1] , where the flow splits , i.e.points

larger than y send their flow counterclockwise (or in the positive direction) and

points smaller than y send their flow clockwise (or in the negative direction) .

To a given function r and routing y, there corresponds at every point t a flow

in the oositive direction f
+
(v,t), and a flow in the negative f (y ,t) given by

r (T)d r if - y < t

(7) f+(,p~~) a

0 if t~~~y

0 if y $ t

(B) f (y ,t) —

57 r(T) dT if t~~~y .

In order to introduce an algorithm such as (A) in the framework of

the continuous model we consider a function 4 mapping flows into the non-

negative real numbers. The meaning of 4 is that given a routing y and any

point t, the distances D and D~ from t to the destination in the negative

and positive direction are given by

t
(9) D (y, t) a ! d(f (y F) ]d?

(10) D+(y, t) a j~’4[f+(y,T)]dT. 

_~~~55-~~~~~~~~~~~ 5 _ _ 5- _ _ _ _~~~~~~~~~~~~~~~ 5 _ _ _ _ _ _ _ _ ~~~5-__ - - -, 
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We will aasi~~e that 4 is a monotonically increasing function of f with every-

where continuous derivative. We further assume that d(0) > 0. As Proposition 1

shows, the case where 4(0) — 0 is not interesting from a practical point of

view.

We consider the following algorithm for generating routing sequences

{Yk}t

(Al) Given a routing 
~k’ 

the next routing 
~k+l 

is the solution of

the equation

(11) D ( ykIYk+l) 
a D~

(yk #y k+l)

- It will be shown as part of Proposition 3 that equation (U.) has a

unique solution for every 
~k C (O , 1]. Note that since we have

D ( y k .t) < D ( Y k?yk+1) D~ (y~ ,y~~~ ) 
~ D~(y~

,t) ~~ ~ ~

and

D ( i~,t) > 0 
~~k’~ k+1~ 

0
~~~k’~ k+1~ .~~~ 

D4 (y~,t) if t > 
~‘k+1

it follows that a routin g 
~k+l determined from (U. ) is such that every point t

routes its flow in the positive or negative direction according as

D(y klt) > D ’(yk,t) or D(ykst) < D ’(yk,t), i.e. according to minimum distance

to the destination .

We say that y~ 810,1] is an quilibrium if

(12) D(y *,y*) — D~(y ,y )

We first show same preliminary results relating to existenc e and

optiuiality properties of equilibria:

Proposition 3: There exists a unique equilibr ium y* C (0 ,1) . Furthermore

equation (11) has a unique solution 
~k+1 for every
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Proof: Using (9) and (10) we have for all y and t

(131 ~D~~Y11t) — d(f (y,t)J, ~D~(y t) a

We have 4(0) >0 and 4 is mouotonically increasing ,so 7 0 and

0. Thus for Limed y, the function D (y , •) is cont inuous ,

aonotonically increasing and satisfies D (y, 0) a 0, while the function

D+(7, .) j~ continuous monotonicalty decreasi ng and satisfies fl f (7, 1) — 0 .

Hence the equation D (y ,t) — D+(y, t) has a unique solution in t lying within

(0,1). Denote by g(y ) the solution corresponding to y. The function

g:(0 ,Lr (0, lJ can be easily shown to be continuous and , by Brower ’s fixed

point theorem ((8] , p. 161) , g has a fixed point y~ ~~~~ is an

* * * *equilibriu m. If there exist two equilibr ia y1 and with 
~i <

~~~ V then

since 4(1)> 0 for all f> 0, we ~~zst have

• * * - * * — * * + * *D (y1,y 1)cD  (y1,y2).~~D (y2,y2) — D  
~‘2’~ 2~

+ * *  4 *  * 4 *  * - * *D (y2,y2) < D  (y2,y1) .~~D (y1,y1) — D  (y1,y1)

which is impossible. Hence the equilibrium is unique. Q.E.D.

Proposition 4: The equilibrium minimizes over all y £ (0,13 the expression

7(y) — fP f~~Ys t)]dt +fP f~~Y.t) ]dt 
•

where p is any function satisfying for all f

(14) p ’ (f) — 4( f)

and p ’ denotes the first derivative of p.

Proof: The first derivative J’ (y) of J is given by

(15) 7’(y) —~~~~p’(f ~-(~ ,t ) I  3f~
’(y, t) 

dt + fp ’( f (yr t ) ] af (y , t) 
dt

_____ 

__________________
— • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..—.—•— ---•-.•——•••———.-•---————--•••--•--—---- - - 

- - ~~~~~~~~~~~~~~~~~~~~~~~ 
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It can be seen from (7) and (8) that

~f+( t )  -r (y) if y < t
(16) ~ a )

L. 0 if t < y

1 0 if y < t

7 ~f (i t) —( 1)
r(y) if t < y .

Combining equat ions (14) — (17) we obtain

3’ (y) .r (y) [ -S~~d[f~ (y, t) j dt + !~~d(f (y, c) ]d t ] ,

or equivalently

J ’ (Y)— r (y ) (D (y,y) -D~ (y ,y)J .

£ 7* is an equilibrium it can bs seen that we h*ve

D (y,y) ~~D~(y,y) jf ,~

D (y,y) ~ D~ (y,y) if ~~> y~.

Thus J’(y) < 0  if y < 7 *~ J’ (y) ~~O if y* < y ,  and J~ (y*) — 0.

It follows that y~ minimizes 3. Q.LD.

Proposition 4 shows that one can minimize the integral of

average delay over the ring by choosing the function d to be marginal

delay and by guaranteeing that the algorithm converges to an equilibr ium.

The need to use marginal delays as link lengths in order to minimize total

average delay has been pointed out earli er in a different algorithmic

context (9j . The following discussion , howsvsr , casts doubt as to whether

the algorithm will converge to an equilibrium when the link lengths are 

-—----- 

_ _ _ _ _ _  ~~~~ -- ~~~~~~~~~-. — -- -—~~~~~---~~~~~



2].

chosen to be the marginal delays . In any case Prop osition 4 suggests that

convergence of the algorithm to an equilibrium is desirable since a function

p satisfying (14) is monotonically increasing and convex and henc e an

equilibrium will at least be a reasonabl y good routing even if it is sub-

optimal in terms of a particular design objective .

We now consider the convergence properties of the algorithm. For

any ye [0,11 we denote by g (y) the unique solution in t of the equation

D (y ,t) D~(y,t) (c.f.Proposition 1). Thus Algorithm CAl ) can be written

(18) 
~
‘k+1 —

We have for all yc (0,l]
g C-i)

(19) D [y,g(y) ] d[f (y,t)Jdt d[?(y,t)]dt — D~[y,g(y)]
0 9(Y)

- j We evaluate the first derivative g’ (y) — for ye (0,1). Differentiation

in (.19) yields

g(y )

f d’(f (y,t)Jdt + d(f (y,g(y))Jg’ (y)

fl d’(?(y,t)]dt - d [f4(y,q(y))]q ’(y)
g(y)

or 
+ 

(,g(y) 
-

d’(f (y,t)Jdt — d’[f (y, tlj dt

(20) g’ (y)
d(f (y,g(y))3 + d (f~ (y ,g(y)))3

We have for t~~~y

(21) 3d(f ~ (y, t ) J  —. d ’( f~ (y ,t) ] ~f~ (y,t)

(22) ~d(f (y,t)] 
— d’(f (y,t) 1 

a f (y ,t)

- -.— - - _ __ _ _  
_ _ _ _ _

— - 
~~~~~~~~~~~~~~~~~~ 
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combining (20) - (22) with (16) , (17) we obtain

min {y ,g(y }
I

., 1 +
r (y) (J dt f  (y,t) I dt + f~~~ {y g(y) }d ’ ( f (y, t ) J d t ]

(23) g (y) — —  +d(f (y,g(y) )• 3 + d (f (y,g(y))]

kt the equilibrium y* we have y* - g(y*1 and f ( y *,y *} — f
+ (y*,y*) — 0, g~

(23) yields

+
r(y*)[J0 4I(f (y*,t)]dt + 

~~~~~~~~ 
(y*,t)]dt

(24) g’ (y *) — • 24(0)

By using a theorem of Ostrowski ( (83 , pp. 300—301) we can state the following

local convergence and rate of convergence result for algorithm (Al).

Proposition 5: Let y~ be the equilibrium. Then if Ig ’ (y*) < 1 or

equivalently

r (y *) ( f ~~ dh (f (Y *st ) 1d t +J’*d~ (?(Y*,tfl dt1
(25) d(0) > 2

there exists an open interval I containing y~ such that if y0 £ I the sequence

{y~} generated by algorit hm (Al ) remains in I and converges to y~ . Further-

more if ~ y* for all k there holds

(26) him sup - him sup - y*~~ a jg l (y *)j .

when the equilibrium y~~ has the property specified in the first conclusion

of Proposition 5 we say that it is locally stable. If jg I (y*)~ > 1 then the

linearized system corresponding to — g 
~~~ 

is unstable , so the

algorithm tends to diverge from y* when started close to it. i,~otice the

similarity of equation (25) with the correspond ing local stability conditions

for finite node networks (cf. proposition 2 ) .

____________ -

_____ _.___ _________~.__,~ ___ _~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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& sufficient condition for global convergence of algorithm (Ed)

can be obtained by requiring that g be a contraction mapping, i.e. for some

pE (o l) there holds

(27) 
~g (y)_y*~~~p ( y_ y ~~, , YyE(0 ,l].

From Taylor ’s theo rem and the fact g ’ (y) < 0 we have 
-

* 
ry

t g ( y ) -y  a g’( z)dz I
7
*

Let

d’ (f )

0’f ~~j  r(t)dt0

From (23) we obtain for a].]. z

~ ~~(z)1l— Iz— ~(z)li1g (zi 2d(0)

Thus (27) is satisfied if

.7
~ ~~ (~) (‘-  l z _ g ( Z ) ~ ]dZ

24(0) 
—

~ 

<1

y # y  
_ _ _ _ _ _

or equiva lent ly if
r( z)(]. - t z - g ( z )  j dz

(28) d(0)> 2 sup *
yEjO ,].] 7 - 7

*y # y

—5 ~~
-
~~~

- - —

- - ~:.• ~~~
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This will be true in particular if

(29) d(0) >.~~

where Ramax r (t) .  The conclusions of the preceding discussion are
0”t ’l

sumaar ized in the following propositio n.

Propositions: If conditi on (28) or the stronger condition (29) holds,

every sequence 
~~~~ 

generated by algorithm (Al ) converges to the equilibrium y~ .

When the equilibrium y~ has the property specified in Proposition 6 we

say that it is globally stable.

In order to put the results obtained thus far in better perspective

let us write d t f)  as
A

d(f )  a a + d(f)

where a a 4(0) represents the bias factor. For f ixed input density r we

have that to each positive value of bias a there corresponds an equilibrium

• The equilibrium is locally stable for a satisfying (cf . (25)]

* 
.* 

— * + *

(30) 
r(y~)[J~~~d’(f (ya~

t)ldt +f~~~d’(f (yait)]dt]

and globally stable for a satisfying Ccf. (29)]

(31) a > .

As a increases the corresponding equilibria tend to become stable. Further-

more from (24) and (26) it can be seen that the speed of convergence of the

algorithm is accelerated as a increases . On the other hand it is easy to see

* 3.that -
~~ as a’~ , which in the context of the routing problem means that

- ~~~~ ic.. :*~ 
a~. -~~  

-~ ~~~~~ --~~~~~ -- --~~~~---~~~~ - - - - - 
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the algorithm becomes increasingly insensitive to congestion as ~~~~~

Since in a practical situation we ax~e interested in the stability Properties

of the algorithm for a broad range of inputs let us coflsider input densities

of the form

(32) r x (t) — Ar (t)

where A is a positive parameter . Then it is clear that as A increases a larger

value of bias is necessary in order to stabilize the algorithm.

For example if d is of the form

- I  (33) d ( f ) _ a + B f n

where 8)0, n>0 then from (3) and (31) we see that if r is changed to Ar

as in (32) , then the stab ility threshold level of the bias is multiplied by A”.

Thus for fixed a and r there is a choice of A for which the corresponding

equilibrium is unstable. Incidentall y the expression (33 ) for 4 has an

[ interesting property, namsl&, that the set of all possible .qulibria Cya l a>0}

as well as the set of aU locally or globally stable equilibria is independent

of the level of input A and depends only on r. This is straightforward to

verify using (33) and the fact that if r is changed to Ar and a is changed

to A”cs then the routing sequences generated by the algorithm are unaffected. - ]
Choosing the Bias as a Function of the Current Routing

Since stability of the algorithm depends strongly on the level of bias

and the level of irp ut vs are ~~tivated to consider schemes where the bias

is not held fix d but is rather adjusted adaptively on the basis of currently

available information . An interesting schias is to use a length function

of the form 

- ____ 
_ _ _ _  

L
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~ 
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A

d(f ,y) — a (y )  + d(f )

A

where 4 s a continuously differentiable , monotonically increasin g function
P.

with 4(0) — 0, and a(y) is taken to be some monotonically nondecreasing

function of D~ ty) given by

DT (y) aJ
1 

d[f ’ (y. t)]dt d(f (y,t fldt.

For ~x~”~le a quadratic functi on of the form

(34 ) ~(y) 
~ 0 

+ y
1 

DT (y) + Y2 (DT (y) ] 2

where ;. T1’ ~2 are some experimentally determined nonne gative constants

se~~~ suitable . In th. context of a finite node network with not necessarily

a ring structure a scheme like this can be very easily implemented. In this

case 0? (y) can be calculated as the sum of all reported link “delays ”

d(f u) .  Ths bias a(y) can be computed by each node via a formula such as

(34) and the link length can be computed as a a(y)  + d(f
~~
).

A scheme of the type just described can be ar alyzed along similar lines

as earlier in this section . It has been tested in quite extensive numerical

experiments involving finite node networks and it was shown to have very

satisfactory performance (4] , [3]. This can be attributed to the fact that

the level of bias increases or decre ases with the level of input thus

providing aut omatic scaling with respect to input level. In fact it can be

easily seen that if d has the form d(f) a 8? where 8>0 , n>0 and we choose

a(y) a Y0? (y) where y>0 , then for every input density function of the form

Ar( t) ,  A>0 , the sequences generated by the algorithm do not depend on A.

- ~~~~ -
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4. Avera ging the Effect of Several Routing!

In this section we show that the stability properties of the shortest

path algorithm of the preceding section can be improved if link lengths suitably

depend on flows corresponding to several past rout ings . There ar e several

possibilities along these lines. Some examples are as follows:

a) Averag ing over the present and the past it routing!.

Given a sequence of past routing! 
~k ’~ k 1 ’ • • ~~’ 

we define for any

t in [0.1] “averaged” distances to 0 and 1 by

(35) f(7k,Yk l , I~~~,Yk_n 1t) — 

~~~ i~o 
~~~~k-i’ t~~

4t

(36) ~
+(Yk,Yk l , . . . . ,Y ~~~ ,t) — f —

~~~~~ i~0 
d[f~~~k j .~~

)]d t

Thus distances are calculated by integrating ~~ i ~ o d[f(yk ~1 1)J, which is

an aver aged length over the routings 
~k ’• •~~’7k n ’ in place of d(f(yk, l)]

Which is the length corresponding to the last routin g.

The new routing y~~1 is obtaLned f rom th. equation

(37 ) D ( y k,7k..t. .~~~JY k..fl I7~~.L) ‘~~~~~k’~k-l’”

It La easily seen that this def ines uniquel y 
~~~~ 

in terms of

As earlier we write the corresponding equation as

7k l (7k~7k_l . 1
~ 7k f l

)

A routing y~ is said to be an equilibr ium if

5-— —5- - 
—
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* * * *y — g(y ,y , . . . ,y  ).

zt is clear that is an equilibri um in thi s sense for a given bias level

if and only if it is an equilibrium in the sense given in the preceding

section.

We can define local stabilit y of in the obvious way. We have

tha t ,~ is locally stable if it is also a stab le equilibrium of equa t ion

(38 ) linearized around y* (see [81 p. 353) . It is a known fact that this is

true if all roots of the characteristic polynomial

n-il ag(y*) ~ ag(y*) n-i ~g(y*) ______C (p) p - 
~~ _ p p -...-

~~~~~7k-l 7k-nl.3.

lie inside the unit circle , (i.e. have modulus less than unity) . We cal-

culate the derivatives ~~ —

We have for ~ >0 similarly as earlier for every i
*

~~~! 
d~(f (y*,t)]dt ~!* d’[?(y*,t)]dt}

Define

(39) i~i.~~~~~~~( f d . [r (y*,t)]dt + J * dh[f ~~(Y*,tn dt }

Note that, from Proposition 5, y’~ is locally stable for algorithm (A ].) if

~& < I. Th. characteristic polynomial can be written as

t40 ) C(p) p~~~ + ~~~ p~ +~~~~ p~
4+ . . . +  ~~~~~~~~ .

We now use the following fact :

L~~~s: Let ~ be a positive scaler and u be a positive integer. The roots of

the polynomial

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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— ~~~— — — —  —i—” 

— — — — ———-----——--— — — —
5- —-- — —S- ~~~~~~~~~~~ ~- —-—. — —



• 

-

n+L~~~~n +~~ n l + +~~+

lie inside ths unit circle if and only if ~~Cl.

~~~~~~ This result can be shown by straightforward application of Jury ’s

stabilit y test ((101 , p. 97-98) . Q.R .D.

We now apply the result of the l~~~~ to our pro bl~~ . We have

that the equilibriom 7* will be locally stab le if

Ii < n +  1.

it follows using (39) that in the aver aged algor ithm the bias level ~~tst

satisfy *

&*)( 
S

’ d’C rC y* ,t)l dt + * 
d ’[f ’(-y~ ,t)~I dt l

0
2 (al l)

in order for the corresponding equi].ibrium 7* to be stable. If we compare

this with the earlier algorithm [cf . (25)1 we see that in the avera ged

aleoritha the bias thre shold level for stabilit y is reduced by the factor

over the one of algorithm (*1) . For a given tr affic input, and any

given bias level the corresponding equilibrium can be siad. stab le by

averaging delays over a sutfictintly large ni~~er of periods.

Regarding rate of convergence, Ostrowski’ $ Th.orme again applies.

We have from the proof of Tb. 10.1.3 of (8] that given any c >0 there

exists a norm on such that if y # 7 * for all It

* *
l(7k+17. 1,1

k n+l~~ 
)11

lin eup * *I ,. , —~~~ —

~

where p (W.,n) is the maximum root modulus of the characteristic polyno.i*L

C(p) of (40) . It can be seen that for fixed aw e  have p(~ ,n)~~ 0 as ~-0 .

.

~

- - _ _ _ _ _ _ _



If p1,..., pn-~1 ar e the roots of C(p) we have I p i,.
~
Pn-i.iI~~~t 

, so that

• It follows that for fixed ~& we have p (~i,a) ~~l as n~~~ ,

so that the rate of convergence deteriorates as n~~~. Thus too much damp-

ing can slow down the speed of convergence of the algorith m.

— 

b) Fading Memory Scheme
This scheme is similar to the preceding one except that the lengths

corresponding to al]. past routings are averaged via a fading memory scheme. Given

the sequence of all past routings 
~~k’~ k l ’• • •

~~’ 
the next routing 7k+l is

determined as the solution of the equation

- ~ . +
( 41) S 6k~~~~~ 

— f 
k~~~~

t
0 7k+1

where 6 and 6~ are obtained by the following recursive fading memory

scheme with decay factor eE(0 , l)

ç(t ) — ~ 6 1(t) + (L
~~~

)d ( f (yk,t)]

6~ (t) — ~ 6 _ 1(t) + (1~~~)d[f~
(yk, t) ].

Alter natively we can write

~42) ç(t) — (1-i)  j~, ~
k_L d[f ~ (,~~, t )J

(43) 6~ (t) (1- a)

Let us write the solution of (46) as

—

Let us also consider the linear system obtained by formal linearization of

(44) around the equilibrium y
~~
. We have similarly as earlier that this

linearized system is

(45) 
~~.+1 

_
~

( l_
~~)(yk + 

~~k—l + alI t 2  + • . . ] .

5-—- —- ---- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~ —• - - -5-  - - - --- -.~~~
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where ~ is given by (39) . Let us denote -:

5k*1 ~~ + aYk l  + a Y k 2  +

Then we have for a].]. It

( 4€,) y~~1 — - ~
(l -a)Yk —

( 47) zk+l a Y k + a Z IC

and it follows that the linearized system (45) is in effect the two-

dimensional system describ ed by (46) and (47). This latter system ts stab le

if both eigenvalues of the system matrix

~) -W (1

lie within the unit circle. These two eigenvalues can be calculated to be

o and B- i ’( l - a) . it follows that the linearized system is stable if

Although we do not provide a proof , it is possiL .e to establish rigo rously

tha t stabilit y of the linearized system (45) implies loca l stability of

the algorithm ( 44) and thus we have the result that the threshol d value of

bias for stability in the fadin g memory scheme is reduced by the factor

over the one of algorithm (A l) . The optima l speed of convergence is

obtained when the eigeuvalu. ~ — ‘(1 - ~) equals zero in which case a super-

linear rate of convergence is obtained . This is so when ~ a r ~~~ . For ocher

values of 3 in the interval ~~~~~ I) the rate of convergenc e is linear , and

--- 5-  - - --~~~~~ -~~~~
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for 
~~~~ 

the equilibrium is unstable . As 8 is increased from the optimal

value towards unity the rate of convergence deteriorates .

c) Asynchronous Length Reporting

This type of scheme is patterned after a shortest path routing algorithm

wher. nodes report asynchronously the lengths of their outgoing links and the

shortest paths are updated after each report . The set of nodes (0,1] is

partitioned into n subsets which we call. ~1 ~~~~~ ,~~ At some time, say 0,

the nodes in S1 report their lengths averaged over the flows corresponding to

the preceding n routings and a routing update takes place . Then at time

a1 > 0 the nodes in S2 do the same thing. Similarly , for i — 1,...,n—l, at

time Ca1 + a2 + ,.. + the nodes in ~~~~ do the same thing. At time

(a1 + a2 +. . .4a~) the nodes in S1 again report their lengths , an updating

takes place and the process is repeated . This typ. of asynchronous operation

is currently in use in the ARPANET (43 where , in a f inite node network

context , S~ consists of a single nod. for all i. Ther e are also other

1. j variations of asynchronou. operation involving for m’~ample averaging over

all preceding routings via a fading memory scheme. This typ. of a].go:itha

is described and tested computatio nally in (4] and 13] . The analysis of

all. these schemes is very similar as that of the aver aging schemes describ ed

earlier in this section . The detai ls are quit. messy and may be found in

(4] , where it is shown, via analysis and computational experiment, that

asynchronous operation has a substantial beneficial af f.ct on the stability

properties of the shortest path algorithm.

5. The Case of a Network with an Arbitrary Tepol~gy

Ths extension of the continuous model to the case of a network with

_______ - - 
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arbitrary topology is quite strai ghtforward . However, the notatio n req uired

for a precise mathematical description is very cumbersome and tends to cloud

the main ideas . For this reason our presentat ion will be somewhat informal.

Consider the case of an undirected network with a single destination .

Let r be the input density function mapping points on the undir .ctr ed links

of th. networ k to the nonnegativó real. numbers. The meaning of r again is

that , given any interval I on a link , the total traffic input orig inatin g

at this interval is the integral of r over I. We view the set of points on

the network as a subset of a ~uclidean space of appro priate dimension , and

ass that r is a continuous function. In order to consider notions of

length vs associate with each undirected link Ci, t) two directions i+L and

t-’i. (There may be more than one links connecting a pair of nodes within

our framework. When we refer to a link Ci, L) we mean a particular link

connecting i and I and specify further when there is danger of confusion) .

A length function 6 is a function which assigns to each point on an undirected

link (i, I) two nonnegative numbers one associated with th . direction i L

and the other associated with the direction £.i. We assume that 6 is piece-

wise continuous along every link in each direction . The meaning of 6 is

that given any two points on a link Ci, I) their distanc e in the direction 1st

is obtained by integrating 6 as defined in that direction between the two

points. The distance in the opposite direction t+i is defined analogously.

Similarly we can consider paths between points on possibly different links

and define their length in one or the other direction.

We now associate to a given length function 6 a shortest path of every

point , and an associated routing. We assume that 6 is everywher e positive.

Given any point we consider the collection of paths to the destination and

_ _  _ _ _ _ _ _ _ _
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their associated distances specified by the function 6. A path of minimum

distance is referred to as a shortest path from the point to the destination ,

and the corresponding distance is referred to as the shortest distance of

the point to the destination . The routing corresponding to 6 is the set

of points for which there are more than one equidistant paths to the

destination. A routing is said to be regular if it does not contain any

nodes of the network, otherwise it is said to be singular.

Given the function 6 , a shortest path of each point and the corre s-

ponding routing can be constructed in a simple manner along similar lines

as for usual networks. We first construct a shortest path tree for the

network in the. usual manner by using as (directed) link lengths those speci-

fied by the length function 6. (The length of the directed link (i ,t) is

the integral of 6 along (i,L) in the direction i ’L) . This gives us a

shortest path and the associated shortest distance for every point on the

shortest path tree including all the nodes of the network . A shortest path

for points on links that are not part of the short est path tree can be

obtained as follows:

Let (i,.$) be a link that is not on the tree. Let and Dt be

the shortes t distances of nodes i and £. The shortest distance of a~~~in~
t o n  (t , t) is

D(t) inin

where 6~~ 
j~ 6 in the direction £~~i and 6~~ is 6 in the direction i~~ $.

It can be seen that the routing corresponding to 6 is regular if and only

Li each (ordinar y) node of the network has only one shortest path associated

with it. If a rout ing is regul ar then every one of its points Lies in the

T 
- - - 

-
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“interior” of some link . Notice that the preceding construction shows that

a routing (regular or not) consists of CL - N + 1) points where L and N are

the number of undirected links and nodes respectively .

Given a shortest path tree and the corres ponding routing constructed

as just described, we can define the flow corresponding to it. At each

point , say t, of a link (i ,t) there are two flows to consider (one of which

is zero) ; the flow in the direction i-’L and the flow in the direction £-.i.

Each i.s defined in the natural way by integrating the input density function

r over the portion of the network that Lies “upstream” from the point t ,

i.e. over the set of points the shortest paths of which meet t on their way

to the destination . At the points of a regular routin g the f low is zero in

either direction . Notice that if 6 is such that the correspondin g routing

is regular the flow is uniquely determ ined by 6 . Otherwise the flow will

depend not only on 6 but also on the shortest path tree selected .

Supp ose we are given a monotonicaily increasin g , continuously

differentiable function d mapping flow into the positive numbers . Given a

shortest path tree 1’ corresp onding to a length functio n 6 with routin g Y we

can define a new length function ~ which assigns to points t in any one of

the two possible directions the length ~~(t) — d (f (tL] where f (t) is the

flow at t corres ponding to 6 and T in the appropriate direction . The

corresp onding routing is denoted i. Note that if Y is singular then 3 and

~ depend not only on S but also on T. If Y is regular then ~ is uniquely

determined by 6

We are now in a position to define an algorithm similar to the one of

Section 3. Given a length function 6~ and a correspondin g shortest path

tree and routing T~ , the next length function is 6
~ ~~ 

with corresponding

routing 
~l. — Y0

. A shortest path tree T1 corresp onding to 6
~ 

is selected

a
- - ‘— -. a~_--~- — - I
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and is used to define similarly 
~2 ’ ~2 and T2 . Similarly the algorithm

generates 6k’ Tlc and for all k.

We say that a routing ~~ corresponding to a length function 6* and

shortest path tree T* is an equilibrium routing if — 6* and ~~~ —

Contrary to the case of a ring network where we were able to prove

existence of an equilibrium, in general there need not exist an equil ibrium.

This fact is demonstrated in the following example and provides an indication

of the complexity of the dynamic phenomena that we are investigating .

Example: Consider the network shown in Figure 5.

A(

~~~

)

Figure 5

There are two nodes 1 *nd 2 and three links connecting them c~enoted by

L ,B ,C. Node 2 is the destin ation . Points on A,B, and C are pararseterized

by their Euclidean distance to the destination. The Euclidean lengths of

L B  and C are all taken equal to unity. Let the input density function be

as follows -
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For link A:  r (t) • 1, Yt E (O , l]

For Link B: r (t) • r3, Vt E(O,L]

Par link C: r( C) • r~, YtE [O , l].

We ass~~~ that I~~ rI rC, I < ~C Let

where ~>O is the bias factor.

In view of the fact 1 < rB < 
~~~ 

l(r
~ ? it is clear that an equilibrium

rout ing cannot contain a point in the interior of link A, while it must

contain a point in the interior of link C. We consider two cases :

Case 1: r~ — 1. Then an equilibr ium routing cannot contain a point in the

interior of link B so the only candidate for equilibrium are the two types

of singular routings shown in Figure 6. In routings Y1 and 
~2 the incoming

traffic at node 1 is routed through link A and link B respectively . None

of the two routings can be an equilibrium. In routing Y1 there will be points

in the interior of link A which will have a shorter distance to the destination

(corresponding to 
~~ 

through link B rather than through A , and the reverse

situation occures in routing 
~2 • Notice that this argument makes use only

of the magnitude of r and r
~ 

and is independent of the form of the function d.

Case 2: 1Cr3. Then it can be seen that the only candidates for equilibria

are routings of the form shown in Figure 7.
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specified by the points 7B’ YCELO L] where the flow separates on links B and

C. We have that the distances D~ (y3), D (~~) of 73 correspondin g to routing

along the counterc lockwise arid clockwise paths respec t ively are given

by

D ( y 3)

D (y3) . ( 2 _ y 3)a+r& (t .. y3)dt
7
3

1
+,i (r 3

( 1_ y
3) + r ~ ( 1_ y ~) + (l . t)]dt

0

~~ La an equiUbrium we must have

D ( y 3) — D+(y3)

which af ter some calculation can be written as

r -1.
(.48) 2 (cr+r3

) ( l _ y
3) +r ~

( l_ y
~

) _  
2 I

ly sy stry the equation D ( y
~) — D4 (yc) can be written as

- I
(49) r3 (1 - y3) + 2 (a + r~

) (1 - — 2~

Iquattons (48) and (49) are in fact necessary and sufficient conditions for

to be an equilibrium routing. Thus there exists an equilibrium

routing if and only if the solution (y ,y~) to these equations satisfies

7 E(o ,ij , y~E(0 , lJ .  After some calcu lation, this condition can be shown to

be equivalent to

r0(2r3 - r~ - 
1)

(50) 
~~~ 2(r3 - l)

-- 
- - - ~~- - - . -
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If 2r3 > r~ + 1 then for every level of bias there exists an equilibrium rout-

ing (y3 ~~~~~ 
If however 2r3 < r~ + 1 then there exists an equilibrium only

for a above the threshold level indicated in (50) .

The preceding m~caruple shows that existence of an equilibrium can depend

on both the level of bias and the input density function. Furthermore , it

may happen that, for a given input density function, no value of bias can be

found for which an equilibrium exists • This last phenomenon is of a - singular

nature and is due to the fact that the Euclidean lengths of links A,B, and C

are all equal to unity. To see this consider the rou ting Y corresp onding

to the length function Ct) B 1, C Ct ) B 1. The routing !~, 
is analogous

to the mm —hop routing in discrete node networks, and can be associated with

infinite level of bias . It is an equilibrium routing for the case d(f)  1.

If T is a regular routing , i.e. each node has a unique minimum Euclidean

distance path to the destination , then it is clear that , for any given input

function r , there exists a threshold level of bias ~ such that for all

a >~~a regular equilibrium routing exists.

Characterizing the dynamic behavior of the algorithm in the absence

of an equilibrium is certainly an interesting problem but we have been un-

able to make much progress in this direction . Computational results for

finite node networks given in (3] suggest that the stabilit y properties of

the algorithm are improved by high level. of bias and averaging similarly

as in the presence of an equilibrium. In what follows in this section we

restrict attention to the case where a regular equilibrium routing exists.

Given a regular equilibrium routing ‘z~ — ~~~~~~~~~~~~~~ consider

for j  1,2, . . .  ,n the link (i~ , L~) containing y; and the two shortest paths

from to the destination . A simple but fundamental observation is that

these two paths j oin at some point thereby forming a ring of the type eon-

A 

_ _ _ _ _ _ _ _ _________ - - - .-a~ -~~~~ 
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sidered in Section 3. The zero point on this ring is th. point wher e the two

paths join . Let e~ be the Euclidean length of th . ring containin g y~ . For

j — 1,2 , . . .  ,n we parameterize points on the ring containing by the number in

(O .ej
) going from smaller to lar ger numbers as we traverse the ring in a chosen

direction similar ly as in the previous two section s. Thus points y
~ 

on

the link (i~.L~) can and will be identified by the number in (O~e~ I specifying

their position on the ring corr espond ing to y .  It is easy to see now that

given y~, any collection ~ — {y1,y2,. ~~~~~ such that lies in the interior

of Ci~ £j ) specifies a flow f1 through each point in the network that follows

the (ord4~r~~ry) shortest path tr ee correspondin g to 6 and Y and separates on

each link (i
i . L~) in the two opposite directions at the point y~ . This flow

defines a length function via the relation 6~~(t) — d (f~ Ct) ] in the direct ion

of the flow, and 6~ yields in the manner descr ibed earlier a shortest path

tree and a routing denoted by g (T) . It is ass’ to show (using the regularity

of y ) that if y is sufficien tly close to Y then the (ordinary ) shortest path

tree corresponding to 6~ is the same as the one corresponding to and that

the elements of the routing g (Y) lie on the links (i~ .L~) .

The algorithm described earlier can now be redefined as

(51) Tk+l — g

*
Th~ definition is local within a sufficiently small neighborhood of Y and

*
is associated with the (ordinary ) shortest path tree corres ponding to Y

and the associat ed paraa.t.rization of the ring subrietworks containing the

links (i~~ t~) .

Similarly as in the preceding section we say that an equilibrium

I
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is locally stab le if there is a neighborhood of (defined in terms of

the parameterizat ion of the rings associated with as discussed earlier) ,

such that the sequence Cg(Y~~) generated by (50) is well defined and con-

verges to Y for every choice of With in this neighborhood .

In order for f’ to be locally stab le it is sufficient that the

n~~ matrix be defined and have all its eigenvalues within the unit
- 

circle. The computation of is straightforward along the lines

of Section 3. We first introduce some notation. For j.l,2,...n

let denote the set of points tE(y4,e4) on the jth ring, and Ri.,
.~ .i ,j,ej

denote the set of points tE(0 i~] on the same ring . Note that for every

j,m 1 , . . . ,n the directi on of flow on R~ and R~ (or R . ) aist
.vj~~C

j ‘in’5m
coinside if these sets have intersection with positive Lebesgu. measure.

This implies that at least one of the sets R~ ~~~ and R~ ri,
7j’5j 7m’~is Yj~Cj ~m’~m

is either empty or has Lebesgue measure zero. Similarly at least one of

the sets R fl R and R fl R+ is either empty or has L.b.sgue
zj ~Cj  Ym~Cm zj~ej i~II Cm

measure zero. The equations definin g g(T) can be written as

I d(f (!~t)]dt 1+ d(f +(Y,t) ldt , j l , . . ., n.

37 differentiation with respect to we obtain similarly as earlier at the

equilibr ium

~g (y*) r(y)
(51) 

~~m 
— 2d (0)

where 

—
~~~~~~~~~~ - --~~ --~-“
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52) e — —! d’[f~ Cy ,t)]dt
jm a4* f l a4*Yj3 ej ~

7in’ m

r — *d’ [f CY ,t)]dt
5 *  f l s *  j
~y , e y , e

j j  m m

d’ (f (Y ,t) ) dt
R
+
* f l &*

+1 d l(f (Y*, t )ldt

a *  f l a4
*Yj~Cj  ~‘in’~m

and f~ (Y’,t), f ( Y *,t) are the flows on the j th ring in the positive and

negative directions . In view of the preceding discussion , at least two of

th. integrals in (52) are zero for every j and m.

Let R be the diagona l matrix having r(y~) as j th diagonal. e1~~~nt ,

and let 0 be the u~~ matrix having as elements the scalars 9~~ . Then we have

a ( y
*) 

— 2d(O) *

- ------- - - -  —-~~~~~~ --

We can show that the matrix 0 is negative semidefin its. Indeed th. matrix -0

is the Gram matrix associated with the functions

x +  + * - *Ct) d’[f~(Y ,r)] X~~* C t) d’ (f ~ (Y ,t) J , j  —
i YyCj

where is the characteristic function of a set S (X (ti • I. if ttS, X(t) — 0
otherwise) . By using th. fact that R is diagonal it can be shown that the eigenvalu.

X1,.  . of are real and nonpositive. Consider the spectral radius

~

‘ 
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1a max

Then the .quil.thriua Y is locally stabl e for

(53)

and hence there exists a thre shold level for d (0) above which the corresp onding

equilibrium is stable. Similarly as in the preceding section , we can show

• that if a fading m~~~ry scheme with decay factor B is used to average the
*effects of past routings the equilibrium Y is locally stable if

C )  U

and there is a value of B which opt imizes the rate of convergence. It is

also possible to show that the other forms of averaging the effects of

several past routings improv, the stability properties of the algorithm.

For the purpose of aiding the reader in understanding the method of

calculation of the matrix we provid, an example.

~~~~~~~~ Consider the network shown in Figure 8 where node 4 is the

F destination , and assume that the regular routing 
~~~~ 

y .  y }  shown in

an equilibrium. The figure shows also the chosen positive direction on
*the ring corresponding to each Yj

i
- 

-
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-
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-

Figure S

We calculate the symeetric matrix ~ with el~~~nt s given by (.52k .

The interval between any two nodes i and £ is denoted [i , L 1. The interval

between s~~~ y~ *nd a o.ode .g, is denoted (y~,L] . We have

— 

~lL — 
~ * 

d’ (f~ C!*,t )j dt -{ * d’ (f CY .tfl dt

[71,l ]U [ l,33 U (3,4]

+ * — *a22 — J * 
d’ (f 2 (Y ,t )j dt —

~~ * 
d ’j f  CY ,t)) dt

t72,2] U (2 ,31 [7211]U(l ,31 2

a33 — - 
* 

d. (f;(T* tfl d t - f  
* 

d ,1f (Y *,t) 1 dt

[73.2] U [2 ,3] U [3,4] [73.4]

+ *
- J d’ (f 1(Y ,t ) ]  dt

[1,31

a23 — — 1  d’ (f + (Y* t)]dt

[2 ,3]

—
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- I d (4(Y *,t ) ]dt

(3 ,41
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