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For those readers who may prefer to use metric units rather than
U.S. customary units, the conversion factors for the terms used in this

report are lieted below:
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2.590
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To obtain metric units
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LIMNOLOGY OF TAYLOR CREEK IMPOUNDMENT
WITH REFERENCE TO OTHER WATER BODIES IN
UPPER ST. JOHNS RIVER BASIN, FLORIDA

By Donald A. Goolsby and Benjamin F. McPherson
ABSTRACT

Taylor Creek Impoundment was constructed on the western side of the
upper St. Johns River basin as part of a plan for flood control and
water regulation. The impoundment, which has a surface area of about
4,000 acres, was initially filled late in 1969. Water of relatively
poor quality was observed in the impoundment during its first three
years of its existence (1970-72).

The depth of the impoundment is sufficient to allow thermal strati-
fication, and a thermocline usually develops at depths of 8 to 10 feet.
During 1970-72 the hypolimnion remained anaerobic for more than half the
year. The hypolimnion also accumulated high concentrations of phos-
phorus, ammonia-nitrogen, carbon dioxide, ferrous iron, hydrogen sulfide
and other substances. The poor water quality is attributed to the
decomposition of flooded vegetation, decomposition of soil organic
matter, and heavy growths of phytoplankton and duckweed stimulated by an
abundant supply of nutrients. Flushing of the impoundment and depletion
of leachable nutrients and soil organic matter have led to an improvement
in water quality since 1972.

During 1973 and 1974 the depth to the top of the anaerobic zone
increased to more than 12 feet and by 1974 the period of anaerobiosis
decreased to less than 2 months out of 12. Phosphorus concentration
after the fall overturn decreased more than 50 percent between 1970 and
1974. The reduction in biochemical oxygen demand during this period
suggests a decrease in primary productivity.

Water released from the impoundment during the period 1969-75 was
similar in quality to nearby Wolf Creek and Jane Green Creek. Of 21
physical, organic, and inorganic constituents, only ammonia-nitrogen was
significantly higher in releases from the impoundment than it was in the
natural streams. Dissolved oxygen was higher in water released frca the
impoundment than in the natural streams and dissolved solids concen-
tration were lower. Large releases from the impoundment may, under
certain conditions, produce velocities great enough to resuspend bottom
sediments several miles downstream at a point where Taylor Creek flows
into Lake Poinsett.




INTRODUCTION

The St. Johns River originates in & wide expanse of marshes north-
east of Lake Okeechobee (fig. 1). From these headwater marshes, water
flows slowly northward 30 to 40 miles to the vicinity of Lake Hellen
Blazes where a river channel first develops. From this point the river
flows northward more than 300 river miles and ultimately discharges into
the Atlantic Ocean east of Jacksonville, Florida.

The upper St. Johns River basin (fig. 1) has a drainage area of
about 2,000 mi%. The basin is bounded on the east by a coastal ridge
which separates it from the Indian River basin, and on the west by a
ridge which separates it from the Kissiimee River basin. The southern
boundary 1is poorly defined because of extremely flat topography. The
upper St. Johns River, which includes that part south of Lake Harney, is
characterized by an extremely low hydraulic gradient of about 0.2 ft per
mi (Brown and others, 1962). The headwater marshes are only about 25 ft
above mean sea level. Lake Harney at the northern end of the area is
normally less than 6 ft above mean sea level, but rarely below sea level.

The northern part of the upper St. Johns River basin includes a
river flood plain, or valley, and well-drained uplands. Marsh land is
confined primarily to areas near the river channel, and prairie and pine
forest occupy much of the flood plain. The river in this region flows
through Lake Hellen Blazes, Sawgrass Lake, Lake Washington, Lake Winder,
and Lake Poinsett. The well-drained uplands are most prominent along
the western boundary of the basin. Several streams drain from these
western uplands into the St. Johns. These include:

Ft. Drum Creek Wolf Creek

Blue Cypress Creek Taylor Creek (now impounded)
Jane Green Creek Jim Creek

Pennywash Creek Econlockhatchee River

The flood plain of the southern part of the basin is a headwater
marsh. Blue Cypress Lake, the only large open body of water in this
region, is located on the western side of the St. Johns headwaters marsh
just north of State Road 60 (fig. 1). The lake receives inflow from
Blue Cypress Creek, Ft. Drum Creek, Padgett Branch and some overland
flow from the marsh areas south of the lake. Water discharges from the
lake to the north through marshes and a canal, into the area south of
Lake Hellen Blazes.
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Man's Alterations in the Basin
Drainage of the Flood Plain

Agricultural encroachment and drainage of the upper St. Johns
marshes began in the early 1900's. Drainage was accomplished by canals,
dikes, and pumps. A major part of the early development between 1910
and 1945 was accomplished by drainage districts established on the
eastern flood plain. Areas were diked and drainage canals were dug to
the east, usually in a swale or low area of the Atlantic Coastal Ridge,
to the Indian River. The area within the districts was then drained
mainly by gravity discharge into the Indian River or less often into the
St. Johns River. One district, the Melbourne-Tillman, spread so far
westward into the marsh that it enclosed a distinct segment of the river

channel (see fig. 1). The drained land was used to grow citrus, sugar- }
cane, and truck crops and to graze cattle. Figure 2 illustrates the 4
drainage and development that occurred in the basin between 1900 and 1
1972. Is

.

Drainage and development in the upper St. Johns basin slowed in the
1930's and early 1940's because of the economic depression and World War
ITI. After the war, development increased as individual landowners and
corporations pushed dikes farther into the flood plain east of the river
and began to drain the marsh west of the river (figs. 2 and 3). Ranch- {
ers diked off parts of the western marshland to support grass during
drought. By 1957 the natural flood p}nin south of Lake Washington had
been reduced from about 680 to 250 mi~ (Central and Southern Florida i
Flood Control District, 1970) and much of the natural freshwater runoff
in the upper basin was diverted to the Indian River. During a wet year
as much as 300,000 acre-ft may be diverted (U.S. Army Corps of Engineers, '
1957).

Drainage of the upper St. Johns marsh and reduction in size of the
flood plain has resulted in a reduced surface water storage capacity and
in marked changes in seasonal water levels. During periods of heavy
rainfall, runoff causes water levels to rise higher than they would have
under natural conditions when storage capacity was much greater. During
periods of low rainfall, with less water in storage, water levels drop
lower than they would have under natural conditions. As a result,
floods and droughts have become increasingly frequent and severe. The
flooding is also costly. In 1947 flooding caused more than 4 million
dollars in damages (Central and Southern Florida Flood Control District,
1970).

A public works plan to help alleviate the flood-drought problems in
the upper St. Johns River basin was approved by Congress in 1954 as part
of the Flood Control Act (Public Law 780, 83rd Congress, 2d Session).
The plan (fig. 4) provided for both valley neservoirs and upland tribu-
tary reservoirs to provide for flood contrc!, low-flow augmentation, and
water for municipal and agricultural use. Part of the authorized works
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have been completed (1977). In the valley, Sebastian Canal (C-54) has
been completed. On the western side of the basin, Jane Green Reservoir,
consisting of levee-73 and structures 161, 221, 163, and 164, has been
completed (1977). This upland reservoir was constructed to impound
Taylor Creek, Wolf Creek, Penneywash Creek, and Jane Green Creek. When
filled to a stage of 46 ft above mean sea level the Jane Green Reservoir
would contain about 245,000 acre-ft of water and would cover about
27,000 acres. The Taylor Creek part of the reservoir was filled late in
1969. As of 1977 the remaining part of Jane Green Reservoir had not
been impounded because of strong opposition from environmental groups.

Taylor Creek Impoundment

Taylor Creek Impoundment, on the west side of the upper St. Johns
River basin, drains an area of about 52 mi2 (fig. 1). It was initially
filled in Autumn 1969 and covers parts of Taylor Creek and the north and
south forks of Taylor Creek. Little or no clearing was done in the
impoundment area before it was filled. Natural vegetation, including
hardwoods such as cypress, oak, and gum near the creek channels, and
mostly pines, palmettos, and natural grasses at higher elevations,
was inundated when the impoundment was filled.

Water is released from the impoundment through control structure
164 into the natural creek channel. Under natural conditions most of
the discharge from the creek entered the St. Johns River north of Lake
Poinsett. Since about 1970, however, discharge from the creek has been
diverted into Lake Poinsett about 0.75 mi south of Highway 520.

Alternative Plans for Water Management '3

Several alternate plans for water control in the upper basin have
been proposed by the U.S. Army, Corps of Engineers and also by several
State agencies. There is general agreement in these plans to operate
the proposed Jane Green Reservoir as a temporary detention area with no
permanent storage of water. Under this proposal, flood waters would be
detained temporarily in the upland reservoir for periods of as much as
90 days to prevent flooding in the valley. Only floods which occur more |
frequently than once in 5 years to once in 10 years would require use of R
the upland detention areas. This proposal is included as part of the
Corps of Engineers revised plan for the upper basin. No action will be
taken, however, unless the full plan is presented to the public and an
environmental impact statement is prepared and approved.

TR S

Purpose and Scope

Construction of the proposed reservoirs in the upper St. Johns
River basin has raised many questions regarding effects of the reservoirs
on the aquatic environment. To help answer some of these questions and
to provide a scientific basis for decisions pertaining to the construc-
tion and operation of the reservoirs, the U.S. Geological Survey, in




cooperation with the South Florida Water Management District and the
U.S. Army, Corps of Engineers, conducted several investigations in the
basin from July 1969 to July 1975 as follows:

July 1969 - June 1971 A water-quality reconnaissance investigation
of the upper St. Johns River basin.

July 1971 - July 1973 An intensive investigation of Taylor Creek
Impoundment.

July 1973 - 1976 Water-quality monitoring.

The 1969-71 water-quality reconnaissance investigation was made to
qualitatively assess the existing chemical quality, biologic, and
environmental conditions in the upper St. Johns River basin. Results of
this reconnaissance, documented by Goolsby and McPherson (1970) show
that the water in the then newly-formed Taylor Creek Impoundment was of
poor quality. Evidence for poor water quality included low dissolved
oxygen concentrations, chemical stratification, and high nutrient con-
centrations.

Because of the poor water quality in the impoundment and because
water in the other upland reservoirs yet to be completed would, no
doubt, present problems, an intensive limnological investigation was
conducted in the impoundment between July 1971 and July 1973, Objec-
tives of the study were to: (1) document chemical and biological
conditions in the impoundment, (2) define the areal and seasonal patterns
of stratification, (3) examine the effects on downstream water quality
of releases from the impoundment, and (4) determine how releases could
best be made so as not to adversely affect the quality of the water in
the St. Johns River. Blue Cypress Lake was included in the study as a
control to provide concurrent chemical and biological information on a
nearby natural water body. Although there are important limnological
differences between Blue Cypress Lake and Taylor Creek Impoundment, both
are in the same major drainage basin and the lake is reasonably repre-
sentative of the typically shallow, nonstratified water bodies in the
area. Data were also needed on Blue Cypress Lake because it, too, would
be affected by the proposed water management plans.

In addition to the intensive study of Taylor Creek Impoundment and
Blue Cypress Lake, data have also been collected at bimonthly intervals
from Wolf Creek, Jane Green Creek, and from several points on the main
stem of the St. Johns River since 1971 as part of a separate long-term
monitoring program in the basin. These additional data add materially
to the understanding of Taylor Creek Impoundment. Upon completion of
the intensive study in 1973, stations in the impoundment and Blue
Cypress Lake were added to the long-term monitoring program.

This report presents the results of chemical and biological investi-
gations made in Taylor Creek Impoundment from its initial filling in
1969 to July 1975. Comparisons are made between the impoundment and
Blue Cypress Lake and, where appropriate, the quality of the water in
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the impoundment is also compared with streams in the area and with
published data on various lakes in central Florida. Much of this report
is based on the data from the intensive investigation between July 1971
and July 1973. Descriptions of long-term (5 to 6 years) limnological
changes which have occurred in the impcundment are also presented.
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METHODS OF INVESTIGATION

Locations of Sites and Sampling Frequency

The locations of sampling sites in Taylor Creek Impoundment, Lake
Poinett, and Blue Cypress Lake are shown in figures 5 and 6. Other
sites sampled during the investigation are shown in figure 1. These
sites and the approximate sampling frequencies for the various segments
of the investigation between July 1969 and June 1975 are given in table
§

The water-quality constituents which were measured varied somewhat
throughout the various segments of the study. Generally, specific
conductance, pH, dissolved oxygen and temperature were measured in the
field on each sampling trip. Samples were analyzed in the laboratory
for nitrogen and phosphorus species (nitrate, nitrite, ammonia, organic-
nitrogen, orthophosphate and total phosphorus), total organic carbon,
tiochemical oxygen demand (BOD), silica, color, turbidity, and alkali-
nity. Samples collected at the primary sampling sites, marked ** on
table 1, were also analyzed for the dominant type and numbers of
phytoplankton. The major chemical constituents (calcium, magnesium,
sodium, potassium, bicarbonate, sulfate, and chloride) and trace element:
(arsenic, cadmium, copper, iron, lead, manganese, mercury, and zinc)
were measured four times each year during the reconnaissance and inten-
sive studies and twice each year--in about May and September--as part of
the continuing monitoring program.

During the intensive study, measurements of primary productivity
(light-dark bottle method) were made on each sampling trip at sites 1,
2, and 3 in Taylor Creek Impoundment and at sites 16 and 17 in Blue
Cypress Lake. Benthic invertebrate samples were also collected at these
five sites on each sampling trip.
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Sampling Collection and Analysis Methods

Dissolved oxygen and temperature were measured in place with a
Yellow Springs Instrument Company model 54" meter equipped with a DO and
t mperature probe and submersible stirrer. Measurements of pH were made
immediately after sample collection with an Orion model 401! pH meter.

A flow-through cell arrangement connected to a portable peristaltic pump
was used in measuring pH and Eh (oxidation-reduction potential) in
vertical profiles in Taylor Creek Impoundment. This enabled measurement
of these two parameters before the sample came in contact with the
atmosphere. Eh was measured with an Orion model 401' pH meter using a
platinum electrode and calomel reference electrode. Potentials measured
against the calomel reference electrode were converted to Eh by adding
245 millivolts to the measured value to correct for the potential of the
calomel electrode. Specific conductance was measured with either a Lab-
Line Mark 5' specific conductance meter or a Yellow Springs scT!
conductance meter. Water transparency was measured with a secchi disc
having alternating black and white quadrants.

All samples for chemical analysis were collected with either a non-
metallic point sampler (WILDCO! model 1540), a polyethylene bottle held
in a weighted sampler, or a peristaltic pump. Samples from discrete
depths were collected with the point sampler or peristaltic pump. The
weighted bottle sampler was used to collect depth-integrated samples
from all or part of the water column. Unfiltered samples for nitrogen
and phosphorus species, silica, BOD, color, turbidity, and alkalinity
were stored in polyethylene bottles which had been thoroughly rinsed
with the sample and immediately placed in an ice chest. Unfiltered
samples for analysis of total organic carbon were stored in specially
cleaned glass vials and stored in an ice chest. The BOD analysis was
started within 24 hours after the sample was collected and the remaining
analyses were usually made within 72 hours after collection. Samples
were refrigerated and stored in the dark until analysis began.

Samples for analysis of anions such as chloride, sulfate, and
fluoride, and dissolved solids residue, were filtered through a 0.45-
micrometer membrane filter and stored in rinsed polyethylene bottles.
Samples for cation analysis (calcium, magnesium, sodium, potassium), and
dissolved trace metals, were filtered through a 0.45-micrometer membrane
filter, stored in acid-rinsed polyethylene bottles and acidified to a pH
less than 2 with double distilled nitric acid. Samples for total metals
analysis (dissolved plus suspended metals, lead, cadmium, mercury, and
others) were stored in acid-rinsed bottles without filtration and were

! The use of brand-named products in this report is for identification
only and does not imply endorsement by the U.S. Geological Survey.
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acidified to a pH less than 2 with double distilled nitric acid. Chemica_
analyses for the major cations and anions were usually completed within

2 to 4 weeks; trace metal analyses were usually completed within 3 to 6
weeks.

Laboratory analytical methods used during this study are given in
Brown and others (1970), Goerlitz and others (197°), and U.S. Environ-
mental Protection Agency (1971).

Phytoplankton samples were collected from the upper 3 ft of the
water column in 1l-liter polyethylene bottles. Samples were preserved
with 3 ml (milliliters) of 2 percent fomaldehyde soluiion, 0.5 ml of 20
percent detergent solution and 5 to 6 drops of cupric sulfate solution
for each liter of sample. Samples were stored in the dark until
analyzed, usually within 2 to 4 weeks. The phytoplankton were counted
and enumerated using the Sedwick-Rafter method as described by Slack and
others (1973). Zooplankton and net phytoplankton were sampled by towing
a number 12-mesh (119-micrometer) net near the water surface.

Benthic invertebrate samples were collected with an Ekman dredge.
In most cases three grabs were made at each station and sieved through a
U.S. Bureau of Standards Number 30 (589 micrometers) sieve. Inverte-
brates were usually removed in the field and preserved with 5 percent
formaldehyde solution. A few samples that were not easily sieved were
preserved with formaldehyde solution and later examined in the labora-
tory. The invertebrates were counted and expressed as numbers per
square meter. Species diversity was computed using the method developed
by Wilhm (1970). This diversity index is independent of the number of
samples, and it expresses the relative importance of each species.

Primary productivity was measured by means of the oxygen light-and-
dark bottle method (American Public Health Association, 1971). C(lear
and opaque BOD bottles were carefully filled with water from selected
depths. The bottles were then suspended in the water at the depth from
which the samples were taken and incubated for 24 hours. Dissolved
oxygen was determined at the beginning and at the end of the incubation
period by the Winkler method except that 0.025 N phenylarsine oxide was
used as the titrant instead of sodium thiosulfate. Primary productivity
per unit of surface area was calculated by graphical integration of pro-
ductivity measurements at various depths.

MORFHOLOGY AND HYDROLOGY

Morphology and hydrology have a major influence on the chemical and
biological characteristics of lakes and reservoirs. For example, a
small lake with a large drainage basin receives more runoff and nutrient
input per unit of lake volume than a large lake with comparable drainage
and runoff. Consequently, the small lake is more subject to nutrient
enrichment (eutrophication) problems. The ratio of drainage area to
lake volume is a measure of this morphological characteristic and is
useful in understanding lakes and in making comparisons between lakes in
the same region.

15




Numerous other morphological factors also aid in the understanding
of lakes. Bortleson and others (1974) used 7 morphological factors, in
addition to 4 cultural and 13 water-quality factors in developing a
relative classification system to assess the eutrophic potential and
condition of lakes in the state of Washington. The 7 morphological
factors they used are: (1) mean depth, (2) volume, (3) bottom slope,
(4) shoreline configuration, (5) drainage area to volume ratio, (6)
altitude, and (7) water renewal time. Except for altitude, these
factors are also useful in studying Florida lakes.

Table 2 lists morphologic and hydrologic characteristics for Taylor.
Creek Impoundment and Blue Cypress Lake. The meaning or derivation of
most of these factors is readily apparent; definitions for the few which
may not be apparent are as follows:

Bottom slope - slope of the lake bottom is defined as the ratio of
the maximum depth to mean lake diameter and is expressed as
a percentage.

Slope = maximum depth X J X 50
VA

where A = area of the lake

Mean depth - lake volume divided by the surface area.

Shoreline configuration ratio - a measure of geological and

littoral processes affecting the shape of the lake and is defined

as the ratio of the length of shore to the circumference of a circle
having an area equal to that of the lake surface.

Ratio = length of shoreline

2 vV TA

where A = area of the lake

Water renewal time - time required to completely replace the volume
of water in the lake with an equal volume of inflowing water.

Renewal time = Lake volume
Annual basin runoff

The drainage area to Blue Cypress Lake is reported as 489 miz,
however all runoff from this area probably does not drain directly into
the lake. It appears that much of the runoff from the marsh south of
State Highway 60 is diverted around the east side of the lake or out
of the basin to the Indian River by way of canals. Most inflow to the
lake is probably derived from the Blue Cypress Creek basin and Padgett
Branch (fig. 1). The actual drainage area contribution directly to lake
inflow is estimated to be no more than 200 miZ.
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Impoundment and Blue Cypress Lake.

Taylor Creek

Impoundment

Drainage area (miz) 52
Surface area (acres) 4,000
Elevation of water surface (1971-75

average) ft 42
Volume (acre-ft) 26,000
Mean depth (ft) 6.5
Maximum depth (ft) 18
Length of shoreline (mi) 21 .4
Shoreline configuration ratio 2.4
Bottom slope (percent) 0.12
Drainage area - surface area ratio 8.3
Drainage area - volume ratio (ftz/ft3 1.28
Runof f from drainagc basin (ft3/s)/mi® }.2—1.3
Average discharge ft3/s €768
Water renewal time (yr) 0.5-0.6
Surface area - volume ratio (ft< /ft ) 0.15

a/ Estimated area draining directly into the lake.

Table 2.--Morphologfc and hydrologic characteristics of Taylor Creek

Blue Cypress

b/ Estimate based on drainage area of ”00 miZ and runoff values

ranging from 0.65 to 1.0 (ft3/s)/mil.
¢/ Estimated.
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Comparison of data in table 2 shows several noticeable differences
between the two water bodies. Blue Cypress Lake has about four times
more drainage area than the {mpoundment and has a drainage area-volume
ratio and a drainage area-surface area ratio twice as large as the
impoundment. These factors suggest that Blue Cypress Lake receives
considerably more runoff per unit lake volume than does Taylor Creek
Impoundment. Both water bodies have about the same water renewal time
and on the average water is completely replaced about two times per
year. Even though Blue Cypress Lake has 50 percent more surface area
than the impoundment, the latter has a considerably longer shoreline (21 i
mi against 14 mi) and has twice as large a shoreline configuration ratio |
(2.4 against 1.2). This {llustrates the much greater irregularity of
the Taylor Creek Impoundment shoreline and indicates that the impoundment
has considerably more littoral area and greater nearshore plant-growth
capacity.

The SFWMD has measured outflow from the impoundment since July

1971. The average discharge, July 1971-April 1975 (fig. 7), was 135

acre ft (68 ft’/s) which is equivalent to a runoff of 1.3 (ft3/s) /mi2

of drainage area. This runoff figure compares favorably with values for

nearby Wolf Creek 1.4 (ft3/s)/miZ and Jane Green Creek 1.1 (ft3/s)/mi2.
3 The Wolf Creek basin is about one-half the size of the Taylor Creek

basin and the Jane Green Creek basin is about five times larger than the

Taylor Creek basin.

The cumulative volume of water discharged from the impoundment from
July 1971 to April 1975 is shown in figure 8. Large quantities of water
were released during July, August, and September 1974 {in response to
heavy rainfall. During this 3-month period the volume of water in the
impoundment was replaced three times. This rapid flushing is reflected
in changes in several water-quality characteristics. These changes are
discussed in subsequent sections of this report.

Figure 9 shows monthly lake levels in Biue Cypress Lake and Taylor
Creek Impoundment and the monthly rainfall at Melbourne. The figure, in
effect, compares stages in a natural impoundment (Blue Cypress Lake)
with a controlled or regulated impoundment (Taylor Creek). The level
of the impoundment remained relatively stable at 42+ 1 ft above msl
(mean sea level) between mid-1972 and 1975, even though discharges have
ranged from 0 to nearly 50,000 acre-ft per month. Blue Cypress Lake,
however, has fluctuated from about 19 ft to nearly 25 ft above msl
during the same period, responding, in turn, to wet and dry seasons.

STRATIFICATION

Chemical and thermal stratification are two characteristics which
clearly distinguish Taylor Creek lmpoundment from Blue Cypress Lake and
other lakes and streams in the upper St. Johns River basin. Thermal
stratification occurs in the Impoundment chiefly because of {its greater
depth, smaller surface area, and poor mixing. The mixing action by wind
is minimized by alinement of the levee (1.-73) and by trees standing in
the impoundment.
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Thermal stratification in Taylor Creek Impoundment usually begins
in late winter. As air temperatures increase, the temperature of the
upper layer of water also increases, and the upper layer becomes less
dense and is less easily mixed by wind circulation with the deeper,
cooler water. As a result, the warm upper layer of water becomes
isolated from the cooler and denser deep water thus producing thermal
stratification. The warm upper layer which remains well mixed by wind
circulation is termed the epilimnion and the deeper, poorly mixed, layer
is referred to as the hypolimnion (see fig. 10). The region of maximum
temperature change between these two water layers is the thermocline.
Water in the impoundment remains thermally stratified until autumn when
air temperatures decrease and cool the epilimnion, increasing its
density until the water column can be mixed by wind action and density
currents. Water bodies such as the impoundment, which are completely
mixed during only one period of the year (one overturn) are classified
by Hutchinson (1957) as '"warm monomictic' as opposed to dimictic water
bodies, which overturn both in autumn and spring.

Chemical stratification occurs in Taylor Creek Impoundment as a
result of both thermal stratification, which prevents mixing, and the
oxidation of organic material in the hypolimnion. Organic materials in
the impoundment are derived from dead trees, sediment, and detritus, but
more importantly, from aquatic plants, primarily algae, duckweed, and
hyacinth which grow and die in the epilimnion and sink into the deeper
waters. Production of the aquatic plants (photosynthesis) increases
during the spring and summer months with increasing periods of sunlight
and increasing temperatures, resulting in the removal of plant nutrients
such as inorganic nitrogen (nitrate and ammonia) and orthophosphate from
the photosynthetic zone.

As the plants die and begin to sink, bacterial decomposition of the
organic material commences. In the aerobic zone of the impoundment
oxygen is utilized by aerobic bacteria to oxidize the organic material.
The principal products are carbon dioxide, nitrate, and phosphate. Once
the plant material sinks below the thermocline, nutrients released in
the oxidation process are generally not available for further plant
production during that growing season. Not until an overturn occurs--to
bring the nutrients back into the euphotic zone--do more nutrients
become available. As more and more plants are oxidized in the hypo-
limnion DO (dissolved oxygen) is depleted and anaerobic oxidation
commences. Anaerobic bacteria utilize nitrate (NO3), sulfate (SO4), and
carbon dioxide (CO2) as oxygen sources. Denitrification occurs first,
with nitrate being reduced to nitrogen gas (N2). This is followed by
reduction of sulfate to hydrogen sulfide (H,S) and finally, reduction of
carbon dioxide to methane (CH4). In addition to these three gases,
other products of anerobic oxidation are formed. They include ammonia
nitrogen (NH3-N), orthophosphate (POA-P), silica, potassium, reduced
organic compounds, and minor plant nutrients.
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In anaerobic oxidation part of the carbon dioxide released hvdro-
lvzes to bicarbonate (HCO;—). increasing the alkalinity and lowering the
pH, as illustrated by the following reaction:

(1) €0y + Hy0 === HCO3- + W'

Anaerobic (reducing) conditions and the vesulting lower pH also increases
the solubility ot metallic oxides, hyvdroxides, carbonates, phosphates

and other minerals. High concentrations of dissolved ferrous irvon,
orthophosphate, manganese, ammonia, bicarbonate, carbon dioxide, silica,
and other substances usually occur in the hyvpolimnion as a result of

this process.

Chemical and thermal stratification in Taylor Creek Impoundment at
site 1 are fllustrated by the profiles shown in figures 11 through 14
for selected dates from July 1970 through June 1975. The thermocline
usually develops between depths of 5 and 10 ft and during the summer
temperature differences across the thermocline range from 2° to 6°C.
Temperatures range from about 14°C during winter to a maximum of about
‘ 26°C near the bottom of the hyvpolimnion fust before the autumn turnover.
Several temperature protiles show complex thermal stratification with
two or more thermoclines, such as the profiles made in July and August
1972 (fig. 11) and June and August 1973 (tig. 12).

During the spring and summer months DO concentration usually
decreases sharply at or near the thermocline. In the summers of 1970-72
DO concentrations decreased to zero at depths of 8 to 10 ft and anaerobic
conditions prevailed in about 20 percent of the water volume in the
impoundment. In the summers of 1973 and 1974, DO concentrations
decreased to zero at depths of 10 to 15 ft.

Both pH and Eh decreased sharply at or near the depths where DO
concentrations decreased to zero (fig. 13). The decrease in pH ranged
from a few tenths of a unit to 1.5 units and Eh often decreased as much |
as 400 millivolts in a depth interval of 2 ft. The pH was usually about
6.5 in the equilimnion but decreased to less than 6.0 in the hvpolimnion.
Typical Eh values were 400 to 600 millivolts tor the epilimmion and =200 |
to 0 millivolts for the hypolimnion. Although no quantitative measure-
ments were made, HsS was detected in nearly all samples from the
anaerobic zone, and gas bubbles (possibly nitrogen, methane, carbon
dioxide, or hydrogen sulfide), evolved from samples collected deep in
the hypolimnion.

Figure 14 shows vertical stratification of phosphorus, inorganic
nitrogen (NO#NO)+NH3 expressed as N), silica, and iron. The concen-
trations of all of these constituents increased sharply at the top of
the hypolimnion, retlecting the release of these substances from decom=
posing phvtoplankton and other ovganic matter. Almost all the inorganic
nitrogen was {n the form of ammonia and the phosphorus was about 65
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percent orthophosphate. Iron concentrations were also high in the
hypolimnion because of reducing conditions (low Eh) which keeps the iron
in the more soluble ferrous (Fe+ ) state. When oxygen is present the
ferrous iron is oxidized to ferric iron (Fe'3) which is about 1,000
times less soluble. These constituents, and their relation to Eh and pH
will be discussed in greater detail in subsequent sections.

Other chemical species and properties are also stratified, including
ca.cium, magnesium, sodium, potassium, chloride, specific conductance,
organic carbon, and others. Table 3 gives concentrations of chemical
constituents in the surface and bottom waters of the impoundment during
periods of nonstratification and maximum stratification. It also gives,
for comparison, top and bottom concentrations in Blue Cypress Lake.

In contrast to the impoundment, Blue Cypress Lake exhibits no
permanent thermal or chemical stratification, although temporary strati-
fication develops for short periods during hot, calm summer days. The
absence of stratification in Blue Cypress Lake is attributed to its
shallow depth and the large open surface area, both of which permit
winds to keep the lake well mixed. The entire lake can be considered to
be an epilimnion. Because the lake is shallow and well mixed, the
oxidation and recycling of nutrients should be more rapid than in Taylor
Creek Impoundment.

WATER CHEMISTRY

The water chemistry of Taylor Creek Impoundment is governed by many
factors. These include inflow of inorganic and organic solutes leached
from the surrounding drainage basin, inflow of suspended sediment and
detritus, input of solutes and aerosols from rainfall and dry fallout,
chemical reactions and biological activity in the impoundment, water-
sediment interactions and seasonal stratification in the impoundment.
The following sections discuss the water chemistry in the impoundment in
relation to some of these controlling factors and also, to observed
changes in water chemistry with time. Discussion of Blue Cypress Lake
is included for comparison.

Dissolved Oxygen

DO concentrations in the upper few feet of the impoundment (site 1)
often varied between 2 to 4 mg/L daily and from less than 1 mg/L to more
than 8 mg/L seasonally (table 4; fig. 15).

DO concentrations nedr the surface were lowest during the early
stages of the autumn turnover when the anaerobic hypolimnion mixed with
the epilimmion. Also, during the turnover, concentrations were higher
in the shallow littoral areas than in the near surface waters of the
deeper areas. For example, on September 27, 1971 the surface DO con-
centrations in early afternoon were 4.6 mg/L at site 3, 1.6 mg/L at site
2, and 0.5 mg/L at site 1 (fig. 15).
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In general, the concentration of DO in the deep water of the
impoundment has increased between 1970 and 1975 (fig. 16). The depth to
the top of the anaerobic zone became greater each year from 1970 through
1973 and the length of time during which the hypolimnion was anaerobic
decreased. In 1971 the minimum depth at which water was anaerobic was
about 7 feet and anaerobic conditions prevailed from early March until
early November. 1In 1974 the minimum depth at which water was anaerobic
was 12 ft and anaerobic conditions prevailed for less than 2 months in
August and September. The improvement in DO probably is the result of a |
stabilization of biological conditions in the impoundment and may be |
largely due to the flushing of organic material and nutrients from the (%
inundated land. Changes in other parameters {ncluding nitrogen, phos- 9
phorus, and major ions decreased as DO increased. These will be discussed
in later sections.

ottt S vt

DO concentrations in Blue Cypress Lake were less variable than in
the impoundment. DO generally varied less than 2 mg/L daily (table 4,
fig. 15). The variations may become greater during heavy algal blooms.
During a large bloom of the blue-green algae Anabaena sp. in July 1970,
DO concentrations ranged from near 7 mg/L to more than 14 mg/L over a
24-hour period. However, only one such bloom was observed between 1969
and 1975. Seasonally, DO concentrations ranged from 5 to 10 mg/L and
the water was generally more than 80 percent saturated with oxygen (fig.
15). DO concentrations were usually uniform throughout the lake.

Nutrients

Nutrients are chemical compounds or elements essential for the re- f
production and growth of algae. At least 21 elements in some chemical 4
combination are known to be essential for algal growth (Greeson, 1971).

Of these 21, nitrogen and phosphorus are generally considered to be the
ones which most often limit algal growth. Excessive concentrations of
these two nutrients can stimulate nuisance algal blooms and increase the
rate of eutrophication of water bodies. Silicon is a key nutrient which
can be a limiting factor in diatom production. Also, when phosphorus {is
plentiful in lakes and diatom production is limited by depletion of
silica, blooms of blue-green algae commonly result (Russel-Hunter,
1970).

Nitrogen normally occurs in four forms in the aquatic environment.
These are organic nitrogen (proteins, amino acids, polypeptides, and
others), ammonia (NH3-N), nitrite (NOy-N) and nitrate (NO3-N). Phos-
phorus occurs as soluble inorganic orthophosphate (P0O;-P) and as dis-
solved and particulate organic phosphorus. The forms of nitrogen and
phosphorus most readily assimilated by plants are nitrate, ammonia, and
orthophosphate. Dissolved silica occurs in natural waters primarily
as silicic acid (H4S104). Concentrations of silica are reported as the
oxide (S107). {
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A statistical summary of nitrogen, phosphorus, and silica data is
given in table 5. The total organic nitrogen concentration averaged
1.05 mg/L at site 1 in the impoundment and 0.98 mg/L at site 3. Concen-
trations were slightly higher in Blue Cypress Lake, averaging 1.25 mg/L.
In both water bodies 85 to 90 percent of the nitrogen was organic.
Inorganic nitrogen, mostly ammonia, averaged 0.223 mg/L at site 1 in the
impoundment and 0.066 mg/l. at site 3. In Blue Cypress Lake, nitrate was
the major inorganic species, averaging 0.088 mg/L; ammonia averaged
0.066 mg/L.. Total phosphorus concentrations were highest at site 1 in
the impoundment (average 0.105 mg/L), chiefly because of stratification.
At site 3 average total phosphorus concentrations were much lower
(average 0.046 mg/L) and were similar to average concentrations in Blue
Cypress Lake (0.053 mg/L). From 60 to 75 percent of the phosphorus was
soluble inorganic orthophosphate.

For comparison, the average total organic nitrogen concentration in
the St. Johns River at the outlet of Lake Poinsett was 1.33 mg/L and
total phosphorus averaged 0.061 mg/L; total organic nitrogen and total
phosphorus averaged 0.76 and 0.085 mg/L respectively in nearby Wolf
Creek and 1.09 and 0.053 respectively in Jane Green Creek. According to
Davis and Marshall (1975) and Joyner (1974), total organic nitrogen and
total phosphorus concentrations in Lake Okeechobee averaged 1.44 and
0.051 mg/L, respectively, during the period 1969-73. The average total
organic nitrogen and total phosphorus concentrations of 55 central
Florida lakes studied by Brezonik and Shannon (1971) were 1.02 and 0.125
mg/L respectively. These comparative data indicate that, except for
phosphorus in the deep waters of the impoundment, nitrogen and phosphorus
concentrations in the impoundment and Blue Cypress Lake are within the
range observed in other water bodies in central and southern Florida.

Silica concentrations averaged 2.6 mg/L in the impoundment and 4.1
mg/L in Blue Cypress Lake. Silica averaged about 4.0 mg/L at the outlet
of Lake Poinsett and in Jane Green Creek, 6.2 mg/L in Wolf Creek and 5.2
mg/L in Lake Okeechobee.

Stratification is the dominant factor affecting seasonal variations
in nitrogen and phosphorus in the impoundment (fig. 17, 18). Concen-
trations in the bottom waters gradually build up during spring and
summer, then rapidly decrease when the autumn turnover occurs (fig. 17).

A long-term decrease in total phosphorus concentration has occurred
at site 1 (fig. 17). 1In 1970, after the initial filling of the impound-
ment and in 1971, phosphorus concentrations ranged from 0.05 to 0.1 mg/L
in the epilimnion, but since 1971 phosphorus concentrations have
generally been less than 0.05 mg/L. Phosphorus concentrations in the
hypolimnion have decreased dramatically since 1972. Better indication
of the long-term decrease in phosphorus is its concentration after the
fall turnover when the impoundment is well-mixed. Phosphorus decreased
to about 0.09 mg/L after the turnover in 1969 and 1970, and to 0.04 mg/L
after the turnover in 1974. The decrease has probably resulted from the
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flushing of phosphorus and other material leached from the inundated
vegetation and soils.

In 1975 total nitrogen concentration at site 1 in the impoundment
was approximately 1 mg/L, about the same as during 1969 and 1970. The
total nitrogen concentration in the surface and bottom waters was
considerably higher than 1 mg/L i{n 1971 and 1972 probably because of
greater primary production during that period.

In Blue Cypress Lake, phosphorus concentrations appear to be lowest
in the spring and early summer and highest in autumn, however no long-
term trends are apparent (fig. 19). No seasonal or long-term trends

were observed for nitrogen. Because the lake does not stratify, nitrogen
and phosphorus variations result mainly from changes in biological
activity, rates of input and output, and climatic conditions.

During stratification inorganic nitrogen and phosphorus concen-
trations in the epilimnion of the impoundment are reduced to a few oy
hundredths of a mg/L by algal assimilation. In the hypolimnion, algal
decomposition releases these nutrients, and concentrations of both
ammonia and orthophosphate increase. High concentrations of ammonia and
orthophosphate in the anaerobic bottom waters may also be partly due to
the release of these compounds from bottom sediments. Mortimer (1971)
reported that {f the DO concentration at the water-sediment interface is
less than 2 mg/L, large quantities of ammonia, orthophosphate, silica,
iron, and other substances are released. On the other hand, if DO {is
greater than 2 mg/L, very little of these substances is released.

Stumm and Morgan (1970) give the following equation for the assimi-
lation and release of nitrogen and phosphorus by algae:

106C0, + 16N0F + HPOZ® + 122H,0 + 180" + trace clements

(2)
Photosynthesis |
+ energy - i Cr06H2630110N16F + 13807

Respiration
(algal protoplasm)

As shown by the equation, nitrogen and phosphorus are assimilated and
released in a molar ratio of 16 to 1. When either of these elements is
depleted photosynthesis ceases. In Taylor Creek Impoundment during
stratification, the molar ratio of inorganic nitrogen to phosphorus in
the epilimnion is occasionally reduced to less than 3 with inorganic
nitrogen being virtually depleted. This suggests that nitrogen rather
than phosphorus may be a limiting nutrient for plant growth in the
impoundment. The inorganic-nitrogen-to-phosphorus molar ratio in the
hypolimnion, where decomposition and nutrient release occurs, ranges
from 7 to 12 and the ratio at the time of the fall overturn reaches a
maximum of 10 to 14.
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The above equation also serves to illustrate the relation between
phosphorus and oxygen in photosynthesis and respiratory processes. Each
milligram of phosphorus (0.03 millimole) converted into algal protoplasm
by photosynthesis produces about 100 milligrams of algal biomass and
yields about 140 milligrams of oxygen. Conversely, when the 100 mil-
ligrams of algal biomass dies and sinks into deep water such as the
hypolimnion of Taylor Creek Impoundment, 140 milligrams of oxygen are
required for its complete decomposition. From this relation it is easy
to see why the impoundment, which has a relatively small hypolimnion by
volume, can easily develop anaerobic conditions.

Silica concentrations in both the impoundment and Blue Cypress Lake
exhibit dramatic seasonal variations. In the surface waters (1 to 3 ft
depth) of the impoundment, silica concentrations vary from near zero to
more than 6 mg/L, and in the hypolimnion during stratification the
concentrations can exceed 6 mg/L (fig. 20). In Blue Cypress Lake silice
concentrations in integrated samples range from near zero to more than
10 mg/L. Seasonally, concentrations are usually lowest during spring
and summer and highest in autumn; concentrations can change an order of
magnitude in 2 or 3 months (fig. 20).

The large variations in silica are evidently caused by the as-
similation and release of this element by diatoms. Lund (1965) reported
that various species of diatoms contained 26 to 63 percent silica on a
dry weight basis. Lund (1969) alsc reported that the diatom Asterionella
formosa utilizes silica and phosphorus in a ratio of more than 2,000 to
1, which further suggests that large variations in silica concentrations
can occur as a result of diatom growth. Relations were observed between
silica concentrations and diatoms in the impoundment and Blue Cypress
Lake. These are discussed in the section on phytoplankton.

Organic Material

During the study, three indicators of organic material were mea-
sured: TOC (total organic carbon), BOD (5-day biochemical oxygen
demand), and water color. TOC is a measure of the total amount of
organic carbon in the water regardless of the compounds or their
biodegradability. BOD is a measure of the amount of oxygen utilized in
the bacterial oxidation of organic matter, however, it does not provide
a good measure of slowly degradable natural organic substances such as
humic and fulvic acids which are leached from soils and vegetation.
Water color is simply a measure of the yellow-brown colovation of water
caused by dissolved and colloidal organic compounds. All three of these
measurements are useful in assessing the organic content of natural
waters.

rOC averaged 18 mg/L in Tayvlor Creek Tmpoundment (table 6) and
about 22 mg/L in Blue Cypress Lake. As a rule-of-thumb, TOC values can
be multiplied by a factor of 2 to obtain an estimate of the concen-
tration of organic material. The foregoing values indicate an average
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Figure 20.--Silica concentrations in Taylor Creek Impoundment and Blue Cypress Lake.
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Table 6.--Statistical summary of data on organic carbon, BOD, and water
color in Taylor Creek Impoundment and Blue Cypress Lake.
(Includes all sampling depths; all data from point samples).

i Number Standard
Parameter of values Min. Max. Mean deviation

Taylor Creek Impoundment (All Sites)

Total Organic Carbon, mg/ 1, 128 8.0 34 18.4 5,0
5-day Biochemical oxygen demand, mg/, 136 .0 Qi 1.6 1.0
Color Platinum - Cobalt units 124 45 260 130 44

Taylor Creek Impoundment (Site 1)

Total Organic Carbon, mg/L 64 8.0 34 19,2 5.4
5-day Biochemical oxygen demand, mg/l. 67 .0 3.8 1.5 .9
Color Platinum - Cobalt units 62 45 240 132 4

Taylor Creek Impoundment (Site 3)

Total Organic Carbon, mg/, 245 8.0 25 17.5 4.4
5-day Biochemical oxygen demand, mg/l, 26 .5 5.0 1.6 1.0
Color Platinum - Cobalt units 24 90 240 134 43

Blue Cypress Lake (All Sites)

Total Organic Carbon, mg/i, 38 11 63 21.7 8.5
5-day Biochemical oxygen demand, mg/;, 42 0.3 3.0 1.1 .5
Cslor Platinum - Cobalt units 38 50 320 128 51

Blue Cypress Lake (Site 16)

Total Organic Carbon, mg/L 28 12 63 22.0 9.5
5-day Biochemical oxygen demand, mg/l. 32 3 3.0 1.1 .6
Color Platinum - Cobalt units 30 50 320 129 57
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organic matter concentration of 35 to 45 mg/L. Seasonal or long-term ‘
trends were not apparent; however, TOC concentrations increased with

depth in the impoundment during stratification due to algal decomposi-

tion and release of organic matter.

Average BOD was slightly higher in the impoundment (1.6 mg/L) than
in Blue Cypress Lake (1.1 mg/L). BOD was generally highest in the
summer when organic production by algae, and other organisms, was
greatest. A long-term decrease in BOD was observed in the impoundment
(fig. 21). From 1969 through 1972, at site 1 (surface), BOD frequently
exceeded 3 mg/L. Since 1972, BOD rarely has exceeded 2 mg/L and generally
has been about 1 mg/L. In Blue Cypress Lake BOD rarely exceeded 1.5
mg/L, a level that no doubt represents natural background conditions.

In both Taylor Creek Impoundment and Blue Cypress Lake the average
water color was approximately 130 platinum-cobalt units, however, the
range and variability in color were greater in Blue Cypress Lake (table
6). No seasonal, long-term, or vertical variation was apparent. Water
color tends to increase, however, after a heavy rain which flushes s
organic matter including humic substances into the impoundment and Blue
Cypress Lake. The high color of the water severely restricts light
penetration and consequently is a limiting factor in primary production.

Secchi disk transparency measurements in both the impoundment and Blue
Cypress Lake averaged 30 in. This low transparency is due to water
color and not to turbidity.

o B

Major Chemical Constituents

The major chemical constituents include the following cations and
anions: calcium, magnesium, sodium, potassium, bicarbonate, chloride,
sulfate, and fluoride. These constituents make up most of the in-
organic dissolved solids in water and to a large degree govern certain
chemical and physical characteristics of water. The sum of these
constituents is reported as dissolved solids (sum). Another measure of
dissolved solids is the residue on evaporation at 180°C. This measure-
ment which includes the above constituents plus all other dissolved
inorganic and organic compounds is also reported. Calcium and magnesium
ions are responsible for the hardness of water, and bicarbonate con-
centration to a large degree governs the Luffering capacity of water and
tends to regulate the pH. All of the above cations and anions carry an
electrical charge which contributes to the specific conductance of
water. Measurements of specific conductance can provide good estimates
of dissolved solids concentrations and, in many instances, concentrations
of the individual cations and anions.

The water in Taylor Creek Impoundment and Blue Cypress Lake is
classified as a mixed chemical type in which calcium, sodium, bicar-
bonate, and chloride are the dominant ions. The concentration of
dissolved solids (residue) in the impoundment (all sites) averaged 89
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mg/lL (table 7), about one-halt the average concentratfon in Blue Cypress
Lake. Water in the impoundment has an average hardness eof 30 mg/L as
('.l(f(“ and is classitied as soft, whereas water in Blue Cypress Lake with
an average hardness of 61 mg/L is classified as moderately hard.

The concentrations of most major constituents varied seasonally in
response to changes in rainfall and climatic conditions. Long-term
changes have been observed in the concentrations of a few major con-
stituents in the impoundment, notably, bicarbonate, potassium, sulfate,
and specitic conductance which reflects changes in dissolved solids
concentration (fig. 22). The long-term decrease in dissolved solids as
indicated by specific conductance, bicarbonate, and potassium concen-
trations in the impoundment has occurred chiefly as a result of flushing.
An example of changes caused by flushing is the decrease in specific
conductance from about 100 micromhos/cm in June to about 60 micromhos/cm
in August 1974 (fig. 22). This was caused by heavy rainfall and the
subsequent release of about 80,000 acre-ft of water which should have
flushed the impoundment about three times (see fig. 8).

Potassium concentrations increased to nearly 3 mg/L in 1971 and
1972 (fig. 22) and were about twice as high as in Blue Cyvpress lLake and
nearby Wolf Creek and Jane Green Creek. Since 1972 potassium concentra-
tions have returned to normal levels. The sodium to potassium ratio was
less than 4 in 1971 and 1972 but has since increased to 7 to 10. For
comparison, sodium-to-potassium ratios were 15 to 17 in Blue Cypress
Lake and in nearby Jane Green Creek and 8.5 in Wolf Creek. The high
potassium concentration and low sodium-to-potassium ratio in the impound-
ment was apparently an abnormal condition associated with the early
period of water chemistry stabilization during which potassium was
released trom the soils and vegetation by various physical and chemical

processes.,

During 1970, 1971, and 1972 sulfate concentrations (fig. 22) in the
impoundment were low (mostly less than 1 mg/lL) when compared with
average concentrations in Wolf Creek (3.5 mg/L), Jane Green Creek (5.2
mg/L), and Blue Cypress Lake (9.2 mp/L). A sulfate concentration of 5.6
mg /L was measured in Tavlor Creek in July 1969 before the impoundment
was filled, which indicates that natural sulfate concentrations were
higher in the creek than in the impoundment. Since 1972 sulfate concen-
trations have increased to 2-4 mg/lL, indicating that concentrations have
returned or are returning to near the levels found in the inflowing
water. The low sulfate concentration between 1970 and 1972 was probably
caused by the long periods of stratification and anaerobic conditions
during which sulfate was utilized as a source of oxvgen for bacterial
oxidation of organic matter. The sulfate would have been reduced to
hydrogen sulfide.
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Figure 22.--Variations in specific conductance, bicarbonate, potassium, and
sulfate in Taylor Creek Impoundment.
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Bicarbonate concentration in the impoundment increases with depth
during stratification (fig. 22). The high concentrations in the '
hypolimnion result mainly from the decomposition of algae which produces
carbon dioxide (CO,) as shown by the equation on page 24. Part of the
CO, subsequently hydrolyzes to form bicarbonate, as discussed earlier,
ang this lowers the pH. A long-term decrease in bicarbonate concen-
tration has been observed (fig. 22). As with other major constituents,
this decrease is probably due to flushing of the impoundment and,
additionally, to a reduction in the quantity of oxidizable material in
the impoundment. E

Specific conductance and the concentration of major constituents in
Blue Cypress Lake varied in response to hydrologic and climatic condi-
tions, and were probably affected to some degree by agricultural use of
water south and east of the lake. During the 7-year period (1969-75)
specific conductance, at site 16, ranged from about 120 to 320 micromhos/
cm (fig. 23) and illustrates the variation in specific conductance with
hydrologic conditions. Specific conductance generally increases with
decreasing lake stage (dry season) and decreases with increasing lake
stage (wet season).

Trace Me 1s

A statistical summary of data on nine trace metals in the impound-
ment and in Blue Cypress Lake is presented in table 8. Comparison of
these data with recommended criteria for various water uses given in
Water Quality Criteria (National Academy of Sciences and National
Academy of Engineering, 1973) (table 9) shows that the mean concen-
trations for all metals, except iron, were several times to an order of
magnitude lower than the recommended criteria for the uses given. The
iron concentrations were high primarily in the hypolimnion of the
impoundment due to anaerobic conditions which greatly increased the
solubility of iron. Iron concentrations are naturally high in water
throughout the upper St. Johns basin. Goolsby and others (1976) reported
that the mean concentration of dissolved iron in 166 samples from the
upper St. Johns basin was 210 ug/L (micrograms per liter) and the total
iron concentration in 60 samples averaged 390 ug/L. Manganese concen-
trations in the hypolimnion of the impoundment occasionally exceeded the
recommended criterion for public water supply (50 ng/L) but elsewhere
maximum concentrations were well below the criterion. Of the remaining
metals, the maximum concentrations of only two exceeded the recommended
criteria for all water uses. These were total lead and total mercury,
and these metals exceeded the criterion for each in only 1 or 2 samples.
Mean concentrations of both were many times lower than the criteria.

o Lg r,’,“
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TABLE 9.--Summary of water-quality criteria for trace metals (National Academy of Sciences, National
Academy of Engineeri 1973). Values expressed in micrograms per liter except where noted.

Agriculture Agriculture Freshwater Freshwater Freshwater Marine Water
Constituent (Irrigation) (Livestock) (Aquatic Life) (wildlife) (Public Supply) (Aquatic Life)
Alurinua 5.0 mg/L 5.0 mg/L - - - 1/100 (0.01)
20.0 mg/L 96-hr. LCq,
(20 yrs.) 1.5 mg/L
1/10 LDso
Arsenic 0.10 mg/L 0.2 mg/L - - 0.1 mg/L 1/100 (0.01)
2.0 l\g/L 96-hr. LCSO
(20 yrs.) 0.05 mg/L
Cadmium 0.01 mg/L S0 ug/L 0.03 mg/L - 0.01 mg/L 1/100 (0.01)
0.05 mg/L hard H,0 96-hr. LCq,
(20 yrs.) 0.004 mg/L 0.01 mg/L’
soft nzo
Chromium 0.1 mg/L 1.0 mg/L 0.05 mg/L - 0.05 mg/L 1/100 (0.01)
1.0 mg/L 96-hr. LC50
(20 yrs.) 0.1 mg/L
Cobalt 0.05 mg/L 1.0 mg/L - - — —
5.0 mg/L
€20 yrs.)
Copper 0.20 mg/1 0.5 mg/L 1/10 (0.1) - 1 wg/L 1/100 (0.01)
5.0 Iﬁ,L 96-hr. Lcso 96-hr. I‘CSO
0.05 mg/L.
Iron 5.0 mg/L No limit -— - 0.3 mg/L 0.3 mg/L
20.0 mg/L
(20 yrs.)
Lead 5.0 mg/L 0.1 mg/L 0.03 mg/L -— 0.05 mg/L. 1/50 (0.02)
10.0 =g/L 96-hr. LCq
0.01 LD
50
Manganese 0.20 mg/L No limit - -— 0.05 mg/L. 1/50 (0.02)
10.0 mg/L 96-hr. LCgq
(20 yrs.) 0.01 mg/L
Mercury 1.0 ug/L 0.2 ug/L 0.5 ug/L 0.002 mg/L 1/100 (0.01)
Inorganic totl conc. in fish total 96~hr. 1Cs0
0.5 ug/g
body burden
conc. tot, hg
Mercury o - .2 ug/L —_ - -
Organic total conc.
0.05 vg/L
avg. conc.
0.5 ugl/g
body burden
conc. tot, hg
Nickel 0.2 mg/L - 1/50 (0.02) - - 1/50 (0.02)
2.0 mg/L 96-hr. m,o 96~hr. LCqq
(20 yrs.) 0.1 mg/L
Unc ~ 25 mg/L $/1000 (0.005) Ll S mg/L 1/100 (0.01)
96-hr. Lcso 86-hr. LCq,
0.1 ng/L
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CHEMISTRY OF BOTTOM SEDIMENTS

Bottom sediments play an important role in regulating the chemistry
of lakes and reservoirs, and are indicators of trophic-state conditions,
Bottom sediments may act as major geochemical controls for such dissolved
constituents as orthophosphate, ammonia-nitrogen, iron, manganese, and
other trace metals and probably greatly influence concentrations of car-
bon dioxide, oxygen, and dissolved organic carbon. Depending on hydro-
logic and environmental conditions, bottom sediments may rapidly deplete
DO from the overlying water and release phosphorus and iron; under a
different set of conditions phosphorus and iron may be removed from the
overlying water by bottom sediments. These effects have been observed
in laboratory experiments (Goolsby and McPherson, 1970, p. 29; Brezonik
and others, 1969, p. 32) and are consistent with data collected in
natural systems.

The composition of bottom sediments reflects to a large degree the
productivity of lakes and the input of nutrients and organic matter from
the lake drainage basin. Organic matter, whether produced in the lake
(autochthonous) or transported into the lake (allochthonous), accumulates
in the deep parts of the lake and in areas of little circulation. Large
accumulations of sediment with high organic content reflect high produc-
tivity or allochthonous sediment input or both whereas sediment with low
organic content reflects low productivity and low allochthonous input.

The chemical composition of bottom sediments in Taylor Creek
Impoundment, Blue Cypress Lake and several other sites in the upper St.
Johns River basin is given in tables 10 and 11. Most of the sediment in
the impoundment is sand, with a small amount of clay, and at the time of
the analyses, was probably still fairly representative of the terrestrial
soils prior to inundation. Organic content is low as indicated by the
relatively low concentration of organic carbon (table 10). In time,
sediment accumulation and organic content will probably increase in the
deeper parts of the impoundment.

Bottom sediments, at site 2, on the western side of Blue Cypress
Lake are composed of coarse sand and are very low in organic content.
The organic content begins to increase approximately one-quarter of the
way across the lake in a west to east direction and on the east and
northeast sides of the lake organic muck accumulations are at least
several feet thick. This organic sediment is largely finely divided
silt and clay-size organic detritus. The organic carbon content is 35
to 40 percent. If the total organic content is assumed to be twice the
organic carbon content, the sediment is 70 to 80 percent organic matter.
It also contains 2 to 3 percent organic nitrogen, large quantities of
iron and measurable amounts of chromfum, copper, lead, manganese, nickel,
and zinc (table 11).
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Table 11.--Trace metal analyses and particle size distribution of bottom
sediments from Taylor Creek Impoundment and Blue Cypress Lake. (Trace | 9
metal results in micrograms per gram dry weight; particle size results
are in percent.)

Constituents Taylor Creek Blue Cypress Elue Cypress
or Impoundment Lake near Lake near
Property Site 1 center west shore |
08-15-72 Site 16 Site 17
08-17-72 08-17-72 3
Trace metals, ug/g 9
Arsenic 4 3 3 ]
Cadmium Sl 7 <0 ol
Chromium 13 12 1 b
Cobalt 0 4 0 -3
Copper <l 10 il ﬁ{
Iron 585 13,200 32 .
Mercury o .00 .00 o
Lead 6 68 4 | .
Manganese 7 60 1| =
Nickel 3 13 1 E
Selenium 0 <l 0 A
Zinc s 44 1 .
Particle size |
Greater than 2mm 0.2 31010 0.3
Sand percent 93.4 24.1 96.4 n
Silt percent .0 61.8 +0
Clay percent 6.4 14.1 3.3

56




The pH of a sample with high organic content collected near the
center of Blue Cypress Lake (site 16) with an Ekman dredge in March 1972
ranged from 6.8 to 7.4 depending on where the pH electrodes were placed
in the sediment. The observed variation may reflect a vertical gradient
in pH. The redox potential (Eh) of the sediment sample ranged from -20
to +25 mv indicating reducing conditions. The Eh of water 1 foot above
the bottom was 435 mv. The pH of sediment collected near the west shore
of the lake (site 17) in March 1972 was 7.3 and the Eh ranged from 175
to 345 mv. The sediment was coarse quartz sand and its uppermost surface
was green in color, probably due to benthic algae or photosynthetic
bacteria. The sediment at this site was tinged green on several other
occasions also.

Although chemical and thermal stratification does not normally
occur in Blue Cypress Lake, reducing conditions do occur in the organic
sediment. These conditions greatly increase the solubility of iron and
orthophosphate in the interstitial water. These substances can in turn
be recycled to the overlying water, partly by diffusion but probably
more significantly by wind which creates turbulence and frequently
disturbs the flocculent organic bottom sediment. On windy days, the
water contains noticeable amounts of suspended sediment. Nutrients
probably avre recycled from bottom sediments and interstitial water much
more rapidly in Blue Cypress Lake than in Taylor Creek Impoundment.

The finely-divided organic sediment in Blue Cypress Lake may serve
as a major food source for zooplankton. The zooplankton biomass per
unit volume of water in the lake was several orders of magnitude greater
than in Taylor Creek Impoundment.

No attempt was made to determine the source of the organic sediment
in Blue Cypress Lake. However, the surrounding marsh is the likely
source. Lake Hellen Blazes and Sawgrass Lake, on the main stem of the
St. Johns River (fig. 1), also drain the headwater marshes and have
accumulated highly organic bottom sediments (table 10) a part of which
is coarse plant fragments. Drainage of the marshes and encroachment
onto the floodplain have probably greatly increased the sediment input
to the lakes in the last few decades.

. PLANKTON

Phytoplankton

The phytoplankton, which constitute the algal component of the
plankton, are major primary producers in lakes and reservoirs. Their
numbers vary widely in response to available nutrients, temperature,
growing seasons, and many other factors. Usually waters that are rich
in nutrients sustain large numbers of phytoplankton and are subject to
frequent phytoplankton 'blooms."

a7

g

L

-

et s 2




The principal divisions of planktonic algae are: difatoms, green
algae, and blue-green algae. Members of each of these divisions may
bloom fn large numbers under specific environmental conditions.

Diatoms require silica, in addition to other nutrients, for growth,
and may be limited by low concentrations of this element. large blooms
of diatoms are uncommon in Florida lakes, probably because of low
concentrations of dissolved silica in these waters (Shannon and Brezonik,
1972) .

Blue-green algae differ tfrom other types in that some of their
members are able to assimilate gascous nitrogen (N,). The growth of
these algae is not limited by low concentrations of fnorganic nitrogen
and they can bloom where other algae are inhibited.

Blooms ol blue-green algae are often conspicuous because of their
large biomass and because they float near the water surface and often
discolor the water. In addition, metabolites and breakdown products
released by some species not only fmpart bad tastes and odors to water
but are toxic.

Blue-green algae uvsually dominate the phytoplankton community of
cutrophic lakes in Florida. Anacystis (formerly called Pi_h‘_ris_«;\'ﬁ.qg(s).
Anabaena, and Lyungbyva are the most common genera in these lakes (Shannon
and Brezonik, 1972).

In Taylor Creck Impoundment the total number of planktonic algae
ranged from less than 20 to 100,000 cells/ml (figs. 24 and 25; table
12). Numbers exceeded 10,000 cells/ml in Mavch 1972, and in June and
August 1973 and 1974 and June 1975 at site 1 and 3 and in September 1972
at site 1. Blue-green algae were dominant in number in
these "blooms'" at both sites 1 and 3, except in August 1973 (site 1)
when the green alga Chlorella sp. dominated. The blue-green alg:
Anabaena sp. dominated in March 1972 and June 1973. Another blue-green
alan -;\\\‘wj;-:( is sp., dominated in August 1973 and June and August 1974,
Diatoms, mainly Melosira sp., were dominant in about 35 percent of the
samples.

Numbers of phvtoplankton in Tavior Creek Impoundment were statisti-

ally correlated with seoveral parameters between November 1972 and June
1975, Nuwmbers correlated positively at the 1 percent significance level
with temperature an day BOD.  High temperatures increase biological
wetabolism and large concentrations of phytoplankton would also

contribute to high BOD. Numbers of phytoplankton correlated positively
at the 5 percent significance level with bicarbonate, organic nitrogen,
and potassium, and negatively at the 5 percent significance level with
nitrate. Although some of these simple correlations are difficult to
explain, the correlation with organic nitrogen and with nitrate are
expected. Phytoplankton populations grow by removing nitrate from the
water and converting it into cellular organic nitrogen.




it = ¥ = g e | L 14 2=y S 1 ) § 1 = =
AT O 0 T T O W 0 O O T W O O, R B O
R 0" "N e g
e -
B

L_____nm !

| SR IR TR T R TR TR R R R T S i T O VR D R R T R R

>y ":

0 T L L L o T W s w ( ireq
o -

1« e

B 0 A AL L AR AL LA D AN 00 0 Tt : i

g

) "l o

>

C | NN o 4

[ - | TR T T D T R N T T, . R D T R TR SRR T R, R TR R R S

J
1973

1% 7020 %N % %% % %ttt e Te TN %t et e fah feh e e e

Figure 24.--Numbers of phytoplankton in Taylor Creek Impoundment at Site 1.
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Diatoms require silica for growth and would be expected to correlate
negatively with dissolved silica. However, there was no statistically
significant correlation between silica concentration and diatom numbers
in Taylor Creek Impoundment. Concentrations of silica changed seasonal-
ly. They were highest in the autumn and early winter and lowest in the
spring. Diatom numbers were greatest in the summer of 1972 and the
winters of 1973 and 1974. During 1973 and 1974 the numbers of diatoms
were maximum, coincidental with sharp decreases in dissolved silica
concentrations (figs. 26 and 27).

Algae in Blue Cypress Lake were generally less abundant than in
Taylor Creek Impoundment. The total number in the lake, at site 16,
ranged from less than 20 to 74,480 cells/mL (fig. 28). Numbers exceeded
(Melosira sp. and Anabaena sp. dominant), May (Anabaena sp.), and June
(Anacystis sp.) 1974 and June (Anabaena sp.) 1975. Diatoms, mainly

Melosira, sp., dominated in almost 50 percent of the samples (table 12).
Numbers of phytoplankton in Blue Cypress | ¢ correlated negatively
with dissolved silica and orthophosphate, and vely with turbidity
at the 5 percent significance level. Orthophosphinte < required for
phytoplankton growth, and would be expected to decic * as phytoplankton
populations increase. Silica, as indicated ear! ¢1, is required by

diatoms, which in Blue Cypress Lake constitute ¢ significant part of the
phytoplankton. Diatom blooms in 1971 and 1972 were preceded by peak
silica concentrations in excess of 6 mg/L. During the blooms, con-
centrations of silica dropped to less than 2 mg/L. In 1973 diatoms were
few in Blue Cypress Lake and silica concentratioas were very low until
October. Diatoms were abundant in February 1974, and silica concen-
trations were relatively high (5.7 mg/L). Silica concentrations and
numbers of diatoms decreased to low levels in May 1974, but diatoms were
abundant again in June 1974 (fig. 29).

In 1971-72 phytoplankton samples were collected near the center
(site 16) and the west shore (site 17) of Blue Cypress Lake. Algae were
more numerous in the center than near the shore (table 12). Primary
productivity was also higher in the center than at the west shore as
discussed in the section on primary productivity.

Plankton collected in net samples contain the larger members of the
phytoplankton and the zooplankton. These larger organisms are often not
collected in plankton bottle samples. Zooplankton, in particular, may
avoid the device used to collect the water sample. Large plankters may
be scarce compared with the small phytoplankters, but in biomass may
constitute a major component of the plankton.
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Net plankton samples were sampled in Taylor Creek Impoundment and
Blue Cypress Lake between October 1969 and May 1972. Common net
phytoplankton in Taylor Creek Impoundment included Volvox sp., Eudornia
sp., Ceratium sp., Anacystis sp., and Melosira sp. Volvox sp. and
Eudornia sp. were common in the summers of 1970, 1971, and 1972.
Ceratium sp. was common in July 1971 and in May 1972. Anacystis sp.
was abundant in March 1972 coincidental with another blue-green Anabaena
sp. Diatoms (Melosira sp.) were dominant at other times.

Common net phytoplankton in Blue Cypress Lake included three
colonial blue-greens: Aphanezomenon sp.; Anabaena sp.; and Anacystis
sp.; and the filamentous diatom Melosira sp. In January 1970
Aphanezomenon sp. was abundant and was visible to the unaided eye as
small greenish flakes. Anabaena sp. was abundant and visible in July
1970. Anacystis sp. was most common in May 1972. Melosira sp. was
collected during all net sampling but was most numerous in May 1972.

Numbers of phytoplankton in Taylor Creek Impoundment and Blue
Cypress Lake fall within the ranges of these observed in other central
and southern Floridan lakes. Joyner (1974) reported that numbers of
cells in Lake Okeechobee ranged from less than 50 to more than 100,000
cells/mL during January 1969 to April 1971. About 15 percent of the
samples had numbers that exceeded 5,000 cells/mlL and 5 percent exceeded
100,000 cells/mL. The green algae Pediastrum simplex was a dominant
species in 1969, but was replaced by the blue-green alga Aphanizomenon
holsaticum after January 1970. The change in the dominant species and an
increased concentration of phytoplankton after 1970 in the lake followed
a period of heavy inflow from rainfall and tributaries. During August
1971 through May 1972 phytoplankton concentrations in Lake Okeechobee
averaged between 8,400 and 24,700 cells/mL. Aphanizomenon sp. continued
to be the dominant alga in the lake (Joyner, 1974).

Davis and Marshall (1975) reported that from January 1973 to June
1974, blue~green algae (Oscillatoria sp.; Lyngbya contorta; Microcystis
aeruginosa; and M. incerta) were dominant in Lake Okeechobee. They
observed two pronounced maxima in phytoplankton densities, one in spring
and one in autumn. Buoyant, colonial blue-green algae formed a surface
scum over much of the lake from September through December 1973. The
average numbers of phytoplankton ranged from 4,000 to 12,000 units/mL.
Because they counted a colony or filament as a single unit, these
numbers are considerably less than the number of cells per milliliter.

Lamonds (1974) found that in Lake Dicie and in Big Bass Lake in
central Florida blue-green algae made up the larger portion of the
phytoplankton sampled between June 1971 and April 1973. Dominant genera
in Lake Dicie were Microcystis, Oscillatoria, and Aphanizomenon, sp.

In Big Bass Lake Agmenellum, sp. was dominant. Concentrations ranged
from about 6,000 to over 550,000 cells/mL in Lake Dicie and from about
200 to 3,600 cells/mL in Big Bass Lake.
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Occasional, large blooms of phytoplankton appear to be a common
phenomenon, and are not necessarily related to man's activities. For
exampie, the large blooms in Lake Okeechobee and Blue Cypress Lake in
1970 may have resulted from the heavy rainfall and subsequent influx of
nutrients into the lakes that occurred earlier that year. The algal
blooms in Taylor Creek Impoundment and Blue Cypress Lake were also
similar to those of other lakes in that they consisted mainly of blue-
green algae.

Zooplankton

Zooplankton represent a trophic level above organic detritus,
bacteria, and phytoplankton. In ponds and lakes zooplankton populations
are composed mainly of rotifers, cladocerans, and copepods. Numbers of
organisms usually fluctuate greatly during the year, ranging from a few
to several thousand per liter or more, with highest numbers usually in
fertile waters. Because of the large fluctuation in numbers that
normally occur during a year, sampling to determine annual standing crop
must be intensive, such as on a weekly basis. The purpose of the
sampling described in this report was to provide some background infor-
mation on zooplankton in the impoundment compared with that in Blue
Cypress Lake.

Rotifers were the most abundant zooplankter in Taylor Creek Impound-
ment in 14 out of 24 samples. Keratella was the most common rotifer
except in October 1969 when Testudinella was dominant. Copepods were
most numerous in 4 of 24 samples and cladocera were most numerous in 6
of 24 samples. In contrast, copepods or cladocera were dominant in all
17 samples in Blue Cypress Lake. Copepods were most abundant in 14 of
17 samples. Numbers of zooplankton were on the average about 5 times
more numerous in Blue Cypress Lake than in Taylor Creek Impoundment.
Brezonik and others (1969) reported that the average dry weight of the
rotifer Keratella was 0.044 ug (micrograms) compared with 0.15 ug for
larval copepods. Adult copepods and cladocera of several species ranged
in weight from 0.5 to 8.5 ug. Because copepods and cladocera are much
larger than rotifers, the zooplankton biomass per unit volume of Blue
Cypress Lake was several orders of magnitude larger than the biomass of
Taylor Creek Impoundment.

The zooplankton of Blue Cypress Lake differs strikingly from that
of Taylor Creek Impoundment. The relatively large biomass in the lake
suggests a greater secondary production than in the impoundment. The
dominance of copepods and cladocera in the lake is similar to other
lakes in Florida (Brezonik and others, 1969). The dominance of rotifers
in Taylor Creek Impoundment may represent an early successional phase in
the impoundment, or it may reflect specific environmental conditions.
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Qualitative net tows in 1970 indicated that rotifers were the
dominant zooplankter in the Econlockhatchee River (Goolsby & McPherson,
1970), and copepods and cladocerans were dominant at other sites along
the main stem of the upper St. Johns River. The Econlockhatchee River
and the impoundment had higher organic concentrations and BODs than
other sites. These conditions, and in the case of the impoundment, the
anaerobic bottom waters may favor rotifers over the cladocerans and
copepods.

PRIMARY PRODUCTIVITY

Primary productivity is the synthesis of inorganic nutrients into
cellular organic material, mainly by photosynthesis and is an indicator
of trophic status in a lake. Eutrophic lakes are highly productive;
ogliotrophic lakes have low productivity. Gross productivity is the
total amount of organic matter produced per unit of time. Net pro-
ductivity is the amount of organic matter in plant tissue (or secreted
from plant tissue) after respiration. Algae are the main primary
producers in most lakes.

Primary productivity in Taylor Creek Impoundment and Blue Cypress
Lake was measured periodically between July 1971 and September 1972.
Data are presented in table 13. Minor inconsistencies in the data, such
as slightly negative gross photosynthesis and productivity values, are
due to the low sensitivity of the Winkler DO determination and sampling
and measurement errors.

Primary productivity at the 1.5-ft depth ranged from O to 770 mg
(c/m3)/day (milligrams carbon per cubic meter per day) in the impound-
ment and from 0 to 1,460 mg (c/m3 )/day in Blue Cypress Lake. The average
at the 1.5-ft depth was higher in the impoundment, 580 mg (c/m3)/day,
than in the lake, 345 mg (c/m3 )/day. Also, the average per unjt of
surface area was higher in the impoundment, (about 440 mg (¢/m“) /day) at
sites in deep water, than in the lake, (about 335 mg (c/m2 )/day).
Productivity was greater in the shallow water of the impoundment, avera-
ging 630 mg (c/m3)/day at sites 2 and 3 (1.5 ft or 0.5 m depth), than in
the deep water, 475 mg (c/m3 )/day at site 1. The opposite was true for
Blue Cypress Lake; productivity at 1.5 ft averaged 440 mg (c/m3) /day
near the center of the lake (site 16) and 250 mg (c/m3)/day near ‘he
west shore (site 17). As discussed earlier, phytoplankton populations
were also higher at site 16 than at site 17 in the lake. The highest
productivity measured in Blue Cypress Lake was 1,460 mg (c/m”)/day in
July 1970 during a heavy algal bloom of Anabaena circinalis. Actual
primary production during the bloom may have been even greater because
oxygen supersaturation produced gas bubbles in the light bottle, some of
which could have been lost in the measurement.
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Most primary productivity in the impoundment and Blue Cypress Lake
occurs in the upper 3 tt. In the impoundment, for example, all 9 pro-
ductivity measurements made at a depth of 6 tt were zero (within experi-
mental error). The greatly reduced productivity below 3 ft is attributed
to water color, which restricts light penetration. Water in the impound-
ment and Blue Cypress Lake is highly colored, averaging about 130 Pt-Co
units. The visibility of the secchi disc, which is limited almost
‘ entirely by color, averages only about 30 in. As cited in Vollenweider
J (1969) the intensity of light at the limit of visibility of the secchi

disc is about 15 percent of the light intensity at the surface which
indicates that probably only a small amount of light penetrates beyond
30 in.

Primary productivity varies seasonally (fig. 30) and was greatest
during spring and summer when sunlight and temperature conditions were
optimum. Lowest values, near zero, occurred in late autumn and winter.

The average productivity for the impoundment and Blue Cypress Lake,
580 and 345 mg (c/m’)/da' respectively was considerably lower than the
average of 1,864 mg (¢/m’)/day for Lake Okeechobee reported by Davis and
Marshall (1975). It is very difficult, however, to compare results
obtained by different investigators unless methods are identical. Davis
and Marshall incubated their samples for 6 hours at a depth of 0.7 ft
whereas in this study, comparable samples were incubated for 24 hours
at several depths.

BENTHIC MACROINVERTEBRATES i

Benthic macroinvertebrates were collected with an Ekman dredge in .
Taylor Creek Impoundment and Blue Cypress Lake quarterly between October -
1969 and July 1970 and bimonthly between July 1971 and 1972, The bottom |
1

sediments and approximate water depth at the sites are described as
follows:
Taylor Creek Impoundment |8
Site 1 Sand-silt, 20-25 ft
Site 2 Sand-dead vegetation (pine), 8-10 ft
Site 3 Sand-dead vegetation, aquatic plants, 3 ft
Blue Cypress Lake
Site 16 Mud, ooze, 8-10 ft
Site 17 Sand, 3 ft !

Figures 5 and 6 show the location of the sites. ]
¥
Numbers of benthic marroinvgrtohrntvs in Taylor Crgvk Tmpoundment
ranged from about 22 to 27,000/m<., Few (less than 22/m<) macroinver-
tebrates were collected in the initial sampling (site 1; October 1969 4

and January and April 1970), but numbers increased dramatically in July
1970 when 2,200 larvae of the phantom midge Chaoborus sp. were recorvded.
Chaoborus accounted for practically all the macroinvertebrates collected
at sites 1 and 2 (table 14). At site 3, in shallow water, a more diverse
group Included oligochaetes, hirudinea, pelecypods, gastropods, amphipods,
ephemerptera, and odonata, as well as Chaoborus (table 15). Larvae of




*2%e] ssaadL) anyg pue

Juswpunodu] }a31) 1074e] ur £31aT3Ionpoid LAxeurid Ut UOTIETIRA [euoseag--g 2ansr3
o
>
258\ 1261 2L8l 1261 2L61 1461 )
NC FENYRB4PaANOSYESP NOSY  IrTFTAVYRNITrTAONOSY P NOSY P PANYNIPAONODSBSBYT %
R T T ITTIITITI Y B G SR IE BEREREBEEEF <
—4002 MN
L
—oot E
.
o
—joos o
€ 3118 o
—ooo! =
. =
0021 =
b
(2]
z
LNIWANNOdWNI 334D ¥HOIAVL z
w
0
m
2L61 1261 2261 1261 2
m(-.q.!(!uﬂDZOm(-.O NOSYPfPrPANYANIPrPTAOQNOSYTP M..I-v
FTET T T e 9 A B B 5 > @
O
002 002

=
m
00¢ -
m
2

03 o e o |

m |
008 008 2
o
>
000! <

NV SS3¥dAD 3NT8




TABLE 14.-- Average numbers of Chaoborus sp. per square meter at three sites in

Taylor Creek Impoundment

Date Site 1 Site 2 Site 3 4
1969 3
Oct 0 - -

1970

Jan., Feb. 0 - -

Apr., May 0 -

July 2,200 =

1971

July 130 400 0

Aug. 720 700 44

Sept. 19,000 5,200 1,980

Nov. 27,000 7,300 440

1972 :

Jan 27,000 1,100 11 :;

Mar 7,700 1,400 253 &

May 3,400 1,200 110 !

July 480 1,200 22 4

Aug. 1,200 800 0 by

Sept. 1,700 1,100 22 |3

Average, 1971-72 8,800 2,000 288 5
t 4
E
| -9
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tendipedidae were generally dominant in number at site 3. The average
nuther was 700/m2.

There was a seasonal cycle in the abundance of Chaoborus in Taylor
Creek Impoundment in 1971-72 (table 15). Numbers were lowest in summer
and highest in autumn and winter. Chaoborus was most abundant at the
deep water site with an average of 8,800/mZ, site 1, less abundaut at
the site of intermediate depth with an average of 2 000/m , site 7, and
least abundant at the shallow water site with an average of 290/m~, site
3. Chaoborus was most abundant at site 3 in September 1971 (1, 980/m2)
coincidental with relatively low DO at the site.

Numbers of benthic macroinvertebrates collected in Blue Cypress
Lake in 1971-72 ranged from 210 to 5,100/m2 (table 16). Largest numbers
were collected in July 1971. Numbers decreased appreciably at both
sites in the lake in mid-winter (January-February 1972) and remained
relatively low through the following summer. Oligochaets and the larvae
of tendipedidae were dominant in number; pelecypods (Elliptio sp.) were
dominant in biomass in the sandy substrate in the western part of the
lake (site 17). 1In earlier sampling (1969-70) near site 17, the wet
weight of pelecypods ranged from 770 to 1,200 grams/m~

Data on benthic organisms in Lake Okeechobee are available for
comparison with Taylor Creek Impoundment and Blue Cypress Lake. Joyner
(1974) reported that the average number of benthic macroinvertebrates
sampled quarterly from January 1969 through January 1970 at 7 sites in
Lake Okeechobee was 540/m2. In November 1971 and May 1972 the average

number for 6 sites was 1,400/mZ and 3, 300/m? , respectively. Oligochaetes

and chironomids (Coelotanxgus sp.) were the most widely distributed
organisms.

Davis and Marshall (1975) reported that oligochaetes, the amphipod
Gammarus fasciatus and the chironomid Pentaneurini sp. were the most
common benthic invertebrates collected in Lake Okeechobee in 1973.
Numbers of organisms ranged from 50/m? to 2,600/m2.

The diversity index (Wilhm, 1970) reflects the biological community
structure and the environmental controls on this structure. A low
index, less than 1, generally indicates heavy organic pollution, which
tends to restrict most benthic macroinvertebrate species (Slack and
others, 1973, p. 25). An index between 1 and 3 generally indicates
moderate pollution. A high index, greater than 3, usually indicates
clean water. The value 0 means that all organisms are of the same
speciles.

By these standards the low diversity indices in both Taylor Creek
Impoundment and Blue Cypress Lake indicate organic pollution. At sites
1 and 2 in the impoundment the index was 0, reflecting the anaerobic
conditions that prevailed near the bottom. Such conditions create a
hostile environment where few species of benthic macroinvertebrates can
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survive. Between July 1971 and September 1972 at site 3 in the impound-
ment, the index ranged from 0.5 to 2.2 and averaged 1.9 and in Blue
Cypress Lake the index ranged from 1.3 to 2.3 and averaged 2.0.

The low diversity indices at site 3 in the impoundment and in Blue
Cypress Lake probably reflect natural conditions rather than organic
pollution. Values less than 3 for the diversity index are typical of
much of south Florida's '"matural' waters. Davis and Marshall (1975)
reported that in 1973 the diversity index in Lake Okeechobee ranged | 4
between 0.6 and 2.0. Waller (1975) found a slightly larger range in the [
canals and marshes of the Everglades, 0.0 to 2.0.

TROPHIC STATE CHARACTERISTICS

Lakes pass through different trophic states as they age. The aging
process is called eutrophication. A young lake characterized by low
biological productivity, low amounts of nutrients, and by little sediment,
is oligotrophic. In time, nutrients are transported into the lake by
streams, runoff, rainfall, and ground water. Biological productivity
increases and organic sediments build up along the shore and on the
bottom. The lake is then partly enriched or mesotrophic. As aging
continues, aquatic plants become more abundant and widely distributed,
algal blooms become more frequent, silt and organic matter accumulate on
the bottom, and nutrient content increases. The lake is then eutrophic
or enriched. Aging may continue until the lake becomes a marsh or
swamp. The aging process is often accelerated by man's activities, such
as urbanization, deforestation, and farming.

The trophic states of Taylor Creek Impoundment and Blue Cypress
Lake were evaluated by comparing these water bodies with three nearby
lakes in central Florida--Lake Okeechobee, Cypress Lake, and Lake
Tohopekaliga--and with five classes of trophic lakes in north-central
Florida. The comparisons were made using the trophic-state indicators:
nitrogen, phosphorus, specific conductance, secchi disk transparency,
and the cation ratio which were used by Shannon and Brezonik (1972).

Average concentrations of ortho and total phosphorus in Lake
Tohopekaliga were several times higher than concentrations in Cypress
Lake, Lake Okeechobee, Blue Cypress Lake, and Taylor Creek Impoundment
(table 17). Lake Tohopekaliga is several miles south of Orlando and has
suffered cultural eutrophication resulting from sewage treatment plants
that have discharged large amounts of waste into its northern tributaries.
In 1974, for example, these treatment plants discharged five billion
gallons of water into Lake Tohopekaliga's tributaries, with the re-
sulting input of 300 tons of nitrogen and 670 tons of phosphate-phosphorus
into the lake (Florida Game and Fresh Water Fish Commission, 1974).

Of the five water bodies listed in table 17, Taylor Creek Impound-
ment had the second highest average concentration of phosphorus. This
was because some samples were from the deep, anaerobic waters that had
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Table 17.--Average nitrogen, and phosphorus concentrations and specific
conductance at Taylor Creek Impoundment and Blue Cypress Lake, Upper

St. Johns River basin and Cypress Lake, Lake Okeechobee, and Lake
Tohopekaliga, Okeechobee-Kissimmee basin.

Total ortho- Total Total Total Specific
phosphorus phosphorus organic nitrogen conductance
) mg/L (P) nitrogen N umhos /cm
(N)
Taylor Creek Imp.
All sites 0.06 0.09 1.05 1.22 106
Site 3 .03 .05 .98 1.05 96
(1969-75)
Blue Cypress Lake
All sites .04 .05 1.2 1.4 248
(1969-75)
Cypress Lake-l/
(1970-75) .03 .07 1.4 1.8
(1954-64) 74
(1964-75) 130
Lake Okeechobee-g/
(1969-72) .03 .05 1.3 1.4 517
Lake Tohopekaliga-g/
Pre-drawdown, .19 .31 .85 - 129
(1970-71)
After drawdown ) .46 1.30 - 179 |
(1972-74) |

1/ From Gaggiani and McPherson, 1978.
/ From Joyner, 1974.
/ From Florida Game and Fresh Water Fish Commission, 1974. |
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relatively high phosphorus concentrations. This phosphorus data cannot
be used in the trophic state comparison with other sites. The average
concentration of phosphorus at site 3 in the impoundment, which was a
shallow-water site, was about half the overall average for the impound-
ment.

The average specific conductance for the five water bodies presented
in table 17 ranged from 74 umhos/cm in Cypress Lake (1954~64) to 517
umhos/cm in Lake Okeechobee (1969-72). Long-term data (Gaggiani and
McPherson, 1978) from Cypress Lake, however, indicates that the specific
conductance almost doubled over the last 20 years. Taylor Creek Impound~
ment had the lowest specific conductance, averaging about 100 umhos/cm.
Blue Cypress Lake had the second highest specific conductance, 248
umhos/cm, probably attributable to intensive agricultural development
around the lake. The specific conductance of the water in Lake Okeechobee
is high because of the mineral-rich waters that are pumped into the lake
from agricultural lands (Joyner, 1974).

Algal blooms occur periodically in Florida lakes. Only where
blooms are persistent or continuous are the lakes considered eutrophic.
An increasing frequency of algal blooms or changes in the species that
bloom, however, can indicate changing trophic conditions. Algal blooms
occurred in Taylor Creek Impoundment and Blue Cypress Lake, but their
frequency was relatively low and do not suggest eutrophic conditions.
Blue-green algae, which are often indicative of eutrophic lakes, became
dominant in Blue Cypress Lake in a bloom in the summer of 1970. Blooms
of blue-green algae also occurred in 1970 in Lake Okeechobee (Joyner,
1974) and Lake Tohopekaliga (Fla. Game and Fresh Water Fish Commission,
1974). All these blooms followed a period of greater than normal
rainfall and runoff, that increased nutrient input to lakes.

Shannon and Brezonik (1972) analyzed 55 lakes from north-central
Florida. They divided these lakes into four basic categories: (1)
clear alkaline; (2) clear soft; (3) colored acid; and (4) colored
alkaline. The clear lakes and the colored lakes then were divided
separately into trophic groups. The clear lakes formed three apparently
natural groups interpreted as the classical trophic categories--oligot-
rophic, mesotrophic, and eutrophic. The colored lakes were more
variable and less easily interpretable in terms of classical groupings.
Shannon and Brezonik (1972) divided colored lakes into five trophic
groups as: (1) oligotrophic, (2) meso-eutrophic, (3) oligo-mesotrophic,
(4) dystrophic, and (5) residual.

Blue Cypress Lake and Taylor Creek Impoundment are compared with
the basic lake categories of Shannon and Brezonik (1972) in table 18,
and with these investigators trophic groupings of lakes in table 19.
Both the lake and the impoundment fall into the category of a colored,
alkaline water body. The color of each was about 130 platinum-cobalt
units, and the alkalinity averaged 32.0 mg/L in the lake and 22.1 mg/L
in the impoundment. The lake and the impoundment, however, do not
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correspond to any of the Shannon and Brezonik's (1972) five trophic
groups for colored lakes (table 19). The most probable reasons for this
are (1) the geology and soils in the Blue Cypress Lake and Taylor Creek
basins are different from those in the lake basins in the Shannon and
Brezonik (1972) study and, (2) the lake and the impoundment have been
altered to a large degree by man's activities. Both of these affect the
water chemistry. Of the indices used to characterize the five trophic
groups, the concentrations of phosphorus and organic nitrogen, the
inverse secchi disk value (transparency), and the cation ratio could be
interpreted to indicate the lake and impoundment are either meso-eutrophic
or oligo-mesotrophic. However, the specific conductances in the lake
and in the impoundment far exceed any of the values for the five trophic
groups (table 19).

On the basis of the chemical and biological data collected in this
study, Blue Cypress Lake and Taylor Creek Impoundment are best classified
as mesotrophic or partly enriched. Although the impoundment is of
recent origin, it cannot be called oligotrophic, and apparently it did
not pass through an oligotrophic state. Immediately after construction
of the impoundment, extreme environmental perturbations indicated a
state of disequilibrium. The environmental perturbations became less
severe in subsequent years, and nutrient concentrations and biological
productivity sometimes exceeded those in Blue Cypress Lake. An important
source of the nutrients that sustained biological production was the
flooded vegetation and soil. The availability of nutrients from this
source probably prevented the impoundment from passing through an
oligotrophic state.

EFFECTS OF IMPOUNDMENT ON DOWNSTREAM WATER QUALITY

Ten downstream sampling profiles were made between Taylor Creek
Impoundment and the St. Johns River at Highway 520 in 1971 and 1972 to
study the short-term effects of water releases on downstream water
quality. Observations were made with water being released from the top
of the impoundment through the spillway gate and from the bottom of the
impoundment through the bottom low-flow culverts. Releases were made
during periods of both stratification and nonstratification in the
impoundment. The dates and discharge from the impoundment during the
profiles are as follows:

Date Discharggﬁ(ft3[s) Type of release
11/17/71 127 Bottom
02/03/72 15.0 do
03/28/72 3.76 do
05/17/72 3.79 do
05/18/72 158 Top
05/19/72 169 Bottom
07/18/72 286 do
08/14/72 193 Top
09/28/72 376 do
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Water samples were collected at 5 sites along the downstream pro-
files (fig. 5):

10. Taylor Creek below S-164,
11, Taylor Creek at Highway 532,
& 12. Taylor Creek at Lake Poinsett,
13. Lake Poinsett above Taylor Creek inflow,
‘ 15. St. Johns River at Highway 520 below Taylor Creek inflow.

The analyses showed that a considerable amount of aeration resulted
when water was released from either the top or the bottom of Structure-
164. At high discharges, however, it appeared that a top release re-
sulted in a somewhat higher DO than a bottom release. On several
occasions the DO was higher below S-164, because of aeration, than in
the surface waters of the impoundment. DO concentrations below S-164
(site 10) during the 10 profiles ranged from 4.6 to 8.0 mg/L and averaged
about 6.0 mg/L.

The DO at Highway 532 (site 11) ranged from 3.7 to 6.5 mg/L and
averaged 5.0 mg/L, slightly lower than below S-164 (site 10). The
decrease between S-164 and Highway 532 could have been at least partly
due to oxidation of sulfides, organic material, ferrous iron, and oxygen
uptake by bottom sediments in the swamp between the two stations. At
the mouth of Taylor Creek (site 12) the average and range in DO concen-
tration was about the same as below S-164 (site 10). For comparison,
during the same period that the profiles were made, the DO in Jane Green
Creek ranged from 1.0 to 4.7 mg/L with an average of 2.8 mg/L and at the
St. Johns River at Highway 520 (outlet of Lake Poinsett, site 15), DO
ranged from 4.9 to 8.7 mg/L and averaged 7.0 mg/L.

At high discharge from either the top or bottom of the impoundment
the total phosphorus concentration in water released from the impound-
ment averaged 0.055 mg/L, and was about the same as the average for 20
samples from Jane Green Creek (0.050 mg/L). At low discharge with a
bottom release, however, total phosphorus increased in concentration
below S-164 (range 0.062 to 0.087 mg/L) because a large percentage of
the water came from near the bottom of the impoundment where nutrients
are generally in much higher concentrations than in the surface waters
of the impoundment. At the mouth of Taylor Creek (site 12) during a low
discharge bottom release the phosphorus concentration was generally less
than below S-164. At high discharge there was little downstream change
in phosphorus concentrations. Phosphorus concentrations in Lake Poinsett
and the St. Johns River were generally higher than in Tavlor Creek. The
phosphorus concentration in 10 samples collected at the outlet of Lake
Poinsett (site 15) averaged 0.065 mg/L and ranged from 0.020 to 0.160
mg/L.
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Inorganic nitrogen, like phosphorus, was higher in concentration at
low discharge than at high discharge. The average concentration below
S-164 (0.16 mg/L) was twice as high as in Jane Green Creek (0.08 mg/L)
and slightly higher than the average at Highway 520 (0.13 mg/L). At low
discharge there appears to be a downstream decrease in inorganic nitrogen,

whereas, at high discharge there is little downstream change.

There was considerable variation in organic nitrogen concentration
and no consistent pattern was evident. The concentration in water
released from the impoundment was similar to other sites sampled with
the exception of Wolf Creek which had a consistently lower concentration.

Color, TOC, BOD, trace metals, and alkalinity varied little along
the profiles. A high discharge from Taylor Creek, however, resulted in
a considerable sediment input into Lake Poinsett when the lake was at
low stage. This is evidently caused by shallow water and high velocities
at the mouth of Taylor Creek. On May 19, 1972 the suspended sediment
concentration at the mouth of Taylor Creek was 1,340 mg/L and the
turbidity was evident several hundred yards out into the lake. Suspended
sediment concentration is normally less than 10 mg/L. During the
September 1972 profile more than half of the total phosphorus in the
water column (0.085 mg/L) near the outlet of Lake Poinsett was associated
with this suspended sediment, that is, it was in suspension rather than

in solution.

The dissolved solids concentration (sum of constituents) of water
in Taylor Creek Impoundment ranged from 41 to 85 mg/L (table 7) and in
the St. Johns River at site 15 from about 250 mg/L to more than 1,200
mg/L. Under appropriate conditions such as high discharge from Taylor
Creek and low to moderate discharge in the St. Johns River, the Taylor
Creek inflow reduces the dissolved solids concentration in the St. Johns

River by dilution.

The number of algae decreased markedly in Taylor Creek below the
impoundment (table 20). During low discharge of a few cubic feet per
second few algae were observed downstream of S-164, even though large
numbers were present in the impoundment, as in March 1972. During high
discharge however, algae were transported downstream in detectable
numbers to the outlet. For example, the diatom, Melosira, was abundant
in the impoundment on July 18, 1972, Though somewhat reduced in number,
it was present throughout the creek below the impoundment during a

bottom release on this date (table 20).

Variations in specific conductance, silica, nitrogen, and phos~
phorus between 1971 and 1975 below S-164 (site 10) are shown in figure
31, Specific conductance was highest when little or no water was
released from the impoundment. Variations in silica, nitrogen, and
phosphorus are similar to variations observed in the impoundment.
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Table 21 gives the mean values for selected water-quality parameters |
in Taylor Creek below S-164 (site 10) Wolf Creek (site 22) and Jane ,
Green Creek (site 23). A comparison of these data shows that water
released from the impoundment is similar in quality to the two nearby
unregulated streams. Of the 21 parameters shown in the table, only
ammonia indicates poorer water quality than in the two creeks. Ammonia
averaged 0.12 mg/L below S~164 as compared with 0.05 and 0.06 mg/L
respectively in Wolf and Jane Green Creeks. However, water below S-164
was higher in DO (6.7 mg/L) than in either Wolf Creek (6.0 mg/L) or
Jane Green Creek (3.7 mg/L). Also, concentrations of the major con-
stituents were lower in Taylor Creek below S~164 as indicated by the
lower dissolved solids, hardness, bicarbonate, and specific conductance, |
than in Wolf and Jane Green Creeks. &

SUMMARY AND CONCLUSIONS

Taylor Creek Impoundment was constructed on the western side of the
upper St. Johns River basin as part of a plan for flood control and
water regulation. The impoundment, initially filled in the fall of
1969, has a volume of about 26,000 acre-ft and a surface area of about
4,000 acres. Limnological data were collected in the impoundment
through periodic monitoring and through an intensive investigation
between July 1969 and July 1975. Concurrent comparative limnological
data were collected in Blue Cypress Lake, a somewhat larger (6,300
acres) natural reservoir in the headwaters of the St. Johns River basin.
Some of the findings from these studies are summarized below.

The impoundment with a drainage area to volume ratio of 1.3 receives
less inflow per unit lake volume than does Blue Cypress Lake which has a
ratio of 2.3. The waters of both Blue Cypress Lake and the impoundment
are replaced, on the average, about 2 times per year. Even though Blue
Cypress Lake has a considerably larger surface area, the impoundment has
a 50 percent longer shoreline because of shoreline irregularity, giving
the impoundment more littoral zone area for aquatic productivity.

Chemical and thermal stratification are characteristics which most
clearly distinguish the impoundment from Blue Cypress Lake and other |
water bodies in the area. Stratification occurs in the impoundment
because of its greater depth and poor mixing. Stratification begins in
late winter and lasts until early autumn. Chemical stratification ,
occurs as a result of thermal stratification which prevents the upper i
waters of the impoundment from mixing with the deeper water. As a
result, organic matter produced in the epilimnion by photosynthesis dies
and settles into the hypolimnion, where it undergoes bacterial decomposi-
tion which consumes oxygen. Trees and brush killed in flooding are also
a source of organic matter, particularly so during the early years of
impoundment. Concentrations of DO decreased sharply at the thermocline;
during the summers of 1970-72 concentrations decreased to zero at depths ﬂ
of 8 to 10 ft.




Numerous other chemical and physical characteristics of the im-
poundment are associated with stratification. The Eh decreased from 400
to 600 mv in the epilimnion to 0 to -200 mv in the hypolimnion and the
pH decreased from about 6.5 to less than 6.0. The hypolimnion also has
high concentrations of orthophosphate, ammonia-N, silica, bicarbonate,
carbon dioxide, iron, manganese and hydrogen sulfide, all of which can
be attributed to the anaerobic environment.

The impoundment turns over in the autumn and becomes vertically
homogeneous. In contrast, Blue Cypress Lake remains well-mixed through-
out the year.

DO concentrations in the upper water of the impoundment varied as
much as 2 to 4 mg/L daily and from less than 1 to more than 8 mg/L
annually. Daily variations in Blue Cypress Lake were generally less
than 2 mg/L and annually concentrations ranged from 5 to 10 mg/L.

? A long-term increase in DO has occurred in the impoundment since

L 1970. The depth to the top of the anaerobic zone has increased gradually
each year from about 6 ft in 1970 to 12 ft in 1974. Also the length of
time anaerobic conditions prevailed decreased from about 7 months in
1970 and 1971 to less that 2 months in 1974.

Total nitrogen, which was 85 to 90 percent organic nitrogen,
averaged about 1.2 mg/L in the impoundment and 1.4 mg/L in Blue Cypress
Lake. The remaining inorganic N was mostly ammonia in the impoundment
and mostly nitrate in Blue Cypress Lake. Total phosphorus concentrations
averaged 0.105 mg/L at the deep water site and 0.046 mg/L in the littoral
area of the impoundment and 0.053 mg/L in Blue Cypress Lake. From 60 to
75 percent of the phosphorus was orthophosphate. Except for phosphorus
concentrations in the hypolimnion of the impoundment, the nitrogen and
phosphorus values are within the ranges measured in nearby unregulated
streams in the upper St. Johns basin and in Lake Okeechobee. From 1970
to 1974, phosphorus concentrations in the impoundment decreased about 50
percent.

clied Cal e an

During the growing season inorganic nitrogen is virtually depleted
from the epilimnion. The inorganic nitrogen-to-phosphorus molar ratio
decreases to less than 3, suggesting that nitrogen may be a growth | ;
limiting nutrient.

Concentrations of silica in both the impoundment and Blue Cypress
Lake ranged from near 0 to more than 6 mg/L. Silica concentrations were
lowest in the spring and summer and highest in the autumn and winter.
The large variations were probably caused by the growth and decay of
diatoms.
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Total organic carbon and BOD values averaged 18 and 1.6 mg/L
respectively in the impoundment and 22 and 1.1 mg/L respectively in Blue
Cypress Lake. The TOC analyses suggest an average concentration of
organic material of 35 to 45 mg/L.

Water in the impoundment and Blue Cypress Lake is of a mixed
chemical type with calcium, sodium, bicarbonate, and chloride as the
dominant ions. Water in the impoundment is soft whereas water in Blue
Cypress Lake varies from soft to moderately hard. Concentrations of all
major ions, except sulfate, have decreased in the impoundment since
1970. Sulfate concentrations have increased slightly in the impoundment
with concentrations becoming similar to those in the inflowing creeks.
Concentrations of the major ions in Blue Cypress Lake varied in response
to hydrologic and climatic conditions and were generally inversely
related to lake stage.

The mean concentrations of trace metals, except iron, were several
times to an order of magnitude lower than recommended water quality
criteria for various uses. Iron concentrations exceeded the criterion
for public supplies partly because of anaerobic conditions in the
impoundment and partly because of relatively high iron concentations
that occur naturally in the basin.

The overall quality of water in the impoundment has gradually
improved since 1970, probably due to the leaching and gradual flushing
of organic material, nutrients and inorganic material from the inundated
soil and terrestrial vegetation of the impoundment.

The numbers of planktonic algae in the impoundment ranged from
20 to about 100,000 cells/mL. Blue-green algae and diatoms were the
dominant divisions. Numbers of phytoplaknton were correlated positively
with temperature, BOD, bicarbonate, organic nitrogen, and potassium.
Phytoplankton in Blue Cypress Lake were generally less abundant than in
the impoundment. Total numbers ranged from about 20/mL to 74,480/mL and
exceeded 10,000 cells/mL during only 5 sampling periods. Diatoms
dominated about 50 percent of the samples. Phytoplankton numbers in the
lake correlated negatively with silica and orthophosphate. The numbers
of phytoplankton in the impoundment and Blue Cypress Lake fall within
the ranges observed in other large lakes in central and southern Florida.

In 1971 and 1972, primary productivity was higher in Taylor Creek
Impoundment than in Blue Cgpress Lake. Productivity at the 1.5-ft
depth averaged 580 mg (c/m°)/day in the impoundment and 345 mg (c/m3 )/day

in Blue Cypress Lake. Seasonally, primary productivity varied from 0 to
770 in the impoundment and from O to 1,460 mg (c¢/m3)/day in Blue Cypress
Lake. Values were highest in late spring and summer. In both water
bodies, primary productivity is limited to the upper 3 ft because the
highly colored water restricts light penetrations.
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Numbers of zooplankton were, on the average, about 5 times more
abundant in Blue Cypress Lake than in the impoundment. Copepods and
cladocera were dominant in the lake, and rotifers were dominant in the
impoundment. Because copepods and cladocera are much larger than roti-
fers, the zooplankton, biomass in Blue Cypress Lake was several orders
of magnitude larger than in the impoundment.

- Numbers of benthic macroinvertebrates ranged from about 22 to 27,000/
m* in the impoundment during 1971-1972. At the deep water sites these
consisted almost gntirely of the phantom midge Chaoborus, which averaged
more than 8,000/m“ at site 1 and 1,980/m? at site 2. In shallow water,
site 3, a variety of macroinvertebrates was collected, with an average
of greater than 1,000/m2. Larvae of tendipedidae and phantom midges
dominated. For comparison, numbers of macroinvertebrates in Blue Cypress
Lake during this period ranged from about 200/m2 to more than 5,000/m2
and averaged about 1,000/m2. Oligochaetes and the larvae of tendipedidae
dominated in number. Pelecypods (Elliptio) dominated in biomass in the
sandy substrata in the western part of the lake.

The quaiity of water released from the impoundment during the period
of this study was comparable to that of two nearby unregulated creeks,
Wolf Creek and Jane Green Creek. Of 21 physical, organic, and inorganic
parameters only ammonia indicated poorer quality. Ammonia averaged
0.12 mg/L for water released from the impoundment as compared with an
average of 0.05 to 0.06 mg/L in Wolf and Jane Green Creeks. The average
DO concentration below the impoundment was higher, 6.7 mg/L, than in
either Wolf Creek (6.0 mg/L) or Jane Green Creek (3.7 mg/L) and the
concentrations of major chemical constituents were lower. The major
adverse downstream effect noted in 10 downstream profiles made under
various discharge conditions was an increase in suspended sediment
concentration in the lower end of Lake Poinsett. This was caused by a
low stage in Lake Poinsett and also water of high velocity near the
mouth of Taylor Creek which resuspended lake bottom sediment.
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