IIT RESEARCH INST CHICAGO IL F/6 9/2
BASELINE SOFTWARE DATA SYSTEM. VOLUME I. SYSTEM DESCRIPTION, (U)

JUL 79 L M DUVALL msoz-‘n-c-oosz
UNCLASSIFIED RADC=TR=79=185-VOL =1

END
nl\wr
O _f"J

AD=AQ073 358

| ofr |

Al

ﬂ

|||||_|g - b B
— ol

N
l= .
JIL2s fea e

———

g

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

79 08 31 008

(0 &)
T
G RADC-TR-79-185, Vol | (of two)
Cr) Final Technical Report
Do July 1979
e
= BASELINE SOFTWARE DATA SYSTEM
2 System Description
IIT Research Institute DD C-
G
Lorraine M. Duvall 211979
CoOoIUs
C
P APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNUMITED
o=
o
3
F
|)

This report has been reviewed by the RADC Information Office (or)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR~79-185, Vol I (of two) has been reviewed and is approved
for publication.

APPROVED: ‘;;2:"21‘1’21121“'..

JOHN PALAIMO
Project Engineer

APPROVED: m

WENDALL C. BAUMAN, Col, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: ?‘éﬂ‘ﬁ / %""’

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no lenger employed by your organiza-
tion, please notify RADC (ISIS) Griffiss AFB NY 13441, This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

T

r m——
3
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfered)
READ INSTRUCTIONS
NTATION PAGE HEFORE COMPLETING FORM
? ' 7 GOVY ACCESSION NOJ| Jo RECIPIENT'S CATALOG NUMBE R
i L two) / I ;
4 : = e
y . oo e E |
(BASELINE SOFTWARE DATA SYSTEM Jalis e) {
] - - ® - » =
N System Description, — . Feb 77 Aug 78 - .
ERFORMING ORG. T NUMBER
N/A
)
R Fe » we——— i CONTRACT OR GRANT NUWMBER(S)]
(Iol Lorraine M./Duvnll ’ /5 b‘)fb ?_77_(: :DSZ‘ :
3 PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK —+ !
AREA & WORK UNIT NUMBE RS !
LIT Research Institute, 69728¥ i —— 3
10 W. 35th Street 5554887 UNLR | £
Cafcago IL 60616 sy LS] <
11. CONTROLLING OF FICE NAME AND ADDRESS [|
Rome Air Development Center (ISIS) .19.1!79 !
Griffiss AFB NY 13441 13, NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESS(I/ dilferent from Controlling Office) | 15. SECURITY CLASS. (of this teport) skt |
Same UNCLASSIFIED
f ol
I5a DECLASSIFICATION DOWNGRADING
Ascnznuu

16. DISTRIBUTION STATEMENT /of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract sntered in Block 20, ! ditferent from Report)

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer: John Palaimo (I1S1S)

19 KEY WORDS (Continue on reverse aide if necessacy and identity by block number)

database management
data requirements
software failure data

—

= J_O ABSTRACT (Continue on reverse aide If necessary and Identify by dlock number)

P~ Volume I of this report provides a feature evaluation of the Management

Data Query System (MDQS), a discussion of the contents of the Baseline data-

I f bases, and a summary of the data required for software reliability modelling.

Volume 11 is a reference guide for defining and retrieving data from the
Baseline databases. R

A\

0D , 5%, 1473 UNCLASSTFIED

JAN 73

498 3so A

Sl Tt

& bl it i

PREFACE

This final report, BASELINE SOFTWARE DATA SYSTEM, Volume I,
System Description, was prepared by IIT Research Institute,
Chicago, IL, as part of Contract Number F30602-77-C-0052.

The work was sponsored by the Rome Air Development Center,
Griffiss Air Force Base, New York, with Mr. John Palaimo
serving as the RADC Technical Monitor for this program. The
report covers work conducted during the period from February

1977 through August 1978.

T Y A

{
F
|

% « 9, T X0 N 8 ~ - s
W A T D o TR

NTIS GR

A&
DDC 14B i
U-:x::ncunced
[qstific;tion

. -.7'_7‘

T e TS A T WAT It B i STV AT Nt S 0. o I

v sy ‘ b
hoa e I3 fnans M0 o,

IX.

IV.

13,

TABLE OF CONTENTS

Page

TRTROIUCTION i ocon e csias s nravins andansssnhs 1
1.1 Study Objectives and Scope................. 1
L.2 Report CONEeNUS.s i e siedssseasssssss 1
MDQS FEATURE EVALUATION...........cco0veoecnnans 3
o B B v T T R S T 3
B E B T R e a0 T i 6 4
2.3 Database Characterization and Structure.... 4
2.4 Data Loading and Maintenance............... : 9
2.5 Retrieval and Report Generation............ 11
2.8 BUOHEREY . . s o Sl e e e i B s e 13
2.7 Conclusions and Recommendations............ 13
DATABASE DESCRIPTIONS AND DATA REQUIREMENTS..... 15
3.1 Baseline Datab8sBes. s scvvssssnsvanns 15
3.1.1 Historical Database.......:svesaeovas 15
3.1.2 Summary Database.................... 20
3.1.3 RADC Productivity Database.......... 28

3.2 Data ReQUITrementa. ccvovsvvvrsonsssvases 28 3

3.3 Data Requirements' References.............. 34 1
REFERENCES csvs cvvavasnsnrswsmssvsosssussnsens 37

5

3

|

1

LIST OF FIGURES
Page :
P Figure 2-1 Allowable MDQS Data Structures............. 8 t%
: Figure 2-2 MDQS.UPDATE SEQ ISP........coo00csuvevunnss 10 ¥
:
: Figure 2-3 The Basic Steps for Restructuring.......... 12 kj
! | =
i Figure 3-1 Baseline Data Requirements List............ 16 {
1 Figure 3-2 Summary Database.................ccoueneun.. 21
Figure 3-3 Component Data Summary Form................ 22
Figure 3-4 Technology Data Summary Form............... 23
§ Figure 3-5 Instructions Data Summary Form............. 24
' Figure 3-6 Errors Data Summary Form................... 25
Figure 3-7 Corrections Data Summary Form.............. 26
" Figure 3-8 Component-Module Data Summary Form......... 27
¥
5
IS
B
E
b
1 vii

SR, " - o i T RO A - i A gl W < i B

LIST OF TABLES g

Table 2-1 Summary Database Size....................... 5

Table 2-2 Data Structures/File Organizations.......... 7
Table 3-1 Attribute MAEriX..........ccounscsconnsovenens 17

e i

ix

R TUS—

B e e e e i S - » . - AL .+ e > - el

- o i S

e .

EVALUATION

The objectives of this effort were to implement an experimental data
repository and provide information processing tools to assist the
in-house software reliability modeling program. This effort was
initiated in response to an in-hcuse requirement for a computerized
database management capability for software error data. Sizeable
collections of software error data had been acguired from several

large software development projects for the in-house program.

This effort satisfactorily addressed all major proaram objectives. The

ey g -

Baseline Software Data System (BSDS) was successfully implemented on
the RADC HIS 6188 computer system. Capabilities are available for
defining, loading, updating and guerying databases. The BSDS also

provides capabilities for producing reports, generating data subsets,

and interfacing with application programs.

In addition to the software error database, a summary database and a

sof tware productivity database were also implemented. The BSDS is
currently being maintained by the Data and Analysis Center for Software

(DACS) and will be expanded as more data becomes available. 3

o

This effort falls within the goals of the RADC Technology Plan,

specifically TPO-5, C-3 System Availability (Hardware/Software), in
subthrust Software Cost Reduction (Software Data Collection and

Analysis). |

JOHN PALAIMO _ PRECEDING FaGE BLANK
Project Engineer é
: -_‘,_,»,b..--,_,‘—_xa

xi

Section I

INTRODUCTION

1.1 Study Objectives and Scope

The objectives of this study effort (Contract Number F30602-
77-C-0052) were to provide RADC in-house research efforts with
easy to use information processing tools to assist in their
software reliability modeling efforts and to implement an experi-

mental data repository to serve as a test bed for study and analysis

, of potential problems and solutions for the establishment and

5 operation of the Data & Analysis Center for Software (DACS). The
purpose of the DACS is to upgrade the software development process
through the collection, analysis, and dissemination of software
development experience information. The results of the study to
develop the design for the center are reported in RADC-TR-76-387,
Software Data Repository Study (reference 1).

P RADC had previously acquired software error data from six
large software development projects as reported in references
7 through 12. The data from these datasets were implemented as
the Historical Database on the Honeywell 6180 Computer System at
RADC using the General Comprehensive Operating Supervisor (GCOS)
and the Management Data Query System (MDQS). These datasets were
analyzed in terms of data content and compared to the data re-
quirements for software reliability modelling studies. Also, the
data from these datasets were summarized along with information
from the Final Reports to form the Summary Database.

1.2 Report Contents

This volume, Volume I, provides in Section II a feature
evaluation of the MDQS which was the database management software
used for the implementation of the Baseline Software System.
Section III contains an introductory discussion on each database
and a summary of the evaluation of data requirements for software
reliability models.

Volume II provides the user of the Baseline Software Data
System with instructions for defining and retrieving data from
the databases using MDQS.

PN AT

P

Section II

MDQS FEATURE EVALUATION

The purpose of this section is to provide a feature evaluation
of the MDQS which was used as the database management software for
the implementation of the Baseline Software Data System. In this
section, references are made to the applicable MDQS Manual and the
page number that describes the feature in the form (report refer-
ence number, manual page number). Not all of the features of MDQS
are discussed but only those that seem most important and had
been previously defined as a database management requirement for
the Software Data Repository (reference 1).

Included in this section is an overview of MDQS, a discussion
on the database management tools provided for each user type and
the characterization and structure of the database, a presentation
on the MDQS capabilities for loading, maintaining, and retrieving
data, a discussion on MDQS data security aspects, and the conclu-
sions and recommendations of this evaluation effort.

2.1 MDQS Overview

MDQS is the Honeywell commercial offering of the World Wide
Data Management System (WWDMS) developed for the World Wide
Military Control and Command System (WWMCCS) and is a sub-system
of the GCOS Operating System using both the time-sharing and batch
environments. During this effort two versions of MDQS (designated
System/IV (MDQS/IV)) were tested at the RADC Computer Center
including:

MDQS Version GCOS Version Manual Reference

Number
MD 2.0 1G.3 2 and 3
MD 2.2 2H.2 4 and 5

MDQS is a comprehensive database management system which
provides the capabilities for database definition, creation, re-
trieval, maintenance, restructuring, and report generation and
operates in both the online and batch environments. The term
online is used here to denote the appearance to the user rather
than the internal operational mode. The definitions are per-
formed in the batch enviromnent but the job control language can
be generated interactively online. There are capabilities to
perform retrievals and maintenance in batch, online/batch, or
online. The online capability is offered through the use of the

Conversational Management Data Query (CMDQ) which allows a user

to interactively generate and execute a procedure from the
terminal (5, 7-1).

2.2 Users

MDQS provides database management tools for the database
administrator, the applications programmer, the rnonprogrammer,
and the parametric user. Facilities are provided to the data-
base administrator to define, create, maintain databases and to
establish file protection (all of reference 4).

Application programmers are computer professionals who are
versed in the current practives of data processing. MDQS
provides them tcols for writing data subsetrs and interfacing to
application programs, for processing difficult queries, and
for generating reports (all of reference 5). A nonprogrammer
(or general user) is typically a person who is knowledgeable in
the functions of an organization but is not necessarily a compu-
ter professional. For this effort it is assumed the ''monprogram-
mer" is familiar with the software engineering field but does
not know the structure of the database. The nonprogrammer can
utilize some of the basic procedure and query language features
to retrieve data and write simple reports (5, 2-12, and 5, 8-1).
CMDQ can also be used by a nonprogrammer to interactively generate
and execute simple procedures (5, 7-1). Parametric users are
support personnel who do not have programming skills but do have
the knowledge required to invoke predefined transactions. Facili-
ties for the parametric user are provided by the capability to

generate procedures where parameters are input at exectution
time (5, 3-26).

2.3 Database Characterization and Structure

There are three MDQS databases in the Baseline Software Data
System: the Historical Database, the Summary Database, and the
RADC Productivity Database.

The Historical Database consists of six sequential datasets
containing a total of 31,912 eighty-four character records. Below
is a summary of the characteristics of each dataset.

Dataset Number of Number of Number of
Number Records Data Items Record Types

1 4,970 28 1

2 2,453 46 5

3 2,274 39 2

4 11,730 17 1

5 8,106 18 2

6 2,719 15 1

4

i

v

s, 2

w.

WYL o 1 TR
PENER S ORGP, ¥, SRS NNBONENS | SRS

The Summary Database is an indexed-sequential database con-
taining nine entries (record types) and 135 data items. Each
entry contains a key field which is used to uniquely identify
each record occurrence. The maximum size of the database is
approximately seven million characters. (See Table 2-1 for a
break out of the size for each entry for each project in the
Historical Database).

The RADC Productivity Database is a sequential database con-
taining 1200 eighty-four-character records consisting of three
entires and 31 data items.

A description of the contents of each of thesc databases is
provided in Volume II and in Section III of this volume.

These databases were defined using the three MDQS definition I
languages (Directory, Data, and Applicaiton). The Directory
Definition Language defines the name of the database and the perm-
file names of the files associated with the database (4, 3-1). The
Data Definition Language is a COBOL-1like description language
which describes attributes (length, data type, etc.) of the data
items and the structure of the database. The Data Definition
constitutes the schema (4, 4-1).

{
Sub-schemas are defined using the Application Definition

Language which is the user's view of the data. This language ‘

defines all of the databases that are to be accessed by an MDQS

procedure (4, 5-1).

Values of data items can be decoded using the Table-
Lookup option in the Application Definition Language (4, 5-19)
or in the Procedure Language (5, C-30). The tables can be
generated using the PERFORM subsystem (5, C-25). The ENCODING/ |
DECUDING clause within the data definition can be used to ‘
specify a user subroutine that is to be executed whenever a data
item requiring special conversion is to be processed or updated
by a procedure (4, 4-21).

The database directory is availahle for display for an
application definition by use of the Application Definition File
Query (ADFQ) subsytem (5, 6-1). This capability allows for the
listing of data-item name, type, and number of characters for
each entry within an application definition.

Singular, hierarchical, and network are the three allow-
able MDQS data structures (4, 1-7). The singular data structure
consists of only one type of element with no dominant or sub-
ordinate relationships while the hierarchical data structure
consists of elements that can be related to any number of lower
level elements but only one higher level element. The network
data structure consists of elements that can be related to any

61176599 9%0'88 €6L 01978¢
00Z"1 09 0z 1 | 1 z z }
969°09€ 9L avL'y 14 | €< IAZ A4 1 P42 74
91 ‘2ss vil 680°S 11 1 11 ez 1 vz
Sip‘¥s6 L9 svZvl 0 0 0. 0 S0z 0
8L5°912°p L9 $$6°29 €69 1z €< z82°15 (¥4 142724
v80°vLL Lsz zZ10'¢ (11 1 (19 vz i 4424
Jey) # = 9Z|S pJOd8Y X SPIOOBYS |e40] = S@duUR}SU|# X dwony 1©40] = S@dueysu| g x dwod#
1e40} 9 ¢oeloug g 4oefoug
19671 820°¢ N2ET v9'L
) I 1 [7 v 1 0l S 4 z z [
S9 \ $9 09¢ 4 Z 1£2 € L sip’l 4 [1:14
$9 1 <9 Zu i Zil vsl z L €82 1 1:14
0 802 0 0 €61 0 svZ'vl [1:]1 L 0 ¥8l 0
69¢°1 12 "] ovz‘e 0z Zi ¥69°1 44 L 099°s 0z €82
$9) $9 4y | Z1 LL I 1L £82 1 £8Z
1@40] = Sa0ueR4Su) # X dwod 1@40] = S8duR4SU| § x dwody 1@40] = S@dueysu |y x dwo)y 1840 = Sedueysu| g x dwody

v 498f01g

¢ 4o8fouy

dZIS ASVIVIVA XIVWWAS

Z 42efoug

| 42efoug

"1-T 374Vl

vioL

ABojouyde)
0| 42984400
uo| 4on44su|

JOU W
Jofen
Jo443

$usuodwo)

(P 4u0d)
adA] pioday

Ivi0L
ABojouydey
SuO| $28440)
uo| 4oNJ4su|

JOUu i
Jofen
20443

Jusuodw)

odA| pJodsy

e

b

O

number of lower level elements and any number of higher level
elements. Figure 2-1 contains a pictorial representation of the
three data structures. The data structure represents the logical
view of the data.

The allowable file organizations (storage structures) for
MDQS are sequential, indexed sequential, and integrated. For a
sequential file organization the records are stored serially and
the only way of physically accessing a record is to read all records
that precede it, beginning with the first record in the file.

} An indexed sequential file is a collection of records that

i can be accessed either sequentially in key value order or randomly
by a particular key value. It consists of a data file and an index
file. An integrated file is a collection of records that may
contain complex inter-record relationships where the record
association is achieved through chains which provide cross-refer-
ence linkages between records. The allowable data structures for
each file organization are illustrated in Table 2-2 (4, 1-7).

The integrated file structure is effected in MDQS by the use g
of Integrated Data Store (I-D-S) (references 13 and 15); and ’
indexed sequential file by the use of the Indexed Sequential b
Processor ?reference 14). These two file structures were studied
to determine the feasibility of use for the Summary Database. It
was determined that an indexed sequential file organization was
the most effective means for implementing the Summary Database.
When using an integrated file structure, the data definitions and
query procedures become complex because of the need to define
chains, retrieval mechanisms, and physical storage requirements
(4, 4-34). By defining unique keys in the indexed sequential file
for each record occurrence, a relational system was being effected.
This then provides more flexibility to expand the definitions and
to transfer to another data management system, if requirements

dictate.
TABLE 2-2. DATA STRUCTURES/FILE ORGANIZATIONS
File Organization
Indexed
Data Structures Sequential Sequential Integrated
Singular X X X
Hierarchal X X X
Network X

The RADC Productivity Database, the transaction files for
the Summary Database, and the six datasets for the Historical
Database are defined as sequential files with singular data struc-
tures. The Summary Database is defined as an indexed sequential
file and a hierarchal data structure.

SINGULAR HIERARCHICAL

e f
&
O

NETWORK

I 3
3
| 4
E
Figure 2-1. Allowable MDQS Data Structures
8 :

2.4 Data Loading and Maintenance

There are various options for initially loading a database
dependent upon file structure. The data can be loaded external
I to MDQS through the use of system utilities, HOL programs using
| the standard I/0 Routines, the Indexed Sequential Processor,
(reference 15) or Integrated-Data-Store, (reference 13, 14) and
must follow the standards for the specific file structure (4, 2-8). .
The Historical and Productivity Databases were loaded using utili- E
ties (see reference 6, Appendix B). The Summary Database was £
loaded using a combination of the Indexed Sequential Processor, {4
Fortran programs, and the MDQS LOAD function. |

Within MDQS the self-contained capability of the data can be ;
loaded using the LOAD function of the Conversational MDQS Language I
(CMDQ) Subsystem (5, 7-200). The LOAD function is used to generate \
a new sequential or indexed sequential entry from a terminal using
a prompting method for inputting data item values.

The READ statement of the Procedure Language (5, 5-103) causes
data to be read from a non-database file into a specified structure
and can be read from a permfile on a removable device or a magnetic
tape.

Updating is performed (except for sequential) by the use of
the UPDATE function within CMDQ (5, 7-11), by the use of the
UPDATE statement of the Procedure Language (5, 5-149), and by the
use of the UPDATE clause in the RETRIEVE Statement of the Procedure .
Language (5, 5-131). These are used in conjunction with other A
statements of the Procedure Language including DELETE (5, 5-48),
INSERT (5, 5-63), STORE (5, 5-146), and RESTORE (5, 5-126). There
are restrictions on the use of these capabilities and Appendix F
of reference 5 provides guidelines for using these functions
dependent upon the file structure. The use of this updating feature
requires that separate transaction files be initially generated
with the updated data and then updating is performed. Figure 2-2
illustrates the overall flow for updating the indexed-sequential
Summary Database with a sequential transaction file.

MDQS does not provide for a Host Language capability where
an application program can directly access the database through
the use of a CALL or language verb. However, if the database is
an integrated file I-D-S can be used, if the database is index-
sequential the index-sequential processor can be used, and if the
database is sequential the GCOS file system can be used which is
standard for all the GCOS procedure languages.

The Data Directory feature in MDQS allows for the listing of
the attributes of data items and entries within a database, but
does not provide cross-reference information in terms of relation-
ships to other data items or the utilization of the items.

S s s i vt M oo s

ds1 d3IS FILvada SOAR "T-C aanB1a

s9} |4 9OUSIe 0y oS8 ejeq

M o Cer s WG 00 TN i b

NOLINI 430
A¥OLOIQ

10

eouigd ui pesepdn

Validity checking is performed by the use of the CHECK/IS
clause in the data definition (4, 4-19) and is executed whenever
a value is changed or added to the data item during a batch
execution by procedure. The actual checking is accomplished by
? a user subroutine and/or by specifying the valid PICTURE clause
% and a value range.

MDQS provides facilities for reorganizing the PICTURE t
and USAGE clauses and adding or deleting groups, data items, and '
records. The picture changes allowed are those as permitted by
a COBOL MOVE statement.

New Directory Definitions and Data Definitions must be
translated and then the actual restructuring is performed
using an MDQS utility function (4, 2-10) 4, 6-1). Figure 2-3
illustrates the basic steps needed for restructuring a sequen-
tial or indexed-sequential file. The new and old data definition
source code is used as input to an MDQS utility routine and a
COBOL program is generated, compiled, and executed performing
the restructuring. The process for integrated files uses
I-D-S utility programs.

MDQS provides for a checkpoint and restart capability for
both the database entry that is being used during a procedure
and the coincident memory image of the procedure (5, 5-34 and
5, 5-164). The frequency of checkpoints can be specified and
a segment of a procedure is executed through the use of the
CHECKPOINT/ROLLBACK statement. The capability is only valid
for those databases which have concurrent update protection
specified in the Directory Definition and the SHARED or EX-
CLUSIVE mode in the procedure.

MDQS does not provide for the capability of capturing in-
formation about changes made to the database and usage charac-
teristics although various logging facilities and sampling tech-
niques of GCOS can be utilized.

s b el S St

2.5 Retrieval and Report Generation ’{

Through a self-contained procedure language, the MDQS re-
trieval and report generation capability provides for qualifying
a subset of the database, sorting and/or formatting this subset,
and printing this subset directly to the requesting computer
terminal. The basic retrieval capability is accomplished by \d
the use of the INVOKE and RETRIEVE statements with the incorpora-
tion of a conditional expression which qualifies the data subset
of interest (5, 5-65 and 5, 5-128). The SORT statement specifies
the order of the sort according to a maximum of 50 key fields
(5, 5-141).

MDQS procedures may reference user application COBOL,
Fortran or GMAP programs that perform data validation, encoding
and decoding, table lookups, and data transformation (5, C-1).

11

Oid
DooL
Source

oLD
D8

MDQs
RESTRUCTURE
UTILITY
ROUTINE

v

cosoL
PROGRAM

v

coBsoL
COMPILATION

b

RESTRUCTURE
PROGRAM

v

Figure 2-3.

‘)ﬁ EXECUTE

New
DDL
Source

NEW
D8

The Basic Steps for Restructuring

In addition, the results of a procedure can be written to a
system standard permfile and subsequently utilized by an applica-
tion program. The results of a retrieval can also be output to
the printer, to the online terminal, to a magnetic tape, or to a
permfile that can be printed on the terminal (5, 5-815.

A tutorial method for generating MDQS procedures is
available through the use of the CMDQ subsystem (5, 7-1) and
a more simplified method of retrieving data than the standard
procedure language is through the use of the Query Procedure
Language (5, 8-1). A capability with the procedure language
allows for the definition of parameters to be inserted at ex-
ecution time (5, 3-26).

An extensive reporting capability is available through
the use of the REPORT, LINE, and SPACE STATEMENTS (5, 2-27)
and through the use of various editing options (5, 3-30).

Multiple users can access an MDQS database concurrently
through a concurrent access environment which protects the in-
tegrity of the contents of the files and prevents interference
between multiple users (4, 2-10). The databases must initially
be established with concurrent update protection by using the
GCOS File Management Supervisor (FMS) ACCESS/MONITOR and ABORT/
ROLLBACK options. The database access is then defined as
PROTECTED in the Directory Definition (4, 3-6).

2.6 Security

MDQS uses the GCOS File Security System (FILSYS) for file
security and provides facilities for specifying the privacy
protection and for controlling access to the databases by MDQS
procedures (4, 1-2). The Data Base administrator is responsible
for assigning locks and keys, generating a privacy file, and
defining the locks in the Data Definition (4, 7-1).

The Privacy file is created by the use of the Privacy ~
Command within the Privacy subsystem and establishes correspond- |
ing locks and keys for User IDs (4, 7-7). The privacy locks at

the record level are defined in the record complete entry of

the Data Definition where the lock(s) supply to the reading

and writing by an MDQS Procedure for all data items within

the record (4, 4-8). The locks for each individual data item o
?re def%?ed in the group/item entry of the Data Definition

4, 4-22).

2.7 Conclusions and Recommendations

Overall MDQS provides the basic database management features
necessary for the implementation of a Data and Analysis Center
for Software (DACS). The three most powerful features of MDQS
are its report - production capabilities, data structuring

i3

T ¥ o T D U RN R Ay T e sy T g B
e i it b

e <o i kil

bl

alternatives, and the database administrator tools including

the schema-subschema facility. It is also very important that
during this effort MDQS, wit{ only a few exceptions, performed
its functions as described in the documentation. The weakest
feature of MDQS is the syntax of the Procedure Language in that
it is somewhat cumbersome to use for generating complicated
queries. Also MDQS is limited in the tools it provides for data-
base maintenance. These limitations can be compensated for
through the use of GCOS utilities and user HOL programs.

It is recommended that MDQS continue to be used as the data-
base management software for the development of the Baseline
Software Data System to establish the framework for the evolution
into a pilot DACS and then into a fully operational center.

14

e e
s

.,‘ﬁ-A..
I

o

Section III Ii
DATABASE DESCRIPTIONS AND DATA REQUIREMENTS

This section provides an introduction to the Historical,
Summgry, and Productivity Databases. Also included in this
section is a summary of the work performed during this effort on
the evaluation of data requirements for software reliability
models. The types of data required are listed in Figure 3-1
along with a short description of each data item.

3.1 Baseline Databases ;E

3.1.1 Historical Database. The Historical Database consists of
six datasets that contain problem reporting and module descriptive
information on six large software development projects. The

data items available for each dataset are indicated in Table 3-1
using as a basis the data items listed in the data requirements
lisg (Figure 3-1). There are two columns associated with each
project. The first column provides the number of characters that
are needed to represent the data item, and the second column
indicgtgs the maximum number of occurrences for each problem
recorded.

Following is a short description of the six projects that
constitute the data for the Historical Database.

Project 1 - This dataset contains Software Problem Reports (SPR)
from a large Command and Control System consisting of
115,346 Jovial/J4 source statements and 249 program
modules. The Project itself and the dataset is dis-
cussed in Reference 7 and is referred to as Project 3.

There is a total of 4,970 Software Problem Report
records consisting of the SPR number, the date opened and
closed, the module which manifested the error, the module
that was changed, the error category and the severity of
the error, the test period, the correction type, and the
Software Modification Notice (SMN) number. There is a
i record occurrence for each modification made. Every SPR
required at least one SMN, and one SMN could have closed
more than one SPR. Therefore, the SPR numbers are not
unique and the SMN numbers are not unique.

Project 2 - This dataset contains Software Problem Reports and
Module descriptions from an Avionics System consisting of
40,640 Jovial/J3B source statements and 84,065 Assembly
Language statements. The description of the collection
and analysis of this dataset is contained in Reference 8.

15

Q10

020

030

040

050

060

070

080

090

100

110

120

130

140

150

160

170

180

190

200

210

220

230

235

240

250

260

270

280

290

300

A 310
F 315
320

330

340

350

360

370

380

390

400

405

410

420

430

440

450

455

460

470

480

490

i 500
| 510
| 520
| 530
540

PROJ-1ID
PROJ-VERSION
PROJ-TYPE
SYS-1D
SYS-VERSION
SYS-TYPE
SSYS-1D
SSYS-VERS1ON
SSYS-TYPE
MOD-1ID
MOD-VERSION
MOD-TYPE
COMP-1ID
COMP-ONM
COMP-RATE
COMP-0QS
TECH-ID
COMPL~ID
COMPLEXITY
CONST~-TYPE
NUM-OCCUR
PRASE
NUM-RUNS-TOT
TEST-PER
NUM-RUNS=-0K
AHRS-PER-TEST
TEST-ID
TEST-TYPE
DATE-RUN
STRESS-TYPE
STRESS-MEAS
TEST-RESULT
NUM-ERR
SPR-NUM
DATE-OPEN
MOD-SOURCE
ERR-CAT-TYPE
ERROR-CAT
SEV-TYPE
SEVERITY
TYPE~-TERM
HRS-TO-DISC
WORK~CAT
SMN-NUM
MOD-CHANGED
MOD-CH-VERS
COR-TYPE
COR-MECH
ACT=CAT
DATE-BEGUN
DATE-CLOSE
DAYS-OPEN
HARS-TO-FIX
NUM-CHANGED
CODE-CONT
PROB-DESC
CORR-DESC
ERROR-DESC

Figure 3-

PROJECT IDENTIFICATION

PROJECT VERSION

PROJECT TYPE

SYSTEM IDERTIFICATION

SYSTEM VERSION

SYSTEM TYPE

SUBSYSTEM OR FUNCTIONAL AREA IDENTIFPICATION
SUBSYSTEM VERSION

SUBSYSTEM TYPE

MODULE IDENTIFYICATIOR

MODULE VERSION

MODULE TYPE

COMPUTER IDENTIFICATIOR

COMPUTER OPERATING MODE

COMPUTER PRCCESSING RATE

COMPUTER OPERATING SYSTEM TYPE
IDENTIFICATION OF THE CONSTRUCTION
TYPE OF COMPLEXITY MEASURE USED
THE COMPLEXITY MEASURE VALUE
CONSTITUENT TYPE(EX. JOVIAL,ASSEMBLY LARGUAGE)
NUMBER OF OCCURRENCES OF CONSTITUENT TYPE
PRASE IN WHICH ACTIOR OCCURRED

TOTAL NUMBER OF RUNS

TRE PERIOD IN WHICH THE TEST WAS PERFORMED
TOTAL NUMBER OF CORRECT RUNS

AVERAGE NUMBER OF HOURS PER TEST

TEST IDENRTIFICATION

TYPE OF TEST

DATE THE TEST WAS RUN

TYPE OF STRESS APPLIED

AMOUNT OF STRESS APPLIED

RESULT OF TEST

NUMBER OF ERRORS DISCOVERED PER TEST

SOFTWARE PROBLEM REPORT NUMBER

DATE THE PROBLEM WAS REPORTED

THE MODULE ID WHERE THE PROBLEM WAS MANIFESTED
ERROR CATEGORY TYPE

ERROR CATEGORY CODE

SEVERITY TYPE

SEVERITY 4
TYPE OF TERMINATION y
HOURS TO DISCOVERY

THE TYPE OF DEVELOPMENT TASK PERFORMED
SOFTWARE MODIFICATION NOTICE NUMBER

THE ID OF THE CHANGED MODULE

THE VERSION OF THE CHANGED MODULE

CORRECTION TYPE

CORRECTION MECHANISM

THE TYPE OF TEST PERFORMED

DATE WHEN PROBLEM SOLUTION WAS INITIATED -
DATED WHEN PROBLEM WAS REPORTED TO BE CLOSED |
NUMBER OF DAYS BETWEEN DATE OPEN AND DATE CLOSE

RUNDRETHS OF HOURS TO FIX

NUMBER OF SOURCE STATEMENTS CHANGED

A CODE THAT INDICATES AN SPR DOCUMENTS MORE THAN 1 PROBLEM

A DESCRIPTION OF TRE PROBLEM

A DESCRIPTION OF THRE CORRECTION

A DESCRIPTION OF THE ERROR

TECHNOLOGY

T PP L, -

1. Baseline Data Requirements List

16

TABLE 3-1.

AUGUST 1978

ATTRIBUTE MATRIX

ATTRIBUTE
NAME

PROJ
NUM
CHR

1 PROJ 2
MAX

NUM CHR

NUM MAX
NUM

PROJ 3
NUM MAX
CHR NUM

PROJ &
NUM MAX
CHR NUM

PROJ 5
NUM MAX
CHR NUM

PROJ 6
NUM MAX
CHR NUM

PROJ-ID
PROJ-VERSION
PROJ-TYPE
SYS-ID
SYS-VERSION
SYS-TYPE
SSYS-1D
SSYS-VERSION
SSYS-TYPE
MOD-ID
MOD-VERSION
MOD-TYPE
COMP-ID
COMP-OM
COMP~-RATE
COMP-0S
TECH-ID
COMPL-ID
COMPLEXITY
CONST-TYPE
NUM-OCCUR
PHASE
NUM~-RUNS-TOT
TEST-PER
NUM~-RUNS-0OK
AHRS-PER-TEST
TEST-1D
TEST-TYPE
DATE-RUN
STRESS-TYPE
STRESS-MEAS
TEST-RESULT
NUM-ERR
SPR-NUM
DATE-OPEN
MOD-SOURCE
ERR-CAT-TYPE
ERROR=CAT
SEV-TYPE
SEVERITY

TYPE-TERM
HRS-TO-DISC

WORK=CAT
SMN-NUM
MOD-CHBANGED
MOD~CH-VERS
COR-TYPE
COR-~MECH
ACT=CAT
DATE~BEGUN
DATE-CLOSE
DAYS=-OPEN
HHARS-TO-FIX
NUM-CHANGED
CODE-CONT
PROB=-DESC
CORR-DESC
ERROR-DESC

2
6

w N>

——

1
1

13

13
11

w W W = A

NN Ll

=

3

5 1

N W
— L d

-
——
~N -
——

w
—

b

1 12 1

A et e

A

N
—

—
—
—
—

,_
—

o

—
o~
—
SRl ek

weo N>
el
o

w o
—

99 3
99 3
50 1

PONSPIPEOIGL)

17

There is a total of 2,036 Software Problem Report
records containing the SPR number, the date opened and
closed, the module(s) that were changed, the error category,
the phase in which the error was introduced, the CPU hours
to discovery, the correction type, and the hundreths of -
hours of CPU time to fix. Every SPR number is unique and
if more than one module is needed to be changed all the
module names are contained in the same record.

There are data on 69 modules which contain the name
of the module and a funtional area designation, the pro- ﬁ
gramming language(s) used and the number of source state- .
ments. There are eight records that contain descriptive “
information on the type of hardware and software used and
descriptions of the testing phases.

Project 3 - This dataset consists of Software Problem Reports
i and Module descriptions from a real-time control system for
| a land-based radar system. The software system is made up
of 109 modules with a total of 86,780 Jovial/J3 source
statements and 49,000 Assemble Language statements. The
description of this project is contained in Reference 9.

There is a total of 2,165 Software Problem Report
records containing the SPR number, the date opened and
closed, the module that was changed, the error category
and the severity of the error, the test period, the phase
in which the error was introduced, the correction type,
and the Software Modification Notice number. There is one E
record occurrence for each modification made and each SMN
number is unique. The SPR numbers and the SMN numbers are
the same except that there are some blank SPR numbers.

4
Project 4 - This dataset contains Software Modification Reports b
from the flight sottware of an onboard guidance, navigation i

and control system for both a command module and a lunar

module. There were 16 flight programs (releases) and the :
total number of computer words for all releases was \
approximately 610,000 computer words. The sum of the
number of words added or changed since the last release
was 83,866. The majority of the software was coded using
assembly language with interpretive code interspersed
throughout. A description of this project and an inter-
pretation of the data is contained in Reference 9.

There is a total of 11,730 Software Problem Report
records containing the SPR number, the date closed, the
error category, the phase in which the error was in-
troduced, and the SMN number. There is a record occurrence
for each modification made and each SMN number is unique.
The SPR number references a document that established the
basis for the change but is only available for about 13%
of the records.

18

Project 5 - This dataset consists of Software Problem Reports and
Module descriptions from a large, ground-based, real-time
data processing system. The majority of the Software was
coded using CENTRAN (an intermediate - level language
resembling a subset of PL/1) interspersed with assembly
language and system macros. A description of this project
is contained in reference 11.

There is a total of 5,693 Software Problem Re ort
records containing the SPR number, the date opened and
closed, the module that was changed, the error category,
the phase in which the error was introduced, and the
correction type. There is a record occurrence for each
problem encountered. If the problem required more than
one solution, only one solution was recorded which was
established using a priority scheme.

There are data on 2,431 modules which contain the name
of the module, the number of instructions, the language
used, and the type of construction.

Project 6 - This dataset consists of run and failure analysis
data from the development of the Launch Support Data
Data Base (LSDB) which includes database management
functions and fairly complex scientitic calculations.

There is a total of 2,719 run analysis records that
report 484 errors. The records contain the module ID, the date
and time run, the result of the test, the test period and
activity, the severity, error category, and number of errors.
There is a record occurrence for each run (test) made.

Below is a summary of the size of the datasets within
the Historical Database.

Software Module

Problem Reports Characteristics
Project 1 4,970 ---
Project 2 2,036 69
Project 3 2,105 109
Project 4 11,730 -——-
Project 5 5,693 2,413

Run Analysis

Reports
Project b 2,719 -—-

19

o Y

3.1.2 Summary Database. The Summary Database was developed so
that queries cou e formulated across the projects. The

failure and correction information from the Historical Database
was summarized and incorporated into the Summary Database. The
project/module attribute, environment, and productivity data
from the Final Reports (references 7-12) were extracted, coded
and put into computer readible form.

Figure 3-2 illustrates the three-dimensional aspect of the
Summary Database.

Software environment, technology, resource utilization, pro-
duction, and software characteristics data is stored for various
reporting periods for the life-cycle phases. In addition, four
levels of descriptive information are used to describe the software:
the project, system, functional group, and module levels. A
project consists of one or more systems and provides a solution
toa problem. A system consists of one or more functional groups
and provides a meaningful product to the user. A system is
usually capable of operating independently of other systems. A
functional group is a collection of modules which together satisfy
a set of functional and performance rpecifications. A module is
a discrete identifiable set of instructions handled as a unit by
an assembler, compiler, or loader. Queries can be formulated
across the projects, modules, systems, and functional groups.

Data summary forms were developed to record information from
the technical reports for the six datasets in the Historical
Database and to provide summarization requirements to convert the
data from the datasets into the format required for the Summary |
Database. Each form contains eight fields that provide a basis]
for defining a unique key for each record occurrence within the 1
Summary Database. This key identifies the applicable project,
system, functional group, and module that applies to the component
information recorded. Also included in this key is information
concerning the level of summarization and the record type which
indicates the format of the data.

In addition to the key data, the following information is
recorded on each form.

Coggonent (see Figure 3-3). Component name, type, and
description; developer, contract number, and data source; the

number of systems, functional groups and modules; contract type
and standards applied; the purpose of the data collection and the
procedures used; the priorities and constraints of the product
development.

Technolo (see Figure 3-4). The phase, reporting level and
the applicable dates; the technology utilized, the name of the
tool used, and the percentage of usage.

20

Y

4
o
z, b
a |
o
——
o
Q)
[+ %)
ENVIRONMENT -
.. .:-"‘
o
S 0
TECHNOLOGY g

RESOURCE UTILIZATION

PRODUCT ION

REPORTING PERIOD 1

\Rmoxrmc PERIOD 2
"[
2

SOFIWARE CHARACTERISTICS

DESCRIPTORS

Figure 3-2 Summarv Database

- E 4,‘(‘\lI.N- HFE‘ i i S

wiogj Aieumng eieq jusuodwo) -¢-¢ 2an314
[4 (6 "oW)
T i ———— s Ty A iR e e T T su3amn NDISSIOOV INIO0D
v
easy uo|jed| |ddy man WHIN
sjuowalnbay ©)qejsun 15NN z
$U9104)1Q 194ndwo) abiey LT RS
1s0ddng juewabeuey pa)iw)) b 1R
Bujjjeis payey) 151N Ayrpend nd
Buypuny poyjwy) N3 %) 2
AL111915S820y Jeyndwo) pey(w|] Wi o npey>s 2%
9|npayds paj ey %1 (xoW G) uoy4eziilin €190 0 (xo <)
Suoj ey m|) sieapiey 2] SINIVHISNDD peeds Bu|ssedold ud S3111401%4d
- z
2 *ddy eyenjerl | v3 >
3 Gl ‘siaq ogeniea3 | 43 3
1enuen |euleyu|] (g xoW) jos3vo) Ajpgend | 20 AL141GISIA | 1A om §)
£101911 pejewoyny 1 N0 30084 Bujsosjuom 4500 w0 J044y-42054v03 | vo 350N
1uewebeuven uoyjeunb)juon NDI 1237100 6u| 104 |uow @1npeYdS 6uying-4oes4u0) | 00 NOI 1231300
‘ 3
it i 00(voo! v :
ovo® 18y £008 WL ™ ~ ;
osiy 06Y 1648 1500 (1 4] (xen G) ~
£52¢ 0Z1y 8y (xew) 41d4 9100 ans 3dA1L -
9058 0105 101¢ SRIVONV 1S d44 130 Widd LIVEINGD 3
H¥MI10 000 v v R g
SIMO0H ¥ INn4 SWILSAS
HIIEW HIPEN HIPEW
9 9
(] (] (] 233405 viva (3uesn)) tie13v)
) [] wpeseudoung 20v¥ 10 31va viva 31vg viva
24 s 4 1
T N LOVHINOG ¥34013A30
8z £ 4}
NOI 14140530 3dAL N
1 1 L
ay RETE])
HIBAW 3dal
Privssisiey 010 0N NOIS¥IA NOILVZ I¥WeiNS
P kil SRCREEEL o TENORE T L4 9
a1 30w / at @ M3/ a) W3ISAS / a1 123r08d
INMOMD - —,ﬂ.o. AWONS VIVO _

— T TR T

= - e W A s S sl

wiog Kieumng eleq L3o7ouyd’dl 4-¢ 21n81g

& 39VSN 40 N3 ; . VN 1001
J6zAjeuy MOy Welbody NVId J10(R10Uag UoYjejuaundOg 9D00 uo|}1sodwodeq Je|npoW 300W
wes| jsa| juepuadapuy LIN) Aseuoyyo)g eieg D100 tuewdo|eae) umop-doy (OqQL
4o%28y) Ay 1qeieduo) oD 10zhjeuy eseg ejeg N S44ey) eunyoniys HOLS
Joy1pny spiepueys apoy vy 4s414 0%8|d 1921414) 4D 1 ebenbuey ubyseqg ssecosd 104
S)001d uo|jiessy gsSy sybnoays-yiem NIV Piv ubiseq OdiH OdIH
8poy a._“hm:-ox Isny Bujmwesboiy peinioniys y4iS S|00§ Sjuewesynbey pagewosny unY
10119w0>-339 WOOJd uojjeInuiS WIS sjooy ub)s ewoyn
ebenbuey 4api0 ybiH oM Aseiqy) psoddng wesfoiy 154 .ro” ;ahhmmnw“_ .a?w _.w_“w
A90TI0NHOIL
4 o
N
uo| yesedg
Z 159}
9
Lag esor | 1 uO| jejucwe | dw)
31vQ ON3 ubyseq
9 eseud | ud 1A Sjuewe. |nbey
31va NI1938 Aysuon | on ONI 104 tengdesuo) 3ISVHd
9
i R, SR i B N s v sA
HIBN e 3dAL al b R Tran AN
1009) RO NOISH3IA dg ‘gouny 4 400(0ud d NOLLIVZ 1vweeS
6 S 14 9
al 3wnaon / al 49 ONNY / al WIISAS / al 123royd

ASD1ONHO3L = | WRIOJ AUVHWANS VIVO

wiog Aiemmmg ejeq SUoTloNIIsul] ‘¢-¢ aand1yg

SNO! LONJISNI AtVIedS

19Uo|jueauc) AND
peungoniys yis
umog doy @oy

oinseay

peJnionisun YisMn NO{ LINM1SNDD

seinpow aoW 30 300m
(% <) 0IIVIOIVD
STINSVIN ALIXI 100

y

- —

IWVSN 30 INIMIY 1/ d

WSVd I5vd

¢ WA TAOf

SN 123180 YIS NSO %04

0800 1800
4 efenbue) Ajquessy wssy 9vnowv)
SNO I LOMMLSNI 30UNOS YIGHNN v WV NI HVII0NS

z

woyesedy fo

4se1 |1

oy sejuomeide) |

9

31v0 ON3 Lot o S (| ubiseg |o

9 iogeyy | Hd - juewesnbey |y
31va N1938 ITTU " 19 NI 1H0d Y 1enydecuwoy [o VI

1 1 L "
uIBN or0 | _3dAL a il e i AN
OO QU003 NOISHIA 9 ‘auny 3 yoefouy 4 NOILVZ WS
6 P AEL, S i e el i

a1l 30 / a1 M4 / 01 W3SAS / a1 123roud

SNOI LONMISHY - —\’g& Adweons <-!J—

24

w3 - | wws wmens vivo |

Gl b it s o i 4
wioj Axeummg ejeq S1011g ‘9-¢ aIndTg
SNDT LOTMISNT A0VAeNTS
s
SHRRII 4O ¥IGWN
4 €

AHO93LVD HONIW AMO931YD HOrwW 3dAL

9 AHO93LVD YOI A¥093LVI HOMMNI

31v0 N3 31va NI938
["a)
N

z 4 uo| yesbeyuy '
1e40}) 1 1e30) 1 eduejdeddy v
eseyd Hd 13N 1evo | jesedg o uojiep|ep A 001434
Ajyjuon o ONI L0 uo| jesjsuowaq |euo|jesedy 00 {vewdo|ereg Q9 1531
]
AR, PR L
WIS %0 3dA1 a i b sl N
QOO OO NOISH3A dg jouny 4 oefouy 4 NOI LVZ 1heiNS
S 14 9
al INooH / al 49 N4/ al W3ISAS / al 193r0Md

F s

L TR S Ve

PR ar N At e

w SRR T o

s i i A b i, e 7 a1 Wrrt.:.wl QB W o ke i S

5 R TS <~ SR, L EGee= A e S

wiog Aieuumg ®3BQ SUOTIOAII0) " /-f 2an31Jg

110MLSNI
SHOLLORMOD 30 HIDEW
1 £
« (39W43AV) X134 OL N340 SAvQ
SHNOH SH1JYONH NdO YIDEN IVHIAY
6
3dAL NOI LIRMOO
9 9 D
31v0 ON3 31va N1938 ~
z z

oy jesbesu)]

19404 19304 ocueydeddy v
oseyyd e, 1euo| jesedp vopsepiier A 0034
Aryjvon ONI 1NN uo|jesisucweg |euojjesed) 00 juemdojoneg |0 15

1 (1 L o
—_ —_— oinpo W el 3 AN
HIPEW 3dAL []]

00N 0% b NOI SU3A “dy -youny 3 soefosd g | NONIVZIUWeMS

6 S v 9
i a1 3Iwoow / 01'w My / a1 WILSAS / a1 1931084

SNDI 1ORMO0 - _‘(.lz ANOETS <-8_

p———— v T s A S pi |1. —
wiog Azeummg eleQ SINPOK-3Iuauodwo) -g-¢ 2Ind1g
e s |39 i o
——t - —
AR GRS | VAR IR T | T Tard
ras 5 T = ¥ s 3 3 v 9
YN 7 O | 3r1 Y Al NDISYIA IZ1vens al 3o | al ¥ N4 01 W3LSAS a1l 123roud

e mryee

AYVNS IINO0W - INFNOS0O - _.D!Z AWeNs vivo —

27

e e T BT el B - N

B T

Instructions (see Figure 3-5). The phase, reporting level
and the applicable dates; the pProgramming language used; the
number of source instructions, object words, and percent of usage;
complexity type and measure; and the mode of construction.

Errors (see Figure 3-6). The test period, reporting level
and the applicable dates; the error category type, the error
category, and the number of errors.

Corrections (see Figure 3-7). The test period, reporting
level and the applicable dates; the correction type, the average
number of days open, and the number of errors

Component-Module (see Figure 3-8). This form is used to
establish the key iIn a concise manner for any of the record types.

3.1.3 RADC Productivit Database. The summary database compiled
by Richard Nelson o was defined using MDQS and was called
the RADC Productivity Database (reference 16). This database
contains information on software Projects including project and
company name, attributes of the programming language and documenta-

tion, a productivity measure, an SPR rate, and the type of con-
Struction used.

Number Data

Projects Type
370 productivity
30 error
365 language usage
200 implementation
technologies

3.2 Data Requirements

The purpose of this section of the report is to provide a
summary description of software reliability models and an explana-
tion of the kinds of data that are required to use these models.
This information was compiled to determine what kinds of data were

needed for modelling purposes and the type of coverage provided by
the data in the BSDS.

The Baseline Data Requirements List (Figure 3-1) contains
the majority of the model requirements (except for reference 5
and the personnel availability as in reference 8). The stress
type and measure should be expanded to include explicitly

28

!.

whether the stress involves CPU time and/or a measure of the
quality of the tests. The constituent and complexity measure
types should be defined to provide a set of measurements appli-
cable across projects and modules.

The majority of the Data Acquisition Projects provide the
date of error detection and the date of correction. The one
exception is the Project 4 data where only the date of correc-
tion is reported. The only dataset that included CPU time is
the Project 2 dataset and none of the datasets include any infor-
mation on each test performed. However, the data from Project 6
does include information on each test.

Hecht (2) differentiates between measuring, estimating, and
predicting software reliability. Measurement implies that the
software operates over a period of time and segments of operation

are scored as failure or success. A measurement reliability numeric
is normally calculated during acceptance testing before the software

is turned over to the user to determine if a reliability require-
ment has been met. This reliability numeric can also be used to
determine if the software is deteriorating over the life of the
product and to determine the effect on reliability of different
development and testing tools and techniques.

Estimation is taking sample reliability measurements in
order to approximate when testing will be completed and to determine
if a reliability goal can be met. The estimation reliability
numeric must take into account any differences from the operational
environment including test data selection and reliability growth.

Prediction is a reliability statment not based on a measure-
ment of the operation of the software but on the actual or antici-
pated attributes of the software such as the number of lines of
code. Prediction is used for project management purposes to esti-
mate test and correction effort needed, to forecast operational
downtime, and to guide software design to meet reliability require-
ments.

The data requirements for measuring and estimating are very
similar, but the data needed ftor prediction varies because of
the difference in the nature or the assumptions. For measuring
and estimating, it .is assumed that the system is operating,
and the data reflects the operational characteristics of the
system. With prediction, only the static characteristics are
considered and data can be acquired or determined before the
program is operational.

The Hecht reports (2,3,4) present tne essential concepts in
the numerical evaluation of software reliability and a simple
mathematical relations (models) that have been found usetul in
the field.

29

E—

The measurement models assume that the tests or runs (trials)
performed are those that are meaningful for the actual operational
environment. The most simplistic measurement model provides
a reliabilty numeric fer a batch software system or a real-time
system dealing with discrete operations using the ratio of
successful trials to the total number of trials. This numeric can
be normalized to program length to account for differences in
exposure to failure between programs.

For real-time systems dealing with continuous data streams,
a practical reliability numeric is mean-time-between-failures
expressed as total running time (t), divided by the number of
failures (F) in the interval 0 to t. A normalizing factor for
this case is the number of instructions executed per unit-time.

For software reliability estimation, if the software is being
tested in the operational environment and the test cases are
representative of inputs for the operational environment, then
the reliability indices calculated during measurement can be
used as unbiased estimators to estimate future reliability

t§king into account reliability growth as applied to operating
time and error removal.

In the case where test data contains more severe requirements
then actual usage, he discusses using the techniques of parti-
tioning the input data sets and calculating the probability of
failure ascribed to the selection of input data.

Littlewood (5,6) discusses a model for estimating the re-
liability of a software system based upon the attributes of each
component (or subprogram) and the interactions. The inputs needed
for this model include a transition probability matrix which gives
the probability of each subprogram given that it will switch to
another program, and the failure rate for each subprogram.

The model is also extended to include cost of failure by in-
puting the mean and variance failure costs for each subprogram.
He states that the failure rates and cost parameters for each
subprogram can be estimated from test data, that the transition
probability matrix in a large system would be sparse, and that

the mean-time spent in each subprogram should be able to be
estimated.

Littlewood (6) discusses the need to examine the special
requirements of software and that many of the software reliability
measures rely too much on hardware analogies. He specifically
argues that we should be concerned with operational reliability
and not with how many faults are in the program. He defines
operational reliability as the reliability of the program as it
performs (failure rate, distribution of time to next failure, etc).

30

.

aaa A

BRERI L 3¢ AP P o 17 1

-

SRR S

The results of a project to develop software reliability
prediction models using regression analysis methods are presented
by Motley and Brooks (7). The authors concluded that the predict-
ability of programming error measurements varies from very low
to very high and the variability is related to the functional
differences of the modules, the differences in the programming :
language used, the length of time formal failure data collection
was carried out, the amount of thoroughness of testing, in-

; adequacy of the linear model to provide perfect predictability,

| and other programmer, project, and management factors affecting i
the software development process. They recommend the establish-

ment of a baseline set of predictor variables initially starting g
with their five and ten predictor summaries. These five and

ten predictor variables are dependent upon the project or func-

tional grouping. This baseline list should then be expanded to .
reflect the results of further studies. ; ‘s

Their results indicated that the length of the program and
the number of program interfaces per 100 lines of source code
were found to be the best single predictors and that program
complexity variables contributed significantly to predict-
ability.

*L R

8 e Pl T M,

' Musa (8,9) postulates a software reliability model based

on execution or CPU time, and a concomitant model of the testing «
and debugging process that permits execution time to be related fV
to calendar time. The main input consists of a set of ex- is
ecution time intervals between failures experienced in testing,
along with the number of days from the start of testing on
which the failures occurred. Auxilliary inputs consist of 23
parameters including dates, computer time, and man-hours required
per correction, personnel and computer availability, and mean-
time-to-failure (MTTF) objective.

The output consists of measurement numeric of the present
MITF, and estimate of MTTF objective attained, remaining number
of faults to be uncoverd and corrected to achieve the MTTF
objective, and an estimate of the remaining execution time and
calendar time required to meet the objective.

Thayer (10) and Thayer with Lipow (11) discuss what they
have termed a phenomenological approach to software reliability
prediction. Phenomenological is used in the sense of relating
to measureable software characteristics that experience has shown
are well correlated with reliability. They have used both
standard and nonstandard linear regression analysis techniques
applied to numbers of software problems as a linear function
of defined software reliability characteristics.

They have hypothesized that the best single predictor for
the number of problems is the number of branches and is a

31

IR A NI T R A - o - T £ el -.‘.~---An'tmm“..' e e o u L e M. £ W

-

slightly superior predictor than the number of statements. They
also state that the number of application program interfaces,
number of computational statements, and number of data-handling
statements are also good predictors but that the number of branches
and the number of data-handling statements are highly correleated
and should not be used together. These predictors cover the

period for the number of software problems during formal demon-
stration.

Their data also showed that, for each software function, the
number of preoperational problems is a fairly good predictor of the
number of operational faigures and that the number of design
problem reports is a good predictor of the number of problems
encountered in testing. Additional analysis shows that opera-
tional failures for each software function are reasonably well
correlated with the number of design problem reports for that
function.

An examination of some of the more widely used software re-
liability models is presented in reference 12. This paper
addresses analytic models that predict the number of indigenous
errors remaining in the program, the mean-time to the next
failure, the time required to diccover all remaining errors, and
the standard deviation associated with the predictions. Although
the authors of this paper state that all error prediction
models are deficient in the accuracy of the model predictions,
the insights gained from studying the problem have provided
guidelines for developing and testing the software.

Sukert (13,14) reports on a study to analyze the results of
several software reliability models against failure data obtained
during formal testing of several large DoD and NASA software
development projects. No consistent patterns emerged in this
study. Results varied depending upon data content and applica-
tion type. He recommended that more detailed analysis is
needed with additional datasets and that better ways are needed
to statistically determine the accuracy of model predictions.

Goel and Okumoto (15) have developed a stochastic model for
software failure phenomena based on the case where errors are
not corrected with certainty. The following quantities of in-
terest are derived in this report: distribution of time to a com-
pletely debugged system, distribution of time to a specified
number of remaining errors, distribution of number of remaining
errors, expected number of errors detected by time (t), and the
distribution of time between software failure.

The required data for models described in (reference 12)
include the date the error was detected. From this information
the calendar time between failures, the number of failures per
reporting period and cumulative number of errors detected at a
certain date can be computed.

32

The required data for models described in reference 2 and 2
include the date the failure occured and the date corrected.
In addition to the above mentioned data, cumulative number of
corrections made and the number of errors detected and corrected
s per time-interval can be determined.

The data required for models described in reference 2,
and 5 - 9 include the amount of execution (CPU) time expended
before an error was detected. From this information CPU time-
to-failure, total running time-to-date, CPU time-between-
failures, and CPU time-per-interval can be computed. This CPU
time can be reported either for cumulative time before an error
occurs or for each trial, whether it be a success or a failure.

Reference 2 includes discussions on models that required a o
recording on the date of each test (trial) and the result. E
The prediction models discussed in references 7, 10 and 11 By

also require module length, number of interfaces, number of
branches, number of computational statements, number of data
handling statements, and other statement type counts (these .
attributes have been termed constituent types). Also required r

are complexity measures and the number of design problems en- ;
countered. 1
Additional information that provide more meaning to the f

results include dates for testing phases, error descriptions !
including type aund severity, operating mode and processing

rate of the computer, stress type and measure (i.e., a measure

to indicate how well the test(s) correlate to the operational

environment and/or a measure of the amount or percentage of

code exercised), module attributes, resources spent in correct-

ing the error, and the phase in which the error was introduced.

The model discussed in references 8 and 9 requires additional

information including personnel and computer availability and the

project mean-time-to-failure objective.

The semi-markov model discussed in reference 5 is actually
a system level reliability estimation model in that an estimate
is made dependent upon the failure rate for each subprogram,
a probability matrix for subprogram ''switching', and a measure
of how much time would be spent in each subprogram.

33

3.3 Data Requirements' References
q

3

Lloyd, D.K., Lipow, M. Reliability Management, Methods, and
Mathematics, Second Edition, Redondo Beach, CA:
Published by the Authors, 1977.

Hecht, H. (The Aerospace Corporation, E. Segundo, CA).
Measurement, Estimation and Prediction of Software
Reliability. Hampton, VA: NASA Langley Research Center,
NASA-CR-145135, January 1977.

Hecht, H., Sturm, W.A., Trattner, S. Reliability Measure-
ment During Software Development. E1 Segundo, CA: The
Aerospace Corporation, NASA-CR-145205, 1977.

Hecht, H., Sturm, W.A., Trattner, S. "Reliabiltiy Measure-
ment During Software Development', A Collection of
Technical Papers. AIAA/NASA/IEEE/ACM Computers in
Aerospace Conference, November 1977, Pp. 404-412.

Littlewood, B. "A Semi-Markov Model for Software Relia-
bility with Failure Costs", Proceedings of the Sympo-

sium on Computer Software Engineering. New York:
Pontecﬁnlc Press, 1976, PP. 231-300.

Littlewood, B. "How to Measure Software Reliability, -
and How Not to....", Third International Conference on &
Software Engineering. New York: The Institute of

Electrical and Electronics Engineers, Incorporated, and

the Association for Computing Machinery, May 1978, pp. 37-45.

Motley, R. W., Brooks, W.D. (IBM Corporation, Arlington,

VA). Statistical Prediction of Programming Errors.
Griffiss AFB, NY: Rome Air Development Center, RADC-TR-

77-175, May 1977 A041106,

Hamilton, P.A., Musa, J.D. "Measuring Reliability of
Computer Center Software', Third International Con- 1
ference on Software Engineering. New York: The Insti- :
tute of Electrical and Electronics Engineers, Incorporated,
and tge Association for Computing Machinery, May 1978,

PP. 29-36.

Musa, J.D. "The Use of Software Reliability Measures in
Project Management', Second International ComEuter
Software and Applications Conference. New York: The
Institute of Electrical and Electronics Engineers, Incorp-
orated, November 1978, pp. 493-498.

34

10. Thayer, T.A. (TRW Defense and Space Systems Group, Redondo
Beach, CA). Software Reliability Study. Griffiss AFB,
NY: Rome Air Development Center, RADC-TR-76-238,
August 1976 A030798 .

11. Lipow, M., Thayer, T.A. "Prediction of Software Failures",
Proceedings 1977 Annual Reliability and Maintainability
Symposium. Washington, D.C.: Reliability and Maintain-
ability Symposium, January 1977, pp. 489-494. s

12. Schick, G.J., Wolverton, R.W. "An Analysis of Competing
Software Reliability Models'", IEEE Transactions on
Software Engineering, Volume SE-4, Number 7. New York:
The Institute of Electrical and Electronics Engineers, ¢
Incorporated March 1978, pp. 104-120. 1

b

13. Sukert, A.N. "An Investigation of Software Reliability b
Models", Proceedings 1977 Annual Reliability and 2
Maintainability Symposium. Washington, D.C.: Relia- £
bility and Maintainability Symposium, January 1977, pp. ﬁ
478-484 . = |

14. Sukert, A.N. "A Four-Project Empirical Study of Software :
Error Prediction Models'", Second International Computer A
Software and Applications Conference. New York: TThe i2

Institute of Electrical and Electronics Engineers, In-
corporated, November 1978, pp. 577-582.

15. Goel, A.L., Okumoto, K. (Syracuse University, Syracuse,
NY). Bayesian Software Prediction Models, An Imperfect

Debugging Model for Reliability and Other Quantitative
easures of Software Systems. Gri isslAFB, NY: Rome

Air Development Center, RADC-TR-78-155, July 1978.

VOL I, A057870; VOL II, A057871; VOL III, A057872; VOL IV, A057873,

35

10.

11.

1.

REFERENCES

Duvall, L. M., Software Data Repository Study. Griffiss
Air Force Base, NY: Rome Alr Development Center, RADC-TR-76-
387, December 1976 A050636,

Honeywell, Management Data Query System/IV Administrator's
Guide, DD94, Rev. 0, March 1975.

Honeywell, Management Data Query System/IV User's Guide, DD92,
REv. 0, March 197/5.

Honeywell, Management Data Query System/IV Administrator's
Guide, DD94, Rev. 1, August 197/6.

Honeywell, Management Data Query System/IV User's Guide,
DD92, Rev. 1, August 1976.

Curtis, C., Duvall, L., Baseline S/W Data System User's Guide.
Griffiss Air Force Base, NY: Rome Air Develiopment Center,
October 1978.

Thayer, T., et. al., Software Reliability Study. Griffiss
Air Force Base, NY: Rome Air Development Center, RADC-TR-76-
238, August 1976 A030798.

Fries, M. J., Software Error Data Acquisition. Griffiss Air
Force Base; NY: Rome Air Development Center, RADC-TR-77-130,
April 1977 A039916.

Willman, H. E., et. al., Software Systems Reliability: A
Raytheon Project History. Griffiss Air Force Base, NY: Rome
Air Development Center, RADC-TR-77-188, June 1977 A040992,

Rey, P., et. al., Software Systems Development: A CSDL
Project History. Griffiss Air Force Base, NY: Rome Alr
Development Center, RADC-TR-77-213, June 1977 A042186,

Baker, W. F., Software Data Collection and Analysis: A Real-
Time System Project History. Griffiss Air Force Base, NY:
Rome Air Development Center, RADC-TR-77-192, June 1977 A041644,

Hecht, H., et. al., Reliability Measurement During Software
Development. NASA-CR-145205, September 1977.

37

.

e e
xS
=

TR

13.

14.

15.

16.

Honeywell,

I-D-S/1 Programmer's Guide, DC52, Rev. 0 and
Addendums A and B, Kpr§I 1976.

Honeywell,

Addendum A,

Indexed Sequential Processor, DD38, Rev. 0 and
January 1375.

Honeywell, I-D-S/1 User's Guide, DC53, Rev. 0 and Addendums
A and B, April 1976.

Nelson, R.

?

Software Data Collectior and Analysis. Griffiss
Air Force Base, NY: Rome Alr Development Center, September

1978.

T T .

RADC plans and executes /Luwu-,h. development, test and
4elected acquisition programs in Aappolbt of Command, Control
Communications and Intelligence (C31) activities. Technical
and enngmng sdupport within areas of technical competence
48 provided to ESD Program 0¢¢ices (P0s) and other ESD
elements. The prineipal mission aneas are
communications, dwtaomgnmc guidance and control, sur-
veillance of ground and aerospace objects, mtuugmce data
collection and handling, information dystem technology,
Lonospheric propagation, solid state sciences, microuwave
physics and aecw:m neliability, maintainability and

e

MISSION
of
Rome Azr Development Center

I 5
|
|
|

s

e YT
ok’ . s
e S s

-y

