
AD—A 073 35b lIT RESEARCH INST CHICAGO IL FIG 9/2
BASELINE SOFTWARE DATA SYSTEM. VOIJJ4E I. SYSTEM D€SCRIPTIOt4. (U)
JUL 79 L N DUVALL F30602—77—C—0052

UNCLASS IFI ~ RAOC— TR —79—185— VO L—1 NI.

~‘I!Ufl _______
~ flEIDll p
U.

I

i . ~~~

I I liii ~
_____ I 8

111111 25 IIIIUL IIIll~

C~ RADC-TR.79 1 85, Vol I (of two)
FInal T clinkal R.port

• July 1979

~ BASELINE SOFTWARE DATA SYSTEM

~~ System Descri ptio n
liT Research Institute D D C

EIInfl1?~f~
Lorraine M. Duvall

~JG i~fl 1919

ll~k6U~J~6UU
C

• [IPr.*ovBo FOR PUBLIC IBLEASE; DISTRIBUTION UNUMITED

C-,

u-I
-j

4 ROME AIR DEVELOPMENT CENTER[Air Force Systems Command
Griffi ss Air Force Base, New Yor k 13441

79 08 31 008

U

This report has been reviewed by the RADC Information Office (OX)and is releasable to the National Technical. Information Service (NTIS).At NTIS it will, be releasable to the general public, including foreignnations.

RADC—TR- 79-185, Vol I (of two) has been reviewed and is approvedfor publication.

APPROVED: /
JOHN PALAIMO
Proj ect Engineer

APPROVED:

WENDALL C. BAUMAN , Col , USAF
Chief , Information Sciences Division

FOR THE COMMANDER:

JOHN P. RUSS
Acting Chief , Plans Office

If your address has changed or if you wish to be removed from the RAD Cmailing list , or if the addressee is no longer employed by your organiza-tion, pleace notify RADC (ISIS) Criffiss AFB NY 13441. This will assistus in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

r

(INC t.AS S t 1’! ED

SECU RIt y A I , * C A T I O N QE ?NIS PA GE (A~iw O.i. En(.i.dJ

REP T ~ 1C11I~P4TATION PAGE lSl~POK~~~COMPLE1IN (. I’(IXM

• ,L fl • GOVT ACCESS IO N NO , R E C I P I E N T S C A T A L O G NUMBER

£
RAD C L’R- 79- l8~~#

______________ —

Y - _..~~~y ~~~~ O~~~R~~~ ORT I ~ DVI I)(7f SASEUNEJ,OF’FWARE DATA SYSTEM 1
•

I
~~~~~ 

Systtm D&sLrl pt ion . -- -~~~~~

- • • . •  E RE O M M I N G  ORG
N A

~~~~AIJ1 ~I~~1_. I CO N T R A C T  OR G R A N t  N U M M 1  R(.~

c~~~1
~orre~i~~

~~~~~~~~~~ ~~~~~ ~~~~~
77:~~052 1

S PC R EOA M * P40 O R G A N I 2 A T I O P *  N A M E  A N D  A D D R E S S  *0 PROGRAM E L EM E N T . P R O J~~( I 1A~~I( 
—

—• A R I A  A W O R K U N I T  NUMB* H~
L I T  Research I n s t i t u t e ,.
10 W. 35th S t r e e t  .

~~~~~~~~~~~~~ / y f
II. CO N TR O L L I N G OF’EICE N A M E A N D ADDR E SS -~.

Rome Air Development Centtr (ISIS) 1 ‘ ~~~~~~~~~
Grifilsa AFB NY 13441 I~ N U M B E R O E PA G ES

• 46
i~ MONITORING A GEN CY NAME I AO DHISS I* i ~~ .. ~~~~~~~~~~~~ (10..) 15 S E C U R IT Y C L A S S (..i Ih~. •,~~.‘r I

Same
,,

~~~ -- ~~~~~~~ 
IJNC LASSI FIEI )

S 
ISa C LA S S * ~~ICA T IO N OO W N G R * D I N~~

N /A *

*4. DIST RIWUT *OM S T A T E M E N T  (.1 ihi. R .poil)

• Approved for public release; distribution unlimited.

* 1. DISTRISU lION 51* IEUEN I (US iS. ah.t ,..’t .ni. ,.d in $Io,k 20. Ii diil.,. nI fto.n R.p. ’r I I

Same ‘
/

c.S :~
• . ~ 

‘ . 
S..

c ’
S 

~~ /
_______________________________________ ________ • - - — o4’,~—-~~~ —
15 S UPPLEM E NTA RY NOTE S c” )
RADC Pro jec t  Engineer :  John P a l a i m o  ( i SI S)  - •

II ( I V  WO RDS (COnhIflu. on ?.. •i .. •*d• It n...•.ai y and Id.~ *Ib’ hp hIo~ A n~ nshorI

database management
data requirements
software failure data

10 A W S 1 R A C T  (CnnI*n... i~~U•ia• aid. If fl .0...a,y and idant iVv St. blUrS n.,mh.,) ~~~~~~~~~~ 

— . -———- ——— - — —— *

~ Volume I of this report provides a feature evaluation of the Management
Data Query System (MD Q S), a discussion of the contents of the gaseline data-
bases, and a sunsnary of the data required for software rellahfllty modelling .

Volume 11 I~ a reference guide for defining and retrieving data f r o m the
Rasel Inc databases.

oo I~~~~~
M
,I 1473 UN CLASSI F I E D

SECURITY CLASS *EI CATIO N OP THIS P AG E  1),.,. Ii. E ,. ,..,c

- 
/ 

*

~
II_5~~~4IP_

L • —.54 4~5,45 • .
~ - . .. . • o~ * . ,  Q~, U 4 *5  ‘. . ... •. . W 5  ‘ ‘ ‘ ‘~~~~‘

_ . , __ _._~~~~~~..L_  ~~~~~~~~~~ ~~~~~~~~~~~~~~ — .  _______



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

——---
~~

--- - -

~~~~~~~

PREFACE

This final report , BASELINE SOFTWARE DATA SYSTEM , Volume I ,
System Description , was prepared by lIT Research Institute ,
Chicago , IL, as part of Contract Number F30602-77-C-0052.
The work was sponsored by the Rome Air Development Center ,
Griffiss Air Force Base , New York , with Mr . John Palaimo
serving as the RADC Technical Monitor for this program . The
report covers work conducted during the period from February
1977 through August 1978.

~ ~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~

‘

LLJ /

iii

________________________ —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • ~~~~~~~~~~~~~~~~~~ s.- .U’ • ~~~~~~~~~S.s.MW - 5 —

- S 
~~~~ 

‘t~ ~ • •,~ - -
• • -

- - --~~~~~
_S____ ._____~_S . ~~~~~~~~~~~~~ •~~-. ~~~~~~~~~~~~~~~

- I-. ~~~~~~~~~~~~ ~~~~~~~— 1. ~Li~~~a~ c~ --k—--.- h.~~~~~~~.I-~~~~~~ -- .• .~~~~

- -

TABLE OF CONTENTS

Page

I. INTRODUCTION 1
1.1 Study Objectives and Scope 1
1.2 Report Contents 1

II. MDQS FEATURE EVALUATION 3 h
2.1 MDQS Overview 3
2.2 Users 4
2.3 Database Characterization and Structure... • 4
2.4 Data Loading and Maintenance 9
2.5 Retrieval and Report Generation 11
2.6 Security 13
2.7 Conclusions and Recommendations 13

III. DATABASE DESCRIPTIONS A1~D DATA REQUIREMENTS 15
3.1 Baseline Databases 15

3.1.1 Historical Database 15

3.1.2 Summary Database 20
3.1.3 RADC Productivity Database 28

3.2 Data Requirements 28

3.3 Data Requirements’ References 34

IV . REFERENCES 37

V
• —B--——

.•- .-.~~~~~~~.-• --.. —

I, —~~~~~~~ .—

,.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



.— -
~~~~~~~~~- - — •~~~~~

---—.-,-• .5’

F ’
.

LIST OF FIGURE S

Page

Figure 2-1 Allowable MDQS Data Structures 8
Figure 2-2 MDQS.UPDATE SEQ ISP 10
Figure 2-3 The Basic Steps for Restructuring 12
Figure 3-1 Baseline Data Requirements List 16
Figure 3-2 Suninary Database 21
Figure 3-3 Component Data Summary Form 22

~
~~~- Figure 3-4 Technology Data Summary Form 23

Figure 3-5 Instructions Data Summary Form 24
Figure 3-6 Errors Data Summary Form 25
Figure 3-7 Corrections Data Summary Form 26
Figure 3-8 Component-Module Data Summary Form 27

5’.

vii

‘5__ . 
—— _~~~._S_. •‘— .—-•——- -*.-——. .— ~~~_- Lr _ r - • •~~~~_• __ - - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

_________  --a-.-— ~~~ — ~ __ _ i_~~~
- ._S __

~~~____i_i .•~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ U.~N~ ia-t 
--



_ _ _ _  _ _ _ _ _

LIST OF TABLES

Page

Table 2-1 Summary Database Size 5
Table 2-2 Data Structures/File Organizations 7
Table 3-1 Attribute Matrix 17 -

‘

V
I-

a

.5

_ _ _ _ _--—~~~~~~~ . -.~~ -.4— . - -
~~~~~~~~~~~~~~~~~~~~~~~

ix

4
- a- 4 L S-. S. S.-a • . , • - -

_ _
- -~,- - ~~~~~~~I) - - A

-S.-——— ~~~~ ._. —‘-— -— — -.---~~~~~~
~~.Jg~ ~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ .- I.s~~~ ..

EVALUATION

The objectives of this effor t were to ii~~lt~ ent an exper liTental data

repository and provide information processing tools to assist the

in—house software reliability modeling progr~ r.. This effort was H

initiated in response to an in—house requir~ nent for a computerized

database managenent capability for software error da ta . Sizeable

collections of software error data had been acquired from several

large -software developrent projects for the in—h ouse ~xogr~ n .

This effort satisfactorily addressed all major pt-o~rarn objectives. The

8aseline Software Data Systen (BSDS) was successful ly implemented on

the RADC HIS 6180 coiT~uter system. Capabil ities are available for

def ining , loading , updating and ciueryir~ databases . The BSOS also

provides capabilities for producing reports, generating da ta suL~ ets,

and interfacing with appl ication progrars.

In addition to the software error database , a s~irutia ry database and a

• software productivity database were also iniplemented . The BSDS is

currently being maintained by the Data and Analysis C~~t~~ for Software

(D~CS) and will be expanded as more data becomes available.

This effort falls within the goals of the RADC Tethnology Plan ,

specifically TPO—5, C—3 System Availability (Hardware/Software) , in

subthrust Software Cost Reduction (Software Data Collection and

Analysis) .

~~~~~~~~~~~ .
.

~~fI~i PALMMO 5 . 5  ~~~C 1D1iID piai 
~~~~~~~~~~~~Project Engineer

- -..~~~***,... a-.._ _ _ - - ,4—

xi

- ~~- _.~~p
- -~ .-n lt.$ ’~~ 5~~~~~~~~ .A~~~~ -.’ - -

~~~~~~
—

— -
S - _____ .~~~• — -

• ——• • ~~~~~ —~~~ ‘ . - & ~~~ ~~~~~~~~~~~~~~~~~~~~ 
-



Section 1

INTRODUCTION

1.1 Study Objectives and Scope

The objectives of this study effort (Contract Number F30602-
77-C-0052) were to provide RADC in-house research efforts with
easy to use information processing tools to assist in their
software reliability modeling efforts and to implement an experi-
mental data repository to serve as a test bed for study and analysis
of potential prob ems and solutions for the establishment and
operation of the Data ~ Analysis Center for Software (DACS). The
purpose of the DACS is to upgrade the software development process
throug h the collection , analysis , and dissemination of software S

development experience information. The results of the study to
develop the design for the center are reported in RADC-TR-76-387,
Software Data Repository Study (reference 1).

RADC had previously acquired software error data from six
large software development projects as reported itt references . 

-

7 through 12. The data from these datasets were implemented as
the Historical Database on the Honeywell 6180 Computer System ~ t
RADC using the General Comprehensive Operating Supervisor (GCOS)
and the Management Data Query System (MDQS). These datasets were
analyzed in terms of data content and compared to the data re-
quirements for software reliability modelling studies . Also , the
data from these datasets were summarized along with information
from the Final Reports to form the Summary Database.

1.2 Report Contents

This volume , Volume I, provides in Section II a feature
evaluation of the MDQS which was the database management software
used for the implementation of the Baseline Software System.
Section III contains an introductory discussion on each database
and a summary of the evaluation of data requirements for software
reliability models.

Volume II provides the user of the Baseline Software Data
System with instructions for defining and retrieving data from
the databases using MDQS.

1

.. .-a .. t - S ..4 s ....a ., v. .. 5 - ~..%.-~~~~5~~~-Ju~~- -— a  — - - - - - - _ .

- ——~~~~~~~ - --- — ~~~~ _s~~___s.—- -~~~~~-~- ~
L~~~~~l



~~.—-.-.-- -~~
—__

~~~~~ - - - - .- .- .- ~~~~~~~ -~~~~~~~-- --- - - -_
~~

Section II

MDQS FEATUR E EVALUATION

The purpose of this section is to provide a feature evaluation
of the MDQS which was used as the database management software for
the implementation of the Baseline Software Data System . In this
section , references are made to the applicable MDQS Manual and the
page number that describes the feature in the form (report refer-
ence number , manual page number). Not all of the features of MDQS
are discussed but only those that seem most important and had
been previously defined as a database management requirement for
the Software Data Repository (reference 1).

Included in this section is an overview of MDQS, a discussion
on the database management tools provided for each user type and
the characterization and structure of the database , a presentation
on the MDQS capabilities for loading , maintaining , and retrieving
data , a discussion on MDQS data security aspects , and the conclu-
sions and recommendations of this evaluation effort.

2.1 MDQS Overview

MDQS is the Honeywell commercial offering of the World Wide
Data Management System (WWDMS) developed for the World Wide
Military Control and Command System (WWMCCS) and is a sub-system
of the GCOS Operating System using both the time-sharing and batch
environments. During this effort two versions of MDQS (designated
System/IV (NDQS/IV)) were tested at the RADC Computer Center
including :

Manual ReferenceMDQS Version GCOS Version Number

MD 2.0 lG.3 2 and 3
ND 2.2 2H.2 4 and 5

MDQS is a comprehensive database management system which
• provides the capabilities for database definition , creation , re-

trieval , maintenance , restructuring , and report generation and
operates in both the online and batch environments . The term
online is used here to denote the appearance to the user rather
than the internal operational mode . The definitions are per-
formed in the batch enviromnent but the job control language can
be generated interactively online . There are capabilities to
perform retrievals and maintenance in batch , online/batch , or
online . The online capability is offered through the use of the

3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~ICADINQ p~~ ~L4j~
- - ,,.____ - — ,

—. - —--S—-S.- -5---—— .-- .• — -- - _ .. .—S-- -—— ~~~~~~~~~~~~ - _~~~- .~ - — — • _.-~ ---5- . •1-~ ~~~~~~~ ~.~~~~~_t’.t ~ t*a1&~*- - ~~
__

~~âa 1.

•-~~~~~~~~~~ -~~~~~~~~
-— — -

I

Conversational Management Data Query (CMDQ) which allows a user
to interactively generate and execute a procedure from the
termina l (5 , 7—1).

2.2 Users

MDQS provides database management tools for the database
administrator , the applications progr am m er , the r~onprograminer ,
and the parametric user . Facilities are provided to the data-
base administrator to define , create , maintain databases and to
establish file protection (all of reference 4).

Applica tion programmers are computer professionals who are
versed in the current practives of data processing . MDQS
provides them tools for writing data subsets and interfacing to
application programs , f or proces s ing difficult queries , and
for generating reports (all of reference 5). A nonprogrammer
(or general user) is typically a person who is knowledgeable in
the functions of an organization but is not necessarily a compu-
ter professional. For this effort it is assumed the “nonprogram-
mer ” is familiar with the software engineering f ield bu t does
not know the structure of the database . The nonprograuiner can
utilize some of the basic procedure and query language features
to retrieve data and write simple reports (5, 2-12 , and 5 , 8-1).
CMDQ can also be used by a nonprogrammer to interactively genera te
and execu te s imple procedures (5 , 7-1). Parametric users are

• support personnel who do not have programming skills but do have
• the knowledge required to invoke predefined transactions . Facili-

ties for the parametric user are provided by the capability to
genera te procedures where parame ters are input at exec tution
time(5 , 3—26).

2.3 Database Characterization and Structure

There are three MDQS databases in the Baseline Software Data
System : the Historical Database , the Summary Database , and the
RADC Productivity Database.

The Historical Database consists of six sequential datasets
containing a total of 31,912 eighty-four character records . Below
is a summary of the characteristics of each dataset.

Da taset Number of Number of Number of
Number Records Data Items Record Types

1 4 ,970 28 1
2 2 , 113 46 5
3 2 , 274 35 2
4 11,730 17 1
5 8 , 106 18 2
6 2 , 719 15 1

•1
.

4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - - • • - - - - .- - --~~~~~~~~~~~ - •-• — -- ——- S
~~~~~~~~~~~ • - — - S~~~—~~ -S.~~~~~~~— . _ ,_ - _ ,~--_ - , — • - - - 



The Summar y Database is an indexed-sequential database con-
raining nine entries (record t ypes) and 135 data items . Each
entry contains a key field which is used to uniquely identif y
each record occurrence. The maximum size of the database is
approximately seven million characters. (See Table 2-1 for a
break out of the size for each entry for each project in the
Historical Database).

The RADC Productivity Database is a sequential database con-
taining 1200 eighty—four-character records consisting of three
entire s and 31 data items .

A description of the contents of each of thes databases is
provided in Volume II and in Section III of this volume .

These databases were defined using the three MDQS definition
languages (Directory , Data , and Applicaiton) . The Direc tory
Definition Language defines the name of the database and the perm-
file names of the files associated with the database (4, 3-1). The
Data Definition Language is a COBOL-like description language
which describes attributes (length , data type , etc.) of the data
items and the structure of the database. The Data Definition
constitutes the schema (4, 4-1).

Sub-schemas are defined using the App lication Definition
Language wh ich is the user ’ s view of the data . This language
defines all of the databases that are to be accessed by an MDQS
pro cedur e (4 , 5-1).

Values of data items can be decoded using the Table-
Lookup option in the Application Definition Language (4, 5-19)
or in the Procedure Language (5 , C-30). The tables can be
generated using the PERFORM subsystem (5, C-25). The ENCODING!
DECODING clause within the data definition can be used to
spec if y a user subroutine that is to be executed whenever a data
item requiring special conversion is to be processed or updated
by a procedure (4, 4-21).

The da ta base direc tory is ava ilable for display for an
application definition by use of the Application Definition File
Query (ADFQ) subsytem (5, 6-1). This capability allows for the
listing of data—item name, type , and number of charac ters for
each entry within an application definition .

Singular , hierarchical , and network are the three allow-
able MDQS data structures (4, 1-7). The singular data structure
consis~ s of only one type of element with no dominant or sub-
ordinate relationships while the hier~rchica1 data structure
consists ot elements that can be related to any number of lower
level elements but only one higher level element . The network
data structure consists of elements that can be related to any

5

______________________ _____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- -

~~~~~~~~
——-

~~~~~



- -

•

~j~H~ 

~~~~~~~~~~~~~~~~~~~~~

C —
C N

4- 4- N

X
~~ ~

g ~

~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _~~ 

~~~~~~~~ 5°~ o~~~~~~-~~~

~~~ 
-
~~ ~ ,2 ~-

~~ C I N ~~ ~~ 0’ ‘0 0 ‘0
(N NO  N N - I 0 5 N 5

- - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~

I — _ _ _ _ _ _

— ~.. ~~ 5n .C 0 I —
C ~S Øs~~ ~~% — — CI W ’o~-

—~~~ ‘0 I•- 0 ‘~.- 
I 

_ _ _ _ _ _ _ _ _

C I
N — N ~~ N “~ I~ I ~~ — — 0 — — —C N
4- 4- — I ~U U ~• C I • C
o _ _ _ _ _ _ _  I ~

‘ 
~~r .  ‘- * ‘- x

c’J N ~~ O

N N O  N N N 0
— ‘~ 00 ‘ 1’ N “P’ — —
!~~~ £ ~~; ~~ I 5°
0 - O N  N N

C I
C IC, U

— ç t~ C — — W ~ — — N
— 0~~ — ‘(‘ N C N O

4- 4- N~~~~ 4- 4- N
C.) C — U C
• C C C

_ _ _ _ _ _ _  ? _ _ _ _ _ _ _

K K

t -C - C O - C~~~~~~— t
U 0 ~N N N N U N N N N

4-

~~~ C. 
4-~~~~~ .

~~
~~ 4- ; —

C 0 0 U 0 00 U 0
C.. . , ~~~ C.. C C -J • C

6

- ~~~~

_

- - - --~~~~~

number of tower level elements and any number of higher level
elements. Figure 2-1 contains a pictorial representation of the
three data structures . The data structure represents the log ical
view of the data.

The all owable file organizations (storage struc t ures) for
MDQS are sequential , indexed sequential , and integrated. For a
sequential file organization the records are stored serially and
the only way of physically accessing a record is to read all records
tha t precede it , - beg inning with the firs t record in the file .

An indexed sequential file is a collection of records that
can be acces sed ei ther sequen tially in key value order or randomly
by a particular key value . It consists of a data file and an index
file . An integrated file is a collection of records that may
contain complex inter-record relationships where the record
association is achieved through cha ins which provide cross-refer-
ence linkages between records . The allowable data structures for
each file organization are illustrated in Table 2-2 (4, 1-7).

The integrated file structure is effected in MDQS by the use
of Integrated Data Store (I-D-S) (references 13 and 15); and
indexed sequential f i l e by the use of the Indexe d Sequent ia l
Processor (reference 14). These two file structures were studied
to determine the feasibility of use for the Summary Database. It
was determined that an indexed sequential file organizat ion was
th e most effective means for implementing the Summary Database.
When using an integrated file structure , the data definitions and C

query procedures become complex because of the need to define
chains , re trieval mechani sms , and phy sical storage requiremen ts
(4 , 4-34). By defining unique keys in the indexed sequential file
for each record occurrence , a relational system was being effected.
This then provides more flexibility to expand the definitions and
to transfer to another data management system , if requirements
dictate.

TABLE 2-2. DATA STRUCTURES/FILE ORGANIZATIONS

File Organization

Da ta Stru cture s Sequen t ial Ind exed In tegra ted
Sequent i a 1

Singular X X X
Hierarchal X X X
Ne twork X

The RADC Productivity Database , the transaction files for
the Summary Database , and the six da tase t s for the H is to r i ca l
Database are define d as sequent ia l f i l e s wi th s ingular data struc-
tures . The Summary Database is defined as an indexed sequent ia l
f i l e and a h ierarchal data s t ruc ture .

7

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -S  

5--



SINGULAR 
HIERARCHICAL

o H
O Q ~~~~~~~~O~~~/ \ Co o~NETWORK

‘1

Figure 2-1. Allowable MDQS Data Structures

8



2 . 4  Data Loading and Maintenance

There are various options for in i t ia l ly loading a database
dependent upon file structure . The data can be loaded external
to MDQS through the use of system u t i l i t i es, HOL programs us ing
the standard I/O Routines , the Indexed Sequential Processor ,
(reference 15) or Integrated-Data-Store, (reference 13 , 14) and
must follow the standards for the specific file structure (4, 2-8).
The Historical  and Product ivi ty Databases were loaded us ing utili-
t ies (see reference 6 , Appendix B ) .  The Summary Database was
loade d us ing a combination of the Indexed Sequential Processor ,
For tran programs , and the MDQS LOAD function .

Within  MDQS the self-contained capability of the data can be
loaded using the LOAD function of the Conversational MDQS Langwige
(C1fDQ) Subsystem (5, 7-200). The LOAD function is used to generate
a new sequential or indexed sequen tial entry from a terminal using
a prompting method for inputting data item values .

The READ statement of the Procedure Language (5, 5-103) causes
data to be read from a non-database f i l e  into a specified structure
and can be read from a permfile on a removable device or a magnetic
tape .

Updating is performed (except for sequential) by the use of
the UPDATE function within CMDQ (5, 7-11), by the use of the
UPDATE statement of the Procedure Language (5, 5-149), and by the
use of the UPDATE clause in the RETRIEVE Statement of the Procedure
Language (5, 5-131). These are used in conjunction with other
statements of the Procedure Language including DELETE (5 , 5-48),
INSERT (5 , 5-63), STORE (5 , 5-146), and RESTORE (5 , 5-126). There
are restrictions on the use of these capabilities and Appendix F

• of reference 5 provides guidelines for using these functions
dependent upon the file structure . The use of this updating fea ture
requires that separate transaction files be initially generated
with the updated data and then updating is performed. Figure 2-2
illustrates the overall flow for updating the indexed-sequential
Suninary Database with a sequential transaction file.

MDQS does not provide for a Host Language capability where
an application program can directly access the database through 

—

the use of a CALL or language verb . However , if the database is
an integrated file I-D-S can be used , if the database is index-
sequential the index-sequential processor can be used , and if the
database is sequential the GCOS file system can be used which is
standard for all the GCOS procedure languages .

The Data Directory feature in MDQS allows for the listing of
the attributes of data items and entries within a database , but
does not provide cross-reference information in terms of relation-
ships to other data items or the utilization of the items .

9 

—. — .  - - . 5. — - . a__~ r— . •‘- - - - . -.5- - 

- - 5 —-.
~~~~~~~~ 

--
~~~~~~~~~~~~~~~~~~

S

~~~ —-~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-.—

~~~~~~~~~ 
— —--— -

~~~


r ~~~

C

-- 5 —_ ~~----~~~ -5—- —
~~~~~~~~~~~~ _-

_ - -- — .5- -~~~

ti l l

- 1
r__LL

1 i
i

\ h~f—~—L.!!..~
N! N1~lIN,1~ltuhui N~—’l ~

L_ 

10

-.5 - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -


Val id i ty checking is performed by the use of the CHECK/IS -
clause in the data definition (4 , 4-19) and is executed whenever
a value is changed or added to the data item during a batch
execu tion by procedure . The actual checking is accomplished by
a user subrou tine and/or by specif ying the valid PICTURE clause
and a value range .

M”)QS provides facilities for reorganizing the PICTURE
and USAGE clauses and adding or deleting groups , da ta items , and
records . The picture changes allowed are those as permitted by
a COBOL MOVE statement. -

-
.

New Directory Definitions and Data Definitions must be
translated and then the actual restructuring is performed . -

using an MDQS utility function (4, 2-10) 4, 6-1). Figure 2-3
illustrates the basic steps needed for restructuring a sequen-
tial or indexed-sequential file . The new and old data definition
source code is used as input to an MDQS utility routine and a
COBOL program is genera ted , compiled , and executed performing
the restructuring . The process for integrated files uses
I-D-S utility programs .

MDQS provides for a checkpoint and restart capability for
both the database entry that is being used during a procedure
and the coincident memory image of the procedure (5, 5-34 and
5, 5-164). The frequency of checkpoints can be specified and
a segment of a procedure is executed through the use of the
CHECKPOINT/ROLLBACK statement. The capability is only valid
for those databases which have concurrent upda te pro tection
specified in the Directory Definition and the SHARED or EX-
CLUSIVE mode in the procedure .

MDQS does not provide for the capability of capturing in-
formation about changes made to the database and usage charac-
teristics although various logging facilities and sampling tech-
niques of GCOS can be utilized .

2.5 Retrieval and Report Generation

Through a self-contained procedure language , the MDQS re-
trieval and report generation capability provides for qualifying
a subset of the database , sorting and/or formatting this subset ,

• • and printing this subset directly to the requesting computer
terminal. The basic retrieval capability is accomplished by
the use of the INVOKE and RETRIEVE statements with the incorpora-
tion of a conditional expression which qualifies the data subset
of interest (5 , 5-65 and 5, 5-128). The SORT statement specifies

• the order of the sort according to a maximum of 50 key fields
(5 , 5-141).

MDQS procedures may reference user application COBOL ,
Fortran or GMAP programs that perform data validation , encoding
and decoding , table lookups , and data transformation (5 , C- I) .

11

- 5 - - -———5-- •__~~~ 5•~~~ - •. ~~~~~~~~~~~~~~ ••-•~ .. •_ -___ •-__
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—— . 5 .~~~



MOOS
RESTRUCTURE

UTILITY
ROUTINE

~
1.

COBOL
PROGRAM -

C
.

C 
_ _ _ _ _ _ _ _ _ _  F

COBOL
COMPILATION

RESTRUCTURE
PROGRAM

EXECUTE 
—

~~~

‘c:::

~~~~~:::J
Figure 2-3. The Basic Steps for Restructuring

L 
12

3
— 5- ~~~~-~.-~

,----- -----5-- -

I ~~~~~~~~~~~~ — - - .~~~~~ -— .-~~~.-. 
—_::~_~~- ~~~—• — -‘ — 

~~~~~~~~~~~~~~~~~~~~~~ — -—-—.—~~~-—-5— -.5— .— —


In addition , the results of a procedure can be written to a
system standard permfile and subsequently utilized by an applica-
tion program . The results of a retrieval can also be output to
the printer , to the online terminal , to a magnetic tape , or to a
permfile that can be printed on the terminal (5, 5-81).

A tutorial method for generating MDQS procedures is
available through the use of the CMDQ subsystem (5, 7-1) and S

a more simplified method of retrieving data than the standard
procedure language is through the use of the Query Procedure
Language (5 , 8-1). A capability with the procedure language
allows for the definition of parameters to be inserted at ex-
ecution time (5, 3-26). r

An extensive reporting capability is available through
the use of the REPORT, LINE , and SPACE STATEMENTS (5 , 2-27)
and thtough the use of various editing options (5, 3-~30) .

Multiple users can access an MDQS database concurrently
through a concurrent access environment which protects the in-
tegricy of the contents of the files and prevents interference
between multiple users (4, 2-10). The databases must initially
be established with concurrent update protection by using the
CCOS File Management Supervisor (FMS) ACCESS/MONITOR and ABORT!
ROLLBACK options . The database access is then defined as
PROTECTED in the Directory Definition (4, 3-6).

2.6 Security

MDQS uses the CCOS File Security System (FILSYS) for file —

security and provides facilities for specifying the privacy P
protection and for controlling access to the databases by MDQS
procedures (4 , 1-2). The Data Base administrator is responsible
for assigning locks and keys , generating a privacy file , and
defining the locks in the Data Definition (4, 7-1).

The Privacy file is created by the use of the Privacy
Command within the Privacy subsystem and establishes correspond-
ing locks and keys for User IDs (4 , 7-7). The privacy locks at
the record level are defined in the record complete entry of
the Data Definition where the lock(s) supply to the reading
and writing by an MDQS Procedure for all data items within
the record (4, 4-8). The locks for each individual data item
are defined in the group/item entry of the Data Definition
(4 , 4-22).

2.7 Conclusions and Recommendations

Overall MDQS provides the basic database management features
necessary for the implementation of a Data and Analysis Center
for Software (DACS). The three most powerful features of MDQS
are its report— production capabilities , data structuring

-

,

- 13

C I

_

-

• .- -5 .— -~~~~~~~~~~~~ - 5 - ~~~~~~~~~~~~~~~~~~~~~ _ _ S
-

-.-C~-~~ ~~
•_

~~~ 
-

~ 
—~~~~~~ 

~~
_-. _~~~



— —— -~~~~ --~~~~~- - - ---~~~~ — -_ _ _

alternatives, and the database administrator tools including
the schema-subschema facility . It is also very important that
during this effort MDQS , with only a few exceptions , performed• its functions as descr ibed in the documentation . The weakest
feature of MDQS is the syntax of the Procedure Language in that
it is somewhat cumbersome to use for generating complicated
queries . Also MDQS is limited in the tools it provides for data-
base maintenance. These limitations can be compensated for
through the use of GCOS utilities and user HOL programs .

It is recommended tha t MDQS continue to be used as the data-
•1 base management software for the development of the Baseline - S

Software Data System to establish the framework for the evolution
into a pilot DACS and then into a fully operational center.

U ,

_ __ __ __ _ __ __ _ _  

14 

_ _ _ _  _ _  _ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ .~~~~-



~~~~~~~~~~~~~~~~~~~ .--~~~~~~:~~~~~~~ .:;~~~~~ .

~~-

I

Sec t ion I II

DATABASE DESCRIPTIONS AND DATA REQUIREMENTS

This section provides an introduct ion to the His tor ica l ,
Summary, and Product iv i ty Databases . Also included in this
section is a summary of the work performed during this effort on
the evaluation of data requirements for software r e l i ab i l i t y
models. The types of data required are l isted in Figure 3-1
along wi th a short description of each data item .

3.1 Baseline Databases

3.1.1 Historical Da t abase. The Historical Database consists of
six dat-asets that contain problem reporting and module descriptive
information on six large software development projects . The
data items available for each dataset are indicated in Table 3-1
using as a basis the data items l isted in the data requirements
list (Figure 3-1) . There are two columns associated wi th each
project . The f i r s t column provides the number of characters that
are needed to represent the da ta item , and the second column
indicates the maximum number of occurrences for each problem
recorded.

Following is a shor t descrip tion of the six projec ts tha t
const i tu te the data for the Historical Database.

Project 1 - This dataset contains Software Problem Reports (SPR) i -

from a large Command and Control System consisting of
115 ,346 Jovial/J4 source statements and 249 program
modules. The Project i tself and the dataset is dis-
cussed in Reference 7 and is referred to as Project 3.

There is a total of 4,970 Software Problem Report
records consisting of the SPR number , the date opened and
closed , the module which manifested the error , the module
tha t was changed , the error category and the severity of
the error , the test period , the correction type , and the
Software Modification Notice (SMN) number. There is a
record occurrence for each modificat ion made . Every SPR
required at least one SMN , and one SMN could have closed
more than one SPR. Therefore , the SPR numbers are not
unique and the SMN numbers are not unique .

Proj ect 2 - This dataset contains Software Problem Reports and
Module descriptions from an Avionics System consist ing of -

40 , 640 Jovial/J3B source statements and 84 , 065 Assemb ly
Language s ta tements . The description of the collection
and analysis of this dataset is contained in Reference 8.

15

— ——-—-—— --•-.C——- — • - _.~~— .5-~_5-~~_ _..C4a____ ~~~~~ — 5~_ 5551&. ~~~~~~ _. ,_~_ ~_ .51t •S- - .5. . . St 1__~__ * • C .5 - —

.5 .5 .5 5- -
~~~~~

OLO PROJ- ID PROJECT IDEN TXPI CATI O$
020 PROJ— VE R S ION PROJECT VE R SION
030 PROJ—TYPE PROJECT TYPE
040 SY S—I D SYSTEM ID IIYICATI ON
050 SYS— V E R S I O N  SYSTEM V E RSIO N
060 SYS-TYPE SYSTEM TYPE
070 SSYS— ID SUBSYSTEM OR FUNC TIONAL AREA IDENTETI CATIOB
080 SSYS—VERS ION SUBSYSTEM VERSIO N
090 SSYS—TYPE SUBSYST EM TYPE
100 NOD—I D NODULE IDtNTtYICA ~rIOI
110 NOD—V E RSION NODULE VE R SION
120 NOD—TYPE NODULE TYPE S -

130 COR P— ID COMPUTER IDEN TIFICATION 
S

140 COR P—ON COMPUTER OPERATING NODE
150 COR P—RATE COMPUTER PROCESS ING RATE
160 CORP—OS COMPUTER OPERATING SYSTEM TYPE
110 TECH—ID IDENTIFICATION OP THE CONSTRUCTION TECHNOLOGY
180 COM? L—ID TYPE OF COMPL EX ITY MEASURE USED
190 COMPLEXITY THE COMPLEXI T Y MEASU RE VALUE
200 COJST—TYPE CONSTITUENT TYPE(EX . JOVIAL ,ASSEMILY LANGUAGE)
210 NUN—OCCUR N U M B E R  OP OCCURRENCES OP CONSTITUENT TYPE
22 0 PHASE PHASE IN VII ICR ACT ION OCCURRED
230 NUN—RUNS—TOT TOTAL NUMBER OP RUNS
235 TEST—PER THE PERIOD IN W HICH THE TEST WAS PERFORMED
240 RUN—RUNS—O R TOTAL NUMBER OF CORRECT RUN S
230 AURS— PE R— TEST AVERA GE NUMBER OF HOURS PER TEST
260 TE ST—ID TEST IDEN TIFICATION
270 TEST—TYPE TYPE OF TEST - . -

280 DA TE—RU N DATE THE TEST WAS RUN
290 STRESS—TYPE TYPE OF STRESS A P P L I E D
300 STRESS—ME A S AMOUNT OF STRESS APPLIED
310 TEST—RESULT RESULT OF TEST
315 NUN—ERR NUMBER OF ERRORS DISCOVERED PER TEST

F 320 SPI— NUM SOFTWARE PROBLEM REPORT NUMB ER
330 D A T E — O P E N  DATE THE P R O B L E M  WAS R EPORTED
340 MOD—SO URCE THE MODULE ID WHERE THE PROBLEM WAS MAN IFESTED
330 ERR— CAT—TYPE ERROR CATEGORY TYPE
360 ERROR—CAT ERROR CATEGORY CODE C -

370 SEV—TYPE SEVERITY TYPE
380 SEVERITY SEVERITY
390 TTPE—TERN TYPE OF TERMINATION
400 HIS—TO—DISC HOUR S TO DISCOVERY J
405 WOR E—CAT TN! TYPZ OF DEVELOPMENT TASE PERFORMED
410 SMN — N UM SOFTWARE MODIFICATION NOTICE NUM BER
420 MOD—CHANGED THE ID OF TEE CHANGED MODULE S -

430 NOD—C I—VE IS THE VERSION OF THE CHANCED MODULE
440 COR—TYPE CORRECTION TYPE
430 COR—N ECH CORRECTION MECHANISM
455 ACT—CAT THE TYPE OF TEST PERFORMED
460 DATE—RECUR DATE WHEN PRO3LEM SOLUTION WAS INITIATED
470 DATE—CLOSE DATED WHEN PROBL EM WAS REPORTED TO BE CLOSED
480 DAYS—OPEN NUMBER OF DAYS BETWEEN DAT! OPEN AND DATE CLOSE
490 HHRS—TO—FII RU1IDRETHS OF HOUR S TO FIX
500 NUN—CHANGED NUMBER OF SOURCE STATHMENTS CHANCED
510 CODE—CONY A CODE TEA T INDICATES AN SP R DOCUMENTS MORE THAN 1 PROBLEM
520 PEON—DISC A DESCRIPTIOII OP TIE PR OIL IM
330 CORR—DE SC A DESCRIPTION OF TIE CO R RECTION
340 ERROR—DESC A DESCRIPTION OP -TIE ERROR

Figure 3-1. Baseline Data Requirements List

~~ ~~~~~~~~~~~~~~~~~~~ St ’ 
- 

- 
— .. ~~~~~~~~~~~~~~~~~

_t—.-~~~~- ~~~~~



. 5 .  — 5 - ~~~~~ .5—

TABLE 3-1. ATTRIBUTE MATRIX

AUGUST 1978

ATTRIBUTE PROJ 1 PROJ 2 PROJ 3 PROJ 4 PROJ 5 PROJ 6
NAME NU N MAX M UM MA X NUN MAX HUM MAX NUN MAX MUM MAX

CR1 HUM CR1 NUN CR1 MUM CR1 NUN CR1 NUN CHR NU N

PROJ— ID 2 1 5 1
PROJ—VERSION 6 1 3 1
PROJ—TYPE
SYS—ZU 1 1 1 1
S Y S — V E R S I O N  2 1
SYS—TYPE 1 2
SSY S—XD 4 1 3 1 1 1 3 1
SSYS—VERS ION 3 1 7 1
SSY S—TYPE 1 1
ROD—ID 4 1 7 1 8 1 16 1
NOD—V ERSION 2 1
MOD—TYPE 1 1 1 1
CORP—ID 13 1
CORP—ON
CORP—RATE 7 1
CORP—OS 13 1 C -~
TECH—ID 11 1 1 1 12 1
COM PL—ID
COMPLEXITY 1 1
CO*ST—TYP ! 1 2 1 1 7 1
H U M — O C C U R  5 2 5 2 6 1
PHASE 1 1 1 1 1 1 2 1
N U N — R U N S — T O T  3 1
TEST—PER 2 1 1 1 1 1
HUM—RUNS—O R S I
ARR S—PER—TZS T 3 1
TEST—ID 8 1
TEST—TYPE
DATE—RUN 5 1 S

STRESS—TYPE
ST).ISS—MRAS 5 i -:

TEST—RE SULT 1 1
NUN—ill 1 1 -

SPR— IUM 4 1 3 1 4 1 4 1 7 1
DATE—OPEN 6 1 6 1 6 1 6 1
M OD—SOURCE 7 1 S

ER R—CAT—TYPE —
E RROR—CAT 5 1 3 1 5 1 4 1 5 1 2 1 

C

5EV—TYPE
SEVERITY 1 1 1 1 1 1
TY PE—TERM 1 1 1 1
US—TO—DISC 5 1
WOR E —CAT 1 1
5KM — H UM 6 1 4 1 6 1
MOD—CHANGED 7 1 4 13 7 1 8 1
R OD—C R —VE R S 2 1
CO R — T YPE 6 1 1 1 5 1 9 1
COR —M ZC H 1 1
ACT—CAT 1 1
D A T E — H E CUN
DAT E —CLOSE 6 1 6 1 6 1 6 1 6 1
DAYS—OPEN 3 1 3 1
BE E S—TO—FIX 3 1
NUN— CHANCED 1 1
CODE—CONY 1 1 1 1
P R O I— DZSC 99 3
CO R R— DII C  99 3
E I R O I — D E S C  30 1

17

—S. ~~~~~~~~~~ .%~~~~~~*. $-~~ •%_e_ .5.—. 55

- - - - 
- ~~~•~

__
~~~~ _~~ _ 

-~~~~~ -
C

There is a total of 2,036 Software Problem Report
records containing the SPR number , the da te opened and
closed , the module(s) that were changed , the error category , S

the phase in which the error was introduced , the CPU hours
to discovery, the correction type , and the hundreths of
hours of CPU t ime to fix. Every SPR number is unique and
if more than one module is needed to be changed all the
module names are contained in the same record .

There are data on 69 modules which contain the name
of the module and a fun tional area designa tion , the pro-
gramming language(s) used and the number of source state-
ments. There are eight records that contain descriptive
information on the type of hardware and software used and
descrip tions of the tes ting phase s.

Project 3 - This dataset consists of Software Problem Reports
and Module descriptions from a real-time control system for S

-

a land-based radar system . The software system is made up I I -

of 109 modules with a total of 86,780 Jovial/J3 source
statements and 49 ,000 Assemble Language statements. The S

-

description of this projec t is contained in Reference 9.

There is a total of 2,165 Sof tware Problem Repor t ~
- -

records containing the SPR number , the da te opened and I -

~~closed , the module tha t was changed , the error category
and the severity of the error , the tes t period , the phase ¶

~
in which the error was introduced , the correction type ,

C

and the Software Modification Notice number . There is one
record occurrence for each modification made and each SMN
number is unique . The SPR numbers and the SMN numbers are
the same except that there are some blank SPR numbers .

Project 4 - This datasec contains Software Modification Reports
from the flight sottware of an onboard guidance , navigation

and control system for both a command module and a lunar
module. There were 16 flight programs (releases) and the
total number of computer words for all releases was
approximately 610 ,000 computer words . The sum of the
number of words added or changed since the last release
was 83,866. The majority of the software was coded using
assembly language with interpretive code interspersed
throughout . A description of this project and an inter-
pretation of the data is contained in Reference 9.

There is a total of 11,730 Software Problem Report
records containing the SPR number , the date closed , the
error category , the phase in which the error was in-
troduced , and the SMN number . There is a record occurrence
for each modification made and each SMN number is unique .
The SPR number references a document that established the
basis for the change but is only available for about 137,
of the records .

18


~~~~~~~jr-i~.. -~~~~~~~~- - - - - 1

Project 5 - This dataset consists of Software Problem Reports and
Module descriptions from a large , ground-based , real-time
data processing system . The majority of the Software was
coded using CENTRA N (an intermediate - level language
resembling a subset of PL/1) interspersed with assembly
language and system macros. A description of this project
is contained in reference 11.

There is a total of 5 ,693 Software Probl em Re ‘rt
records containing the SPR number , the date opened dnd
closed , the module that was changed , the error category ,
the phase in which the error was introduced , and the
correct ion type. There is a record occurrence for each
problem encountered. If the problem required more than
one solution , only one solution was recorded whi ch was
established using a priority scheme .

Ther e are data on 2 , 431 modules which contain the name
of the module , the number of instructions , the language

S 
used , and the type of construction .

Project 6 - This dataset consists of run and failure analys is
data from the development of the Launch Support Data
Data Base (LSDB) which includes database management
functions and fairly complex scientific calculations .

There is a total of 2 ,719 run analysis records that
report 484 errors . The records contain the module ID , the da te -

and time run , the result of the test , the test period and
activity , the severity, error category , and number of errors .
Ther e is a record occurrence for each run (test) made .

Below is a summary of the size of the datasets within
the Historical Database.

Software Module
Problem Reports Characteristics

Project 1 4,970
Project 2 Z,036 69
Project 3 2 , lo5 109
Project 4 11 ,730
Projec t 5 ~ ,693 2 ,413

Run Analysis
Repor ts

Ptoject b 2,719

19



— ~~~~~~~

-- . — — I

3.1 .2 Summary Database. The Summary Database was developed so
that queries could be formulated across the projects . The
failure and correction informa tion from the Historical Database
was summarized and incorporated into the Summary Database. The j
project/module attribute , environment , and productivity data
from the Final Reports (references 7-12) were extracted , coded
and put into computer readible form.

Figure 3-2 illustrates the three-dimensiona l aspect of the
Summary Database .

Software environment , technology , resource utilization , pro- —

duct ion , and software characteristics data is stored for various
reporting periods for the life-cycle phases. In addition , four
levels of descriptive information are used to describe the software :
the project , system , functional group , and module levels . A - 

-

project consists of one or more systems and provides a solution
toa problem . A system consists of one or more functional groups
and provides a meaningful product to the user . A system is
usually capable of operating independently of other systems. A . - 

-

functional group is a collection of modules which together satisfy
a set of functional and performance “pecifications . A module is Va discrete i-ientifiable set of instructions handled as a unit by
an assembler , compiler , or loader. Queries can be formulated
across the projects , modules , systems , and functional groups.

Data sti~~~~ry forms were developed to record information from - •

the technical reports for the six dacasets in the Historical
Database and to provide sunitnarization requirements Co convert the
data from the datasets into the format required for the Suimnary
Database . Each form contains eight fields that provide a basis
for defining a unique key for each record occurrence within the
Summary Database. This key identifies the applicable project ,
system , functional group , and module that applies to the componen t
informat ion recorded. Also included in this key is information
concerning the level of summarization and the record type which
indicates the format of the data.

In addition to the key data , the following information is
recorded on each form.

Component (see Figure 3-3). Component name, type, and
description ; developer , contract number , and data source ; the
number of systems , functional groups and modu .es ; contract type
and standards applied; the purpose of the data collection and the
procedures used ; the priorities and constraints of the produc t
development .

Technology (see Figure 3-4).  The phase , reporting level and
the applicable dates ; the technology utilized , the name of the
tool used , and the percentage of usage .

20

- ~~
-—

~~~ 

~~~~~~~~~ ~~~~~~~



ENVIRONMENT

.
0TECHNOLOGY

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~0 o~.

RESOIJRCF UTI LI?AT I ON
I-. •

PRODUCT ION

~ /~~
SOFTWARE CHARACTERIST ICS L

DESCRIPTORS

Fi gurt ’  3~~’ Summary Dat . i b~t sc

.‘l



I 

_ S

~ HH 
~~~~~~~~ 

~~

•
~~

~~~~~

0 ...j
0 0  — I

9 r.. § ~~~ I~~~~~~~~~~~~~~~~~ I~~~~~~1

L ~ 

~~~~~~~ 
_ _ _ _ _ _ _ _ T

LU e lii
~~~~~~~ ~ F’ ~~ ~

. 

~~~~I~Ie. j :;
-

~~ :tf C
~.

‘0

~~ ~~~
_

Co ~ ~~~!
J~~~~~J~~

iil~ I ~~
‘

~~~~~~~~~ 

~ 
IE8~~~~ 

I]~~

‘C

~~ 
,..
~~1 -~~~~ -

22

- —  _ _ • ~~~S 
~~~~~~~~~~~~~~~~ — - - ___________________

- - - . - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_________ — — -~,-~~~ -- ——- 5~~~L

-_ -_—
~~~~~- - -~~~~ ---- - -~~~~~~~~ -~~~~~~~ -— ~~-- --— ~~~~~~~~

- -

I - .

~
~~ IJ ..- )~

~I — ~J~~’ U
h. — •

~~— c ——

V~~~~h. ~~~~~~‘0

I
~ ~~~~-

2 -. 
~~C- z - ~ ~~
. ~g’~-~~; C-

E ‘- F’ ~
— 3 —

— 

J.’ 

;~~~~ 

I I 

I
-
~~ ~~~~~ 

.! 
S

.2 8
—

‘0 _ _ _ _ _ _ _ _  1
A. In IQ~~~ 0 — — o I ~~ ~~~~~~~~~~~~~~~~~~

2 liitIIh S

I I

23 

- - - -

III.  —---.~- ~~~~~~~~~~~~~~~~~~~~~~~~~ ~-_~~~~_



‘4

•

~

. h I ill I
- 

______1111 I~

’ 
‘

~~ ~ 1 8w
[ L I !

~1 U

1! 1 11 C
I

II fl~Ii Jdih ~:aFiJ i i J
‘0 ~~~~~ 

[U~~~~~~
Q _

~~~
..01I..

~~~~~~~~~~~~~~~~~ I” 
_ _ _ _ _ _

II Iki ’

24 

~~~~~~~~~~~~ ~~~~~ ~~ 


r ~~~~~~~~~~~~~~~~~~~~~~~~

-~ S

~
II

_ _ _ _

I I
-.

0 ~~~~ ‘4~~~C-
0

f..
C C- cn k

g
$

.. F
I; !_

I! 2-— ‘4
— O S —

C-

_ 1 ~::f~
9.

• ‘4
0
— bO
~~

H-
- HI-I’

‘0 — I ‘0

8

•

25

—

~ S

.—- _____________

~

0.

I I H
-,

C~

g
Cl’.

D

I

I
C-

-

0

lb C- ~.)A
- -

0

I
8

_ _

~i i

9

~~9 [W~~~ - j e . 4

t’

(C,

OC
-‘ bO

“ IC - i
(C’.

114

_ _ _ _ _ _ I
‘0 L V I [~o ~

~

8 ~ I9
3

C- 0 * ~ • -

I

’

26

i ~~~~~~~~~~~~~~~~~~~~~
-

S I

~~~~~~~~~~~ 

~:E
!._ _ L__ __ ___

27

-- A,.~-t.’ .- - - .~~~~~ -a .  - -. • —‘- *~~.-aa~t

Ii~ —— — — . - - •- . ---•• —~~~~~~ -----. —- •- --- -- ---- 
-

~~



1~~

Instructions (see Figure 3-5). The phase, reporting leveland the applicabije dates; the programming language used; the I -number of source instructions , object words , and percent of usage;complexity type and measure; and the mode of construction .
Errors (see Figure 3-6). The test period, reporting leveland the ä~~licab1e dates ; the error category type, the errorcategory , and the number of errors.

Corrections (see Figure 3-7). The test period, reportinglevel and the applicable dates; the correction type , the averagenumber of days open , and the number of errors .
Component-Module (see Figure 3-8). This form is used toestabl]jh the key in a concise manner for any of the record types .

3.1.3 RADC Productivity Database. The stmlmary database compiledby Richard Nelson of RADC was difined using MDQS and was calledthe MDC Productivity Database (reference 16). This databasecontains information on software projects including project andcompany name , attributes of the programming language and documenta-tio~ , a Productivity measure , an SPR rate , and the type of con-struction used .

S This database contains information Ofl approximately 400 soft-ware development projects encompassing 21 million lines of code.- Be low is a listing of the number of proj ect descriptions that 
- - .

contain specific data.

Number Data
Projects Type

• 370 productivity
30 error
365 language usage
200 implementation

technologies

3.2  Data Reguireme~~g

The purpose of this section of the report is to provide asummary description of software reliability models and an explana-tion of the kinds of data that are required to use these models . S
— This information was compiled to determine what kinds of data wereneeded for modelling purposes and the type of coverage provided bythe data in the BSDS.

The Baseline Data Requirements List (Figure 3-1) containsthe majority of the model requirements (except for reference 5• and the personnel availability as in reference 8). The stresstype and measure should be expanded to include explicitly
- 

• 28 

1 -

- ~~~~~~~~~ ~~~~~~~~- -



wh ether the stress involves CPU time and/or a measure of the S
quality of the tests . The constituent and complexity measure
types should be defined to provide a set of measurements appli-
cable across projects and modules .

The majority of the Data Acquisition Projects provide the
date of error detection and the date of correction . The one
exception is the Project 4 data where only the date of correc-
tion is reported . The only dataset that included CPU time is
the Project 2 dataset and none of the datasets include any infor- U
mat ion on each test performed. However , the data from Project 6
does include information on each test.

Hecht (2) differentiates between measuring , estimating , and
predicting software reliability . Measurement implies that the
software operates over a period of time and segments of operation
are scored as failure or success. A measurement reliability numeric
is normally calculated during acceptance testing before the software
is turned over to the user to determine if a reliability require-
rnent has been met. This reliability numeric can also be used to
determine if the software is deteriorating over the life of the
product and to determine the effect on reliability of different
development and testing tools and techniques .

Estimation is taking sample reliability measurements in
order to approximate when testing will be completed and to determine
if a reliability goal can be met . The estimation reliability
numeric must take into account any differences from the operational
environment including test data selection and reliability growth . I 

-

Prediction is a reliability statment not based on a measure-
ment of the operation of the software but on the actual or antici-
pated attributes of the software such as the number of lines of 

-

code. Prediction is used for project management purposes to esti-
mate test and correction effort needed , to forecast operational
downtime , and to guide software design to meet reliability require- -

•

ments.

The data requirements for measuring and estimating are very
similar , but the data needed tor prediction varies because of
the difference in the nature or the assumptions . For measuring
and estimating , it is assumed that the system is operating ,
and the data reflects the operational characteristics of the
system. With prediction , only the static characteristics are
considered and data can be acquired or determined before the S

program is operational. - -

The HectiC reports (2,3,4) present tne essential concepts in
the numerical evaluation of software reliability and a simple
mathematical relations (models) that have been found usetul in
the field.

29



The measurement models assume that the tests or runs (trials)
performed are those that are meaning fu l  for the actual operational
environment . The most simplistic measurement model provides
a reliabilty numeric for a batch software system or a real-time
system dealing with discrete operations using the ratio of
successful trials to the total number of trials. This numeric can -

be normalized to program length to account for differences in
exposure to failure between programs .

For real-time systems dealing with continuous data streams ,
a practical reliability numeric is mean-time-between-failures - 

-

expressed as total running time (t), divided by the number of
failures (F) in the interval 0 to t. A normalizing factor for
this case is the number of instructions executed per unit-time .

For software reliability estimation , if the software is being
tested in the operational environment and the test cases are
representative of inputs tor the operational environment , then
the reliability indices calculated during measurement can be
used as unbiased estimators to estimate future reliability
taking into account reliability growth as applied to operating
time and error removal.

In the case where test data contains more severe requirements
then actual usage, he discusses using the techniques of parti-
tioning the input data sets and calculating the probability of
failure ascribed to the selection of input data.

Littlewood (5,6) c~iscusses a model for estimating the re-
liability of a software system based upon the attributes of each
component (or subprogram) and the interactions . The inputs needed
for this model include a transition probability matrix which gives
the probability of each subprogram given that it will switch to
another program , and the failure rate for each subprogram .
The model is also extended to include cost of failure by in-
puting the mean and variance failure costs for each subprogram .
He states that the failure rates and cost parameters for each
subprogram can be estimated from test data , that the transition --

probability matrix in a large system would be sparse , and that
the mean-time spent in each subprogram should be able to be
estimated.

Littlewood (6) discusses the need to examine the special
• requirements of software and that many of the software reliability

measures rely too much on hardware analogies. He specifically
argues that we should be concerned with operational reliability

S and not with how many faults are in the program . He defines
operational reliability as the reliability of the program as it
performs (failure rate , distribution of time to next failure, ete).

30

— .—~~ — — ~~~~ _~~~~~ _-,.j_-



The results of a project to develop software reliability
prediction models using regression analysis methods are presented
by Motley and Brooks (7). The authors concluded that the predict-
ability of programming error measurements varies from very low
to very high and the variability is related to the functional
differences of the modules , the differences in the programming
language used , the length of time formal failure data collection
was carried out , the amount of thoroughness of testing , in-
adequacy of the linear model to provide perfect predictabilit y ,
and other programmer , project , and management factors affecting
the software development process They recommend the establish-
ment of a baseline set of predictor variables initially starting
with their five and ten predictor summaries. These five and
ten predictor variables are dependent upon the project or func-
tional grouping . This baseline list should then be expanded to
ref lec t the r~ su1ts of further studies. 

-

Their results indicated that the length of the program and
the number of program interfaces per 100 lines of source code
were found to be the best single predictors and that program C .

complexity variables contributed significantly to predict-
ability.

Musa (8,9) postulates a software reliability model based
-
‘ on execution or CPU time , and a concomitant model of the testing

and debugging process that permits execution time to be related f
to calendar time . The main input consists of a set of ex-
ecution time intervals between failures experienced in testing , - •

along with the number of days from the start of testing on
which the failures occurred. Auxilliary inputs consist of 23
parameters including dates , computer time , and man-hours required
per correction , personnel and computer availability, and mean-
time-to-failure (MTTF) objective .

The output consists of measurement numeric of the present
MTTF, and estimate of MTTF objective attained , remaining number
of faults to be uncoverd and corrected to achieve the MTTF
objective , and an estimate of the remaining execution time and
calendar time required to meet the objective .

Thayer (10) and Thayer with Lipow (11) discuss what they
have termed a phenomenological approach to software reliability
prediction . Phenomenological is used in the sense of relating
to measureable sottware characteristics that experience has shown
are well correlated with reliability. They have used both
standard and nonstandard linear regression analysis techniques
applied to numbers of software problems as a linear function
of defined software reliability characteristics.

They have hypothesized that the best single predictor for
the number of problems is the nuxnbc r of branches and is a

31

- • -. - — — — S  ~-. .- C , . .~~b . . . ~~~ ~~~~- s - -

- - .— - ~~ ~~~~~~ ~~~~- -- ~~~ -~ ~~— ‘~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~—.. - ~~~~~~~~~~



—  -~~~~

slightly superior predictor than the number of statements. They -

also state that the number of application program interfaces ,
number of computational statements , and number of data—handling
statements are also good predictors but that the number of branches
and the number of data-handling statements are highly correleated
and should not be used together . These predictors cover the
period for the number of software problems during formal demon-
stration .

Their data also showed that , for each software function , the
number of preoperational problems is a fairly good predictor of the
number of operational failures and that the number of design
problem reports is a good predictor of the number of problems
encountered in testing . Additional analysis shows that opera-
tional failures for each software function are reasonably well
correlated with the number of design problem reports for that
function.

An examination of some of the more widely used software re-
liability models is presented in reference 12. This paper
addresses analytic models that predict the number of indigenous
errors remaining in the program , the mean-time to the next - -

failure , the time required to ditcover all remaining errors , and
the standard deviation associated with the predictions . Although
the authors of this paper state that all error prediction f
models are deficient in the accuracy of the model predictions ,
the insights gained from studying the problem have provided
guidelines for developing and testing the software.

Suker t (13 ,14) reports on a study to analyze the results of
several software reliability models against failure data obtained
during formal testing of several large DoD and NASA software
development projects. No consistent patterns emerged in this
study. Results varied depending upon data content and applica-
tion type . He recommended that more detailed analysis is
needed with additional datasets and that better ways are needed
to statistically determine the accuracy of model predictions .

Goel and Okumoto (15) have developed a stochastic model for
software failure phenomena based on the case where errors are
not corrected with certainty. The following quantities of in-
terest are derived in this report : distribution of time to a com-
pletely debugged system , distribution of time to a specified
number of remaining errors , distribution of number of remaining
errors , expected number of errors detected by time (t) , and the
distribution of time between software failure.

The required data for models described in (reference 12)
include the date the error was detected. From this information
the calendar time between failures , the number of failures per

• reporting period and cumulative number of errors detected at a
certain date can be computed.

32



The required data for models described in reference 2 and 2 -
include the date the failure occured and the date corrected.
In addi tion to the above mentioned da ta , cumula tive number of
corrections made and the number of errors detected and corrected
per time—interval can be determined.

S The data required for models described in reference 2 ,
and 5 - 9 include the amount of execution (CPU) time expended
before an error was detected . From this information CPU time-
to-failure , total running time-to—date , CPU time-between-
failures , and CPU time—per-interval can be computed. This CPU
time can be reported either for cumulative time before an error
occurs or for each trial , whether it be a success or a failure .
Reference 2 includes discussions on models that required a
recording on the date of each test (trial) and the result.

The prediction models discussed in references 7, 10 and 11
also require module length , number of interfaces , number of
branches , number of computational statements , number of da ta
handling statements , and other statement type counts (these
attributes have been termed constituent types). Also required
are complexity measures and the number of design problems en-
countered. r
Additional information that provide more meaning to the
results include dates for testing phases , error descriptions
including type and severity, opera ting mode and processing
rate of the computer , stress type and measure ( i . e . ,  a measure
to indicate how well the test(s) correlate to the operational
environment and/or a measure of the amount or percentage of
code exercised) , module attributes , resources spent in correct-
ing the error , and the phase in which the error was introduced.
The model discussed in references 8 and 9 requires additional
information including personnel and computer availability and the
project mean-time-to-failure objective.

The semi-markov model discussed in reference 5 is actually
a system level reliability estimation model in that an estimate
is made dependent upon the fai lure rate for each subprogram ,
a probability matrix for subprogram “switching” , and a measur e
of how much time would be spent in each subprogram .

33 

- .- - • - — 

-•- — - -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ -- --



S

3.3 Data Requirements’ References

1. Lloyd , D . K . , Lipow , M. Re l iabi l i ty  Management, Methods, andMathematics, Second Edition , Redondo Beach, CA: S

Publ[ihecr by the Authors , 1977. 5

2. Hecht, H. (The Aerospace Corporation , E. Segundo , CA) . HMeasurement , Estimation and Prediction of SoftwareReliability . Hampton , VA: NASA Langley Research Center ,
NASA-CR-145135, January 1977.

3. Hecht , H. , Sturm , W.A., Trattner , S. Reliability Measure-ment During Software Development . El Segundo , CA: The (Aerospace Corporation , NASA-CR-l45205 , 1977 .

4. Hecht, H., Sturm , W .A ., Trattrter , S. “Reliabiltiy Measure-ment During Software Development ” , A Collection of
Technical P~~ers. AIAA/NASA/IEEE/ACM Computers iii
Aerospace Conference , November 1977 , pp. 404-412.

5 . Littlewood , B. “A Semi-Markov Model for Software Relia-
bility with Failure Costs”, Proceedings of the Sympo-
sium on Computer Software Engineering. New York :
Polytechnic Press , 1976 , pp. 281-300.

6. Littlewood , B. “How to Measure Software Reliability,
and How Not to.. . “

, Third International Conference on
Software Engineering. New York : The Institute~~fElectrical and Electronics Engineers, Incorporated , and
the Association for Computing Machinery , May 1978, pp. 37-45.

7. Motley, R. W., Brooks , W.D. (IBM Corporation , Arlington ,
VA). Statistical Prediction of Programming Errors.
Griffiss AFB, NY: Rome Air Development Center, RADC-TR-
77-175, May 1977 AO4l].O6~

8. Hamilton , P.A., Musa, J.D. “Measuring Reliability of
Computer Center Software”, Third International. Con-
ference on Software Engineerin.~ New York: The Insti-
tute of Electrical and Electronics Engineers , Incorporated ,
and the Association for Computing Machinery, May 1978 ,
pp. 29-36.

9. Musa , J.D. “The Use of Software Reliability Measures in
Project Management”, Second International Computer
Software and Applications Conference. New York: The
Institute of Electrical and Electronics Engineers , Incorp-
orated , November 1978 , pp. 493-498.

34

•- -~~~~~~~~~~-

~~~~~~~~~~— -..-
~~~~~~~~~ ~~ - - - - . - -~~~~~~~~~~~~~~~~~~~~~



10. Thayer , T.A. (TRW Defense and Space Systems Group , Redond oBeach , CA). Software Reliabilitj~~Stu~y.~ Griffiss AFB ,NY: Rome Air Development Center , RADC-TR-76-238,
August 1976 A030798.

11. Lipow , M ., Thayer , T.A. “Prediction of Software Failures”,Pr oceeding s 1977 Annual Reliabi1it~ and Maintainabflt~ySymposium. WashI~gton , D.C.: Reliability and Maintain-
ability Symposium , January 1977 , pp. 489-494.

12. Schick , G.J., Wolverton , R.W. “An Analysis of Competing
Software Reliability Models”, IEEE Transactions on
Software Engineering, Volume SE-4, Number 2. New 1~ork :
The Institute of Electrical and Electronics Engineers,Incorpora ted March 1978 , pp. 104-120.

13. Sukert , A . N .  “An Investigation of Software ReliabilityModels ”, Proceedings 1977 Annual Reliability and
Maintainability Symposium. Washington , D.C .: Relia-
bility and Maintainability Symposium , January 1977 , pp.
478-484.

14. Suker t , A .N. “A Four-Project Empirical Study of SoftwareError Prediction Models” , Second International ComputerSoftware and Applications Conference. New York : TheInstitute of Electrical and EIectró~iiics Engineers , In-corporated , November 1978, pp . 577-582.

15. Goel , A .L. , Okumo to , K. (Syracuse University, Syracuse ,NY) .  ~~yesian Software Prediction Models, An ImperfectDebugging Model for Reliability and Other Quantitative
Measures of Software Systems. Griffiss AFB , NY: RothiAir Development Center, RADC-TR-78-155, July 1978.
VOL I, A057870; VOL Il , A057871; VOL III , A057872; VOL IV, AO57873~

35

_ _  -



REFERENCES

1. Duvall , L. M., Software Data Repository Study. Griffiss
Air Force Base , NY: Rome Air Development Center , RADC-TR-76-
387 , December 1976 A050636,

2 . Honeywell , Management Data Query System/IV Administrator ’s
Guide, DD94, Rev. 0, March 1975 .

3. Honeywell , Management Data Query System/IV User ’s Guide, DD92,
REv . 0 , March 1975.

4. Honeywell , Management Data Query System/IV Administrator ’s
Guide, DD94, Rev . 1, August 1976 .

5. Honeywell, Management Data Query System/IV User ’s Guide,
DD92 , Rev . T , August 1976 .

6. Curtis , C. , Duvall , L . ,  Baseline S/W Data System User ’s Guide.
Griffiss Air Force Base , NY: Rome Air ~eveiopment Center ,
October 1978.

7. mayer , T., et. al., Software Reliability Study. Griffiss
Air Force Base, NY: Rome Air Development Center, RADC-Tfl-76-
238, August 1976 A030798.

8. Fries , N. J., Software Error Data Acquisition. Griffiss Air
Force Base~ NY: Rome Air Development Cente~~ RADC-TR-77-130 ,
April 1977 A039916.

9. Wiliman , H. E . ,  et. al. , Software Systems Reliability: A
Raytheon Project History. Griffiss Air Force Base, NY: Rome
Air Development Center, RADC-TR-77-188, June 1977 A040992,

10. Rey , P. , et. al., Software Systems Development: A CSDL
Project History . Griffiss Air Force Base, NY: Rome Air
Development Center , RADC-TR-77-2 13 , June 1977 A042186,

11. Baker , W. F., Software Data Collection and Analysis: A Real-
Time System Project History. Griffiss Air Force Base , NY :
Rome Air Development Center , RADC-TR-77-192, June 1977 AO4l644~

12. Hecht , H . ,  e t .  a l . ,  Reliability Measurement During Software
Development. NASA- CR-145205 , September 1977.

_ _ _ _  J______________ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~



13. Honeywell , I-D-S/]. Prograniner’s Guide, DC52, Rev. 0 andAddencluins A and B, April 1976.

14. Honeywell , Indexed Seguential Processor, DD38 , Rev. 0 andAddendum A , January 1975.
15. Honeywell , I-D-S/1 User’s Guide, DC53, Rev. 0 and Addendums 

SA and B, Ap~1r 1976.
16. Nelson, R., Software Data Collection and Analysis. GriffissAir Force Base, NY: Rome Air Developnent Center, September1978.

I

-j
38 5 

~~~~~~ —~~~~~~—.---~~~~ -  •*
~~~~~~~~~ •~~~



_ _ _ _ _  -- ~~~~
- -

~~~
- -

~~

- -

MISSION :~of
Rome Air Development Center

Q,4t~ plan4 and exeeu.teo 4e4 eatc h, deve~opment, te~t and
4~~~~~~~ j acqwLo~W.on ptogkamo A..n ~jppot t o~ Coniwind, Co~ itoLCo . ti and IntetUgence (C’j j a~.twWe~. Tec~hni~a2and eng4nee~2ng 4uppo~~ wWi~n akeao o~ hni.4aL competen~ec~ ptov.c.ded .to ESD P.togt~m 0~~~ 2~~ea (P04) and o~tJtv~ ESt)eZeiiejtt~. The ~ 2nc2paZ ~tehstLca.e ma6 0n wteao ate
CO~~WWIL4OJ2 On6 , e2ectto?~gneZj.~ gui4ance and con.ttoi, 4ut-
vej .Uanc e o~ g/ towid and aekoopaee objec~14, ôttetUgenee dataand handt Lng, £n~o’uMa.tLon 4Øtem teahnotogy,A.ono~phenia p .topagat,o,g, oolJ4 4ta.te 4e4.enae6, mLc.kouLwt

ei2.tJIONI.C tdA~b~LLtq, maA.n.ta.~nabW..ty and

-~~~~ ~~~~ - ~~~~~~~~~~~~ ~~~-
i i ~~~~~ i -

~~~ i~~~~~~


