AD=A073 173 MITRE CORP BEDFORD MA F/G 9/2
A KERNEL=BASED SECURE UNIX DESIGN.(U)
‘ MAY 79 J P WOODWARDrs 6 A NIBALDI F19628=78=C= 0001
| UNCLASSIFIED MTR=3499 ESD=TR=79~134

1.0 %2 g2
oo ¢

gl 22
o s
: 18

28 s me

] »
X ¢

. ¥
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-

g 4
% s
Fere

- : rli‘

ESD-TR-79-134 MTR-3499

A KERNEL-BASED SECURE UNIX DESIGN

(]
e
e
(] , ‘
A AUG 28 ‘
S
LS

BY J.P.L. WOODWARD AND G. H. NIBALDI

MAY 1979 {r

Prepared for

DEPUTY FOR TECHNICAL OPERATIONS
ELEC'I'RONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Hanscom Air Force Base, Massachusetts

A

P_fiLE_copy

—-——

- .

Project No. 572N, 8010
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-78-C-0001

Approved for public release;
distribution unlimited.

79 08 24 ng0

When U.S. Government drawings, specifications,
or other data are used for ary purpos? other
than a definitely related government procurement
operation, the government thereby incurs no
responsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or othe-wise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission tc manufacture, use, or sell any patented
invention that may in any way be related thereto.

Do not return this copy. Retsin or destroy.

OQanicd P, Bedn

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

bl M. b

DANIEL R. BAKER, Captain, USAF CHARLES J. GREWE, JR. Lt Colonel, USAF
‘l‘echnology Applications Division Chief, Technology Applications Division
Directorate of Computer Systems

Engineering

ORMAND MICHAUD, Colonel, USAF
Director, Computer Systems

Engineering
Deputy for Technical Operations

PRI I T e . o
@ A KERNEL-BASED SECURE UNIX DESIGN ¢ ‘

AUI. QR(3) e
e
1 o (

READ INSTRUCTIONS

ESDHTR-79-134 |

BEFORE COMPLETING FORM

] G. REPORT NUMBER
74 MTR-3499
= : T GRANT NUMBER(s)

J.P.L 7WOODWARD
G. A NIBALDI

@W F19628-:;8—C-;6501j
i

[9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. i:gﬁR&AS’OEA_KESE:{TT.NPU‘:‘OBJEESS‘I’, TASK
The MITRE Corporation

P.O. Box 208 Project No. 572N, 8010
Bedford, MA 01730

11, CONTROLLING OFFICE NAME AND ADDRESS . E
Deputy for Technical Operations @ ¥ AY P©79 ’
Electronic Systems Division, AFSC .. AGES

Hanscom AFB, MA 01731

4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

/7 G] UNCLASSIFIED
% o /

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

S & ae e e @ ¢ - e

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

CGMPUTER SECURITY
SECURITY KERNEL
UNIX

NABSTRACT (Continue on reverse side if necessary and identify by block number)

The UNIX Time-Sharing System was developed by Bell Laboratories for the

DEC PDP-11 series of computers. The Secure UNIX Prototype Project has addressed
the problem of defining a secure version of UNIX that preserves as many as possible
of its desirable qualities: completeness and simplicity of design, low cost, and an
extensive amount of quality software. This report presents a prototype design for a

Secure UNIX system based on security kernel technology previously developed. &

L

DD , f3R", 1473

EDITION OF | NOV 65 1S OBSOLETE

UNCLASSIFIED

/) - / ¢5¢ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

——

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) ‘

¢
£l

fisoie sl BFE AR e A4

-

¥
i
L)

¢
£
i
E SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ACKNOWLEDGMENTS

This report has been prepared by The MITRE Corporation under
Project Nos. 572N, 8010. The contract is sponsored by the Electronic
Systems Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

The authors would like to thank K. J. Biba for the original
Secure UNIX design from which this design has evolved.

TR s - T e e T a—— — TR RTE S

¥ 2 LRI
y - e S— T e e e — - Q(

\ o T
s , ey

T

o

g‘

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I

SECTION II

SECTION III

SECTION IV

INTRODUCTION

PURPOSE
PROJECT GOALS
PLAN OF PAPER

SECURE UNIX DESIGN CONSIDERATIONS
UNIX ATTRIBUTES

UNIX Object Structure
UNIX Operations

UNIX Protection Policy
UNIX Deficiencies

SECURE UNIX PROTECTION POLICY
SECURE SYSTEM DESIGN
SECURE UNIX ARCHITECTURE

SECURE UNIX KERNEL ARCHITECTURE
DESIRED PROPERTIES
Kernel Objects

KERNEL FACILITIES

General Properties
Kernel Protection Policy
Kernel Object Structure
Kernel Operations

KERNEL INTERNAL ARCHITECTURE

Abstract Machine Decomposition
Process Decomposition

PRIVILEGED SUBSYSTEMS

PROTECTION ISSUES

ROOT PROCESS

DISCRETIONARY AUTHENTICATOR
PORT MANAGER

11
12
13

14
14
15
18
18
18
21
21
22
24
28
40

40
54

62

62
63
64
64

SECTION V

SECTION VI

T ————

TABLE OF CONTENTS (Concluded)

THE SECURE UNIX EMULATOR ARCHITECTURE

PROTECTION POLICY
OBJECT STRUCTURE

Information Processors: Process Family
Information Storage and 1/0: File System

OPERATIONS

Process Operations
File Operations

EMULATOR INTERNAL ARCHITECTURE

Data Bases
Emulator Subsystems

SUMMARY
ACCOMPLISHMENTS

DISAPPOINTMENTS
HARD PROBLEMS

68
69

72

73
76

79

79
82

88
88

90
91

LIST OF ILLUSTRATIONS

"

Figure Number Page
1 UNIX File Structure 9
E 2 SUNIX Architecture 16
3 3 Kernel Object Attributes 29
‘ y Kernel Operations 39
5 Kernel Abstract Machines 41
| 6 Non-Terminal Device Manager Process Structure 56
3 7 Terminal Device Manager Process Structure 57
8 Segment Manager Architecture 59
9 User Process Manager Process Structure 60
‘ J

SECTION I

INTRODUCTION

PURPOSE

UNIX is a time-shared, interactive, multiprogrammed operating
system for the DEC PDP-11 series of computers. Its qualities of
completeness and simplicity of design, low cost, and an extensive
amount of quality software have made it attractive to a large
community of users to which such computing power was never before
available. These same properties make it attractive as a candidate
for a secure operating system.

The DoD community has many of the same computational needs as
the general computing community. These needs are compounded by a
need to protect classified information. Thus a Secure UNIX system
would address many of these problems in a powerful, cost-effective
manner. This paper will attempt to address the issues in the
development of a Secure UNIX through the presentation of a prototype
design for such a system.

. ee e e -

ves @ .
- e eo.0~ .

PROJECT GOALS

The Secure UNIX Protoype Project at MITRE, sponsored by both
ESD and DARPA, is addressing the problem of defining a secure
version of the UNIX operating system that preserves as many as
possible of the desirable qualities of the UNIX system. 1In
particular, we have had the following goals during this project:

a. incorporation of DoD security policy;

b. preservation of performance;

c. transparency of operation to unilevel user programs;
d. minimal verified mechanism to support the policy.

The imposition of these goals on UNIX has caused the sacrifice of a
primary UNIX attribute (attractive to many): the extreme
malleability of UNIX to be molded into UNIX mutations deemed more
useful for one application or another. A verified system cannot
provide the same degree of flexibility that UNIX itself provides.
However, this loss is offset by the availability of a secure
operating system.

A S T

PLAN OF PAPER

The paper is organized into five additional sections. The next
section contains a discussion of the general architecture and-
properties proposed and constructed for a Secure UNIX. Section III
decomposes the general architecture of Section II to discuss the
detailed architecture of the Security Kernel portion of Secure UNIX.
Section IV describes the Secure UNIX privileged subsystems,
processes that must circumvent ordinary security controls to perform
certain necessary functions. Section V builds on the Kernel base of
Section III to define the set of non-verified software that provides
the "illusion" of UNIX to users of the system: this set of software
is termed the Secure UNIX Emulator since it emulates the UNIX
interface to user programs. The final section concludes the paper
with a brief resume of some of the successes and failures of the
prototype.

Rl s Wti: . A E L3

oy "

s e A SR e i b e

ot e N ¢ W

SECTION II

SECURE UNIX DESIGN CONSIDERATIONS

This section reviews the issues considered in the design of
Secure UNIX (SUNIX). First the UNIX attributes that most directly
affect the SUNIX design are presented. Next the protection policy
chosen for SUNIX is stated, and finally the general architecture of
SUNIX is described.

UNIX ATTRIBUTES

UNIX provides a general interactive environment. It draws much
of its technology from a distinguished group of predecessor systems,
including MULTICS and TENEX. It provides device independent
input/output, a hierarchical file naming system, user level
multiprogramming, and a sophisticated set of applications programs.
A full description of the UNIX system can be found in [1] and [2].

This discussion of UNIX attributes is centered around a
discussion of the abstract objects (and operations on these objects)
that UNIX provides, for it is these attributes of UNIX that most
directly affect the design of SUNIX.

UNIX Object Structure

UNIX defines two basic types of objects: file systems (which
include input/output) and processes. Their attributes are
summarized below.

A file system in UNIX is a large block of mass storage such as
random access tapes, disks, or logically defined portions thereof.
A UNIX system may have an arbitrary number of file systems in use at
one time. File systems other than the "root" file system may be
"mounted" and "unmounted" at any time.

Each filesystem is partitioned into a linearly addressed set of
512 byte blocks. Some blocks are used to organize the rest and
consist of blocks that define the free list of available blocks,
and, more importantly, the table of i-nodes defined for this file
system. Each i-node describes a file in the file system. The UNIX
file structure is diagrammed in figure 1.

oo

\

2an30n335 BTT4 XINA T 310814

—
962-T-L oot -{ A0
VJ S ks n;x L (8uyssaippy 202a1pBI-LI9nog) { ﬁ
| : i
1 . ,
Jaqum :a98ny {
(Z-1-2 w014 2-1 o018 [1x0018 [gwoora |-+ |owooraz2a 1| |
T-1~L ¥°°14 1-L A2o1g T‘\\ w
o I3 201d 234 i
wa3sLsa1Td Ao01d 2344 TS Fo014 4 718 |
$5E-0 AOTR (8urssaippy 31°31FpuU]) _
: *‘ _oxuo:fﬁ . .?xuoan 1aqunyT ~ 19887 |
Z-9 do1d
i 1-9 1018 g \ ,w
e —————————— {
% |
wa3SASaTTd [y [
o f
(8uyssaippy 12311Q)
T%Sﬁxoozﬂ = osuﬁﬁmzﬂ.zu_ :1TERS |
g 4
{
SATIA VIvd “
wa3SASaTTI

swey | zaqunyy

T.I..,

£1030211Q awey | aaquny]

K10123171Q .
|

A3103233%(1
% : AHOUVITTH "N0LOIFIA

e i s o AR

ey S

o a s D RSN . S b e

A file system is organized into files of various types, each of
which is described by an i-node. I-nodes are of the following

types:

a.

b.

c.

d.

Data files: repositories for information consisting of a
linearly addressed set of blocks. The blocks comprising a
file are addressed with a virtual byte address within the
file and are not necessarily stored consecutively on the
storage device. Data files come in three sizes: 4096
bytes, 1M byte, and 34M bytes. Files can be sparsely
occupied and the size of the file refers only the maximum
size of the file before its internal organization must be
changed from one size's method to the next larger's (this
occurs automatically).

Directories: respositories for the names of files and a
pointer to the i-node defining the files. Directories may
also contain the name and i-node pointer of other
directories; however, each directory may only be so
contained in one "parent" directory. Data files may be
referenced (by possibly differing names) in more than one
place. The directories in each file system thus impose a
hierarchical organization of the data within the file
system.

Special files: input/output devices. Each input/output
device has a unique predefined name. The i-node for a
device contains this unique name. Special file i-nodes may
be referenced in directories in the same manner as data
files.

Pipes: small files used as interprocess communication
channels. Pipes are not defined in directories because
they exist only for the life of the processes using them.
They appear to processes much like files with the following
exceptions:

1. the byte pointer cannot be positioned;

2. a pipe is internally organized as a circular buffer of
4096 bytes; and

3. read requests on an empty pipe and write requests on a
full pipe are delayed (invisibly to the user process)
until- either bytes have been entered (read) or bytes
have been removed (write).

10

R e Ti—— #

'\'_‘ \

o

R R TP Ry

The other basic object that UNIX supports is processes. A
process is created for each user when he logs in, and a user may
create (fork) an arbitrary number of processes during a session.
Processes have the following attributes:

a. a name;

b. a virtual address space composed of 128k bytes: 64k bytes
of instructions and 64k bytes of data. The virtual address
space is composed of three segments: the read-only
(possibly) shared text (instructions), read-write data (and
instructions), and read-write stack;

a set of currently accessible files, pipes, or special
files (about 15); and

(¢}

d. a set of timers and intraprocess traps (interrupt, "quit",
memory fault, etec.).

UNIX Operations

UNIX files can be created and deleted by any process. The
creator of a file becomes the owner of the file; only the superuser
can change the owner of a file. The owner or superuser can change
the protection attributes of the file. Contiguous byte streams can
be read or written from and to files, pipes, or special files.
Files, pipes, and special files can be added to or removed from the
set of currently accessible files for each process (up to a maximum
of 15).

UNIX processes can spawn (fork) other processes that initially
possess an exact duplicate of the address space of their parent.
Terminal devices and other processes can transmit preemptive
(interrupt-like) signals to other processes. Processes can
construct interprocess communication channels among descendants of a
common ancestor via pipes: a circular buffer looking (to the
processes) like a peculiar type of file. Processes may create,
delete, read, write, and position the byte pointer of files.
Processes may also alter the protection attributes of files that
they own, i.e., when the user id of the process is identical to that
of the file.

Processes may set a "virtual" timer for themselves, allowing a
timeout signal at the end of process specified period. Processes
are scheduled via an adaptive algorithm given priority to
interactive processes (viz., processes having many short
interactions with the us'r at his or her terminal). Processes that
are "compute-bound", i.e., have little or no terminal interaction,

11

o s it

are given low-priority for access to cpu and core resources. Low
priority processes are given less frequent access to resources but
are given a larger quantum of time in which to make use of them.
High priority processes, on the other hand, receive frequent quanta
of resource, but a smaller quantum.

UNIX Protection Policy

UNIX provides a protection policy designed to protect access to
each individual file, directory, and special file in a file system.
UNIX protection is currently based on the notion of "users" and
"groups", and is discretionary in nature. Each UNIX object (files,
directories, special files, and processes) belongs at any point in
time to a "user" and a "group". The set of users and the set of
groups are each drawn from the set of integers from 0 to 255. One
particular user, user zero, is termed the "superuser"; this user can
violate all access controls.

Each file and directory contains three items of protection
information:

a. the user owning this object;

b. the group owning this object; and

c. the access permissions for processes
1. belonging to the same user;
2. belonging to the same group but a different user; and
3. every other process.

The access modes are a subset of the set {read, write, execute} for
files, and {read, modify, and search} for directories. Either the
owning user or the superuser may alter the access modes. Only the
superuser can alter the user/group of a file/directory.

Processes inherit the same user/group across a fork operation.
A process belonging to the superuser may alter its user/group to any
other user/group. No other process may alter its user or group
except thru the "set_user" or "set_group" mode of program execution.
An owning user may designate that a specified program file possess
the attribute of the "set_user" or "set_group" mode. In this
instance, a process belonging to another user or group, if it has
execute permission, will temporarily (during the time the specified
program file is executed by the process) assume the user/group
access privileges of the user/group that owns the program file.

12

This mechanism provides a limited form of domain protection for
proprietary programs or data.

UNIX Deficiencies

Despite its advantages, UNIX has a number of deficiencies as a
general purpose computer utility. These deficiencies are presented
because they have been addressed in the design of SUNIX.

First, UNIX lacks a true "virtual memory". That is, processes
¥l may not concurrently share named storage within their address space.
Some research is proceeding along these lines; however the
"standard" UNIX system is sadly deficient in this area. This
deficiency makes more difficult the task of implementing
sophisticated data management systems allowing concurrent access to
a data base by many users.

e

t This problem is compounded by the lack of good interprocess
i communication mechanisms. Only two mechanisms are currently 1
provided:

a. the interprocess signal mechanism - no data can be
transmitted over this mechanism; and

b. the pipe facility - pipes are only in existence during the
lifetimes of the processes using/creating the pipes. Pipes
cannot be shared among processes that have no common
ancestor and pipes are not a viable mechanism from which to
provide an interprocess coordination mechanism for shared
data bases.

OO SIS TR A ¢

Both mechanisms, as noted above, are inadequate for use in the
construction of general purpose interprocess
communication/coordination mechanisms necessary for current
architectures involving multiple processes accessing shared data

| bases. The current UNIX mechanisms are more than adequate for the
transmission of data between sequential phases of an algorithm.

A more serious problem is one of inconsistent abstraction.
That is, certain "abstract" facilities provided by UNIX, directories {
for instance, are not completely "hidden" at the system interface. |
In particular, the internal structure of directories is not only
visible to programs executing outside the "hard-core" of the UNIX
system; this information is required for many necessary functions of
the system. For instance, the program that lists the contents of
directories relies on its ability to read the directory as a data
file in order to determine what files are defined within it. A more
serious instance of the same problem is the "visibility" of the

13

DA A W TIOR8 | s 1 A TR e i i MBS R ARSI

e R S T e ees e =

IR

R

internals of the UNIX filesystems. A UNIX filesystem (as defined
above) consists of some set of directories, files, and special files
organized (mapped) on the physical address space of some device.
UNIX currently allows, and indeed requires for some functions, the
ability to read or write the special file corresponding to the
filesystem. Thus, the access controls and data organization impcsed
by the filesystem structure can be defeated by access to the file
via its corresponding special file. Both these "facilities" present
special problems in the design of a Secure UNIX.

The above issues suggest two tenets that have directed the
design of SUNIX. First, to be useful in a large set of the
projected uses of SUNIX, it must provide the mechanisms for IPC and
virtual memory needed by those applications. Second, some of the

historical "oversights" of UNIX can and should be modified and
"fixed" in SUNIX.

SECURE UNIX PROTECTION POLICY

SUNIX must support both discretionary and non-discretionary
access controls. The non-discretionary controls SUNIX will support
is the partially ordered set of security levels and categories
defined for military computer systems [3,4]. SUNIX will support 16
security levels and 64 categories.

The discretionary controls that SUNIX supports are identical to
those provided by UNIX, for compatibility reasons.

SECURE SYSTEM DESIGN

The design of SUNIX has been based on our backgrourd in secure
multilevel computer systems. Secure systems began from a
requirement for secure sharing of information at a variety of
security levels. Analysis quickly revealed two problems:

a. define a security policy constraining access of information
processors to information repositories; and

b. guarantee that the policy is ALWAYS enforced.
The definition of security policy turned out to be more of a task
than expected, yet the military already had much of the policy

formulated. The real task became the guarantee of enforcement.

The essence of the task became the following: to guarantee
security there must exist a rigorous verification of the security

14

properties of security sensitive programs. Since such verification
is expensive, time-consuming, and seemingly only possible for small
programs, the verification, and thus the security sensitive
programs, should be confined to a small part of the system. These
programs should create an environment for the other programs such | 4
that the remaining programs cannot violate the security policy.

| Thus the remaining programs need not be rigorously verified (at

3 least with respect to security). The security sensitive programs
| are termed the security kernel.

3 The architecture for secure systems is thus derived from the

4 notion of the security kernel. All security kernels designed to

! date operate on the basis of certain assumptions. These assumptions
are:

a. the kernel provides a process structured environment;
b. each process (supported by the kernel) has available to it
a set of objects that can be accessed only by using defined

operations;

c. each process is confined with respect to the defined
protection policy;

d. each process can execute whatever programs it pleases:
because it is confined it cannot, by construction, violate
security; and

e. within each process there may exist several synchronous
domains of access privilege recursively defining new sets
of objects from the object structure supplied by the
security kernel.

What is important to note is that for any security kernel of some
sophistication, the security kernel not only controls access to
objects, it must define the objects and construct operations to
access these defined objects.

SECURE UNIX ARCHITECTURE 3

The architecture for SUNIX is security kernel based and is i
diagrammed in figure 2.

'J‘

At the base of SUNIX is a security kernel. The security kernel
defines a process structured environment wherein each process
possesses access permission based on its security level. 1In

15

]
I I i i 3
I i | l 1 .
4 | | : [
. i UNIX PROCESSES ;
2 '] 1 |
) i ! ‘
i l { ! |
; 3 g [! ! '
i {
| | | :
. | | ! | !
! | | i l
{ PRIVILEGED ' UNIX EMULATOR |
. SUBSYSTEMS l | i]
: : I : t | i
| ; | i
! = | ! A
:
i SECURITY KERNEL
|
|
g
3
PDP-11/45 HARDWARE
1
§ i
)
1

/ Figure 2. SUNIX Architecture

16

particular, the security kernel defines three types of protected
objects:

a. segments: the unit of information storage;
b. devices: the process-like mechanism for input/output; and
¢c. processes: the information processors within the system.

Each process may map segments into its virtual memory to gain access
to the information contained within them.

The memory space of each process is partitioned into two
ordered domains: the supervisor and the user, each of equal size.
The supervisor domain is the controlling domain. It makes all
requests for kernel service on kernel defined objects and interprets
requests from the user domain for service. In SUNIX the supervisor
domain of each kernel process that corresponds to a UNIX process
shall execute a reentrant program termed the UNIX Emulator that
provides the "illusion" of UNIX to programs executing in the user
domain.

From the above discussion it should be apparent that the
intended architecture for SUNIX will provide a direct correspondence
between kernel supported processes and UNIX processes. Each SUNIX
process, as indicated above, will have two domains of execution
outside the kernel. The first domain, the supervisor, contains the
necessary programs and data bases (contained in segments) to
construct a UNIX-like environment from kernel provided objects and
operations. The second domain, the user domain, will appear much
like the process environment currently supported by UNIX. Current
programs should, if they do not require the capability to access and
modify information at several security levels, execute
transparently.

17

Y

SECTION III

SECURE UNIX KERNEL ARCHITECTURE

This section is devoted to a discussion of the SUNIX kernel
architecture. First, general architectural principles and desired
kernel properties will be discussed. Next, the kernel interface,
i.e., the interface that non-verified, untrusted programs may use is
presented. Finally, the internal architecture of the kernel is
discussed, with primary emphasis on the decomposition into "levels
of abstract machines" and the orthogonal decomposition into internal
kernel processes.

DESIRED PROPERTIES

An operating system requires the properties of efficiency of
resource usage, correctness (reliability) of its function,
simplicity and completeness of its operations, and minimal size. A
security kernel is no different in these characteristics. Where it
differs is in a strengthening of these requirements and in the
addition of a selected protection policy. The following paragraghs
will address desired functional qualities of the kernel interface
and the necessary protection policies.

Kernel Objects

The kerne., by its very nature, must provide a number of
abstract objects which can be manipulated through primitives at the
kernel interface. There are three kinds of objects to consider:
processes, segments, and input/output devices.

Processes

Processes represent the basic computational element of the
kernel-provided computing system. Current application system
architectures emphasize the decomposition of programs into a family
of interacting, logically asynchronous processes. Experience with
data base architectures indicates that processes should possess some
form of virtual memory access to information storage. These
considerations suggest the following process qualities:

a. processes should be able to create (spawn) other processes;

b. processes should be able to send and receive information
from other processes (InterProcess Communication, or IPC);

18

o

c. processes should be able to access a virtual address space;
and

d. the process virtual environment should contain several
domains of access privilege, thus permitting construction
of "supervisors" within processes.

The IPC mechanism should have several important
characteristics. The first of these is the structure of the IPC
message. The IPC message should essentially contain two fields:
the name of the sending process (unforgeably supplied by the
kernel), and a data field supplied by the sending process. It would
be quite useful to have a data field of arbitrary length; however,
simplicity and kernel minimality considerations argue against it. A
better solution is to design the data field size and the segment
naming structure so as to permit the transmission of a segment name
within the data field of the IPC message. This structure permits
the construction (and transmission) of arbitrary sized messages
through the use of virtual memory.

It should be noted that the combination of the facilities for
message-based IPC, virtual memory, and an instruction set that
supports indivisible READ-TEST-THEN-MODIFY operations on virtual
memory permits the construction of interprocess locks on data bases
defined externally to the kernel.

The process creation mechanism should have two basic qualities:
it should allow the creating process to specify some part of the
environment of the new process so as to allow for easy bootstrapping
within that new process, and processes should be capable of spawning
processes of greater or equal security level.

\

The virtual memory of a process should allow for the mapping of
information segments to some partition of each process's virtual
memory. The process should not be aware of the location of the
segment (primary or secondary memory).

Segments

Segments constitute the basic information repository within the
system. Segments have a name, protection labels, a size, and an
information content. Two issues are important regarding segments.
First, the name of a segment should be capable of being passed as
data via an IPC message. This requirement argues for a fixed length
name of the unique identifier variety. Under this scheme each
segment name is guaranteed to be unique and unmodulatable. A
convenient mechanism to accomplish this is by using the value of a
system calender clock, with a resolution substantially less than the

19

rate of segment creation requests. The second issue regards the
size of segments. A large portion of the projected uses for secure
minicomputer systems, including SUNIX, fall into two categories:
network processors and text management. Informal studies both of
average paragraph length and of packet size suggest that a segment
size of about 512 bytes is desirable. Other considerations, such as
the size of program space and temporary virtual memory storage
(buffers and stacks) suggest a larger size ranging from 1k to 8k
bytes (particularly for PDP-11-like architectures). Thus a variety
of segment sizes is required. This requirement for a variety of
segment sizes must be balanced with the requirements of kernel
simplicity, particularly in the area of resource management.

Processes should have the capability to create segments of any
size and delete any segment that they can name. The only enforced
constraints are protection ones. 1In particular, for mandatory
security, processes should only be capable of creating and deleting
segments at a greater or equal security level. However, no
information as to the success or failure of the operation can be
passed to the process if the segment operated upon has a security
level strictly greater than the security level of the process.

Devices

Devices can be regarded as special purpose processes. They
should execute asynchronously. They should (if possible) present a
uniform interface. Both character-at-a-time and DMA devices should
be supported. Support for the modification of the current (working)
security level of each device should be provided. In the case of
interactive terminals, an easy-to-use mechanism/protocol for
terminal (user) initiated security level change (as opposed to
process initiated security level change) should be provided.

An issue concerning devices that should be examined is the
extent to which device "drivers" are embedded within the kernel.
The system overhead in invoking the kernel is generally substantial.
An even larger overhead is the time needed to switch between user
(non-kernel) processes. Thus, both the number of process switches
and the number of kernel invocations should be minimized. This
thought has particular impact on the kernel interface to character-
at-time terminals. If the kernel allows only one character to be
output at a time, at least one kernel call and two process switches
are required per character input or output. In some architectures
this overhead could increase to four or more process switches.

The above efficiency concern would suggest that the kernel
support some form of byte stream input/output to these devices, thus
embedding some buffering capability within the kernel. Buffering

20

e A o L An G AR b AR BE SER

goes counter to the conventional wisdom of a "simple", non-
interruptable kernel. A kernel would then have to deal with the
issue of handling each character's interrupt. However, the
mechanism that is desiguned to "simply" handle these character
interrupts within the kernel can also be used to efficiently
implement some other asyachronous facilities within the kernel.

Trusted Processes

An added kernel "feature" is the capability to designate
certain processes as "trusted". That is, these processes have the
ability to violate certain of the access controls enforced for
processes in general. This capability imposes the added burden of
some access control for the protection of these "trusted" processes
from sabotage: improper modification of the data/instructions used
by them. To address this problem a kernel should have an added
protection policy: an integrity policy.

KERNEL FACILITIES

General Properties

The SUNIX kernel provides, as discussed above, three basic
types of objects: processes, segments, and input/output devices.
Processes are the active computational element provided by the
kernel, so it is the processes that make requests to the kernel.
The kernel provides processes with the following general
capabilities:

a. the capability to create and delete processes;

b. the capability to send/receive fixed length messages
between processes;

Q

the capability to request input/output from asynchronous
devices and to receive a completion notification;

d. the capability (for suitably privileged processes) to alter
the current protection label for a device (security level
is a special case);

e. the capability to create and delete several sizes of
segment; and

f. the capability to map segments into portions of a process's
virtual memory and access the segment as memory.

21

e > ~ - —— W

Kernel Protection Policy

Three protection policies are supported by the SUNIX security
kernel: i

a. the mandatory security policy;

—— LA B Bl

b. the mandatory integrity policy; and

c. a version of the UNIX discretionary protection mechanism.

: Mandatory Security Policy

| The mandatory security policy defines the notion of DoD

! security policy [3,4] within SUNIX. It is intended to address the
| problem of prevention of compromise of classified information. It
is represented by the following elements:

a. a security level drawn from the set of security levels
defined by the cross-product of a set of sixteen (16)
security classifications and the powerset of a set of
sixty-four (6M4) security categories;

b. a set of information processors, termed subjects, to each
of which is assigned a security level;

c. 2 set of information repositories, termed objects, to each
of which is assigned a security level; ‘

d. the simple security condition [5], enforced for all
operations of subjects upon objects, that requires a
subject to have a security level greater than or equal to
the security level of any object that is observed by the L
subject; and

e. the security #-property [5], enforced for all operations of
subjects upon objects, that requires a subject to have a
security level less than or equal to the security level of 4
any obhject that is modified by the subject.

Mandatory Integrity Policy

The mandatory integrity policy complements the mandatory ’
security policy by defining a set of access controls against
information sabotage. The policy is defined by the following
elements:

a set of integrity levels drawn from the cross-product of a
set of integrity classifications (of cardinality sixteen
(16)) and a set of eight (8) integrity categories;

a set of subjects - the same set as for the mandatory
security policy;

a set of objects - the same set as for the mandatory
security policy;

the simple integrity condition [6], enforced for all
operations of subjects upon objects, that requires the
integrity level of a subject to be greater than or equal to
the integrity level of an object if the subject modifies
the object; and

the integrity ¥*-property (6], enforced for all operations
of subjects upon objects, that requires the integrity level
of a subject to be less than or equal to the integrity
level of an object if the object is observed by the
subject.

iscretionary Policy

A UNIX-like discretionary mechanism is provided by the kernel
to support the UNIX protection mechanism on files, directories, and
special files. This policy differs from the preceding policies in
that these discretionary protection attributes can be altered, for
existing objects, by an appropriately privileged subject. The
elements of protection mechanism include:

a.

b.

a set of user identifiers drawn from the integers 0 to 255;

a set of group identifiers drawn from the integers 0 to
255;

a set of subjects to which is assigned both a user and
group identifier at subject creation time;

a set of objects to which is assigned both a user and group
identifier (sometimes termed "owner") either at object
creation time or by an appropriately privileged subject;

a set of access modes including NULL, READ-ONLY, and READ-
WRITE;

a set of allowed access permissions for each object, one
set for each of the following sets of subjects:

23

o

— e ————

1. those subjects possessing differing user and group
identifiers;

2. those subjects possessing differing user identifiers
but the same group identifier; and

3. those subjects possessing the same user and group
identifiers.

The last element defines the class of access control policies that
can be represented by this mechanism.

Process Privilege

The final protection policy notion to be addressed is the
concept of "subject" (in particular, process) privilege. The above
qualification is made because, while in general the notion of
privilege can apply to all subjects within a system, in practice it
is restricted to that class of subjects termed processes. Devices,
the other major class of subjects, are considered to be always
unprivileged.

Process privilege is the ability to violate one or more of the
above five access control policies:

a. the simple security condition;

b. the security ¥*-property;

c. the simple integrity condition;

d. the integrity #*-property; and

e. the discretionary protection mechanism.
Processes possess an attribute, defined at process creation time,
that is termed process privilege, and that defines which of these
access controls that process may violate. A process having a non-
null set of privileges is termed privileged. Privileged processes
are used in SUNIX to implement Trusted Subjects [7]. A privileged

process may create processes having only a subset of its privilege.

Kernel Object Structure

The structure of the three types of kernel objects is outlined
below.

Information Storage: Segments

Segments are the primary information repositories supported by
the kernel. They possess the following attributes.

a. A name: a 48-bit unique integer, obtained from the system
time-of-day clock, that uniquely labels each segment during
the life of the system. The high-order eight bits of this
name denote a filesystem, and the low-order forty bits
uniquely identify the segment within the filesystem. The
concept of a kernel filesystem is somewhat similar to the
concept of a UNIX filesystem. A kernel filesystem
corresponds directly with a physical storage device: a
spindle of disk, a DECtape drive, or any logical portion
thereof'.

b. An access level.

c. A domain: Three domains of segment are defined: kernel,
supervisor, and user. Kernel segments can only be mapped
into the kernel domain virtual memery of any process,
supervisor segments may only be mapped into the kernel or
supervisor domain virtual memory, and user segments may be
mapped anywhere.

d. User and group identifiers.

e. Discretionary permissions.

f. A size: The kernel supports multiple sizes of segment to
accommodate a variety of applications. Segments can be had

in sizes of two to the n bytes for n between nine and 1
thirteen (512, 1024, 2048, 4096, and 8192 bytes).

g. A value: The contents of the segment.

1 Input/Qutput: Devices !

Devices are special purpose processes, having a limited
instruction set, whose function is to provide an interface to the 3
kernel external environment. Devices have the following attributes.]

a. A name: A device name is a 32 bit unique integer specified
at the time the system is created.

b. An access level: Each device possesses a "current" value
of its access level. This value must always be less than
or equal to its "maximum" access level.

25

B T et —— T 2o 5

C.

g.

h.

a.

A "maximum" access level: The high water mark of the
device, specified at system compile time.

A domain: Always implicitly supervisor. On1§ supervisor
mode programs can directly access devices.

A "current" process: The name of the process currently
associated with this device. This field is here to allow
direction of terminal signals to the appropriate process.

User and group identifiers.
Discretionary permissions.

A value: A device value can essentially be considered an
array (possibly very large) of bytes.

A byte pointer: An index into the value of the device
indicating the "current" position of the device. Some
devices permit arbitrary positioning of this pointer (block
addressable devices) while some allow only limited
positioning (tapes permit rewind) and some devices permit
no positioning (terminsals).

A request queue: A FIFO list of process requests to the
device to perform a service. Services are of three types:

1. an input request for transfer of a byte string into
virtual memory beginning from the current position of
the byte pointer;

2. an output request for transfer of a byte string from a
specified portion of virtual memory (some segment) to
the device beginning at the current position of the
byte pointer - for both the input and output requests
the position of the byte pointer is updated; and

3. a non-data transfer request - such as a positioning
request.

Information Processors: Processes

g Processes are the primary information processing element
supported by the kernel. Processes have the following attributes:

a name, drawn from the same space as device names, however,
derived from the system clock with the guarantee that no
two processes concurrently defined have the same name;

26

an access level defined at the time the process is created
and unchangeable during the life of the process;

a "current" domain: each process possesses three domains
of execution - kernel, supervisor, and user. Only the
supervisor and user domains are accessible to non-kernel
programs.

a "previous" domain: the previous domain of a process is
never "greater than" the "current" domain, and is used to
direct intra-domain transfer instructions of the hardware;

a user and group identifier: specified at the time of
process creation and unchangeable during the life of the
process;

a privilege type: denoting whether the process is
privileged and if so, which access controls the process can
violate;

miscellaneous hardware context: indicators, general
registers, program counter, and stack pointer;

an integer valued priority: this value controls (to some
extent) the priority and frequency with which this process
can gain access to the processor for computation;

an interprocess message queue: a FIFO list of 16 byte
messages sent to the process from other processes and
input/output devices; Note that the kernel provides
internal queuing of messages. Message buffer exhaustion
will cause the kernel to prematurely abort;

an inter and intraprocess trap vector: a Boolean vector
containing notification of the existence of a preemptive
trap condition forcing kernel vectoring of a trap condition
through the supervisor entry point (within each process)
for traps;

a virtual interval timer: the timer is settable by the
supervisor domain of each process and will generate an
intraprocess trap when it runs out; and

a set of thirty-three pages of virtual memory: one page is
reserved for the kernel domain (for the kernel stack and
swapable process context), sixteen pages are reserved for
the supervisor (eight pages of I (instruction) space, and
eight pages of D (data) space), and sixteen pages are

27

= AT Ve

reserved for the user domain (organized in the same manner
as the supervisor domain). Each page is 8k bytes in size
and segments may be mapped to each page.

The attributes of kernel supported objects are summarized in
figure 3.

Kernel Operations

The following sections will consider the operations provided by
the kernel for non-kernel software. All of these operations must
satisfy the protection constraints imposed by the kernel supported
protection policies. The only exception to this protection is for
privileged processes.

Segment Operations

Processes can perform three classes of operations on segments:
creation and deletion, modification of attributes, and read or write
access in virtual memory.

The operation CREATE_SEGMENT takes the following arguments:

a. the filesystem on which the segment is to be created - the
ability to specify the device (filesystem) on which a
segment is to be created allows non-kernel software to
control the distribution of segments. This control is
particularly useful for performance reasons.
Unfortunately, it also permits a "“storage channel" per
filesystem because of the finite quota of storage available
per device. In a complete, operational design, provision
for the auditing of these resource exhaustion events (we
will see another for exhaustion of processes) provides
control of the storage channel short of introducing the
complexities of secure quota mechanisms;

b. the access level at which the segment is to be created - an
unprivileged process can create segments at any access
level greater than or equal to its own; however, no
information as to the success or failure of the creation
request will be returned by the kernel;

c. the domain of the segment, either supervisor or user; and

d. the size of the segment - segment size is taken from the
set {512, 1024, 2048, 4096, 8192} bytes.

28

ATTRIBUTES OBJECTS
Segments Devices Processes .
Unique Name 48 bits 32 bits 32 bits
Current Access Level X X X
2 Maximum Access Level X x b
i Privilege x]
Current Domain K,S,U S K,S,U i
% Previous Domain S,U J
t
i User Identity X b'¢ X !
i Group Identity x x x ?
| Discretionary Permissions X X ﬂ
Value X X
Size X 5
Request Queue X
Byte Pointer X ;
Hardware Context X X g
Priority X ;
Trap Vector X f
Timer X
Virtual Memory X

Figure 3. Kernel Object Attributes

The kernel will return to the requesting process the unique name
(uid) of the segment purportedly created. No status message as to
success or failure can be returned. The name must be guaranteed to

29

;
{
!

be unique and to bear no relation to the sequencing or rate of
requests for segment creation. The kernel will derive segment names
from the system clock having a resolution on the order of 10
microseconds. The kernel cannot possibly respond to any one request
for segment creation in that time, thus guaranteeing the uniqueness
of name. The user(owner) of the created segment is the caller, and
the group and discretionary permissions are null. Therefore,
SET_SEGMENT_DISCRETIONARY PERM (see below) must always be called
after a create operation.

The operation DELETE_SEGMENT allows deletion of any segment
(for unprivileged processes the process must have an access level
less than or equal to the access level of the segment) for which the
requesting process can supply the name (uid). The kernel provides
no information to the requesting process as to the success or
failure of the operation.

The operation SET_SEGMENT_DISCRETIONARY PERM allows a process
belonging to the user of a segment (or a process privileged to
violate discretionary access controls) to alter the discretionary
permissions and owner/group identity of a segment. An unprivileged
process must have the same access level as the segment. This
operation should be used after segment creation to set the
(initially null) discretionary permission for the segment.

The operation SEGMENT_STATUS allows retrieval of segment
attributes by processes. For unprivileged processes, the process
access level must be greater than or equal to the access level of
the segment.

The above two operations permit the interrogation and
modification of those segment attributes subject to change. The
segment attributes of name, size, and access level are invariant.

Processes control access to segments as virtual memory through
the operations MAP_SEGMENT and UNMAP_SEGMENT. Each process
possesses a set of thirty-two 8k byte pages of virtual memory
(accessible to non-kernel software). Each of these pages can be
"mapped" with the MAP_SEGMENT operation, which takes four arguments:

a. the name of the segment to be mapped, that is, the segment
associated with a portion of the requesting process'
virtual memory such that memory accesses to that portion of
memory are directed to the segment;

b. the name of the page of virtual memory to which the segment
is to be mapped; j

30

-

Ry -

R e e s

e M agi i ot Pl ot

i R LA S AR AN DA i RS

c. the access modes the segment is to have (READ-ONLY or
READ-WRITE). These modes must be consistent with respect

to the privileges of the process and the protection
attributes of the process and segment; and

d. the justification of the segment within the 8k byte page,
that is, whether the segment is justified LOW (the low
order byte of the segment is aligned with the low order
virtual address of the page) or HIGH (the high order byte
of the segment is aligned with the high order virtual
address of the page).

Any number of the processes may map the segment (pending successful
access control checking) and they have access to the same copy of
the data within the segment. The kernel manages the migration of
mapped segments from core to disk and from disk to core.

The association of page and segment is severed via the kernel
operation UNMAP_SEGMENT. It takes only one argument, the page name,
and all subsequent references to that page will cause memory
management traps.

The information associated with each mapped address space
register can be retrieved by the REGISTER_STATUS operation. It
takes one argument, a register number, and returns the information
specified in the last map operation for that register. An error
occurs if the specified register is not mapped.

For the operations DELETE_SEGMENT,
SET_SEGMENT_DISCRETIONARY_PERM, SEGMENT STATUS, and MAP_SEGMENT, the
kernel must guarantee that the process (except for the timing of the
operation) cannot distinguish between the refusal of the kernel to
execute the operation due to segment non-existence and the refusal
of the kernel to execute the operation due to its inaccessibility to
the process. Identical constraints will be placed on process access
to devices and other processes.

Device Qperations

Three types of operations on devices are supported by the
kernel: requests for service, alteration of protection attributes,
and status inquiries. Devices, as indicated earlier, are considered
to be special cases of processes. In this sense, requests for
device service are treated as a special case of InterProcess
Communication (IPC) and the same mechanism is used to implement both
facilities. To use a device, a process uses a kernel operation
which makes a request of the specified device. Devices service
their queues of requests logically asynchronously of other devices

31

a0

|

i ™ SRS R SRS T R T e

and processes. They can be considered to have their own limited
instruction set for communication with processes, alteration of
protection attributes, and communication with segments. First, the
kernel operations on devices will be discussed, then the operations
the (asynchronous) devices can perform will be discussed.

Kernel QOperations. The operation IO_READ requests a transfer
of an array of bytes from the device to an area of the process'
virtual memory. The area specified must lie within one segment.
The requesting process must specify the number of bytes to be read
and the unique name of the device from which they are to be read.
In this way, the kernel abstracts all devices to appear as DMA
devices.

The kernel also allows the requesting process to transmit a
single byte of label to the device that tags the request. The
device will echo this label in the IPC message the device will send
to the requesting process (assuming the process still exists)
signifying that the request has been satisfied or an error has
occurred during transfer. This label facility permits the process
to have a number of outstanding device requests (256) and thus
permits internal multiprogramming within any process.

The requesting process must have the same access level as the
Aaccess level of the device, discretionary observe and modify access
to the device, and have an access level equal to the access level of
the specified segment.

Transfers cannot cross page/segment boundaries and are thus
limited to 8192 bytes. For terminal class devices, those through
which people can interact with the kernel and non-kernel software,
read transfers are not only terminated after transfer of a specified
number of bytes, but may be prematurely terminated by the entry of
an "end_of_line" character.

The IO_WRITE kernel operation requests device action to
transfer an array of bytes from a specified segment mapped into the
requesting process virtual memory to a specified device. The
operation requires the same arguments as the IQ_READ operation. A
similar IPC message will be transmitted by the device upon
completion of the request. Identical access control policies are
enforced for the IO_WRITE and IO_READ operations.

The operation I0_FUNCTION regquests a non-data transfer
operation by the device. These requests are highly device specific.
For magnetic tapes, the functions of writing end_of file marks,
rewinding, and moving the tape forward and backward one record are
performed by IO_FUNCTION requests. For terminals, the functions of

32

N —

-~ T T e

FFREFTasniilGB TR T TR S8

setting various (UNIX compatible) terminal modes (such as ECHO and
RAW) are performed by IO_FUNCTION requests. The same access control
constaints that applied to IO_READ and IO_WRITE apply to
IO_FUNCTION.

There are two kernel operations available to alter the
protection attributes of devices. The first operation is available
oniy to privileged processes, and allows modification of a device
access level. The operation is called SET_DEVICE_ACCESS LEVEL. The
access level is modified to the value specified by the argument that
must be less than or equal to the maximum access level of the device
- which itself can only be adjusted by rebuilding the system. The
operation can be performed on only non-terminal devices. The access
levels of terminal devices are modified as described below. When a
device's access level is changed, the request queue for the device
is cleared and the device is placed in a “standard" state, allowing
no information to pass via, for instance, the location of the tape
currently mounted on the device.

The operation to set the discretionary permissions for a device
is SET_DEVICE_DISCRETIONARY_PERM, and is similar to
SEG_SEGMENT_DISCRETIONARY_PERM.

Terminal devices have three preemptive "interrupts™ that they
can cause: the "quit" key, the "interrupt" key, and the "hangup"
condition. These UNIX-compatible conditions cause a trap to occur
in the process currently using the terminal. Each device can be
labelled with the process name (pid) and user identifier of the
process "currently using" the device. These values may be set (by
any unprivileged process at the same access level) via the operation
GET_TERM_INTERRUPTS. When one of these conditions occurs, the last
process to do a GET_TERM_INTERRUPTS for the terminal will get the
corresponding trap.

Device QOperations. As indicated above there exists a second
set of device operations: those operations conceptually executed by
non-privileged code running "within" the device. These operations
include:

a. IO_REQUEST_SERVICE: the "main-loop" of each I/0 device,
servicing its request list, taking each request in turn,
tranferring bytes to/from the devices internal memory to
the process virtual memory segment and sending an IPC
message to the requesting process (if it still exists) upon
completion of the requested service;

b. TRAP: this operation, the "quit", "interrupt", or "hangup"
signal, transmits an interprocess preemptive signal to the

33

process last executing a GET_TERMINAL_INTERRUPTS kernel
operation (if the process still exists); 1

c. DISPLAY SECURITY LEVEL: this operation displays the
current access level of the device on the device itself,
framed by kernel peculiar characters (that is, characters
only available to the kernel and not transmittable by non-
kernel software - the current prototype reserves the ASCII
"bell" character for this purpose);

d. NEW_SECURITY_LEVEL: 2a terminal initiated operation (again i
framed by kernel peculiar characters) that alters the
current security level of the terminal to the value
specified - in addition to altering the current security
level of the terminal, the operation also transmits an IPC #
message to the process having the name of "zero", that is
assumed to be the fully privileged "root" process of the
system, the message containing the information that the
device (identified by its unique name) has changed its
security level to the named value; and

e. LOGOUT: a terminal initiated operation (framed by Kernel
peculiar characters) to set null discretionary access for a
terminal, so that no processes can access it until the
new_security level function is executed. This operation is
also initiated by turning off or hanging up the terminal.

The operations TRAP, DISPLAY_SECURITY_LEVEL, NEW_SECURITY_LEVEL, and
LOGOUT, can only be executed by devices that are interactive
terminals, and are initiated by the user at the terminal, rather
than by code running in the supervisor domain. The user causes the
TRAP function by either hitting the "interrupt" or "quit" key
(UNIX-comatible), or by hanging up or turning off the terminal.

The last three requests are made by entering the ASCII "bell"

character, which acts as an indicator to the kernel that one of
these requests follow.

roce Operations

Process operations supported by the kernel can be divided into
the following classes:

a. operations controlling the existence of processes and
inquiries thereto;

b. operations facilitating equitable use of processor
resources;

34

N

i s T bt 5 i e

c. operations facilitating InterProcess Communications; and

d. operations manipulating the control structure within the
virtual environment of each process.

The last class of operation, while having trivial protection
constraints, is supported within a security kernel since the virtual
facilities provided by the kernel must be securely provided. A
primary function of any kernel concerned with controlling access on
all "storage channels" is the secure multiplexing of real resources
among the virtual resources provided to processes.

The operations concerned with the existence of processes are
SPAWN, DIE, and PROCESS_STATUS.

The SPAWN operation creates new processes. Any process can
create new processes. Processes have no kernel supported control
relationship with their parents, ancestors, or descendants. An
unprivileged process can create processes at access levels greater
than or equal to its own. An appropriately privilged process can
create processes at any level. Process c¢reation is formally
considered a modification. The creating process can specify the
initial program counter, stack pointer, process privilege (a subset
of the creating process' privilege), and a partial address space for
the new process. The creating process can specify two segments of
the new process' virtual memory; of course the created process must
have proper access to them. The unique name of the created process
(clock derived) is returned to the creating process, but no
indication of the success or failure of the operation can be
returned.

DIE is the suicide operation for an existing process.
Processes must abort themselves. The process has the responsibility
for cleaning up its virtual memory before it expires; the die
operation merely unmaps any segments currently mapped, and deletes
any unreceived messages.

The PROCESS_STATUS operation is an inquiry request to determine
the protection attributes of a process. This operation takes a
process name (pid) and returns the access level, and user/group
identifiers of the process if it exists and if (for unprivileged

requestors) its access level is less than or equal to the access
level of the requestor.

The operations providing some untrusted information for the
scheduling of processor resources are SET_PROCESS_PRIORITY and DOZE.

P

R . m—

e - A

V. e

Bl o sl

e

The SET_PROCESS_PRIORITY operation allows each process set an
integer priority to any integer value. The kernel's only scheduling
algorithm is the following: the process with the highest value of
priority, that is ready to run, is given the processor. Clearly,
the placement of priority control in the supervisor/untrusted code
permits exploitation of the timing channel occasioned by competition
for the CPU resource; however this kernel does not pretend to
address the blockage of these resource competition timing channels.

The DOZE operation allows a process to give away the processor
to a higher priority ready-to-run process. The kernel does no
preemption of processes based cn quantized resource allocation
exhaustion. Thus all control of the processor has been distributed
to the supervisors of the several processes. In particular, these
supervisors, by convention, will allow higher priority processes to
run (via the DOZE operation) at intervals governed by whatever
scheduling algorithm is deemed equitable. It should be noted (as we
will see in the following section) that these supervisors do not
communicate with each other, so all decision making is based on the
local performance of each process and global parameters embedded in
the programs of each supervisor. No insecurities result.

.The DOZE operation has an additional parameter: an eligibility
flag. The set of processes is partitioned into two sets at any one
time: the "eligible" set - those processes able to actively compete
for CPU and memory resources, and the "ineligible" set - those
processes temporarily barred from competition either based on a low
value of priority or because they are waiting for an unsent IPC
message. The kernel will only support a small number of eligible
processes (about 5 for 256k bytes of primary memory) based on the
amount of resources available. This figure will be a compilation
constant. When a DOZE is specified, the requesting process can
remain eligible, thus giving up the CPU to some other eligible
process, or it can become ineligible, allowing another ineligible
process to become eligible.

The DOZE operation has one final argument: an amount of time.
If a process chooses to become ineligible, he may further request
that he remain ineligible for 2 specified amount of (real) time.
The kernel guarantees that he remain ineligible for at least that
amount of time.

InterProcess Communication is accomplished via two mechanisms,
serving differing purposes. The first mechanism is non-preemptive
and transmits 16 byte messages between processes. The kernel
provides a routing and buffering mechanism for these messages. The
second mechanism is a pseudo-preemptive one, specifically designed
to allow communication of terminal interrupt-like signals to

36

processes using those terminals. The first mechanism is supported
by three operations: SEND, RECEIVE, and INQUIRE. |

The SEND operation sends a 12 byte arbitrary message to a named
process. SEND is formally considered a modification and thus obeys
the mandatory access controls imposed on all modifications. The
kernel will reliably append the name of the sending process onto the
message before receipt. Messages are internally queued within the
kernel pending receipt. Exhaustion of kernel message buffer space
will cause a system crash, but should not occur with appropriately
programmed supervisor mode programs.

The RECEIVE operation operates on the message queue associated
with each process. If messages are queued it will return the first 1
queued message and delete it from the queue. If no messages are
currently queued, processor control will be transferred to another
process pending receipt of a message. The process can optionally
specify its desire to remain eligible during a wait for a message as
in 2 DOZE operation. The process can also specify an increment of
real time which can expire before an error return caused by a wait
for message and no message arrived during the specified interval of
real time.

The INQUIRE operation is A non-waiting variant of RECEIVE that
will give an immediate error return if no messages are queued for
the process.

The above mechanism permits malicious software to crash the
system (at will) through indiscriminate numbers of InterProcess
Messages. The responsibility for such denial of service concerns
has been placed in the supervisor domain of each process.

The preemptive form of IPC takes the form of the operation
IP_TRAP. IP_TRAP (having the same access constraints as SEND) can
signal to another process the existence of a preemptive condition.
The kernel supports up to sixteen such conditions, some of which are
preallocated to the hardware conditions of trap-like situations.

The IP_TRAP operation notifies the destination process of the
occurrence of one of these conditions and the existence of the
condition is recognized upon the next return from a kernel
operation., The format of the recognition will be discussed in the
next section on intraprocess trap handling.

The final category of process control operations concerns the
manipulation of a process' own virtual environment. Two facilities
are provided: timers and clocks, and preemptive traps.

e R L

Four time handling mechanisms are provided. The first is the
operation RTIME that simply returns the value of the system-wide
calender clock. The second is the operation VTIME that returns the
value of the process-local version of the system clock - a virtual
real-time clock that records the elapsed time the process has been
in execution outside of the kernel. The non-kernel software has no
explicit control over either of these mechanisms. The third, and
last timer, is a virtual interval timer. The non-kernel software,
via the operation ENABLE_TIME TRAP, can set a value of virtual time
(in units of about 1 millisecond) after which a preemptive timer run
down trap will be caused.

The preemptive trap mechanism is an image of the hardware
provided trap mechanism. The occurrence of a trap, either caused by
IP_TRAP or by intraprocess actions, will result in two actions:

a. the placement on the supervisor stack (position of the
supervisor stack pointer register) of the current ps, pec,
an integer labelling the type of trap, and several words of
descriptive information that is process local and trap type
dependent (viz., for a memory management trap the contents
of the CPU MMU control registers); and

b. the kernel will return into supervisor space through
location Q0 in supervisor I-space that is assumed to contain
the first instruction of a trap handling routine.

Note that if either no segment is mapped to process page 0
(containing the supervisor trap vector) or insufficient space,
existence, or access is available on the supervisor stack, the
kernel will simulate a die operation for the process.

The last time handling function, STIME, allows the caller to
set the value of the system clock. To avoid a covert information
channel through the clock, the STIME operation changes the system
2lock only the first time it is called.

Figure 4 contains 3 summary of all the kernel operations
discussed in this section.

Kernel/User Communications

A1l communication with the kernel must be mediated by the
supervisor domain of the non-kernel process software. Kernel
operations are invoked via the hardware TRAP instruction executed
within the supervisor domain. Arguments to kernel operations are
pointed to via the supervisor stack pointer within supervisor
virtual space. It is the responsibility of the supervisor software

38

a0 L

SEGMENT

DEVICE

PROCESS

it ik i 8

Create and Delete

Modify Attributes
Status Inquiry

Virtual Memory Access

Service Requests

Modify Attributes

Status Inquiry
Accept Terminal
Interrupts

Create and Delete

Status Inquiry

InterProcess
Communication

Processor Resource
Control

Virtual Environment
Manipulation

CREATE_SEGMENT
DELETE_SEGMENT

SET_SEGMENT_DISCRETIONARY_PERM
SEGMENT_STATUS

MAP_SEGMENT
UNMAP_SEGMENT
REGISTER_STATUS

IO_READ
IO_WRITE
IO_FUNCTION

SET_DEVICE_ACCESS_LEVEL
SET_DEVICE_DISCRETIONARY_PERM

DEVICE_STATUS

GET_TERM_INTERRUPTS

SPAWN
DIE

PROCESS_STATUS

SEND

RECEIVE
INQUIRE
IP_TRAP

SET_PROCESS_PRIORITY
DOZE

RTIME
VTIME
ENABLE_TIME_TRAP
STIME

Figure 4. Kernel Operations

39

T ey

Mt il st

4.

e

to guarantee that sufficient stack space is available for the kernel
to fetch arguments and return results. The kernel always carefully
validates that necessary supervisor stack space is available and
will abort the process .if sufficient space is not available.

KERNEL INTERNAL ARCHITECTURE

Complete documentation of the implementation of the kernel is
not the intention of this discussion. This section will only
attempt to sketch the kernel architecture. We will approach the
architecture from two directions. The first direction considers the
decomposition of the kernel into lsvels of abstract machines, the
totality of which define the operations of the "top level" of the
kernel. The second direction can be considered an orthogonal
decomposition. The kernel, as indicated previously, is internally
multiprogrammed. Certain levels of abstract machine are responsible
for the definition of the mechanism for multiprogramming support:
the levels of process definiticn. The second decompostion will
indicate how these processes are used in the construction of other
abstract machines within the kernel. The first decomposition will
give the reader some intuition into how the facilities of the kernel
are functionally constructed. The second decompostion will give the
reader some intuition into the architecture of their construction.

Abstract Machine Decomposition

The first uses of hiesrarchical decomposition into abstract
machines assumed a linear ordering of abstraction. Unfortunately,
experience does not support this notion. The set of abstract
machines forms, at best, a partial ordering. Most machines do not
use all predecessor machines in the same manner that not all
programs use all features of the language in which they are written.
The following discussion will attempt to define this partial
ordering for the kernel, which is diagrammed in figure 5.

Interrupt Control

The lowest level of the kernel controls the hardware interrupt
mechanism. All software executes at one of two interrupt levels:
level J or level 7. The normal mode of execution is level 0. Only
a small portion of the kernel ever executes in level 7, blocking all
external interrupts. 1In particular, the queue managers (message and
character queuecs) and the primitive process abstract machine make
use of this module.

Two operations are provided: the first transitions the
processor to level 7 and returns the previous hardware processor

40

T — T —————— A — oo S — - e — - -

ABSTRACTION LEVEL
USER TRAP LEVEL

USER PROCESS LEVEL

ELIGIBLE PROCESS LEVEL

PRIMITIVE DEVICE LEVEL

PRIMITIVE PROCESS LEVEL

i ; SUB-PROCESS LEVEL

COMMON FACTLITIES/
EXTENDED TYPES LEVEL

DS o S g

INTERRUPT CONTROL LEVEL

A T RN S v

H Figure 5.
4

value passed as argument.

MAJOR MODULES

User Trap Manager
Top-Level Kernel Function Modules

User Process Manager
User Device Managers

Eligible Process Module
Segment Manager

Memory Access Module
Memory Management Module

Primitive Device Managers

Primitive Processss Module
Primitive Event Module
Primitive Message Port Module

Clock and Timer Manager
Character Queue Module
Message Queue Module
System Abortion Module

Bit Pool Management Module

Multiple Precision Integers
Bit Vectors

Access Levels

Hash Tables

Stacks

Queues

Doubly-Linked Queues
Priority Queues

Lock Out Interrupts
Allow Interrupts

Kernel Abstract Machines

status as value, and the second restores the processor status to the
Thus, for this module, the invoker of the
operations has the responsibility for storing previous values of
processor status/priority.

41

- Common Facilities/Extended Types

The next level of the kernel, though not dependent on the
interrupt control module, defines an assortment of extended data
types for use throughout the rest of the kernel. Each of the
extended types is explained below.

A =

Multiple Precision Integers. Operations are defined for double
(32 bit) and triple (48 bit) precision integers. These operations
include zeroing, moving, adding, substracting, multiplying,
dividing, incrementing, decrementing, shifting, and comparing.

Bit Vectors. Arbitrary length bit vectors can be manipulated, |
including bit addressing, setting, clearing, testing, and finding
the first "1" bit in a vector.

2

| Access Levels. The access level data type is defined, and 1
4 operations for initializing, moving, and comparing access levels are |
provided.

Hash Tables. The hash table data type defines an associative
memory organization on threaded lists, allowing the association of
each element with a triple precision integer “key" value. The
Operations defined on hash tables include initialization, adding
elements, removing elements, and looking up elements.

Stacks. Last-in-first-out stacks are defined, along with
operations to push and pop integer values.

Queues. First-in-first-out queues are defined, along with
operations to put integers into a queue, and remove integers from
the end or middle of the queue. Because the queue is only singly
threaded, removal from the middle is not very efficient.

Doubly-Linked Queues. These queues are similar to normal
queues except that they are doubly threaded, so removal of an
element from the middle of the queue is more efficient.

Priority Queues. These queues are lists of integers maintained
in order of increasing value of an integer priority associated with
each list element. When elements are added to priority queues,
their position depends on their priority. Other operations on
priority queues include those to remove the highest priority element
in the queue, and to remove any arbitrary element of the queue.

42

Sub-Process Level

The next kernel level is a collection of modules that make use
of the extended types and interrupt control modules to create an
environment rich enough to support the lowest level of processes in
the kernel. The functions of these modules are explained below.
Note that thesé modules do not depend on each other, and are in no
way related.

Bit Pool Management. This module makes use of the bit vector
management module to provide a mechanism for the definition and use
of bit pools: 2a management mechanism for 1M bytes of storage
allocated using the "buddy" system of management [8] in units of
512, 1024, 2048, 4096, and 8192 bytes. Operations are provided for
the allocation and return of blocks of storage of each of these
sizes.

System Abortion. This module makes use of the interrupt
control module. It provides a mechanism for halting the system and
displaying 16 bits of data on the console lights as the cause of the
system crash.

Message Queues. This module makes use of the stack, queue, and
interrupt control modules to construct a module for the definition
and use of message queues. Message queues are a mechanism for the
queueing of 16 byte messages of arbitrary value. Messages are
allocated from a common pool of storage (fixed at kernel compilation
time) and threaded through the list rooted in the message queue
definition itself. Exhaustion of messages causes the system to
abort. Operations provided include:

a. initialization of a new message queue;

b. placing a new message on a named message queue; and

c. removing the first message from a named queue.
All operations are‘performed at interrupt level T.

Character Queues. This module makes use of the same modules as
the message queue module but the value queued is only one byte in
size. Further, exhaustion of the kernel provided pool of character

storage does not crash the system. Rather, attempted queueing of a
character when the queue is full causes the character to be lost.

Clock 2nd Timer Manager. The clock and timer manager provides

the abstraction of a system-wide calender clock and interval timer
from the programmable clock supplied with the system. The clock

43

S

provided by this module has a size of 48 bits with a resolution of
10 microseconds. The interval timer provided by this module has a
size of 15 bits and a resolution of 1.28 miliiseconds. The clock
manager executes at interrupt priority level 7.

The system clock is automatically incremented so the only
operations on the clock are to read it and to set it. Since there
is no security level associated with the clock, and since it can be
read by any process, allowing it to be set by any process would
provide a storage channel with a high bandwidth. Furthermore, it is
desirable to let the clock be set by ncn-verified code, because the
algorithm for computing the clock value ic a complex one and would
be difficult to verify. Therefore, the clock provided by this
module can be set by any process, but it can be set only once. It
will normally be set as part of the system startup procedure.

The interval timer can be read and set by any process. The
interval timer is decremented at the time of a clock tick if the
processor was not running in kernel mode at the time of the tick.
Thus the presence of the kernel execution time is hidden. If, when
decremented, the timer becomes zero, the timer manager simulates a
“timer trap" and tne User Trap Manager is invoked as with every
other trap.

Primitive Process Level

Primitive processes are the first level of process abstraction
within the kernel. This level contains the modules which define
them and the operations that can be performed on them. Primitive
processes are provided for three purposes:

a. to encapsulate the software defining/managing user
processes (to be defined later);

b. to encapsulate the handlers for devices so as to provide
efficient servicing of terminal (character-at-a-time)
requests for service; and

c. tu encapsulate certain kernel facilities so as to simplify
the construction of concurrency within the kernel.

Three major data structures and modules are defined at this level:

a. primitive processes: primitive processes each possess a
stack (of fixed size), an integer valued priority for
obtaining the processor, a name, a program counter, a set
of general registers (including stack pointer);

44

T Py By

b. primitive events: implementations of semaphores. They are
used to control the interaction of primitive processes.
Events are implemented using integers and queues; and

c. primitive message ports: a mechanism for the coordinated
exchange of messages (defined by the message queue module)
between primitive processes. Message ports consist of a
primitive event and a message queue. Primitive processes
may declare an instance of a message port, initialize it,
send messages over it, and receive messages over it.

It is the intention of this level to entirely eliminate
external interrupts (other than timer interrupts handled by the
clock/timer manager) and convert all external interrupts into
signals (V operations) on events assigned to each hardware element
that can cause external interrupts. Primitive processes are
provided operations to wait ‘for the future or past occurrence of an
event that is signalled by some other primitive process. Operations
on either primitive processes or events are always performed at
interrupt level 7.

The scheduling of primitive processes is implemented using a
priority queue of primitive processes that are ready to run (that
is, defined and not waiting on a event). Scheduling is preemptive,
that is, if during the execution of a low priority process an event
is signalled that makes a higher priority process ready to run, the
higher priority process will gain the processor until such time as
it ag=2in waits for an event. An operation is defined for the
initialization of primitive processes. They are not dynamically
created and defined, rather, they are initialized when the kernel is
initialized and remain in existence while the kernel is in
existence.

The Primitive Process Table is the kernel data base that
defines primitive processes.

The primitive process level also includes the interrupt
interceptor module, which is an assembly language module that
converts external interrupts to "V" operaticns on events (signals).

Primitive Device Level

The next level of the kernel is the primitive device level,
which encompasses all of the primitive device managers of the
kernel. Primitive devices are associated one-to-one with UNIBUS
controllers. A multiplexed controller is defined as one primitive
device with several other ("user") devices attached to it. The
Primitive Device Table names each device controller configured into

45

IR e Ll o

A e

S bl e ST AR ST i S

e S S

san g oo AN i s et 3 S

e S A e P L i a5 AN

the system, and associates with each such controller the following .
data objects:

a. an event to be used as a lock on the controller mediating
access to the controller by several primitive processes;

b. an event to be used by the interrupt interceptor module, to
be signalled on input interrupts; and

c. and event to be used by the interrupt interceptor to be
signalled on output interrupts.

The structure of the different primitive device manager
processes will be discussed in the process decomposition section.

Eligible Process Level

The next kernel level is the eligible process level, which is
also the next level of processes within the kernel. Eligible.
processes introduce the concept of a per-process virtual environment
and as such inzlude many modules in the level to make up that
environment. The various modules in the level are somewhat inter-
dependent, and also depend on lower levels of the kernel. The
modules that make up this level will be discussed in a somewhat
hierarchical manner, but the hierarchy is not a true one in that
there are some interdependencies.

Memory Management Module. The Memory Management Unit (MMU)
hardware provides 48 virtual memory pages divided into 8 instruction
pages and 8 data pages for each processor mode: kernel, supervisor,
and user. All of the kernel instruction page registers and six of
the kernel data registers are reserved to address the kernel code
and data that is always resident in memory. The remaining page
address registers may be dynamically loaded by the kernel to augment
its memory environment and to provide a virtual memory environment
for the supervisor and user mode of each process.

The memory management module defines the operations on the MMU
hardware and the layout of the virtual memory accessible to
processes. This module provides an abstriction of the remaining 34
paze address registers: two pages of kernel data space, eight pages
of supervisor instruction space, eight pages of supervisor data
space, eight pages of user instruction space, and eight pages of
user data space. Each page of virtual memory has associated with it
a descriptor register. This module provides the mechanism for
loading and clearing) these 34 MMU registers. Each MMU register has
the following attributes:

a. an address into physical memory of the start of the page -
expressed in units of 512 bytes;

b. 2a length of the page - expressed as n where the size of the
pagZe is two to the n+9 bytes;

c. 2 justification for the physical page within the virtual
address space cf the page (either high or low);

d. access mode - expressed as NULL, READ-ONLY, or READ-WRITE;
and

e. access control - hardware maintained flags indicating
whether the page has been referenced or written.

This module associates with each of the 34 MMU registers the
Active Segment Table (AST) entry associated with the segment
addressed by the register. It is thus tightly coupled to the
Segment Manager Module, to be defined later.

The 32 supervisor and user registers are used to create the
virtual memory environment of those domains. The two remaining
kernel registers are used to address the stack the kernel runs on
when- servicing a user kernel request, and for use by the Memory
Access Module.

Memory Access Module. This module uses one of the two free
kernel data registers to access data anywhere in memory. It
provides two forms of memory access:

1. word-at-a-time access, to allow reading and writing of any

arbitrary word in physical memory, for use by device
drivers; and

b. access to any segment by the kernel, used at various places
to be defined later.

Segment Manager. The Segment Manager provides the definition
and mechanism for the concept of a segment: a virtual memory

information repository. The Segment Manager provides the following
operations:

2. the creation of segments on filesystems;

b. the "activation" of segments - allowing a fast acéess copy
of the segment defining information to be kept in core for
use by an eligible process;

47

R e et e

[
Fz
!

¢c. the "binding" of segments - bringing the segment into core
for access through the page descriptor of some eligible
process (and eventually through the hardware page
descriptors);

d. the "deactivation" of segments - permitting segments to
migrate their defining information back to the filesystem
repository.

e. the deletion ‘of segments.

The primary tasks of the Segment Manager are the control of
primary memory: the determination and transport of segments to and
from secondary storage and primary storage; and the control of
secondary memory: the creation and deletion of segments on
filesystem and the necessary space management questions involved.

The primary data bases used by the segment manager are the
Active Segment Table (AST) and the Core Allocation Table. The
Active Segment Table is a hash-associative memory containing in-core
copies of the descriptors of activated segments and deactivated
segments whose descriptor space in the AST is not required by
another segment. The segment manager will preempt the AST slot of
an inactive segment in order to "bring in" a copy of the defining
information for 3 segment becoming active.

The AST must have sufficient entries to at least accommodate
all concurrently active segments. The size of the AST is determined
by multiplying the number of pages per eligible process (32) times
the number of eligible processes. This number results from the
architectural constraint that all segments mapped to pages of
eligiblzs processes must be able to be activated.

A primary subsystem of the Segment Manager, the Core Allocation
Module (CAM), operates on the Core Allocation Table. Core is
organized as a buddy system of allocation in the sizes specified for
pages and segments: 512, 1024, 2048, 4096, 8192 bytes. The CAM
allows the preemption of the space allocated to segments, the
copying of modified segments back to secondary storage, and the
reallocation of the preempted segment to a new segment being brought
into core. The CAM also permits the "wiring" of segments such that
their primary memory space cannot be preempted. The CAM also
permits the "unwiring" of previously wired segments. The CAM
implements a "preemptable buddy system allocation mechanism".

When not in primary memory, segments reside in secondary
storage. Secondary storage is organized by the kernel into
"filesystems". The management of each filesystem is assigned to a

48

"filesystem manager", which is a primitive device manager. Each
filesystem manager is identified by the Filesystem Table, indexed by
filesystem name (1 byte). Each filesystem manager defines a Table
Of Contents (TOC) on its filesystem containing the following data
elements:

a. a buddy pool-organized free space data base (implemented by
the bit pool module); and

b. an array of segment descriptors containing the defining
information (name, access level, user/group, permissions,
and secondary storage address) for each segment defined on
the filesystem.

Each filesystem manager supports the following operations:
a. creation/deletion of segments;
b. read/write of segment descriptors; and
c. read/write of segment bodies to/from primary memory.

The Segment Manager itself has a distributed portion and a
centralized portion. The distributed portion runs in each eligible
process and makes requests of the centralized portion, which resides
in a primitive process. The requests are sent to the segment
manager primitive process via a primitive message port. When the
segzment manager has finished processing the request (which it
handles on a first-come-first-served basis), it sends a response
message over an eligible message port (to be defined) associated
with each eligible process. Thus, after the distributed portion of
the segment manager sends a (primitive message) request to the
centralized portion, it waits for a reply on an eligible message
port. Waiting on an eligible port allows other eligible processes
to run if they are ready.

If the segment manager primitive process needs service from 2
ﬁ filesystem manager, it sends a primitive message to the filesystem
3 manager and waits for a primitive message reply. Similarly,

filesystem managers request service from other filesystem managers.

, Eligible Process Module. The eligible process module defines

the data structures and operations necessary for creation of

| eligible processes. Eligible processes introduce the concept of a
: per-process virtual memory. They also encompass a resource
"governor" in that the number of eligible processes defined is
coupled to the amount of virtual memory resources (essentially

L‘l

49

primary memory) available. Each eligible process possesses the
following attributes:

R Y

a. a set of virtual address registers, each containing a
description of a page of virtual memory - each eligible
process has control of 1 kernel page to be used for a
kernel domain stack for each eligible process, 16

k- supervisor pages, and 16 user domain pages (each eligible

& process can execute in all three domains - all eligible

B processes share the other seven kernel pages containing

' kernel code, data, and device registers);

4 b. context similar to primitive processes - stack pointers
| (one for each domain), a program counter, and a set of
general registers;

c. a name; and

d. 3 priority.

The data base that contains this information is the Eligible Process
Table.

1 All eligible processes are multiplexed onto one primitive

i process dedicated to this purpose. This primitive process is the

i lowest priority primitive process, so that eligible processes run

? only when no other primitive processes need the CPU. Eligible

i process scheduling within this primitive process is done in a manner
similar to primitive process scheduling, though non-preemptive.

operations on, eligible events, to be used for the coordination of
eligible processes. Since eligible process scheduling is non-
preemptive, an eligible process will execute until it waits on an

1 eligible event. An eligible event itself is made from a primitive

' event (which acts as a lock on the eligible event), and integer, and
a queue.

3 The eligible process module contains the definition of, and
|
i

The eligible process module also contains the definition of,
and operations on, eligible message ports. An eligible message
port, similar to a primitive message port, is used to send messages
to eligible processes. An eligible message port is composed of a
primitive event lock, a message queue, an eligible event to
represent the existence of messages, and a queue of eligible
processes awaiting messages.

>3 v B ol

The eligible process module manages the mapping of the eligible
process virtual address space to the machine provided by the Memory

i M 3 NS

50

e 5 S S v -t ==

% P e e S ———

Management Module. Operations are provided for the loading/clearing
of the eligible processes virtual page descriptors and for the
translation of these operations into operations on MMU registers (as
perceived by the MMU Management Module).

User Process Level

The next level of the kernel is the user process level, which .
is also the top level of the process hierarchy within the kernel. j
The modules at this level are the User Process Manager and the User :
Device Managers.

User Process Manager. The eligible process level defines a set
of eligible processes which are multiplexed within a primitive
process. Similarly, the user process level defines a set of user
processes that are multiplexed among the eligible processes. A user
process that is not currently assigned to an eligible process is
said to be ineligible.

The process of transitioning user processes between the
eligible and ineligible states is performed by a process called the
User Process Manager, or UPM. The UPM fills eligible processes with
user processes when the eligible processes become free.

When an eligible process wishes to become ineligible (because
the supervisor issued-a DOZE or RECEIVE kernel call and so
indicated), the eligible process sends an eligible message to the
UPM (which is the highest priority eligible process). The UPM then
copies the eligible process' context into its user process context,
and places the user process on a queue of dozing or receiving
processes. Similarly, if an eligible process wants to die (because
the supervisor made a DIE kernel call), he sends a message to the
UPM. The UPM then clears out the eligible process and deletes the
corresponding user process.

In either of the above two cases, the UPM has freed an eligible
process. The next step is for the UPM to select a new user process
to make =~ligible. This selection is made in the following steps.

a. A queue of dozing user processes is checked to see if any
have dozed for the specified amount of time. If any have,
the process is removed from the dozing queue and placed on
the ready (priority) queue.

b. A quesue of receiving processes is checked to see if any
have either received an IPC message or timed out. If any
have, the process is removed from the receiving queue and

| placed on the ready queue.

51

BL o Wdsed 5N

-Gt

AP PR A

c. The highest priority process on the ready queue is selected
to be made eligible.

User processes have the following context:

a. a kernel stack segment - the kernel stack segment is always
core resident when the process is eligible for execution;

b. a message queue of IPC messages;
¢. a set of timers, etc.; and

d. a virtual memory consisting of segments mapped to
supervisor and user domain pages.

When a process becomes eligible, its context must be copied to
the context of an available eligible process and the process can
then proceed to execute. A user process is made eligible by the
following operations:

a. 1its kernel stack is activated and wired into core; and

b. its context (stack pointers, general registers, interval
timer) is copied into the eligible process context.

The kernel domain of each elizible process will respond to segment
faults of mapped segments by attempting to "activate" the segment
and "bind" it into core and load the page descriptor register for
that segment. There is no guarantee as to the amount of time the
segment will remain in core.

A user process is made ineligible by the following operations:
a. 1its mapped segments are deactivated;

b. 1its context is copisd from the eligible process back to the
User Process Table entry for the process; and

c. 1its kernel stack is unwired and deactivated.

The primary data base administered by the User Process Manager
is the User Process Table containing one entry for each defined user
process. The table is organized as a hash table.

User Device Managers. The other modules at the user process
level are those that implement user device managers. A User Device
is any supported device not containing a filesystem. The "user"
interface to devices was defined in a previous section. User

52

Devices appear to be special purpose processes. User Devices are
defined in the User Device Table, initialized at kernel
initialization time. This table contains the following information:

a. the definition of the mechanism necessary to communicate
with the primitive processes managing each user device;

b. the data defined for devices at the kernel interface (viz.,
access level); and

c. the Primitive Device Table entry for this device: more
than one user device may share a common Primitive Device -
use of tne controller is coordinated via the primitive
event in the PDT.

Each User Device Manager runs as a primitive process, and
receives its requests for service via a primitive message port. The
requests for service are processed and completion IPC messages are
sent to the requesting process. The functionality of terminal and
non-terminal user device managers will be discussed in the section
on process decomposition.

User Trap Manager :

The highest level of the kernel is the User Trap Manager. This
module handles intraprocess trap conditions vectored to the kernel
by the hardware trap vector initialized at kernel compilation time.
An interval timer trap can also be simulated and vectored to the
user trap manager by the clock and timer manager.

The user trap manager is invoked when some form of hardware
trap occurs or when the interval timer trap is simulated. Three
generic types of traps are handled by the user trap manager, and
discussed below.

Kernel Invocation. A hardware TRAP instruction executed in the
supervisor domain is interpreted by the user trap manager as a
kernel invocation. These traps are vectored to a reentrant
subroutine that performs access checking, and if successful,
performs the operation requested by the software executing the
supervisor domain. All access checking occurs within these trap
manager subroutines. After the kernel operation has been performed,
control returns to the supervisor domain after the TRAP instruction,
unless there are any other trap conditions that should be reflected
to the supervisor, as explained below.

Reflected Traps. Certain trap conditions are not processed by
the kernel but rather are reflected to the supervisor domain by

53

T

placing information about the trap on the supervisor stack, and
forcing execution to continue at location zero in the supervisor
domain. Traps that are reflected in this manner include:

a. any trap specified by an IP_TRAP kernel call;
b. interval timer rundown traps;

c. hardware traps conditions such as bus errors, invalid
instructions, floating point exceptions; and

d. certain types of MMU faults, particularly access
violations, and registers that have not been mapped by the
supervisor.

Page Faults. There is one type of MMU fault that is not
reflected to the supervisor. This occurs when the supervisor has
mapped a paze, but the page is not yet bound into memory. In this
case the kernel binds the segment into memory, loads the appropriate
MMU register, and restarts execution after the fault. This page
faulting mechanism is invisible to the user.

Process Decomposition

The last section described the architecture of the kernel in
terms of a decomposition of the kernel into a set of partially
ordered levels of abstraction. This decomposition demonstrated the
levzls of processes within the kernel. This section will now
outline in more detail the architecture of the special processes,
primitive and elizible, running within the kernel. This section
considers the three primary uses of processes within the kernel:

a. the management of user accessible devices;
b. the management of virtual memory; and

c. the management of the transport of user processes to and
from an "eligible" state.

User Device Management Architecture

The architecture decentralizes the management of user devices
into primitive processes. One primitive process is defined for each
user device as its User Device Manager. Requests for service by the
device are passed to its manager as a primitive message through a
primitive message port dedicated to the user device in the UDT. The
requests to a user device manager are sent by the user trap manager
in response to a kernel call. If any segments are to be involved in

54

the I/0 request, the trap manager will wire them into memory before
the message is sent to the user device manager.

The device manager process utilitizes the PDT to access the
hardware registers for the device, and possibly accesses the segment
that was wired by the trap manager.

For DMA devices, the process merely translates the virtual
address of the transfer into a physical address and loads the device
registers; for non-terminal character oriented devices (such as a
line printer), it accesses memory using the Memory Access Module)
and passes each byte to the device. Figure 6 diagrams the user
device manager process structure for non-terminal devices.

For terminals, a slightly different architecture is employed.
Terminals require three primitive processes to manage them since:

a. they are allowed to initiate (or their user is) a change in
access level;

b. they can initiate input (type ahead); and
c. they require character echoing.
Thus the following three processes are defined for terminals.

a. The user device manager process responds to requests for
service by eligible processes, accesses the device through
the processes defined below, and accesses virtual memory.

b. The Terminal Input Manager (TIM) is a device manager at the
primitive device management level. TIM waits for input
from the terminal (waits on the primitive input event in
the PDT), processes change of security level requests by
the user, and queues all other characters on two character
queues: the first goes to the device manager to satisfy
process requests; the second is directed to TOM for
echoing.

c. The Terminal Output Manager (TOM) is also a device manager
at the primitive device level. TOM waits on a primitive
character port for either echoed characters from TIM or
output characters from the device manager in response to a
process request.

Figure 7 diagrams the prncess structure terminal device managers.

55

o T T T T —T v § v ¥ "

|
9IN30NJ1S SS3D01g i193eBUBK 9OTAD([BUTWIASL-UON g 3an31j i
O aa ey L

91qel 9TqeL

dTAS(] ¢ 9> IA3([

dALIIWT I aas)

901rA19g J0J 1sanbay _vm
\ln/ oL ~
T ||».|||...\ ‘0 \"
i adessal AATIIWTIAg
i 222201 (1981
& { S §
UoTIORIAUT [SATITUL1d ssan0a
H 821A3Q 0/1 1915730y 21143Q 1o3rvur) : STqr8: i1 !
] aotTAa(Q ; i /
e i adrvesnj uniietdwon HJI >

.m
M
i
|
i
¢
i
.

T T R T AN

A (i el v T, "7 N Y

3IN3doNI3g SS3J014 198eUBK IDTAJ(TEUTWISL

a1qel
?0T1A3(Q

QATITUWTId

I e ———————

Jeurwiay

138euej
andanp
TeuTwIal

ssad01d

*(2an3d1g
STqelL
adTALe(Qq
a9s(TR
(39sn)
S$sad01d M
919137173 /
P
/
o

SATITWTAS EaY
uoT3oPIaIUT to g
1935780y £ a933euey \\\ob
o) 3DTAS(]
9dTA9(£
3] [euTwIa]
= a9sq

4

a9geuel
Indny
leutwiag

Jo e
Sgury) 198°

pd

1 £3ganoes

ss23014

—— S8 0d1l

103 o%¢

jooy J

57

E
|
|
|

Virtual Memory Management

Virtual Memory Management operations are decentralized into a
set of primitive processes. The first of these constitutes the
Filesystem Managers. Each Filesystem Manager resides in its own
primitive process. Its operations are invoked via messages passed
through primitive message ports associated with each Filesystem
Manager.

The second of these is the Segment Manager Process itself. It
directs requests to the filesystem managers to actually perform the

transfers to and from filesystems. It performs the following
functions:

a. deciding which segment to preempt either from memory (it
contains the Memory Allocation Manager) or from the AST (it
manages AST slot preemption);

b. the decision as to whether a segment can be brought into
core (sufficient room?);

c. the addition of segment descriptors to the AST; and,
d. the removal of segment descriptors from the AST.

The segment manager process receives requests from eligible
processes by its own primitive message port and transmits replies
via the eligible message ports belonging to its requestors. A
certain portion of the Segment Manager is distributed as reentrant
routines within the kernel. These basically act on the AST entry
for a segment and do not involve the 2llocation or deallocation of
AST entries or the movement of segments either within the AST or to
or from primary memory. Figure 8 diagrams the architecture of the
Segment Manager.

User Process Management

The User Process Manager is centralized in an eligible process.
This process communicates with other eligible processes via the
eligible message ports associated with each eligible process. It
communicates with the Segment Manager in the same manner any other
eligible process would. Figure 9 diagrams the User Process Manager
Architecture.

The kernel software that converts ineligible processes to
eligible processes (and vice versa) must always have a defined stack
to execute upon - that is the rationale for placing the User Process
Manager in a process. The rationale for placing it in an eligible

58

™y

21n3093Tyday 1adeuey jududas g 2an314

21qel CACLAR 31qel :
ERRT.ET wa3sAs juaudag i
SATITUTI aTTHd 2ATIOV w
i
!
s3sanbay sisanbay s .
30FASQ . a8essap a8esso)
0/1 * SATITUTI] SATITWII]
uoT3oeaajul §89001d \ $890014 ss95014 u
wa3s4S3TTd 19315189y miwﬁawmm owwww”wmm !
JDTAD d23eu g
i ma3sAsSaTTd juauldag 2TqreTTd
* sasuodsay sasuodsay
98essa| SATITWIAd 28essay ITqISTId

mmma&& Pkl it W RO

=N

s

o

2In39N13S $89001J I98®BUBK §S9001d 1981 ‘6 IANSTI

$SAD0¥d
TI4IOITE
$3SSA00¥d T19VL
A
Jd0 3nand
[J
[]
$SE00¥d ° =
S3SSAI0Ud F1419113 P~ N3
b HEDS O FOVSSAN T19I9T1d
40 AnANd $S3004d
q9sn $SED0¥d
FI919113
$3SS3004d
9NIZ0d
40 AnINdD
$SAD04d
f T1919113
: SASSAI0Ud
ONIAIIOTY
A0 anand

process is to ease the task of communication with other eligible
processes and to allow it to communicate with the segment manager.

A — g .

SECTION IV

PRIVILEGED SUBSYSTEMS

Privileged subsystems are user processes that execute
certified, protected code to provide secure, multilevel facilities
that cannot be conveniently furnished by the kernel. In particular,
they are appropriate for performing such operations as user process
creation, login, and multilevel message queuing. These tasks are
handled by the rooct process, the discretionary authenticator, and
port manager, respectively. This section will discuss the
protection issues of privileged subsystems, and will discuss each of
the subsystems in more detail.

PROTECTION ISSUES

Privileged subsystem processes make up the Trusted Subjects [7]
mentioned earlier, subjects privileged to violate one or more of the
following access control policies:

3. the simple security condition;

b. the security ¥*-property;

c. the simple integrity condition;

d. the integrity *-property; and

e. the discretionary protection mechanism.
The need that the root process, discretionary authenticator, and
port manager have for such privileges will be discussed in the
following sections.

Since improper operaticn of software in privileged processes
can cause a security compromise, the software must be verified, in a
manner similar to security kernel software (though easier to
accomplish), and protected from intentional or accidental
compromise. This protection is provided by the integrity policy

supported by the kernel. Privileged processes's code segments have
very high integrity levels.,

62

ROOT PROCESS

At system initialization, after the kernel is initialized, the
root process is started by the kernel. The root process executes
wholly in the supervisor domain, and is privileged to violate all
access control policies. It executes with a system high security
level and a system low integrity level.

The root process' main function is to respond to the IPC
messages from the kernel that result from change access level
requests from users at terminals. Before the root starts responding
to these requests however, it carries out two activities related to
system startup.

First, it carries on a dialogue with the system console to
allow the modification of the system userid and password file. The
system operator is allowed to add, delete, and change entries in
this file each time the kernel is initialized. Once this dialogue
is complete (as indicated by the operator), this file cannot be
changed unless the kernel is started again.

Second, the root process spawns a system high emulator process
at the system console, to allow the operator to carry out any
emulator-defined system startup procedure before allowing users to
log in. These procedures would typically include the setting of the
system clock (which can only be set once per startup).

After spawning this emulator process, the root waits for it to
die. When this occurs, the root starts accepting login IPC
messages. When the root receives such an IPC message, it spawns a
process at the access level requested by the user and starts the
discretionary authenticator subsystem running in that process. This
process is privileged with respect to violation of discretionary
access controls. To pass to the authenticator the name (device
identifier) of the user's terminal, the root uses IPC messages.

The above mechanism implements a multilevel terminal
capability, allowing terminals to operate at any security level
below some maximum. It is assumed that every user admitted to the
terminal room has been externally authenticated to the maximum
security level of the terminal. With this facility, the user need
only inform the kernel of the security level at which he or she
wishes to work.

63

o . S— PR i

e

T T RN s R

o i Sad o
w

e e

DISCRETIONARY AUTHENTICATOR

The root spawns a discretionary authenticator each time a user
requests a change of access level at a terminal. The authenticator
identifies a user attempting to login and starts an emulator process
to service that user's needs. Specifically, the discretionary
authenticator does the following:

a. requests and saves the user's identity and password;
b. encrypts the password;

c. compares the name and encrypted password to the information
in the User Data Base that contains the name, group and
encrypted password of every user known to the system (This
data base has security and integrity attributes such that
it can be read by only the discretionary authenticator and
the root, and written by only the root);

d. 1if the name or password is incorrect, repeats from step 1;

e. spawns an unprivileged process running the SUNIX Emulator
for the user, with user and group identification that is
contained in the User Data Base for this user; and

f. dies.

The discretionary authenticator executes at the access level of
the terminal and is privileged to violate discretionary access
controls., This privilege makes it possible to spawn an Emulator
process with user and group different from that of the spawning
process.

PORT MANAGER

The port manager is also started by the kernel at system
initialization. The role of the port manager is to allow for
interprocess communication where the messages are longer than those
provided by the kernel IPC facility, and where inter-process family
communication, as in the case of the Emulator, is involved. One
convenient application for this subsystem is line printer spooling,
where a (system high) process needs a queuing capability for data at
various security levels.

The port manager executes at system high security level and at
system low integrity level, and is privileged to violate the simple
integrity condition and the security #-property, for it may send

64

ke

oo s e

B e e

i A L

messages to (modify) processes at higher integrity levels and lower
security levels.

For queuing purposes, the port manager maintains a port data
base. This data base consists of an array of port definitions for a
set of ports defined at the compilation time of the port manager.
Each port definition contains the following attributes:

a. the name of the port - an integer ranging from zero to the
number of defined ports of the system;

b. the access level of the port;

c. a list of waiting messages sent to the port but as yet
unreceived as well as the sending process of each message;
and

d. 2 list of processes requesting messages through the port.
The port manager performs two operations:

a. send a message to a port; and

b. receive a message from a port.

A process desiring to send a message through a port sends an
IPC message to the port manager containing the name of the port and
the unique identifier (uid) of a 512-byte segment containing the
message. The port manager then copies the message from the segment
to a new segment at the access level of the port. The uid of the
copied segment is then entered on the list of waiting messages for
the indicated port. The port manager will only honor a request to
transmit a message if and only if the access level of the port is
greater than or equal to the access level of the requesting process
and of the segment passed as a message. Whether the request is
honored or not, the port manager deletes the segment containing the
original message.

A process desiring to receive a message from the port sends an
IPC message to the port manager containing the name of the port of
interest. The port manager only honors requests to receive messages
from a port from processes whose access levels are the same as the
access level of the port. The port manager returns the first
waiting message on the port to the requesting process. This message
contains the unique identifier of the segment containing the message
and the process identifier of the sending process. If no messages
are waiting on the port, the port manager queues the name of the
requesting process and makes the above response as soon as a message

65

Rt b b adas 2R

LB L A

is sent to the specified port. If more than one process is waiting
for a message over a particular port, the port manager distributes

incoming messages, one at a time, to waiting processes in First-In-
First-Out order. The segment containing the message must be deleted

by the process receiving its unique identifier.

| —— T ===

L

3 SECTION V
THE SECURE UNIX EMULATOR ARCHITECTURE
This section describes the SUNIX "mulator architecture, and

includes the structure of process fam.iies and of the Emulator data
base.

The primary consideration in designing the SUNIX Emulator was
to maintain maximum compatibility for existing UNIX software. In
all cases where inherent protection violations existed (for
instance, under UNIX, any user may read any area of core memory),
compatibility gave way to security.

! PROTECTION POLICY

As discussed in a previous section, UNIX protection is
implemented in terms of the notions of "user", or owner, "group",
and "other". The objects in the Emulator file system, directories
and files, all have owner and group attributes, and a "mode"
describing the read, write, and execute access granted to processes
having that owner or that group or neither: the discretionary
permissions. The kernel requires the additional dimension of access
level, that is, security level and integrity level, for these
objects. Naturally, this access level applies to every segment
composing the file or directory.

In the interest of maintaining compatibility, if an access
level is not expressly requested when objects are to be created by
| the Emulator, the access level of the process executing the command
is used. If a higher access level is desired, it must be so
specified.

As in UNIX, processes inherit the same user and group across a
fork or execute operation. Set_user and set_group are not
implemented for they allow a process to take on the attributes of
another user, and access information that it might not be allowed to
access under its real user/group identity. The same restriction
| must be made for the Superuser feature. Any implementation of the
‘ Superuser would, to some degree, allow a process to circumvent the
security constraints imposed by the kernel on untrusted processes.
If an Emulator process were to claim such privileges, all the
; ; Emulator software would have to be validated, violating the original
] concept of a small kernel.

67

A e R S t5el St

OBJECT STRUCTURE

The Secure UNIX Emulator has two major types of objects which
it maintains. These objects are:

a. process families, brought about by spawning; and
b. the file system, organized into

a. directories,

b. data files, and
ié c. special files.

i These are basically the same objects manipulated by UNIX; they
-ﬂ differ in organization but not in function.

4 Information Processors: Process Family

The collection of processes generated through the Emulator by
the actions of a user at a terminal is known as a process family.
4 The first member of the family is spawned by the Discretionary
4 Authenticator, and has the access level requested by the user for
| the terminal and the user and group attributes confirmed in the
Authenticator's User Data Base. Subsequent members result from
forks at the user interface, and execute at this initial access
level.

To summarize, all process families have the following
attributes:

‘1 a. 3 device (terminal) for standard input and output,

| b. an owner,

! c. 3 group, 2and

d. an Aaccess level.

The attributes of the individual processes are listed in

Section III. 1In addition, Emulator processes have the following
attributes:

2. a set of signals that may interrupt the execution of a
process at any time;

b. a set of directives to control the events after an
interrupt;

c. a set of open files; and

d. a local priority level.

Information Storage and 1/0: File System

The Emulator file system is designed to be transparent to the
user: SUNIX operations have the same effect as UNIX operations from
the point of view of the user. In addition, references to
directories are encouraged to be made interpretively, making it
unnecessary to depend on a known directory format in implementing
user software. This design policy will require that some user
programs (e.g., the directory list command, "1s") be rewritten to
conform to this rule; however, this is considered to be a much
cleaner design.

A major change in the original file system structure is the
movement of all file-related information from inodes to directories,
thus making the directory entry the complete and unique definition
of an Emulator defined object. This was done because of the nature
of the “flat" file structure that the inode provided. UNIX inodes
contain information on all the files in a given file system. Since
all data is contained in kernel segments at single access levels, in
order for inodes to continue to be maintained by the UNIX emulator,
a separate file system would be required for each access level for
which there were files, which is clearly an impossibility.

Directories

Directories provide the mapping between the names of files and
the files themselves. Directories contain information about data
files, special files (I/0 devices), linked files, and other
directories, thereby creating a tree-like hierarchy. Directories
have the following attributes:

a. a pathname identifying the location of the directory in the
hierarchy;

b. 2 collection of segments, or "pages", making up the whole
directory;

c. an access level, which applies to the segments that compose
it and to any data files it lists. Directories listed may
have equal or higher access levels. The access level. of

69

PR

Al el e e s e e

special files vary depending on the access level of the
controlling process.

2 time of last modification;

a set of locks, enabling read and write synchronization on
each page; and

a number of entries, up to 16 per page, describing data
files, links, special files, or other directories.

Every directory entry contains a file-type indicator. The
amount of information in the entry varies depending on the type of
file. Entries for directories contain:

A

a file name (character string);

b. discretionary permissions;

c. a unique file identifier;

d. an owner;

e, a group; and

f. the unique identifier for the first segment of the
directory. Subsequent segments are doubly-linked by
forward and backward pointers (unique ids on each page.)

Data Files

Emulator data files have the following attributes, all of which
are recorded in their directories:

a.

b.

a character string giving the file name;
discretionary permissions;
an access level;

2 unique file identifier: derived from the system clock to
guarantee that no two files have the same identifier;

an owner;

70

o

T ST S

v e

g. a flag: indicates whether the file is small (no more than
4096 bytes) or larger;

h. a list of segments (unique ids of the segments) that make
up the file. No two distinct files should contain any
common segments. If the file is "large", the list
identifies segments that hold the unique ids.

i. a byte count: indicates the amount of data written in the
segments; and

j. an access time: the last time the file was modified.

Regular data files are made of kernel segments of fixed size
(1024 bytes) and may run as large as 1364 segments (about 1.4
million bytes). This size is smaller than the maximum segment size
allowable under current UNIX (16.7 million bytes), but is considered
sufficient for this prototype. Data files are protected not only by
their discretionary access modes (owner/group/other permissions) as
in UNIX, but also by their access levels.

Links

Links, as in UNIX, are pointers to files defined elsewhere in
the directory hierarchy. Links are implemented by providing in the
directory entry a pathname to be used to traverse the directory
tree. The link file entries in a directory contain:

a, a file name in the form of a character string;
b. discretionary permissions;

¢. 2 unique file identifier; and

d. the pathname of the file linked to.

When a file designated as linked is referenced, the pathname is
followed and file identifiers compared to obtain the directory entry
of the data, directory, or special file being traced. If the
destination file is deleted and another with the same name is
created in the same directory, the unique file identifiers for the
link entry and new entry will no longer match, resulting in an
error. Note that linked files may not be linked to.

All links are performed in conformance with security
constraints that preclude linking to files at lower security levels
than that of the directory containing the link, and thereby creating
a non-monotonically increasing directory structure.

71

d

DB erior o Tl Ao

Ll s i s

o T 5 i S X it U 5~ AR

Special Files

Special files are input/output devices defined in such a way as
to make device I1/0 appear no different from reading and writing a
data file. Special file directory entries contain the following

information:

a. a file name in the form of a character string;
b. discretionary permissions;

¢. 2 unique file identifier;

d. an owner;

e. a group;

f. a device name: 2 32-bit unique integer specified at system
compile time;

g. a device table index: a pointer to a list of device
management routines;

h. 2 time: 1last time the device was accessed (at the
indicated access level); and

i. device dependent information (e.g. "erase" and "kill"
characters for terminals).

The special files correspond to the devices accessible to the
user. The system disk is not considered a special file. As an
initial prototype, the kernel allows only teletypes, a line printer,
and magtapes to be addressed by a user. Specifically, 10 devices, 7
terminals, 1 line printer, and 2 magtape drives, will be considered
special files.

Note that the access level of a device listed in the directory
is the level given the device at the time the entry is created. In
reality, the access level of any special file is subject to change
depending on the access level of the controlling process, that is,
of the user requesting service.

OPERATIONS

The Emulator operations correspond for the most part to the
system calls provided by current UNIX. There are cases, however,
where changes in the user interface have been effected or where

72

IV

T AT T >

el

calls are no longer supported as a result of the stringent security
requirements imposed by the kernel. Also, some new operations were
required to make full use of the multilevel facilities. The

following modifications to and incompatibilities with UNIX resulted:

a. Superuser is not supported.

b. Every terminal may have several processes executing; these
processes make up a process family and communication
between processes, except for IPCs, is restricted to within
the family.

c. Inodes are no longer supported and data previously stored
in inodes have been moved to the directories, thus
drastically changing the format of a directory entry. This
particularly affects the operations manipulating links
(link and unlink).

d. Core memory and the kernel root file system are no longer
available as special files.

e. Setuid and setgid are no longer supported.

f. Due to a completely restructured filesystem only accessed
by the kernel and a desire to keep the Secure UNIX
prototype small, mount commands are not implemented.

g. Access to system data such as console switches is no longer
permitted.

h. The setting of the system time can be done only once after
each system startup.

Additional system calls provide for the creation and deletion

of files at various access levels, the moving of file entries from
one directory to another, and the more exotic features of UNIX--the
write and mail commands.

In all the operations described below, errors are reflected as

is done in UNIX. The "c¢" bit in the processor status word is set
and an error number is recorded in general register RO.

Process Qperations

Process operations are for the most part local to the process
family. Notable exceptions are operations that involve privileged

73

subsystems such as the port manager. Process operations fall into
three categories:

a., process creation and existence;

b. intra-family communication; and

¢c. process status and control.

The process creation mechanism is embodied in the fork and exec
operations. The fork operation, implemented with the kernel spawn,
starts a new process at the same access and privilege level as the
requesting process. This process recognizes the requesting process
as its parent, thereby creating the family hierarchy. The exec
operation makes it possible for a spawned process to execute another
program.

The exit operation causes the process to end. If a successor
(parent) is waiting (see below) for such an event, an IPC message is
sent containing the status of the process at the time of the exit.

A wait operation allows a process to suspend execution until a
descendant exits. The status of that process at the time of exit is
returned via an IPC message.

Family members may signal each other by writing in the Process
Family Segment mapped in each process' virtual space. Signals may
be sent from one process to another ‘through the kill operation (so-
called due to the signal that causes the destination process to
exit). The signal types are:

a. hangup

b. interrupt

c. quit

d. 1illegal instruction

e. trace trap

f. IOT instruction

g. EMT instruction

floating point exception

i. kill

j. bus error

k. segmentation violation

1. bad argument to a system call

With the signal operation, a process may control its actions

i after receiving a signal by opting either to "catch" the signal, and
3 execute a signal handler, or ignore it. The default action on a

: signal causes an immediate exit. All signals, except hangup,
interrupt, and quit, produce a core image if neither caught nor

| ignored. The kill signal alone may neither be caught nor ignored.

| The Emulator checks for signals at the end of each system call and

i acts accordingly. Note that a process may only signal other members
{ of its family.

A number of operations allow a process to examine and/or
interact with others in the family. The times operation returns the
non-kernel execution times of the current process and all
descendants. At the start of every Emulator system call, the
virtual time spent executing in user space is recorded, and at the
end, the time spent in supervisor space is marked down in a process
family data base. The sum total of descendant user space and
supervisor space times is returned. The process_status operation
takes as argument the process id of a member of the current process
family and returns the current state of the process. The
process_trace operation allows a process to control the actions of a
child process (direct descendant): to read and write the child's
virtual space, send it signals, and control the flow of execution.

TSR YA e

The break operation allows a user process to expand its virtual
data space, providing for dynamic space allocation.

! A process may control its local priority by use of the nice
operation.

A process may suspend execution for a number of seconds with
the sleep command.

Various operations return information about the executing
process. The process_status operation may of course be used for a
process to learn its own status. A process may obtain a profile of
its activity through the profile operation. This operation forces
records to be kept of the amount of time spent executing particular
areas of user virtual memory. It is implemented through time traps,
set for approximately every 1/60th of a second, that force the

o i e

75

e

s

§ o AT —

% Far 1082 " S v e S G R o RO v A8 wir 3 o 04 sl . P =

- - - - ——————— T Y,
y: T ——————"

1
§
\
i
2

o

program counter at the time of the trap to be examined and
appropriate tallies made. The get_access_level operation returns
the security and integrity level of the process performing the
operation. The get_process_id operation returns the process
identification number (local to the family) of the process currently
executing. The get_user_id and get_group_id operations return
information about the owner of the process.

File Operations

As in the case of kernel segments, processes, acting on a
user's behalf, can perform three classes of operations on files:
creation and deletion, modification of attributes, and read and
write accesses in virtual memory.

The data file create operation takes a character string name
and discretionary permissions. It creates an initial kernel segment
with user and group corresponding to the user and group owning the
process. The access level of the file is the same as that of the
process creating it, and must correspond to the access level of the
directory in which the file is to be catalogued.

The directory file create operation may take one of two forms,
depending on the access level of the new directory. In either case,
the character string name and discretionary permissions are
required. If the directory is to have a higher access level than
the process creating it, the new access level must be provided, and
must be greater than or equal to the access level of the process and
of the file's directory.

The change_directory operation sets the process' notion of the
working directory. File names used in subsequent operations may be
taken 3s either entries in or descendants from this directory.

To create a special file for a device, likewise a name and
discretionary permissions are required. An additional argument is a
pointer into a device table, which lists the Emulator device drivers
for each device. The access level of the special file at the time
of creation must be the same as that of its directory. The actual
access level is subject to change depending on the process driving
the device.

All files may be deleted with the remove_file command. If the
file is a directory, the directory is recursively searched and each
file and directory listed is also removed.

L

Do VG I A 5

The link file operation creates a link to a file, which may be

a regular data file, directory, or special file. The unlink_file
operation removes the link.

The move operation creates a duplicate entry for a data or
special file, and removes the original file entry, in effect
renaming the file. It has the effect of creating a new file,
copying all the data from the old file to the new one, changing the
owner, group, and discretionary permission to correspond to that of
the old file, and deleting the old file.

The change_nwner and change_mode operations may only be
executed by the owner of a given file. They both result in
modification of the meaning of the discretionary access permissions.
It is important to note that, as with the segments composing a file,
the mandatory access level remains fixed during the life of the
file.

The operation open_file gives a process access to read and/or
write the segments comprising a given file (or the device in the
case of special files), and returns a "file descriptor", an integer
from 0 to 14, to be used in subsequent operations on the opened
file. A process may have up to 15 files opened at a given time.
Mandatory and discretionary access permission to the file are
applied before any file is successfully opened. 1In addition to the
necessary discretionary access permissions, to open a file for
reading, the process must have an access level greater than or equal
to the level of the file (observe access); for writing, the access
level must be equal to the access level of the file (modify access).

The close_file operation is the complement of open_file. This
operation is particularly useful when a process requires more than
the maximum number of open files during its lifetime. Any open
files are automatically closed on exit.

The dup_descriptor operation allows an already opened file to
be referenced by a synonymous file descriptor returned by the call.

The read_file and write_file operations allow a process to
transfer data into and out of an open file. They both require a
valid file descriptor, a buffer address in user space, and a byte
count.

The seek operation allows positioning the byte pointer of a

file at random. Seeks on pipes are forbidden, and seeks on terminal
devices are meaningless.

77

R

o

EER AR

Two operations are available to monitor and control terminal
I/0. The set_tty operation allows a process to set such information
as echoplexing, carriage-return/line feed conversions, baud rate,
tabs, etc., on its controlling terminal. These state changes go
into effect for all processes in the process family. The get_tty
operation returns the results of the last set_tty. The default
teletype status is that of an ASR-33.

The pipe operation creates an interprocess communication link
in the form of a circular file that can be both read and written.
Two descriptors are returned, one for the read end for the pipe, the
second for the write end. Two processes (necessarily in the same
family) with the same file descriptors for a pipe (i.e., descendant
from the same process) can pass information back and forth by
controlling the contents of the file.

The sync operation assures that all information placed in a
file (in core) is fed out to disk.

Various status check functions are available. The stat_file
takes a file name and returns the contents of the directory entry on
that file. The directory_status operation takes a directory name
and offset and returns the contents of the corresponding directory
entry. In this case, the names of the files listed in a directory
need not be known in advance. The open_file status operation
applies only to open files, and takes a file descriptor as argument.

The get_time operation returns the system's idea of the current
real time.

The set_time operation sets the system clock (maintained by the
kernel) the first time it is called. Subsequent calls will return
no error, but will not change the clock value.

The port_manager is accessed via the port_send and port_receive
operations. Both require a pointer to a buffer where up to 512
bytes of data may be stored. 1In the port_send operation, the data
will be copied (by the Emulator) into a 512-byte segment and the uid
of this segment is passed to the port manager via an IPC send
request. In the port_receive operation, whatever data is waiting
will be returned after the Emulator performs an ipc_rcv operation.

The inter_console_write operation allows a process to write on
another user's console. It requires the user id of a person
presumably logged in and the address of a buffer containing the data
to be written. The terminal for the receiver is determined and the
data is written via an iowrite kernel operation. Service may be
denied if the access level of the receiver terminal is less than the

78

i

b b e e

W T T e .

DA ol i 3

b

access level of the sender, or if discretionary permission to the
terminal prohibits access.

EMULATOR INTERNAL ARCHITECTURE

The internal architecture of the Emulator in many ways
resembles that of current UNIX. User system calls are vectored
through a trap handler that makes the appropriate function call.
During the course of the operation, various process family data
bases are accessed, and care must be taken to coordinate the
read/write operations with those of other processes. A device may
be accessed or a signal received and processed. And throughout, a
process is responsible for scheduling itself, that is, relinquishing
the CPU if it determines it has used more time (since its last DOZE
or RECEIVE) than is equitable for the balanced operation of other
prccesses.

Data Bases
Data bases available to the Emulator fall into two classes:
a. process family related, or
b. process local.

Of those associated with a process family, they may fall into one of
three categories:

a. data file related;

b. special file (I/0 device) related; or

c. process status related.

Process local information ranges from pointers to system call
arguments to timing variables that must be preserved across system
calls.

Process Famil

All process family data is collocated in a Process Family
Segment shared by all members of the fami;y. This segment holds

three tables:

a. the process table;

79

Tl N A

~ e

b NN

SN e Nt i e N el

b. the active file table; and
c. the active object table.

For each of these tables, a lock mechanism is provided to
synchronize read and write accesses.

The process table holds the information on each process that
allows family members to communicate among themselves:

a. the current status of the process, if recently forked,
running, waiting to die, waiting for a child to die, being
traced;

b. the family local ids for this process and its parent;

c. the kernel id for the process;

d. the last signal received;

e. the uid of the Emulator stack for this process; and

f. if the process is in a wait state, the event for which it
is waiting.

The active object structure contains one entry for every file,
pipe, and directory currently in use by any process in the family.

Information for the object referenced is copied into these entries
from the directory entry:

a. the file type: directory, special file, or data file, and
if data, large or small;

b. discretionary permissions;

c. the unique file id of the object;

d. the owner of the file;

€. the group;

f. wuids of the basic segments that make up the file;
2. the size of the file in bytes;

h. the unique id of the directory page that catalogues

file; and

80

R e L T E S

i.

the number of active file table references to this entry
(e.g., if a file is opened by more than one process).

The active file table holds an entry for every open operation.
The items in each entry are:

a.

d.

a flag indicating if the file is opened for reading,
writing, or both and if the file is a pipe;

a reference count of the number of duplicates on this entry
(e.g. a result of a dup_descriptor operation);

the address of the active object table entry for the file;
and

the offset in the file for the next read or write.

The addresses of all device drivers addresses are found in a
device configuration table along with other pertinent data:

a.

b.

C.

the device identifier;
a flag indicating if device is a terminal; and

addresses for the open, close, read, and write functions.

Process Local

Each process has on its stack a number of static variables that
need to be maintained across system calls but are not necessarily of
interest to other family members, and data that must be maintained
across function calls while the Emulator is executing. These items

include:

a.

b.

o

the user's arguments to the last system call;

the address of the user's hardware (general purpose)
registers;

signal direction indicators;
an error type (may be null);

the address of the name (character string) of the last file
referenced;

owner, group, and access level of the process;

81

g. the addresses of functions to be executed in case of
interrupts or time traps;

h. profiling flag and arguments;

i. the current process' user and system times and the sum of
its children's user and system times;

j. a list of active file table entries for files open to this
process;

k. the unique id of the process family segment;

1. the unique id of a directory at a higher access level being
created or deleted;

m. the uids and justifications of segments residing in user
domain pages;

n. the uid of the last segment stored in the Emulator's
utility register;

0. the address of the active object table entry of the
process' working directory;

p. the current address in user space for the next byte
transfer;

q. the current address in a file for the next byte transfer;

r. the number of bytes remaining for transfer into or out of a
file;

s. the address of the process table entry for this process;

t. ¢trap flag and caught traps;

u. access privileges;

v. text, data and stack sizes of user code; and

Ww. scheduling variables.
Emulator Subsystems

The SUNIX Emulator contains special management routines for
internal process control. These routines allow for the following

operations:

82

b
4 !
E B
: 2
k5
| §

a. trap management;

b. signal transmission and processing;
¢. scheduling;

d. 1locks on data bases; and

e. device management.

Trap Manager

Traps are processed by the Emulator's trap management routines.
This manager is responsible for calculating the user and supervisor
times that are sent to the user during a child_times operation. 1Its
primary task is to react to traps initiated either by a user or as
the result of an interprocess trap operation through the kernel.
The trap manager processes the following trap types:

3.

bus error;

illegal instruction;

breakpoint trap;

I/0 trap (IOT instruction);
emulator trap (EMT instruction);
floating exceptions;
segmentation exception (MMU faults);
time traps;

system calls;

terminal I/0 traps;

non-terminal I/0 traps;
interrupts;

quits; and

hangups .

i

|

E The first seven trap types result in signals being sent to the

i process. Traps from system calls cause the arguments to be placed i
; in the Emulator's U vector and the desired function to be called.

i At the end of every trap, the signal manager is invoked.

N

Signal Manager

Ot ol AR i A

A signal has no direct reaction on a process. It merely sets a ,
flag (in the process table) that asks a process to do something to i
itself. i

When a process detects a signal, it may or may not enter a
"STOP" state, depending on whether or not it is being traced. 1In
the STOP state, it will wait for a message from the tracing process
to tell it what to do, which may be one of the following:

a. return the contents of a user location in I or D space;

b. change the contents of a user location in I or D space;

c. return the contents of the U vector;

d. change the contents of the U vector;

e. process a given signal;
fo exit:
All communication is done through IPC messages.

One process may debug a program executed by another process by
requesting a breakpoint be written at a strategic location in

instruction space; the resultant breakpoint trap (on execution at
that address) would force the tracee to signal itself and then

standby for further requests (e.g., examine registers, local
variables, etc.).

If the process is not being traced, the corresponding signal
table entry is referred to for the response:

a. Zero: default action; in the case of certain signals,
create a "core" file in the current directory (access
permitting) and copy the U vector and user virtual space
into it, along with hardware registers; then exit.

b. Any odd number: ignore the signal and continue.

84

¢. Any even number: treat the entry as an address and return
to it in user space. i

Wait Manager (Scheduler)

An Emulator process invokes the scheduler preceding all device
I/0 or when it determines it has used a predetermined amount of
uninterrupted user and supervisor time. If the scheduler determines
a time-out condition, it DOZEs to allow higher priority processes to
continue. If the process is doing an extraordinary amount of I/0,
the scheduler simply resets its priority to something relatively
low.

Lock Manager

; Locks are used to coordinate reads and writes on data bases

i accessed by members of a process family, and in certain cases
processes outside of a family. Locks are effective only if
processes cooperate in the locking strategy. This mechanism is
handled by the lock management routines:

E a. lock for reading;

b. lock for writing;
c. unlock after reading;

d. unlock after writing.

I RN B

These routines all operate on a lock structure for each data base
containing:

a. 2 lock lock: used to guarantee exclusive access to the 1
lock structure. This is particularly critical in the case
: of multiprocessors.

b. a modify count: ingremented during a write lock operation
to indicate impending change to the data base;

a lock count: records how many processes are waiting on
the data base; and {4

T T e
0
.
oot vk i

d. a process id: the unique id of the last process requiring
the data base.

Read locks are only performed if non-exclusive access is
sufficient. A read lock operation on a data base returns the value
of the corresponding lock's modify count. If a write to the data

85

R i 3 o G

i

it L

i
{
4
4

s .

base (in the form of a write lock) occurs before the read unlock,
the value returned by the read unlock function is non-zero. The

calling routine is expected to repeat the read-lock/read/read-unlock
sequence until zero is returned.

If all write accesses are preceeded by a call to the write lock
mechanism, it will provide for exclusive access to a data base. A
process first examines the lock lock, its only indication that
another CPU needs the data. Then, by examining the lock count, a
process knows if the data base has already been locked. It copies
the process id field onto its stack, replacing it with its own id,
and waits for a message generated by the write-lock operation. At
that time, it restores the old process id, increments the modify
count, and continues its write operation. When done, it executes a
write-unlock, which increments the modify count and sends an IPC
message to whatever process is named in the process id field. This
method of queuing waiting processes results in a Last-In-First-Out
ordering.

During the write locks and unlocks, all traps are deferred,
that is, queued, to prevent a data base from being locked up but
never released (due, for instance, to a kill signal).

Device Manager

Access to devices is transparent to user software due to the
attempt in UNIX to make device I/0 appear as straightforward as file
read and write operations. This property is carried over in the
SUNIX Emulator. If a file to be read or written happens to be a
terminal, magtape, or the line printer, control is switched to the
appropriate routines via the device configuration table described
above.

Terminal 1/0 requires some pre- and post-processing due to the
many options given a user for his terminal. For instance, erase and
kill characters must be processed; the meanings of carriage return
and line feed characters may be modified (in general to produce a
combination carriage-return/linefeed or newline character sequence);
delays may need to be inserted (in the form of rubout characters)
after carriage returns, tabs, and form feed characters; or raw mode
may be desired, in which case, the erase and kill characters lose
their special meaning.

Similarly with the line printer, care must be taken that not
more than, for instance, 132 characters are placed on a line (the
others are not printed); again, tabs must be converted to spaces,
and carriage returns and line feeds processed appropriately.

86

e e ——

In the case of terminals, the user may determine the
characteristics he wants for this terminal, through the set_tty]
operation. There is no such option for the line printer.

SECTION VI

SUMMARY

This section will summarize the major features of the Secure
UNIX prototype and outline the disappointments and hard problems
encountered.

ACCOMPLISHMENTS

4 The SUNIX Prototype project began with the realization that a
| "simple"™ kernel would probably not be efficient in the support of a
' Secure UNIX. To efficiently support a secure UNIX system, the

| security kernel should provide:

a. support for a large (about 100) number of processes not
always core resident - meaning that the kernel must support
the swapping and scheduling (without storage channels) of a
significant number of processes;

b. support for DMA devices; i

c. efficient (and consistent) support for character oriented :
terminals;

d. kernel reentrancy/concurrency to minimize overhead in the
multi-process environment;

= - e, - support -for multiple- sizes of segments, recogmezing that
different mechanisms in SUNIX (the process image, the file
system, and the SUNIX Emulator) all require differing sizes
of object;

‘f f. support for fixed size (clock derived) object names

! asserting that this fact substantially simplifies the
construction of system software in the kernel provided
environment;

g. support for timing and clocking mechanisms with about one
millisecond resolution;

h. generality in the kernel; and

i. support for a large number of security levels (sixteen + |3
classifications and sixty-four categories).

88

§
'

The combination of these factors necessitated a reexamination of the
architecture of the existing security kernel for the PDP-11/45 [9].

The resulting design, documented herein, incorporates a number
of state-of-the-art concepts to address, and minimize, the kernel
complexity induced by the above "requirements". Some of these
concepts are:

a. the specification of the kernel/non-kernel interface
(objects and operations) via a formal behavioral
specification;

b. the decomposition of the kernel implementation into well-
defined abstract machines with a careful allocation of
reponsibility to each level of machine;

c. the orthogonal decomposition of the kernel implementation
into parallel processes, communicating via semaphores and
messages, carefully controlling access to shared data bases
so as to minimize uncertainty caused by parallelism;

d. the elimination of interrupts at a very low level within
the kernel;

e. the elimination of traps within the kernel, e.g., the
kernel never takes an address fault;

f. the decomposition of the notion of process into four
levels: hardware, primitive, eligible, and user -
hopefully clarifying an often ambiguous area of system
design; and

g. the design of an effective mechanism for the preemption of
a segmented virtual memory based on the "buddy" system of
memory allocation.

The incorporation of these mechanisms does not impose an
intolerable verification burden. Verification is complicated by (at
least) two issues: size and complexity. There is no escaping the
conclusion that the design, as presented, is more complex than
earlier kernel designs [9]. However, the design offers better
facilities and substantially more parallel performance. The
internal czoncurrency of the kernel will cause verification problems,
yet its architecture seems to prevent the uncertainty of state that
interrupt-like mechanisms cause. The provision of a well-defined
concurrency does not appear to preclude verification, even at the
current state-of-the-art.

89

- s iR A i o

DISAPPOINTMENTS

Despite the above discussion, the largest disappointment of the
design is the size and complexity of the resulting system. While
(seemingly) many times better than previcus small operating systems
for PDP-11s, its size and complexity seem just at the limit ~f
comprehension for a single desigrer or architect. Until its
performance (in terms of utility, performance, and ease of
verification) have been demonstrated, the success of the SUNIX
Prototype will not be demonstrated.

Tne SUNIX Emulator, in general, seems to be quite well
constructed. The very notion of partitioning the system into kernel
and emulator appears to be architecturally sound. The system
appears rather elegant. However, several problems do occur. The
major ones relate to the communication and synchronization of
different families of processes. The two major instances are:

a. the control of one process family by another - for
instance, there appears to be no feasible means (barring
privileged process intervention) to kill a process in one
process family from another process family - families are
just too independent. This consideration has related
concerns in other areas of pragmatic system management,
viz., identification of all existing but unused segments,
the reconstruction of broken filesystems, secure
backup/retrieval (staging) of information to bulk backup
store, etc., and

b. the coordination of access to files shared by processes in
differing process families - there exist conceptual
solutions to this problem but they are unattractive due to
increased disk access (viz., placing a lock on the file (in
its directory entry) that must be accessed for each file
access - this solution requires access to the directory for
each access to the file - this might be alleviated somewhat
by a new access mode - write with lock - that will operate
in the correct manner but only if specifically requested by
the using process).

Another disappointment is the removal from the design of
several kernel operations - having nothing to do with security yet
of possibly central importance in a working, operational system.
These two kernel operations were intended to facilitate a "survey"
of a kernel filesystem, and were not fully designed and implemented
in the interest of time.

These operations would, for a given unprivileged process,
provide the mechanism by which that process can ascertain the names
of all segments to which the process has access. In this manner, a
system high process, privileged to violate discretionary protection,
could find any inconsistencies in the Emulator supported filesystem.
That is, "lost" segments that exist of which the Emulator has no
record, and "missing" segments that the Emulator believes to exist
yet of which the Kernel has no knowledge, could be found. This
mechanism took the form of two kernel operations:

a. reset_filesystem: this kernel operation specifies to the
kernel the name of the filesystem to be surveyed; and

b. next_segment: this kernel operation returns the name (uid)
of the "next" segment stored on the filesystem - no
guarantee of sequencing is made only that each existing
segment will be reported once, concurrent creation of new
segments may result in new segments not being reported.

HARD PROBLEMS

A major problem with secure system design is the construction
of larze objects (such as user files) out of small objects (such as
the kernel-supplied segments), outside of the security sensitive
software. Since secure environments provided by security kernels
are by definition partitioned rather formally with respect to access
level, it is difficult to design effective mechanisms for the
construction of objects (available to a number of different
processes at differing access levels) from smaller objects. It
appears to have no easy answer short of making all software
responsible for the construction of objects security sensitive.

This problem is the basic root cause of both of the Emulator
problems mentioned above (interprocess family kill and file access
coordination). The Emulator problems could be eased by having a
single Emulator-managed process table and having information about
all processes in it. However, since the information in the table
is about processes at different levels, only a subset of the table
could be accessed by each process, Clearly, if such a table did
exist, then it would have to be maintained by the kernel (or other
security sensitive software).

Another problem can be attributed to the hardware, particularly
the memory management hardware. The problem is the overhead :
associated with the switching of address space registers for each
process swap. A primary motivation in the placement of terminal
device drivers within the kernel domain was the avoidance of a full

91

address space switch for every character input. These

considerations motivated the design of four levels of process:

hardware, primitive, eligible, and user. A Multics design

concurrently and independently discovered and implemented, only .
requires three levels of process due to hardware support that allows

more flexible representation of address spaces (placement in memory,

with processor support for a pointer-to-memory switch).

T R et

R P W SR P

s S

S0 5w

s 2 e et B s

o et o Bt s A 2.5 MR 5

P——

REFERENCES

Ritchie, Dennis M. and Ken Thompson,''The UNIX Time-Sharing
System,'" Communications of the ACM, Volume 17, Number 7, July
1974, pp. 365-375.

Thompson, K., and Ritchie, D. M., UNIX PROGRAMMER'S MANUAL,
Bell Laboratories, Murray Hill, N. J., May 1975.

Department Of Defense, ''Security Requirements for Automatic
Data Processing (ADP) Systems,'" Department of Defense Manual
5200.28, December 1972,

Department of the Air Force, "Security Requirements for
Automatic Data Processing Systems (ADPS)," Air Force
Regulation 300-8, June 1974,

Bell, D. E., L. J. LaPadula, '"Secure Computer Systems,' ESD-TR-
73-278, Volumes I-III, Electronic Systems Division, AFSC,
Hanscom AFB, MA, November 1973, November 1973, April 1974,

AD 770768, AD 771543, AD 780528.

Biba, K. J., "Integrity Considerations for Secure Computer
Systems,'" ESD-TR-76-372, Electronic Systems Division, AFSC,
Hanscom AFB, MA, April 1977, AD A039324.

Woodward, J. P. L., "Design and Abstract Specification of a
Multics Security Kernel," ESD-TR-77-259, Vol. III, Electronic
Systems Division, AFSC, Hanscom AFB, MA, March 1978,

AD A053149.

Knuth, Donald E., The Art of Computer Programming, Volume 1,
Addison Wesley Publishing Company, Reading, Massachusetts,
pp. 442-460.

Schiller, W. L., "Design and Specification of a Security Kernel
for the PDP-1145," ESD-TR-75-69, Electronic Systems Division,
AFSC, Hanscom AFB, MA, May 1975, AD AO0ll1l712.

